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ABSTRACT

Tuberculosis (TB) is a deadly infectious disease, which kills millions of people every year. The causative pathogen, Mycobac-
terium tuberculosis (MTB), is estimated to have infected up to a third of the world’s population; however, only approximately
10% of infected healthy individuals progress to active TB. Despite evidence for heritability, it is not currently possible to predict
who may develop TB. To explore approaches to classify susceptibility to TB, we infected with MTB dendritic cells (DCs) from
putatively resistant individuals diagnosed with latent TB, and from susceptible individuals that had recovered from active TB.
We measured gene expression levels in infected and non-infected cells and found hundreds of differentially expressed genes
between susceptible and resistant individuals in the non-infected cells. We further found that genetic polymorphisms nearby
the differentially expressed genes between susceptible and resistant individuals are more likely to be associated with TB
susceptibility in published GWAS data. Lastly, we trained a classifier based on the gene expression levels in the non-infected
cells, and demonstrated decent performance on our data and an independent data set. Overall, our promising results from this
small study suggest that training a classifier on a larger cohort may enable us to accurately predict TB susceptibility.

Introduction

Tuberculosis (TB) is a major public health issue. Worldwide, over a million people die of TB annually, and millions more
currently live with the disease1–3. Successful treatment requires months of antibiotic therapy4, and drug-resistant strains of
Mycobacterium tuberculosis (MTB) continuously emerge5. Approximately a third of the world’s population is estimated to be
infected with MTB, but most are asymptomatic. While these naturally resistant individuals are able to avoid active disease,
MTB might persist in a dormant state, known as latent TB6. In contrast, approximately 10% of individuals will develop active
TB after infection with MTB7, 8. Unfortunately, we are currently unable to predict if an individual is susceptible. While twin and
family studies have indicated a heritable component of TB susceptibility9–12, genome wide association studies (GWAS) have
only identified a few loci with low effect size13–19. Due to the highly polygenic architecture, it may be informative to examine
differences between susceptible and resistant individuals at a higher level of organization, e.g. gene regulatory networks. Using
this approach, previous studies have characterized gene expression profiles in innate immune cells isolated from individuals
known to be susceptible or resistant to infectious diseases, including those with latent or active TB20 and acute rheumatic
fever21.
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We hypothesized that gene expression profiles in innate immune cells may be used to classify individuals with respect to
their susceptibility to develop active TB. To test this hypothesis, we differentiated dendritic cells (DCs) from monocytes isolated
from individuals that had recovered from a past episode of active TB, which we refer to as susceptible, and from individuals
with confirmed latent TB, which we refer to as putatively resistant (this group is enriched in resistant individuals but we cannot
exclude that some still have the potential to develop active TB22). We infected the DCs with MTB because these innate immune
cells help shape the adaptive immune response, which is critical for fighting MTB23, 24. We discovered that the gene expression
differences between innate immune cells from resistant and susceptible individuals were present primarily in the non-infected
state, that these differentially expressed genes were enriched for nearby SNPs with low p-values in TB susceptibility GWAS,
and furthermore, that these gene expression levels could be used to classify individuals based on their susceptibility status.

Results
Susceptible individuals have an altered transcriptome in the non-infected state
We obtained whole blood samples from 25 healthy male Caucasian individuals (Supplementary Data S1). Six of the donors had
recovered from active TB, and are thus putatively susceptible. The remaining 19 tested positive for latent TB without ever
experiencing symptoms of active TB, and are thus putatively resistant. We isolated dendritic cells (DCs) and treated them with
Mycobacterium tuberculosis (MTB) or a mock control for 18 hours. To measure genome-wide gene expression levels in infected
and non-infected samples, we isolated and sequenced RNA using a processing pipeline designed to minimize the introduction
of unwanted technical variation (Supplementary Fig. S1). We obtained a mean (± SEM) of 48 ± 6 million raw reads per
sample. We performed quality control analyses to remove non-expressed genes (Supplementary Fig. S2; Supplementary Data
S2), identify and remove outliers (Supplementary Fig. S3, S4, S5), and check for confounding batch effects (Supplementary
Fig. S6, S7). Ultimately, data from six samples failed the quality checks and were removed from all downstream analyses
(Supplementary Fig. S5).

We performed a standard differential expression analysis using a linear modeling framework (Supplementary Data S3),
defined in equation (1). As expected, there was a strong response to infection with MTB in both resistant and susceptible
individuals (Supplementary Fig. S8). Considering the putatively resistant individuals, we identified 3,486 differentially
expressed (DE) genes between the non-infected and infected states at a q-value of 10% and an arbitrary absolute log-fold change
greater than 1. Similarly, 3,789 genes were classified as DE between the non-infected and infected states in the putatively
susceptible individuals. In both classes of samples, the DE genes included the important immune response factors IL12B,
REL, and TNF. While the treatment effect was obvious in all individuals, of most interest were the patterns of gene expression
differences between the putatively susceptible and resistant individuals in either the non-infected or infected states (Fig. 1). We
identified 645 DE genes between putatively resistant and susceptible individuals in the non-infected state at a q-value of 10%,
including ATPV1B2, FEZ2, PSMA2, TNFRSF25, and TRIM38. In contrast, no genes were DE between putatively resistant and
susceptible individuals in the infected state (at a q-value of 10%).

