
THE AVR MICROCONTROLLER

AND EMBEDDED SYSTEMS

Using Assembly and C

Online Part

Muhammad Ali Mazidi

Sepehr Naimi

Sarmad Naimi

Mazidi & Naimi

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 629

Copyright © 2011-2017 Muhammad Ali Mazidi, Sarmad Naimi, and Sepehr Naimi

The book was previously published by: Pearson Education, Inc.

To contact authors, use the following email addresses:

Sepehr.Naimi@gmail.com

Visit our website at

http://www.MicroDigitalEd.com

CONTENTS

CHAPTER 8: AVR HARDWARE CONNECTION, HEX FILE, AND

FLASH LOADERS

SECTION 8.2: AVR FUSE BITS 631
SECTION 8.3: EXPLAINING THE HEX FILE FOR AVR 637
SECTION 8.4: AVR PROGRAMMING AND TRAINER BOARD 642

CHAPTER 18: I2C PROTOCOL AND DS1307 RTC INTERFACING

SECTION 18.5: TWI PROGRAMMING WITH CHECKING STATUS

REGISTER 647

APPENDIX A: AVR INSTRUCTIONS EXPLAINED 671
SECTION A.1: INSTRUCTION SUMMARY 672
SECTION A.2: AVR INSTRUCTIONS FORMAT 676
SECTION A.3: AVR REGISTER SUMMARY 708

APPENDIX B: BASICS OF WIRE WRAPPING 709

APPENDIX C: IC INTERFACING AND SYSTEM DESIGN ISSUES 713
SECTION C.1: OVERVIEW OF IC TECHNOLOGY 714
SECTION C.2: AVR I/O PORT STRUCTURE AND INTERFACING 720
SECTION C.3: SYSTEM DESIGN ISSUES 726

APPENDIX D: FLOWCHARTS AND PSEUDOCODE 731

APPENDIX E: AVR PRIMER FOR 8051 PROGRAMMERS 737

APPENDIX F: ASCII CODES 738

APPENDIX G: ASSEMBLERS, DEVELOPMENT RESOURCES, AND

SUPPLIERS 740

APPENDIX H: DATA SHEETS 742

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 630

SECTION 8.2: AVR FUSE BITS

There are some features of the AVR that we can choose by programming

the bits of fuse bytes. These features will reduce system cost by eliminating any

need for external components.

ATmega32 has two fuse bytes. Tables 8-6 and 8-7 give a short description

of the fuse bytes. Notice that the default values can be different from production

to production and time to time. In this section we examine some of the basic fuse

bits. The Atmel website (http://www.atmel.com) provides the complete description

of fuse bits for the AVR microcontrollers. It must be noted that if a fuse bit is incor-

rectly programmed, it can cause the system to fail. An example of this is changing

the SPIEN bit to 1, which disables SPI programming mode. In this case you will

not be able to program the chip any more! Also notice that the fuse bits are ‘0’ if

they are programmed and ‘1’ when they are not programmed.

In addition to the fuse bytes in the AVR, there are 4 lock bits to restrict

access to the Flash memory. These allow you to protect your code from being

copied by others. In the development process it is not recommended to program

lock bits because you may decide to read or verify the contents of Flash memory.

Lock bits are set when the final product is ready to be delivered to market. In this

book we do not discuss lock bits. To study more about lock bits you can read the

data sheets for your chip at http://www.atmel.com.

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 631

Table 8-6: Fuse Byte (High)

Fuse High Bit Description Default Value

Byte No.

OCDEN 7 Enable OCD 1 (unprogrammed)

JTAGEN 6 Enable JTAG 0 (programmed)

SPIEN 5 Enable SPI serial program and 0 (programmed)

data downloading

CKOPT 4 Oscillator options 1 (unprogrammed)

EESAVE 3 EEPROM memory is preserved 1 (unprogrammed)

through the chip erase

BOOTSZ1 2 Select boot size 0 (programmed)

BOOTSZ0 1 Select boot size 0 (programmed)

BOOTRST 0 Select reset vector 1 (unprogrammed)

Table 8-7: Fuse Byte (Low)

Fuse High Bit Description Default Value

Byte No.

BODLEVEL 7 Brown-out detector trigger level 1 (unprogrammed)

BODEN 6 Brown-out detector enable 1 (unprogrammed)

SUT1 5 Select start-up time 1 (unprogrammed)

SUT0 4 Select start-up time 0 (programmed)

CKSEL3 3 Select clock source 0 (programmed)

CKSEL2 2 Select clock source 0 (programmed)

CKSEL1 1 Select clock source 0 (programmed)

CKSEL0 0 Select clock source 1 (unprogrammed)

Fuse bits and oscillator clock

source

As you see in Figure 8-4, there are

different clock sources in AVR. You can

choose one by setting or clearing any of the

bits CKSEL0 to CKSEL3.

CKSEL0–CKSEL3
The four bits of CKSEL3, CKSEL2,

CKSEL1, and CKSEL0 are used to select the

clock source to the CPU. The default choice

is internal RC (0001), which uses the on-chip

RC oscillator. In this option there is no need

to connect an external crystal and capacitors

to the chip. As you see in Table 8-8, by

changing the values of CKSEL0–CKSEL3

we can choose among 1, 2, 4, or 8 MHz inter-

nal RC frequencies; but it must be noted that

using an internal RC oscillator can cause

about 3% inaccuracy and is not recommend-

ed in applications that need precise timing.

The external RC oscillator is another

source to the CPU. As you see in Figure 8-5, to

use the external RC oscillator, you have to con-

nect an external resistor and capacitors to the

XTAL1 pin. The values of R and C determine

the clock speed. The frequency of the RC

oscillator circuit is estimated by the equation

f = 1/(3RC). When you need a variable clock

source you can use the external RC and replace the resistor with a potentiometer.

By turning the potentiometer you will be able to change the frequency. Notice that

the capacitor value should be at least 22 pF. Also, notice that by programming the

CKOPT fuse, you can enable an internal 36 pF capacitor between XTAL1 and

GND, and remove the external capacitor. As you see in Table 8-9, by changing the

values of CKSEL0–CKSEL3, we can choose different frequency ranges.

CHAPTER 8: AVR HARDWARE CONNECTION 632

Table 8-8: Internal RC

Oscillator Operation Modes

CKSEL3...0 Frequency

0001 1 MHz

0010 2 MHz

0011 4 MHz

0100 8 MHz

Table 8-9: External RC

Oscillator Operation Modes

CKSEL3...0 Frequency (MHz)

0101 <0.9

0110 0.9–3.0

0111 3.0–8.0

1000 8.0–12.0

External RC
Oscillator

External
Clock

Crystal
Oscillator

Low-Frequency
Crystal Oscillator

Calibrated RC
Oscillator

Clock
Multiplexer

Figure 8-4. ATmega32 Clock Sources

Figure 8-5 External RC

By setting CKSEL0...3 bits to 0000, we can use an external clock source

for the CPU. In Figure 8-6a you see the connection to an external clock source.

The most widely used option is to connect the XTAL1 and XTAL2 pins to

a crystal (or ceramic) oscillator, as shown in Figure 8-6b. In this mode, when

CKOPT is programmed, the oscillator output will oscillate with a full rail-to-rail

swing on the output, causing a more powerful clock signal. This is suitable when

the chip drives a second clock buffer or operates in a very noisy environment. As

you see in Table 8-10, this mode has a wide frequency range. When CKOPT is not

programmed, the oscillator has a smaller output swing and a limited frequency

range. This mode cannot be used to drive other clock buffers, but it does reduce

power consumption considerably. There are four choices for the crystal oscillator

option. Table 8-10 shows all of these choices. Notice that mode 101 cannot be

used with crystals, and only ceramic resonators can be used. Example 8-1 shows

the relation between crystal frequency and instruction cycle time.

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 633

XTAL2

XTAL1

GND

NC

EXTERNAL

OSCILLATOR

SIGNAL

Figure 8-6a. XTAL1 Connection to an

External Clock Source

XTAL2

XTAL1

GND

C2

C1

Figure 8-6b. XTAL1–XTAL2

Connection to Crystal Oscillator

22 pF

22 pF

Table 8-10: ATmega32 Crystal Oscillator Frequency Choices and Capacitor

Range

CKOPT CKSEL3...1 Frequency (MHz) C1 and C2 (pF)

1 101 0.4–0.9 Not for crystals

1 110 0.9–3.0 12–22

1 111 3.0–8.0 12–22

0 101, 110, 111 More than 1.0 12–22

Find the instruction cycle time for the ATmega32 chip with the following crystal oscillators

connected to the XTAL1 and XTAL2 pins.

(a) 4 MHz (b) 8 MHz (c) 10 MHz

Solution:

(a) Instruction cycle time is 1/(4 MHz) = 250 ns

(b) Instruction cycle time is 1/(8 MHz) = 125 ns

(c) Instruction cycle time is 1/(10 MHz) = 100 ns

Example 8-1

Fuse bits and reset delay

The most difficult time for a system is during power-up. The CPU needs

both a stable clock source and a stable voltage level to function properly. In AVRs,

after all reset sources have gone inactive, a delay counter is activated to make the

reset longer. This short delay allows the power to become stable before normal

operation starts. You can choose the delay time through the SUT1, SUT0, and

CKSEL0 fuses. Table 8-11 shows start-up times for the different values of SUT1,

SUT0, and CKSEL fuse bits and also the recommended usage of each combina-

tion. Notice that the third column of Table 8-11 shows start-up time from power-

down mode. Power-down mode is not discussed in this book.

Brown-out detector

Occasionally, the power source provided to the VCC pin fluctuates, caus-

ing the CPU to malfunction. The ATmega family has a provision for this, called

brown-out detection. The BOD circuit compares VCC with BOD-Level and resets

the chip if VCC falls below the BOD-Level. The BOD-Level can be either 2.7 V

when the BODLEVEL fuse bit is one (not programmed) or 4.0 V when the

BODLEVEL fuse is zero (programmed). You can enable the BOD circuit by pro-

gramming the BODEN fuse bit. When VCC increases above the trigger level, the

BOD circuit releases the reset, and the MCU starts working after the time-out peri-

od has expired.

A good rule of thumb

There is a good rule of thumb for selecting the values of fuse bits. If you

are using an external crystal with a frequency of more than 1 MHz you can set the

CKSEL3, CKSEL2, CKSEL1, SUT1, and SUT0 bits to 1 (not programmed) and

clear CKOPT to 0 (programmed).

CHAPTER 8: AVR HARDWARE CONNECTION 634

Table 8-11: Startup Time for Crystal Oscillator and Recommended Usage

CKSEL0 SUT1...0 Start-Up Time Delay from Recommended

from Power-Down Reset (VCC = 5) Usage

0 00 258 CK 4.1 Ceramic resonator,

fast rising power

0 01 258 CK 65 Ceramic resonator,

slowly rising power

0 10 1K CK - Ceramic resonator,

BOD enabled

0 11 1K CK 4.1 Ceramic resonator,

fast rising power

1 00 1K CK 65 Ceramic resonator,

slowly rising power

1 01 16K CK - Crystal oscillator,

BOD enabled

1 10 16K CK 4.1 Crystal oscillator,

fast rising power

1 11 16K CK 65 Crystal oscillator,

slowly rising power

Putting it all together

Many of the programs we showed in the first seven chapters were intend-

ed to be simulated. Now that we know what we should write in the fuse bits and

how we should connect the ATmega32 pins, we can download the hex output file

provided by the AVR Studio assembler into the Flash memory of the AVR chip

using an AVR programmer.

We can use the following skeleton source code for the programs that we

intend to download into a chip. Notice that you have to modify the first line if you

use a chip other than ATmega32. As you can see in the comments, if you want to

enable interrupts you have to modify “.ORG 0”, and if you do not use call the

instruction in your code, you can omit the codes that set the stack pointer.

.INCLUDE "M32DEF.INC" ;change it according to your chip

.ORG 0 ;change it if you use interrupt
LDI R16,HIGH(RAMEND) ;set the high byte of stack pointer to
OUT SPH,R16 ;the high address of RAMEND
LDI R16,LOW(RAMEND) ;set the low byte of stack pointer to
OUT SPL,R16 ;low address of RAMEND

... ;place your code here

As an example, examine Program 8-1. It will toggle all the bits of Port B

with some delay between the “on” and “off” states.

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 635

;Test Program 8-1: Toggling PORTB for the Atmega32
.INCLUDE "M32DEF.INC" ;using Atmega32
.ORG 0

LDI R16,HIGH(RAMEND) ;set up stack
OUT SPH,R16
LDI R16,LOW(RAMEND)
OUT SPL,R16
LDI R16,0xFF ;load R16 with 0xFF
OUT DDRB,R16 ;Port B is output

BACK:
COM R16 ;complement R16
OUT PORTB,R16 ;send it to Port B
CALL DELAY ;time delay
RJMP BACK ;keep doing this indefinitely

DELAY:
LDI R20,16

L1: LDI R21,200
L2: LDI R22,250
L3:

NOP
NOP
DEC R22
BRNE L3
DEC R21
BRNE L2

DEC R20
BRNE L1
RET

Program 8-1: Toggling Port B in Assembly

Toggle program in C

In Chapter 7 we covered C programming of the AVR using the AVR GCC

compiler. Program 8-2 shows the toggle program written in C. It will toggle all the

bits of Port B with some delay between the “on” and “off” states.

Review Questions

1. A given ATmega32-based system has a crystal frequency of 16 MHz. What is

the instruction cycle time for the CPU?

2. How many fuse bytes are available in ATmega32?

3. True or false. Upon power-up, both voltage and frequency are stable instantly.

4. The internal RC oscilator works for the frequency range of _____ to ______

MHz.

5. Which fuse bit is used to disable the BOD?

6. True or false. Upon power-up, the CPU starts working immediately.

7. What is the rule of thumb for ATmega32 fuse bits?

8. The brown-out detection voltage can be set at _______ or ______ by________

fuse bit.

9. True or false. The higher the clock frequency for the system, the lower the

power dissipation.

CHAPTER 8: AVR HARDWARE CONNECTION 636

#include <avr/io.h> //standard AVR header
#include <util/delay.h>

void delay_ms(int d);

int main(void)
{

DDRB = 0xFF; //Port B is output
while (1)
{ //do forever

PORTB = 0x55;
delay_ms(1000); //delay 1 second
PORTB = 0xAA;
delay_ms(1000); //delay 1 second

}
return 0;

}

void delay_ms(int d)
{

_delay_ms(d); //delay 1000 us
}

Program 8-2: Toggling Port B in C

SECTION 8.3: EXPLAINING THE HEX FILE FOR AVR

Intel Hex is a widely used file format designed to standardize the loading

(transferring) of executable machine code into a chip. Therefore, the loaders that

come with every ROM burner (programmer) support the Intel Hex file format. In

many Windows-based assemblers such as AVR Studio, the Intel Hex file is pro-

duced according to the settings you set. In the AVR Studio environment, the object

file is fed into the linker program to produce the Intel hex file. The hex file is used

by a programmer such as the AVRISP to transfer (load) the file into the Flash

memory. The AVR Studio assembler can produce three types of hex files. They are

(a) Intel Intellec 8/MDS (Intel Hex), (b) Motorola S-record, and (c) Generic. See

Table 8-12. In this section we will explain Intel Hex with some examples. We rec-

ommend that you do not use AVR GCC if you want to test the programs in this

section on your computer. It is better to use a simple .asm file like toggle.asm to

understand this concept better.

Analyzing the Intel Hex file

We choose the hex type of Intel Hex, Motorola S-record, or Generic by

using the command-line invocation options or setting the options in the AVR

Studio assembler itself. If we do not choose one, the AVR Studio assembler selects

Intel Hex by default. Intel Hex supports up to 16-bit addressing and is not appli-

cable for programs more than 64K bytes in size. To overcome this limitation AVR

Studio uses extended Intel Hex files, which support type 02 records to extend

address space to 1M. We will explain extended Intel Hex file format in this sec-

tion. Figure 8-10 shows the Intel Hex file of the test program whose list file is

given in Figure 8-8. Since the programmer (loader) uses the Hex file to download

the opcode into Flash, the hex file must provide the following: (1) the number of

bytes of information to be loaded, (2) the information itself, and (3) the starting

address where the information must be placed. Each record (line) of the Hex file

consists of six parts as follows:

:BBAAAATTHHHHH.......HHHHCC

The following describes each part:

1. “:” Each line starts with a colon.

2. BB, the count byte. This tells the loader how many bytes are in the line.

3. AAAA is for the record address. This is a 16-bit address. The loader places the

first byte of record data into this Flash location. This is the case in files that are

less than 64 KB. For files that are more than 64 KB the address field shows the

record address in the current segment.

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 637

Table 8-12: Intel Hex File Formats Produced by AVR Studio

Format Name File Extension Max. ROM Address

Extended Intel Hex file .hex 20-bit address

Motorola S-record .mot 32-bit address

Generic .gen 24-bit address

4. TT is for type. This field is 00, 01, or 02. If it is 00, it means that there are more

lines to come after this line. If it is 01, it means that this is the last line and the

loading should stop after this line. If it is 02, it indicates the current segment

address. To calculate the absolute address of each record (line), we have to

shift the current segment address 4 bits to left and then add it to the record

address. Examples 8-2 and 8-3 show how to calculate the absolute address of

a record in extended Intel hex file.

5. HH......H is the real information (data or code). The loader places this informa-

tion into successive memory locations of Flash. The information in this field is

presented as low byte followed by the high byte.

6. CC is a single byte. This last byte is the checksum byte for everything in that

line. The checksum byte is used for error checking. Checksum bytes are dis-

cussed in detail in Chapters 6 and 7. Notice that the checksum byte at the end

of each line represents the checksum byte for everything in that line, and not

just for the data portion.

CHAPTER 8: AVR HARDWARE CONNECTION 638

What is the absolute address of the first byte of a record that has 0025 in the address

field if the last type 02 record before it has the segment address 0030?

Solution:

To calculate the absolute address of each record (line), we have to shift the segment

address (0030) four bits to the left and then add it to the record address (0025):

0030 (2 bytes segment address) shifted 4 bits to the left --> 00300

0025 (record address) + 25

=> (absolute address) 00325

Example 8-2

What is the absolute address of the first byte of the second record below?

:020000020000FC
:1000000008E00EBF0FE50DBF0FEF07BB05E500953C

Solution:

To calculate the absolute address of the first byte of the second record, we have to shift

left the segment address (0000, as you see in the first record) four bits and then add it

to the second record address (0000, as you see in the second record).

0000 (segment address) shift 4 bits to the left --> 00000

+ 0000 (record address)

000000 (absolute address)

Example 8-3

Analyzing the bytes in the Flash memory vs. list file

The data in the Flash memory of the AVR is recorded in a way that is called

Little-endian. This means that the high byte of the code is located in the higher

address location of Flash memory, and the low byte of the code is located in the

lower address location of Flash memory. Compare the first word of code (e008) in

Figure 8-8 with the first two bytes of Flash memory (08e0) in Figure 8-7. As you

see, 08, which is the low byte of the first instruction (LDI R16,HIGH(RAMEND))

in the code, is placed in the lower location of Flash memory, and e0, which is the

high byte of the instruction in the code, is placed in the next location of program

space just after 08.

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 639

LOC OBJ LINE
.ORG 0x000

000000 e008 LDI R16,HIGH(RAMEND)
000001 bf0e OUT SPH,R16
000002 e50f LDI R16,LOW(RAMEND)
000003 bf0d OUT SPL,R16

000004 ef0f LDI R16,0xFF
000005 bb07 OUT DDRB,R16
000006 e505 LDI R16,0x55

BACK:
000007 9500 COM R16
000008 bb08 OUT PORTB,R16
000009 940e 000c CALL DELAY_1S
00000b cffb RJMP BACK

DELAY_1S:
00000c e140 LDI R20,16
00000d ec58 L1: LDI R21,200
00000e ef6a L2: LDI R22,250

L3:
00000f 0000 NOP
000010 0000 NOP
000011 956a DEC R22
000012 f7e1 BRNE L3
000013 955a DEC R21
000014 f7c9 BRNE L2
000015 954a DEC R20
000016 f7b1 BRNE L1
000017 9508 RET

Figure 8-8. List File for Test Program

(Comments and other lines are deleted, and some spaces are added for simplicity.)

Figure 8-7. AVR Flash Memory Contents

As we mentioned in Chapter 2, each Flash location in the AVR is 2 bytes

long. So, for example, the first byte of Flash location #2 is Byte #4 of the code.

See Figure 8-9.

In Figure 8-10 you see the hex file of the toggle code. The first record (line)

is a type 02 record and indicates the current segment address, which is 0000. The

next record (line) is a type 00 record and contains the data (the code to be loaded

into the chip). After ‘:’ the record starts with 10, which means that the data field

contains 10 (16 decimal) bytes of data. The next field is the address field (0000),

and it indicates that the first byte of the data field will be placed in address loca-

tion 0 in the current segment. So the first byte of code will be loaded into location

0 of Flash memory. (Reexamine Example 8-3 if needed.) Also, notice the use of

.ORG 0x000 in the code. The next field is the data field, which contains the code

to be loaded into the chip. The first byte of the data field is 08, which is the low

byte of the first instruction (LDI R16,HIGH(RAMEND)). See Figure 8-8. The last

field of the record is the checksum byte of the record. Notice that the checksum

byte at the end of each line represents the checksum byte for everything in that

line, and not just for the data portion.

Pay attention to the address field of the next record (0010) in Figure 8-10

and compare it with the address of the bb08 instruction in the list file in Figure

8-8. As you can see, the address in the list file is 000008, which is exactly half of

the address of the bb08 instruction in the hex file, which is 0010. That is because

each Flash location (word) contains 2 bytes.

CHAPTER 8: AVR HARDWARE CONNECTION 640

:020000020000FC
:1000000008E00EBF0FE50DBF0FEF07BB05E500953C
:1000100008BB0E940C00FBCF40E158EC6AEF0000E7
:1000200000006A95E1F75A95C9F74A95B1F7089526
:00000001FF

Separating the fields, we get the following:

:BB AAAA TT HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH CC
:02 0000 02 0000 FC
:10 0000 00 08E00EBF0FE50DBF0FEF07BB05E50095 3C
:10 0010 00 08BB0E940C00FBCF40E158EC6AEF0000 E7
:10 0020 00 00006A95E1F75A95C9F74A95B1F70895 26
:00 0000 01 FF

Figure 8-10. Intel Hex File Test Program with the Intel Hex Option

Figure 8-9. AVR Flash Memory Locations

Byte #0 Byte #1

Byte #2 Byte #3

Byte #4 Byte #5

Byte #6 Byte #7

Location #0

Location #1

Location #2

Location #3

Flash Memory

Examine Examples 8-4 through 8-6 to gain insight into the Intel Hex file

format.

Review Questions

1. True or false. The Intel Hex file format does not use the checksum byte method

to ensure data integrity.

2. The first byte of a line in an Intel Hex file represents ____.

3. The last byte of a line in an Intel Hex file represents ____.

4. In the TT field of an Intel Hex file, we have 00. What does it indicate?

5. Find the checksum byte for the following values: 22H, 76H, 5FH, 8CH, 99H.

6. In Question 5, add all the values and the checksum byte. What do you get?

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 641

(a) Verify the checksum byte for line 3 of Figure 8-10. (b) Verify also that the informa-

tion is not corrupted.

Solution:

(a) 10 + 00 + 00 + 00 + 08 + E0 + 0E + BF + 0F + E5 + 0D + BF + 0F +

EF + 07 + BB + 05 + E5 + 00 + 95 = 6C4 in hex. Dropping the carries (6)

gives C4H, and its 2's complement is 3CH, which is the last byte of line 3.

(b) If we add all the information in line 2, including the checksum byte, and drop the

carries we should get 10 + 00 + 00 + 00 + 08 + E0 + 0E + BF + 0F + E5
+ 0D + BF + 0F + EF + 07 + BB + 05 + E5 + 00 + 95 + 3C = 700.
Dropping the carries (7) gives 00H, which means OK.

Example 8-6

Compare the data portion of the Intel Hex file of Figure 8-10 with the opcodes in the

list file of the test program given in Figure 8-8. Do they match?

Solution:

In the second line of Figure 8-10, the data portion starts with 08E0H, where the low byte

is followed by the high byte. That means it is E008, the opcode for the instruction

“LDI R16,HIGH(RAMEND)”, as shown in the list file of Figure 8-8. The last byte of the

data in line 5 is 0895, which is the opcode for the “RET” instruction in the list file.

Example 8-5

From Figure 8-10, analyze the six parts of line 3.

Solution:

After the colon (:), we have 10, which means that 16 bytes of data are in this line. 0010H

is the record address, and means that 08, which is the first byte of the record, is placed

in address location 10H (16 decimal). Next, 00 means that this is not the last line of the

record. Then the data, which is 16 bytes, is as follows:

08BB0E940C00FBCF40E158EC6AEF0000. Finally, the last byte, E7, is the checksum byte.

Example 8-4

SECTION 8.4: AVR PROGRAMMING AND TRAINER BOARD

In this section, we show various ways of loading a hex file into the AVR

microcontroller. We also discuss the connection for a simple AVR trainer.

Atmel has skillfully designed AVR microcontrollers for maximum flexibil-

ity of loading programs. The three primary ways to load a program are:

1. Parallel programming. In this way a device burner loads the program into the

microcontroller separate from the system. This is useful on a manufacturing

floor where a gang programmer is used to program many chips at one time.

Most mainstream device burners support the AVR families: EETools is a pop-

ular one. The device programming method is straightforward: The chip is pro-

grammed before it is inserted into the circuit. Or, the chip can be removed and

reprogrammed if it is in a socket. A ZIF (zero insertion force) socket is even

quicker and less damaging than a standard socket. When removing and rein-

serting, we must observe ESD (electrostatic discharge) procedures. Although

AVR devices are rugged, there is always a risk when handling them. Using this

method allows all of the device’s resources to be utilized in the design. No pins

are shared, nor are internal resources of the chip used as is the case in the other

two methods. This allows the embedded designer to use the minimum board

space for the design.

2. An in-circuit serial programmer (ISP) allows the developer to program and

debug their microcontroller while it is in the system. This is done by a few

wires with a system setup to accept this configuration. In-circuit serial pro-

gramming is excellent for designs that change or require periodic updating.

AVR has two methods of ISP. They are SPI and JTAG. Most of the ATmega

family supports both methods. The SPI uses 3 pins, one for send, one for

receive, and one for clock. These pins can be used as I/O after the device is

programmed. The designer must make sure that these pins do not conflict with

the programmer. Notice that SPI stands for “serial peripheral interface” and is

a protocol. But ISP stands for “in-circuit serial programming” and is a method

of code loading. AVRISP and many other devices support ISP. To connect

AVRISP to your device you also need to connect VCC, GND, and RESET

pins. You must bring the pins to a header on the board so that the programmer

can connect to it. Figure 8-11 shows the pin connections.

CHAPTER 8: AVR HARDWARE CONNECTION 642

10

Figure 8-11. ISP 10-pin Connections (See www.Atmel.com for 6-pin version)

Another method of ISP is JTAG. JTAG is another protocol that supports in-cir-

cuit programming and debugging. It means that in addition to programming

you can trace your program on the chip line by line and watch or change the

values of memory locations, ports, or registers while your program is running

on the chip.

