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Abstract
The basics of superconductivity are outlined with special emphasis on the fea-
tures which are relevant for the application of superconductors in radio fre-
quency cavities for particle acceleration. For a cylindrical resonator (“pill box
cavity”) the electromagnetic field in the cavity and important parameters such
as resonance frequency, quality factor and shunt impedance are calculated ana-
lytically. The design and performance of practical cavities is shortly addressed.

1 Introduction
1.1 Advantages and limitations of superconductor technology in accelerators
The vanishing electrical resistance of superconducting coils as well as their ability to provide magnetic
fields far beyond those of saturated iron is the main motivation for using superconducting (sc) magnets
in all new large proton, antiproton and heavy ion accelerators1. Superconductivity does not only open
the way to much higher particle energies but at the same time leads to a substantial reduction of oper-
ating costs. In the normal-conducting Super Proton Synchrotron SPS at CERN a power of 52 MW is
needed to operate the machine at an energy of 315 GeV while at HERA a cryogenic plant with 6 MW
electrical power consumption is sufficient to provide the cooling of the superconducting magnets with
a stored proton beam of 920 GeV. Hadron energies in the TeV regime are practically inaccessible with
standard magnet technology. Another important application of superconducting materials is in the large
experiments at hadron or lepton colliders where superconducting detector magnets are far superior to
normal magnets.

In the case of accelerating cavities the advantage of superconductors is not at all that obvious. In
fact, three of the proposed linear electron positron colliders are based on copper acceleration structures:
the ‘Next Linear Collider’ NLC [3] at Stanford, the ‘Japanese Linear Collider’ JLC [4] at Tsukuba,
and the ‘Compact Linear Collider’ CLIC [5] at CERN, while only the international TESLA project
[6, 7] uses sc niobium cavities. The traditional arguments against superconductor technology in linear
colliders have been the low accelerating fields achieved in sc cavities and the high cost of cryogenic
equipment. Superconducting cavities face a strong physical limitation: the microwave magnetic field
must stay below the critical field of the superconductor. For the best superconductor for cavities, niobium,
this corresponds to a maximum accelerating field of about 45 MV/m while normal-conducting cavities
operating at high frequency (above 5 GHz) should in principle be able to reach 100 MV/m or more. In
practice, however, sc cavities were often found to be limited at much lower fields of some 5 MV/m and
hence were totally non-competitive for a linear collider. Great progress was achieved with the 340 five-
cell cavities of the Continuous Electron Beam Accelerator Facility CEBAF [8] at Jefferson Laboratory
in Virginia, USA. These 1.5 GHz niobium cavities were developed at Cornell University and produced
by industry. They exceeded the design gradient of 5 MV/m and achieved 8.4 MV/m after installation in
the accelerator (in several specially prepared cavities even 15-20 MV/m were reached). Building upon
the CEBAF experience the intensive R&D of the TESLA collaboration has succeeded in raising the
accelerating field in multicell cavities to more than 25 MV/m. There is a realistic chance to reach even
35 MV/m, and to reduce substantially the cost for the cryogenic installation.

∗Adapted from a review article [1].
1The parameters of high energy lepton and hadron colliders are summarized in [2].
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While superconducting magnets operated with direct current are free of energy dissipation, this is
not the case in microwave cavities. The non-superconducting electrons (see sect. 2) experience forced
oscillations in the time-varying magnetic field and dissipate power in the material. Although the resulting
heat deposition is many orders of magnitude smaller than in copper cavities it constitutes a significant
heat load on the refrigeration system. As a rule of thumb, 1 W of heat deposited at 2 K requires almost
1 kW of primary ac power in the refrigerator. Nevertheless, there is now a worldwide consensus that
the overall efficiency for converting primary electric power into beam power is about a factor two higher
for a superconducting than for a normal-conducting linear collider with optimized parameters in either
case [9]. Another definite advantage of a superconducting collider is the low resonance frequency of the
cavities that can be chosen (1.3 GHz in TESLA). The longitudinal (transverse) wake fields generated
by the ultrashort electron bunches upon passing the cavities scale with the second (third) power of the
frequency and are hence much smaller in TESLA than in NLC (f = 11 GHz). The wake fields may have
a negative impact on the beam emittance (the area occupied in phase space) and on the luminosity of the
collider.

1.2 Characteristic properties of superconducting cavities
The fundamental advantage of superconducting niobium cavities is the extremely low surface resistance
of a few nano-ohms at 2 Kelvin as compared to several milli-ohms in copper cavities. The quality
factor Q0 (2π times the ratio of stored energy to energy loss per cycle) is inversely proportional to the
surface resistance and may exceed 1010. Only a tiny fraction of the incident radio frequency (rf) power
is dissipated in the cavity walls, the lion’s share is transferred to the beam. The physical limitation of a
sc resonator is given by the requirement that the rf magnetic field at the inner surface has to stay below
the critical field of the superconductor (about 190 mT for niobium), corresponding to an accelerating
field of Eacc = 45 MV/m. In principle the quality factor should stay constant when approaching this
fundamental superconductor limit but in practice the curve Q0 = Q0(Eacc) ends at considerably lower
values, often accompanied with a strong decrease of Q0 towards the highest gradient reached in the
cavity. The main reasons for the performance degradation are excessive heating caused by impurities
on the inner surface or by field emission of electrons. The cavity becomes partially normal-conducting,
associated with strongly enhanced power dissipation. Because of the exponential increase of surface
resistance with temperature this may result in a run-away effect and eventually a quench of the entire
cavity.

Field emission of electrons from sharp tips is the most severe limitation in high-gradient superconducting
cavities. Small particles on the cavity surface act as field emitters. By applying the clean room techniques
developed in semiconductor industry it has been possible to raise the threshold for field emission in
multicell cavities from about 10 MV/m to more than 20 MV/m in the past few years. The preparation of
a smooth and almost mirror-like surface by electrolytic polishing is another important improvement.

A detailed description of sc cavities is found in [10].

