
Multiprogram Design in the theory of Owicki and

Gries

Doug Goldson.

School of ITEE,

University of Queensland, Australia.

goldson@itee.uq.edu.au

October 18, 2001

Abstract

This paper introduces the theory of Owicki and Gries as a method for
the design (as opposed to the veri�cation) of multiprograms (concurrent
programs).

The theory is applied to a problem of barrier synchronisation for two
(and more) programs. The problem is well chosen because it is easy
to state yet not easy to solve, and it therefore shows the diÆculties of
multiprogram design very well.

The e�ectiveness of the theory to manage multiprogram design, and
in the control of complexity, emerges quite well from the exercise.

1 Introduction

This paper applies the theory of Owicki and Gries [7, 2], a theory of partial
correctness of multiprograms, to a problem of barrier synchronisation taken from
Feijen and van Gasteren [4, 5, 6]. The purpose is to show how well the theory,
originally a method of multiprogram veri�cation, can be used as a method
of multiprogram design. And this di�erence in method, between the analytic
and the synthetic approach to multiprogramming, characterises the full extent
of the development of the theory by Feijen and van Gasteren { an advance
based on the e�ective use of a small number of design heuristics. Section 2
describes the synchronisation problem for two programs, and Section 3 describes
its solution. Section 4 then explores generalisations of the problem to more than
two programs.

The example is not new. It has already been worked in detail by Feijen and van
Gasteren, so the purpose here is not to present novel solutions, (nearly all the
programs in the sequel can be found in [6]), but merely to illustrate the use of
the theory, to show how well it manages the diÆculties of multiprogram design
(by isolating freedom of design choice), and to compare proofs with [6] along
the way.

By way of preliminaries, a multiprogram consists of more than one program to

1

be executed at the same time. It is written as one (labelled) program above
another, like this

P1: . . .
. . .
PN : . . .

Instead of saying that more than one program is \executing at the same time",
it is equivalent, but much simpler, to say that at most one program is exe-
cuting, but the choice of executing program is not determined by the program
text. However, this choice must be fair, in the sense that no program is forever
prevented from executing.

The programming language is Dijkstra's guarded commands [1], which supports
condition synchronisation with the blocking conditional IF : ifB ! I �, where
execution of IF reaches I if B is evaluated when true and execution is blocked
if B is evaluated when false. The conditional must itself be fair, in the sense
that a blocked guard must always sometime be retested.

A fundamental question is what program actions are atomic actions, where an
atomic action is one that can not be interrupted during its execution. It is
not, in general, realistic to treat assignments and guard evaluations as atomic
actions (x:=x + 1 is three actions: load x; add 1; store x). However, it is safe
to do so in this paper and, in any case, the luxury of atomicity synchronisation

hIi on any instruction I to make it an atomic action will be reserved.

2 A Two Program Synchronisation Problem

For programs A and B

A: A1 A2

B: B1 B2

it is desired that1

(a) (i) A2 is not started until after B1 has �nished
(ii) B2 is not started until after A1 has �nished

And this under the constraint that

(b) no changes to A and B are allowed, but for the addition of code X and Y

A: A1 X A2

B: B1 Y B2

1In A: A1 A2, A is a program label,A1 and A2 are program schema, and their juxtaposition

denotes their sequential composition; a notation that departs from the usual A1;A2.

2

Introducing fresh variables x and y into X and Y , the following code achieves
a (useless) solution, satisfying (a) at the cost of total deadlock (neither A2 nor
B2 are reached)

X : x:=false hif x! skip �i

Y : y:=false hif y ! skip �i

The problem now becomes that of removing this deadlock while maintaining
(a), and the progress (that A2 and B2 are sometime reached) is achieved if (1)
is satis�ed

(1) X terminates ^ Y terminates

while (a) is maintained if constraint (2) is satis�ed

(2) (i) x:=true in Y is the only change allowed in Y .
(ii) y:=true in X is the only change allowed in X .

where (2i) makes it the job of Y to truthify2 the guard in X and ensures that
(ai) is true.

Requirement (a) is now a consequence of constraints (b) and (2), which makes
the code X and Y the sole focus of attention, and requirement (1) now de�nes
the problem to be solved, the cooperative termination of X and Y .