3. A boot loader is a piece of code burned into the microcontroller’s program

Flash. Its purpose is to communicate with the user’s board to load the program.

A boot loader can be written to communicate via a serial port, a CAN port, a

USB port, or even a network connection. A boot loader can also be designed

to debug a system, similar to the JTAG. This method of programming is excel-

lent for the developer who does not always have a device programmer or a

JTAG available. There are several application notes on writing boot loaders on

the Web. The main drawback of the boot loader is that it does require a com-

munication port and program code space on the microcontroller. Also, the boot

loader has to be programmed into the device before it can be used, usually by

one of the two previous ways.

The boot loader method is ideal for the developer who needs to quickly

program and test code. This method also allows the update of devices in the

field without the need of a programmer. All one needs is a computer with a port

that is compatible with the board. (The serial port is one of the most common-

ly used and discussed, but a CAN or USB boot loader can also be written.) This

method also consumes the largest amount of resources. Code space must be

reserved and protected, and external devices are needed to connect and com-

municate with the PC. Developing projects using this method really helps pro-

grammers test their code. For mature designs that do not change, the other two

methods are better suited.

AVR trainers

There are many popular trainers for the AVR chip. The vast majority of

them have a built-in ISP programmer. See the following website for more infor-

mation and support about the AVR trainers. For more information about how to use

an AVR trainer you can visit the www.MicroDigitalEd.com website.

Review Questions

1. Which method(s) to program the AVR microcontroller is/are the best for the

manufacturing of large-scale boards?

2. Which method(s) allow(s) for debugging a system?

3. Which method(s) would allow a small company to develop a prototype and test

an embedded system for a variety of customers?

4. True or false. The ATmega32 has Flash program ROM.

5. Which pin is used for reset in the ATmega32?

6. What is the status of the RESET pin when it is not activated?

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 643

The information about the trainer board can be found at:

www.MicroDigitalEd.com

SUMMARY

This chapter began by describing the function of each pin of the

ATmega32. A simple connection for ATmega32 was shown. Then, the fuse bytes

were discussed. We use fuse bytes to enable features such as BOD and clock

source and frequency. We also explained the Intel Hex file format and discussed

each part of a record in a hex file using an example. Then, we explained list files

in detail. The various ways of loading a hex file into a chip were discussed in the

last section. The connections to a ISP device were shown.

PROBLEMS

SECTION 8.2: AVR FUSE BITS

17. How many clock sources does the AVR have?

18. What fuse bits are used to select clock source?

19. Which clock source do you suggest if you need a variable clock source?

20. Which clock source do you suggest if you need to build a system with mini-

mum external hardware?

21. Which clock source do you suggest if you need a precise clock source?

22. How many fuse bytes are there in the AVR?

23. Which fuse bit is used to set the brown-out detection voltage for the

ATmega32?

24. Which fuse bit is used to enable and disable the brown-out detection voltage

for the ATmega32?

25. If the brown-out detection voltage is set to 4.0 V, what does it mean to the sys-

tem?

SECTION 8.3: EXPLAINING THE INTEL HEX FILE FOR AVR

26. True or false. The Hex option can be set in AVR Studio.

27. True or false. The extended Intel Hex file can be used for ROM sizes of less

than 64 kilobytes.

28. True or false. The extended Intel Hex file can be used for ROM sizes of more

than 64 kilobytes.

29. Analyze the six parts of line 3 of Figure 8-10.

30. Verify the checksum byte for line 3 of Figure 8-10. Verify also that the infor-

mation is not corrupted.

31. What is the difference between Intel Hex files and extended Intel Hex files?

SECTION 8.4: AVR PROGRAMMING AND TRAINER BOARD

32. True or false. To use a parallel programmer, we must remove the AVR chip

from the system and place it into the programmer.

33. True or false. ISP can work only with Flash chips.

CHAPTER 8: AVR HARDWARE CONNECTION 644

34. What are the different ways of loading a code into an AVR chip?

35. True or false. A boot loader is a kind of parallel programmer.

ANSWERS TO REVIEW QUESTIONS

SECTION 8.2: AVR FUSE BITS

1. 1/16 MHz = 62.5 ns

2. 16 bits = 2 bytes

3. False

4. 1, 8

5. BODEN

6. False

7. If you are using an external crystal with a frequency of more than 1 MHz you can set the

CKSEL3, CKSEL2, CKSEL1, SUT1, and SUT0 bits to 1 (not programmed) and clear CKOPT

to 0 (programmed).

8. 2.7 V, 4 V, BODLEVEL

9. False

SECTION 8.3: EXPLAINING THE INTEL HEX FILE FOR AVR

1. False

2. The number of bytes of data in the line

3. The checksum byte of all the bytes in that line

4. 00 means this is not the last line and that more lines of data follow.

5. 22H + 76H + 5FH + 8CH + 99H = 21CH. Dropping the carries we have 1CH and its 2’s com-

plement, which is E4H.

6. 22H + 76H + 5FH + 8CH + 99H + E4H = 300H. Dropping the carries, we have 00, which

means that the data is not corrupted.

SECTION 8.4: AVR PROGRAMMING AND TRAINER BOARD

1 Device burner

2. JTAG and boot loader

3. ISP

4. True

5. Pin 9

6. HIGH

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 645

SECTION 18.5: TWI PROGRAMMING WITH CHECKING

STATUS REGISTER

In this section we discuss TWI programming with checking the value of

status register. By checking the value of the status register you can monitor the

TWI module current state and operation. This helps you to detect an error when it

happens and resolve it at the same time. This is an advanced topic and used only

if you are connecting I2C to multiple masters.

As we mentioned before, there are four modes of operation: master trans-

mitter, master receiver, slave transmitter, and slave receiver. We will discuss each

mode separately because each mode has its own special status codes. For each

mode of operation there is a flowchart that shows the sequence of steps in each

mode and also a figure that summarizes most of the status values for each mode in

a single table.

Programming of the AVR TWI in master transmitter operat-

ing mode

Figure 18-18 shows the steps of programming the AVR TWI in master

transmitter mode. Here we focus on each step in more detail:

Initialization
To initialize the TWI module to operate in master operating mode, we

should do the following steps:

1. Set the TWI module clock frequency by setting the values of the TWBR reg-

ister and the TWPS bits in the TWSR register.

2. Enable the TWI module by setting the TWEN bit in the TWCR register to one.

Transmit START condition
To start data transfer in master operating mode, we must transmit a START

condition. To transmit a START condition we should do the following steps:

1. Set the TWEN, TWSTA, and TWINT bits of TWCR to one. Setting the TWEN

bit to one enables the TWI module. Setting the TWSTA bit to one tells the TWI

to initiate a START condition when the bus is free, and setting the TWINT bit

to one clears the interrupt flag to initiate operation of the TWI module to trans-

mit a START condition.

2. Poll the TWINT flag in the TWCR register to see when the START condition

is completely transmitted.

3. When the TWINT flag is set to one, check the value of the status register to see

if the START condition transmitted successfully. Notice that you have to mask

the two LSB bits of the status register to get ride of prescalers. If the status

value is 0x08 it indicates that the START condition has been transmitted suc-

cessfully.

Send SLA + W
To send SLA + W, after transmitting the START condition, we should do

the following steps:

1. Copy SLA + W to the TWDR.

647

CHAPTER 18: I2C PROTOCOL AND DS1307 RTC INTERFACING 648

Send START

Is Status
$8?

Send SLA+W

Yes

Is Status
$18?

Send Data

Yes

No

Is Status
$28?

Send STOP

No

YesWant to
 send more data?

No

Yes

No

Do error handling

Figure 18-18. Programming Steps of Master Transmitter Mode with Checking of Flags

2. Set the TWEN and TWINT bits of the TWCR register to one to start sending

the byte.

3. Poll the TWINT flag in the TWCR register to see when the byte is complete-

ly transmitted.

4. When the TWINT flag is set to one, you should check the value of the status

register to see if the SLA + W is transmitted successfully. If the status value is

0x18, it indicates that the SLA + W has been transmitted and ACK received

successfully.

Send data
To send data, after transmitting of SLA + W, we should do the following

steps:

1. Copy the byte of data to the TWDR.

2. Set the TWEN and TWINT bits of the TWCR register to one to start sending

the byte.

3. Poll the TWINT flag in the TWCR register to see whether the byte is complete-

ly transmitted.

4. When the TWINT flag is set to one, you should check the value of the status

register to see if the data has been transmitted successfully and the value of

ACK was as expected. Notice that NACK does not necessarily indicate an

error; it may indicate that no more data needs to be transmitted. If the status

value indicates that ACK is received (0x28) you can either transmit a STOP

condition or repeat this function (Send Data) to transmit more data; otherwise,

you should transmit a STOP condition.

Transmit STOP condition
To stop data transfer, we must transmit a STOP condition. This is done by

setting the TWEN, TWSTO, and TWINT bits of the TWCR register to one. Notice

that we cannot poll the TWINT flag after transmitting a STOP condition.

Figure 18-19 shows the meanings of the different values of the status reg-

ister and possible responses to each of them.

649

TWCR =(1<<TWEN)|(TWINT)|(TWSTO)

TWDR = DATA
TWCR =(1<<TWEN)|(TWINT)

Set values of TWBR register and prescaler bits
TWCR = 0x04

TWCR = (1<<TWEN)|(1<<TWINT)|(1<<TWSTA)Initialization:

Status Meaning

START condition has
been transmitted$8

Your Response Next Action By TWI module

TWDR = SLA+W
TWCR =(1<<TWEN)|(TWINT)

SLA + W will be transmitted
ACK or NACK will be returned

$18 SLA + W transmitted.
ACK has been received

TWDR = DATA
TWCR =(1<<TWEN)|(TWINT)

$30 TWCR =(1<<TWEN)|(TWINT)|(TWSTO)

STOP condition will be transmitted

$28
O
R

Data byte has been
transmitted. ACK has

been received.

DATA byte will be Transmitted
ACK or NACK will be returned

Data transmitted.
NACK received STOP condition will be transmitted

Enable TWI
Transmit START condition

$20 SLA + W transmitted.
NACK has been received TWCR =(1<<TWEN)|(TWINT)|(TWSTO)

DATA byte will be Transmitted
ACK or NACK will be returned

STOP condition will be transmitted

Figure 18-19. TWSR Register Values for Master Transmitter

Program 18-14 shows how a master writes 11110000 on a slave with

address 1101000. The program checks the value of the status register in each step

of the operation.

CHAPTER 18: I2C PROTOCOL AND DS1307 RTC INTERFACING 650

Program 18-14: Writing a Byte in Master Mode with Status Checking

.INCLUDE "M32DEF.INC"

LDI R21,HIGH(RAMEND);set up stack
OUT SPH,R21
LDI R21,LOW(RAMEND)
OUT SPL,R21

CALL I2C_INIT ;initialize TWI module
CALL I2C_START ;transmit START condition
CALL I2C_READ_STATUS ;read status register
CPI R26, 0x08 ;was START transmitted correctly?
BRNE ERROR ;else jump to error function
LDI R27, 0b11010000 ;SLA (11010000) + W(0)
CALL I2C_WRITE ;write R27 to I2C bus
CALL I2C_READ_STATUS ;read status register
CPI R26, 0x18 ;was SLA+W transmitted, ACK received?
BRNE ERROR ;else jump to error function
LDI R27, 0b11110000 ;data to be transmitted
CALL I2C_WRITE ;write R27 to I2C bus
CALL I2C_READ_STATUS ;read status register
CPI R26, 0x28 ;was data transmitted, ACK received?
BRNE ERROR ;else jump to error function
CALL I2C_STOP ;transmit STOP condition

HERE: RJMP HERE ;wait here forever
ERROR: ;you can type error handler here

LDI R21,0xFF
OUT DDRA,R21 ;Port A is output
OUT PORTA,R26 ;send error code to Port A
RJMP HERE ;some error code

;***
I2C_INIT:

LDI R21, 0
OUT TWSR,R21 ;set prescaler bits to zero
LDI R21, 0x48 ;move 0x48 into R21
OUT TWBR,R21 ;clock frequency is 50k (XTAL=50MHZ)
LDI R21, (1<<TWEN) ;move 0x04 into R21
OUT TWCR,R21 ;enable the TWI
RET

;***
I2C_START:

LDI R21, (1<<TWINT)|(1<<TWSTA)|(1<<TWEN)
OUT TWCR,R21 ;transmit a START condition

WAIT1:
IN R21, TWCR ;read control register into R21
SBRS R21, TWINT ;skip next line if TWINT is 1

Program 18-15 is the C version of Program 18-10 and shows how a mas-

ter writes 11110000 to a slave with address 1101000. The program checks the

value of the status register in each step of the operation.

651

Program 18-14: Writing a Byte in Master Mode with Status Checking (cont. from prev. page)

RJMP WAIT1 ;jump to WAIT1 if TWINT is 0
RET

;***
I2C_WRITE:

OUT TWDR, R27 ;move the byte into TWDR
LDI R21, (1<<TWINT)|(1<<TWEN)
OUT TWCR, R21 ;configure TWCR to send TWDR

WAIT3:
IN R21, TWCR ;read control register into R21
SBRS R21, TWINT ;skip next line if TWINT is 1
RJMP WAIT3 ;jump to WAIT3 if TWINT is 0
RET

;***
I2C_STOP:

LDI R21, (1<<TWINT)|(1<<TWSTO)|(1<<TWEN)
OUT TWCR, R21 ;transmit STOP condition
RET

;***
I2C_READ_STATUS:

IN R26, TWSR ;read status register into R21
ANDI R26, 0xF8 ;mask the prescaler bits
RET

Program 18-15: Writing a Byte in Master Mode with Status Checking in C

#include <avr/io.h>

void i2c_write(unsigned char data)
{

TWDR = data ;
TWCR = (1<< TWINT)|(1<<TWEN);
while ((TWCR & (1 <<TWINT)) == 0);

}
//**
void i2c_start(void)
{

TWCR = (1 << TWINT) | (1 << TWSTA) | (1 << TWEN);
while ((TWCR & (1 << TWINT)) == 0);

}
//**
void i2c_showError(unsigned char er)
{

DDRA = 0xFF;
PORTA = er;

}

CHAPTER 18: I2C PROTOCOL AND DS1307 RTC INTERFACING 652

Program 18-15: Writing a Byte in Master Mode with Status Checking in C (continued)

//**
unsigned char i2c_readStatus(void)
{

unsigned char i = 0;
i = TWSR & 0xF8;
return i;

}
//**
void i2c_stop()
{

TWCR = (1<< TWINT)|(1<<TWEN)|(1<<TWSTO);
}
//**
void i2c_init(void)
{

TWSR=0x00; //set prescaler bits to zero
TWBR=0x48; //SCL frequency is 50K for XTAL = 8M
TWCR=0x04; //enable the TWI module

}
//**

int main (void)
{

unsigned char s = 0;
i2c_init();
i2c_start(); //transmit START condition
s = i2c_readStatus();
if (s != 0x08)
{

i2c_showError(s);
return 0;

}
i2c_write(0b11010000); //transmit SLA + W(0)
s = i2c_readStatus();
if (s != 0x18)
{

i2c_showError(s);
return 0;

}
i2c_write(0b11110000); //transmit data
s = i2c_readStatus();
if (s != 0x28)
{

i2c_showError(s);
return 0;

}
i2c_stop(); //transmit STOP condition
while(1); //stay here forever
return 0;

}

Programming of the AVR TWI in master receiver operating

mode

The steps to program the AVR TWI to operate in master receiver mode are

somewhat similar to the steps for programming for master transmitter mode.

Figure 18-20 shows the steps for programming of the AVR TWI in master receiv-

er mode. Here we focus on each step in more detail:

Initialization
To initialize the TWI module to operate in master operating mode, we

should do the following steps:

1. Set the TWI module clock frequency by setting the values of the TWBR reg-

ister and the TWPS bits in the TWSR register.

2. Enable the TWI module by setting the TWEN bit in the TWCR register to one.

Transmit START condition
To start data transfer in master operating mode, we must transmit a START

condition. To transmit a START condition we should do the following steps:

1. Set the TWEN, TWSTA, and TWINT bits of TWCR to one. Setting the TWEN

bit to one enables the TWI module. Setting the TWSTA bit to one tells the TWI

module to initiate a START condition when the bus is free, and setting the

TWINT bit to one clears the interrupt flag to initiate operation of the TWI

module to transmit a START condition.

2. Poll the TWINT flag in the TWCR register to see when the START condition

is completely transmitted.

3. When the TWINT flag is set to one, check the value of the status register to see

if the START condition was successfully transmitted. Notice that you have to

mask the two LSB bits of the status register to get rid of prescalers. If the sta-

tus value is 0x08 it indicates that the START condition was successfully trans-

mitted.

Send SLA + R
To send SLA + R, after transmitting a START condition, we should do the

following steps:

1. Copy SLA + R to the TWDR.

2. Set the TWEN and TWINT bits of the TWCR register to one to start sending

the byte.

3. Poll the TWINT flag in the TWCR register to see whether the byte has com-

pletely transmitted.

4. When the TWINT flag is set to one, you should check the value of status reg-

ister to see if the SLA + R transmitted successfully. 0x40 means that the SLA

+ R transmitted and ACK was successfully received.

Receive data return NACK
If we want to receive only one byte of data, we should receive data and

return NACK by doing the following steps:

1. Set the TWEN and TWINT bits of the TWCR register to one to start receiving

a byte.

2. Poll the TWINT flag in the TWCR register to see whether a byte was com-

653

CHAPTER 18: I2C PROTOCOL AND DS1307 RTC INTERFACING 654

Send START

Is Status
$8?

Send SLA+R

Yes

Is Status
$40?

Read Data
Return ACK

Yes

No

Is Status
$50?

Send STOP

No

YesWant to
 read more

data?

No

Yes

No

Do error handling

 Want to
read only
one other

 byte?

YesNo

Read Data
Return NACK

Is Status
$58?

Yes

Figure 18-20. TWI Programming Steps of Master Receiver Mode with Checking of Flags

pletely received.

3. Copy the received byte from the TWDR.

4. When the TWINT flag is set to one, you should check the value of the status

register to see if the byte was received successfully. 0x58 means that a byte of

data was received and NACK returned successfully. After this step we should

transmit a STOP condition.

Receive data and return ACK
If we want to receive more than one byte of data, we should receive data

and return ACK by doing the following steps:

1. Set the TWEN, TWINT, and TWEA bits of the TWCR register to one to

receive a byte of data and return ACK.

2. Poll the TWINT flag in the TWCR register to see when a byte has been

received completely.

3. Copy the received byte from the TWDR.

4. When the TWINT flag is set to one, you should check the value of the status

register to see if the byte was received successfully. 0x50 means that a byte of

data was received and ACK returned successfully. Now you can repeat this

step to receive one or more bytes of data, or you can run the “Receive Data

Return NACK” function to receive only one other byte of data. Also, you can

transmit a STOP condition to finish receiving data.

Transmit STOP condition
To stop data transfer, we must transmit a STOP condition. This is done by

setting the TWEN, TWSTO, and TWINT bits of the TWCR register to one. Notice

that we cannot poll the TWINT flag after transmitting a STOP condition.

Figure 18-21 shows the meanings of different values of the status register

and possible responses to each of them in master receiver operating mode.

Program 18-15 shows how a master reads a byte from a slave with address

1101000 and displays the result on Port A. The program checks the value of the

655

TWCR = 0x04
TWCR = (1<<TWEN)|(1<<TWINT)|(1<<TWSTA)Initialization:

Status Meaning

START condition has
been transmitted$8

Your Response Next Action By TWI module

TWDR = SLA + R (1)
TWCR =(1<<TWEN)|(TWINT)

SLA + R will be transmitted
ACK or NACK will be returned

$40
SLA + R has been

transmitted. ACK has
been received

TWCR =(1<<TWEN)|(TWINT)|(TWEA)

TWCR =(1<<TWEN)|(TWINT)
OR

$48 TWCR =(1<<TWEN)|(TWINT)|(TWSTO) STOP condition will be transmitted

$50

DATA = TWDR
TWCR =(1<<TWEN)|(TWINT)|(TWEA)

DATA = TWDR
TWCR =(1<<TWEN)|(TWINT)

OR
Data byte has been
received. ACK has

been returned.

DATA byte will be received
ACK will be returned

DATA byte will be received
NACK will be returned

SLA + R transmitted.
NACK received

Another DATA byte will be received
ACK will be returned

Another DATA byte will be received
NACK will be returned

$58 Data byte received.
NACK ACK returned.

DATA = TWDR
TWCR =(1<<TWEN)|(TWINT)|(TWSTO) STOP condition will be transmitted

Enable TWI
Transmit START condition.

Figure 18-21. TWSR Register Values for Master Receiver Operating Mode

status register in each step of the operation.

CHAPTER 18: I2C PROTOCOL AND DS1307 RTC INTERFACING 656

Program 18-16: TWI Reading a Byte in Master Mode with Status Checking

.INCLUDE "M32DEF.INC"
LDI R21,HIGH(RAMEND);set up stack
OUT SPH,R21
LDI R21,LOW(RAMEND)
OUT SPL,R21
LDI R21,0xFF
OUT DDRA,R21 ;Port A is output
CALL I2C_INIT ;initialize TWI module
CALL I2C_START ;transmit START condition
CALL I2C_READ_STATUS ;read status register
CPI R26, 0x08 ;was start transmitted correctly?
BRNE ERROR ;else jump to error function
LDI R27, 0b11010001 ;SLA (11010000) + R(1)
CALL I2C_WRITE ;write R27 to I2C bus
CALL I2C_READ_STATUS ;read status register
CPI R26, 0x40 ;was SLA+R transmitted, ACK received?
BRNE ERROR ;else jump to error function
CALL I2C_READ
CALL I2C_READ_STATUS ;read status register
CPI R26, 0x58 ;was data transmitted, ACK received?
BRNE ERROR ;else jump to error function
OUT PORTA,R27
CALL I2C_STOP ;transmit STOP condition

HERE: RJMP HERE ;wait here forever
ERROR:RJMP HERE ;you can type error handler here
;***
I2C_INIT:

LDI R21, 0
OUT TWSR,R21 ;set prescaler bits to zero
LDI R21, 0x48 ;move 0x48 into R21
OUT TWBR,R21 ;SCL freq. is 50k for 8 MHz XTAL
LDI R21, (1<<TWEN) ;move 0x04 into R21
OUT TWCR,R21 ;enable the TWI
RET

;***
I2C_START:

LDI R21, (1<<TWINT)|(1<<TWSTA)|(1<<TWEN)
OUT TWCR,R21 ;transmit a START condition

WAIT1:
IN R21, TWCR ;read control register into R21
SBRS R21, TWINT ;skip next line if TWINT is 1
RJMP WAIT1 ;jump to WAIT1 if TWINT is 0
RET

;***
I2C_WRITE:

OUT TWDR, R27 ;move the byte into TWDR
LDI R21, (1<<TWINT)|(1<<TWEN)
OUT TWCR, R21 ;configure TWCR to send TWDR

Program 18-17 is the C version of Program 18-16.

657

Program 18-16: TWI Reading a Byte in Master Mode with Status Checking (continued)

W3: IN R21, TWCR ;read control register into R21
SBRS R21, TWINT ;skip next line if TWINT is 1
RJMP W3 ;jump to W3 if TWINT is 0
RET

;***
I2C_READ:

LDI R21,(1<<TWINT)|(1<<TWEN)
OUT TWCR, R21

W2: IN R21, TWCR ;read control register into R21
SBRS R21, TWINT ;skip next line if TWINT is 1
RJMP W2 ;jump to W2 if TWINT is 0
IN R27, TWDR ;read received data into R21
RET

;***
I2C_STOP:

LDI R21, (1<<TWINT)|(1<<TWSTO)|(1<<TWEN)
OUT TWCR, R21 ;transmit STOP condition
RET

;***
I2C_READ_STATUS:

IN R26, TWSR ;read status register into R21
ANDI R26, 0xF8 ;mask the prescaler bits
RET

Program 18-17: TWI Reading a Byte in Master Mode with Status Checking in C

#include <avr/io.h>
void i2c_showError(unsigned char er)
{

DDRA = 0xFF;
PORTA = er;

} //**
unsigned char i2c_readStatus(void)
{

unsigned char i = 0;
i = TWSR & 0xF8;
return i;

} //**
void i2c_init(void)
{

TWSR=0x00; //set prescaler bits to zero
TWBR=0x48; //SCL frequency is 50K for XTAL=8M
TWCR=0x04; //enable the TWI module

} //**
void i2c_start(void)
{

TWCR = (1 << TWINT) | (1 << TWSTA) | (1 << TWEN);
while ((TWCR & (1 << TWINT)) == 0);

} //**

CHAPTER 18: I2C PROTOCOL AND DS1307 RTC INTERFACING 658

Program 18-17: TWI Reading a Byte in Master Mode with Status Checking in C (continued)

void i2c_write(unsigned char data)
{

TWDR = data;
TWCR = (1<< TWINT)|(1<<TWEN);
while ((TWCR & (1 <<TWINT)) == 0);

} //**
unsigned char i2c_read(unsigned char isLast)
{

if (isLast == 0) //if want to read more than 1 byte
TWCR = (1<< TWINT)|(1<<TWEN)|(1<<TWEA);

else //if want to read only one byte
TWCR = (1<< TWINT)|(1<<TWEN);

while ((TWCR & (1 <<TWINT)) == 0);
return TWDR;

} //**
void i2c_stop()
{

TWCR = (1<< TWINT)|(1<<TWEN)|(1<<TWSTO);
} //**
int main (void)
{

DDRA = 0xFF; //Port A is output
unsigned char s,i;
i2c_init();
i2c_start(); //transmit START condition
s = i2c_readStatus();
if (s != 0x08)
{

i2c_showError(s);
return 0;

}
i2c_write(0b11010001); //transmit SLA + R(1)
s = i2c_readStatus();
if (s != 0x40)
{

i2c_showError(s);
return 0;

}
i=i2c_read(1);
s = i2c_readStatus();
if (s != 0x58)
{

i2c_showError(s);
return 0;

}
PORTA= i; //show the byte on Port A
i2c_stop(); //transmit STOP condition
while(1); //stay here forever
return 0;

}

Programming of the AVR TWI in slave transmitter operat-

ing mode

Before programming the AVR to operate in slave mode, there are some

points that we must pay attention to. As we mentioned before, the slave device,

regardless of whether it is receiver or transmitter, does not generate the clock

pulse. To control the clock rate and let the software to complete its job, the slave

device uses clock stretching. The slave device does not start or stop a transmission;

it listens to the bus and replies when it is addressed by a master device.

In the slave transmitter mode, one or more bytes of data are transmitted

from the slave to a master receiver. The following steps show the transmission of

one or more bytes of data in slave transmitter mode.

Initialization
To initialize the TWI module to operate in slave operating mode, we should

do the following steps:

1. Set the TWAR. As we mentioned before, the upper seven bits of TWAR are the

slave address. It is the address to which the TWI will respond when addressed

by a master. The eighth bit is TWGCE. If you set this bit to one, the TWI will

respond to the general call address ($00); otherwise, it will ignore the general

call address.