2 Basics of superconductivity
The unusual features of superconducting magnets and cavities are closely linked to the physical proper-
ties of the superconductor itself. For this reason a basic understanding of superconductivity is indispens-
able for the design, construction and operation of superconducting accelerator components. Only the
traditional ‘low-temperature’ superconductors are treated since up to date the use of ‘high-temperature’
ceramic superconductors in these devices is rather limited [11, 12]. For more comprehensive presenta-
tions I refer to the excellent text books by W. Buckel [13] and by D.R. Tilley and J. Tilley [14].
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2.1 Overview
Superconductivity — the infinitely high conductivity below a ‘critical temperature‘ Tc — is observed in
a large variety of materials but, remarkably, not in some of the best normal conductors like copper, silver
and gold, except at very high pressures. This is illustrated in Fig. 1 where the resistivity of copper, tin and
the ‘high-temperature‘ superconductor YBa2Cu3O7 is sketched as a function of temperature. Table 1 lists
some important superconductors together with their critical temperatures at vanishing magnetic field.

Fig. 1: The low-temperature resistivity of copper, tin and YBa2Cu3O7.

Table 1: Critical temperature Tc in K of selected superconducting materials for vanishing magnetic field.

Al Hg Sn Pb Nb Ti NbTi Nb3Sn

1.14 4.15 3.72 7.9 9.2 0.4 9.4 18

There is an intimate relation between superconductivity and magnetic fields. W. Meissner and R.
Ochsenfeld discovered in 1933 that a superconducting element like lead expels a weak magnetic field
from its interior when cooled below Tc, while in stronger fields superconductivity breaks down and
the material goes to the normal state. The spontaneous exclusion of magnetic fields upon crossing Tc

cannot be explained in terms of the Maxwell equations of classical electrodynamics and indeed turned
out to be of quantum-theoretical origin. In 1935 H. and F. London proposed an equation which offered
a phenomenological explanation of the field exclusion. The London equation relates the supercurrent
density Js to the magnetic field:

~∇× ~Js = −nse
2

me

~B (1)

where ns is the density of the super-electrons. In combination with the Maxwell equation ~∇× ~B = µ0
~Js

we get the following equation for the magnetic field in a superconductor

∇2 ~B − µ0nse
2

me

~B = 0 . (2)

For a simple geometry, namely the boundary between a superconducting half space and vacuum, and
with a magnetic field parallel to the surface, Eq. (2) reads

d2By

dx2
− 1

λ2
L

By = 0 with λL =
√

me

µ0nse2
. (3)

Here we have introduced a very important superconductor parameter, the London penetration depth λL.
The solution of the differential equation is

By(x) = B0 exp(−x/λL) . (4)
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So the magnetic field does not abruptly drop to zero at the superconductor surface but penetrates into the
material with exponential attenuation (Fig. 2). For typical material parameters the penetration depth is
quite small, namely 20–50 nm. In the bulk of a thick superconductor the magnetic field vanishes which
is just the Meissner-Ochsenfeld effect.

The justification of the London equation remained obscure until the advent of the microscopic
theory of superconductivity by Bardeen, Cooper and Schrieffer in 1957. The BCS theory is based on the
assumption that the supercurrent is not carried by single electrons but rather by pairs of electrons of op-
posite momenta and spins, the so-called Cooper pairs. The London penetration depth remains invariant
under the replacements ns → nc = ns/2, e → 2e and me → mc = 2me. The BCS theory revolu-

Fig. 2: The exponential drop of the magnetic field and the rise of the Cooper-pair density at a boundary between a
normal and a superconductor.

tionized our understanding of superconductivity. All Cooper pairs occupy a single quantum state, the
BCS ground state, whose energy is separated from the single-electron states by a temperature dependent
energy gap Eg = 2∆(T ). The critical temperature is related to the energy gap at T = 0 by

1.76 kBTc = ∆(0) . (5)

Here kB = 1.38 · 10−23 J/K is the Boltzmann constant. The magnetic flux through a superconducting
ring is found to be quantized, the smallest unit being the elementary flux quantum

Φ0 =
h

2e
= 2.07 · 10−15 Vs . (6)

These and many other predictions of the BCS theory, like the temperature dependence of the energy gap
and the existence of quantum interference phenomena, have been confirmed by experiment and often
found practical application.

A discovery of enormous practical consequences was the finding that there exist two types of
superconductors with rather different response to magnetic fields. The elements lead, mercury, tin,
aluminium and others are called ’type I‘ superconductors. They do not admit a magnetic field in the
bulk material and are in the superconducting state provided the applied field stays below a critical field
Hc (Bc = µ0Hc is usually less than 0.1 Tesla). All superconducting alloys like lead-indium, niobium-
titanium, niobium-tin and also the element niobium belong to the large class of ’type II‘ superconductors.
They are characterized by two critical fields, Hc1 and Hc2. Below Hc1 these substances are in the Meiss-
ner phase with complete field expulsion while in the range Hc1 < H < Hc2 they enter the mixed phase
in which the magnetic field pierces the bulk material in the form of flux tubes. Many of these materials
remain superconductive up to much higher fields (10 Tesla or more).

2.2 Energy balance in a magnetic field
A material like lead makes a phase transition from the normal to the superconducting state when it is
cooled below Tc and when the magnetic field is less than Hc(T ). This is a phase transition comparable to
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the transition from water to ice below 0◦C. Phase transitions take place when the new state is energetically
favoured. The relevant thermodynamic energy is here the so-called Gibbs free energy G. Free energies
have been measured for a variety of materials. For temperatures T < Tc they are found to be lower in
the superconducting than in the normal state while Gsup approaches Gnorm in the limit T → Tc, see Fig.
3a. What is now the impact of a magnetic field on the energy balance? A magnetic field has an energy
density µ0/2 ·H2, and according to the Meissner-Ochsenfeld effect the magnetic energy must be pushed
out of the material when it enters the superconducting state. Hence the free energy per unit volume in
the superconducting state increases quadratically with the applied field:

Gsup(H) = Gsup(0) +
µ0

2
H2 . (7)

The normal-state energy remains unaffected. The material stays superconductive as long as Gsup(H) <
Gnorm. Equation (7) implies the existence of a maximum tolerable field, the ‘critical field’, above which
superconductivity breaks down. It is defined by the condition that the free energies in the superconducting
and in the normal state be equal

Gsup(Hc) = Gnorm ⇒ µ0

2
H2

c = Gnorm −Gsup(0) . (8)

Figure 3b illustrates what we have said. For H > Hc the normal phase has a lower energy, so the material
goes to the normal state. Equation (8) is also meaningful for type II superconductors and defines in this
case the thermodynamic critical field which lies between Hc1 and Hc2. The quantity µ0/2 · H2

c =

Fig. 3: (a) Free energy of aluminium in the normal and superconducting state as a function of T (after N.E.
Phillips). The normal state is achieved by applying a magnetic field larger than Bc. (b) Schematic sketch of the
free energies Gnorm and Gsup as a function of the applied magnetic field B = µ0H .

Gnorm −Gsup(0) can be interpreted as the Cooper-pair condensation energy per unit volume.

2.3 Coherence length and distinction between type I and type II superconductors
In very thin sheets of superconductor (thickness < λL) the magnetic field does not drop to zero at the
centre. Consequently less magnetic energy needs to be expelled which implies that the critical field
of a thin sheet may be much larger than the Hc of a thick slab. From this point of view it might appear
energetically favourable for a thick slab to subdivide itself into an alternating sequence of thin normal and
superconducting slices. The magnetic energy is indeed lowered that way but there is another energy to
be taken into consideration, namely the energy required to create the normal-superconductor interfaces.
At the boundary between the normal and the superconducting phase the density nc of the super-current
carriers (the Cooper pairs) does not jump abruptly from zero to its value in the bulk but rises smoothly
over a finite length ξ, called coherence length, see Fig. 2.
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The relative size of the London penetration depth λL and the coherence length ξ decides whether
a material is a type I or a type II superconductor. Creation of a boundary means a loss of Cooper-pair
condensation energy in a thickness ξ but a gain of magnetic energy in a thickness λL. There is a net
energy gain if λL > ξ. So a subdivision of the superconductor into an alternating sequence of thin
normal and superconducting slices is energetically favourable if the London penetration depth exceeds
the coherence length.

A more refined treatment is provided by the Ginzburg-Landau theory (see e.g. [14]). Here one
introduces the Ginzburg-Landau parameter

κ = λL/ξ . (9)

The criterion for type I or II superconductivity is found to be

type I: κ < 1/
√

2
type II: κ > 1/

√
2.

Table 2 lists the penetration depths and coherence lengths of some important superconducting elements.
Niobium is a type II conductor but close to the border to type I, while indium, lead and tin are clearly in
the type I class. The coherence length ξ is proportional to the mean free path of the conduction electrons

Table 2: Penetration depths and coherence lengths of important superconducting elements.

material In Pb Sn Nb

λL [nm] 24 32 ≈ 30 32

ξ [nm] 360 510 ≈ 170 39

in the metal. In alloys the mean free path is generally much shorter than in pure metals hence alloys are
always type II conductors.

In reality a type II superconductor is not subdivided into thin slices but the field penetrates the
sample in the form of flux tubes which arrange themselves in a triangular pattern which can be made
visible by evaporating iron atoms onto a superconductor surface sticking out of the liquid helium. The
fluxoid pattern shown in Fig. 4a proves beyond any doubt that niobium is indeed a type II superconductor.
Each flux tube or fluxoid contains one elementary flux quantum Φ0 which is surrounded by a Cooper-
pair vortex current. The centre of a fluxoid is normal-conducting and covers an area of roughly πξ2.
When we apply an external field H , fluxoids keep moving into the specimen until their average magnetic

flux density is identical to B = µ0H . The fluxoid spacing in the triangular lattice d =
√

2Φ0/(
√

3B)
amounts to 20 nm at 6 Tesla. The upper critical field is reached when the current vortices of the fluxoids
start touching each other at which point superconductivity breaks down. In the Ginzburg-Landau theory
the upper critical field is given by

Bc2 =
√

2 κ Bc =
Φ0

2πξ2
. (10)

For niobium-titanium with an upper critical field Bc2 = 14 T this formula yields ξ = 5 nm. The
coherence length is larger than the typical width of a grain boundary in NbTi which means that the
supercurrent can freely move from grain to grain. In high-Tc superconductors the coherence length is
often shorter than the grain boundary width, and then current flow from one grain to the next is strongly
impeded.
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2.4 Flux flow resistance and flux pinning
For application in accelerator magnets a superconducting wire must be able to carry a large current in the
presence of a field of 5 – 10 Tesla. Type I superconductors are definitely ruled out because their critical
field is far too low (below 0.1 Tesla). Type II conductors appear promising at first sight: they feature
large upper critical fields, and high currents are permitted to flow in the bulk material. However there is
the problem of flux flow resistance. A current flowing through an ideal type II superconductor, which is
exposed to a magnetic field, exerts a Lorentz force on the flux lines and causes them to move through the
specimen, see Fig. 4b. This is a viscous motion and leads to heat generation. So although the current
itself flows without dissipation the sample acts as if it had an Ohmic resistance. The statement is even
formally correct. The moving fluxoids represent a moving magnetic field which, according to theory of
special relativity, is equivalent to an electric field ~Eequiv = ~B × ~v/c2 . It is easy to see that ~Eequiv and ~J
point in the same direction just like in a normal resistor. To obtain useful wires for magnet coils flux flow

Fig. 4: (a) Fluxoid pattern in niobium (courtesy U. Essmann). The distance between adjacent flux tubes is 0.2 µm.
(b) Fluxoid motion in a current-carrying type II superconductor.

has to be prevented by capturing the fluxoids at pinning centres. These are defects or impurities in the
regular crystal lattice. The most important pinning centres in niobium-titanium are normal-conducting
titanium precipitates in the so-called α phase whose size is in the range of the fluxoid spacing (≈ 10 nm
at 6 Tesla). Figure 5 shows a microscopic picture of a conductor with very high current density (3700
A/mm2 at 5 T and 4.2 K).