Differentially expressed genes are enriched with TB susceptibility loci
We next sought evidence that genes classified as DE in our in vitro experimental system play a role in determining susceptibility
to TB. To do this, we intersected our data with results from TB susceptibility GWAS conducted in Russia18, The Gambia13,
Ghana13, and Uganda and Tanzania19. We also included data from a height GWAS conducted in individuals of European
ancestry25 as a negative control. To perform a combined analysis of our gene expression data and the GWAS results, we had to
define pairs of genes (for which we have expression data) and SNPs (for which we obtained GWAS P values). Thus, each gene
in our expression data was coupled with the GWAS SNP with the lowest p-value among all tested SNPs located within 50 kb of
the gene’s transcription start site (Supplementary Data S4; this gene-SNP definition was performed separately for each GWAS
data set).

Once we defined gene–SNP pairs, we asked whether differences in gene expression levels between putatively resistant and
susceptible individuals could help us identify genetic variation that is associated with susceptibility to TB. In other words, we
asked whether increasing evidence for DE genes is associated with low GWAS p-values. To do so, we calculated the fraction of
SNPs with a GWAS p-value lower than 0.05 among SNPs that were paired with ranked subsets of genes whose expression
profiles show increasing effect size of expression differences between putatively resistant and susceptible individuals. In order
to assess the significance of the observations, we performed 100 permutations of the enrichment analysis to derive an empirical
p-value.

Using this approach, we observed a clear enrichment (empirical P < 0.01) of low p-values for TB GWAS SNPs that are
paired with genes that are differentially expressed between susceptible and resistant individuals in the non-infected state (Fig.
2a). In fact, we observed significant enrichments of lower GWAS p values (empirical P < 0.01) in all 4 TB susceptibility
GWAS (Russia, The Gambia, Ghana, Uganda and Tanzania) (Supplementary Fig. S10) for all 4 differential expression contrasts,
namely resistant vs. susceptible individuals in the non-infected state (Fig. 2c), resistant vs. susceptible individuals in the
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Figure 1. Results of differential expression analysis. The top panels show the distributions of unadjusted p-values for testing
the null of no differential expression between susceptible and resistant individuals in the (a) non-infected or (b) infected state.
The bottom panels show the corresponding volcano plots for the (c) non-infected and (d) infected states. The x-axis is the log
fold change in gene expression level between susceptible and resistant individuals and the y-axis is the –log10 p-value. Red
indicates genes that are classified as differentially expressed with a q-value less than 10%.
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infected state (Fig. 2d), effect of treatment in resistant individuals (Fig. 2e), and effect of treatment in susceptible individuals
(Fig. 2f). Reassuringly, we did not observe an enrichment of low p values (empirical P > 0.01) when we used the same
approach to consider data from the height GWAS (Fig. 2bcdef).

Susceptibility status can be predicted based on gene expression data
Next we attempted to build a gene expression-based classifier to predict TB susceptibility status (Supplementary Data S5). We
focused on the gene expression levels measured in the non-infected state both because this is where we observed the largest
gene regulatory differences between putatively susceptible and resistant individuals (Fig. 1ac), and also because, from the
perspective of an ultimate translational application, it is more practical to obtain gene expression data from non-infected DCs.
We trained a support vector machine using the 99 genes that were differentially expressed between resistant and susceptible
individuals in the non-infected state at a q-value less than 5% (see Methods for a full description of how we selected this
model). Encouragingly, we observed a clear separation between putatively susceptible and resistant individuals when comparing
the predicted probability of being susceptible to TB for each sample obtained from leave-one-out-cross-validation (Fig. 3a).
Using a cutoff of 0.25 for the predicted probability of being susceptible to TB, we obtained a sensitivity of 100% (5 out of 5
susceptible individuals classified as susceptible), a specificity of ~88% (15 out of 17 resistant individuals classified as resistant),
and a positive predictive value (PPV) of ~71% (5 of 7 individuals classified as susceptible were susceptible).

Unfortunately our current data set is too small to properly split into separate training and testing sets (it is challenging to
collect samples from previous TB patients, who are healthy and have no medical reason to go back for a GP visit). To our
knowledge, there are also no other suitable data sets available with which to test out classifier (that said, see Supplementary Fig.
S17 for the results of applying the classifier to a non-ideal data set, which measured gene expression in macrophages from a
small number of individuals20). Thus, in order to further assess the plausibility of our model, we applied the classifier to data
from an independent study, which collected genome-wide gene expression levels in DCs from 65 healthy individuals24, none
with a previous history of TB. Using the cutoff of 0.25 for the probability of being susceptible to TB (determined to be optimal
in the training set), ~11% (7 of 65) of the individuals were classified as susceptible to TB (Fig. 3b). Adjusting for the PPV
obtained from the training set (~71%), our model predicted that ~7.7% of the healthy individuals were susceptible. While we
cannot confirm this result (the true susceptibility status of these 65 individuals is unknown), this observation is encouraging
because our estimate is similar to the commonly used inference that roughly 10% of the general population is susceptible to TB.

Discussion
We obtained dendritic cells (DCs) from individuals that were known to be putatively susceptible or resistant to developing
active tuberculosis (TB) and measured genome-wide gene expression levels in non-infected DCs and DCs infected with
Mycobacterium tuberculosis (MTB) for 18 hours. As expected, there were large changes in gene expression due to MTB
infection in the DCs from both putatively resistant and susceptible individuals (Supplementary Fig. S8). We identified 645
genes which were differentially expressed (DE) between susceptible and resistant individuals in the non-infected state; whereas,
we did not observe any DE genes between susceptible and resistant individuals in the infected state (Fig. 1). This suggests that
the differences in the transcriptomes between DCs of resistant and susceptible individuals are present pre-infection. Yet, 18
hours after infection gene expression profiles in both susceptible and resistant individuals have converged to a similar gene
regulatory network, presumably to fight the infection. We confirmed that the absence of DE genes in the infected state is not
caused by a decrease in statistical power due to an overall increase in gene expression variance upon infection (Supplementary
Fig. S9). We chose to measure gene expression 18 hours post-infection because this time point was previously associated with
a large change in genome-wide gene expression levels26. Given our observations, however, future studies investigating the
difference in the innate immune response between individuals resistant and susceptible to TB may want to focus on earlier time
points post-infection.