2. Enable the TWI module by setting the TWEN bit in the TWCR register to one.

3. Set the TWEN and TWEA bits of TWCR to one to enable the TWI and

acknowledge generation.

Wait to be addressed for read
In slave mode, the TWI hardware waits until it is addressed by its own

slave address (or the general call address, if enabled) followed by the R/W bit, and

then sets the TWINT flag and updates the status register. If the R/W bit is zero

(write), it means that the slave should operate in slave receiver mode; otherwise,

the slave should operate in slave transmitter mode. Notice that you can not direct-

ly read the value of the R/W bit. Instead you should read the value of the status

register. Next, we will show how to wait to be addressed by a master device.

1. Poll the TWINT flag in the TWCR register to see whether a byte has received

completely.

2. When the TWINT flag is set to one, you should check the value of the status

register to see if the SLA + R is received successfully. $A8 means that the SLA

+ R was received and ACK returned successfully.

Now if you want to transmit only one byte of data you should run the

“Send Data and Wait for NACK” function. Otherwise, if you want to send more

than one byte of data you should run the “Send Data and Wait for ACK” function.

Next we will examine each function in detail.

Send data and wait for ACK
In slave transmitter mode, if you want to transmit more than one byte of

data you should send a byte of data and wait for ACK by doing the following steps:

1. Copy the byte of data to the TWDR.

2. Set the TWEN, TWINT, and TWEA bits of the TWCR register to one to send

659

CHAPTER 18: I2C PROTOCOL AND DS1307 RTC INTERFACING 660

Wait to be
addressed

Is Status
$A8?

Yes

Send data
Wait for ACK

Is Status
$B8?

No

YesWant to
 send more

data?

No

Yes

NoDo error handling

Want to
send only
one other

 byte?

YesNo

Send Data
Wait for NACK

Is Status
$C8 or $C0?

Yes

1

1

Is TWIF one?

Yes

No

Figure 18-22. TWI Programming Steps of Slave Transmitter Mode with Checking of Flags

a byte of data and wait for ACK.

3. Poll the TWINT flag in the TWCR register to see whether the byte transmitted

completely.

4. When the TWINT flag is set to one, you should check the value of the status

register to see if the data transmitted successfully and the value of ACK was as

expected. Notice that NACK does not necessarily indicate an error; it may

indicate that no more data needs to be transmitted. If the status value indicates

that NACK was received ($0C), it means that the current transmission section

is finished and you should start from the beginning. If the status value indicates

that ACK was received (0xC8), you can either repeat this function to transmit

more than one byte of data or you can run the “Send Data and Wait for NACK”

function to transmit only one byte of data.

Send data and wait for NACK
In slave transmitter mode, to transmit another byte of data you should send

a byte of data and wait for NACK by doing the following steps:

1. Copy the byte of data to the TWDR.

2. Set the TWEN and TWINT bits of the TWCR register to one to send a byte and

wait for NACK.

3. Poll the TWINT flag in the TWCR register to see when the byte has been

transmitted completely.

4. When the TWINT flag is set to one, you should check the value of the status

register. If the status value is $0C, it indicates that NACK has been received.

If the value of status register is $C8, it means that ACK was received. In both

cases you have to go to the “Wait to be addressed” mode because you have not

set the TWEA bit in step 2 saying that you want to transmit only one other byte

of data.

Notice that in most applications you can use the “Send Data and Wait for

ACK” function instead of the “Send Data and Wait for NACK” function. We rec-

661

TWCR = 0x04
TWAR = the address of Slave

TWCR = (1<<TWEN)|(1<<TWIF)|(1<<TWEA)
Initialization:

Status Meaning

Own SLA+R received
ACK returned$A8

Your Response Next Action By TWI module

 TWDR = DATA
TWCR =(1<<TWEN)|(TWINT)|(TWEA)

DATA byte will be transmitted
 Wait for NACK

 TWDR = DATA
TWCR =(1<<TWEN)|(TWINT)

DATA byte will be transmitted
Wait for ACK

$B8
Data has been

transmitted
ACK received

OR

$C0
TWCR =(1<<TWEN)|(TWINT)|(TWEA) Start from beginning and wait to be

addressed

TWCR =(1<<TWEN)|(TWINT) Start from beginning but do not
respond to Its address (Sleep)

$C8

Data transmitted
ACK received but you
wanted NACK (TWEA

was 0 in last command)

OR

TWCR =(1<<TWEN)|(TWINT)|(TWEA)

TWCR =(1<<TWEN)|(TWINT)
OR

Data has been
transmitted

NACK received

Start from beginning and wait to be
addressed

Start from beginning but do not
respond to Its address (Sleep)

Enable TWI
Set the slave address

Enable Acknowledging by slave

 TWDR = DATA
TWCR =(1<<TWEN)|(TWINT)|(TWEA)

DATA byte will be transmitted
 Wait for NACK

 TWDR = DATA
TWCR =(1<<TWEN)|(TWINT)

DATA byte will be transmitted
Wait for ACK

OR

Figure 18-23. TWSR Register Values for Slave Transmitter Operating Mode

ommend that you use the first one.

Program 18-18 shows how to initialize the TWI module to operate in

slave transmitter mode. In this program the TWI module listens to the bus and

waits to be addressed by a master device. Then it transmits the letter ‘G’ to the

master device.

CHAPTER 18: I2C PROTOCOL AND DS1307 RTC INTERFACING 662

Program 18-18: Writing a Byte in Slave Mode with Status Checking

.INCLUDE "M32DEF.INC"

LDI R21,HIGH(RAMEND);set up stack
OUT SPH,R21
LDI R21,LOW(RAMEND)
OUT SPL,R21

CALL I2C_INIT ;initialize the TWI module as slave
CALL I2C_LISTEN ;listen to the bus to be addressed
CALL I2C_READ_STATUS ;read the status value into R26
CPI R26, 0xA8 ;addressed as slave tranmitter ?
BRNE ERROR ;else jump to error function
LDI R27, 'G' ;load 'G' into R21
CALL I2C_WRITE
CALL I2C_READ_STATUS ;read the status value into R26
CPI R21, 0xc0 ;was data transmitted, NACK received?
BRNE ERROR ;else jump to error function

HERE:
RJMP HERE ;wait here forever

ERROR: ;you can type error handler here
LDI R21,0xFF
OUT DDRA,R21 ;Port A is output
OUT PORTA,R26
RJMP HERE

;***

I2C_INIT:
LDI R21, 0x10 ;load 00010000 into R21
OUT TWAR,R21 ;set address register
LDI R21, (1<<TWEN) ;move 0x04 into R21
OUT TWCR,R21 ;enable the TWI
LDI R21, (1<<TWINT)|(1<<TWEN)|(1<<TWEA)
OUT TWCR,R21 ;enable TWI and ACK(can't be ignored)
RET

;***

I2C_LISTEN:
W1:

IN R21, TWCR ;read control register into R21
SBRS R21, TWINT ;skip next intruction if TWINT is 1
RJMP W1 ;jump to W1 if TWINT is 0
RET

Program 18-19 is the C version of Program 18-18. Program 18-19 shows

how to initialize the TWI module to operate in slave transmitter mode. In Program

18-19 the TWI module listens to the bus and waits to be addressed by a master

device. Then it transmits the letter ‘G’ to the master device.

663

Program 18-18: Writing a Byte in Slave Mode with Status Checking (cont. from prev. page)

;***
I2C_WRITE:

OUT TWDR, R27 ;move R21 to TWDR
LDI R21, (1<<TWINT)|(1<<TWEN)
OUT TWCR, R21 ;configure TWCR to send TWDR

W2:
IN R21, TWCR ;read control register into R21
SBRS R21, TWINT ;skip next intruction if TWINT is 1
RJMP W2 ;jump to W2 if TWINT is 0
RET

;***
I2C_READ_STATUS:

IN R26, TWSR ;read status register into R21
ANDI R26, 0xF8 ;mask the prescaler bits
RET

Program 18-19: Writing a Byte in Slave Mode with Status Checking in C

#include <avr/io.h> //standard AVR header

void i2c_showError(unsigned char er)
{

DDRA = 0xFF;
PORTA = er;

} //**

unsigned char i2c_readStatus(void)
{

unsigned char i = 0;
i = TWSR & 0xF8;
return i;

} //**

void i2c_initSlave(unsigned char slaveAddress)
{

TWCR = 0x04; //enable TWI module
TWAR = slaveAddress; //set the slave address
TWCR = (1<<TWINT)|(1<<TWEN)|(1<<TWEA);//init TWI module

}

CHAPTER 18: I2C PROTOCOL AND DS1307 RTC INTERFACING 664

Program 18-19: Writing a Byte in Slave Mode with Status Checking in C (continued)

//***

void i2c_send(unsigned char data)
{

TWDR = data; //copy data to TWDR
TWCR = (1<< TWINT)|(1<<TWEN); //start transmission
while ((TWCR & (1 <<TWINT))==0); //wait to complete

}

//***

void i2c_listen()
{

while ((TWCR & (1 <<TWINT))==0); //wait to be addressed
}

//***

int main (void)
{

i2c_initSlave(0x10); //init TWI module as
//slave with address
//0b0001000 and do not
//accept general call

i2c_listen(); //listen to be addressed

unsigned char s,i;
s = i2c_readStatus();
if (s != 0xA8)
{

i2c_showError(s);
return 0;

}
i2c_send('G');
s = i2c_readStatus();
if (s != 0xC0)
{

i2c_showError(s);
return 0;

}

while(1); //stay here forever
return 0;

}

Programming of the AVR TWI in slave receiver operating

mode

In the slave receiver mode, one or more bytes of data are transmitted from

a master transmitter to the slave receiver. The following steps show the functions

needed to receive one or more bytes of data in slave receiver mode.

Initialization
To initialize the TWI module to operate in slave operating mode, we should

do the following steps:

1. Set the TWAR. As we mentioned before, the upper seven bits of TWAR are the

slave address. It is the address to which the Two-wire Serial Interface will

respond when addressed by a master. The eighth bit is TWGCE. If you set this

bit to one, the TWI will respond to the general call address ($00); otherwise, it

will ignore the general call address.

2. Enable the TWI module by setting the TWEN bit in the TWCR register to one.

3. Set the TWEN and TWEA bits of TWCR to one to enable the TWI and

acknowledge generation.

Wait to be addressed for write
In slave mode, we should do the following steps to wait to be addressed by

a master for a write operation.

1. Poll the TWINT flag in the TWCR register to see when a byte has been

received completely.

2. When the TWINT flag is set to one, we should check the value of the status reg-

ister to see if the SLA + W was received successfully. $60 or $70 (for general

call) means that the SLA + W was received and ACK returned successfully.

Now if you want to receive only one byte of data you should run the

“Receive Data and Return NACK” function. Otherwise, if you want to send more

than one byte of data you should run the “Receive Data and Return ACK” func-

tion. Next, we will examine each function in detail.

Receive data and Return ACK
In slave receiver mode, if you want to receive more than one byte of data

you should receive a byte of data and return ACK by doing the following steps:

1. Set the TWEN, TWINT, and TWEA bits of the TWCR register to one to

receive a byte and return ACK.

2. Poll the TWINT flag in the TWCR register to see when a byte has been

received completely.

3. When the TWINT flag is set to one, you should check the value of the status

register to see if the data was received successfully and ACK was returned. If

the status value is $80 or $90 (for general call), it means that a byte of data has

been received and ACK was returned. You can either repeat this function to

receive more than one bytes of data or you can run the “Receive Data and

Return NACK” function to receive only one byte of data.

4. Copy the received byte from the TWDR.

665

CHAPTER 18: I2C PROTOCOL AND DS1307 RTC INTERFACING 666

Wait to be
addressed

Is Status
$60 or $70?

Yes

No

Do error handling

1

Is TWIF one?

Yes

No

Want to
read only
one other

byte

Read Data
Return NACK

Read Data
Return ACK

Is Status
$80 or $90?

Want to
send more

data?

Yes

Yes

No Yes

Is Status
$88 or $98?

No
No

Yes

1

2

2

Figure 18-24. TWI Programming Steps of Slave Receiver Mode with Checking of Flags

Receive data and return NACK
In slave receiver mode, if you want to receive one byte of data you should

receive the byte of data and return NACK by doing the following steps:

1. Set the TWEN and TWINT bits of the TWCR register to one to receive a byte

and return NACK.

2. Poll the TWINT flag in the TWCR register to see when a byte has been

received completely.

3. When the TWINT flag is set to one, you should check the value of the status

register to see if the data was received successfully and NACK was returned.

If the status value is $88 or $98 (for general call), it means that a byte of data

was received and NACK was returned.

4. Copy the received byte from the TWDR.

Program 18-20 shows how to initialize the TWI module to operate in slave

receiver mode. This program receives a byte of data and displays it on Port A after

being addressed by a master device.

667

Status Meaning

Own SLA+W received
ACK returned

$60
($70 for
General

Call)

Your Response Next Action By TWI module

TWCR =(1<<TWEN)|(TWINT)|(TWEA)

TWCR =(1<<TWEN)|(TWINT)

DATA byte will be received
ACK will be returned

$80
($90 for
General

Call)

Data has been received
ACK returned

OR

DATA = TWDR
TWCR =(1<<TWEN)|(TWINT)|(TWEA)

DATA = TWDR
TWCR =(1<<TWEN)|(TWINT)

OR

$88
($98 for
General

Call)

DATA = TWDR
TWCR =(1<<TWEN)|(TWINT)|(TWEA)

Start from beginning and wait to be
addressed

DATA = TWDR
TWCR =(1<<TWEN)|(TWINT)

Start from beginning but do not
respond to Its address (Sleep)

OR

DATA byte will be received
NACK will be returned

Data has been received
NACK returned

$A0
TWCR =(1<<TWEN)|(TWINT)|(TWEA) Start from beginning and wait to be

addressed

TWCR =(1<<TWEN)|(TWINT) Start from beginning but do not
respond to Its address (Sleep)

OR
STOP or REPEATED
START condition has

been received

DATA byte will be received
ACK will be returned

DATA byte will be received
NACK will be returned

TWAR = the address of Slave
TWCR = 0x04

TWCR = (1<<TWEN)|(1<<TWIF)|(1<<TWEA)
Initialization:

Enable TWI
Set the slave address

Enable Acknowledging by slave

Figure 18-25. TWSR Register Values for Slave Receiver Operating Mode

Program 18-20: Reading a Byte in Slave Mode with Status Checking

.INCLUDE "M32DEF.INC"

LDI R21,HIGH(RAMEND);set up stack
OUT SPH,R21
LDI R21,LOW(RAMEND)
OUT SPL,R21

LDI R21, 0xFF ;move 0xFF into R21
OUT DDRA,R21 ;set PORTA as ouput

CALL I2C_INIT ;initialize the TWI module as slave

CHAPTER 18: I2C PROTOCOL AND DS1307 RTC INTERFACING 668

Program 18-20: Reading a Byte in Slave Mode with Status Checking (cont. from prev. page)

CALL I2C_LISTEN ;listen to the bus to be addressed
CALL I2C_READ_STATUS
CPI R26, 0x60 ;addressed as slave receiver?
BRNE ERROR ;else jump to error function
CALL I2C_READ ;read a byte and copy it to R27
CALL I2C_READ_STATUS
CPI R26, 0x80 ;addressed as slave receiver?
BRNE ERROR ;else jump to error function
OUT PORTA,R27 ;copy R27 to PORTA

HERE:
RJMP HERE ;wait here forever

ERROR:
RJMP HERE

;***

I2C_INIT:
LDI R21, 0x10 ;load 00010000 into R21
OUT TWAR,R21 ;set address register
LDI R21, (1<<TWEN) ;move 0x04 into R21
OUT TWCR,R21 ;enable the TWI
LDI R21, (1<<TWINT)|(1<<TWEN)|(1<<TWEA)
OUT TWCR,R21 ;enable TWI and ACK(can't be ignored)
RET

;***

I2C_LISTEN:
W1:

IN R21, TWCR ;read control register into R21
SBRS R21, TWINT ;skip next intruction if TWINT is 1
RJMP W1 ;jump to W1 if TWINT is 0
RET

;***

I2C_READ:
LDI R21, (1<<TWINT)|(1<<TWEN)|(1<<TWEA)
OUT TWCR, R21 ;configure TWCR to receive TWDR

W2: IN R21, TWCR ;read control register into R21
SBRS R21, TWINT ;skip next line if TWINT is 1
RJMP W2 ;jump to W2 if TWINT is 0
IN R27,TWDR ;move received data into R21
RET

;***
I2C_READ_STATUS:

IN R26, TWSR ;read status register into R21
ANDI R26, 0xF8 ;mask the prescaler bits
RET

Program 18-21 is the C version of Program 18-20. This program receives

a byte of data and displays it on Port A after being addressed by a master device.

669

Program 18-21: Reading a Byte in Slave Mode with Status Checking in C

#include <avr/io.h> //standard AVR header

void i2c_showError(unsigned char er)
{

DDRA = 0xFF;
PORTA = er;

}

//**

unsigned char i2c_readStatus(void)
{

unsigned char i = 0;
i = TWSR & 0xF8;
return i;

}

//**

void i2c_initSlave(unsigned char slaveAddress)
{

TWCR = 0x04; //enable TWI module
TWAR = slaveAddress; //set the slave address
TWCR = (1<<TWINT)|(1<<TWEN)|(1<<TWEA);//init. TWI module

}
//***

unsigned char i2c_receive(unsigned char isLast)
{

if (isLast == 0) //if want to read more than 1 byte
TWCR = (1<< TWINT)|(1<<TWEN)|(1<<TWEA);

else //if want to read only one byte
TWCR = (1<< TWINT)|(1<<TWEN);

while ((TWCR & (1 <<TWINT))==0); //wait to complete
return (TWDR);

}

//***

void i2c_listen()
{

while ((TWCR & (1 <<TWINT))==0); //wait to be addressed
}

//***

Review Questions
1. True or false. We can ignore checking the status register when there is more

than one master on the bus.

2. True or false. We can enable the TWI module and generate aSTART condition

at the same time.

3. How can a slave device read the value of the R/W bit when it is being

addressed by a master device?

4. True or false. We can check the status register to see if a STOP condition has

been transmitted successfully.

5. What is the value of the status register when SLA + W is received and ACK

has been returned?

6. What is the value of the status register when SLA + W is transmitted and ACK

has been received?

7. What is the value of the status register when SLA + R is received and ACK has

been returned?

8. What is the value of the status register when SLA + W is transmitted and ACK

has been received?

CHAPTER 18: I2C PROTOCOL AND DS1307 RTC INTERFACING 670

Program 18-21: Reading a Byte in Slave Mode with Status Checking in C (continued)

int main (void)
{

DDRA = 0xFF;
i2c_initSlave(0x10); //init. TWI module as

//slave with address
//0b0001000 and do not
//accept general call

i2c_listen(); //listen to be addressed

unsigned char s,i;
s = i2c_readStatus();
if (s != 0x60)
{

i2c_showError(s);
return 0;

}
i=i2c_receive(0);
s = i2c_readStatus();
if (s != 0x80)
{

i2c_showError(s);
return 0;

}
PORTA = i;
while(1); //stay here forever
return 0;

}

671

OVERVIEW

In this appendix, we describe each intruction of the

ATmega32. In many cases, a simple code example is given to

clarify the instruction.

At the end there is a table that shows all the registers and

their bits.

APPENDIX A

AVR INSTRUCTIONS

EXPLAINED

Instructions are Copyright of Atmel Semiconductor, Inc. 2009, Used by Permission

SECTION A.1: INSTRUCTION SUMMARY

DATA TRANSFER INSTRUCTIONS

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 672

Mnemonics Operands Description Operation Flags

MOV Rd, Rr Move Between Registers Rd ← Rr None

MOVW Rd, Rr Copy Register Word Rd + 1:Rd ← Rr + 1:Rr None

LDI Rd, K Load Immediate Rd ← K None

LD Rd, X Load Indirect Rd ← (X) None

LD Rd, X+ Load Indirect and Post-Inc. Rd ← (X), X ← X + 1 None

LD Rd, –X Load Indirect and Pre-Dec. X ← X – 1, Rd ← (X) None

LD Rd, Y Load Indirect Rd ← (Y) None

LD Rd, Y+ Load Indirect and Post-Inc. Rd ← (Y), Y ← Y + 1 None

LD Rd, –Y Load Indirect and Pre-Dec. Y ← Y – 1, Rd ← (Y) None

LDD Rd,Y+q Load Indirect with Displacement Rd ← (Y + q) None

LD Rd, Z Load Indirect Rd ← (Z) None

LD Rd, Z+ Load Indirect and Post-Inc. Rd ← (Z), Z ← Z+1 None

LD Rd, –Z Load Indirect and Pre-Dec. Z ← Z – 1, Rd ← (Z) None

LDD Rd, Z + q Load Indirect with Displacement Rd ← (Z + q) None

LDS Rd, k Load Direct from SRAM Rd ← (k) None

ST X, Rr Store Indirect (X) ← Rr None

ST X+, Rr Store Indirect and Post-Inc. (X) ← Rr, X ← X + 1 None

ST –X, Rr Store Indirect and Pre-Dec. X ← X – 1, (X) ← Rr None

ST Y, Rr Store Indirect (Y) ← Rr None

ST Y+, Rr Store Indirect and Post-Inc. (Y) ← Rr, Y ← Y + 1 None

ST –Y, Rr Store Indirect and Pre-Dec. Y ← Y – 1, (Y) ← Rr None

STD Y + q, Rr Store Indirect with Displacement (Y + q) ← Rr None

ST Z, Rr Store Indirect (Z) ← Rr None

ST Z+, Rr Store Indirect and Post-Inc. (Z) ← Rr, Z ← Z + 1 None

ST –Z, Rr Store Indirect and Pre-Dec. Z ← Z – 1, (Z) ← Rr None

STD Z + q, Rr Store Indirect with Displacement (Z + q) ← Rr None

STS k, Rr Store Direct to SRAM (k) ← Rr None

LPM Load Program Memory R0 ← (Z) None

LPM Rd, Z Load Program Memory Rd ← (Z) None

LPM Rd, Z+ Load Program Memory and Post-Inc. Rd ← (Z), Z ← Z+1 None

SPM Store Program Memory (Z) ← R1:R0 None

IN Rd, P In Port Rd ← P None

OUT P, Rr Out Port P ← Rr None

PUSH Rr Push Register on Stack Stack ← Rr None

POP Rd Pop Register from Stack Rd ← Stack None

BRANCH INSTRUCTIONS

APPENDIX A: AVR INSTRUCTIONS EXPLAINED 673

Mnem. Oper. Description Operation Flags

RJMP k Relative Jump PC ← PC + k + 1 None

IJMP Indirect Jump to (Z) PC ← Z None

JMP k Direct Jump PC ← k None

RCALL k Relative Subroutine Call PC ← PC + k + 1 None

ICALL Indirect Call to (Z) PC ← Z None

CALL k Direct Subroutine Call PC ← k None

RET Subroutine Return PC ← Stack None

RETI Interrupt Return PC ← Stack I

CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None

CP Rd,Rr Compare Rd − Rr Z,N,V,C,H

CPC Rd,Rr Compare with Carry Rd − Rr − C Z,N,V,C,H

CPI Rd,K Compare Register with Immediate Rd − K Z,N,V,C,H

SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None

SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None

SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None

SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None

BRBS s, k Branch if Status Flag Set if (SREG(s)=1) then PC←PC+k+1 None

BRBC s, k Branch if Status Flag Cleared if (SREG(s)=0) then PC←PC+k+1 None

BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None

BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None

BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None

BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None

BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None

BRLO k Branch if Lower if (C = 1) then PC ← PC + k + 1 None

BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1 None

BRPL k Branch if Plus if (N = 0) then PC ← PC + k + 1 None

BRGE k Branch if Greater or Equal,Signed if (N and V= 0) then PC←PC + k +1 None

BRLT k Branch if Less Than Zero, Signed if (N and V= 1) then PC←PC + k +1 None

BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None

BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None

BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None

BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None

BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None

BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None

BRIE k Branch if Interrupt Enabled if (I = 1) then PC ← PC + k + 1 None

BRID k Branch if Interrupt Disabled if (I = 0) then PC ← PC + k + 1 None

BIT AND BIT-TEST INSTRUCTIONS

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 674

Mnem. Operan. Description Operation Flags

SBI P, b Set Bit in I/O Register I/O(P, b) ← 1 None

CBI P, b Clear Bit in I/O Register I/O(P, b) ← 0 None

LSL Rd Logical Shift Left
Rd(n + 1) ← Rd(n),
Rd(0) ← 0 Z,C,N,V

LSR Rd Logical Shift Right
Rd(n)←Rd(n+1),
Rd(7)←0 Z,C,N,V

ROL Rd Rotate Left Through Carry

Rd(0)←C,
Rd(n+1)←Rd(n),
C←Rd(7) Z,C,N,V

ROR Rd Rotate Right Through Carry

Rd(7) ← C,
Rd(n) ← Rd(n + 1),
C ← Rd(0) Z,C,N,V

ASR Rd Arithmetic Shift Right
Rd(n) ← Rd(n + 1),
n = 0..6 Z,C,N,V

SWAP Rd Swap Nibbles
Rd(3..0) ← Rd(7..4),
Rd(7..4) ← Rd(3..0) None

BSET s Flag Set SREG(s) ← 1 SREG(s)

BCLR s Flag Clear SREG(s) ← 0 SREG(s)

BST Rr, b Bit Store from Register to T T ← Rr(b) T

BLD Rd, b Bit load from T to Register Rd(b) ← T None

SEC Set Carry C ← 1 C

CLC Clear Carry C ← 0 C

SEN Set Negative Flag N ←1 N

CLN Clear Negative Flag N ← 0 N

SEZ Set Zero Flag Z ←1 Z

CLZ Clear Zero Flag Z ← 0 Z

SEI Global Interrupt Enable I ← 1 I

CLI Global Interrupt Disable I ← 0 I

SES Set Signed Test Flag S ← 1 S

CLS Clear Signed Test Flag S ← 0 S

SEV Set Two’s Complement Overflow V ← 1 V

CLV Clear Two’s Complement Overflow V ← 0 V

SET Set T in SREG T ← 1 T

CLT Clear T in SREG T ← 0 T

SEH Set Half Carry Flag in SREG H ←1 H

CLH Clear Half Carry Flag in SREG H ← 0 H

ARITHMETIC AND LOGIC INSTRUCTIONS

MCU CONTROL INSTRUCTIONS

APPENDIX A: AVR INSTRUCTIONS EXPLAINED 675

Mnem. Operands Description Operation Flags

ADD Rd, Rr Add two Registers Rd ← Rd + Rr Z,C,N,V,H

ADC Rd, Rr Add with Carry two Registers Rd ← Rd + Rr + C Z,C,N,V,H

ADIW Rdl, K Add Immediate to Word Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S

SUB Rd, Rr Subtract two Registers Rd ← Rd – Rr Z,C,N,V,H

SUBI Rd, K Subtract Constant from Register Rd ← Rd – K Z,C,N,V,H

SBC Rd, Rr Subtract with Carry two Registers Rd ← Rd – Rr – C Z,C,N,V,H

SBCI Rd, K Subtract with Carry Constant from Reg. Rd ← Rd – K – C Z,C,N,V,H

SBIW Rdl, K Subtract Immediate from Word Rdh:Rdl ← Rdh:Rdl – K Z,C,N,V,S

AND Rd, Rr Logical AND Registers Rd ← Rd • Rr Z,N,V

ANDI Rd, K Logical AND Register and Constant Rd ← Rd • K Z,N,V

OR Rd, Rr Logical OR Registers Rd ← Rd v Rr Z,N,V

ORI Rd, K Logical OR Register and Constant Rd ← Rd v K Z,N,V

EOR Rd, Rr Exclusive OR Registers Rd ← Rd ⊕ Rr Z,N,V

COM Rd One’s Complement Rd ← $FF − Rd Z,C,N,V

NEG Rd Two’s Complement Rd ← $00 − Rd Z,C,N,V,H

SBR Rd, K Set Bit(s) in Register Rd ← Rd v K Z,N,V

CBR Rd, K Clear Bit(s) in Register Rd ← Rd • ($FF – K) Z,N,V

INC Rd Increment Rd ← Rd + 1 Z,N,V

DEC Rd Decrement Rd ← Rd − 1 Z,N,V

TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V

CLR Rd Clear Register Rd ← $00 Z,N,V

SER Rd Set Register Rd ← $FF None

MUL Rd, Rr Multiply Unsigned R1:R0 ← Rd x Rr Z,C

MULS Rd, Rr Multiply Signed R1:R0 ← Rd x Rr Z,C

MULSU Rd, Rr Multiply Signed with Unsigned R1:R0 ← Rd x Rr Z,C

FMUL Rd, Rr Fractional Multiply Unsigned R1:R0 ← (Rd x Rr)<< 1 Z,C

FMULS Rd, Rr Fractional Multiply Signed R1:R0 ← (Rd x Rr)<< 1 Z,C

FMULSU Rd, Rr Fractional Multiply Signed with Unsigned R1:R0 ← (Rd x Rr)<< 1 Z,C

Mnemonics Operands Description Operation Flags

NOP No Operation None

SLEEP Sleep (see specific descr. for Sleep function) None

WDR Watchdog Reset (see specific descr. for WDR/timer) None

BREAK Break For On-Chip Debug Only None

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 676

SECTION A.2: AVR INSTRUCTIONS FORMAT

ADC Rd, Rr ; Add with carry

0 ≤ d ≤ 31, 0 ≤ r ≤ 31 ; Rd ← Rd + Rr + C

Adds two registers and the contents of the C flag and places the result in the des-

tination register Rd.