Fig. 5: Micrograph of NbTi. The α-titanium precipitates appear as lighter strips. The area covered is 840 nm wide
and 525 nm high. Courtesy P.J. Lee and D.C. Larbalestier.

A type II superconductor with strong pinning is called a hard superconductor. Hard superconduc-
tors are very well suited for high-field magnets, they permit dissipationless current flow in high magnetic
fields. There is a penalty, however: these conductors exhibit a strong magnetic hysteresis which is the
origin of the very annoying ’persistent-current‘ multipoles in superconducting accelerator magnets.
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2.5 Magnetization of a hard superconductor
A type I superconductor shows a reversible response2 to a varying external magnetic field H . The
magnetization is given by the straight line M(H) = −H for 0 < H < Hc and then drops to zero. An
ideal type II conductor without any flux pinning should also react reversibly. A hard superconductor, on
the other hand, is only reversible in the Meissner phase because then no magnetic field enters the bulk,
so no flux pinning can happen. If the field is raised beyond Hc1 magnetic flux enters the sample and
is captured at pinning centres. When the field is reduced again these flux lines remain bound and the
specimen keeps a frozen-in magnetization even for vanishing external field. One has to invert the field
polarity to achieve M = 0 but the initial state (H = 0 and no captured flux in the bulk material) can
only be recovered by warming up the specimen to destroy superconductivity and release all pinned flux
quanta, and by cooling down again.

A typical hysteresis curve is shown in Fig. 6. There is a close resemblence with the hysteresis
in iron except for the sign: the magnetization in a superconductor is opposed to the magnetizing field
because the physical mechanism is diamagnetism. The magnetic hysteresis is associated with energy

Fig. 6: Measured magnetization M of a multifilamentary niobium-titanium conductor [15]. Shown is the initial
excitation, starting at B = µ0H = 0 and M = 0, and the magnetic hysteresis for an external field B varying
between +0.5 T and -0.5 T. Note that the hysteresis curve is not exactly symmetric with respect to the horizontal
axis. The slight asymmetry is due to surface currents (Meissner-Ochsenfeld effect) whose magnetic moment is
always opposed to the applied field.

dissipation. When a hard superconductor is exposed to a time-varying field and undergoes a cycle like
the loop in Fig. 6, the energy loss is given by the integral

Qhyst =
∮

µ0M(H)dH . (11)

It is equal to the area enclosed by the loop. This energy must be provided by the power supply of the
field-generating magnet and is transformed into heat in the superconductor when magnetic flux quanta
are moved in and out of the specimen.

2.6 Critical current density
For a hard superconductor, not only temperature T and magnetic field H have to be specified but also
current density J . The material can be conveniently characterized by its critical surface in a (T, H, J)
coordinate system. For the most important conductor used in magnets, niobium-titanium, this surface is

2This statement applies only for long cylindral or elliptical samples oriented parallel to the field.
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depicted in Fig. 7. Superconductivity prevails everywhere below the surface and normal conductivity
above it. A hard superconductor is not exactly free of any resistance. The critical current density (at a
given temperature and field) is usually defined by the criterion that the resistivity be ρ = ρc = 10−14 Ωm.
In the vicinity of this point the resistivity is a very steep function of current density. It can be parametrised
with a power law

ρ(J) = ρc

(
J

Jc

)n

. (12)

The exponent n is a quality index which may be as large as 50 for a good multifilamentary NbTi conduc-
tor.

Fig. 7: Sketch of the critical surface of NbTi. Also indicated are the regions where pure niobium and pure titanium
are superconducting. The critical surface has been truncated in the regime of very low temperatures and fields
where only sparse data are available.

2.7 Superconductors in microwave fields
Superconductivity in microwave fields is not treated adequately in standard text books. For this reason
I present in this section a simplified explanation of the important concepts. A similar treatment can be
found in [10]. Superconductors are free from energy dissipation in direct-current (dc) applications, but
this is no longer true for alternating currents (ac) and particularly not in microwave fields. The reason
is that the high-frequency magnetic field penetrates a thin surface layer and induces oscillations of the
electrons which are not bound in Cooper pairs. The power dissipation caused by the motion of the
unpaired electrons can be characterized by a surface resistance. In copper cavities the surface resistance
is given by (see sect. 3.2.3)

Rsurf =
1
δσ

(13)

where δ is the skin depth and σ the conductivity of the metal.

The response of a superconductor to an ac field can be understood in the framework of the two-
fluid model 3. An ac current in a superconductor is carried by Cooper pairs (the superfluid component)
as well as by unpaired electrons (the normal component). Let us study the response to a periodic electric
field. The normal current obeys Ohm’s law

Jn = σn E0 exp(−iωt) (14)
3A similar model is used to explain the peculiar properties of liquid helium below 2.17 K.
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while the Cooper pairs receive an acceleration mc v̇c = −2eE0 exp(−iωt), so the supercurrent density
becomes

Js = i
nc 2 e2

meω
E0 exp(−iωt) . (15)

If we write for the total current density

J = Jn + Js = σE0 exp(−iωt) (16)

we get a complex conductivity:

σ = σn + iσs with σs =
2 nce

2

me ω
=

1
µ0λ2

L ω
. (17)

We know already that the rf magnetic field penetrates a superconductor much less than a normal conduc-
tor, namely only to a depth λL. The surface resistance is the real part of the complex surface impedance

Rsurf = Re

(
1

λL(σn + iσs)

)
=

1
λL
· σn

σ2
n + σ2

s

. (18)

Since σ2
n � σ2

s at microwave frequencies one can disregard σ2
n in the denominator and obtains Rsurf ∝

σn/(λLσ2
s). So we arrive at the surprising result that the microwave surface resistance is proportional to

the normal-state conductivity.

