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Abstract: A frequency-hopping (FH)-based dual-function multiple-input multiple-output (MIMO)
radar communications system enables implementation of a primary radar operation and a secondary
communication function simultaneously. The set of transmit waveforms employed to perform the
MIMO radar task is generated using FH codes. For each transmit antenna, the communication
operation can be realized by embedding one phase symbol during each FH interval. However, as the
radar channel is time-variant, it is necessary for a successive waveform optimization scheme to
continually obtain target feature information. This research work aims at enhancing the target detection
and feature estimation performance by maximizing the mutual information (MI) between the target
response and the target returns, and then minimizing the MI between successive target-scattering
signals. The two-step cognitive waveform design strategy is based upon continuous learning from
the radar scene. The dynamic information about the target feature is utilized to design FH codes.
Simulation results show an improvement in target response extraction, target detection probability
and delay-Doppler resolution as the number of iterations increases, while still maintaining high data
rate with low bit error rates between the proposed system nodes.

Keywords: multiple-input multiple-output (MIMO); frequency-hopping code; dual-function
radar-communications; information embedding; mutual information (mi); waveform optimization

1. Introduction

The multiple-input multiple-output (MIMO) radar [1–3] is a significant technique owing to the
enhancement in performance it provides over the traditional radar systems with a single transmit
antenna. The transmit waveforms are detected by a matched filter bank in the MIMO radar receiver.
Making use of the knowledge of the propagation channels, a superior spatial resolution can be
achieved. Furthermore, a MIMO radar has several advantages such as prominent interference
rejection capability, enhanced parameter estimation performance, and better flexibility for transmit
waveform optimization [4–6]. Several works in the literature discussed the subject of MIMO waveform
optimization [7–11]. In [7], the authors considered the joint design of both transmit waveforms and
receive filters for a collocated MIMO radar with the existence of signal-dependent interference and white
noise. The design problem is formulated into a maximization of the signal-to-interference-plus-noise
ratio (SINR), including various constraints on the transmit waveforms. Stoica and Li designed the
covariance matrix of the transmit waveforms to control the spatial power [8]. However, the cross
correlation between the transmit waveforms at a specific target range is minimized. Several research
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works [12–15] designed the transmit waveform directly instead of just the covariance matrix. The work
of [13] considered prior knowledge of the target impulse response (TIR) and utilized the information
to select the transmit waveforms which optimize the mutual information (MI) between the target
echoes and the TIR. The work of [15] investigated the problem of the spectrally compatible waveform
design for MIMO radar in the presence of multiple targets and signal-dependent interference. A new
method was proposed to deal with a more general problem, i.e., designing a spectrally compatible
waveform for multiple targets, by minimizing the waveform energy of the overlayed space-frequency
bands. The waveform optimization which employs prior knowledge of TIR is also implemented in the
single-input multiple-output (SIMO) radar system [16].

The work of [17] derived MIMO radar ambiguity functions. San Antonio and Fuhrmann discussed
some properties of the MIMO radar ambiguity function, which provide several ideas for MIMO
waveform optimization [17]. The frequency-hopping (FH) sequences presented in [18] were used
in MIMO radar configuration [19,20]. The FH orthogonal transmit waveforms discussed in [18] are
initially considered for multiuser radar system. Furthermore, [18] employed the FH codes to minimize
the peaks in the cross correlation functions of the transmit waveforms as much as possible. However,
in the multiuser radar scenario, each operator activates its individual system. This is different from the
MIMO radar system where the receiver antennas can cooperate to resolve the target responses. The FH
sequences, which were designed by Chen and Yang, optimized the MIMO ambiguity function.

Based on their characteristics of being easily produced and modulus constant, FH codes are
considered a good choice for the MIMO radar waveforms. A new scheme for optimizing the MIMO
radar waveforms was provided in [19]. The scheme makes the energy of the MIMO ambiguity function
spread in the range and angular dimensions evenly, as well as decreases the sidelobes in the MIMO
radar ambiguity function. The work of [19] also designed optimal FH waveforms, which had separate
FH codes and amplitudes, for a collocated MIMO radar system. The joint design problem can be
solved by using game theory, provided by [20]. The authors considered the two objective functions,
corresponding to FH codes and amplitudes separately, as two interacting players. By this concept, the
joint optimization scheme obtained better integrated code and amplitude matrices that can improve
performance much better than separate designs.