Flags: H, S, V, N, Z, C Cycles: 1

Example: ;Add R1:R0 to R3:R2
add r2,r0 ;Add low byte
adc r3,r1 ;Add with carry high byte

ADD Rd, Rr ; Add without carry

0 ≤ d ≤ 31, 0 ≤ r ≤ 31 ; Rd ← Rd + Rr

Adds two registers without the C flag and places the result in the destination reg-

ister Rd.

Flags: H, S, V, N, Z, C Cycles: 1

Example:
add r1,r2 ;Add r2 to r1 (r1=r1+r2)
add r28,r28 ;Add r28 to itself (r28=r28+r28)

ADIW Rd+1:Rd, K ; Add Immediate to Word

d ∈ {24,26,28,30}, 0 ≤ K ≤ 63 ; Rd + 1:Rd ← Rd + 1:Rd + K

Adds an immediate value (0–63) to a register pair and places the result in the reg-

ister pair. This instruction operates on the upper four register pairs, and is well suited for

operations on the pointer registers.

Flags: S, V, N, Z, C Cycles: 2

Example:
adiw r25:24,1 ;Add 1 to r25:r24
adiw ZH:ZL,63 ;Add 63 to the Z-pointer (r31:r30)

AND Rd, Rr ; Logical AND

0 ≤ d ≤ 31, 0 ≤ r ≤ 31 ; Rd ← Rd • Rr

Performs the logical AND between the contents of register Rd and register Rr and

places the result in the destination register Rd.

Flags: S, V ← 0, N, Z Cycles: 1

Example:
and r2,r3 ;Bitwise and r2 and r3, result in r2
ldi r16,1 ;Set bitmask 0000 0001 in r16
and r2,r16 ;Isolate bit 0 in r2

ANDI Rd, K ; Logical AND with Immediate

16 ≤ d ≤ 31, 0 ≤ K ≤ 255 ; Rd ← Rd • K

Performs the logical AND between the contents of register Rd and a constant and

places the result in the destination register Rd.

Flags: S, V ← 0, N, Z Cycles: 1

Example:
andi r17,$0F ;Clear upper nibble of r17
andi r18,$10 ;Isolate bit 4 in r18

ASR Rd ; Arithmetic Shift Right

0 ≤ d ≤ 31

Shifts all bits in Rd one place to the right. Bit 7

is held constant. Bit 0 is loaded into the C flag of the

SREG. This operation effectively divides a signed value

by two without changing its sign. The Carry flag can be used to round the result.

Flags: S, V, N, Z, C Cycles: 1

Example:
ldi r16,$10 ;Load decimal 16 into r16
asr r16 ;r16=r16 / 2
ldi r17,$FC ;Load -4 in r17
asr r17 ;r17=r17/2

BCLR s ; Bit Clear in SREG

0 ≤ s ≤7 ; SREG(s) ← 0

Clears a single flag in SREG (Status Register).

Flags: I, T, H, S, V, N, Z, C Cycles: 1

Example:
bclr 0 ;Clear Carry flag
bclr 7 ;Disable interrupts

BLD Rd, b ; Bit Load from the T Flag in SREG to a Bit in Register

0 ≤ d ≤ 31, 0 ≤ b ≤7 ; Rd(b) ← T

Copies the T flag in the SREG (Status Register) to bit b in register Rd.

Flags: --- Cycles: 1

Example:
bst r1,2 ;Store bit 2 of r1 in T flag
bld r0,4 ;Load T flag into bit 4 of r0

BRBC s, k ; Branch if Bit in SREG is Cleared

0 ≤ s ≤ 7, –64 ≤ k ≤ +63 ; If SREG(s) = 0 then PC ← PC + k + 1, else PC ← PC + 1

Conditional relative branch. Tests a single bit in SREG (Status Register) and

branches relatively to PC if the bit is set.

Flags: --- Cycles: 1or 2

Example:
cpi r20,5 ;Compare r20 to the value 5
brbc 1,noteq ;Branch if Zero flag cleared
...

noteq:nop ;Branch destination (do nothing)

BRBS s, k ; Branch if Bit in SREG is Set

0 ≤ s ≤ 7, –64 ≤ k ≤ +63 ; If SREG(s) = 1 then PC ← PC + k + 1, else PC ← PC + 1

Conditional relative branch. Tests a single bit in SREG (Status Register) and

branches relatively to PC if the bit is set.

APPENDIX A: AVR INSTRUCTIONS EXPLAINED 677

Flags: --- Cycles: 1 or 2

Example:
bst r0,3 ;Load T bit with bit 3 of r0
brbs 6,bitset ;Branch T bit was set
...
bitset: nop ;Branch destination (do nothing)

BRCC k ; Branch if Carry Cleared

–64 ≤ k ≤ +63 ; If C = 0 then PC ← PC + k + 1, else PC ← PC + 1

Conditional relative branch. Tests the Carry flag (C) and branches relatively to PC

if C is cleared.

Flags: --- Cycles: 1 or 2

Example:
add r22,r23 ;Add r23 to r22
brcc nocarry ;Branch if carry cleared
...

nocarry: nop ;Branch destination (do nothing)

BRCS k ; Branch if Carry Set

–64 ≤ k ≤ +63 ; If C = 1 then PC ← PC + k + 1, else PC ← PC + 1

Conditional relative branch. Tests the Carry flag (C) and branches relatively to PC

if C is set.

Flags: --- Cycles: 1 or 2

Example:
cpi r26,$56 ;Compare r26 with $56
brcs carry ;Branch if carry set
...

carry: nop ;Branch destination (do nothing)

BREAK ; Break

The BREAK instruction is used by the on-chip debug system, and is normally not

used in the application software. When the BREAK instruction is executed, the AVR CPU

is set in the stopped mode. This gives the on-chip debugger access to internal resources.

Flags: --- Cycles: 1

Example: ---

BREQ k ; Branch if Equal

–64 ≤ k ≤ +63 ; If Rd = Rr (Z = 1) then PC ← PC + k + 1, else PC ← PC + 1

Conditional relative branch. Tests the Zero flag (Z) and branches relatively to PC

if Z is set. If the instruction is executed immediately after any of the instructions CP, CPI,

SUB, or SUBI, the branch will occur if and only if the unsigned or signed binary number

represented in Rd was equal to the unsigned or signed binary number represented in Rr.

Flags: --- Cycles: 1 or 2

Example:
ccp r1,r0 ;Compare registers r1 and r0
breq equal ;Branch if registers equal
...

equal: nop ;Branch destination (do nothing)

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 678

BRGE k ; Branch if Greater or Equal (Signed)

–64 ≤ k ≤ +63 ; If Rd ≥ Rr (N⊕V = 0) then PC ← PC + k + 1, else PC ← PC + 1

Conditional relative branch. Tests the Signed flag (S) and branches relatively to PC

if S is cleared. If the instruction is executed immediately after any of the instructions CP,

CPI, SUB, or SUBI, the branch will occur if and only if the signed binary number repre-

sented in Rd was greater than or equal to the signed binary number represented in Rr.

Flags: --- Cycles: 1 or 2

Example:
cp r11,r12 ;Compare registers r11 and r12
brge greateq ;Branch if r11 ≥ r12 (signed)
...

greateq: nop ;Branch destination (do nothing)

BRHC k ; Branch if Half Carry Flag is Cleared

–64 ≤ k ≤ +63 ; If H = 0 then PC ← PC + k + 1, else PC ← PC + 1

Conditional relative branch. Tests the Half Carry flag (H) and branches relatively

to PC if H is cleared.

Flags: --- Cycles: 1 or 2

Example:
brhc hclear ;Branch if Half Carry flag cleared
...

hclear: nop ;Branch destination (do nothing)

BRHS k ; Branch if Half Carry Flag is Set

–64 ≤ k ≤ +63 ; If H = 1 then PC ← PC + k + 1, else PC ← PC + 1

Conditional relative branch. Tests the Half Carry flag (H) and branches relatively

to PC if H is set.

Flags: --- Cycles: 1 or 2

Example:
brhs hset ;Branch if Half Carry flag set
...

hset: nop ;Branch destination (do nothing)

BRID k ; Branch if Global Interrupt is Disabled

–64 ≤ k ≤ +63 ; If I = 0 then PC←PC + k + 1, else PC←PC + 1

Conditional relative branch. Tests the Global Interrupt flag (I) and branches rela-

tively to PC if I is cleared.

Flags: --- Cycles: 1 or 2

Example:
brid intdis ;Branch if interrupt disabled
...

intdis: nop ;Branch destination (do nothing)

BRIE k ; Branch if Global Interrupt is Enabled

–64 ≤ k ≤ +63 ; If I = 1 then PC ← PC + k + 1, else PC ← PC + 1

Conditional relative branch. Tests the Global Interrupt flag (I) and branches rela-

tively to PC if I is set.

Flags: --- Cycles: 1 or 2

APPENDIX A: AVR INSTRUCTIONS EXPLAINED 679

Example:
brie inten ;Branch if interrupt enabled
...

inten: nop ;Branch destination (do nothing)

BRLO k ; Branch if Lower (Unsigned)

–64 ≤ k ≤ +63 ; If Rd < Rr (C = 1) then PC ← PC + k + 1, else PC ← PC + 1

Conditional relative branch. Tests the Carry flag (C) and branches relatively to PC

if C is set. If the instruction is executed immediately after any of the instructions CP, CPI,

SUB, or SUBI, the branch will occur if and only if the unsigned binary number represent-

ed in Rd was smaller than the unsigned binary number represented in Rr.

Flags: --- Cycles: 1 or 2

Example:
eor r19,r19 ;Clear r19

loop: inc r19 ;Increment r19
...
cpi r19,$10 ;Compare r19 with $10
brlo loop ;Branch if r19 < $10 (unsigned)
nop ;Exit from loop (do nothing)

BRLT k ; Branch if Less Than (Signed)

–64 ≤ k ≤ +63 ; If Rd < Rr (N ⊕V = 1) then PC← PC + k + 1, else PC ← PC + 1

Conditional relative branch. Tests the Signed flag (S) and branches relatively to

PC if S is set. If the instruction is executed immediately after any of the instructions CP,

CPI, SUB, or SUBI, the branch will occur if and only if the signed binary number repre-

sented in Rd was less than the signed binary number represented in Rr.

Flags: --- Cycles: 1 or 2

Example:
bcp r16,r1 ;Compare r16 to r1
brlt less ;Branch if r16 < r1 (signed)
...

less: nop ;Branch destination (do nothing)

BRMI k ; Branch if Minus

–64 ≤ k ≤ +63 ; If N=1 then PC←PC + k + 1, else PC←PC + 1

Conditional relative branch. Tests the Negative flag (N) and branches relatively to

PC if N is set.

Flags: --- Cycles: 1 or 2

Example:
subi r18,4 ;Subtract 4 from r18
brmi negative ;Branch if result negative
...

negative: nop ;Branch destination (do nothing)

BRNE k ; Branch if Not Equal

–64 ≤ k ≤ +63 ; If Rd ≠ Rr (Z = 0) then PC ← PC + k + 1, else PC ← PC + 1

Conditional relative branch. Tests the Zero flag (Z) and branches relatively to PC

if Z is cleared. If the instruction is executed immediately after any of the instructions CP,

CPI, SUB, or SUBI, the branch will occur if and only if the unsigned or signed binary

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 680

number represented in Rd was not equal to the unsigned or signed binary number repre-

sented in Rr.

Flags: --- Cycles: 1 or 2

Example:
eor r27,r27 ;Clear r27

loop: inc r27 ;Increment r27
...
cpi r27,5 ;Compare r27 to 5
brne loop ;Branch if r27 not equal 5
nop ;Loop exit (do nothing)

BRPL k ; Branch if Plus

–64 ≤ k ≤ +63 ; If N = 0 then PC ← PC + k + 1, else PC ← PC + 1

Conditional relative branch. Tests the Negative flag (N) and branches relatively to

PC if N is cleared.

Flags: --- Cycles: 1 or 2

Example:
subi r26,$50 ;Subtract $50 from r26
brpl positive ;Branch if r26 positive
...

positive: nop ;Branch destination (do nothing)

BRSH k ; Branch if Same or Higher (Unsigned)

–64 ≤ k ≤ +63 ; If Rd ≥Rr (C = 0) then PC ← PC + k + 1, else PC ← PC + 1

Conditional relative branch. Tests the Carry flag (C) and branches relatively to PC

if C is cleared. If the instruction is executed immediately after execution of any of the

instructions CP, CPI, SUB, or SUBI, the branch will occur if and only if the unsigned bina-

ry number represented in Rd was greater than or equal to the unsigned binary number rep-

resented in Rr.

Flags: --- Cycles: 1 or 2

Example:
subi r19,4 ;Subtract 4 from r19
brsh highsm ;Branch if r19 >= 4 (unsigned)
...

highsm: nop ;Branch destination (do nothing)

BRTC k ; Branch if the T Flag is Cleared

–64 ≤ k ≤ +63 ; If T = 0 then PC ← PC + k + 1, else PC ← PC + 1

Conditional relative branch. Tests the T flag and branches relatively to PC if T is

cleared.

Flags: --- Cycles: 1 or 2

Example:
bst r3,5 ;Store bit 5 of r3 in T flag
brtc tclear ;Branch if this bit was cleared
...

tclear: nop ;Branch destination (do nothing)

APPENDIX A: AVR INSTRUCTIONS EXPLAINED 681

BRTS k ; Branch if the T Flag is Set

–64 ≤ k ≤ +63 ; If T = 1 then PC←PC + k + 1, else PC ← PC + 1

Conditional relative branch. Tests the T flag and branches relatively to PC if T is

set.

Flags: --- Cycles: 1 or 2

Example:
bst r3,5 ;Store bit 5 of r3 in T flag
brts tset ;Branch if this bit was set
...

tset: nop ;Branch destination (do nothing)

BRVC k ; Branch if Overflow Cleared

–64 ≤ k ≤ +63 ; If V = 0 then PC ← PC + k + 1, else PC ← PC + 1

Conditional relative branch. Tests the Overflow flag (V) and branches relatively

to PC if V is cleared.

Flags: --- Cycles: 1 or 2

Example:
add r3,r4 ;Add r4 to r3
brvc noover ;Branch if no overflow
...

noover: nop ;Branch destination (do nothing)

BRVS k ; Branch if Overflow Set

–64 ≤ k ≤ +63 ; If V=1 then PC←PC + k + 1, else PC←PC + 1

Conditional relative branch. Tests the Overflow flag (V) and branches relatively

to PC if V is set.

Flags: --- Cycles: 1 or 2

Example:
add r3,r4 ;Add r4 to r3
brvs overfl ;Branch if overflow
...

overfl: nop ;Branch destination (do nothing)

BSET s ; Bit Set in SREG

0 ≤ s ≤ 7 ; SREG(s) ← 1

Sets a single flag or bit in SREG (Status Register).

Flags: Any of the flags. Cycles: 1

Example:
bset 6 ;Set T flag
bset 7 ;Enable interrupt

BST Rd,b ; Bit Store from Register to T Flag in SREG

0 ≤ d ≤ 31, 0 ≤ b ≤ 7 ; T ← Rd(b)

Stores bit b from Rd to the T flag in SREG (Status Register).

Flags: T Cycles: 1

Example: ;Copy bit
bst r1,2 ;Store bit 2 of r1 in T flag
bld r0,4 ;Load T into bit 4 of r0t

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 682

CALL k ; Long Call to a Subroutine

0 ≤ k < 64K (Devices with 16 bits PC) or 0 ≤ k < 4M (Devices with 22 bits PC)

Calls to a subroutine within the entire program memory. The return address (to the

instruction after the CALL) will be stored onto the stack. (See also RCALL.) The stack

pointer uses a post-decrement scheme during CALL.

Flags: --- Cycles: 4

Example:
mov r16,r0 ;Copy r0 to r16
call check ;Call subroutine
nop ;Continue (do nothing)
...

check: cpi r16,$42 ;Check if r16 has a special value
breq error ;Branch if equal
ret ;Return from subroutine
...

error: rjmp error ;Infinite loop

CBI A, b ; Clear Bit in I/O Register

0 ≤ A ≤ 31, 0 ≤ b ≤7 ; I/O(A,b) ← 0

Clears a specified bit in an I/O Register. This instruction operates on the lower 32

I/O registers (addresses 0–31).

Flags: --- Cycles: 2

Example:
cbi $12,7 ;Clear bit 7 in Port D

CBR Rd, k ; Clear Bits in Register

16 ≤ d ≤ 31, 0 ≤ K ≤ 255 ; Rd ← Rd • ($FF – K)

Clears the specified bits in register Rd. Performs the logical AND between the con-

tents of register Rd and the complement of the constant mask K.

Flags: S, N, V ← 0, Z Cycles: 1

Example:
cbr r16,$F0 ;Clear upper nibble of r16
cbr r18,1 ;Clear bit 0 in r18

CLC ; Clear Carry Flag

; C ← 0

Clears the Carry flag (C) in SREG (Status Register).

Flags: C ← 0. Cycles: 1

Example:
add r0,r0 ;Add r0 to itself
clc ;Clear Carry flag

CLH ; Clear Half Carry Flag

; H ← 0

Clears the Half Carry flag (H) in SREG (Status Register).

Flags: H ← 0. Cycles: 1

Example:
clh ;Clear the Half Carry flag

APPENDIX A: AVR INSTRUCTIONS EXPLAINED 683

CLI ; Clear Global Interrupt Flag

; I ← 0

Clears the Global Interrupt flag (I) in SREG (Status Register). The interrupts will

be immediately disabled. No interrupt will be executed after the CLI instruction, even if

it occurs simultaneously with the CLI instruction.

Flags: I ← 0. Cycles: 1

Example:
in temp, SREG ;Store SREG value

;(temp must be defined by user)
cli ;Disable interrupts during timed sequence
sbi EECR, EEMWE ;Start EEPROM write
sbi EECR, EEWE ;
out SREG, temp ;Restore SREG value (I-flag)

CLN ; Clear Negative Flag

; N ← 0

Clears the Negative flag (N) in SREG (Status Register).

Flags: N ← 0. Cycles: 1

Example:
add r2,r3 ;Add r3 to r2
cln ;Clear Negative flag

CLR Rd ; Clear Register

0 ≤ d ≤ 31 ; Rd ← Rd ⊕ Rd

Clears a register. This instruction performs an Exclusive-OR between a register

and itself. This will clear all bits in the register..

Flags: S ← 0 , N ← 0, V ← 0, Z ← 0 Cycles: 1

Example:
clr r18 ;Clear r18

loop: inc r18 ;Increment r18
...
cpi r18,$50 ;Compare r18 to $50
brne loop

CLS ; Clear Signed Flag

; S ← 0

Clears the Signed flag (S) in SREG (Status Register).

Flags: S ← 0. Cycles: 1

Example:
add r2,r3 ;Add r3 to r2
cls ;Clear Signed flag

CLT ; Clear T Flag

; T ← 0

Clears the T flag in SREG (Status Register).

Flags: T ← 0. Cycles: 1

Example:
clt ;Clear T flag

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 684

CLV ; Clear Overflow Flag

; V ← 0

Clears the Overflow flag (V) in SREG (Status Register).

Flags: V ← 0. Cycles: 1

Example:
add r2,r3 ;Add r3 to r2
clv ;Clear Overflow flag

CLZ ; Clear Zero Flag

; Z ← 0

Clears the Zero flag (Z) in SREG (Status Register).

Flags: Z ← 0. Cycles: 1

Example:
clz ;Clear zero

COM Rd ; One’s Complement

0 ≤ d ≤ 31 ; Rd ← $FF – Rd

This instruction performs a one’s complement of register Rd.

Flags: S, V ← 0, N , Z ← 1, C. Cycles: 1

Example:
com r4 ;Take one’s complement of r4
breq zero ;Branch if zero
...

zero: nop ;Branch destination (do nothing)

CP Rd,Rr ; Compare

0 ≤ d ≤ 31, 0 ≤ r ≤ 31 ; Rd – Rr

This instruction performs a compare between two registers, Rd and Rr. None of the

registers are changed. All conditional branches can be used after this instruction.

Flags: H, S,V, N, Z, C. Cycles: 1

Example:

cp r4,r19 ;Compare r4 with r19
brne noteq ;Branch if r4 not equal r19
...

noteq: nop ;Branch destination (do nothing)

CPC Rd,Rr ; Compare with Carry

0 ≤ d ≤ 31, 0 ≤ r ≤ 31 ; Rd – Rr – C

This instruction performs a compare between two registers, Rd and Rr, and also

takes into account the previous carry. None of the registers are changed. All conditional

branches can be used after this instruction.

Flags: H, S, V, N, Z, C. Cycles: 1

Example: ;Compare r3:r2 with r1:r0
cp r2,r0 ;Compare low byte
cpc r3,r1 ;Compare high byte
brne noteq ;Branch if not equal
...

noteq: nop ;Branch destination (do nothing)

APPENDIX A: AVR INSTRUCTIONS EXPLAINED 685

CPI Rd,K ; Compare with Immediate

16 ≤ d ≤ 31, 0 ≤ K ≤ 255 ; Rd – K

This instruction performs a compare between register Rd and a constant. The reg-

ister is not changed. All conditional branches can be used after this instruction.

Flags: H, S,V, N, Z, C. Cycles: 1

Example:
cpi r19,3 ;Compare r19 with 3
brne error ;Branch if r19 not equal 3
...

error: nop ;Branch destination (do nothing)

CPSE Rd,Rr ; Compare Skip if Equal

0 ≤ d ≤ 31, 0 ≤ r ≤ 31 ; If Rd = Rr then PC ← PC + 2 or 3 else PC ← PC + 1

This instruction performs a compare between two registers Rd and Rr, and skips

the next instruction if Rd = Rr.

Flags:--- Cycles: 1, 2, or 3

Example:
inc r4 ;Increment r4
cpse r4,r0 ;Compare r4 to r0
neg r4 ;Only executed if r4 not equal r0
nop ;Continue (do nothing)

DEC Rd ; Decrement

0 ≤ d ≤ 31 ; Rd ← Rd – 1

Subtracts one from the contents of register Rd and places the result in the destina-

tion register Rd.

The C flag in SREG is not affected by the operation, thus allowing the DEC

instruction to be used on a loop counter in multiple-precision computations.

When operating on unsigned values, only BREQ and BRNE branches can be

expected to perform consistently. When operating on two’s complement values, all signed

branches are available.

Flags: S,V, N, Z. Cycles: 1

Example:
ldi r17,$10 ;Load constant in r17

loop: add r1,r2 ;Add r2 to r1
dec r17 ;Decrement r17
brne loop ;Branch if r17 not equal 0
nop ;Continue (do nothing)

EOR Rd,Rr ; Exclusive OR

0 ≤ d ≤ 31, 0 ≤ r ≤ 31 ; Rd ← Rd ⊕ Rr

Performs the logical Exclusive OR between the contents of register Rd and regis-

ter Rr and places the result in the destination register Rd.

Flags: S, V, Z ← 0, N, Z. Cycles: 1

Example:
eor r4,r4 ;Clear r4
eor r0,r22 ;Bitwise XOR between r0 and r22

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 686

FMUL Rd,Rr ; Fractional Multiply Unsigned

16 ≤ d ≤ 23, 16 ≤ r ≤ 23 ; R1:R0 ← Rd × Rr (unsigned ← unsigned × unsigned)

This instruction performs 8-bit × 8-bit → 16-bit unsigned multiplication and shifts

the result one bit left.

Let (N.Q) denote a fractional number with N binary digits left of the radix point,

and Q binary digits right of the radix point. A multiplication between two numbers in the

formats (N1.Q1) and (N2.Q2) results in the format ((N1 + N2).(Q1 + Q2)). For signal pro-

cessing applications, the (1.7) format is widely used for the inputs, resulting in a (2.14)

format for the product. A left shift is required for the high byte of the product to be in the

same format as the inputs. The FMUL instruction incorporates the shift operation in the

same number of cycles as MUL.

The (1.7) format is most commonly used with signed numbers, while FMUL per-

forms an unsigned multiplication. This instruction is therefore most useful for calculating

one of the partial products when performing a signed multiplication with 16-bit inputs in

the (1.15) format, yielding a result in the (1.31) format. (Note: The result of the FMUL

operation may suffer from a 2’s complement overflow if interpreted as a number in the

(1.15) format.) The MSB of the multiplication before shifting must be taken into account,

and is found in the carry bit. See the following example.

