Irreducible Representation (IR) Symmetry Labels

The symbols to the far left of the character table are part of "Mulliken notation" defined in an article by R.S. Mulliken, *J Chem. Phys.*, **1955**, 23, p1997

The notes presented here are derived from material in "<u>Symmetry and Group Theory in Chemistry</u>" by Mark Ladd, Horwood Publishing, Chichester, 1998, p89-91

A, B, E and T Symbols

A is used when the IR is symmetric under C_n or S_n for the highest n in the group, in addition A is used if there are no C_n or S_n

B is used when the IR is antisymmetric under C_n or S_n for the highest n in the group

E doubly degenerate

T triply degenerate

For example:

C ₂	E	C ₂	
А	1	1	
В	1	-1	

The u and g Subscripts

A centrosymmetric group G_i is the direct product of two groups G and C_i or G and i u and g are determined from the characters that are NOT in BOTH G_i and G, if the sign is – under i then the subscript is u (*ungerade* = odd), if the sign is + under i then the subscript is g (*gerade* = even)

For example:

The Primes

If the point group contains the operator σ_h but no i, the IR labels are singly primed if the character is +1 under σ_h and doubly primed otherwise. A similar assignment applies to the components of the degenerate representations

For example:

D_{3h}	Е	$2C_3$	$3C_2$	$\sigma_{\scriptscriptstyle h}$	$2S_3$	$3\sigma_{v}$	
A_1'	1	1	1	1	1	1	
A_2'	1	1	-1	1	1	-1	
E'	2	-1	0	2	-1	0	(T _x , T _y)
A_1 "	1	1	1	-1	-1	-1	
A_2 "	1	1 -1	-1	-1	-1	1	Tz
E"	2	-1	0	2	1	0	

E' has components (say p_x and p_y) that are symmetric under σ_h :

The 1 and 2 as Subscripts

For degenerate IR (A and B) subscripts 1 and 2 relate to the symmetric (1) or antisymmetric (-1) characters respectively, in relation to a C_2 axis *perpendicular* to the principle C_n axis, or in the absence of this element, to a σ_v plane.

For multidimensional representations, the subscripts 1, 2 ... are added to distinguish between nonequivalent irreducible representations that are not separated under the above rules.

For example:

-		L					
D_{3h}	Е	$2C_3$	$3C_2$	$\sigma_{_h}$	$2S_3$	$3\sigma_{v}$	[
A ₁ '	1	1	1	1	1	1	
A_2'	1	1	-1	1	1	-1	
E'	2	-1	0	2	-1	0	(T_x, T_y)
A_1 "	1	1	1	-1	-1	-1	
A_2 "	1	1	-1	-1	-1	1	Tz
E"	2	-1	0	2	1	0	

<u>Complex Characters ϵ </u>

For a number of groups complex characters arise where $\varepsilon = \exp(i2\pi/n)$ where e can be regarded as an operator that rotates a vector by $2\pi/n$ anticlockwise in the complex plane of an Argand diagram. The two IR with complex characters are normally bracketed. Such point groups are not often encountered with molecules.

For example:

C ₃	E	C_3^1	C_3^2	
А	1	1	1	
	1	ε	ε*]
E	1	٤*	3	ſ

Linear Groups

Linear groups have an infinity subscript, eg $C_{\infty v}$ and $D_{\infty h}$. These are infinite groups and the above named conventions do not hold, moreover the reduction of reducible representations does not work for infinite groups.

The symbol C_{∞}^{ϕ} indicates a rotation by an angle (ϕ) of any value, including infinitesimal. An infinite number of rotations is therefore possible, and an infinite number of vertical mirror planes $\infty \sigma_{v}$. In addition there are also coincident with the principle axis ($C\infty$) additional axes: C₂, C₃, C₄, C₅...C ∞ . As a rationalisation for the 2 in $2C_{\infty}^{\phi}$ considet theat we count only unique opperations and many of these overlap whith a C_n of lower n, eg $C_4^2 = C_2^1$ and thus there are only 2 unique operations for each axis, eg C_n^1, C_n^{-1} . Thus for an infinite rotation there will be two unique operations $C_{\infty}^{\phi}, C_{\infty}^{-\phi}$.

In these groups Greek symbols are often used rather than the Mulliken notation. In addition, the primes are not used, and are replaced with + or - signs superscript to the Greek symbol, they still however refer to the sign under σ_v . The degenerate components do not follow the rules given for the other point groups.

For example:

C_{∞_V}	E	$2C^{\phi}_{\infty}\cdot$	••	$\infty \sigma_{v}$
$A_1 = \Sigma^+$	1	1		1
$A_2 \!\!=\!\! \Sigma^{\scriptscriptstyle -}$	1	1		-1
Е ₁ =П	2	2cosø		0
$E_2 = \Delta$	2	2cos2ø		0
Е ₃ =Ф	2	2cos3ø		0