The works of [21–26] indicated a possibility of employing the radar-communications integration
concept to solve the lack of radio frequency (RF) spectrum. Efficient utilization of shared bandwidth
between wireless communications and radar can be achieved by using dynamic frequency allocation.
For example, using dynamic frequency allocation is a way to make shared bandwidth between wireless
communications and radar possess more efficient utilization. The work of [23] proposed a novel
dual-function radar-communications (DFRC) strategy to embed quadrature amplitude modulation
(QAM) based communication information in the radar waveforms by exploiting sidelobe control
and waveform diversity. In [27,28], the authors proposed a novel distributed DFRC MIMO system
capable of simultaneously performing radar and communication tasks. The distributed DFRC MIMO
system performs both objectives by optimizing the power allocation of the different transmitters in
the DFRC system. The proposed strategy can serve multiple communication receivers located in the
vicinity of the distributed DFRC MIMO system. Numerous recent studies [29–31] considered that the
developing concept of DFRC is secondary to the main radar task. Communication source embedding
into the illumination of MIMO radar system is realized using waveform diversity, sidelobe control, or
the time-modulated array technique, which was studied in [30]. Hassanien and Himed presented a
signaling strategy for communication source embedding into the illumination of FH-based MIMO
radar system [32]. The main principle behind the signaling strategy is to embed phase modulation
(PM)-based symbols by using phase rotating the FH pulses. The phase shift is implemented to
each transmit FH waveform of the MIMO radar system. The PM-based symbol embedding does not
influence the function of the MIMO radar system, which uses the FH waveforms.

The investigation on cognitive radar waveform optimization has received a lot of interest [33–35].
To further enhance the performance of the TIR estimation in a time-varying target scene, the transmitted
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signal parameters should be constantly adjusted. Then, updated knowledge about the time-varying
target scene is employed to allocate fundamental resources like transmitted signal parameters in a
cognitive mode [34]. A new strategy for optimizing the waveforms of a cognitive radar was presented
in [34]. The aim is to enhance the performance of target estimation by minimizing the mean-square
error (MSE) of the estimates of target scattering coefficients (TSC) based on Kalman filtering and then
minimizing MI between the radar target echoes at successive time instants. However, there is also
an increase in the computational load due to the Kalman filtering step in the waveform optimization.
Such a cognitive radar system cannot be used in real applications to address the environmental
sensing issues. To improve the performance of the target parameters estimation and classification, the
pioneering study by Bell in [36] developed an information-theoretic method for the radar waveforms
optimization. The authors in [37–39] extended the information-theoretic method by maximizing the
MI between the target response and the target-scattering signals as a waveform design criterion in the
MIMO radar system. The work of [40] proposed an innovative method to designing the transmit signal
of cognitive MIMO radar system, which combines the signal optimization and selection processes.
The works of [41–44] present a signaling scheme for information embedding into the illumination of
the radar using FH pulses. An FH-based joint radar-communication system enables implementing a
primary radar operation and a secondary communication function simultaneously. Then, the authors
consider the problem of radar codes optimization under a peak-to-average-power ratio (PAR) and an
energy constraint. However, a time-variant radar scenario is not considered.

Based on the points discussed above, it is interesting to discuss the performance of an adaptive
dual-function MIMO radar-communications system that combines the adaptive FH waveform
optimization scheme stated in [38] and PM-based information embedding strategy stated in [31].
To further adapt to the dynamic radar environment, we consider the problem of adaptive waveforms
design and propose a two-step waveform optimization scheme, which provides better target detection
performance and high data-rate communication capability between the proposed dual-function systems.
The proposed scheme is summarized as follows:

Step 1. Waveform Design: this part includes the design of the FH waveform for the individual
MIMO transmit antennas. The primary goal is to maximize the MI between the target-scattering signal
and the estimated target response. The method ensures that the target-scattering signal at each time
instant is dependent on the target response.

Step 2. Waveform Selection: after the best waveform ensemble is gained, part two is to choice
the suitable PM-based FH sequences for emission. The principle of this module is to minimize the
MI between consecutive target scattering signals. This part ensures that we constantly obtain target
returns that become independent of each other in time, with the purpose of achieving more information
about the target characteristics at each time instant of reception.

The premise of the FH waveform optimization scheme is channel estimation. The target feature
estimation can be performed by the MIMO radar receiver through observations implemented in the
previous time instant. A feedback loop enables the delivery of the estimates to the dual-function MMO
radar-communications transmitter. At a result, the optimization strategy allows the MIMO radar
transmitter to constantly adjust FH codes to suit the time-varying channel scene.

We choose the FH waveform for the following reasons:

(1) The channel environment is complicated to wireless communications due to densely
populated scatterers. However, FH waveforms are immune to multipath channel fading under
the circumstances.

(2) The FH waveforms are robust to antagonistic environments by offering low interception probability.
Furthermore, FH waveforms are immune to clutter interference.

(3) The constant-modulus waveforms have the property of high transmission power efficiency.
FH waveforms enjoy the constant-modulus feature and are easy to generate.

The primary innovations of our work are summarized as follows:



Sensors 2020, 20, 415 4 of 21

(1) We define the PM-based FH waveforms in dual-function MIMO radar-communications
configuration and derive the associated MIMO ambiguity function;

(2) We develop a two-step waveform optimization scheme in the adaptive PM-based dual-function
MIMO radar-communications framework;

(3) We evaluate the performance of the proposed scheme in terms of target response estimation,
delay-Doppler resolution and communication symbol error rate (SER).

(4) We compare the proposed scheme with other radar systems through analysis of the target
detection and receiver operating characteristics (ROC) in an interference noise environment.