The multiplicand Rd and the multiplier Rr are two registers containing unsigned

fractional numbers where the implicit radix point lies between bit 6 and bit 7. The 16-bit

unsigned fractional product with the implicit radix point between bit 14 and bit 15 is

placed in R1 (high byte) and R0 (low byte).

Flags: Z, C. Cycles: 2

Example:
;**
;* DESCRIPTION
;* Signed fractional multiply of two 16-bit numbers with 32-bit result.
;* r19:r18:r17:r16 = (r23:r22 * r21:r20) << 1
;**

fmuls 16x16_32:
clr r2
fmuls r23, r21 ;((signed)ah *(signed)bh) << 1
movw r19:r18, r1:r0
fmul r22, r20 ;(al * bl) << 1
adc r18, r2
movwr17:r16, r1:r0
fmulsu r23, r20 ;((signed)ah * bl) << 1
sbc r19, r2
add r17, r0
adc r18, r1
adc r19, r2
fmulsu r21, r22 ;((signed)bh * al) << 1
sbc r19, r2
add r17, r0
adc r18, r1
adc r19, r2

APPENDIX A: AVR INSTRUCTIONS EXPLAINED 687

FMULS Rd,Rr ; Fractional Multiply Signed

16 ≤ d ≤ 23, 16 ≤ r ≤ 23 ; R1:R0 ← Rd × Rr (signed ← signed × signed)

This instruction performs 8-bit × 8-bit → 16-bit signed multiplication and shifts

the result one bit left.

Let (N.Q) denote a fractional number with N binary digits left of the radix point,

and Q binary digits right of the radix point. A multiplication between two numbers in the

formats (N1.Q1) and (N2.Q2) results in the format ((N1 + N2).(Q1 + Q2)). For signal pro-

cessing applications, the (1.7) format is widely used for the inputs, resulting in a (2.14)

format for the product. A left shift is required for the high byte of the product to be in the

same format as the inputs. The FMULS instruction incorporates the shift operation in the

same number of cycles as MULS.

The multiplicand Rd and the multiplier Rr are two registers containing signed

fractional numbers where the implicit radix point lies between bit 6 and bit 7. The 16-bit

signed fractional product with the implicit radix point between bit 14 and bit 15 is placed

in R1 (high byte) and R0 (low byte).

Note that when multiplying 0x80 (–1) with 0x80 (–1), the result of the shift oper-

ation is 0x8000 (–1). The shift operation thus gives a two’s complement overflow. This

must be checked and handled by software.

This instruction is not available in all devices. Refer to the device-specific instruc-

tion set summary.

Flags: Z, C. Cycles: 2

Example:
fmuls r23,r22 ;Multiply signed r23 and r22 in

;(1.7) format, result in (1.15) format
movw r23:r22,r1:r0 ;Copy result back in r23:r22

FMULSU Rd,Rr ; Fractional Multiply Signed with Unsigned

16 ≤ d ≤ 23, 16 ≤ r ≤ 23 ; R1:R0 ← Rd × Rr

This instruction performs 8-bit × 8-bit → 16-bit signed multiplication and shifts

the result one bit left.

Let (N.Q) denote a fractional number with N binary digits left of the radix point,

and Q binary digits right of the radix point. A multiplication between two numbers in the

formats (N1.Q1) and (N2.Q2) results in the format ((N1 + N2).(Q1 + Q2)). For signal pro-

cessing applications, the (1.7) format is widely used for the inputs, resulting in a (2.14)

format for the product. A left shift is required for the high byte of the product to be in the

same format as the inputs. The FMULSU instruction incorporates the shift operation in

the same number of cycles as MULSU.

The (1.7) format is most commonly used with signed numbers, while FMULSU

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 688

performs a multiplication with one unsigned and one signed input. This instruction is

therefore most useful for calculating two of the partial products when performing a signed

multiplication with 16-bit inputs in the (1.15) format, yielding a result in the (1.31) for-

mat. (Note: The result of the FMULSU operation may suffer from a 2's complement over-

flow if interpreted as a number in the (1.15) format.) The MSB of the multiplication before

shifting must be taken into account, and is found in the carry bit. See the following exam-

ple.

The multiplicand Rd and the multiplier Rr are two registers containing fractional

numbers where the implicit radix point lies between bit 6 and bit 7. The multiplicand Rd

is a signed fractional number, and the multiplier Rr is an unsigned fractional number. The

16-bit signed fractional product with the implicit radix point between bit 14 and bit 15 is

placed in R1 (high byte) and R0 (low byte).

This instruction is not available in all devices. Refer to the device-specific instruc-

tion set summary.

Flags: Z, C. Cycles: 2

Example:
;***
;* DESCRIPTION
;* Signed fractional multiply of two 16-bit numbers with 32-bit result.
;* r19:r18:r17:r16 = (r23:r22 * r21:r20) << 1
;***
fmuls16x16_32:

clrr2
fmuls r23, r21 ;((signed)ah * (signed)bh) << 1
movwr19:r18, r1:r0
fmul r22, r20 ;(al * bl) << 1
adc r18, r2
movwr17:r16, r1:r0
fmulsu r 23, r20 ;((signed)ah * bl) << 1
sbc r19, r2
add r17, r0
adc r18, r1
adc r19, r2
fmulsu r21, r22 ;((signed)bh * al) << 1
sbc r19, r2
add r17, r0
adc r18, r1
adc r19, r2

ICALL ; Indirect Call to Subroutine

Indirect call of a subroutine pointed to by the Z (16 bits) pointer register in the reg-

ister file. The Z-pointer register is 16 bits wide and allows calls to a subroutine within the

lowest 64K words (128K bytes) section in the program memory space. The stack pointer

uses a post-decrement scheme during ICALL.

This instruction is not available in all devices. Refer to the device-specific instruc-

tion set summary.

Flags: --- Cycles: 3

Example:
mov r30,r0 ;Set offset to call table
icall ;Call routine pointed to by r31:r30

APPENDIX A: AVR INSTRUCTIONS EXPLAINED 689

IJMP ; Indirect Jump

Indirect jump to the address pointed to by the Z (16 bits) pointer register in the

register file. The Z-pointer register is 16 bits wide and allows jumps within the lowest

64K words (128K bytes) of the program memory.

This instruction is not available in all devices. Refer to the device-specific instruc-

tion set summary.

Flags:--- Cycles: 2

Example:
mov r30,r0 ;Set offset to jump table
ijmp ;Jump to routine pointed to by r31:r30

IN Rd,A ; Load an I/O Location to Register

0 ≤ d ≤ 31, 0 ≤ A ≤ 63 ; Rd ← I/O(A)

Loads data from the I/O space (ports, timers, configuration registers, etc.) into reg-

ister Rd in the register file.

Flags:--- Cycles: 1

Example:
in r25,$16 ;Read Port B
cpi r25,4 ;Compare read value to constant
breq exit ;Branch if r25=4
...

exit: nop ;Branch destination (do nothing)

INC Rd ; Increment

0 ≤ d ≤ 31 ; Rd ← Rd + 1

Adds one to the contents of register Rd and places the result in the destination reg-

ister Rd.

The C flag in SREG is not affected by the operation, thus allowing the INC

instruction to be used on a loop counter in multiple-precision computations.

When operating on unsigned numbers, only BREQ and BRNE branches can be

expected to perform consistently. When operating on two’s complement values, all signed

branches are available.

Flags: S, V, N, Z. Cycles: 1

Example:
clr r22 ;Clear r22

loop: inc r22 ;Increment r22
...
cpi r22,$4F ;Compare r22 to $4f
brne loop ;Branch if not equal
nop ;Continue (do nothing)

JMP k ; Jump

0 ≤ k < 4M ; PC ← k

Jump to an address within the entire 4M (words) program memory. See also

RJMP.

Flags:--- Cycles: 3

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 690

Example:
mov r1,r0 ;Copy r0 to r1
jmp farplc ;Unconditional jump
...

farplc: nop ;Jump destination (do nothing)

LD ; Load Indirect from Data Space to Register

; using Index X

Loads one byte indirect from the data space to a register. For parts with SRAM, the

data space consists of the register file, I/O memory, and internal SRAM (and external

SRAM if applicable). For parts without SRAM, the data space consists of the register file

only. The EEPROM has a separate address space.

The data location is pointed to by the X (16 bits) pointer register in the register file.

Memory access is limited to the current data segment of 64K bytes. To access another data

segment in devices with more than 64K bytes data space, the RAMPX in register in the

I/O area has to be changed.

The X-pointer register can either be left unchanged by the operation, or it can be

post-incremented or pre-decremented.

These features are especially suited for accessing arrays, tables, and stack pointer

usage of the X-pointer register. Note that only the low byte of the X-pointer is updated in

devices with no more than 256 bytes data space. For such devices, the high byte of the

pointer is not used by this instruction and can be used for other purposes. The RAMPX

register in the I/O area is updated in parts with more than 64K bytes data space or more

than 64K bytes program memory, and the increment/ decrement is added to the entire 24-

bit address on such devices.

Syntax: Operation: Comment:

(i) LD Rd, X Rd ← (X) X: Unchanged

(ii) LD Rd, X+ Rd ← (X) , X ← X + 1 X: Post-incremented

(iii) LD Rd, –X X ← X – 1, Rd ← (X) X: Pre-decremented

Flags:--- Cycles: 2

Example:
clr r27 ;Clear X high byte
ldi r26,$60 ;Set X low byte to $60
ld r0,X+ ;Load r0 with data space loc. $60

;X post inc)
ld r1,X ;Load r1 with data space loc. $61
ldi r26,$63 ;Set X low byte to $63
ld r2,X ;Load r2 with data space loc. $63
ld r3,–X ;Load r3 with data space loc.

;$62(X pre dec)

LD (LDD) ; Load Indirect from Data Space to Register

; using Index Y

Loads one byte indirect with or without displacement from the data space to a reg-

ister. For parts with SRAM, the data space consists of the register file, I/O memory, and

internal SRAM (and external SRAM if applicable). For parts without SRAM, the data

space consists of the register file only. The EEPROM has a separate address space.

APPENDIX A: AVR INSTRUCTIONS EXPLAINED 691

The data location is pointed to by the Y (16 bits) pointer register in the register file.

Memory access is limited to the current data segment of 64K bytes. To access another data

segment in devices with more than 64K bytes data space, the RAMPY in register in the

I/O area has to be changed.

The Y-pointer register can either be left unchanged by the operation, or it can be

post-incremented or pre-decremented. These features are especially suited for accessing

arrays, tables, and stack pointer usage of the Y-pointer register. Note that only the low byte

of the Y-pointer is updated in devices with no more than 256 bytes data space. For such

devices, the high byte of the pointer is not used by this instruction and can be used for

other purposes. The RAMPY register in the I/O area is updated in parts with more than

64K bytes data space or more than 64K bytes program memory, and the increment/ decre-

ment/displacement is added to the entire 24-bit address on such devices.

Syntax: Operation: Comment:

(i) LD Rd, Y Rd ← (Y) Y: Unchanged

(ii) LD Rd, Y+ Rd ← (Y) ,Y ← Y + 1 Y: Postincremented

(iii) LD Rd, –Y Y ← Y – 1, Rd ← (Y) Y: Predecremented

(iiii) LDD Rd, Y + q Rd ← (Y + q) Y: Unchanged, q: Displacement

Flags:--- Cycles: 2

Example:
clr r29 ;Clear Y high byte
ldi r28,$60 ;Set Y low byte to $60
ld r0,Y+ ;Load r0 with data space loc. $60(Y post inc)
ld r1,Y ;Load r1 with data space loc. $61
ldi r28,$63 ;Set Y low byte to $63
ld r2,Y ;Load r2 with data space loc. $63
ld r3,-Y ;Load r3 with data space loc. $62(Y pre dec)
ldd r4,Y+2 ;Load r4 with data space loc. $64

LD (LDD) ; Load Indirect from Data Space to Register

; using Index Z

Loads one byte indirect with or without displacement from the data space to a reg-

ister. For parts with SRAM, the data space consists of the register file, I/O memory, and

internal SRAM (and external SRAM if applicable). For parts without SRAM, the data

space consists of the register file only. The EEPROM has a separate address space.

The data location is pointed to by the Z (16 bits) pointer register in the register file.

Memory access is limited to the current data segment of 64K bytes. To access another data

segment in devices with more than 64K bytes data space, the RAMPZ in register in the

I/O area has to be changed.

The Z-pointer register can either be left unchanged by the operation, or it can be

post-incremented or pre-decremented. These features are especially suited for stack point-

er usage of the Z-pointer register, however because the Z-pointer register can be used for

indirect subroutine calls, indirect jumps, and table lookup, it is often more convenient to

use the X or Y-pointer as a dedicated stack pointer. Note that only the low byte of the Z-

pointer is updated in devices with no more than 256 bytes data space. For such devices,

the high byte of the pointer is not used by this instruction and can be used for other pur-

poses. The RAMPZ register in the I/O area is updated in parts with more than 64K bytes

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 692

data space or more than 64K bytes program memory, and the increment/decrement/dis-

placement is added to the entire 24-bit address on such devices.

Syntax: Operation: Comment:

(i) LD Rd, Z Rd ← (Z) Z: Unchanged

(ii) LD Rd, Z+ Rd ← (Z) Z ← Z + 1 Z: Postincrement

(iii) LD Rd, –Z Z ← Z – 1 Rd ← (Z) Z: Predecrement

(iiii) LDD Rd, Z + q Rd ← (Z + q) Z: Unchanged, q: Displacement

Flags:--- Cycles: 2

Example:
clr r31 ;Clear Z high byte
ldi r30,$60 ;Set Z low byte to $60
ld r0,Z+ ;Load r0 with data space loc.$60(Z postinc.)
ld r1,Z ;Load r1 with data space loc. $61
ldi r30,$63 ;Set Z low byte to $63
ld r2,Z ;Load r2 with data space loc. $63
ld r3,-Z ;Load r3 with data space loc. $62(Z predec.)
ldd r4,Z+2 ;Load r4 with data space loc. $64

LDI Rd,K ; Load Immediate

16 ≤ d ≤ 31, 0 ≤ K ≤ 255 ; Rd ← K

Loads an 8-bit constant directly to registers 16 to 31.

Flags:--- Cycles: 1

Example:
clr r31 ;Clear Z high byte
ldi r30,$F0 ;Set Z low byte to $F0
lpm ;Load constant from program

;memory pointed to by Z

LDS Rd,k ; Load Direct from Data Space

0 ≤ d ≤ 31, 0 ≤ k ≤ 65535 ; Rd ← (k)

Loads one byte from the data space to a register. The data space consists of the reg-

ister file, I/O memory, and SRAM.

Flags:--- Cycles: 2

Example:
lds r2,$FF00 ;Load r2 with the contents of

;data space location $FF00
add r2,r1 ;add r1 to r2
sts $FF00,r2 ;Write back

LPM ; Load Program Memory

Loads one byte pointed to by the Z-register into the destination register Rd. This

instruction features a 100% space effective constant initialization or constant data fetch.

The program memory is organized in 16-bit words while the Z-pointer is a byte address.

Thus, the least significant bit of the Z-pointer selects either the low byte (ZLSB = 0) or

the high byte (ZLSB = 1). This instruction can address the first 64K bytes (32K words) of

APPENDIX A: AVR INSTRUCTIONS EXPLAINED 693

program memory. The Z-pointer register can either be left unchanged by the operation, or

it can be incremented. The incrementation does not apply to the RAMPZ register.

Devices with self-programming capability can use the LPM instruction to read the

Fuse and Lock bit values. Refer to the device documentation for a detailed description.

Syntax: Operation: Comment:

(i) LPM R0 ← (Z) Z: Unchanged, R0 implied Rd

(ii) LPM Rd, Z Rd ← (Z) Z: Unchanged

(iii) LPM Rd, Z+ Rd ← (Z), Z ← Z + 1Z: Postincremented

Flags:--- Cycles: 3

Example:
ldi ZH, high(Table_1<<1);Initialize Z-pointer
ldi ZL, low(Table_1<<1)
lpm r16, Z ;Load constant from program

;Memory pointed to by Z (r31:r30)
...

Table_1:
.dw 0x5876 ;0x76 is addresses when ZLSB = 0

;0x58 is addresses when ZLSB = 1
...

LSL Rd ; Logical Shift Left

0 ≤ d ≤ 31

Shifts all bits in Rd one place to

the left. Bit 0 is cleared. Bit 7 is loaded

into the C flag of the SREG (Status

Register). This operation effectively multiplies signed and unsigned values by two.

Flags: H, S, V, N, Z, C. Cycles: 1

Example:
add r0,r4 ;Add r4 to r0
lsl r0 ;Multiply r0 by 2

LSR Rd ; Logical Shift Left

0 ≤ d ≤ 31

Shifts all bits in Rd one place to the

right. Bit 7 is cleared. Bit 0 is loaded into

the C flag of the SREG. This operation

effectively divides an unsigned value by two. The C flag can be used to round the result.

Flags: S, V, N ← 0, Z, C. Cycles: 1

Example:
add r0,r4 ;Add r4 to r0
lsr r0 ;Divide r0 by 2

MOV Rd,Rr ; Copy Register

0 ≤ d ≤ 31, 0 ≤ r ≤ 31 ; Rd ← Rr

This instruction makes a copy of one register into another. The source register Rr

is left unchanged, while the destination register Rd is loaded with a copy of Rr.

Flags: --- Cycles: 1

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 694

Example:
mov r16,r0 ;Copy r0 to r16
call check ;Call subroutine
...

check: cpi r16,$11 ;Compare r16 to $11
...
ret ;Return from subroutine

MOVW Rd + 1:Rd,Rr + 1:Rrd ; Copy RegisterWord

d ∈ {0,2,...,30}, r ∈ {0,2,...,30} ; Rd + 1:Rd ← Rr + 1:Rr

This instruction makes a copy of one register pair into another register pair. The

source register pair Rr + 1:Rr is left unchanged, while the destination register pair Rd +

1:Rd is loaded with a copy of Rr + 1:Rr.

Flags: --- Cycles: 1

Example:
movw r17:16,r1:r0 ;Copy r1:r0 to r17:r16
call check ;Call subroutine
...

check: cpi r16,$11 ;Compare r16 to $11
...
cpi r17,$32 ;Compare r17 to $32
...
ret ;Return from subroutine

MUL Rd,Rr ; Multiply Unsigned

0 ≤ d ≤ 31, 0 ≤ r ≤ 31 ; R1:R0 ← Rd × Rr(unsigned ← unsigned × unsigned)

This instruction performs 8-bit × 8-bit → 16-bit unsigned multiplication.

The multiplicand Rd and the multiplier Rr are two registers containing unsigned

numbers. The 16-bit unsigned product is placed in R1 (high byte) and R0 (low byte). Note

that if the multiplicand or the multiplier is selected from R0 or R1 the result will overwrite

those after multiplication.

Flags: Z, C. Cycles: 2

Example:
mul r5,r4 ;Multiply unsigned r5 and r4
movw r4,r0 ;Copy result back in r5:r4

MULS Rd,Rr ; Multiply Signed

16 ≤ d ≤ 31, 16 ≤ r ≤ 31 ; R1:R0 ← Rd × Rr(signed ← signed × signed)

This instruction performs 8-bit × 8-bit → 16-bit signed multiplication.

The multiplicand Rd and the multiplier Rr are two registers containing signed

numbers. The 16-bit signed product is placed in R1 (high byte) and R0 (low byte).

Flags: Z, C. Cycles: 2

Example:
muls r21,r20 ;Multiply signed r21 and r20
movw r20,r0 ;Copy result back in r21:r20

APPENDIX A: AVR INSTRUCTIONS EXPLAINED 695

MULSU Rd,Rr ; Multiply Signed with Unsigned

16 ≤ d ≤ 31, 16 ≤ r ≤ 31 ; R1:R0 ← Rd × Rr (signed ← signed × unsigned)

This instruction performs 8-bit × 8-bit → 16-bit multiplication of a signed and an

unsigned number.

The multiplicand Rd and the multiplier Rr are two registers. The multiplicand Rd

is a signed number, and the multiplier Rr is unsigned. The 16-bit signed product is placed

in R1 (high byte) and R0 (low byte).

Flags: Z, C. Cycles: 2

Example:---

NEG Rd ; Two’s Complement

0 ≤ d ≤ 31 ; Rd ← $00 – Rd

Replaces the contents of register Rd with its two’s complement; the value $80 is

left unchanged.

Flags: H, S, V, N, Z, C. Cycles: 1

Example:
sub r11,r0 ;Subtract r0 from r11
brpl positive ;Branch if result positive
neg r11 ;Take two’s complement of r11

positive: nop ;Branch destination (do nothing)

NOP ; No Operation

This instruction performs a single-cycle No Operation.

Flags: ---. Cycles: 1

Example:
clr r16 ;Clear r16
ser r17 ;Set r17
out $18,r16 ;Write zeros to Port B
nop ;Wait (do nothing)
out $18,r17 ;Write ones to Port B

OR Rd,Rr ; Logical OR

0 ≤ d ≤ 31, 0 ≤ r ≤ 31 ; Rd ← Rd OR Rr

Performs the logical OR between the contents of register Rd and register Rr and

places the result in the destination register Rd.

Flags: S, V ← 0, N, Z. Cycles: 1

Example:
or r15,r16 ;Do bitwise or between registers
bst r15,6 ;Store bit 6 of r15 in T flag
brts ok ;Branch if T flag set
...

ok: nop ;Branch destination (do nothing)

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 696

ORI Rd,K ; Logical OR with Immediate

16 ≤ d ≤ 31, 0 ≤ K ≤ 255 ; Rd ← Rd OR K

Performs the logical OR between the contents of register Rd and a constant and

places the result in the destination register Rd.

Flags: S, V ← 0, N, Z. Cycles: 1

Example:
ori r16,$F0 ;Set high nibble of r16
ori r17,1 ;Set bit 0 of r17

OUT A,Rr ; Store Register to I/O Location

0 ≤ r ≤ 31, 0 ≤ A ≤ 63 ; I/O(A) ← Rr

Stores data from register Rr in the register file to I/O space (ports, timers, config-

uration registers, etc.).

Flags: ---. Cycles: 1

Example:
clr r16 ;Clear r16
ser r17 ;Set r17
out $18,r16 ;Write zeros to Port B
nop ;Wait (do nothing)
out $18,r17 ;Write ones to Port B

POP Rd ; Pop Register from Stack

0 ≤ d ≤ 31 ; Rd ← STACK

This instruction loads register Rd with a byte from the STACK. The stack pointer

is pre-incremented by 1 before the POP.

Flags: ---. Cycles: 2

Example:
call routine ;Call subroutine
...

routine: push r14 ;Save r14 on the stack
push r13 ;Save r13 on the stack
...
pop r13 ;Restore r13
pop r14 ;Restore r14
ret ;Return from subroutine

PUSH Rr ; Push Register on Stack

0 ≤ d ≤ 31 ; STACK ← Rr

This instruction stores the contents of register Rr on the STACK. The stack point-

er is post-decremented by 1 after the PUSH.

Flags: ---. Cycles: 2

Example:
call routine ;Call subroutine
...

routine: push r14 ;Save r14 on the stack
push r13 ;Save r13 on the stack
...
pop r13 ;Restore r13
pop r14 ;Restore r14
ret ;Return from subroutine

APPENDIX A: AVR INSTRUCTIONS EXPLAINED 697

RCALL k ; Relative Call to Subroutine

–2K ≤ k < 2K ; PC ← PC + k + 1

Relative call to an address within PC – 2K + 1 and PC + 2K (words). The return

address (the instruction after the RCALL) is stored onto the stack. (See also CALL.) In

the assembler, labels are used instead of relative operands. For AVR microcontrollers with

program memory not exceeding 4K words (8K bytes) this instruction can address the

entire memory from every address location. The stack pointer uses a post-decrement

scheme during RCALL.

Flags: ---. Cycles: 3

Example:
rcall routine ;Call subroutine
...

routine: push r14 ;Save r14 on the stack
...
pop r14 ;Restore r14
ret ;Return from subroutine

RET ; Return from Subroutine

Returns from subroutine. The return address is loaded from the stack. The stack

pointer uses a pre-increment scheme during RET.

Flags: ---. Cycles: 4

Example:
call routine ;Call subroutine
...

routine: push r14 ;Save r14 on the stack
...
pop r14 ;Restore r14
ret ;Return from subroutine

RETI ; Return from Interrupt

Returns from interrupt. The return address is loaded from the stack and the Global

Interrupt flag is set.

Note that the Status Register is not automatically stored when entering an inter-

rupt routine, and it is not restored when returning from an interrupt routine. This must be

handled by the application program. The stack pointer uses a pre-increment scheme dur-

ing RETI.

Flags: ---. Cycles: 4

Example:
...

extint: push r0 ;Save r0 on the stack
...
pop r0 ;Restore r0
reti ;Return and enable interrupts

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 698

RJMP k ; Relative Jump

–2K ≤ k < 2K ; PC ← PC + k + 1

Relative jump to an address within PC – 2K +1 and PC + 2K (words). In the

assembler, labels are used instead of relative operands. For AVR microcontrollers with

program memory not exceeding 4K words (8K bytes) this instruction can address the

entire memory from every address location.

Flags: ---. Cycles: 2

Example:
cpi r16,$42 ;Compare r16 to $42
brne error ;Branch if r16 not equal $42
rjmp ok ;Unconditional branch

error: add r16,r17 ;Add r17 to r16
inc r16 ;Increment r16

ok: nop ;Destination for rjmp (do nothing)

ROL Rd ; Rotate Left through Carry

0 ≤ d ≤ 31

Shifts all bits in Rd one place to the left. The C

flag is shifted into bit 0 of Rd. Bit 7 is shifted into the

C flag. This operation combined with LSL effectively

multiplies multibyte signed and unsigned values by

two.

Flags: H, S, V, N, Z, C. Cycles: 1

Example:
lsl r18 ;Multiply r19:r18 by two
rol r19 ;r19:r18 is a signed or unsigned word
brcs oneenc ;Branch if carry set
...

oneenc: nop ;Branch destination (do nothing)

ROR Rd ; Rotate Right through Carry

0 ≤ d ≤ 31

Shifts all bits in Rd one place to the right. The

C flag is shifted into bit 7 of Rd. Bit 0 is shifted into

the C flag. This operation combined with ASR effec-

tively divides multibyte signed values by two.

Combined with LSR, it effectively divides multibyte unsigned values by two. The Carry

flag can be used to round the result.

Flags: S, V, N, Z, C. Cycles: 1

Example:
lsr r19 ;Divide r19:r18 by two
ror r18 ;r19:r18 is an unsigned two-byte integer
brcc zeroenc1 ;Branch if carry cleared
asr r17 ;Divide r17:r16 by two
ror r16 ;r17:r16 is a signed two-byte integer
brcc zeroenc2 ;Branch if carry cleared
...

zeroenc1: nop ;Branch destination (do nothing)
...

zeroenc2: nop ;Branch destination (do nothing)

APPENDIX A: AVR INSTRUCTIONS EXPLAINED 699

SBC Rd,Rr ; Subtract with Carry

0 ≤ d ≤ 31, 0 ≤ r ≤ 31 ; Rd ← Rd – Rr – C

Subtracts two registers and subtracts with the C flag and places the result in the

destination register Rd.