3 A Two Program Solution

This section uses the theory of Owicki and Gries to design a solution to the
problem of Section 2. The theory is based on the idea of a correct program
annotation, and it is used here constructively, in the manner of Feijen and van
Gasteren [6].

An annotation for a sequential program is correct when every assertion in the
annotation is valid in Hoare logic. For instruction S and postcondition Q, the
triple fPg S fQg is valid when precondition P establishes the weakest liberal
precondition of S and Q [1, 3], i.e.

P) wlp:S:Q

This is suÆcient to show that a multiprogram component (a sequential program
when treated in isolation) is locally correct.

An annotation for a multiprogram is correct when it is locally correct for each
component and, furthermore, when no action in one component is capable of
falsifying any assertion in another. Satisfaction of this second condition makes
the annotation globally correct.

2\Truthify": to make true. The antonym of \falsify".

3

Satisfaction of (2) is straightforward and the diÆculty lies in satisfying (1). To
this end, Feijen and van Gasteren [6] show that (1) admits a useful separation
of concerns

(1) X terminates ^ Y terminates
�

(3) (X terminates _ Y terminates) ^
(4) (X terminates � Y terminates)

and being free to tackle (3) and (4) in either order, (4) is chosen �rst.

Note Since the purpose is to show how well the theory can control multipro-
gram design, we draw attention, in advance, to the exploitation of symmetry in
the design activity. As the problem is symmetric in X and Y , so too should be
its solution, meaning that X should be designed in a way that can ignore its
image Y .
End

3.1 X terminates � Y terminates

By the symmetry of X and Y , it is suÆcient to show that Y terminates if X
does, for which, the stable truth of y as X 's postassertion is asserted. (Stable
means if true then it can not be falsi�ed; i.e., if a stable assertion is true at some
control point then it remains true as long as the control point remains active.)

(4) X terminates � Y terminates
� fSymmetryg

Y terminates (X terminates
�

y ^ (y is stable) (X terminates

X : x:=false hif x! skip �i f? yg

Local correctness of y is readily satis�ed in keeping with (2ii).3

X : x:=false hif x! skip �i y:=true f? yg

Y : y:=false hif y ! skip �i x:=true

But global correctness is not satis�ed because action y:=false in Y can falsify
y.

Global correctness is achieved in just two ways: by strengthening the annotation,
or by weakening the annotation. In this case, the termination argument means
that y can not be weakened, nothing less than y will do, which only leaves
strengthening y by solving the equation

3In ? y, ? is not a part of the assertion y, it is a comment on the status of y in the program

annotation, to the e�ect that the local correctness of y, or its global correctness, or both, is

yet to be proved.

4

Q ^ y ^ P) wlp:(y := false):y ^ P

for unknowns P and Q. (The annotation is then modi�ed

X : . . . y:=true fygfPg

Y : fQg y:=false . . .

.) P and Q are determined by calculation4

wlp:(y := false):y ^ P

�
false

(fQ � :Pg
Q ^ y ^ P

introducing a new annotation

X : x:=false hif x! skip �i y:=true fygf? Pg

Y : f? :Pg y:=false hif y ! skip �i x:=true

together with further proof obligations: local and global correctness of P and
:P .

Taking local correctness �rst. For :P in Y , assume

(i) :P is a preassertion of A and B, and is true on entry to Y .

(If this seems disconcerting, because of (b), we make it less so shortly.)

For P in X , since nothing is yet known of P , beyond (i), it can only be estab-
lished by back propagation

X : x:=false f? x) Pg hif x! skip �i fPg y:=true fygfPg

and, since x) P is locally correct, this only leaves the global correctness of P ,
:P and x) P .

P and :P are made globally correct by assuming

(ii) orthogonality of P (i.e., P does not mention x or y).

and the global correctness of x) P under action x:=true in Y is given by
calculation

wlp:(x := true)::x _ P

� fOrthogonalityg
P

4That y can not contribute to this contradiction explains the choice of Q � :P ; P � :y
is out as a postassertion of y:=true, and Q � :y is out as a preassertion of y:=false.

5

X : x:=false fx) Pg hif x! skip �i fPg y:=true fygfPg

Y : f:Pg y:=false fy) Pg hif y ! skip �i fPg x:=true

Finally, (i) and (ii) are satis�ed by choosing a ghost variable p for P .