It is important to note that our study was not designed to uncover the mechanisms underlying susceptibility or resistance
to TB, but to try and find a gene regulatory signature that might allow us to classify individuals as either susceptible or
resistant. That said, among the 645 DE genes between resistant and susceptible individuals in the non-infected state, there were
many interesting genes involved in important innate immune activities critical for fighting MTB and other pathogens such as
autophagy27, 28, phagolysosomal acidification, and antigen processing. In particular, FEZ2, a suppressor of autophagosome
formation29, was down-regulated when DCs were infected with MTB; however, in the non-infected DCs, this gene has elevated
expression level in susceptible compared with resistant individuals. In turn, ATP6V1B2, a gene coding for a subunit of the proton
transporter responsible for acidifying phagolysosomes30–32, has increased expression in susceptible individuals compared to
resistant in the non-infected state. Lastly, genes coding for nine subunits of the proteasome, which is critical for processing of
MTB antigens to be presented via major histocompatibility complex (MHC) class I molecules33–36, have increased expression
in susceptible individuals compared to resistant in the non-infected state. These genes are candidates for future functional
studies investigating the mechanisms of TB susceptibility.
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Figure 2. Comparison of differential expression and TB susceptibility GWAS results. (a and b) The y-axis is the fold
enrichment of SNPs with p-value less than 0.05 from the (a) GWAS of TB susceptibility in Russia18 or (b) height in individuals
of European descent25. The x-axis is bins of genes with increasingly stringent effect size cutoffs of the absolute expression log
fold change between putatively susceptible and resistant individuals in the non-infected state. The effect size cutoffs were
chosen such that each bin from left to right contained approximately 25 fewer genes. The red line shows the results from the
actual data. The grey lines are the results from 100 permutations. The dashed blue line at y=1 represents the null expectation.
(c-f) Boxplots of the area under the curve of the fold enrichment (red line in a and b) minus the background level (blue y = 1
line in a and b) for each of the 5 GWAS13, 18, 19 considered for the 4 differential expression contrasts: (c) resistant vs.
susceptible individuals in the non-infected state, (d) resistant vs. susceptible individuals in the infected state, (e) effect of
treatment in resistant individuals, (f) effect of treatment in susceptible individuals. The boxplot is the result of the 100
permutations, and the red point is the result from the actual data. As a reference, the leftmost boxplot in (c) corresponds to the
enrichment plot in (a), and the rightmost boxplot in (c) corresponds to the enrichment plot in (b).
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Figure 3. Classifying TB susceptible individuals using a support vector machine model. (a) The estimates of predicted
probability of TB susceptibility from the leave-one-out-cross-validation for individuals in the current study. The blue circles
represent individuals known to be susceptible to TB, and orange those resistant to TB. The horizontal dashed red line at a
probability of 0.25 separates susceptible and resistant individuals. (b) The estimates of predicted probability of TB
susceptibility from applying the classifier trained on the data from the current study to a test set of independently collected
healthy individuals24.

We observed that DE genes in our in vitro experimental system were enriched for lower GWAS p-values (Fig. 2). This
suggests that such in vitro approaches are informative for interrogating the genetic basis of disease susceptibility. That being
said, we recognize a major caveat with this analysis is that assigning SNPs to their nearest gene on the linear chromosome
is problematic because regulatory variants can have longer range effects. Nevertheless, considering this limitation, it was
encouraging that we were able to detect evidence of the genetic basis of TB susceptibility in this system.

Not only did this analysis identify a global enrichment of TB susceptibility loci, but by intersecting the expression and
GWAS data, we were able to identify a few interesting candidate genes, which were only marginally significant in the original
GWAS (Supplementary Data S4). Here we highlight two genes (CCL1 and UNC13A), which have been previously shown to
play important roles in MTB infection. CCL1 is a chemokine that stimulates migration of monocytes37. In our study, it was
upregulated in susceptible individuals compared to resistant in both the non-infected and infected states (but did not reach
statistical significance in either) and was statistically significantly upregulated with MTB treatment. Furthermore, the nearby
SNP assigned to CCL1 had a p-value less than 0.01 in the TB susceptibility GWAS from The Gambia and Ghana. A previous
differential expression study of TB susceptibility (discussed in more detail below) found that CCL1 was upregulated to a
greater extent 4 hours post-infection with MTB in macrophages isolated from individuals with active TB (i.e. susceptible)
compared to individuals with latent TB (i.e. resistant)20. Additionally they performed a candidate gene association study
and found that SNPs nearby CCL1 were associated with TB susceptibility. In our previous study, we discovered that CCL1
was one of only 288 genes that were differentially expressed in macrophages 48 hours post-infection with MTB and related
mycobacterial species but not unrelated virulent bacteria38. UNC13A is involved in vesicle formation39. In our study, it was
downregulated in susceptible individuals compared to resistant in both the non-infected and infected states (but did not reach
statistical significance in either) and was statistically significantly upregulated with MTB treatment. Furthermore, the nearby
SNP assigned to UNC13A had a p-value less than 0.01 in the TB susceptibility GWAS from Russia, The Gambia, and Ghana.
In our past study mapping expression quantitative trait loci (eQTLs) in DCs 18 hours post-infection with MTB, UNC13A was
one of only 98 genes which were associated with an eQTL post-infection but not pre-infection, which we called MTB-specific
eQTLs24. Thus our new results increased the evidence that CCL1 and UNC13A play important roles in TB susceptibility.