Flags: H, S, V, N, Z, C. Cycles: 1

Example: ;Subtract r1:r0 from r3:r2
sub r2,r0 ;Subtract low byte
sbc r3,r1 ;Subtract with carry high byte

SBCI Rd,K ; Subtract Immediate with Carry

0 ≤ d ≤ 31, 0 ≤ r ≤ 31 ; Rd ← Rd – K – C

Subtracts a constant from a register and subtracts with the C flag and places the

result in the destination register Rd.

Flags: H, S, V, N, Z, C. Cycles: 1

Example:
;Subtract $4F23 from r17:r16

subi r16,$23 ;Subtract low byte
sbci r17,$4F ;Subtract with carry high byte

SBI A,b ; Set Bit in I/O Register

0 ≤ A ≤ 31, 0 ≤ b ≤ 7 ; I/O(A,b) ← 1

Sets a specified bit in an I/O register. This instruction operates on the lower 32 I/O

registers.

Flags: ---. Cycles: 2

Example:
out $1E,r0 ;Write EEPROM address
sbi $1C,0 ;Set read bit in EECR
in r1,$1D ;Read EEPROM data

SBIC A,b ; Skip if Bit in I/O Register is Cleared

0 ≤ d ≤ 31, 0 ≤ r ≤ 31 ; If I/O(A,b) = 0 then PC ← PC + 2 (or 3) else PC ← PC + 1

This instruction tests a single bit in an I/O register and skips the next instruction

if the bit is cleared. This instruction operates on the lower 32 I/O registers.

Flags:---. Cycles: 1/2/3

Example:
e2wait: sbic $1C,1 ;Skip next inst. if EEWE cleared

rjmp e2wait ;EEPROM write not finished
nop ;Continue (do nothing)

SBIS A,b ; Skip if Bit in I/O Register is Set

0 ≤ d ≤ 31, 0 ≤ r ≤ 31 ; If I/O(A,b) = 1 then PC ← PC + 2 (or 3) else PC ← PC + 1

This instruction tests a single bit in an I/O register and skips the next instruction

if the bit is set. This instruction operates on the lower 32 I/O registers.

Flags: ---. Cycles: 1/2/3

Example:
waitset: sbis $10,0 ;Skip next inst. if bit 0 in Port D set

rjmp waitset ;Bit not set
nop ;Continue (do nothing)

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 700

SBIW Rd + 1:Rd,K ; Subtract Immediate from Word

d ∈ {24,26,28,30}, 0 ≤ K ≤ 63 ; Rd + 1:Rd ← Rd + 1:Rd – K

Subtracts an immediate value (0–63) from a register pair and places the result in

the register pair. This instruction operates on the upper four register pairs, and is well suit-

ed for operations on the pointer registers.

Flags: S, V, N, Z, C. Cycles: 2

Example:
sbiw r25:r24,1 ;Subtract 1 from r25:r24
sbiw YH:YL,63 ;Subtract 63 from the Y-pointer

SBR Rd,K ; Set Bits in Register

16 ≤ d ≤ 31, 0 ≤ K ≤ 255 ; Rd ← Rd OR K

Sets specified bits in register Rd. Performs the logical ORI between the contents

of register Rd and a constant mask K and places the result in the destination register Rd.

Flags: S,V←0, N, Z. Cycles: 1

Example:
sbr r16,3 ;Set bits 0 and 1 in r16
sbr r17,$F0 ;Set 4 MSB in r17

SBRC Rr,b ; Skip if Bit in Register is Cleared

0 ≤ r ≤ 31, 0 ≤ b ≤7 ; If Rr(b) = 0 then PC ← PC + 2 or 3 else PC ← PC + 1

This instruction tests a single bit in an I/O register and skips the next instruction if

the bit is set. This instruction operates on the lower 32 I/O registers.

Flags: --- Cycles: 1/2/3

Example:
sub r0,r1 ;Subtract r1 from r0
sbrc r0,7 ;Skip if bit 7 in r0 cleared
sub r0,r1 ;Only executed if bit7 in r0 not cleared
nop ;Continue (do nothing)

SBRS Rr,b ; Skip if Bit in Register is Set

0 ≤ r ≤ 31, 0 ≤ b ≤7 ; If Rr(b) = 1 then PC ← PC + 2 or 3 else PC ← PC + 1

This instruction tests a single bit in a register and skips the next instruction if the

bit is set.

Flags: H, S, V, N, Z, C. Cycles: 1/2/3

Example:
sub r0,r1 ;Subtract r1 from r0
sbrs r0,7 ;Skip if bit 7 in r0 set
neg r0 ;Only executed if bit 7 in r0 not set
nop ;Continue (do nothing)

SEC ; Set Carry Flag

; C ← 1

Sets the Carry flag (C) in SREG (Status Register).

Flags: C ← 1. Cycles: 1

Example:
sec ;Set Carry flag
adc r0,r1 ;r0=r0+r1+1

APPENDIX A: AVR INSTRUCTIONS EXPLAINED 701

SEH ; Set Half Carry Flag

; H ← 1

Sets the Half Carry (H) in SREG (Status Register).

Flags: H ← 1. Cycles: 1

Example:
seh ;Set Half Carry flag

SEI ; Set Global Interrupt Flag

; I ← 1

Sets the Global Interrupt flag (I) in SREG (Status Register). The instruction fol-

lowing SEI will be executed before any pending interrupts.

Flags: I ← 1. Cycles: 1

Example:
sei ;Set global interrupt enable
sec ;Set Carry flag
;Note: will set Carry flag before any pending interrupt

SEN ; Set Negative Flag

; N ← 1

Sets the Negative flag (N) in SREG (Status Register).

Flags: N ← 1. Cycles: 1

Example:
add r2,r19 ;Add r19 to r2
sen ;Set Negative flag

SER Rd ; Set all Bits in Register

16 ≤ d ≤ 31 ; Rd ← $FF

Loads $FF directly to register Rd.

Flags: ---. Cycles: 1

Example:
ser r17 ;Set r17
out $18,r17 ;Write ones to Port B

SES ; Set Signed Flag

; S ← 1

Sets the Signed flag (S) in SREG (Status Register).

Flags: S ← 1. Cycles: 1

Example:
add r2,r19 ;Add r19 to r2
ses ;Set Negative flag

SET ; Set T Flag

; T ← 1

Sets the T flag in SREG (Status Register).

Flags: T ← 1. Cycles: 1

Example:
set ;Set T flag

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 702

SEV ; Set Overflow Flag

; V ← 1

Sets the Overflow flag (V) in SREG (Status Register).

Flags: V ← 1. Cycles: 1

Example:
sev ;Set Overflow flag

SEZ ; Set Zero Flag

; Z ← 1

Sets the Zero flag (Z) in SREG (Status Register).

Flags: Z ← 1. Cycles: 1

Example:
sez ;Set Z flag

SLEEP

This instruction sets the circuit in sleep mode defined by the MCU control regis-

ter.

Flags: ---. Cycles: 1

Example:
mov r0,r11 ;Copy r11 to r0
ldi r16,(1<<SE) ;Enable sleep mode
out MCUCR, r16
sleep ;Put MCU in sleep mode

SPM ; Store Program Memory

SPM can be used to erase a page in the program memory, to write a page in the

program memory (that is already erased), and to set Boot Loader Lock bits. In some

devices, the program memory can be written one word at a time, in other devices an entire

page can be programmed simultaneously after first filling a temporary page buffer. In all

cases, the program memory must be erased one page at a time. When erasing the program

memory, the RAMPZ and Z-register are used as page address. When writing the program

memory, the RAMPZ and Z-register are used as page or word address, and the R1:R0 reg-

ister pair is used as data(1). When setting the Boot Loader Lock bits, the R1:R0 register

pair is used as data.

Refer to the device documentation for detailed description of SPM usage. This

instruction can address the entire program memory.

Flags: ---. Cycles: depends on the operation

Syntax: Operation: Comment:

(i) SPM (RAMPZ:Z) ← $ffff Erase program memory page

(ii) SPM (RAMPZ:Z) ← R1:R0 Write program memory word

(iii) SPM (RAMPZ:Z) ← R1:R0 Write temporary page buffer

(iv) SPM (RAMPZ:Z) ← TEMP Write temporary page buffer

to program memory

(v) SPM BLBITS ← R1:R0 Set Boot Loader Lock bits

APPENDIX A: AVR INSTRUCTIONS EXPLAINED 703

ST ; Store Indirect From Register to Data Space

; using Index X

Stores one byte indirect from a register to data space. For parts with SRAM, the

data space consists of the register file, I/O memory, and internal SRAM (and external

SRAM if applicable). For parts without SRAM, the data space consists of the register file

only. The EEPROM has a separate address space.

The data location is pointed to by the X (16 bits) pointer register in the register

file. Memory access is limited to the current data segment of 64K bytes. To access anoth-

er data segment in devices with more than 64K bytes data space, the RAMPX register in

the I/O area has to be changed.

The X-pointer register can either be left unchanged by the operation, or it can be

post-incremented or pre-decremented.These features are especially suited for accessing

arrays, tables, and stack pointer usage of the X-pointer register. Note that only the low

byte of the X-pointer is updated in devices with no more than 256 bytes data space. For

such devices, the high byte of the pointer is not used by this instruction and can be used

for other purposes. The RAMPX register in the I/O area is updated in parts with more than

64K bytes data space or more than 64K bytes program memory, and the increment/ decre-

ment is added to the entire 24-bit address on such devices.

Flags: ---. Cycles: 2

Syntax: Operation: Comment:

(i) ST X, Rr (X) ← Rr X: Unchanged

(ii) ST X+, Rr (X) ← Rr X ← X + 1 X: Postincremented

(iii) ST –X, Rr X ← X – 1 (X) ← Rr X: Predecremented

Example:
clr r27 ;Clear X high byte
ldi r26,$60 ;Set X low byte to $60
st X+,r0 ;Store r0 in data space loc. $60(X post inc)
st X,r1 ;Store r1 in data space loc. $61
ldi r26,$63 ;Set X low byte to $63
st X,r2 ;Store r2 in data space loc. $63
st -X,r3 ;Store r3 in data space loc. $62(X pre dec)

ST (STD) ; Store Indirect From Register to Data Space

; using Index Y

Stores one byte indirect with or without displacement from a register to data space.

For parts with SRAM, the data space consists of the register file, I/O memory, and inter-

nal SRAM (and external SRAM if applicable). For parts without SRAM, the data space

consists of the register file only. The EEPROM has a separate address space.

The data location is pointed to by the Y (16 bits) pointer register in the register file.

Memory access is limited to the current data segment of 64K bytes. To access another data

segment in devices with more than 64K bytes data space, the RAMPY register in the I/O

area has to be changed.

The Y-pointer register can either be left unchanged by the operation, or it can be

post-incremented or pre-decremented. These features are especially suited for accessing

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 704

arrays, tables, and stack pointer usage of the Y-pointer register. Note that only the low byte

of the Y-pointer is updated in devices with no more than 256 bytes data space. For such

devices, the high byte of the pointer is not used by this instruction and can be used for

other purposes. The RAMPY register in the I/O area is updated in parts with more than

64K bytes data space or more than 64K bytes program memory, and the increment/ decre-

ment/displacement is added to the entire 24-bit address on such devices.

Flags: ---. Cycles:2

Syntax: Operation: Comment:

(i) ST Y, Rr (Y) ← Rr Y: Unchanged

(ii) ST Y+, Rr (Y) ← Rr Y ← Y + 1 Y: Postincremented

(iii) ST –Y, Rr Y ← Y – 1 (Y) ← Rr Y: Predecremented

(iiii) STD Y + q, Rr (Y + q) ← Rr Y: Unchanged

q: Displacement

Example:

clr r29 ;Clear Y high byte
ldi r28,$60 ;Set Y low byte to $60
st Y+,r0 ;Store r0 in data space loc. $60 (Y postinc.)
st Y,r1 ;Store r1 in data space loc. $61
ldi r28,$63 ;Set Y low byte to $63
st Y,r2 ;Store r2 in data space loc. $63
st -Y,r3 ;Store r3 in data space loc. $62 (Y predec.)
std Y+2,r4 ;Store r4 in data space loc. $64

ST (STD) ; Store Indirect From Register to Data Space using Index Z

Stores one byte indirect with or without displacement from a register to data space.

For parts with SRAM, the data space consists of the register file, I/O memory, and inter-

nal SRAM (and external SRAM if applicable). For parts without SRAM, the data space

consists of the register file only. The EEPROM has a separate address space.

The data location is pointed to by the Z (16 bits) pointer register in the register file.

Memory access is limited to the current data segment of 64K bytes. To access another data

segment in devices with more than 64K bytes data space, the RAMPZ register in the I/O

area has to be changed.

The Z-pointer register can either be left unchanged by the operation, or it can be

post-incremented or pre-decremented. These features are especially suited for stack point-

er usage of the Z-pointer register; however, because the Z-pointer register can be used for

indirect subroutine calls, indirect jumps and table lookup, it is often more convenient to

use the X or Y-pointer as a dedicated stack pointer. Note that only the low byte of the Z-

pointer is updated in devices with no more than 256 bytes data space. For such devices,

the high byte of the pointer is not used by this instruction and can be used for other pur-

poses. The RAMPZ register in the I/O area is updated in parts with more than 64K bytes

data space or more than 64K bytes program memory, and the increment/decrement/dis-

placement is added to the entire 24-bit address on such devices.

Flags: ---. Cycles: 2

APPENDIX A: AVR INSTRUCTIONS EXPLAINED 705

Syntax: Operation: Comment:

(i) ST Z, Rr (Z) ←Rr Z: Unchanged

(ii) ST Z+, Rr (Z) ← Rr Z ← Z + 1 Z: Postincremented

(iii) ST –Z, Rr Z ← Z – 1 (Z) ← Rr Z: Predecremented

(iiii) STD Z + q, Rr (Z + q) ← Rr Z: Unchanged,

q: Displacement

Example:
clr r31 ;Clear Z high byte
ldi r30,$60 ;Set Z low byte to $60
st Z+,r0 ;Store r0 in data space loc. $60 (Z postinc.)
st Z,r1 ;Store r1 in data space loc. $61
ldi r30,$63 ;Set Z low byte to $63
st Z,r2 ;Store r2 in data space loc. $63
st -Z,r3 ;Store r3 in data space loc. $62 (Z predec.)
std Z+2,r4 ;Store r4 in data space loc. $64

STS k,Rr ; Store Direct to Data Space

0 ≤ r ≤ 31, 0 ≤ k ≤ 65535 ; (k) ← Rr

Stores one byte from a register to the data space. For parts with SRAM, the data

space consists of the register file, I/O memory, and internal SRAM (and external SRAM

if applicable). For parts without SRAM, the data space consists of the register file only.

The EEPROM has a separate address space.

A 16-bit address must be supplied. Memory access is limited to the current data

segment of 64K bytes. The STS instruction uses the RAMPD register to access memory

above 64K bytes. To access another data segment in devices with more than 64K bytes

data space, the RAMPD register in the I/O area has to be changed.

Flags:---. Cycles: 2

Example:
lds r2,$FF00 ;Load r2 with the contents of location $FF00
add r2,r1 ;Add r1 to r2
sts $FF00,r2 ;Write back

SUB Rd,Rr ; Subtract without Carry

0 ≤ d ≤ 31, 0 ≤ r ≤ 31 ; Rd ← Rd – Rr

Subtracts two registers and places the result in the destination register Rd.

Flags: H, S, V, N, Z, C. Cycles: 1

Example:
sub r13,r12 ;Subtract r12 from r13
brne noteq ;Branch if r12 not equal r13
...

noteq: nop ;Branch destination (do nothing)

SUBI Rd,K ; Subtract Immediate

16 ≤ d ≤ 31, 0 ≤ K ≤ 255 ; Rd ← Rd – K

Subtracts a register and a constant and places the result in the destination register

Rd. This instruction works on registers R16 to R31 and is very well suited for operations

on the X, Y, and Z-pointers.

Flags: H, S, V, N, Z, C. Cycles: 1

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 706

Example:
subi r22,$11 ;Subtract $11 from r22
brne noteq ;Branch if r22 not equal $11
...

noteq: nop ;Branch destination (do nothing)

SWAP Rd ; Swap Nibbles

0 ≤ d ≤ 31 ; R(7:4) ← Rd(3:0), R(3:0) ← Rd(7:4)

Swaps high and low nibbles in a register.

Flags:---. Cycles: 1

Example:
inc r1 ;Increment r1
swap r1 ;Swap high and low nibble of r1
inc r1 ;Increment high nibble of r1
swap r1 ;Swap back

TST Rd ; Test for Zero or Minus

0 ≤ d ≤ 31 ; Rd ← Rd • Rd

Tests if a register is zero or negative. Performs a logical AND between a register

and itself. The register will remain unchanged.

Flags: S, V ← 1, N, Z. Cycles: 1

Example:
tst r0 ;Test r0
breq zero ;Branch if r0=0
...

zero: nop ;Branch destination (do nothing)

WDR ; Watchdog Reset

This instruction resets the watchdog timer. This instruction must be executed with-

in a limited time given by the WD prescaler.

Flags:---. Cycles: 1

Example:
wdr ;Reset watchdog timer

APPENDIX A: AVR INSTRUCTIONS EXPLAINED 707

SECTION A.3: AVR REGISTER SUMMARY

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 708

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$3F ($5F) SREG I T H S V N Z C

$3E ($5E) SPH – – – – SP11 SP10 SP9 SP8

$3D ($5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0

$3C ($5C) OCR0 Timer/Counter0 Output Compare Register

$3B ($5B) GICR INT1 INT0 INT2 – – – IVSEL IVCE

$3A ($5A) GIFR INTF1 INTF0 INTF2 – – – – –

$39 ($59) TIMSK OCIE2 TOIE2 TICIE1 OCIE1A OCIE1B TOIE1 OCIE0 TOIE0

$38 ($58) TIFR OCF2 TOV2 ICF1 OCF1A OCF1B TOV1 OCF0 TOV0

$37 ($57) SPMCR SPMIE RWWSB – RWWSRE BLBSET PGWRT PGERS SPMEN

$36 ($56) TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

$35 ($55) MCUCR SE SM2 SM1 SM0 ISC11 ISC10 ISC01 ISC00

$34 ($54) MCUCSR JTD ISC2 – JTRF WDRF BORF EXTRF PORF

$33 ($53) TCCR0 FOC0 WGM00 COM01 COM00 WGM01 CS02 CS01 CS00

$32 ($52) TCNT0 Timer/Counter0 (8 Bits)

$31 ($51)
OSCCAL Oscillator Calibration Register

OCDR On-Chip Debug Register

$30 ($50) SFIOR ADTS2 ADTS1 ADTS0 – ACME PUD PSR2 PSR10

$2F ($4F) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 FOC1A FOC1B WGM11 WGM10

$2E ($4E) TCCR1B ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10

$2D ($4D) TCNT1H Timer/Counter1 – Counter Register High Byte

$2C ($4C) TCNT1L Timer/Counter1 – Counter Register Low Byte

$2B ($4B) OCR1AH Timer/Counter1 – Output Compare Register A High Byte

$2A ($4A) OCR1AL Timer/Counter1 – Output Compare Register A Low Byte

$29 ($49) OCR1BH Timer/Counter1 – Output Compare Register B High Byte

$28 ($48) OCR1BL Timer/Counter1 – Output Compare Register B Low Byte

$27 ($47) ICR1H Timer/Counter1 – Input Capture Register High Byte

$26 ($46) ICR1L Timer/Counter1 – Input Capture Register Low Byte

$25 ($45) TCCR2 FOC2 WGM20 COM21 COM20 WGM21 CS22 CS21 CS20

$24 ($44) TCNT2 Timer/Counter2 (8 Bits)

$23 ($43) OCR2 Timer/Counter2 Output Compare Register

$22 ($42) ASSR – – – – AS2 TCN2UB OCR2UB TCR2UB

$21 ($41) WDTCR – – – WDTOE WDE WDP2 WDP1 WDP0

$20 ($40)
UBRRH URSEL – – – UBRR[11:8]

UCSRC URSEL UMSEL UPM1 UPM0 USBS UCSZ1 UCSZ0 UCPOL

$1F ($3F) EEARH – – – – – – EEAR9 EEAR8

$1E ($3E) EEARL EEPROM Address Register Low Byte

$1D ($3D) EEDR EEPROM Data Register

$1C ($3C) EECR – – – – EERIE EEMWE EEWE EERE

$1B ($3B) PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0

$1A ($3A) DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0

$19 ($39) PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0

$18 ($38) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0

$17 ($37) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0

$16 ($36) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0

$15 ($35) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0

$14 ($34) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0

$13 ($33) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0

$12 ($32) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0

$11 ($31) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0

$10 ($30) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0

$0F ($2F) SPDR SPI Data Register

$0E ($2E) SPSR SPIF WCOL – – – – – SPI2X

$0D ($2D) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0

$0C ($2C) UDR USART I/O Data Register

$0B ($2B) UCSRA RXC TXC UDRE FE DOR PE U2X MPCM

$0A ($2A) UCSRB RXCIE TXCIE UDRIE RXEN TXEN UCSZ2 RXB8 TXB8

$09 ($29) UBRRL USART Baud Rate Register Low Byte

$08 ($28) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0

$07 ($27) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0

$06 ($26) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0

$05 ($25) ADCH ADC Data Register High Byte

$04 ($24) ADCL ADC Data Register Low Byte

$03 ($23) TWDR Two-wire Serial Interface Data Register

$02 ($22) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 TWA1 TWA0 TWGCE

$01 ($21) TWAR TWA6 TWA5 TWA4 TWA3 TWA2 – TWPS1 TWPS0

$00 ($20) TWBR Two-wire Serial Interface Bit Rate Register

OVERVIEW

This appendix shows the basics of wire wrapping.

APPENDIX B

BASICS OF

WIRE WRAPPING

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 709

BASICS OF WIRE WRAPPING

Note: For this tutorial appendix, you will need the following:

Wire-wrapping tool (Radio Shack part number 276-1570)

30-gauge (30-AWG) wire for wire wrapping

(Thanks to Shannon Looper and Greg Boyle for their assistance on this section.)

The following describes the basics of wire wrapping.

1. There are several different types of wire-wrap tools available. The best one is

available from Radio Shack for less than $10. The part number for Radio

Shack is 276-1570. This tool combines the wrap and unwrap functions in the

same end of the tool and includes a separate stripper. We found this to be much

easier to use than the tools that combined all these features on one two-ended

shaft. There are also wire-wrap guns, which are, of course, more expensive.

2. Wire-wrapping wire is available prestripped in various lengths or in bulk on a

spool. The prestripped wire is usually more expensive and you are restricted to

the different wire lengths you can afford to buy. Bulk wire can be cut to any

length you wish, which allows each wire to be custom fit.

3. Serveral different types of wire-wrap boards are available. These are usually

called perfboards or wire-wrap boards. These types of boards are sold at many

electronics stores (such as Radio Shack). The best type of board has plating

around the holes on the bottom of the board. These boards are better because

the sockets and pins can be soldered to the board, which makes the circuit more

mechanically stable.

4. Choose a board that is large enough to accommodate all the parts in your

design with room to spare so that the wiring does not become too cluttered. If

you wish to expand your project in the future, you should be sure to include

enough room on the original board for the complete circuit. Also, if possible,

the layout of the IC on the board needs to be such that signals go from left to

right just like the schematics.

5. To make the wiring easier and to keep pressure off the pins, install one stand-

off on each corner of the board. You may also wish to put standoffs on the top

of the board to add stability when the board is on its back.

6. For power hook-up, use some type of standard binding post. Solder a few sin-

gle wire-wrap pins to each power post to make circuit connections (to at least

one pin for each IC in the circuit).

7. To further reduce problems with power, each IC must have its own connection

to the main power of the board. If your perfboard does not have built-in power

buses, run a separate power and ground wire from each IC to the main power.

In other words, DO NOT daisy chain (making a chip-to-chip connection is

called daisy chaining) power connections, as each connection down the line

will have more wire and more resistance to get power through. However, daisy

chaining is acceptable for other connections such as data, address, and control

buses.

8. You must use wire-wrap sockets. These sockets have long square pins whose

edges will cut into the wire as it is wrapped around the pin.

9. Wire wrapping will not work on round legs. If you need to wrap to compo-

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi)710

nents, such as capacitors, that have round legs, you must also solder these con-

nections. The best way to connect single components is to install individual

wire-wrap pins into the board and then solder the components to the pins. An

alternate method is to use an empty IC socket to hold small components such

as resistors and wrap them to the socket.

10. The wire should be stripped about 1 inch. This will allow 7 to 10 turns for each

connection. The first turn or turn-and-a-half should be insulated. This prevents

stripped wire from coming in contact with other pins. This can be accom-

plished by inserting the wire as far as it will go into the tool before making the

connection.

11. Try to keep wire lengths to a minimum. This prevents the circuit from looking

like a bird nest. Be neat and use color coding as much as possible. Use only

red wires for VCC and black wires for ground connections. Also use different

colors for data, address, and control signal connections. These suggestions will

make troubleshooting much easier.

12. It is standard practice to connect all power lines first and check them for con-

tinuity. This will eliminate trouble later on.

13. It's also a good idea to mark the pin orientation on the bottom of the board.

Plastic templates are available with pin numbers preprinted on them specifi-

cally for this purpose or you can make your own from paper. Forgetting to

reverse pin order when looking at the bottom of the board is a very common

mistake when wire wrapping circuits.

14. To prevent damage to your circuit, place a diode (such as IN5338) in reverse

bias across the power supply. If the power gets hooked up backwards, the

diode will be forward biased and will act as a short, keeping the reversed volt-

age from your circuit.

15. In digital circuits, there can be a problem with current demand on the power

supply. To filter the noise on the power supply, a 100 μF electrolytic capacitor

and a 0.1 μF monolithic capacitor are connected from VCC to ground, in par-

allel with each other, at the entry point of the power supply to the board. These

two together will filter both the high- and the low-frequency noises. Instead of

using two capacitors in parallel, you can use a single 20–100 μF tantalum

capacitor. Remember that the long lead is the positive one.

16. To filter the transient current, use a 0.1 μF monolithic capacitor for each IC.

Place the 0.1 μF monolithic capacitor between VCC and ground of each IC.

Make sure the leads are as short as possible.

APPENDIX B: BASIC OF WIRE WRAPPING 711

IC #1 IC #2 IC #3 IC #4

Figure B-1. Daisy Chain Connection (not recommended for power lines)

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 712

713

OVERVIEW

This appendix provides an overview of IC technology and AVR

interfacing. In addition, we look at the microcontroller-based system as a

whole and examine some general issues in system design.

First, in Section C.1, we provide an overview of IC technology.

Then, in Section C.2, the internal details of AVR I/O ports and interfac-

ing are discussed. Section C.3 examines system design issues.

APPENDIX C

IC INTERFACING AND

SYSTEM DESIGN ISSUES

C.1: OVERVIEW OF IC TECHNOLOGY

In this section we examine IC technology and discuss some major devel-

opments in advanced logic families. Because this is an overview, it is assumed that

the reader is familiar with logic families on the level presented in basic digital

electronics books.

