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1 Introduction

Empirically, there is a generic tendency towards entropy growth in many body systems.

This “arrow of time” appears at odds with the fact that our physical models of these

systems are often time-reversal symmetric. A common argument has been available from

the time of Boltzmann: states are exponentially likely to evolve to states of higher entropy,

simply due to the counting of states at given entropy (see for example [1]). In fact, in the

presence of time-reversal symmetry this explanation is incomplete. For every state of a

given entropy with entropy growth, there is a state with the same entropy but with entropy

decay. The best we can actually hope for is to explain why some class of preferred states

experiences entropy growth in some subsystem under specific dynamics.

This question is closely related to another aspect of quantum many body systems. The

use of statistical ensembles to understand the long-time collective behavior of many degrees

of freedom in terms of local microscopic interactions is one of the great simplifications

and triumphs of modern physics. It is natural to ask when and why the use of these

ensembles is justified; if all expectation values of interest for a given initial condition after

time evolution can be computed to arbitrary accuracy in an ensemble depending only on

macroscopic parameters, we will say that system thermalizes for those initial conditions

and that time evolution. For isolated classical systems, dynamical chaos is a sufficient

and generic condition for ergodicity in phase space, which explains the accuracy of the

microcanonical ensemble and hence equilibrium statistical mechanics.

The quantum case is more complicated. It is important to note that there are clas-

sical systems with few degrees of freedom whose observables are well-described by the

microcanonical ensemble, but upon quantization do not thermalize. Although there are
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experimental probes of few-body quantum systems that do thermalize [2], generic ther-

malization in quantum systems appears to be inherently a many-body effect [3]. Quantum

mechanics also supports a long-time behavior not present in classical systems, Many-Body

Localization (MBL). Recent experiments detecting these phases [4] provide practical moti-

vation to explain the mechanism of and conditions for thermalization of isolated systems.

Finally, our understanding of quantum chaos and ergodicity is still incomplete, and leading

justifications for quantum statistical mechanics are not as directly connected to quantum

chaos as in the classical case.

There are two leading explanations for quantum thermalization. One is known as

Canonical Typicality (CT) [5, 6], the statement that due to the exponentially large dimen-

sion of Hilbert space or the subspaces associated to finite energy windows, almost all pure

states in the subspace will appear as if they were randomly chosen from that subspace, i.e.

indistinguishable from the microcanonical ensemble, on any small subregion. Importantly,

the CT approach can be extended to the dynamical result [7] that, under weak assumptions

about the distribution of eigenvalues of the Hamiltonian, a subsystem interacting with a

sufficiently large bath will spend most of its time close to its time average, independent of

the initial state of the subsystem and for almost all initial states of the bath. One useful

way to view CT is as an extension of the statistical argument for entropy growth: most

states in a subspace are already close to maximum entanglement within the subspace. The

other explanation is the Eigenstate Thermalization Hypothesis (ETH) [3, 8], which loosely

stated is the conjecture that the high-energy eigenstates of quantized classically chaotic

systems are indistinguishable from the microcanonical ensemble of the same system for lo-

cal observables. This conjecture is well-supported numerically for a large class of systems,

and gives a very clean description of quantum thermalization when it applies.

There are some deficiencies remaining in both approaches. There are no direct criteria

to evaluate on a Hamiltonian to see if ETH holds, short of finding the eigenstates. On a

related note, ETH has only been proven true for a small class of systems. Finally, although

the ETH is inspired by ideas about classical chaos and ergodicity, there is no proof that

chaos in dynamics implies ETH.1 The conclusions of CT appear completely unrelated to

whether a system is chaotic. The principle mechanism of CT is that typical states are

close to maximally entangled, or already at equilibrium. The problem is that we would

like information about highly atypical states (out-of-equilibrium low-entanglement states)

that form a set of measure zero in most subspaces of high dimension. The dynamical ex-

tension [7] solves this problem for systems where a small subsystem can be highly atypical

in a much larger typical bath. This is a reasonable assumption for a near-isolated quantum

system interacting with the rest of the world, but is not useful when we wish to consider

an even smaller class of states, where the entire system is far from equilibrium and has low

entanglement. It is also a statement about time averages as opposed to instantaneous den-

sity matrices. Finally, like ETH, CT gives no criterion on the time evolution to distinguish

thermalizing from non-thermalizing systems. On a related note, there is no explanation

for the mechanism of thermalization, apart from the high dimension of Hilbert space.

1Some interesting progress along this direction is the relation between ETH and out-of-time-order cor-

relation functions in [9].
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In this work, we link the entropy growth of low-entanglement states under unitary

time U(t) to measures of quantum chaos associated with U(t). In doing so, we begin to

address the above deficiencies in explanations of quantum thermalization. More specifically,

we consider the chaos criteria proposed in [10]. In this work, the unitary time evolution

operator U(t) = e−itH is mapped to a doubled state. The doubled state is defined by

considering two copies of the physical system and preparing maximally entangled EPR pairs

between each site of the physical system and its doubling partner. Denoting this state by

|I〉, the unitary U(t) is mapped to the pure state 1⊗U(t)|I〉. By construction, the two copies

of systems (named as the past system and future system) are always maximally entangled,

with U(t) the Schmidt matrix of the wavefunction. Quantum chaos is characterized by the

suppression of mutual information between subsystems of the future and past systems. A

small mutual information between a region A in the past and a region B in the future tells

us that operators in A mostly evolve to non-local operators exceeding the boundary of B,

causing a suppression of local correlation functions. This criteria is shown to be related to

another chaos criteria, the out-of-time-ordered correlation (OTOC) functions [11–16].