The conductivity of a normal metal is given by the classic Drude expression

σn =
nne2`

mevF
(19)

where nn is the density of the unpaired electrons, ` their mean free path and vF the Fermi velocity. The
normal electrons are created by thermal breakup of Cooper pairs. There is an energy gap Eg = 2∆(T )
between the BCS ground state and the free electron states. By analogy with the conductivity of an
intrinsic (undoped) semiconductor we get nn ∝ exp(−Eg/(2kBT )) and hence

σn ∝ ` exp(−∆(T )/(kBT )) . (20)

Using 1/σs = µ0λ
2
Lω and ∆(T ) ≈ ∆(0) = 1.76kBTc we finally obtain for the BCS surface resistance

RBCS ∝ λ3
L ω2 ` exp(−1.76 Tc/T ) . (21)

This formula displays two important aspects of microwave superconductivity: the surface resistance
depends exponentially on temperature, and it is proportional to the square of the rf frequency.

3 Design principles and properties of superconducting cavities
3.1 Choice of superconductor
In principle the critical temperature of the superconductor should be as high as possible. However, cop-
per cavities coated with a high-Tc superconductor layer have shown unsatisfactory performance [11],
therefore the helium-cooled low-Tc superconductors are applied. In contrast to magnets were hard su-
perconductors with large upper critical field (10–20 T) are needed, the superconductor in microwave
applications is not limited by the upper critical field but rather by the thermodynamic critical field (or
possibly the ‘superheating field’) which is well below 0.5 T for all known superconducting elements
and alloys. Moreover, strong flux pinning appears undesirable as it is coupled with hysteretic losses.
Hence a ‘soft’ superconductor must be used, and pure niobium is the best candidate although its critical
temperature is only 9.2 K and the thermodynamic critical field about 190 mT. Niobium-tin (Nb3Sn) may
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appear more favorable since it has a higher critical temperature of 18 K and a superheating field of 400
mT; however, the gradients achieved in Nb3Sn coated copper cavities were below 15 MV/m, probably
due to grain boundary effects in the Nb3Sn layer [16]. For these reasons pure niobium has been chosen
in all large scale installations of sc cavities. There remain two choices for the cavity layout: the cavity is
made from copper and the inner surface is coated with a thin layer of Nb or, alternatively, the cavity is
made from solid Nb. The former approach has been taken with great success with the 350 MHz cavities
of the Large Electron Positron ring LEP at CERN. In the TESLA linear collider, however, gradients of
more than 25 MV/m are needed, and these are presently only accessible with cavities made from solid
niobium. A high thermal conductivity is needed to guide the heat generated at the inner cavity surface
through the wall to the liquid helium coolant. For this reason, the material must be of extreme purity
with contaminations in the ppm range.

The BCS surface resistance is given by eq. (21). The exponential temperature depence is experi-
mentally verified, see Fig. 8. For niobium the surface resistance at 1.3 GHz amounts to about 800 nΩ at
4.2 K and drops to 15 nΩ at 2 K. Operation at 2 K is essential for achieving high accelerating gradients
in combination with very high quality factors. Superfluid helium is an excellent coolant owing to its
high heat conductivity. In addition to the BCS term there is a residual resistance caused by impurities,

2 3 4 5 6 7

R
S
 [nΩ]

T
c
/T

R
res

 = 3 nΩ

1000

100

10

1

R
BCS

1,00E-07

1,00E-06

1,00E-05

1,00E-04

1,00E+00 1,00E+01 1,00E+02 1,00E+03 1,00E+04 1,00E+05

Fig. 8: Left: The surface resistance of a 9-cell TESLA cavity plotted as a function of Tc/T . The residual resistance
of 3 nΩ corresponds to a quality factor Q0 = 1011. Right: The microwave surface resistance of niobium as a
function of the mean free path ` of the unpaired electrons for a temperature of 4.25 K. Solid curve: two-fluid
model; dashed curves: model calculations by Halbritter [18] based on the BCS theory.

frozen-in magnetic flux or lattice distortions.

Rsurf = RBCS + Rres . (22)

Rres is temperature independent and amounts to a few nΩ for a clean niobium surface but may readily
increase if the surface is contaminated.

Formula (21) applies if the mean free path ` of the unpaired electrons is much larger than the
coherence length ξ. In niobium this condition is usually not fulfilled and one has to replace λL in the
above equation by [17]

Λ = λL

√
1 + ξ/` . (23)

Combining equations (21) and (23) we arrive at the surprising statement that the surface resistance does
not assume its minimum value when the superconductor is of very high purity (` � ξ) but rather of
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moderate purity with a mean free path ` ≈ ξ, see Fig. 8. The measured BCS resistance in the sputter-
coated LEP cavities is in fact a factor of two lower than in bulk niobium cavities [19]. The sputtered
niobium layer has a low RRR (see sect. 3.6) and an electron mean free path ` ≈ ξ.

3.2 Pill box cavity
The simplest model of an accelerating cavity is a hollow cylinder which is often called pill box. When
the beam pipes are neglected the field pattern inside the resonator and all relevant cavity parameters can
be calculated analytically.

3.2.1 Field pattern
For particle acceleration we need a longitudinal electric field on the axis, hence we look for TM (trans-
verse magnetic) eigenmodes of the cylindrical resonator. The field lines are sketched in Fig. 9. We

Fig. 9: Electric and magnetic field in a pillbox cavity for the accelerating mode TM010.

use cylindrical coordinates (r, θ, z) where z denotes the beam direction (cavity axis), r =
√

x2 + y2 the
distance from the axis and θ the azimuthal angle. We search for an eigenmode with cylindrical symmetry
(independence of θ) and with longitudinal electric and azimuthal magnetic field. The wave equation for
the electric field reads

∂2Ez

∂r2
+

1
r

∂Ez

∂r
=

1
c2

∂2Ez

∂t2
. (24)

For a harmonic time dependence Ez(r) cos(ωt) and with the new variable u = rω/c one obtains

∂2Ez

∂u2
+

1
u

∂Ez

∂u
+ Ez(u) = 0 . (25)

This is the Bessel equation of zero order with the solution J0(u). Hence the radial dependence of the
electric field is