Previous attempts to use gene expression based classifiers in the context of TB have focused on predicting the status of
an infection rather than the susceptibility status of an individual8, 40, 41. In other words, the goal of most previous studies was
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to detect individuals in the early stages of active TB when antibiotic intervention would be most effective or to monitor the
effectiveness of a treatment regimen42. In contrast, our goal was not to distinguish between active and latent TB, but instead to
be able to determine susceptibility status before individuals are infected with MTB. Even with our small sample size, we were
able to successfully train a classier with high sensitivity and decent specificity. Because such a classification of susceptibility
status could affect the decision of whether or not to take antibiotics to treat latent TB6, false negatives (susceptible individuals
mistakenly classified as resistant) would be much more harmful than false positives (resistant individuals mistakenly classified
as susceptible). For that reason, we emphasized sensitivity over specificity.

To our knowledge, our study was only the second to collect data from in vitro MTB-infected innate immune cells isolated
from individuals known to be putatively susceptible to MTB (Thuong et al., 2008). However, there were substantial differences
between our study and that of Thuong et al., 200820. First, they derived and infected macrophages, the primary target host
cell in which MTB resides; whereas, we derived and infected DCs, which play a larger role in stimulating the adaptive
immune response to MTB. Second, we collected samples from a larger number of putatively resistant individuals (19 versus
4), increasing our power to distinguish between the gene expression profiles of susceptible and resistant individuals. Third,
they measured gene expression with microarrays; whereas, we used RNA-sequencing. Considering the substantial technical
differences between the methods used and the biological differences between DCs and macrophages26, 43, unsurprisingly, we
were unable to identify the susceptible individuals from Thuong et al., 200820 using our classifier (Supplementary Fig. S17).

Indeed, at this time, we are not aware of any other data set from healthy individuals known to be sensitive to TB, with
which we can further test our classifier. When we applied our classifier to an independent set of non-infected DCs isolated from
healthy individuals of unknown susceptibility status, our model predicted that ~7.7-11% of the individuals were susceptible to
TB, which reassuringly is similar to the average in the general population (10%). Despite this, our results must be interpreted
cautiously; at best as a proof-of-principle, due to our very small sample size of only 5 susceptible individuals. That said, our
promising results in this small study suggest that collecting blood samples from a larger cohort of susceptible individuals would
enable building a gene expression based classifier able to confidently assess risk of TB susceptibility. By reducing the number
of resistant individuals receiving treatment for latent TB, we can eliminate the adverse health effects of a 6 month regimen of
antibiotics for these individuals and also reduce the selective pressures on MTB to develop drug resistance.

Methods

Ethics statement
We recruited 25 subjects to donate a blood sample for use in our study. All methods were carried out in accordance with relevant
guidelines and regulations. All participants gave written informed consent in accordance with the Declaration of Helsinki
principles. Peripheral human blood was collected from patients at ICAReB platform of Institut Pasteur Paris and at the Centre
for Infectious Disease Prevention, University hospital Caen. The Protocol has been approved by French Ethical Committee
(CPP North Ouest III, n° A12 - D33 -VOL.13), and by the Institutional Review Boards of the University of Chicago (10-504-B)
and the Institut Pasteur (IRB00006966).

Sample collection
We collected whole blood samples from healthy Caucasian male individuals living in France. The putatively resistant individuals
tested positive for latent TB in an interferon-γ release assay, but had never developed active TB. The putatively sensitive
individuals had developed active TB in the past, but were currently healthy.

Isolation and infection of dendritic cells
We performed these experiments as previously described24. Briefly, we isolated mononuclear cells from the whole blood
samples using Ficoll-Paque centrifugation, extracted monocytes via CD14 positive selection, and differentiated the monocytes
into dendritic cells (DCs) by culturing them for 5 days in RPMI 1640 (Invitrogen) supplemented with 10% heat-inactivated
FCS (Dutscher), L-glutamine (Invitrogen), GM-CSF (20 ng/mL; Immunotools), and IL-4 (20 ng/mL; Immunotools). Next we
infected the DCs with Mycobacterium tuberculosis (MTB) H37Rv at a multiplicity of infection of 1-to-1 for 18 hours.

RNA extraction and sequencing
We extracted RNA using the Qiagen miRNeasy Kit and prepared sequencing libraries using the Illumina TruSeq Kit. We sent
the master mixes to the University of Chicago Functional Genomics Facility to be sequenced on an Illumina HiSeq 4000. We
designed the batches for RNA extraction, library preparation, and sequencing to balance the experimental factors of interest and
thus avoid potential technical confounders (Supplementary Fig. S1).
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Read mapping
We mapped reads to human genome hg38 (GRCh38) using Subread44 and discarded non-uniquely mapping reads. We
downloaded the exon coordinates of 19,800 Ensembl45 protein-coding genes (Ensembl 83, Dec 2015, GRCh38.p5) using the
R/Bioconductor46 package biomaRt47, 48 and assigned mapped reads to these genes using featureCounts49.

Quality control
First we filtered genes based on their expression level by removing all genes with a transformed median log2 counts per
million (cpm) of less than zero. This step resulted in a set of 11,336 genes for downstream analysis (Supplementary Fig. S2,
Supplementary Data S2). Next we used principal components analysis (PCA) and hierarchical clustering to identify and remove
6 outlier samples (Supplementary Fig. S3, S4, S5). We did this systematically, by removing any sample whose data projections
did not fall within two standard deviations of the mean for any of the first six PCs (for the first PC, which separated the samples
by treatment, we calculated a separate mean for the non-infected and infected samples).