In this paper, we show that the mutual information criteria defined in [10] also controls

the entropy growth for proper choices of low entropy initial states. More specifically, we

consider a given partition of the system into multiple regions, and consider an ensemble

of initial states that are tensor products of random states in each region. After time

evolution by U(t), we study the purity Tr ρA(t)2 of a subsystem A in the final state. The

ensemble average of the second Renyi entropy is determined by a sum in which each term

is controlled by the second Renyi mutual information in the doubled state. When the

mutual information terms are sufficiently small, a typical product state at initial time

evolves into a state with nearly maximal entropy. Therefore we have shown that chaos in

the dynamics U(t) implies thermalization, at least for the ensemble of unentangled initial

states we define. Since the random product state has a high energy, the final state has

maximal entropy and infinite temperature. We also discuss the generalization of our result

to initial state ensembles with finite temperature.

The remainder of the paper is organized as follows. In section 2, we review the relevant

aspects of quantum chaos and show how information theoretic quantities are linked to re-

thermalization of the thermal ensemble. Sections 3 and 4 are the main results of this

work, and demonstrate a connection between thermalization of product states, quantum

information theory, and quantum chaos. Derivations of the main results are in appendix A.

In what follows, we denote density matrices of subsystems by ρA = TrĀ ρ, dimension of

subsystem A by DA, and operators that act by identity in Ā as OA. As a reminder, the von

Neumann entropy of a density matrix ρ is S[ρ] = −Tr[ρ ln ρ], and the mutual information

between two subsystems in ρ is I[ρ;A,B] = S[ρA] + S[ρB]− S[ρA∪B].

2 Quantum chaos

We start by reviewing some recent results in understanding quantum chaos. In classical

systems, one diagnostic of chaos is exponential sensitivity to initial conditions, quantified

by the exponential growth of the Poisson bracket of some pair of phase space coordi-
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nates {q(t), p(0)} = ∂q(t)/∂q(0) ∼ eλLt. A natural generalization to the quantum case is

〈−[OA(t), OB(0)]2〉ρ [11]. Of the four terms in the expansion of this expression, the most

interesting for our purpose is the out-of-time ordered four-point correlator (OTOC)

C4(OA(t), OB(0))ρ = 〈OA(t)OB(0)OA(t)OB(0)〉ρ, (2.1)

whose decay for thermal ρ has been interpreted as a signal of quantum chaos [10, 12, 13].

The decay of C4 seems to be an operator-dependent statement, but is in fact related to

an information-theoretic quantity, the second Renyi entropy S(2), computed from the time

evolution U(t) = e−iHt [10]. Since U(t) ∈ H ⊗H ∗, we can consider it as a normalized

state in a Hilbert space with inner product 〈A,B〉 = Tr[A†B]/D (here D is the dimension

of H ). We can associate the copy of the Hilbert space corresponding to the future (past)

with the left (right) tensor factor in H ⊗H ∗. For intuition and computation, it can be

useful to choose an isomorphism H ∗ 'H that is compatible with the tensor factorization

and think of U(t) as an entangled state on two copies of the original system. Concretely,

we consider the original Hilbert space H as a tensor product of small Hilbert spaces (for

example on each site of a lattice): H =
⊗

x Hx. Denoting an orthonormal basis of Hx by

|αx〉, αx = 1, 2, . . . , dim Hx, one can define the maximally entangled state in the doubled

Hilbert space as |I〉 =
⊗

x

(
D−1/2

∑
αx=αPx =αFx

|αPx 〉 ⊗ |αFx 〉
)

. The state |I〉 encodes an

isomorphism from operators (elements of H ∗⊗H ) to states in a doubled system (elements

of H ⊗H ) by right action, so we can explicitly map the unitary operator U(t) to the

state |U(t)〉 = (1⊗U(t))|I〉.2 We denote the density matrix associated with the pure state

|U(t)〉 as ρU(t) = |U(t)〉〈U(t)|. The construction of |U(t)〉 and an example partial trace of

ρU(t) is illustrated in figure 1.

Correlations between the past and future copies of Hilbert space in U(t) are related

to chaos and scrambling. For example, the mutual information between a region A in the

future and region B in the past bounds correlations in time:

I[ρU(t);AF , BP ] ≥ 1

2

(〈OA(t)OB(0)〉β=0 − 〈OA(t)〉β=0〈OB(0)〉β=0

‖OA‖‖OB‖

)2

. (2.2)

We can already see a connection of the information content of ρU(t) and thermalization

in (2.2). If the mutual information between A in the future and B in the past is small in

ρU(t), the action of an operator in B in the past has no influence on the action of an operator

in A in the future. This shows that small mutual information in ρU(t) is sufficient for re-

thermalization of the infinite temperature ensemble after perturbation. Thus in this case,

we have the natural statement that information in U(t) between regions in the future and

past tells us how sensitive the future region is to the initial conditions in the past region.

The main goal of this work is to extend this result to far-from-equilibrium pure states.

More generally, (2.2) shows that we can think of the mutual information I[ρU(t);AF , BP ]

roughly as quantifying how much initial conditions in B determine the subsystem A after

time evolution U(t).

2It is important to note that |U(t)〉 depends on the basis choice used when defining |I〉, which determines

the isomorphism H ' H ∗. However, entanglement properties of ρU(t) are completely independent from

the basis choice.
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U(t)

H ∗

H

(a) Time evolution U(t).

U(t)

“Future” H“Past” H

|I〉

(b) U(t) as a state in H ⊗H .

TrAF∪BP

U(t)

U(t)†

=

U(t)

U(t)†

(c) Density matrix ρ
U(t)
AF∪BP

; on the left,

A has a white box around it, and B has

a red box.