X : x:=false fx) pg hif x! skip �i fpg y:=true fygfpg

Y : f:pg y:=false fy) pg hif y ! skip �i fpg x:=true

Note A ghost variable is a program variable that does not a�ect the control

behaviour of the underlying program. It is a formal device that is used only in
the proof that the underlying program is correct. In this case p is a ghost in
the strong sense that it does not belong to the program at all, being used only
in the annotation. Therefore, it certainly does not a�ect control behaviour.
End

That p is a ghost explains how :p can satisfy (i) as a preassertion of A and B

without violating (b) by requiring initialisation code. Being imaginary, p can
have whatever initial value we like.

This completes the proof of (4).

3.2 X terminates _ Y terminates

Since total deadlock can only occur if both X and Y are at their guards, it is
suÆcient to show the stable truth of x _ y at the guards.

(3) X terminates _ Y terminates
�

(x _ y) (X and Y are at their guards

Following [6] this gives the annotation

X : x:=false f? Qg hif x! skip �i y:=true

Y : y:=false fRg hif y ! skip �i x:=true

under constraint

Q ^ R) x _ y.

Obvious choices for Q are x _ y, x or y, and, given constraint (2ii) on changing
X , we can truthify y directly with y:=true.

X : x:=false y:=true f? yg hif x! skip �i y:=true

Y : y:=false x:=true fxg hif y ! skip �i x:=true

6

For global correctness of y, in light of y:=false in Y , it must be weakened or
strengthened. This time strengthening is out5, which leaves

X : x:=false y:=true f? y _ Sg hif x! skip �i y:=true

Y : y:=false x:=true fx _ Tg hif y ! skip �i x:=true

For global correctness of y _ S, assuming

(i) orthogonality of S in y and x.

gives

wlp:(y := false):y _ S � S

X : fTg x:=false y:=true fy _ Sg hif x! skip �i y:=true

Y : f? Sg y:=false x:=true fx _ Tg hif y ! skip �i x:=true

and, as before, S is locally correct by assuming

(ii) S is a preassertion of A and B, and is true on entry to Y .

Finally, (i) and (ii) are themselves satis�ed by introducing ghost variables s and
t.

X : ftg x:=false y:=true fy _ sg hif x! skip �i y:=true

Y : fsg y:=false x:=true fx _ tg hif y ! skip �i x:=true

It remains to check that x _ y is true at the guards, and now we are forced to
break the annotation's symmetry by choosing one of s or t to falsify.

x _ y ((y _ s) ^ (x _ t)
(

:s _ :t
(fBreak symmetryg

:s

X : x:=false y:=true fy _ sg hif x! skip �i y:=true

Y : fsg y:=false x:=true f? :sg hif y ! skip �i x:=true

The local correctness of :s is satis�ed by action hs:=false x:=truei (where
ghost assignment s:=false is atomic with x:=true and so introduces no new
control points).

5Strengthening with y ^ S raises preassertion f:Sg Y , and so f:Sg X, but S is true at

the X guard, and a ghost assignment in X will falsify :S in Y .

7

X : x:=false y:=true f? y _ sg hif x! skip �i y:=true

Y : fsg y:=false hs := false x := truei f:sg hif y ! skip �i x:=true

Unfortunately, the new action upsets the global correctness of y _ s because

wlp:hs := false x := truei:y _ s � y

makes y an impossible postassertion of y:=false. However, weakening y _ s

with x gives

wlp:hs := false x := truei:x _ y _ s � true

while remaining strong enough for the argument

x _ y ((x _ y _ s)(:s

This completes the proof of (3).

Next we compare this proof of (3) to that given by Feijen and van Gasteren in
[6], which we do because it illustrates very well the sensitivity of proof structure
to the order in which proof obligations are discharged. The weakening of y in
the annotation

X : x:=false y:=true f? y _ Sg hif x! skip �i y:=true

Y : y:=false x:=true fx _ Tg hif y ! skip �i x:=true

introduces a choice of next step. The choice lies between the `low' level goal to
show that y_S is globally correct or the `high' level goal to show the e�ect of the
weakening on truthifying x_y at the guards. This time, choosing the latter and
introducing a single ghost variable means that we are no longer forced to choose
which one of S or T to falsify, and the annotation's symmetry is maintained.

x _ y ((y _ S) ^ (x _ T)
(

:S _ :T
�

S ^ T) false

� fMaintain symmetryg
v=2 ^ v=1) 1=2

X : x:=false y:=true f? y _ v=2g hif x! skip �i y:=true

Y : y:=false x:=true fx _ v=1g hif y ! skip �i x:=true

The global correctness of y_v=2 is satis�ed by the ghost action v:=2 truthifying
v=2 when the action y:=false falsi�es y.