After filtering lowly expressed genes and removing outliers, we performed the PCA again to check for any potential
confounding technical batch effects (Supplementary Fig. S6). Reassuringly, the major sources of variation in the data were
from the biological factors of interest. PC1 was strongly correlated with the effect of treatment, and PCs 2-6 were correlated
with inter-individual variation. The only concerning technical factor was the infection experiments, which were done in 12
separate batches (Supplementary Fig. S1). Infection batch correlated with PCs 3 and 5; however, we verified that this variation
was not confounded with our primary outcome of interest, TB susceptibility (Supplementary Fig. S7).

Differential expression analysis
We used limma+voom50–52 to implement the following linear model to test for differential expression:

Y ∼ β0 +Xtreatβtreat +Xstatusβstatus +Xtreat,statusβtreat,status + I + ε (1)

where β0 is the mean expression level in non-infected cells of resistant individuals, βtreat is the fixed effect of treatment in
resistant individuals, βstatus is the fixed effect of susceptibility status in non-infected cells, βtreat,status is the fixed interaction
effect of treatment in susceptible individuals (i.e. modeling the interaction between treatment and susceptibility status), and I is
the random effect of individual. The random individual effect was implemented using the limma function duplicateCorrelation53.
To jointly model the data with voom and duplicateCorrelation, we followed the recommended best practice of running both
voom and duplicateCorrelation twice in succession54.

We used the model to test different hypotheses (Supplementary Data S3). We identified genes which were differentially
expressed (DE) between infected and non-infected DCs of resistant individuals by testing βtreat = 0, genes which were DE
between infected and non-infected DCs of susceptible individuals by testing βtreat +βtreat,status = 0, genes which were DE
between susceptible and resistant individuals in the non-infected state by testing βstatus = 0, and genes which were DE between
susceptible and resistant individuals in the infected state by testing βstatus +βtreat,status = 0. We corrected for multiple testing
using q-values estimated via adaptive shrinkage55 and considered differentially expressed genes as those with a q-value less
than 10%.

Note that we also tested the interaction term, βtreat,status = 0, to identify genes in which the difference in expression level
between the infected and non-infected states was significantly different between susceptible and resistant individuals. However,
as expected since no DE genes were identified between susceptible and resistant individuals in the infected state (see Results),
the results of testing the interaction term were partially redundant with the results of testing differences between susceptible
and resistant individuals in the non-infected state, and thus we ignored these results throughout this study.

Combined analysis of gene expression data and GWAS results
The GWAS p-values were from previously published studies of TB susceptibility conducted in Russia18, The Gambia13,
Ghana13, and Uganda and Tanzania19 (and a height GWAS in individuals of European descent25). To perform a combined
analysis of the gene expression and the summary statistics from each GWAS, we assigned each gene to the SNP with the
minimum GWAS p-value out of all the SNPs located within 50 kb up or downstream of its transcription start site. Specifically,
we obtained the genomic coordinates of the SNPs with the R/Bioconductor46 package SNPlocs.Hsapiens.dbSNP144.GRCh38
and matched SNPs to nearby genes using GenomicRanges56. 10,265 to 11,060 of the 11,336 genes were assigned an association
p-value depending on the GWAS (Supplementary Data S4). For each of the 4 differential expression contrasts we tested
(resistant vs. susceptible individuals in the non-infected state, resistant vs. susceptible individuals in the infected state, effect of
treatment in resistant individuals, effect of treatment in susceptible individuals), we also performed an enrichment analysis.
To do so, we calculated the fraction of genes assigned a GWAS SNP with p-value less than 0.05 for bins of genes filtered by
increasingly stringent cutoffs for the observed differential expression effect size (the absolute value of the log fold change). The
effect size cutoffs were chosen such that on average each subsequent bin differed by 25 genes. To measure enrichment, we
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calculated the area under the curve using the R package flux57 (we also subtracted the background area under the line y = 1
because the number of genes assigned a SNP varied across the GWAS). In order to assess significance, we calculated the area
under the curve for 100 permutations of the data. All differential expression tests were statistically significantly enriched for
SNPs with low GWAS p-values in every TB susceptibility GWAS (empirical P < 0.01) and not enriched for the height GWAS
(empirical P > 0.01) (Fig. 2; Supplementary Fig. S10).

Classifier
The training set included data from the 44 high-quality non-infected samples from this study with known susceptibility
status. The test set included the 65 non-infected samples from one of our previous studies in which the susceptibility status
is unknown24, and thus assumed to be similar to that in the general population (~10%) (we also tested the classifier on data
from a small study of macrophages20, Supplementary Fig. S17). Because the two studies are substantially different, we took
multiple steps to make them comparable. First, we subset to include only those 9,450 genes which were assayed in both.
Second, because the dynamic range obtained from RNA-seq (current study) and microarrays (previous study24) were different,
we normalized the gene expression levels to a standard normal (µ = 0, σ = 1) distribution (Supplementary Fig. S11; note
however that this strategy is unable to correct for the inability of microarrays to accurately quantify genes with expression
levels that result in fluorescence levels below the background level or above the saturation limit). Third, we corrected for the
large, expected batch effect between the two studies by regressing out the first PC of the combined expression data using the
limma function removeBatchEffect52 (Supplementary Fig. S12).