Figure 1. Pictorial representation and explicit construction of the mapping from time evolution

operator U(t) to the state |U(t)〉 ∈ H ⊗ H and the associated density matrix ρU (t). First,

in 1a we introduce our notation and draw U(t) as a tensor with “input” legs at the bottom and

“output” legs at the top. To help keep track of the future and past, we draw the output edge

of U(t) as a bolded line. Each leg corresponds to a subsystem of H and denotes an index in

the tensor, and contraction is represented by simply connecting “input” with “output” legs. A

particular example of this operation is shown in 1b, where we depict action by 1 ⊗ U(t) on the

maximally entangled state |I〉, turning U(t) into a state |U(t)〉 on a doubled system. In 1c we

show ρ
U(t)
AF∪BP

= TrAF∪BP
|U(t)〉〈U(t)|. It is clear from this construction that ρU(t) is maximally

entangled between the past and future, so that for any region R exclusively in the past or future,

S[ρ
U(t)
R ] = S(2)[ρ

U(t)
R ] = lnDR.

A main result of [10] is a more explicit connection of past-future mutual information

to chaos: the average of the OTOC (equation (2.1)) over operators in subsystem A in the

future and B in the past is proportional to S(2)[ρ
U(t)

AF∪B̄P ], where B̄P is the complement of

BP in the past system. By average of operators on a subsystem A we mean a weighted

sum over the D2
A Hermitian operators in a complete, orthonormal basis (under the above

inner product on operators). We will write these operators in a script font, as OA, with

the average implied wherever they appear. The second Renyi entropy is defined as

S(2)[ρ] = − log Tr ρ2 (2.3)

and is a measure of uncertainty in ρ: for pure states, S(2) = 0, while for maximally mixed

states S(2) = S = logD where S is the von Neumann entropy and D is the dimension

of the Hilbert space. There are some other properties of S(2)[ρ
U(t)
AF∪BP ] that will be im-

portant in what follows. It can be seen from Jensen’s inequality that S(2)[ρ] ≤ S[ρ].

Thus when S(2) is near-maximal, so is S. We also have the bounds3 lnDA + lnDB ≥
S(2)[ρ

U(t)
AF∪BP ] ≥ | lnDA − lnDB|. Thus for B much larger than A, S(2) is large for “kine-

matic” reasons, independent of the time evolution. The more interesting quantity in this

case is a version of the mutual information adopted for Renyi entropy, I(2)[ρU(t);AF , BP ] =

3As can be seen by writing e
−S(2)[ρ

U(t)
AF ∪BP

]
= Tr[πA(t)πB(0)]/DADB where πA is the projector onto

Hermitian operators in A in the operator Hilbert space defined above, or by the positivity of I(2).
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S(2)[ρ
U(t)
AF

]+S(2)[ρ
U(t)
BP

]−S(2)[ρ
U(t)
AF∪BP ], which is non-negative in our state since ρU(t) is max-

imally entangled between the future and past. I(2)[ρU(t);AF , BP ] captures fluctuations of

S(2)[ρ
U(t)
AF∪BP ] about its kinematic value, and bounds the corresponding mutual information

I[ρU(t);AF , BP ] from above.

We can then write (as shown in [10])

D2
AC4(OA(t),OB̄(0))β=0 = exp(I(2)[ρU(t);AF , BP ]). (2.4)

Thus scrambling in U(t) as quantified by S(2) is directly related to chaos. A generically

small four-point correlator means a large Renyi entropy or a small I(2). For A and B small,

the expression (2.4) is actually in terms of non-local operators on B̄. In this case, there is

a more natural expression in terms of local operators,

(DADB〈OA(t)OB(0)〉β=0)2 = exp(I(2)[ρU(t);AF , BP ]). (2.5)

The two expressions (2.4) and (2.5) emphasize the important point that the second Renyi

mutual information characterizes the behavior of both two-point functions and OTOC.

I(2)[ρU(t);AF , BP ] between two small regions A and B is governed by two-point functions

of operators supported on A and B, while that between a small region A and a big region

B (bigger than half system size) is governed by the OTOC of operators supported on A

and the smaller region B̄. This is also consistent with the fact that the decay of the OTOC

implies a stronger scrambling of information than simply the decay of two-point functions.

As we will see below, one utility of the point of view of information is a unified treatment

of the two- and four-point functions.

In [10], the relationship (2.4) is used to show that a four-point correlator decaying

to some value less than ε in any region implies that the sum of mutual informations

I[ρU(t);AF , BP ] + I[ρU(t);AF , B̄P ] ≤ I(2)[ρU(t);AF , BP ] + I(2)[ρU(t);AF , B̄P ] < 4 lnDA +

2 ln ε. In principle, ε can be so small that this sum is arbitrarily close to zero. In more

realistic models, we can expect that the OTOC will decay as some polynomial of the log-

arithm of the total Hilbert space dimension. This sum I[ρU(t);AF , BP ] + I[ρU(t);AF , B̄P ]

minus I[ρU(t);AF , BP B̄P ] ≡ 2 lnDA is called tripartite information and its negativity is

proposed as a measure of “scrambling” due to unitary time evolution; then quantum chaos

as measured by the decay of C4 implies scrambling.

We would like to make a side remark at the end of this section. We treat I(2) and I for

ρU(t) as operator-independent diagnostics of chaos. It is clear from the discussion above

that if the OTOC and two-point functions decay generically, I(2) will be small, which

implies I is small as well. Although it is most direct from the discussion above to treat I(2)

as the intrinsic measure of chaos and I simply as a quantity also small in chaotic systems

only because it is bounded by I(2), the true mutual information I is more natural in many

other contexts and it is intuitive that small mutual information of ρU(t) should imply chaos.

To that end, using a bound on von Neumann entropy in terms of Renyi entropy [17] (see

appendix B), we can show that

exp(I(2)[ρU(t);AF , BP ]) ≤ 1 +

(
1 +

1

ln(DADB)

)
(DADB − 1)

I[ρU(t);AF , BP ]

ln(DADB)
. (2.6)
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Thus a sufficiently small mutual information implies small I(2), which in turn implies chaos

according to the OTOC. In the remainder of the work, we will focus on I(2), but (2.6) should

be kept in mind as a way to bound I(2) in terms of the true mutual information.