Transistors

The transistor was invented in 1947 by three scientists at Bell Laboratory.

In the 1950s, transistors replaced vacuum tubes in many electronics systems,

including computers. It was not until 1959 that the first integrated circuit was suc-

cessfully fabricated and tested by Jack Kilby of Texas Instruments. Prior to the

invention of the IC, the use of transistors, along with other discrete components

such as capacitors and resistors, was common in computer design. Early transis-

tors were made of germanium, which was later abandoned in favor of silicon. This

was because the slightest rise in temperature resulted in massive current flows in

germanium-based transistors. In semiconductor terms, it is because the band gap

of germanium is much smaller than that of silicon, resulting in a massive flow of

electrons from the valence band to the conduction band when the temperature rises

even slightly. By the late 1960s and early 1970s, the use of the silicon-based IC

was widespread in mainframes and minicomputers. Transistors and ICs at first

were based on P-type materials. Later on, because the speed of electrons is much

higher (about two-and-a-half times) than the speed of holes, N-type devices

replaced P-type devices. By the mid-1970s, NPN and NMOS transistors had

replaced the slower PNP and PMOS transistors in every sector of the electronics

industry, including in the design of microprocessors and computers. Since the

early 1980s, CMOS (complementary MOS) has become the dominant technology

of IC design. Next we provide an overview of differences between MOS and bipo-

lar transistors. See Figure C-1.

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 714

N

P

N

C

B

E

D

G

S

B

C

E

Bipolar NPN Transistor NMOS Transistor

N

N

P G

S

D

Oxide

Figure C-1. Bipolar vs. MOS Transistors

MOS vs. bipolar transistors

There are two types of transistors: bipolar and MOS (metal-oxide semi-

conductor). Both have three leads. In bipolar transistors, the three leads are

referred to as the emitter, base, and collector, while in MOS transistors they are

named source, gate, and drain. In bipolar transistors, the carrier flows from the

emitter to the collector, and the base is used as a flow controller. In MOS transis-

tors, the carrier flows from the source to the drain, and the gate is used as a flow

controller. In NPN-type bipolar transistors, the electron carrier leaving the emitter

must overcome two voltage barriers before it reaches the collector (see Figure C-

1). One is the N-P junction of the emitter-base and the other is the P-N junction of

the base-collector. The voltage barrier of the base-collector is the most difficult

one for the electrons to overcome (because it is reverse-biased) and it causes the

most power dissipation. This led to the design of the unipolar type transistor called

MOS. In N-channel MOS transistors, the electrons leave the source and reach the

drain without going through any voltage barrier. The absence of any voltage bar-

rier in the path of the carrier is one reason why MOS dissipates much less power

than bipolar transistors. The low power dissipation of MOS allows millions of

transistors to fit on a single IC chip. In today's technology, putting 10 million tran-

sistors into an IC is common, and it is all because of MOS technology. Without the

MOS transistor, the advent of desktop personal computers would not have been

possible, at least not so soon. The bipolar transistors in both the mainframes and

minicomputers of the 1960s and 1970s were bulky and required expensive cooling

systems and large rooms. MOS transistors do have one major drawback: They are

slower than bipolar transistors. This is due partly to the gate capacitance of the

MOS transistor. For a MOS to be turned on, the input capacitor of the gate takes

time to charge up to the turn-on (threshold) voltage, leading to a longer propaga-

tion delay.

Overview of logic families

Logic families are judged according to (1) speed, (2) power dissipation, (3)

noise immunity, (4) input/output interface compatibility, and (5) cost. Desirable

qualities are high speed, low power dissipation, and high noise immunity (because

it prevents the occurrence of false logic signals during switching transition). In

interfacing logic families, the more inputs that can be driven by a single output,

the better. This means that high-driving-capability outputs are desired. This, plus

the fact that the input and output voltage levels of MOS and bipolar transistors are

not compatible mean that one must be concerned with the ability of one logic fam-

ily to drive the other one. In terms of the cost of a given logic family, it is high dur-

ing the early years of its introduction but it declines as production and use rise.

The case of inverters

As an example of logic gates, we look at a simple inverter. In a one-tran-

sistor inverter, the transistor plays the role of a switch, and R is the pull-up resis-

tor. See Figure C-2. For this inverter to work most effectively in digital circuits,

however, the R value must be high when the transistor is “on” to limit the current

flow from VCC to ground in order to have low power dissipation (P = VI, where V

APPENDIX C: IC INTERFACING AND SYSTEM DESIGN ISSUES 715

= 5 V). In other words, the lower the I, the lower the power dissipation. On the

other hand, when the transistor is “off”, R must be a small value to limit the volt-

age drop across R, thereby making sure that VOUT is close to VCC. This is a con-

tradictory demand on R. This is one reason that logic gate designers use active

components (transistors) instead of passive components (resistors) to implement

the pull-up resistor R.

The case of a TTL inverter with totem-pole output is shown in Figure C-3.

In Figure C-3, Q3 plays the role of a pull-up resistor.

CMOS inverter

In the case of CMOS-based logic gates, PMOS and NMOS are used to con-

struct a CMOS (complementary MOS) inverter as shown in Figure C-4. In CMOS

inverters, when the PMOS transistor is off, it provides a very high impedance path,

making leakage current almost zero (about 10 nA); when the PMOS is on, it pro-

vides a low resistance on the path of VDD to load. Because the speed of the hole is

slower than that of the electron, the PMOS transistor is wider to compensate for

this disparity; therefore, PMOS transistors take more space than NMOS transistors

in the CMOS gates. At the end of this section we will see an open-collector gate

in which the pull-up resistor is provided externally, thereby allowing system

designers to choose the value of the pull-up resistor.

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 716

Vcc

Out
In

Rc

Vcc

Low
High

Rc must be a

very high value.

Rc must be a

very low value.

Rc

Vcc

High
Low

Rc

Figure C-2. One-Transistor Inverter with Pull-up Resistor

Vcc

Low

High

On

Out

Off

OffInput

Q1

Q2

Q3

Q4

Figure C-3. TTL Inverter with Totem-Pole Output

Vcc

Vcc

High

Low
On

On

Out

Off

Input

On Off

Input/output characteristics of some logic families

In 1968 the first logic family made of bipolar transistors was marketed. It

was commonly referred to as the standard TTL (transistor-transistor logic) family.

The first MOS-based logic family, the CD4000/74C series, was marketed in 1970.

The addition of the Schottky diode to the base-collector of bipolar transistors in

the early 1970s gave rise to the S family. The Schottky diode shortens the propa-

gation delay of the TTL family by preventing the collector from going into what

is called deep saturation. Table C-1 lists major characteristics of some logic fam-

ilies. In Table C-1, note that as the CMOS circuit's operating frequency rises, the

power dissipation also increases. This is not the case for bipolar-based TTL.

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES 717

OutputInput
0 V5 V

PMOS

“on”

“off”

NMOS

VDD

VSS

OutputInput
5 V0 V

PMOS

“off”

“on”

NMOS

VDD

VSS

Figure C-4. CMOS Inverter

Table C-1: Characteristics of Some Logic Families

Characteristic STD TTL LSTTL ALSTTL HCMOS

VCC 5 V 5 V 5 V 5 V

VIH 2.0 V 2.0 V 2.0 V 3.15 V

VIL 0.8 V 0.8 V 0.8 V 1.1 V

VOH 2.4 V 2.7 V 2.7 V 3.7 V

VOL 0.4 V 0.5 V 0.4 V 0.4 V

IIL
−1.6 mA −0.36 mA −0.2 mA −1 μA

IIH 40 μA 20 μA 20 μA 1 μA

IOL 16 mA 8 mA 4 mA 4 mA

IOH
−400 μA −400 μA −400 μA 4 mA

Propagation delay 10 ns 9.5 ns 4 ns 9 ns

Static power dissipation (f = 0) 10 mW 2 mW 1 mW 0.0025 nW

Dynamic power dissipation

at f = 100 kHz 10 mW 2 mW 1 mW 0.17 mW

History of logic families

Early logic families and microprocessors required both positive and nega-

tive power voltages. In the mid-1970s, 5 V VCC became standard. In the late

1970s, advances in IC technology allowed combining the speed and drive of the S

family with the lower power of LS to form a new logic family called FAST
(Fairchild Advanced Schottky TTL). In 1985, AC/ACT (Advanced CMOS

Technology), a much higher speed version of HCMOS, was introduced. With the

introduction of FCT (Fast CMOS Technology) in 1986, the speed gap between

CMOS and TTL at last was closed. Because FCT is the CMOS version of FAST,

it has the low power consumption of CMOS but the speed is comparable with

TTL. Table C-2 provides an overview of logic families up to FCT.

Recent advances in logic families

As the speed of high-performance microprocessors reached 25 MHz, it

shortened the CPU's cycle time, leaving less time for the path delay. Designers

normally allocate no more than 25% of a CPU's cycle time budget to path delay.

Following this rule means that there must be a corresponding decline in the prop-

agation delay of logic families used in the address and data path as the system fre-

quency is increased. In recent years, many semiconductor manufacturers have

responded to this need by providing logic families that have high speed, low noise,

and high drive I/O. Table C-3 provides the characteristics of high-performance

logic families introduced in recent years. ACQ/ACTQ are the second-generation

advanced CMOS (ACMOS) with much lower noise. While ACQ has the CMOS

input level, ACTQ is equipped with TTL-level input. The FCTx and FCTx-T are

second-generation FCT with much higher speed. (The “x” in the FCTx and FCTx-

T refers to various speed grades, such as A, B, and C, where A means low speed

and C means high speed.) For designers who are well versed in using the FAST

logic family, FASTr is an ideal choice because it is faster than FAST, has higher

driving capability (IOL, IOH), and produces much lower noise than FAST. At the

time of this writing, next to ECL and gallium arsenide logic gates, FASTr is the

fastest logic family in the market (with the 5 V VCC), but the power consumption

is high relative to other logic families, as shown in Table C-3. The combining of

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 718

Table C-2: Logic Family Overview

Year Static Supply High/Low Family
Product Introduced Speed (ns) Current (mA) Drive (mA)

Std TTL 1968 40 30 −2/32

CD4K/74C 1970 70 0.3 −0.48/6.4

LS/S 1971 18 54 −15/24

HC/HCT 1977 25 0.08 −6/−6

FAST 1978 6.5 90 −15/64

AS 1980 6.2 90 −15/64

ALS 1980 10 27 −15/64

AC/ACT 1985 10 0.08 −24/24

FCT 1986 6.5 1.5 −15/64

Reprinted by permission of Electronic Design Magazine, c. 1991.

high-speed bipolar TTL and the low power consumption of CMOS has given birth

to what is called BICMOS. Although BICMOS seems to be the future trend in IC

design, at this time it is expensive due to extra steps required in BICMOS IC fab-

rication, but in some cases there is no other choice. (For example, Intel's Pentium

microprocessor, a BICMOS product, had to use high-speed bipolar transistors to

speed up some of the internal functions.) Table C-3 provides advanced logic char-

acteristics. The “x” is for different speeds designated as A, B, and C. A is the slow-

est one while C is the fastest one. The above data is for the 74244 buffer.

Since the late 1970s, the use of a +5 V power supply has become standard

in all microprocessors and microcontrollers. To reduce power consumption, 3.3 V

VCC is being embraced by many designers. The lowering of VCC to 3.3 V has two

major advantages: (1) It lowers the

power consumption, prolonging

the life of the battery in systems

using a battery, and (2) it allows a

further reduction of line size

(design rule) to submicron dimen-

sions. This reduction results in put-

ting more transistors in a given die

size. As fabrication processes

improve, the decline in the line size

is reaching submicron level and

transistor densities are approaching

1 billion transistors.

Open-collector and open-drain

gates

To allow multiple outputs to be connect-

ed together, we use open-collector logic gates.

In such cases, an external resistor will serve as

load. This is shown in Figures C-5 and C-6.

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES 719

Table C-3: Advanced Logic General Characteristics

Number Tech Static
Family Year Suppliers Base I/O Level Speed (ns) Current IOH/IOL

ACQ 1989 2 CMOS CMOS/CMOS 6.0 80 μA −24/24 mA

ACTQ 1989 2 CMOS TTL/CMOS 7.5 80 μA −24/24 mA

FCTx 1987 3 CMOS TTL/CMOS 4.1–4.8 1.5 mA −15/64 mA

FCTxT 1990 2 CMOS TTL/TTL 4.1–4.8 1.5 mA −15/64 mA

FASTr 1990 1 Bipolar TTL/TTL 3.9 50 mA −15/64 mA

BCT 1987 2 BICMOS TTL/TTL 5.5 10 mA −15/64 mA
Reprinted by permission of Electronic Design Magazine, c. 1991.

Figure C-5. Open Collector

Vcc

Input

Output

External

pull-up

resistor

External

pull-up

resistor

Figure C-6. Open Drain

SECTION C.2: AVR I/O PORT STRUCTURE AND INTERFACING

In interfacing the AVR microcontroller with other IC chips or devices, fan-

out is the most important issue. To understand the AVR fan-out we must first

understand the port structure of the AVR. This section provides a detailed discus-

sion of the AVR port structure and its fan-out. It is very critical that we understand

the I/O port structure of the AVR lest we damage it while trying to interface it with

an external device.

IC fan-out

When connecting IC chips together, we need to find out how many input

pins can be driven by a single output pin. This is a very important issue and

involves the discussion of what is called IC fan-out. The IC fan-out must be

addressed for both logic “0” and logic “1” outputs. See Example C-1. Fan-out for

logic LOW and fan-out for logic HIGH are defined as follows:

Of the above two values, the lower number is used to ensure the proper

noise margin. Figure C-7 shows the sinking and sourcing of current when ICs are

connected together.

Notice that in Figure C-7, as the number of input pins connected to a sin-

gle output increases, IOL rises, which causes VOL to rise. If this continues, the rise

of VOL makes the noise margin smaller, and this results in the occurrence of false

logic due to the slightest noise.

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 720

fan-out (of LOW) =
IOL

IIL
fan-out (of HIGH) =

IOH

IIH

“On”

“Off”

IIL IIL IIL

IOL

IOL = Σ IIL
VOL = RON (transistor) × IOL

“Off”

HIGH LOW

“On”

IIH IIH IIH

IOH

IOH = Σ IIH

IOH
IOL

Figure C-7. Current Sinking and Sourcing in TTL

74LS244 and 74LS245 buffers/drivers

In cases where the receiver current requirements exceed the driver’s capa-

bility, we must use buffers/drivers such as the 74LS245 and 74LS244. Figure C-8

shows the internal gates for the 74LS244 and 74LS245. The 74LS245 is used for

bidirectional data buses, and the 74LS244 is used for unidirectional address buses.

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES 721

Find how many unit loads (UL) can be driven by the output of the LS logic family.

Solution:

The unit load is defined as IIL = 1.6 mA and IIH = 40 μA. Table C-1 shows IOH = 400

μA and IOL = 8 mA for the LS family. Therefore, we have

This means that the fan-out is 5. In other words, the LS output must not be connected

to more than 5 inputs with unit load characteristics.

Example C-1

fan-out (LOW) = = = 5

= 10=

IOL

IIL

fan-out (HIGH) =
IOH

IIH

8 mA

1.6 mA

400 μA

40 μA

1A-1

1A-2

1A-3

1A-4

2A-1

2A-2

2A-3

2A-4

2Y-1

2Y-2

2Y-3

2Y-4

GND

1GVcc

1Y-1

1Y-2

1Y-3

1Y-4

1G

Figure C-8 (a). 74LS244 Octal Buffer
(Reprinted by permission of Texas Instruments, Copyright

Texas Instruments, 1988)

Direction control

Enable G DIR Operation

L L B Data to A Bus

L H A Data to B Bus

H X Isolation

Function Table

A1

A2

B1

B2

B3

B4

B5

B6

B7

B8

GDIR

Direction

control
Enable

Vcc GND

A3

A4

A5

A6

A7

A8

Figure C-8 (b). 74LS245 Bidirectional Buffer
(Reprinted by permission of Texas Instruments, Copyright

Texas Instruments, 1988)

Tri-state buffer

Notice that the

74LS244 is simply 8 tri-

state buffers in a single

chip. As shown in Figure

C-9 a tri-state buffer has a

single input, a single out-

put, and the enable control

input. By activating the

enable, data at the input is

transferred to the output.

The enable can be an

active-LOW or an active-

HIGH. Notice that the

enable input for the

74LS244 is an active-LOW whereas the enable input pin for Figure C-9 is active-

HIGH.

74LS245 and 74LS244 fan-out

It must be noted that the output of the 74LS245 and 74LS244 can sink and

source a much larger amount of current than that of other LS gates. See Table

C-4. That is the reason we use these buffers for driver when a signal is travelling

a long distance through a cable or it has to drive many inputs.

After this background on the fan-out, next we discuss the structure of AVR

ports.

AVR port structure and operation

All the ports of the AVR are bidirectional. They all have three registers that

can be accessed by IN and OUT instructions. We will descuss each register in

detail.

PORTx register
As you can see in Figure C-10, the PORTx register can be accessed using

read and write operations. When we want to write to PORTx, we use the “OUT

PORTx, Rr” instruction. In this case, the WR-PORTx pin is set high and Rr is

loaded into PORTx.

When we want to read from PORTx, we use “IN Rd, PORTx”. In this case,

the PRx pin is set to HIGH, which enables the buffer and makes it possible to read

from PORTx.

The output of PORTx is either connected to the Px pin of the chip or con-

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 722

Table C-4: Electrical Specifications for Buffers/Drivers

IOH (mA) IOL (mA)

74LS244 3 12

74LS245 3 12

In
(a)

Out

Tri-state
control
(active high)

L
(b)

L

H

H
(c)

H

H

(d)

Low

High-impedance
(open-circuit)

Figure C-9. Tri-State Buffer

trols the pull-up resistor, as we will see next.

DDRx register
As shown in Figure C-10, the DDRx register can be accessed using read

and write operations. When we want to write to DDRx, we use “OUT DDRx, Rr”.

In this case, the WR-DDRx pin is set to HIGH and enables writing to DDRx.

When we want to read from DDRx, we use “IN Rd, DDRx”. In this case, the RDx

pin is set to LOW, which enables the buffer and makes it possible to read from

DDRx.

The DDRx register controls the output buffer and the pull-up resistor.

When the Q of DDRx is HIGH, it enables the output buffer and connects the Q of

the PORTx register to the Px pin of the chip. In this case, the pin is configured as

output. When the Q of DDRx is LOW, it disables the output buffer and configures

the Px pin of the chip as input. In this case, assuming that the PUD bit is LOW, the

Q of PORTx controls the pull-up resistor. When the Q of PORTx is HIGH, it

enables the pull-up resistor, and when it is LOW, it disables the pull-up resistor.

PINx register

As you see in Figure C-10, when the AVR is not in sleep mode, the PINxn

flip-flop is loaded with the value of the AVR pin on each machine cycle. Therefore,

to read the current state of the Px pin of the chip, we should read the content of the

PINx register. To do so, we use “IN Rd,PINx”, which sets RPx high and enables the

input buffer. In this case, the value of PINx passes through the internal data bus of

AVR and will be loaded into the Rd register.

APPENDIX C: IC INTERFACING AND SYSTEM DESIGN ISSUES 723

QD

Q

Q D

RRx

CLKI/O

WR PORTxn

WR DDRxn

DATA BUS

RDx

PORTxn

DDRxn

Q D

Q CLK

RESET

CLKQ

PUD

RESET

RPx

QD

QL

RESETRESET

PINxn

Pxn

Sleep

SYNCHRONIZER

1

Pull-up

Resistor

ON or OFF

depending

on the

value of

PORTxn

Inside AVR

pin of

chip

Output Buffer

Input Buffer

Outside

AVR

Figure C-10. The AVR Ports Structure

Reading the pin when DDRx.n = 0 (Input)

As we stated in Chapter 4, to make any bits of any port of the AVR an input

port, we first must write a 0 (logic LOW) to the DDRx.n bit. Look at the follow-

ing sequence of events to see why:

1. As can be seen from Figure C-11, if we write 0 to the DDRx.n, it will have

“LOW” on its Q. This turns off the tri-state buffer.

2. When the tri-state buffer is off, it blocks the path from the Q of PORTx.n to

the pin of chip, and the input signal is directed to the PINx.n buffer.

3. When reading the input port in instructions such as “IN R16,PINB” we are

reading the data present at the pin. In other words, it is bringing into the CPU

the status of the external pin. This instruction activates the read pin of the

buffer and lets data at the pins flow into the CPU’s internal bus. Figure C-11

shows how the input circuit works.

Writing to pin when DDRx.n = 1 (Output)

The above discussion showed why we must write a “LOW” to a port’s

DDRx.n bits in order to make it an input port. What happens if we write a “1” to

DDRx.n that was configured as an input port? From Figure C-12 we see that when

DDRx.n = 1, the DDRx.n latch has “HIGH” on its Q. This turns on the tri-state

buffer, and the data of PORTx.n is transferred to the pin of chip.

From Figure C-12 we see that when DDRx.n = 1, if we write a 0 to the

PORTx.n latch, then PORTx.n has “LOW” on its Q. This provides 0 to the pin of

chip. Therefore, any attempt to read the input pin will always get the “LOW”

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 724

QD

Q

Q D

RRx

CLKI/O

WR PORTxn

WR DDRxn

DATA BUS

RDx

PORTxn

DDRxn

Q D

Q CLK

0

RESET

CLKQ

PUD

RESET

RPx

QD

QL

RESETRESET

PINxn

Pxn

Sleep

SYNCHRONIZER

Pull-up

Resistor

0

represents how the content of PORTx register affects the pull -up resistor .
shows how a data can be read from a pin

ON or OFF

depending

on the value

of PORTxn

Inside AVRpin of chip

Figure C-11. Inputting (Reading) from a Pin via a PINx Register in the AVR

ground signal. Figure C-13 shows what happens if we write “HIGH” to PORTx.n

when DDRx.n = 1. Writing 1 to the PORTx.n makes Q = 1. As a result, a 1 is pro-

vided to the pin of the chip. Therefore, any attempt to read the input pin will

always get the “HIGH” signal.

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES 725

QD

Q

Q D

RRx

CLKI/O

WR PORTxn

WR DDRxn

DATA BUS

RDx

PORTxn

DDRxn
Q D

Q CLK

0

1

0

0

RESET

CLKQ

PUD

RESET

RPx

QD

QL

RESETRESET

PINxn

Pxn

Sleep

SYNCHRONIZER

00

OFF

Pull-up

Resistor

Inside AVR
pin of chip

1

Figure C-12. Outputting (Writing) 0 to a Pin in the AVR

QD

Q

Q D

RRx

CLKI/O

WR PORTxn

WR DDRxn

DATA BUS

RDx

PORTxn

DDRxn

Q D

Q CLK

1

1

1

1

RESET

CLKQ

PUD

RESET

RPx

QD

QL

RESETRESET

PINxn

Pxn

Sleep

SYNCHRONIZER

11

OFF

Pull-up

Resistor

Inside AVR
pin of chip

1

Figure C-13. Outputting (Writing) 1 to a Pin in the AVR

Notice that we should not make an I/O port output while it is externally

connected to a voltage; otherwise, we might damage the ports.

For example, see Figure C-14. In this program, the PORTB.3 is mistaken-

ly set as output. When the key is closed, the pin will be directly connected to

ground while the AVR is trying to send out high. As a result, the AVR will be dam-

aged when the key is closed. Also, the program will not work properly, as it will

always read high while trying to read the pin.

The above points are extremely important and must be emphasized

because many people damage their ports and afterwards wonder how it happened.

We must also use the right instruction when we want to read the status of an input

pin.

AVR port fan-out

Now that we are familiar with the port

structure of the AVR, we need to examine the

fan-out for the AVR microcontroller. AVR

microcontrollers are all based on CMOS

technology. Note, however, that while the

core of the AVR microcontroller is CMOS,

the circuitry driving its pins is all TTL com-

patible. That is, the AVR is a CMOS-based

product with TTL-compatible pins. Table C-5 provides the I/O characteristics of

AVR ports.

SECTION C.3: SYSTEM DESIGN ISSUES

In addition to fan-out, the other issues related to system design are power

dissipation, ground bounce, VCC bounce, crosstalk, and transmission lines. In this

section we provide an overview of these topics.

Power dissipation considerations

Power dissipation is a major concern of system designers, especially for

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 726

Table C-5: Fan-out for AVR Ports

Pin Fan-out

IOL 20 mA

IOH −20 mA

IIL −1 μA

IIH 1 μA
Note: Negative current is defined as current

sourced by the pin.

PB3

AVR4.7k

Switch

VCC

Figure C-14. A Common Mistake, Which Damages I/O Ports

.INCLUDE "M32DEF.INC"

SBI DDRB, 3 ;PB3 as output
;Note: Since PB3 is connected to a
;switch it cannot be configured as
;output

SBI PORTB, 3 ;PB3 = high
HERE: SBIC PINB, 3

RJMP HERE ;stay in the loop
...

laptop and hand-held systems in which batteries provide the power. Power dissi-

pation is a function of frequency and voltage as shown below:

In the above equations, the effects of frequency and VCC voltage should be

noted. While the power dissipation goes up linearly with frequency, the impact of

the power supply voltage is much more pronounced (squared). See Example C-2.

Dynamic and static currents

Two major types of currents flow through an IC: dynamic and static. A

dynamic current is I = CVF. It is a function of the frequency under which the com-

ponent is working. This means that as the frequency goes up, the dynamic current

and power dissipation go up. The static current, also called DC, is the current con-

sumption of the component when it is inactive (not selected). The dynamic cur-

rent dissipation is much higher than the static current consumption. To reduce

power consumption, many microcontrollers, including the AVR, have power-sav-

ing modes. In the AVR, the power saving mode is called sleep mode. We describe

the sleep mode next.

Sleep mode
In sleep mode the clocks of the CPU and some peripheral functions, such

as serial ports, interrupts, and timers, are cut off. This brings power consumption

down to an absolute minimum, while the contents of RAM and the SFR registers

are saved and remain unchanged. The AVR provides six different sleeping modes,

which enable you to choose which units will sleep. For more information see the

AVR datasheets.

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES 727

Compare the power consumption of two microcontroller-based systems. One uses 5 V

and the other uses 3 V for VCC.

Solution:

Because P = VI, by substituting I = V/R we have P = V2/R. Assuming that R = 1, we

have P = 52 = 25 W and P = 32 = 9 W. This results in using 16 W less power, which

means power saving of 64% (16/25 × 100) for systems using a 3 V power source.

Example C-2

Q = CV

I = CVF

P = VI = CV2F

Q
T

1

T
Q
TF = I =since

now

and

CV
T=

Ground bounce

One of the major issues that designers of high-frequency systems must

grapple with is ground bounce. Before we define ground bounce, we will discuss

lead inductance of IC pins. There is a certain amount of capacitance, resistance,

and inductance associated with each pin of the IC. The size of these elements

varies depending on many factors such as length, area, and so on.