To identify genes to use in the classifier, we performed a differential expression analysis on the normalized, batch-corrected
data from the current study using the same approach described above (with the exception that we no longer used voom51

since the data were no longer counts). Specifically, we tested for differential expression between susceptible and resistant
individuals in the non-infected state and identified sets of genes to use in the classifier by varying the q-value cutoff. Cutoffs of
5%, 10%, 15%, 20%, and 25% corresponded to gene set sizes of 99, 385, 947, 1,934, and 3,697, respectively. We used the
R package caret58 to train 3 different machine learning models: elastic net59, support vector machine60, and random forest61

(the parameters for each individual model were selected using the Kappa statistic). To assess the results of the model on the
training data, we performed leave-one-out-cross-validation (LOOCV). In order to choose the model with the best performance,
we calculated the difference between the mean of the LOOCV-estimated probabilities of being TB resistant for the samples
known to be TB resistant and the corresponding mean for the samples known to be TB susceptible. This metric emphasized the
ability to separate the susceptible and resistant individuals into two separate groups. Using this metric, the best performing
model was the support vector machine with the 99 genes that are significantly differentially expressed at a q-value of 5% (Fig.
3a ,Supplementary Fig. S13, Supplementary Data S5); however, both the elastic net (Supplementary Fig. S14) and random
forest (Supplementary Fig. S15) had similar performance. Lastly, we tested the classifier by predicting the probability of
being TB susceptible in the 65 healthy samples (Fig. 3b). For evaluating the predictions on the test set of individuals with
unknown susceptibility status, we used a relaxed cutoff of the probability of being TB susceptible of 0.25, which was based on
the ability of the model at this cutoff to classify all TB susceptible individuals in the training set as susceptible with only 2 false
positives. As expected, the 99 genes used in the classifier had similar normalized, batch-corrected median expression levels in
the non-infected state across both studies (Supplementary Fig. S16).

Software implementation
We automated our analysis using Python (https://www.python.org/) and Snakemake62. Our processing pipeline used the general
bioinformatics software FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), MultiQC63, samtools64, and
bioawk (https://github.com/lh3/bioawk). We used R65 for all statistics and data visualization. We obtained gene annotation
information from the Ensembl45 and Lynx66 databases. The computational resources were provided by the University of
Chicago Research Computing Center. All code is available for viewing and reuse at https://github.com/jdblischak/tb-suscept.

Data availability
The raw fastq files have been deposited in NCBI’s Gene Expression Omnibus67 and are accessible through GEO Series accession
number GSE94116 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE94116). The RNA-seq gene counts and other
summary data sets are included as Supplementary Data and are also available for download at https://github.com/jdblischak/tb-
suscept.