3 Thermalization of completely random product states

Our goal is to understand how entropy growth and thermalization is related to quantum

chaos as defined above. As discussed in section 1, entropy growth is a state-dependent

statement and can only be true for specific classes of states, for example initial states with

small entanglement. The most naive choice of initial state ensemble is product states of

some fixed granularity. More precisely, we consider a partition of the initial system into

regions Rs such that ∪Ss=1Rs = P is the whole system. Correspondingly, each region Rs has

a Hilbert space Hs, and the Hilbert space of the whole system can be written as a tensor

product of subsystems H =
⊗

s Hs. We consider states of the form |ψ(0)〉 =
⊗

s|as〉,
with |as〉 a random pure state in Hs. An example of one of these states, along with

its time evolution, is shown in figure 2a. There is no change in the global entropy of a

density matrix under unitary evolution, but there can be changes in subsystems. Thus

we consider the second Renyi entropy of the density matrix corresponding to an initial

low-entanglement pure state in some subsystem A4 after time evolution by U(t), averaged

uniformly (according to the Haar measure) over initial states of the form |ψ(0)〉. Denoting

the average EH [f(
⊗

s|as〉)] =
∫ ∏

s dUsf(
⊗

s Us|as〉), where integrals are done over the

Haar measure, and ρψ(0) = |ψ(0)〉〈ψ(0)|, we find our main result

EH
[
exp(−S(2)[ρψA(t)])

]
=

1∏
s(1 + 1/Ds)

1

DA

1 +
∑

R∈P({Rs})
R 6=∅

exp(I(2)[ρU(t);AF , RP ])

DR


(3.1)

where the sum runs over all nontrivial subregions R = Ri1 ∪Ri2 ∪ · · · ∪Rin that are unions

of some of the building blocks Rs. P({Rs}) denotes the set of all such R’s, i.e. the powerset

of {R1, R2, . . . , RS}. A similar relation has recently been studied in the context of random

dynamics in [18]. A representation of a typical term in the sum is shown in figure 2b. We

give some examples of this formula below, and present a derivation in appendix A.

Apart from bounding von Neumann entropy from below, the utility of computing S(2)

is that it can be used to bound the one-norm difference of density matrices. Recall that

|〈O〉ρ−〈O〉ρ′ |/‖O‖ ≤ ‖ρ−ρ′‖1, so the one-norm is the natural distance for density matrices.

By Jensen’s inequality,

EH
[
‖ρψA(t)− ρAβ=0‖1

]
≤
√
DAEHe−S

(2)[ρψA(t)] − 1. (3.2)

Thus as long as the deviation from maximal entanglement is sufficiently small, we can

say a density matrix thermalizes in the one-norm in expectation. As we will see below,

it turns out that thermalizing in expectation (at infinite temperature) sufficiently well is

4Note that A need not factorize through the {Hs}.

– 7 –
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U(t)

A

|ψ(0)〉

= |as〉

(a) Pictorial representation of

the final state |ψ(t)〉 obtained

from time evolution of the ini-

tial product state |ψ(0)〉.

U(t)

A

R

(b) An example of region

R involved in the sum of

eq. (3.1).

U(t)

A

S S

(c) The two-interval case

considered in eq. (3.5) and

eq. (3.6).

Figure 2. Depiction of our setup. In figure 2a we show an example of a state from the ensemble we

find the average entropy of in (3.1). Note in general each state |as〉 is different despite being drawn

using the same symbol . In figure 2b, we show a typical region R from the powerset P({Rs}).
Figure 2c illustrates the special case with bipartition of the past system.

sufficient for most states to thermalize. Note that the infinite temperature ensemble is

the appropriate choice here, since for typical Hamiltonians most states will be infinite

temperature states (cf. [19]), and we always have EH〈H〉ρψ = 〈H〉β=0.

To get an intuition for the implications of (3.1), it is illuminating to consider some

special cases. First, we consider a trivial partition with only one region R1 = P equal to

the whole system. In this case the ensemble is that of random pure states on the whole

system. Our formula reduces to

EH
[
exp(−S(2)[ρψA(t)])

]
=

1

1 + 1/D

1

DA

(
1 +

D2
A

D

)
, (3.3)

which is completely independent of dynamics. In the limit of large system size, as long as

the subsystem A is less than half the system and grows at most linearly with system size,

D2
A/D decays exponentially with system size. Then (3.3) is the familiar statement that

to exponential accuracy, a random pure state is close to maximally entangled in any small

subsystem. This result is expected, as the typical pure state is indeed close to maximally

entangled in any subsystem [20–22], and a random state evolves to another random state

under any dynamics. In fact, the result of [20], derived by explicit integration on S2D−1, is

a special case of (3.3) for trivial evolution U(t) = 1. We can see the relationship to a more

traditional measure of entanglement, the von Neumann entropy, by Jensen’s inequality:

EH [S[ρψA(t)]] ≥ EH [S(2)[ρψA(t)]] ≥ lnDA −
(
ln(1 +D2

A/D)− ln(1 + 1/D)
)
. (3.4)

We move to the case of two initial subsystems, H = HS ⊗HS̄ where we take 1 �
DS ≤ DS̄ . A typical state and its time evolution in this setup is shown in figure 2c. The

– 8 –



J
H
E
P
0
6
(
2
0
1
9
)
0
2
5

expression (3.1) becomes

− lnEH
[
exp(−S(2)[ρψA(t)])

]
= lnDA− ln

(
1+

eI
(2)[ρU(t);AF ,SP ]

DS
+
eI

(2)[ρU(t);AF ,S̄P ]

DS̄

+
D2
A

D

)
+ln(1+(1+DS +DS̄)/D). (3.5)

Already in this next-to-simplest case dynamics play a central role. First, if region S is large

(and S is even larger), all the terms in (1+DS+DS̄)/D are exponentially small. Regardless,

this contribution serves to increase S(2). For A smaller than half system size, D2
A/D is

exponentially small. The only decrease from maximal entanglement that can survive in the

large system size limit is then due to the terms involving I(2)[ρU(t);AF , RP ]. Thus small

I(2) between A and both S and S̄, equivalent respectively to the generic decay of two- and

four-point correlators between A and S, is necessary and sufficient for the expectation of

S(2)[ρψA(t)] to be near the maximal (equivalently thermal at infinite temperature) value for

initial product states in S and S̄. It is important to note that “small” I(2) depends on our

choice of S, as terms have the form eI
(2)[ρU(t);AF ,RP ]/DR. If we want this contribution less

than εR, we only require the condition that I(2)[ρU(t);AF , RP ] < ln(DRεR).