The inductance of the pins is commonly referred to as self-inductance
because there is also what is called mutual inductance, as we will show below. Of

the three components of capacitor, resistor, and inductor, the property of self-

inductance is the one that causes the most problems in high-frequency system

design because it can result in ground bounce. Ground bounce occurs when a mas-

sive amount of current flows through the ground pin caused by many outputs

changing from HIGH to LOW all at the same time. See Figure C-15 (a). The volt-

age is related to the inductance of the ground lead as follows:

As we increase the system frequency, the rate of dynamic current, di/dt, is

also increased, resulting in an increase in the inductance voltage L (di/dt) of the

ground pin. Because the LOW state (ground) has a small noise margin, any extra

voltage due to the inductance can cause a false signal. To reduce the effect of

ground bounce, the following steps must be taken where possible:

1. The VCC and ground pins of the chip must be located in the middle rather than

at opposite ends of the IC chip (the 14-pin TTL logic IC uses pins 14 and 7 for

ground and VCC). This is exactly what we see in high-performance logic gates

such as Texas Instruments' advanced logic AC11000 and ACT11000 families.

For example, the ACT11013 is a 14-pin DIP chip in which pin numbers 4 and

11 are used for the ground and VCC, instead of 7 and 14 as in the traditional

TTL family. We can also use the SOIC packages instead of DIP.

2. Another solution is to use as many pins for ground and VCC as possible to

reduce the lead length. This is exactly why all high-performance microproces-

sors and logic families use many pins for VCC and ground instead of the tradi-

tional single pin for VCC and single pin for GND. For example, in the case of

Intel's Pentium processor there are over 50 pins for ground, and another 50

pins for VCC.

The above discussion of ground bounce is also applicable to VCC when a

large number of outputs changes from the LOW to the HIGH state; this is referred

to as VCC bounce. However, the effect of VCC bounce is not as severe as ground

bounce because the HIGH (“1”) state has a wider noise margin than the LOW

(“0”) state.

Filtering the transient currents using decoupling capacitors

In the TTL family, the change of the output from LOW to HIGH can cause

what is called transient current. In a totem-pole output in which the output is

LOW, Q4 is on and saturated, whereas Q3 is off. By changing the output from the

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 728

di
dtV = L

LOW to the HIGH state, Q3 turns on and Q4 turns off. This means that there is a

time when both transistors are on and drawing current from VCC. The amount of

current depends on the RON values of the two transistors, which in turn depend on

the internal parameters of the transistors. The net effect of this, however, is a large

amount of current in the form of a spike for the output current, as shown in Figure

C-15 (b). To filter the transient current, a 0.01 μF or 0.1 μF ceramic disk capacitor

can be placed between the VCC and ground for each TTL IC. The lead for this

capacitor, however, should be as small as possible because a long lead results in a

large self-inductance, and that results in a spike on the VCC line [V = L (di/dt)].

This spike is called VCC bounce. The ceramic capacitor for each IC is referred to

as a decoupling capacitor. There is also a bulk decoupling capacitor, as described

next.

Bulk decoupling capacitor

If many IC chips change state at the same time, the combined currents

drawn from the board's VCC power supply can be massive and may cause a fluc-

tuation of VCC on the board where all the ICs are mounted. To eliminate this, a rel-

atively large decoupling tantalum capacitor is placed between the VCC and ground

lines. The size and location of this tantalum capacitor vary depending on the num-

ber of ICs on the board and the amount of current drawn by each IC, but it is com-

mon to have a single 22 μF to 47 μF capacitor for each of the 16 devices, placed

between the VCC and ground lines.

Crosstalk

Crosstalk is due to mutual inductance.

See Figure C-16. Previously, we discussed self-

inductance, which is inherent in a piece of con-

ductor. Mutual inductance is caused by two

electric lines running parallel to each other. The

mutual inductance is a function of l, the length

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES 729

Figure C-16. Crosstalk (EMI)

L0

L0

Time

Vout

ICCL ICCH

Transient current going from 0 to 1

Figure C-15. (b) Transient Current

D0

D1

D2

D3

Ground

Ground bounce occurs when data

switches from all 1s to all 0s

Figure C-15. (a) Ground Bounce

of two conductors running in parallel; d, the distance between them; and the medi-

um material placed between them. The effect of crosstalk can be reduced by

increasing the distance between the parallel or adjacent lines (in printed circuit

boards, they will be traces). In many cases, such as printer and disk drive cables,

there is a dedicated ground for each signal. Placing ground lines (traces) between

signal lines reduces the effect of crosstalk. (This method is used even in some ACT

logic families where a VCC and a GND pin are next to each other.) Crosstalk is also

called EMI (electromagnetic interference). This is in contrast to ESI (electrostatic

interference), which is caused by capacitive coupling between two adjacent con-

ductors.

Transmission line ringing

The square wave used in digital circuits is in reality made of a single fun-

damental pulse and many harmonics of various amplitudes. When this signal trav-

els on the line, not all the harmonics respond in the

same way to the capacitance, inductance, and resist-

ance of the line. This causes what is called ringing,

which depends on the thickness and the length of the

line driver, among other factors. To reduce the effect

of ringing, the line drivers are terminated by putting

a resistor at the end of the line. See Figure C-17.

There are three major methods of line driver termi-

nation: parallel, serial, and Thevenin.

In serial termination, resistors of 30–50 ohms are

used to terminate the line. The parallel and Thevenin

methods are used in cases where there is a need to match

the impedance of the line with the load impedance. This

requires a detailed analysis of the signal traces and load

impedance, which is beyond the scope of this book. In

high-frequency systems, wire traces on the printed cir-

cuit board (PCB) behave like transmission lines, causing

ringing. The severity of this ringing depends on the

speed and the logic family used. Table C-6 provides the

trace length, beyond which the traces must be looked at

as transmission lines.

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 730

Table C-6: Line Length Beyond Which Traces Behave Like Transmission Lines

Logic Family Line Length (in.)

LS 25

S, AS 11

F, ACT 8

AS, ECL 6

FCT, FCTA 5
(Reprinted by permission of Integrated Device Technology, copyright IDT 1991)

Figure C-17. Reducing

Transmission Line Ringing

Ringing

Buffer

Series termination

Parallel termination

731

OVERVIEW

This appendix provides an introduction to writing flowcharts and

pseudocode.

APPENDIX D

FLOWCHARTS AND

PSEUDOCODE

Flowcharts

If you have taken any previous

programming courses, you are probably

familiar with flowcharting. Flowcharts

use graphic symbols to represent differ-

ent types of program operations. These

symbols are connected together into a

flowchart to show the flow of execution

of a program. Figure D-1 shows some of

the more commonly used symbols.

Flowchart templates are available to help

you draw the symbols quickly and neatly.

Pseudocode

Flowcharting has been standard

practice in industry for decades.

However, some find limitations in using

flowcharts, such as the fact that you can't

write much in the little boxes, and it is

hard to get the “big picture” of what the

program does without getting bogged

down in the details. An alternative to

using flowcharts is pseudocode, which

involves writing brief descriptions of the

flow of the code. Figures D-2 through

D-6 show flowcharts and pseudocode for

commonly used control structures.

Structured programming uses

three basic types of program control

structures: sequence, control, and itera-

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 732

Terminal

Process

Input/
Output

Subroutine

Decision

Figure D-1. Commonly Used

Flowchart Symbols

Connector

Figure D-2. SEQUENCE Pseudocode versus Flowchart

Statement 1

Statement 2

Statement 1
Statement 2

tion. Sequence is simply executing instructions one after another. Figure D-2

shows how sequence can be represented in pseudocode and flowcharts.

Figures D-3 and D-4 show two control programming structures: IF-THEN-

ELSE and IF-THEN in both pseudocode and flowcharts.

Note in Figures D-2 through D-6 that “statement” can indicate one state-

ment or a group of statements.

Figures D-5 and D-6 show two iteration control structures: REPEAT

UNTIL and WHILE DO. Both structures execute a statement or group of state-

ments repeatedly. The difference between them is that the REPEAT UNTIL struc-

ture always executes the statement(s) at least once, and checks the condition after

each iteration, whereas the WHILE DO may not execute the statement(s) at all

because the condition is checked at the beginning of each iteration.

APPENDIX D: FLOWCHARTS AND PSEUDOCODE 733

Figure D-3. IF THEN ELSE Pseudocode versus Flowchart

Statement 1 Statement 2

IF (condition) THEN
Statement 1

ELSE
Statement 2

Condition
?

Figure D-4. IF THEN Pseudocode versus Flowchart

Statement

IF (condition) THEN
Statement

Condition
?

Yes

No

Program D-1 finds the sum of a series of bytes. Compare the flowchart ver-

sus the pseudocode for Program D-1 (shown in Figure D-7). In this example, more

program details are given than one usually finds. For example, this shows steps for

initializing and decrementing counters. Another programmer may not include

these steps in the flowchart or pseudocode. It is important to remember that the

purpose of flowcharts or pseudocode is to show the flow of the program and what

the program does, not the specific Assembly language instructions that accomplish

the program's objectives. Notice also that the pseudocode gives the same informa-

tion in a much more compact form than does the flowchart. It is important to note

that sometimes pseudocode is written in layers, so that the outer level or layer

shows the flow of the program and subsequent levels show more details of how

the program accomplishes its assigned tasks.

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 734

Figure D-6. WHILE DO Pseudocode versus Flowchart

WHILE (condition) DO
Statement

Statement

Condition
?

Yes

No

Figure D-5. REPEAT UNTIL Pseudocode versus Flowchart

Statement

REPEAT
Statement

UNTIL (condition)

Condition
?

Yes

No

APPENDIX D: FLOWCHARTS AND PSEUDOCODE 735

Start

Stop

Count = 5
Address = $140

Add one byte

Increment address
pointer

Decrement counter

Store sum

Count
= 0?

Figure D-7. Pseudocode versus Flowchart for Program D-1

Program D-1

Count = 5
Address = $140
Repeat

Add next byte
Increment address
Decrement counter

Until Count = 0

Store Sum

No

Yes

#define COUNTVAL 5 ;COUNT = 5
#define COUNTER R22
#define SUM R23

LDI COUNTER,COUNTVAL ;R22 = 5
CLR SUM ;SUM = 0
LDI R26,LOW($140) ;load pointer to RAM data address
LDI R27,HIGH($140)

L1: LD R24,x+ ;copy RAM to R24 and increment pointer
ADD SUM,R24 ;add R24 to SUM
DEC COUNTER ;decrement counter
BRNE L1 ;loop until counter = zero

HERE: RJMP HERE ;stay here forever

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 736

APPENDIX E: AVR PRIMER FOR 8051 PROGRAMMERS 737

APPENDIX E

AVR PRIMER FOR

8051 PROGRAMMERS
AVR 8051

8-bit registers: 32 general-purpose registers A, B, R0, R1, R2, R3,

(R0 to R31) R4, R5, R6, R7

16-bit (data pointer): X, Y, Z DPTR

Program Counter: PC (up to 22-bit) PC (16-bit)

Input:
IN Rn,PINx MOV A,Pn ;(n = 0 - 3)
(Use R0, R1, ..., R31.)

Output:
OUT PORTx,Rn MOV Pn,A ;(n = 0 - 3)

Loop:
DEC Rn DJNZ R3,TARGET
BRNE TARGET (Using R0-R7)

Stack pointer:

SP (16-bit) SP (8-bit)

As we PUSH data onto the As we PUSH data onto the

stack, it decrements the SP. stack, it increments the SP.

As we POP data from the stack, As we POP data from the

it increments the SP. stack, it decrements the SP.

Data movement:

From the code segment:
LPM Rn,Z MOVC A,@A+PC
(Use Z only.)

From RAM using indirect addressing:
LD Rn,X MOV A,@R0
(Use X, Y, or Z.) (Use R0 or R1 only.)

From RAM using direct addressing:

LDS Rn,k MOV A,RAM_addr

To RAM using indirect addressing mode:

ST X,Rn MOV @R0,A
(Use X, Y, or Z.)

To RAM using direct addressing mode:

STS k,X MOV RAM_addr,A
(Use X, Y, or Z.)

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 738

APPENDIX F

ASCII CODES

APPENDIX F: ASCII CODES 739

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi)

This appendix provides

various sources for AVR assem-

blers, compilers, and trainers. In

addition, it lists some suppliers

for chips and other hardware

needs. While these are all estab-

lished products from well-known

companies, neither the author nor

the publisher assumes responsi-

bility for any problem that may

arise with any of them. You are

neither encouraged nor discour-

aged from purchasing any of the

products mentioned; you must

make your own judgment in eval-

uating the products. This list is

simply provided as a service to

the reader. It also must be noted

that the list of products is by no

means complete or exhaustive.

AVR assemblers

The AVR assembler is provided by

Atmel and other companies. Some of the

companies provide shareware versions of

their products, which you can download

from their websites. However, the size of

code for these shareware versions is limited

to a few KB. Figure G-1 lists some suppli-

ers of assemblers and compilers.

AVR trainers

There are many companies that pro-

duce and market AVR trainers. Figure

G-2 provides a list of some of them.

740

APPENDIX G

ASSEMBLERS, DEVELOPMENT

RESOURCES, AND SUPPLIERS

The AVR Studio from Atmel

http://www.atmel.com

MicroC from mikroElectronika

http://www.mikroe.com

CodeVision

http://www.hpinfotech.ro

ImageCraft

http://www.imagecraft.com

Micro IDE

http://www.micro-ide.com

Figure G-1. Suppliers of Assemblers and Compilers

MicroDigitalEd

http://www.MicroDigitalEd.com

Digilent

http://www.digilentinc.com

Atmel

http://www.atmel.com

Figure G-2. Trainer Suppliers

Parts suppliers

Figure G-3 provides a list of suppliers for many electronics parts.

APPENDIX G: ASSEMBLERS, DEVELOPMENT RESOURCES, AND SUPPLIERS 741

RSR Electronics

Electronix Express

365 Blair Road

Avenel, NJ 07001

Fax: (732) 381-1572

Mail Order: 1-800-972-2225

In New Jersey: (732) 381-8020

http://www.elexp.com

Altex Electronics

11342 IH-35 North

San Antonio, TX 78233

Fax: (210) 637-3264

Mail Order: 1-800-531-5369

http://www.altex.com

Digi-Key

1-800-344-4539 (1-800-DIGI-KEY)

Fax: (218) 681-3380

http://www.digikey.com

Radio Shack

http://www.radioshack.com

JDR Microdevices

1850 South 10th St.

San Jose, CA 95112-4108

Sales 1-800-538-5000

(408) 494-1400

Fax: 1-800-538-5005

Fax: (408) 494-1420

http://www.jdr.com

Mouser Electronics

958 N. Main St.

Mansfield, TX 76063

1-800-346-6873

http://www.mouser.com

Jameco Electronic

1355 Shoreway Road

Belmont, CA 94002-4100

1-800-831-4242

(415) 592-8097

Fax: 1-800-237-6948

Fax: (415) 592-2503

http://www.jameco.com

B. G. Micro

P. O. Box 280298

Dallas, TX 75228

1-800-276-2206 (orders only)

(972) 271-5546

Fax: (972) 271-2462

This is an excellent source of LCDs, ICs,

keypads, etc.

http://www.bgmicro.com

Tanner Electronics

1100 Valwood Parkway, Suite #100

Carrollton, TX 75006

(972) 242-8702

http://www.tannerelectronics.com

Figure G-3. Electronics Suppliers

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 742

APPENDIX H

DATA SHEETS

296
8155A–AVR–06/08

ATmega32A

27. Electrical Characteristics

27.1 Absolute Maximum Ratings*

27.2 DC Characteristics

Operating Temperature.................................. -55 C to +125 C *NOTICE: Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent dam-
age to the device. This is a stress rating only and
functional operation of the device at these or
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect
device reliability.

Storage Temperature -65°C to +150°C

Voltage on any Pin except RESET
with respect to Ground-0.5V to VCC+0.5V

Voltage on RESET with respect to Ground......-0.5V to +13.0V

Maximum Operating Voltage .. 6.0V

DC Current per I/O Pin ... 40.0 mA

DC Current VCC and GND Pins......................... 200.0 mA and

400.0 mA TQFP/MLF

TA = -40 C to 85 C, VCC = 2.7V to 5.5V (Unless Otherwise Noted)

Symbol Parameter Condition Min Typ Max Units

VIL
Input Low Voltage except
XTAL1 and RESET pins

VCC=2.7 - 5.5
VCC=4.5 - 5.5

-0.5 0.2 VCC
(1) V

VIH
Input High Voltage except
XTAL1 and RESET pins

VCC=2.7 - 5.5
VCC=4.5 - 5.5

0.6 VCC
(2) VCC + 0.5 V

VIL1
Input Low Voltage
XTAL1 pin

VCC=2.7 - 5.5 -0.5 0.1 VCC
(1) V

VIH1
Input High Voltage
XTAL1 pin

VCC=2.7 - 5.5
VCC=4.5 - 5.5

0.7 VCC
(2) VCC + 0.5 V

VIL2
Input Low Voltage
RESET pin

VCC=2.7 - 5.5 -0.5 0.2 VCC V

VIH2
Input High Voltage
RESET pin

VCC=2.7 - 5.5 0.9 VCC
(2) VCC + 0.5 V

VOL
Output Low Voltage(3)

(Ports A,B,C,D)
IOL = 20 mA, VCC = 5V
IOL = 10 mA, VCC = 3V

0.7
0.5

V
V

VOH
Output High Voltage(4)

(Ports A,B,C,D)
IOH = -20 mA, VCC = 5V
IOH = -10 mA, VCC = 3V

4.2
2.2

V
V

IIL
Input Leakage
Current I/O Pin

VCC = 5.5V, pin low
(absolute value) 1 μA

IIH
Input Leakage
Current I/O Pin

VCC = 5.5V, pin high
(absolute value) 1 μA

RRST Reset Pull-up Resistor 30 60 85 k

Rpu I/O Pin Pull-up Resistor 20 50 k

APPENDIX H: DATA SHEETS 743

298
8155A–AVR–06/08

ATmega32A

27.3 Speed Grades

Figure 27-1. Maximum Frequency vs. VCC.

27.4 Clock Characteristics

27.4.1 External Clock Drive Waveforms

Figure 27-2. External Clock Drive Waveforms

27.4.2 External Clock Drive

2.7V 4.5V 5.5V

Safe Operating Area

16 MHz

8 MHz

VIL1

VIH1

Figure 27-3. External Clock Drive

Symbol Parameter

VCC = 2.7V to 5.5V VCC = 4.5V to 5.5V

UnitsMin Max Min Max

1/tCLCL Oscillator Frequency 0 8 0 16 MHz

tCLCL Clock Period 125 62.5 ns

tCHCX High Time 50 25 ns

tCLCX Low Time 50 25 ns

All AVR data sheets are copyright of Atmel Semiconductor, Inc. 2009, used by permission.

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 744

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33

PEN
RXD0/(PDI) PE0

(TXD0/PDO) PE1
(XCK0/AIN0) PE2
(OC3A/AIN1) PE3
(OC3B/INT4) PE4
(OC3C/INT5) PE5

(T3/INT6) PE6
(IC3/INT7) PE7

(SS) PB0
(SCK) PB1

(MOSI) PB2
(MISO) PB3
(OC0) PB4

(OC1A) PB5
(OC1B) PB6

PA3 (AD3)
PA4 (AD4)
PA5 (AD5)
PA6 (AD6)
PA7 (AD7)
PG2(ALE)
PC7 (A15)
PC6 (A14)
PC5 (A13)
PC4 (A12)
PC3 (A11)
PC2 (A10)
PC1 (A9)
PC0 (A8)
PG1(RD)
PG0(WR)

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

(O
C

2/
O

C
1C

)
P

B
7

T
O

S
C

2/
P

G
3

T
O

S
C

1/
1P

G
4

R
E

S
E

T
V

C
C

G
N

D
X

T
A

L2
X

T
A

L1
 (

S
C

L/
IN

T
0)

 P
D

0
 (

S
D

A
/IN

T
1)

 P
D

1
(R

X
D

1/
IN

T
2)

 P
D

2
 (

T
X

D
1/

IN
T

3)
 P

D
3

 (
IC

1)
 P

D
4

(X
C

K
1)

 P
D

5
 (

T
1)

 P
D

6
 (

T
2)

 P
D

7

A
V

C
C

G
N

D
A

R
E

F
P

F
0

(A
D

C
0)

P
F

1
(A

D
C

1)
P

F
2

(A
D

C
2)

P
F

3
(A

D
C

3)
P

F
4

(A
D

C
4/

T
C

K
)

P
F

5
(A

D
C

5/
T

M
S

)
P

F
6

(A
D

C
6/

T
D

O
)

P
F

7
(A

D
C

7/
T

D
I)

G
N

D
V

C
C

P
A

0
(A

D
0)

P

A
1

(A
D

1)
P

A
2

(A
D

2)

Figure H-3. ATmega 64/128 TQFP

(XCK/T0) PB0
(T1) PB1

(INT2/AIN0) PB2
(OC0/AIN1) PB3

(SS) PB4
(MOSI) PB5
(MISO) PB6
(SCK) PB7

RESET
VCC
GND

XTAL2
XTAL1

(RXD) PD0
(TXD) PD1
(INT0) PD2
(INT1) PD3

(OC1B) PD4
(OC1A) PD5
(ICP1) PD6

PA0 (ADC0)
PA1 (ADC1)
PA2 (ADC2)
PA3 (ADC3)
PA4 (ADC4)
PA5 (ADC5)
PA6 (ADC6)
PA7 (ADC7)
AREF
GND
AVCC
PC7 (TOSC2)
PC6 (TOSC1)
PC5 (TDI)
PC4 (TDO)
PC3 (TMS)
PC2 (TCK)
PC1 (SDA)
PC0 (SCL)
PD7 (OC2)

Figure H-1. ATmega16/32 DIP

PA4 (ADC4)
PA5 (ADC5)
PA6 (ADC6)
PA7 (ADC7)
AREF
GND
AVCC
PC7 (TOSC
PC6 (TOSC
PC5 (TDI)
PC4 (TDO)

(MOSI) PB5
(MISO) PB6
(SCK) PB7

RESET
VCC
GND

XTAL2
XTAL1

(RXD) PD0
(TXD) PD1
(INT0) PD2

(IN
T1

)
PD

3
(O

C
1B

)
PD

4
(O

C
1A

)
PD

5
(IC

P1
)

PD
6

(O
C
2

)
PD
7

V
C

C
G

N
D

(S
C

L)
 P

C
0

(S
D
A

)
PC

1
(T

C
K)

 P
C
2

(T
M

S)
 P

C
3

PB
4

 (S
S)

PB
3

 (A
IN

1/
O

C
0)

PB
2

 (
A

IN
0/

IN
T2

)
PB

1
 (T

1)
PB

0
 (X

C
K/

T0
)

G
N

D
V

C
C

PA
0

 (A
D

C
0)

PA
1

 (A
D

C
1)

PA
2
 (
A

D
C
2

)
PA

3
 (A

D
C

3)

Q

Note:
Bottom pad should
be soldered to ground.

Figure H-2. ATmega16/32 TQFP

APPENDIX H: DATA SHEETS 745

Figure H-7. MAX7221 ConnectionsFigure H-6. MAX7221

1
2
3
4
5
6
7
8
9
10
11
12
13
14

28
27
26
25
24
23
22
21
20
19
18
17
16
15

(RESET) PC6
(RXD) PD0
(TXD) PD1
(INT0) PD2
(INT1) PD3

(XCK/T0) PD4
VCC
GND

(XTAL1/TOSC1) PB6
(XTAL2/TOSC2) PB7

(T1) PD5
(AIN0) PD6
(AIN1) PD7
(ICP1) PB0

PC5 (ADC5/SCL)
PC4 (ADC4/SDA)
PC3 (ADC3)
PC2 (ADC2)
PC1 (ADC1)
PC0 (ADC0)
GND
AREF
AVCC
PB5 (SCK)
PB4 (MISO)
PB3 (MOSI/OC2)
PB2 (SS/OC1B)
PB1 (OC1A)

Figure H-4. ATmega8 DIP

1
2
3
4
5
6
7
8

24
23
22
21
20
19
18
17

(INT1) PD3
(XCK/T0) PD4

GND
VCC
GND
VCC

(XTAL1/TOSC1) PB6
(XTAL2/TOSC2) PB7

PC1 (ADC1)
PC0 (ADC0)
ADC7
GND
AREF
ADC6
AVCC
PB5 (SCK)

32 31 30 29 28 27 26 25

9 10 11 12 13 14 15 16

(T
1)

 P
D

5
(A

IN
0)

 P
D

6
(A

IN
1)

 P
D

7
(I

C
P

1)
 P

B
0

(O
C

1A
)

P
B

1
(S

S
/O

C
1B

)
P

B
2

(M
O

S
I/O

C
2)

 P
B

3
(M

IS
O

)
P

B
4

P
D

2
(I

N
T

0)
P

D
1

(T
X

D
)

P
D

0
(R

X
D

)
P

C
6

(R
E

S
E

T
)

P
C

5
(A

D
C

5/
S

C
L)

P
C

4
(A

D
C

4/
S

D
A

)
P

C
3

(A
D

C
3)

P
C

2
(A

D
C

2)

Figure H-5. ATmega8 TQFP

R2OUT

T2IN

R1OUT

T2OUT

R1IN

R2IN

RS232 sideTTL side

T1OUTT1IN

12

11

10

9

2

6

16

Vcc

15

C4

+

C3

+
+

C1

+

C2
4
5

1
3

8

7

14

14 11

15 1213

(PD0)RXD

(PD1)TXD

ATmega32

DB-9

MAX232

MAX232

14 2

13 3

Figure H-8. (a) Inside MAX232 and (b) Its Connection to the ATmega32 (Null Modem)

5

40-Pin DIP Package ATmega32

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 746

AVR

D4

D7

LCD

RS R/W E

PA.4

PA.7

PB.0

PB.1

PB.2

VCC

VEE

VSS

+5V

10K

POT

Figure H-11. LCD Connections Using 4-bit

Data

AVR

D4

D7

LCD

RS R/W E

PA.4

PA.7

PA.0

PA.1

PA.2

VCC

VEE

VSS

+5V

10K

POT

Figure H-12. LCD Connections Using a

Single Port

AVR

D0

D7

LCD

RS R/W E

PA.0

PA.7

PB.0

PB.1

PB.2

VCC

VEE

VSS

+5V

10K

POT

Figure H-10. LCD Connections for 8-bit Data

LCD Pin Symbol

1 Ground

2 VCC

3 VEE

4 RS

5 R/W

6 E

7 DB0

... ...

14 DB7

 Vbat

VccX1

X2

GND

SCL

SDA

SCL

SDA

+5 V

SQW/OUT

32.768KHZ

Figure H-9. DS1307 Power Connection Options (Maxim/Dallas Semiconductor)

	FrontMattersForOnlinePart_b_toc.qxd
	AVR - Chapter 8_onlinePart_Chapter Template
	AVR - Chapter 18_onlinePart_Chapter Template
	AVR - Appendix A_Appendix Template
	AVR - Appendix B_appb.qxd
	AVR - Appendix C_appc.qxd
	AVR - Appendix D-H_Chapter Template