While a small subset of the GWAS summary statistics required for partially reproducing our results were included in Sup-
plementary Data S4, we do not have permission to share the full set of summary statistics from the previously published TB sus-
ceptibility GWAS that would be required for fully reproducing our results. To access the summary statistics, contact the authors
directly: Russia - Sergey Nejentsev (sn262@cam.ac.uk), Ghana and The Gambia - Thorsten Thye (thye@bnitm.de), Uganda and
Tanzania - Scott M. Williams (smw154@case.edu). The summary statistics for the height GWAS can be downloaded from the
GIANT Consortium’s website (http://portals.broadinstitute.org/collaboration/giant/index.php/GIANT consortium data files).
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Figure S1. Batch processing. We designed the processing of the samples to minimize the introduction of technical batch
effects. Specifically, we attempted to balance the processing of samples obtained from susceptible and resistant individuals. In
the diagram, each box represents a batch. “Infection” labels the batches of the infection experiments, “Arrival” labels the batch
shipments of cell lysates arrived in Chicago, USA from Paris, France, “Extraction” labels the batches of RNA extraction,
“Master Mix” labels the batches of library preparation, and “Sequencing” labels the batches of flow cells. Each master mix
listed in a flow cell batch was sequenced on only one lane of that flow cell.
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Figure S2. Gene expression distributions before and after filtering genes and samples. The log2 counts per million (cpm) of
each sample is plotted as a dashed gray line. The solid red line represents the median value across all the samples. The vertical
solid blue line at x = 0 represents the cutoff used to filter lowly expressed genes based on their median log2 cpm. The left panel
is the data from all 19,800 genes and 50 samples, the middle panel is the data from the 11,336 genes remaining after removing
lowly expressed genes, and the right panel is the data from 11,336 genes and the 44 samples remaining after removing outliers.
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Figure S3. Heatmap of correlation matrix of samples. Each square represents the Pearson correlation between the log2 cpm
expression values of two samples. Red indicates a low correlation of zero and white represents a high correlation of 1. The
dendrogram displays the results of hierarchical clustering with the complete linkage method. The outliers of the non-infected
samples are s04-suscept-noninf, r02-resist-noninf, and r06-resist-noninf. The outliers of the infected samples are
s01-suscep-infect, r06-resist-infect, and r18-resist-infect.
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Figure S4. Heatmap of correlation matrix after removing outliers. Each square represents the Pearson correlation between the
log2 cpm expression values of two samples. Red indicates a low correlation of zero and white represents a high correlation of 1.
The dendrogram displays the results of hierarchical clustering with the complete linkage method.
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Figure S5. Principal components analysis (PCA) to identify outliers. (a) PC1 versus PC2, (b) PC3 versus PC4, and (c) PC5
versus PC6. Each sample is represented by its 3-letter ID. “s” stands for susceptible and “r” for resistant, and the text is colored
on the basis of treatment status (purple is non-infected; green is infected). The value in parentheses in each axis is the
percentage of total variation accounted for by that PC. The outliers are listed in (d). These samples do not fall within 2 standard
deviations of the mean value of the PCs listed in the right column. Note that a separate mean was calculated for the
non-infected and infected samples for PC1 only.
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Figure S6. Check for technical batch effects using principal components analysis (PCA). (a) PC1 versus PC2. The text labels
are the individual identifiers. Purple indicates non-infected samples and green indicates infected. (b) PC3 versus PC4. The
colors indicate the different infection batches. (c) PC5 versus PC6. The colors indicate the different infection batches. (d) The
Pearson correlation of PCs 1-6 with each of the recorded biological and technical covariates. The correlations vary from 0
(white) to 1 (red).
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Figure S7. Check for confounding effect of infection batch. PC3 (a) and PC5 (b) varied by the date of infection.
Non-infected samples are in purple and infected samples in green. Importantly, however, this technical variation arising from
infection batch did not correlate with the susceptibility status of the individuals (c and d). Resistant individuals are in orange
and susceptible individuals in blue.
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Figure S8. Effect of treatment with MTB. The top panel contains the distribution of unadjusted p-values after testing for
differential expression between the non-infected and infected states in (a) resistant and (b) susceptible individuals. The bottom
panel contains the corresponding volcano plots for the (c) resistant and (d) susceptible individuals. The x-axis is the log fold
change in gene expression level between susceptible and resistant individuals and the y-axis is the –log10 p-value. Red
indicates genes which are significant differentially expressed with a q-value less than 10%. Because of the extremely skewed
p-value distribution, all genes are significantly differentially expressed at this false discovery rate.
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Figure S9. Check for systematic differences in gene expression variance between the infected and non-infected states. We
identified DE genes between susceptible and resistant individuals in the non-infected but not the infected state. Could this be a
statistical artifact due to an overall increase in gene expression variance upon infection thus reducing power to detect DE
genes? No, because we did not observe an overall increase in gene expression variance in the infected state. The histograms
show the distribution of the log2-transformed ratio of the gene expression variance in the infected state to the variance in the
non-infected state. If there was an overall increase in variance, the distributions should be shifted towards the right, but instead
they are all symmetrical. The top row shows the results for the 10,691 genes which were not differentially expressed between
susceptible and resistant individuals in the non-infected state, and the bottom row shows the results for the 645 genes which
were. The left column shows the results for all 22 individuals in the study, the middle column for the 17 resistant individuals,
and the right column for the 5 susceptible individuals (note that the right column has the widest spread because of this small
sample size). Highlighted in red are genes which had a P < 0.05 from an F test comparing the two variances. The number of
genes with a significant increase or decrease in variance was also mostly symmetrical (decrease vs. increase starting at top left
panel and proceeding clockwise: 1,232 vs. 1,362; 934 vs. 1,118; 275 vs. 455; 13 vs. 11; 64 vs. 44; 108 vs. 15).
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Figure S10. Comparison of differential expression and GWAS results. In each subplot, the y-axis is the fold enrichment
(y-axis) of genes assigned a SNP with p-value less than 0.05 from the GWAS. The x-axis is bins of genes with increasingly
stringent effect size cutoffs of the absolute log fold change for the different expression contrast. The effect size cutoffs were
chosen such that each bin from left to right contained approximately 25 fewer genes. The red line is the results from the actual
data. The grey lines are the results from 100 permutations. The dashed blue line at y=1 is the null expectation. The rows
correspond to the 5 GWAS studies: Russia18, The Gambia13, Ghana13, Uganda and Tanzania19, and height in individuals of
European ancestry25. The columns correspond to the 4 differential expression contrasts: resistant vs. susceptible individuals in
the non-infected state (status ni), resistant vs. susceptible individuals in the infected state (status ii), effect of treatment in
resistant individuals (treat resist), and effect of treatment in susceptible individuals (treat suscep). The x-axis slightly varies
based on the number of genes that were able to be assigned a nearby SNP for each GWAS, and thus is consistent only within
each study (i.e. row, although the exact tick labels in each plot slightly vary based on R’s rules for annotating axes). The y-axis
is set separately for each plot based on the minimum and maximum fold enrichment values for that particular analysis. 23/28
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Figure S11. Normalizing gene expression distributions. (left) The distribution of the median log2 cpm of the RNA-seq data
from the current study in red compared to the distribution of the median gene expression levels of the microarray data from
Barreiro et al., 201224 in blue. (right) The distributions of the same data sets after normalizing each sample to a standard
normal distribution.
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Figure S12. Principal components analysis (PCA) of combined data sets. (a) PC1 versus PC2 of the combined data set of the
RNA-seq data from the current study (red) and the microarray data from Barreiro et al., 201224 (blue). The large circles are
non-infected samples, and the small circles are infected samples. The value in parentheses is the percentage of the total
variation accounted for by that PC. (b) The same data after regressing the original PC1 in (a).
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Figure S13. Comparing the classification results of different methods and number of input genes. We compared 3 different
machine learning methods (elastic net, support vector machine, random forest) and used 5 different sets of input genes. The
input genes (x-axis) were obtained by varying the q-value cutoff for differential expression between susceptible and resistant
individuals in the non-infected state from 5% to 25%. The evaluation metric (y-axis) was the difference of the mean assigned
probability of being TB resistant between the known resistant and susceptible individuals in the current study.
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Figure S14. Classifying TB susceptible individuals using an elastic net model. (a) The estimates of predicted probability of
TB susceptibility from the leave-one-out-cross-validation for individuals in the current study. The blue circles represent
individuals known to be susceptible to TB, and orange those resistant to TB. The horizontal blue line at a probability of 0.25
almost separates susceptible and resistant individuals. (b) The estimates of predicted probability of TB susceptibility from
applying the classifier trained on the data from the current study to a test set of independently collected healthy individuals24.
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Figure S15. Classifying TB susceptible individuals using a random forest model. (a) The estimates of predicted probability
of TB susceptibility from the leave-one-out-cross-validation for individuals in the current study. The blue circles represent
individuals known to be susceptible to TB, and orange those resistant to TB. The horizontal blue line at a probability of 0.25
separates susceptible and resistant individuals. (b) The estimates of predicted probability of TB susceptibility from applying the
classifier trained on the data from the current study to a test set of independently collected healthy individuals24.
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Figure S16. Comparing gene expression between the two studies. After normalization and batch-correction, the median
expression levels of the 99 genes used in the classifier were similar between the samples in the current study and those in
Barreiro et al., 201224. The dashed red line is the 1:1 line.
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Figure S17. Classifying individuals from Thuong et al., 200820 using a support vector machine model. We followed the same
training and testing procedure performed for testing the classifier described in the main text (Fig. 3, see Classifier in Methods).
Not surprisingly since the data sets were from different cell types, the classifier trained on the dendritic cells in this study
performed poorly when tested on samples with gene expression levels measured in macrophages. To match our naming system,
we labeled the individuals from Thuong et al., 200820 with latent TB as resistant (n = 3 after removing the outlier sample LTB2)
and the individuals recovered from pulmonary or meningeal TB as susceptible (n = 4 each). (a) The estimates of predicted
probability of TB susceptibility from the leave-one-out-cross-validation for individuals in the current study. The blue circles
represent individuals known to be susceptible to TB, and orange those resistant to TB. The horizontal dashed red line at a
probability of 0.25 separates susceptible and resistant individuals. (b) The estimates of predicted probability of TB
susceptibility from applying the classifier trained on the data from the current study to a test set of putatively susceptible and
resistant individuals20.
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Supplementary data
Supplementary Data S1
Supplementary Data S1 contains information on the 50 samples. Most variables describe the batch processing steps outlined in
Supplementary Fig. S1. “id” is a unique identifier for each sample, “individual” is the individual identifier (“s” = susceptible,
“r” = resistant), “status” is the susceptibility status, “treatment” is if the sample was infected or non-infected, “infection” is the
date of the infection experiment (12 total), “arrival” is the identifier for the arrival batch (4 total), “extraction” is the batch for
RNA extraction (5 total), “master mix” is the batch for library preparation (3 total), “rin” is the RNA Integrity Number from
the Agilent Bioanalyzer, and “outlier” is a Boolean variable indicating if the sample was identified as an outlier (Supplementary
Fig. S5) and removed from the analysis. (tds)