Ez(r) = E0J0(
ωr

c
) . (26)

For a perfectly conducting cylinder of radius Rc the longitudinal electric field must vanish at r = Rc,
so J0(ωRc/c) = 0. The first zero of J0(u) is at u = 2.405. This defines the frequency of the lowest
eigenmode (we call it the fundamental mode in the following):

f0 =
2.405c

2πRc
, ω0 =

2.405c

Rc
. (27)

In a cylindrical cavity the frequency does not depend on the length Lc. The magnetic field can be
computed from the equation

∂Ez

∂r
= µ0

∂Hθ

∂t
. (28)

Hence we obtain for the fundamental TM mode

Ez(r, t) = E0J0(
ω0r

c
) cos(ω0t) ,
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Hθ(r, t) = − E0

µ0c
J1(

ω0r

c
) sin(ω0t) . (29)

Electric and magnetic field are 90◦ out of phase. The azimuthal magnetic field vanishes on the axis and
assumes its maximum close to the cavity wall.

3.2.2 Stored energy
The electromagnetic field energy is computed by integrating the energy density (ε0/2)E2 (at time t = 0)
over the volume of the cavity. This yields

U =
ε0

2
2πLcE

2
0

∫ Rc

0
J2

0 (
ω0r

c
)rdr

=
ε0

2
2πLcE

2
0

(
c

ω0

)2 ∫ a

0
J2

0 (u)udu (30)

where a = 2.405 is the first zero of J0. Using the relation
∫ a
0 J2

0 (u)udu = 0.5(aJ1(a))2 we get for the
energy stored in the cavity

U =
ε0

2
E2

0(J1(2.405))2 πR2
cLc . (31)

3.2.3 Power dissipation in the cavity
We consider first a cavity made from copper. The rf electric field causes basically no losses since its
tangential component vanishes at the cavity wall while the azimuthal magnetic field penetrates into the
wall with exponential attenuation and induces currents within the skin depth4. These alternating currents
give rise to Ohmic heat generation. The skin depth is given by

δ =
√

2
µ0ωσ

(32)

where σ is the conductivity of the metal. For copper at room temperature and a frequency of 1 GHz the
skin depth is δ = 2µm. Consider now a small surface element. From Ampere’s law

∮
~H · ~ds = I follows

that the current density in the skin depth is related to the azimuthal magnetic field by j = Hθ/δ. Then
the dissipated power per unit area is5

dPdiss

dA
=

1
2σδ

H2
θ =

1
2
RsurfH2

θ . (33)

Here we have introduced a very important quantity for rf cavities, the surface resistance:

Rsurf =
1
σδ

. (34)

In a superconducting cavity Rsurf is given by equations (21) to (22). The power density has to be
integrated over the whole inner surface of the cavity. This is straightforward for the cylindrical mantle
where Hθ = E0

µ0cJ1(ω0R/c) is constant. To compute the power dissipation in the circular end plates one
has to evaluate the integral

∫ a
0 (J1(u))2udu = a2(J1(a))2/2 . Again a = 2.405 is the first zero of J0.

The total dissipated power in the cavity walls is then

Pdiss = Rsurf ·
E2

0

2 µ2
0 c2

(J1(2.405))2 2πRc Lc (1 + Rc/Lc) . (35)

4For a thorough discussion of the skin effect see J.D. Jackson, Classical Electrodynamics, chapt. 8.
5In equation (33) the quantity Hθ denotes the amplitude of the magnetic field without the periodic time factor sin(ω0t).
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3.2.4 Quality factor
The quality factor is an important parameter of a resonating cavity. It is defined as 2π times the number
of cycles needed to dissipate the stored energy, or, alternatively, as the ratio of resonance frequency f0 to
the full width at half height ∆f of the resonance curve

Q0 = 2π · U f0

Pdiss
=

f0

∆f
. (36)

Using the formulas (31) and (35) we get the important equation

Q0 =
G

Rsurf
with G =

2.405 µ0 c

2(1 + Rc/Lc)
(37)

which states that the quality factor of a cavity is obtained by dividing the so-called ‘geometry constant’
G by the surface resistance. G depends only on the shape of the cavity and not on the material. A
typical value is 300 Ω. We want to point out that the quality factor Q0 defined here is the intrinsic or
‘unloaded’ quality factor of a cavity. If the cavity is connected to an external load resistor by means of
a coupler another quality factor (Qext) has to be introduced to account for the energy extraction through
the coupler.

3.2.5 Accelerating field, peak electric and magnetic fields
A relativistic particle needs a time Lc/c to travel through the cavity. During this time the longitudinal
electric field changes. The accelerating field is defined as the average field seen by the particle

Eacc =
1
Lc

∫ Lc/2

−Lc/2
E0 cos(ω0z/c)dz , Vacc = Eacc Lc . (38)

Choosing a cell length of one half the rf wavelength, Lc = c/(2f0), we get Eacc = 0.64 E0 for a pill box
cavity.

The peak electric field at the cavity wall is E0. The peak magnetic follows from eq. (29). We get

Epeak/Eacc = 1.57 , Bpeak/Eacc = 2.7 mT/(MV/m) . (39)

If one adds beam pipes to the cavity these number increase by 20 - 30%.

3.3 Shunt impedance
To understand how the rf power coming from the klystron is transferred through the cavity to the particle
beam it is convenient to represent the cavity by an equivalent parallel LCR circuit. The parallel Ohmic
resistor is called the shunt impedance Rshunt although this quantity has only a real part. The relation
between the peak voltage in the equivalent circuit and the accelerating field in the cavity is

V0 = Vacc = EaccLc .