8

X : hv:=1 x:=falsei y:=true fy _ v=2g hif x! skip �i y:=true

Y : hv:=2 y:=falsei x:=true fx _ v=1g hif y ! skip �i x:=true

This completes the (alternative) proof of (3), taken from [6].

Finally, between proving absence of individual deadlock (4) and absence of total
deadlock (3) the program code has changed, which means that the proof of (4)
must be redone.

The global correctness of x) p in X is again satis�ed by making p the pre-
assertion of x:=true in Y

X : x:=false fx) pg y:=true fx) pg hif x! skip �ifpg y:=true fygfpg

Y : f:pg y:=false f? pg x:=true fpg hif y ! skip �i fpg x:=true

but this time a ghost assignment is needed for the local correctness of p

X : x:=false fx) pg y:=true fx) pg hif x! skip �ifpg y:=true fygfpg

Y : f:pg hp := true y := falsei f pg x:=true fpg hif y ! skip �i fpg x:=true

This completes the (revised) proof of (4).

4 A Three Program Synchronisation Problem

As a piece of code documentation, an obvious step is to try to make further use
of the proof to solve a three program problem using the same communication
pattern. Given are

A: A1 X A2

B: B1 Y B2

C: C1 Z C2

and it is desired that

(a) (i) A2 is not started until after B1 and C1.
(ii) B2 is not started until after A1 and C1.
(iii) C2 is not started until after A1 and B1.

(b) no changes to A, B and C are allowed, but for the addition of code X , Y and Z.

The problem again becomes

9

X : x:=false hif x! skip �i f? yg f? zg

Y : y:=false hif y ! skip �i

Z: z:=false hif z ! skip �i

(1) X ,Y and Z all terminate.

(2) Allowable changes are
(i) x:=true in Y and Z.
(ii) y:=true in X and Z.
(iii) z:=true in X and Y .

The annotation ensures barrier synchronisation (a) because it makes y and z

true and stable if A2 is started, so program control must have reached Y and
Z.

As before

(1) X ,Y and Z all terminate
�

(3) (X or Y or Z terminate) ^
(4) (X terminates � Y terminates � Z terminates)

Let the proof of (4) follow the same pattern as Section 3.1. For the correctness
of y and z.

X : x:=false f? x) qg hif x! skip �i y:=true z:=true fyg f? pg fzg fqg

Y : f:pg y:=false hif y ! skip �i z:=true x:=true

Z: f:qg z:=false hif z ! skip �i x:=true y:=true

For global correctness of x) q

Y : f:pg y:=false hif y ! skip �i z:=true f? qg x:=true

Z: f:qg z:=false fz) qg hif z ! skip �i fqg x:=true y:=true

(3) requires assignments before the guarded skips. Take component Y . Intro-
ducing x:=true by (2i) gives preassertion q, at which point we can stop, because
the local correctness of q in Y and the global correctness of :q in Z can not be
satis�ed. But introducing z:=true by (2iii) also gives preassertion q. There is
no further room to manoeuvre, which invites the conclusion that the problem
is unsolvable with this communication pattern. And it is, because out of this
failure to �nd a proof arises the counterexample that Y might terminate X with
x:=true by (2i), and X Y , before Z is even entered.

10

The previous program is an obvious generalisation of the two program case. A
di�erent program, taken from [6], is

X : x:=false y:=false hif x ^ y ! skip �i f? xg f? yg f? zg

Y : y:=false z:=false hif y ^ z ! skip �i

Z: z:=false x:=false hif z ^ x! skip �i

(2) Allowable changes are
(i) x:=true in Y .
(ii) y:=true in Z.
(iii) z:=true in X .

For (4) and the correctness of x,y and z.