It is also useful to rewrite (3.5) in terms of correlation functions

− lnEH
[
exp(−S(2)[ρψA(t)])

]
= lnDA

− ln

(
1 +D2

A

(
1

D
+DS〈OA(t)OS(0)〉β=0 +

C4(OA(t),OS(0))β=0

DS

))
+ ln(1 + (1 +DS +DS̄)/D). (3.6)

For large systems D2
A/D is exponentially smaller than D2

A/DS , so we can safely focus

on the contributions due to correlators. It is clear that if the two-point functions decay

and D2
A/DS is finite, the deviation from maximum entanglement will be dictated by the

(strictly positive) four-point term D2
AC4(OA(t),OS(0))β=0/DS . Note that depending on

the choice of A and S, even with both less than half system size and (for lattice models)

|A| < |S|, D2
A/DS may be made of order, or even much greater than 1. As mentioned in

section 2, C4(OA(t),OS(0))β=0 can be as small as an inverse polynomial in the logarithm

of system dimension in chaotic systems, so as long as A and S are chosen so that D2
A/DS

does not grow too quickly with system size, in chaotic systems random product states on S

and S will evolve to look thermal in A. In the limit D2
A/DS̄ → 0, only the local two-point

function will contribute to deviations from lnDA. This is the case considered by CT, and

shows that chaos in the OTOC sense is not necessary for thermalization into a much larger

random bath. On the other hand, when DS̄ is finite, if four-point correlations do not decay

sufficiently we can have significant corrections to thermal entropy.

This argument extends without significant modification to the case of S initial subsys-

tems H =
⊗S

s=1 Hs, where S may grow linearly with system size. As long as two-point

functions generically decay between A and subsystems up to half system size, the contribu-

tion from summands in (3.1) involving R less than half the system will be small. The decay

of four-point correlators between A and subsystems up to half system size is necessary to
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bound contributions from summands involving R greater than half system size. Concretely,

we need, for regions R less than half system size, 〈OA(t)OR(0)〉β=0 � 1/(DA

√
DR) and

C4(OA(t)OR(0))β=0 � DR/D
2
A for A to look maximally entangled on average. Note that

in an integrable system, it is expected that I(2) will always be high for some subextensive5

subregions R (for example numerics in [10]), although these regions may change in time as

information propagates. Some subextensive region of initial conditions largely determines

the density matrix in A. This demonstrates an obstacle to thermalization in non-chaotic

isolated systems. In contrast, a chaotic system will scramble information about the ini-

tial conditions in each Hs across extensive regions of the system. Equivalently, extensive

knowledge of initial conditions determines the density matrix in A. The only R for which

exp(I(2)[ρU(t);AF , RP ]) & DA have DR ∼ D, so that even if I(2)[ρU(t);AF , RP ] attains its

maximum 2 lnDA, D2
A/DR decays exponentially in system size if A is chosen as in the

examples above.

For systems with

ε = EH
[
DAe

−S(2)[ρψA(t)] − 1
]

=
1∏

s(1 + 1/Ds)

∑
R∈P({Rs})

R 6=∅

eI
(2)[ρU(t);AF ,RP ]

DR

+

(
1∏

s(1 + 1/Ds)
− 1

)
(3.7)

small, we can meaningfully bound the number of states that do not thermalize by Markov’s

inequality:

Pr
(
DAe

−S(2)[ρψA(t)] − 1 > δ
)
< ε/δ. (3.8)

The conclusion is that if we find that states are expected to thermalize sufficiently well,

then a particular state is likely to have the average behavior after long times. This bound

is easily “weakened” to a statement about probabilities of significant deviation for local

entropy. On the other hand, if states are not expected to thermalize, we do not expect

to find such a bound on physical grounds; the long-time trajectory of non-thermalizing

systems can depend sensitively on the details of initial conditions.

4 Finite temperature extension

As discussed above, the preceding results should be interpreted as statements about ther-

malization at infinite temperature. To get ensembles other than infinite temperature we

must restrict the set of initial states we average over. One natural way is to still consider a

partition into regions Rs, s = 1, 2, . . . , S, but in each region we restrict the state into a sub-

space of Hilbert space Hs, denoted as HMs ⊂Hs. Physically, HMs is the subspace of states

in an energy window E0 < E < E0 + ∆E, when we define the energy with respect to the

subsystem Hamiltonian of Rs, neglecting the boundary term contribution. We can define a

“microcanonical” density matrix ρMs = πMs/DMs for each region, with πMs the projection

5By subextensive we do not mean not growing with system size, but we mean of dimension DR small

enough that D2
A/DR, with A chosen as in the examples above, is not exponentially small.
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operator onto HMs, and DMs the dimension of HMs. Then we consider the initial state as

pure states drawn from the ensemble ρM = ⊗sρMs, which are states with zero entanglement

entropy between different regions, and have a finite energy density. It will be convenient

to change the normalization on the operator inner product to be 〈A,B〉 = Tr[A†B].