The power dissipated in the LCR circuit is

Pdiss =
V 2

0

2Rshunt

Identifying this with the dissipated power in the cavity, eq. (35), we get the following expression for the
shunt impedance of a pillbox cavity6

Rshunt =
2L2

cµ
2
0c

2

π3(J1(2.405))2Rc(Rc + Lc)
· 1
Rsurf

. (40)

6Rshunt is often defined by Pdiss = V 2
0 /Rshunt, then the (R/Q) parameter is a factor of 2 larger.
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The surface resistance of a superconducting cavity is extremely small, about 15 nΩ at 2 K; consequently,
the shunt impedance is extremely large, in the order of 5 · 1012 Ω. Note that “on resonance” (ω = ω0 =
1/
√

LC) the parallel LCR circuit behaves like a purely Ohmic resistor whose value is equal to the shunt
impedance.

The ratio of shunt impedance to quality factor is an important cavity parameter

(R/Q) ≡ Rshunt

Q0
=

4Lcµ0c

π3(J1(2.405))22.405Rc
(41)

The (R/Q) parameter is independent of the material, it depends only on the shape of the cavity. A typical
value for a 1-cell cavity is (R/Q) = 100 Ω.

3.4 Shape of practical cavities
The first sc cavities were built in the late 1960’s with the conventional pill-box shape. They showed
unexpected performance limitations: at field levels of a few MV/m a phenomen called multiple impacting
(or multipacting for short) was observed. The effect is as follows: stray electrons which are released
from the wall (for instance by cosmic rays) gain energy in one half-period of the electromagnetic field
and return to their origin in the next half period were they impinge with a few 100 eV onto the wall
and release secondary electrons which repeat the same procedure. This way an avalanche of electrons
is created which absorbs energy from the rf field, heats the superconductor and eventually leads to a
breakdown of superconductivity. It was found out many years later that this problem is avoided in cavities
having the shape of a rotational ellipsoid. When electrons are emitted near the iris of an elliptical cavity
and accelerated by the rf field, they return to a point away from their origin in the next half period, and
the same applies for the possible next generations of electrons. Thereby the daughter electrons move
more and more into the equator region where the rf electric field is small and the multiplication process
dies out. For a thorough discussion I refer to [10].

In electron-positron storage rings quite often single-cell cavities are used. These are particularly
well suited for the large beam currents of up to 1 A in the high luminosity ’B meson factories’. At larger
energies like in LEP (104 GeV per beam) multicell cavities are more efficient to compensate for the huge
synchrotron radiation losses (3 GeV per revolution in LEP). In a linear collider almost the full length of
the machine must be filled with accelerating structures and then long multicell cavities are mandatory.
There are, however, several effects which limit the number of cells Nc per resonator. With increasing
Nc it becomes more and more difficult to tune the resonator for equal field amplitude in every cell.
Secondly, in a very long multicell cavity ’trapped modes’ may be excited by the short particle bunches.
These are coupled oscillations at high frequency which are confined to the inner cells and have such a
low amplitude in the beam pipe sections that they cannot be extracted by a higher-order mode coupler.
Trapped modes have a negative influence on the following bunches and must be avoided. The number
Nc = 9 chosen for TESLA appears a reasonable upper limit. The TESLA cavity [22] is shown in Fig.
10.

Superconducting cavities are always operated in standing-wave mode7. The fundamental TM010

mode is chosen with a longitudinal electric field on the axis. In a cavity with Nc cells the fundamental
mode splits into Nc coupled modes. The π mode with 180◦ phase difference between adjacent cells
transfers the highest possible energy to the particles. The cell length Lc is determined by the condition
that the electric field has to be inverted in the time a relativistic particle needs to travel from one cell to the

7In normal-conducting linacs like SLAC the travelling wave mode may be chosen. Basically the electrons ’ride’ on the
crests of the rf wave which propagates with the speed of light. In a superconducting linac a travelling wave is not attenuated by
wall losses, and in order to preserve the basic advantage of superconductivity - almost no rf power is wasted - one would have to
extract the rf wave after some length and feed it back through a superconducting wave guide to the input coupler. The required
precision in rf phase would be extremely demanding and would make such a system far more complicated than a standing-wave
linac.

15

BASIC PRINCIPLES OF RF SUPERCONDUCTIVITY AND SUPERCONDUCTING CAVITIES

197



stiffening ring HOM couplerpick up antenna

HOM coupler power coupler

1036 mm

1256 mm

Fig. 10: Top: Schematic cross section of the 1 m long 9-cell TESLA cavity with electric field lines. The resonance
frequency is 1.3 GHz and the cavity is operated in the π mode with 180◦ phase advance of the rf wave from cell
to cell. The cell length equals 1/2 the rf wavelength so that relativistic electrons recieve the same energy gain in
each cell. Bottom: Technical layout of the TESLA cavity with stiffening rings between neighbouring cells, two
higher-order mode (HOM) couplers and flanges for mounting the rf power coupler and the pick-up antenna.

next, so Lc = c/(2f0). For nonrelativistic protons or ions the cell length is Lc = v/(2f0). The iris radius
influences the cell-to-cell coupling parameter kcell which is in the order of 1 - 2 %. The frequencies of
the coupled modes are given by the formula

fm =
f0√

1 + 2 kcell cos(mπ/Nc)
, 1 ≤ m ≤ Nc . (42)

3.5 Choice of frequency
The losses in a microwave cavity are proportional to the product of conductor area and surface resistance.
For a given length of a multicell resonator, the area scales with 1/f while the surface resistance scales
with f2 for RBCS � Rres (see eq. (21)) and becomes independent of f for RBCS � Rres. At T = 2 K
the BCS term dominates above 3 GHz and here the losses grow linearly with frequency, whereas below
300 MHz the residual resistance dominates and the losses are proportional to 1/f . To minimize power
dissipation in the cavity wall one should therefore select f in the range 300 MHz to 3 GHz. Cavities
in the 350 to 500 MHz regime are commonly used in electron-positron storage rings. Their large size is
advantageous to suppress wake field effects and losses from higher order modes. However, for a linac of
several 10 km length the niobium and cryostat costs would be prohibitive for these bulky cavities, hence
a higher frequency has to be chosen. Considering material costs f = 3 GHz might appear the optimum
but there are compelling arguments for choosing about half this frequency.