Supplementary Data S2
Supplementary Data S2 contains the gene expression counts for the 11,336 genes after filtering lowly expressed genes for all
50 samples (Supplementary Fig. S2). Each row is a gene labeled with its Ensembl gene ID. Each column is a sample. Each
sample is labeled according to the pattern “x##-status-treatment”, where x is “r” for resistant or “s” for susceptible, ## is the ID
number, status is “resist” for resistant or “suscep” for susceptible, and treatment is “noninf” for non-infected or “infect” for
infected. (tds)

Supplementary Data S3
Supplementary Data S3 contains the results of the differential expression analysis with limma (Fig. 1). The workbook contains
4 sheets corresponding to the 4 tests performed. “status ni” is the test between resistant and susceptible individuals in the
non-infected state, “status ii” is the test between resistant and susceptible individuals in the infected state, “treat resist” is the
test between the non-infected and infected states for resistant individuals, and “treat suscep” is the test between the non-infected
and infected states for susceptible individuals. Each sheet has the same columns. “id” is the Ensembl gene ID, “gene” is
the gene name, “logFC” is the log fold change from limma, “AveExpr” is the average log expression from limma, “t” is the
t-statistic from limma, “P.Value” is the p-value from limma, “adj.P.Val” is the adjusted p-value from limma, “qvalue” is the
q-value calculated with adaptive shrinkage, “chr” is the chromosome where the gene is located, “description” is the description
of the gene from Ensembl, “phenotype” is the associated phenotype(s) assigned my Ensembl, “go id” is the associated GO
term(s) assigned by Ensembl, and “go description” is the corresponding name(s) of the GO term(s). (xlsx)

Supplementary Data S4
Supplementary Data S4 contains the results of the GWAS comparison analysis (Fig. 2). The first sheet “input-data” contains
the p-values for the GWAS SNP assigned to each gene from each study. The columns “gwas p russia”, “gwas p gambia”,
“gwas p ghana”, “gwas p uganda”, “gwas p height” contain the p-values from the TB susceptibility GWAS in Russia, The
Gambia, Ghana, Uganda and Tanzania, and the height GWAS in Europeans, respectively. The columns “status ni”, “status ii”,
“treat resist”, and “treat suscep” refer to the tests described for Supplementary Data S3 and contain the log fold changes for
each comparison. All the other gene annotation columns are the same as described for Supplementary Data S3. The second
sheet “top-genes” contains a subset of the full results to highlight those genes which had an absolute log fold change greater
than 2 between resistant and susceptible individuals in the non-infected state (“status ni”). (xlsx)

Supplementary Data S5
Supplementary Data S5 contains the results of the classifier analysis. Specifically it contains the results from the support vector
machine using the genes with a q-value less than 0.05 (Fig. 3). The sheet “gene-list” contains information about the genes used
for the classifier (the columns are described in the section for Supplementary Data S3). The sheet “training-input” contains the
input gene expression data for training the model. The sheet “training-results” contains the results of the leave-one-out-cross-
validation when training the model on the samples from the current study. The sheet “testing-input” contains the input gene
expression data for testing the model. The sheet “testing-results” contains the results from testing the model on the samples
from Barreiro et al., 201224. The column “prob tb suscep” is the probability of being susceptible to TB assigned by the model.
(xlsx)
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