The above results suggest that entropy growth and thermalization of these product

states should be related to entanglement properties of some state depending on U(t);

tentatively, call this state |UM (t)〉 (in sections 2 and 3, the relevant state was isomorphic

to the operator U(t)). As a first check that we have chosen a useful state, it is natural

to require that some analog of (2.2) hold for ρUM (t). Such a result would suggest that

correlations in |UM (t)〉 are related in the same intuitive way to thermalization of states

from the ensemble ρM as correlations in the state |U(t)〉 are to thermalization of states

from the ensemble 1/D. A useful choice turns out to be |UM (t)〉 = 1⊗ U(t)ρ
1/2
M |I〉; since

we have chosen ρM compatible with the tensor factorization of H , to understand this state

one can just put projectors on each input leg of U(t) in figures 1 and 2. The case πM = 1

has been described in section 2; it turns out this is a very special case, due to the fact

that 1 commutes with everything. For general ρM and two regions AF , BP in the past and

future systems, respectively, we have the bound

I[ρUM (t);AF , BP ] (4.1)

≥ 1

2


(
〈OA(t)OB(0)〉ρM − 〈OA(t)〉ρM 〈OB(0)〉ρM

)
+ 〈OA(t)[πM , OB(0)]〉ρM

‖OA‖‖OB‖

2

.

If the commutator [πM , OB] is small, (4.1) becomes exactly analogous to (2.2). For example,

suppose H has the form H ≡ HL =
∑

sHs+
∑

∂sH∂s where Hs act on disjoint subsystems

Hs, and the boundary terms H∂s are allowed to couple “nearby” subsystems. If we then

choose πMs to project onto some subsystem energy window (one where the eigenvalues of

Hs lie in some fixed range) and take πM =
⊗

s πMs, operators OB that are local to subsys-

tems and do not change the energy outside the energy window will have zero commutator

with πM . Another example is some local conserved quantity that we choose to concentrate

in some subsystem Hs by choice of πMs; if OB does not transport this charge across subsys-

tems it will have zero commutator with πM . If the above conditions are only met approxi-

mately (OB has small matrix elements for bringing states out of and into HM ), the commu-

tator will be small. Of course, we can enforce a zero-commutator condition on OB by simply

taking it to ÕB = πMOBπM . Then we can directly interpret (4.1) as the “re-equilibration”

of ρM after acting by OB; perturbing the state by OB does not affect the action of OA in

the future. Of course, the case πM = 1 reduces exactly to (2.2) for any choice of OB.

As mentioned, πM = 1 is a very special case, and this gives rise to important differences

when relating information measures to chaos and equilibration for generic ρM . The bound

S(2) ≤ S is always true, so S(2) of ρUM (t) is still a good measure of the “correlation”

between the past and future. Important special cases are S(2)[ρ
UM (t)
AF

] = S(2)[ρMA(t)]

and S(2)[ρ
UM (t)
BP

] = S(2)[ρMB(0)]. On the other hand, since ρM can have non-trivial time

evolution, the quantity S(2)[ρ
UM (t)
AF

] + S(2)[ρ
UM (t)
BP

]− S(2)[ρ
UM (t)
AF∪BP ] can become negative (in
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contrast to the πM = 1 case), so I(2) as defined in section 2 is not as fundamental a

quantity. It also does not bound the corresponding mutual information I. We can define

a quantity that upper bounds I,

Ĩ[ρUM (t);AF , BP ] = I[ρUM (t);AF , BP ] + (S[ρ
UM (t)
AF∪BP ]− S(2)[ρ

UM (t)
AF∪BP ])

= S[ρUM (t);AF ] + S[ρUM (t);BP ]− S(2)[ρ
UM (t)
AF∪BP ] (4.2)

For πM = 1, Ĩ[ρUM (t);AF , BP ] = I(2)[ρUM (t);AF , BP ]. There are equalities analogous

to (2.4) and (2.5) relating Ĩ to chaos:

eĨ[ρ
UM (t);AF ,RP ] =

(
eS[ρMA(t)]

DA

)(
DR̄

DMR̄

)
D2
AC4(OA(t), ÕR(0))ρM (4.3)

=

(
eS[ρMA(t)]

DA

)(
DMR

DR

)
(DADR〈OA(t)OR(0)〉ρM )2, (4.4)

for regions R ∈ P({Rs}) (for other sorts of regions, factors of DMR will be replaced by

entropies), where ÕR = πMORπM . This modification of OR has a natural interpretation,

paralleling the discussion of (4.1). The OTOCs in (4.3) are to be computed for operators

in the past that do not move states out of HM (and act by zero on states outside); in

the examples following (4.1), ÕR will conserve local energy density or subsystem charge,

respectively. We also clearly have [πM , ÕR] = 0, so according to (4.1) the mutual infor-

mation bounds the effect of these operators in the most intuitive way. Note that as HMs

becomes smaller, the four-point contributions (4.3) become more important.

With these preparations, we can extend the results of section 3 to the case of generic

ρM . For product states |ψM 〉 =
⊗

s|aMs〉 with each |aMs〉 taken from HMs, we obtain the

result analogous to (3.1):

EH [exp(−S(2)[ρψMA (t)])] =
1∏

s(1 + 1/DMs)

× e−S(2)[ρMA(t)]

1 +
∑

R∈P({Rs})
R 6=∅

e−(S[ρMA(t)]−S(2)[ρMA(t)]) e
Ĩ[ρUM (t);AF ,RP ]

DMR

 . (4.5)

The Ĩ terms are the positive corrections for product states from the entropy computed

from ρM . We can also generalize the discussion surrounding (3.2) to see that

EH
[
‖ρψMA (t)− ρMA(t)‖1

]
≤
√
DA

(
EHe−S

(2)[ρ
ψM
A (t)] − e−S(2)[ρMA(t)]

)
, (4.6)

so states chosen from the ensemble given by ρM “equilibriate” (in the above sense of 1-norm)

to ρM given small Ĩ terms. The major difference is that ρM is generically not thermal.