– The wake fields generated by the short electron bunches depend on radius as 1/r2 for longitudinal
and as 1/r3 for transverse wakes. Since the iris radius of a cavity is inversely proportional to its
eigenfrequency, the wake field losses scale with the second resp. third power of the frequency.
Beam emittance growth and beam-induced cryogenic losses are therefore much higher at 3 GHz.

– The f2 dependence of the BCS resistance makes a 3 GHz cavity thermally unstable at gradients
above 30 MV/m, hence choosing this frequency would preclude a possible upgrade of the TESLA
collider to 35 MV/m [10].
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3.6 Heat conduction in niobium and heat transfer to the liquid helium
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Fig. 11: Measured heat conductivity in niobium samples with RRR = 270 and RRR = 500 as a function of
temperature [20].

The heat produced at the inner cavity surface has to be guided through the cavity wall to the
superfluid helium bath. At 2 - 4 K, impurities have a strong impact on the thermal conductivity of metals.
Niobium of very high purity is needed (contamination in the ppm range). The heat conductivity drops
by about an order of magnitude when lowering the temperature from 4 to 2 K, as shown in Fig. 11. The
residual resistivity ratio RRR = R(300K)/R(10K) is a good measure for the purity of the material:
large RRR means high electrical and thermal conductivity at low temperature.

The beneficial effect of a high thermal conductivity on the cavity performance is demonstrated in
Fig. 12. Here the quality factor Q0 is plotted as a function of the accelerating field Eacc for a nine-cell
TESLA cavity before and after a 1400◦C heat treatment. The RRR of the niobium increases during this
treatment from 380 to 760, and obviously the cavity can be excited to higher fields afterwards. What one
can also observe in this figure is a drop of the quality factor towards high fields. The main reason is in this
case the onset of electron field emission (see below). These electrons are accelerated in the rf field and
impinge on the cavity walls where they deposit energy and may even generate X rays by bremsstrahlung.

109
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0 5 10 15 20 25 30

HT 800 °C, RRR 380
HT 1400 °C, RRR 760

Q
0

E
acc

 [MV/m]

quench

no quench
limited by amplifier

x-ray starts

Fig. 12: The excitation curve Q0 = Q0(Eacc) of a nine-cell TESLA cavity before and after the heat treatment at
1400◦C.
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Fig. 13: Excitation curves of electropolished cavities at a helium temperature of 2 K. Left: 1-cell cavities, right:
9-cell cavity.

Low frequency cavities (350-500 MHz) have a small BCS surface resistance at 4.2 K and are
effectively cooled by normal liquid helium. The heat flux should not exceed a few kW/m2 to obtain
nucleate boiling with a close contact between liquid and metal. At higher heat fluxes one enters the film
boiling regime where a vapour film covers the surface. Here the cavity may easily warm up beyond Tc at
areas of excessive heating. The f2 dependence of the BCS resistance implies that for cavities of higher
frequency superfluid helium at 1.8 - 2 K is more appropriate. At the metal-helium interface a temperature
jump is observed which is attributed to phonon mismatch. The so-called Kapitza resistance amounts to
about 1.5 · 10−4 m2K/W [21] for a clean niobium surface in contact with superfluid helium.

3.7 Maximum accelerating field
Superconductivity breaks down when the microwave magnetic field at the cavity surface exceeds a crit-
ical value. The situation is clearcut for a type I superconductor such as lead where the superconducting
state prevails up to Bc = 80 mT. For the type II conductor niobium it is not so obvious which of the
critical fields should be used. The values at 2 K are approximately

– Bc1 = 160 mT
– Bc = 190 mT
– Bc2 = 300 mT

A very safe value would be Bc1 because then no magnetic flux enters the bulk niobium. The correspond-
ing gradient of 38 MV/m in TESLA-type cavities has been definitely exceeded in single-cell cavities,
more than 40 MV/m have been repeatedly reached. There is some evidence that the maximum tolerable
rf magnetic field is close to the thermodynamic critical field of 190 mT but the issue is not finally settled
yet.

The most promising road towards the ultimate gradient is a cavity surface preparation by elec-
trolytic polishing. In figure 13 we show the performance of several electropolished cavities. These
results prove that a centre-of-mass energy of 800 GeV can indeed be reached in the TESLA electron-
positron collider.

3.8 Thermal instability and field emission
The fundamental advantage of superconducting cavities is their extremely low surface resistance of about
10 nΩ at 2 K, leading to rf losses which are 5 to 6 orders of magnitude lower than in copper cavities. The
drawback is that even tiny surface contaminations are potentially harmful as they decrease the quality
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factor and may even lead to a thermal breakdown (quench) of the superconductor due to local overheat-
ing.

Temperature mapping at the outer cavity wall usually reveals that the heating is not uniform over
the whole surface but that certain spots exhibit larger temperature rises, often beyond the critical tem-
perature of the superconductor. Hence the cavity becomes partially normal-conducting, associated with
strongly enhanced power dissipation. Because of the exponential increase of surface resistance with
temperature this may result in a run-away effect and eventually a quench of the entire cavity. Analytical
models and numerical codes are available to describe this effect. The tolerable defect size depends on
the purity of the material. As a typical number, the diameter of a normal-conducting spot must be less
than 50 µm to avoid a thermal instability at 25 MV/m.

Field emission of electrons from sharp tips has been a notorious limitation of high-gradient sc
cavities. The typical indication is that the quality factor drops exponentially above a certain threshold
field, and X rays are observed. The field emission current density is given by the Fowler-Nordheim
equation [23], adapted for rf fields:

jFE ∝
E2.5

loc

Φ
exp(−CΦ3/2/Eloc) . (43)

Here Φ is the work function of the metal, C a constant and Eloc the local electric field. At sharp tips on
the surface the local field may be several 100 times larger than the accelerating field. Perfect cleaning by
rinsing with high-pressure ultrapure water is the most effective remedy against field emission. Using the
clean room techniques developed in semiconductor industry it has been possible to raise the threshold
for field emission in multicell cavities from about 10 MV/m to more than 20 MV/m in the past few years.
Thermal instabilities and field emission are discussed at much greater detail in [10].
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