X : x:=false y:=false fx) pg hif x ^ y ! skip �i
z:=true fxg fpg fyg f? qg fzg

Y : f:pg y:=false z:=false hif y ^ z ! skip �i f? pg x:=true

Z: f:qg z:=false x:=false hif z ^ x! skip �i y:=true

(3) requires assignments before the guarded skips

X : x:=false y:=false z:=true fx) pg
hif x ^ y ! skip �i z:=true

Y : f:pg y:=false hp := true z := falsei fpg x:=true
hif y ^ z ! skip �i fpg x:=true

For proof of (3)

(3) X or Y or Z terminate
�

(x ^ y) _ (y ^ z) _ (z ^ x) (X and Y and Z are at their guards

X : x:=false y:=false z:=true fx _ y _ z _ s _ ug
hif x ^ y ! skip �i z:=true

Y : fsg y:=false z:=false hs := false x := truei f:sg
hif y ^ z ! skip �i x:=true

Z: fug z:=false x:=false hu := false y := truei f:ug
hif z ^ x! skip �i y:=true

But now the annotation is too weak for the argument

(x ^ y) _ (y ^ z) _ (z ^ x)((x _ y _ z _ s _ u)
:

:s ^ :u

11

And out of this failure arises the counterexample that X and Y are at their
guards and then Z falsi�es both z and x and truthi�es just y.

Of the two failures, the �rst is hopeless because it falsi�es (4) and allows one
component to terminate in a way that might prevent another. The second is
less hopeless because (4) can be proved but (3) can not. However, in [6] Feijen
and van Gasteren make (3) true by replacing the blocking IF instructions by
DO loops. When all of X , Y and Z are at the guards, each component is made
to execute its assignment while it is waiting and it only takes two true variables
for one component to terminate.

It remains to recheck (4)

X : x:=false y:=false fInv:x) pg
do :(x ^ y)! z := true od z:=true fxg fpg fyg f? qg fzg

Y : f:pg y:=false hp := true z := falsei fInv:pg
do :(y ^ z)! x := true od x:=true

Z: f:qg z:=false x:=false
do :(z ^ x)! y := true od y:=true

Note While the loop guards in this program are not atomic actions, the pro-
gram topology shows that they are stable { once true, they remain true.
End

5 Conclusions

Feijen's solution to a simple problem of barrier synchronisation for two pro-
grams has been presented. It was used to illustrate how the theory of Owicki
and Gries can be used to design multiprograms, as opposed merely to verify
them. We saw how design is driven by the need to make program assertions
locally correct and then globally correct. This helps to isolate choices and some-
times even to remove them. For instance, we saw how the annotation structure
can sometimes determine whether weakening or strengthening must be used for
global correctness. We also saw how metavariables can be used to defer design
choices, and we saw a good example of how di�erent proofs can be obtained by
tackling proof obligations in a di�erent order.

A failure to extend the two program solution to any number of programs was
also presented, together with Feijen's solution. In this case we saw how the line
between success and failure in multiprogram design is extremely thin, with two
programs failing to satisfy (1), but while one is a dead-end, the other eventually
leads to a solution. We also saw the theory used here to construct falsifying
execution histories from failed attempts at proof.

Finally, while the overall aim of the theory is to control the complexity of design
by abstracting from execution histories, we saw how the complexity of proof (in-

12

troduced by global correctness) is itself controlled quite e�ectively by exploiting
symmetry in the annotation.

References

[1] E. W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

[2] E. W. Dijkstra. A personal summary of the gries-owicki theory. In Selected

Writings on Computing: A Personal Perspective. Springer-Verlag, 1982.

[3] E. W. Dijkstra and C. S. Scholten. Predicate Calculus and program Seman-

tics. Springer-Verlag, 1990.

[4] W. H. J. Feijen. Phase synchronisation for two machines. In M. Broy, editor,
Programming and Mathematical Method. Springer-Verlag, 1990.

[5] W. H. J. Feijen and A. J. M. van Gasteren. Programming, proving and cal-
culation. In C. N. Dean and M. G. Hinchey, editors, Teaching and Learning

Formal Methods. Academic Press, 1996.

[6] W. H. J. Feijen and A. J. M. van Gasteren. On a Method of Multi-

Programming. Springer-Verlag, 1999.

[7] S. Owicki and D. Gries. Verifying properties of parallel programs: An ax-
iomatic approach. Communications of the ACM, 19(5), 1976.

13