Interpreting small Ĩ as chaos, this shows that chaos is sufficient to “scramble” initial con-

ditions to the extent that the particular state within the initial ensemble is irrelevant, but

we have not shown that the “unentangled microcanonical ensemble” ρM itself thermalizes.
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That said, in a system with a local Hamiltonian and with a choice of the regions Rs of size

much bigger than the thermal correlation length, the contribution of boundary terms to

energy is small, and ρM has a volume law entropy that is close to the thermal value at the

same energy expectation value. In other words, an initial pure state drawn from ρM has

already almost thermalized when the reduced density matrix approaches that of ρM .

5 Conclusion

We have explored the consequences of small correlation (as computed in U(t) and UM (t))

between the past and future. For the density matrices ρβ=0 and ρM the expressions (2.2)

and (4.1) respectively show that certain types of perturbations to these density matrices in

some region B are “forgotten” in some region A as long as the information between A in

the past and B in the future for U(t) or UM (t) has had time to decay. Next, (3.1) and (4.5)

show that the decay of information between past and future regions corresponds to entropy

growth for far-from-equilibrium pure states. Finally, using these expressions in combination

with (3.2), (3.8), and (4.6), we have shown that this decay of information between past

and future means the initial conditions of a particular pure state chosen from an ensemble

are forgotten (although the ensemble itself is not). Although the discussion proceeds most

naturally in terms of information, we can also conclude that quantum chaos as diagnosed by

the OTOC and the decay of local two-point functions imply entropy growth and erasure

of initial conditions (“equilibration”) by relating the OTOC and two-point functions to

information. Likewise, generic thermalization implies the contribution of I(2) or Ĩ terms

in (3.1) or (4.5) are small, so mutual information between local regions in the future and

sub-extensive regions in the past is bounded above. Thus there is a sense in which quantum

thermalization implies chaos.

The most important extension of this work is a deeper understanding of the finite

temperature results. The same state may be a member of several ensembles ρM , but the

formalism we developed does not identify a preferred density matrix. Such a preferred

density matrix should be a time independent distribution, for example the Boltzmann

distribution, when that pure state equilibriates. A first step may be to find conditions

such that the “more thermal” (higher entanglement) ρM thermalize. It should also be

possible to improve the factor DA in (4.6) in the case that EHe−S
(2)[ρ

ψM
A (t)] ' e−S(2)[ρMA(t)]

for locally thermalizing ρM . Finally, to make this work more practically applicable, it is

important to show that either chaos as measured by the OTOC or decay of information

between the future and past is generic for local Hamiltonians.
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A Derivation of main results

We present the derivation of the results in section 4, which are a strict generalization of

the results in sections 2 and 3. The main tool is the Schur-Weyl duality, which describes

the combined action of the symmetric and unitary groups on tensor product spaces. On

the vector space Vn = (CD)⊗
n
, the symmetric group on n letters, Sn, acts in a natural way

by permuting the n factors, while the unitary group U(D) acts by U⊗
n

for U ∈ U(D).

Theorem 1 (Schur-Weyl Duality). Under the combined natural actions of Sn and U(D)

on the vector space Vn (as defined above), Vn can be written as a direct sum

Vn =
⊕
Y

WY ⊗ SY

where Y is an index running over Young diagrams with n boxes, and WY (SY ) is an irre-

ducible representation of U(D) (Sn) not isomorphic to any other representation appearing

with different Y .

We will typically use this theorem to constrain operators that commute with the action

of U(D)×Sn; since each irrep of the combined action appears only once in the decomposition

of Vn, such an operator must act as multiplication by a constant on each irrep by Schur’s

lemma. Furthermore, the theorem tells us we can project onto each irrep by projecting

onto an irrep of only Sn, so each such operator can be written as a sum of projectors, each

of which is in turn a sum of elements of Sn.

As an intermediate result, we must compute the Haar integral An =∫
dU(U |ψ〉〈ψ|U †)⊗n , which is clearly independent of the choice of |ψ〉. Furthermore, An

commutes with the above actions of U(D) and Sn, so we take An to be a sum of σ ∈ Sn.

It is easy to check that in fact σAn = An for all σ ∈ Sn, so An ∝
∑

σ∈Sn σ. To find the

normalization factor, note that6

Tr

[∑
σ∈Sn

σ

]
=

n∑
c=1

(count of permutations with c cycles)Dc =

n−1∏
m=0

(D +m) .

This gives

EH [|ψ〉〈ψ|] =

∫
dU(U |ψ〉〈ψ|U †)⊗n =

[
n−1∏
m=1

(1 +m/D)

]−1
1

Dn

∑
σ∈Sn

σ.

We now compute the expectation of the second Renyi entropy in the setup of section 4.

Call the non-identity element of S2, that swaps tensor factors, X. If we have a Hilbert space

H with a subsystem labelled A, there is a permutation group SnA that acts on H ⊗n by

only permuting tensor factors corresponding to subsystem A between copies. We refer to

these group elements by a subscript A, so for example XA. To compute the expectation

6The last equality is proved easily after noting that for a given permutation of n− 1 elements, to form

a permutation of n elements the nth element either forms a new cycle, contributing a factor of D, or can

be put in an existing cycle in n− 1 distinct ways (regardless of the permutation).
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of the second Renyi entropy, we use the relation Tr[ρ2
A] = Tr[ρ⊗

2XA]. As a reminder,

the distribution on initial ρψM in our case is fixed as follows. We are given a partition

of Hilbert space into S subsystems, H =
⊗

s Hs, and in the vector space associated to

each subsystem we choose a linear subspace HMs (with associated projector πMs). The

distribution on ρψM is independently Haar random on the subspace of each subsystem.

