Irreducible Representation (IR) Symmetry Labels

The symbols to the far left of the character table are part of "Mulliken notation" defined in an article by R.S. Mulliken, J Chem. Phys., 1955, 23, p1997
The notes presented here are derived from material in "Symmetry and Group Theory in Chemistry" by Mark Ladd, Horwood Publishing, Chichester, 1998, p89-91

A, B, E and T Symbols

A is used when the IR is symmetric under C_{n} or S_{n} for the highest n in the group, in addition A is used if there are no C_{n} or S_{n}
B is used when the IR is antisymmetric under C_{n} or S_{n} for the highest n in the group
E doubly degenerate
T triply degenerate
For example:

C_{2}	E	C_{2}
A	1	1
B	1	-1

The u and g Subscripts

A centrosymmetric group G_{i} is the direct product of two groups G and C_{i} or G and i u and g are determined from the characters that are NOT in BOTH G_{i} and G, if the sign is - under i then the subscript is u (ungerade $=$ odd), if the sign is + under i then the subscript is g (gerade $=$ even)

For example:

$$
D_{3} \otimes i=D_{3 d}
$$

The Primes

If the point group contains the operator σ_{h} but no i, the IR labels are singly primed if the character is +1 under σ_{h} and doubly primed otherwise. A similar assignment applies to the components of the degenerate representations

For example:

$D_{3 h}$	E	$2 C_{3}$	$3 C_{2}$	σ_{h}	$2 S_{3}$	$3 \sigma_{v}$
$\mathrm{~A}_{1}{ }^{\prime}$	1	1	1	1	1	1
$\mathrm{~A}_{2}{ }^{\prime}$	1	1	-1	1	1	-1
E^{\prime}	2	-1	0	2	-1	0
$\mathrm{~A}_{1}{ }^{\prime \prime}$	1	1	1	-1	-1	-1
$\mathrm{~A}_{2}{ }^{\prime \prime}$	1	1	-1	-1	-1	1
$\mathrm{E}^{\prime \prime}$	2	-1	0	2	1	0

E' has components (say p_{x} and p_{y}) that are symmetric under σ_{h} :

The 1 and 2 as Subscripts

For degenerate IR (A and B) subscripts 1 and 2 relate to the symmetric (1) or antisymmetric (-1) characters respectively, in relation to a C_{2} axis perpendicular to the principle C_{n} axis, or in the absence of this element, to a σ_{v} plane.
For multidimensional representations, the subscripts $1,2 \ldots$ are added to distinguish between nonequivalent irreducible representations that are not separated under the above rules.

For example:

$D_{3 h}$	E	$2 C_{3}$	$3 C_{2}$	σ_{h}	$2 S_{3}$	$3 \sigma_{v}$			
$\mathrm{~A}_{1}{ }^{\prime}$	1	1	1	1	1	1			
$\mathrm{~A}_{2}{ }^{\prime}$	1	1	-1	1	1	-1			
E^{\prime}	2	-1	0	2	-1	0			
$\mathrm{~A}_{1}{ }^{\prime \prime}$	1	1	1	-1	-1	-1			
$\mathrm{~A}_{2}{ }^{\prime \prime}$	1	1	-1	-1	-1	1			
$\mathrm{E}^{\prime \prime}$	2	-1	0	2	1	0	$	$	
:---									

Complex Characters ε

For a number of groups complex characters arise where $\varepsilon=\exp (i 2 \pi / n)$ where e can be regarded as an operator that rotates a vector by $2 \pi / \mathrm{n}$ anticlockwise in the complex plane of an Argand diagram. The two IR with complex characters are normally bracketed. Such point groups are not often encountered with molecules.

For example:

C_{3}	E	C_{3}^{1}	C_{3}^{2}
A	1	1	1
$\mathrm{E}\left\{\begin{array}{ccc}1 & \varepsilon & \varepsilon^{*} \\ 1 & \varepsilon^{*} & \varepsilon\end{array}\right\}$			

Linear Groups

Linear groups have an infinity subscript, eg $\mathrm{C}_{\infty v}$ and $\mathrm{D}_{\infty \mathrm{h}}$. These are infinite groups and the above named conventions do not hold, moreover the reduction of reducible representations does not work for infinite groups.
The symbol C_{∞}^{ϕ} indicates a rotation by an angle (ϕ) of any value, including infinitesimal. An infinite number of rotations is therefore possible, and an infinite number of vertical mirror planes $\infty \sigma_{\mathrm{v}}$. In addition there are also coincident with the principle axis ($\mathrm{C} \infty$) additional axes: $\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}$, $\mathrm{C}_{5} \ldots \mathrm{C} \infty$. As a rationalisation for the 2 in $2 C_{\infty}^{\Phi}$ considet theat we count only unique opperations and many of these overlap whith a C_{n} of lower n , eg $C_{4}^{2}=C_{2}^{1}$ and thus there are only 2 unique operations for each axis, eg C_{n}^{1}, C_{n}^{-1}. Thus for an infinite rotation there will be two unique operations $C_{\infty}^{\Phi}, C_{\infty}^{-\Phi}$.
In these groups Greek symbols are often used rather than the Mulliken notation. In addition, the primes are not used, and are replaced with + or - signs superscript to the Greek symbol, they still however refer to the sign under σ_{v}. The degenerate components do not follow the rules given for the other point groups.

For example:

$\mathrm{C}_{\infty v}$	E	$2 C_{\infty}^{\phi} \ldots$	$\infty \sigma_{v}$	
$\mathrm{~A}_{1}=\Sigma^{+}$	1	1	\ldots	1
$\mathrm{~A}_{2}=\Sigma^{-}$	1	1	\ldots	-1
$\mathrm{E}_{1}=\Pi$	2	$2 \cos \phi$	\ldots	0
$\mathrm{E}_{2}=\Delta$	2	$2 \cos 2 \phi$	\ldots	0
$\mathrm{E}_{3}=\Phi$	2	$2 \cos 3 \phi$	\ldots	0
\ldots	\ldots	\ldots	\ldots	