From the above discussion on the Haar integral, it follows that

EH [ρψM (0)⊗
2
] =

1∏
s(1 + 1/DMs)

ρ⊗
2

M

∏
s

(1s + Xs) =
1∏

s(1 + 1/DMs)
ρ⊗

2

M

∑
R∈P({Rs})

XR,

where DMs is the dimension of HMs, ρM =
∏
s πMs/DMs, and P({Rs}) is the powerset of

subsystems. The second equality comes from noting that the product has 2S terms, based

on a choice of 1s or Xs for each subsystem, and the included swaps combine to give a single

swap of all included subsystems. We then have

EH
[
Tr[ρψM (t)2

A]
]

= Tr[U(t)⊗
2
EH [ρψM (0)⊗

2
](U(t)†)⊗

2
XA] (A.1)

=
1∏

s(1 + 1/DMs)

×
∑

R∈P({Rs})
Tr[(U(t)

√
ρM )⊗

2
XR(U(t)

√
ρM )†⊗

2
XA] (A.2)

=
1∏

s(1 + 1/DMs)

∑
R∈P({Rs})

e
−S(2)[ρ

UM (t)

AF∪RP
]

(A.3)

where UM (t) = U(t)
√
ρM . To see the last equality, we refer to the explicit construction of

the state corresponding to UM (t) following the procedure of figure 1 to check that the index

contractions are correct, and the proportionality factor is correct since Tr[U(t)ρMU(t)†] =

1. By the same construction, we can compute S(2)[ρ
UM (t)
RP

] = S[ρ
UM (t)
RP

] = lnDMR,

S(2)[ρ
UM (t)
AF

] = S(2)[ρMA(t)], and S[ρ
UM (t)
AF

] = S[ρMA(t)], so that upon multiplication by

appropriate factors of entropy, equations (3.1) and (4.5) follow from (A.3).

To connect (A.1), and more generally entropies of ρUM (t), to observables, we use the

explicit form of projectors onto irreps of S2: π± = (1±X)/2. Then an operator A on H ⊗2

that commutes with the joint action of U(D) × S2 can explicitly be written as a sum of

π±, with coefficients Tr[Aπ±]/Tr[π±]. This gives

A =
1

D2 − 1
((Tr[A]− Tr[AX]/D)1 + (Tr[AX]− Tr[A]/D)X) .

In particular, we can implement X in terms of any operators that commute with U(D)×S2

and have DTr[A] = Tr[AX]. One example can be found by taking a complete basis of

Hermitian operators orthonormal under the inner product 〈A,B〉 = Tr[A†B]/D, B (we

make this normalization choice so that eigenvalues of operators in the basis can be ±1).

Since conjugation by a unitary U ∈ U(D) preserves Hermeticity and the inner product,

conjugating every element of B gives a new, still orthonormal basis of the real vector space

of Hermitian operators, so can be written as a real orthogonal matrix acting on the elements

of B. Thus the average over Hermitian operators Y = D−2
∑
O∈BO⊗

2
is invariant under
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conjugation by a unitary (and is therefore independent of the particular choice of operator

basis), and clearly commutes with the action of S2; in other words Y commutes with the

joint action of U(D)× S2. Taking a basis including the identity shows Tr[Y ] = 1, and the

normalization condition gives Tr[Y X] = D−2
∑

Tr[O2] = D, in other words Y = X/D. We

can then write (using (A.2) and the following discussion), assuming that R factors through

the tensor factorization into Hs for convenience,

e
−S(2)[ρ

UM (t)

AF∪RP
]
= Tr[U(t)†⊗

2
XAU(t)⊗

2
XRρ⊗

2

M ] = DADR Tr[(OA(t)ORρM )⊗
2
]

= DADR (〈OA(t)OR〉ρM )2

= DA Tr[OA(t)⊗
2
XRρ

⊗2

M X]

=
DADR

DM
Tr[OA(t)ORπMOA(t)ORρM ]

=
DADR

DM
Tr[OA(t)ÕROA(t)ÕRρM ] =

DADR

DM
C4(OA(t), ÕR(0))ρM

where the first equality on the last line follows since [πM ,XR] = 0. These expressions,

after multiplication by DMRe
S[ρMA(t)], give equations (2.4), (2.5), (4.3), and (4.4). Finally,

equations (2.2) and (4.1) are direct consequences of the well-known inequality

I[ρ;A,B] ≥ 1

2

(〈OAOB〉ρ − 〈OA〉ρ〈OB〉ρ
‖OA‖‖OB‖

)2

and the definition of ρUM (t).

As a possible tool for computing higher Renyi entropies, we note that elements of Sn

can be implemented in terms of averages of local operators for n > 2, despite the fact

that we used a property special to n = 2 (invariance of
∑O⊗2

when summed over an

orthonormal basis) above. The idea is to take some as-yet unchosen Hermitian operator A,

and define M =
∫
dU(UAU †)⊗

n
, which commutes with U(D) × Sn, and so is a weighted

sum of projectors onto irreps of Sn. The numbers Tr[Mσ] for σ ∈ Sn determine the weights;

these are in turn products of traces of powers of A. Thus M depends only on the spectrum

of A, and by tuning this spectrum we can tune the weights of projectors. For example,

if we take n = 2, the Haar average over operators A with some fixed spectrum satisfying

D(
∑

i λi)
2 =

∑
i λ

2
i is proportional to X.

B Derivation of equation (2.6)

We present a short derivation of (2.6), based on equation 23 of [17]. That equation, in our

notation, is

S[ρ
U(t)
AF∪BP ] ≤ ln(DADB)

1− τ

e−S(2)[ρ
U(t)
AF∪BP

] − (DADB)−1

1− (DADB)−1

 ,

where another result of [17] is that τ ≥ ln(DADB)/(ln(DADB) + 1). Then, noting that

S[ρ
U(t)
AF

] = S(2)[ρ
U(t)
AF

] = lnDA and likewise for ρ
U(t)
BF

as ρU(t) is maximally entangled between

past and future (see figure 1c), we can multiply both sides by DADB and use the bound

on τ to obtain (2.6).
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