The organization of this paper is as follows. In Section 2, we describe the dual-function MIMO
radar-communications system and the PM-based FH signal model. In Section 3, we derive the MIMO
radar ambiguity function of the PM-based FH waveform. In Section 4, we present an adaptive approach
to optimizing the proposed information embedding waveform. The transmit waveforms are designed
at step 1 of the algorithm and selected based on the criterion presented in step 2. The simulation results
demonstrating the proposed scheme are presented in Section 5. Finally, our conclusions and directions
for possible future work are drawn in Section 6.

Throughout this paper, the following notations will be used. We use boldface lowercase letters
and boldface uppercase letters to denote vectors and matrices, respectively; (.)∗ to denote the complex
conjugate operation; (.)T to denote the transpose operation; (.)H to denotes the Hermitian operation;
⊗ to denote the Kronecker product; IMN to denote the identity matrix of size MN×MN; Angle( · ) to
denote the angle of a complex number.

2. System Configuration and Signal Model

2.1. Phase Modulation (PM)-Based Frequency Hopping (FH) Waveforms

A PM-based method for embedding information into the radar emission was recently proposed
in [31]. To deliver a finite number of binary bits per radar pulse, the PM-based method maps the
binary data into a phase symbol that belongs to a phase dictionary of an appropriate size. During each
radar pulse, the PM-based method embeds one phase symbol into the radar emission toward the
intended communication direction. At the communication receiver, a phase detector is used to detect
the embedded symbol and, subsequently, deciphers the corresponding binary sequence. Unlike the
amplitude modulation (AM) and amplitude shift keying (ASK) methods [30], the PM-based method
offers the ability to embed information toward communication receivers, regardless of whether they
are located within the sidelobe or the main lobe.

Since target detection is the main task of the dual-function radar-communications system, the
transmit waveform should be considered primarily based on the requirements of the radar function.
One fundamental requirement of the radar function is the high efficiency of transmitted power.
So constant-modulus waveforms are selected. FH waveform enjoys the constant-modulus feature and
is easy to generate. Furthermore, FH pulse waveform is immune to multipath channel fading and
clutter interference under the circumstances.

The configuration for a joint radar-communications system and the PM-based FH signal model
was developed in [44]. In this section, we follow the methods of [44] and further develop a PM-based
dual-function MIMO radar-communications system. We express the MIMO FH waveforms as

φm(t) =
Q∑

q=1

e j2πcm,q∆ f tu(t− ∆t), m = 1, . . . , M (1)
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where cm,q, m = 1, . . . , M; q = 1, . . . , Q describes the FH code, M and Q denote the number of transmit
antennas and the length of FH code, respectively. ∆ f and ∆t respectively denote the frequency step
and the hopping interval duration, and

u(t) =

1, 0 < t < ∆t

0, otherwise
(2)

The duration of a pulse is expressed as T0 = Q∆t. We assume that the code is cm,q∈{1, . . . , J}, where
J denotes a predefined value. As a result, the bandwidth of the radar pulse can be approximately
denoted by J∆ f . To realize transmit waveform orthogonality, FH code should be designed to meet the
following requirement cm,q = cm′,q,∀q, m = m

′

. Several papers proposed FH waveform optimization
for MIMO systems (see [19]; and references therein). Then, we propose that a dual-function MIMO
radar-communications system with phase symbols yields the extended virtual data model at the radar
receiver. We also present the information-embedding scheme and the associated transmission rate.
Let {Ωm,q∈[0, 2π]}, m = 1, . . . , M, q = 1, . . . , Q be a set of MQ PM-based symbols. Hence, the set of FH
waveforms is expressed as:

xm(t) =
Q∑

q=1

e jΩm,q e j2πcm,q∆ f tu(t− ∆t), m = 1, . . . , M (3)

In (3), ∆t should be designed to meet the requirement:∫ ∆t

0
e j2πcm,q∆ f te− j2πcm′ ,q′∆ f tdt = 0, m = m

′

, q = q
′

(4)

By using (1) and the orthogonality between the FH waveforms stated in (4), it is easy to prove that
PM-based FH waveforms xm(t), m = 1, . . . , M are also orthogonal. The set of transmitted waveforms is
presented in Figure 1.
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The N×1 vector of the target scattering signals at the output of the radar receive antenna array can
be expressed as:

y(t, i) = HT(i)x(t, i) + n(t, i) (5)

where i describes the index. H(i) =
[
hi

m,n

]
M×N

indicates the target response matrix during the i-th radar
scan. hm,n stands for the channel coefficient between the m-th transmit element and the n-th receive
element. x(t, i) = [x1(t, i), . . . , xM(t, i)]T represents the M×1 vector of PM-based waveforms during the
i-th radar scan. xm(t, i) is the waveform transmitted from the m-th transmit element, and n(t, i) is an
N×1 vector of zero-mean white Gaussian noise.
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The target-scattering signal components associated with the individual PM-based FH waveforms
are achieved by using a matched filter bank. As a result, the target scattering signals observed at the
output of the MIMO radar receiver (5) are matched-filtered to the proposed PM-based sequences (3),
yielding the MN×1 vector of the virtual signal. The extended vector can be expressed as:

r(i) = vec(
∫

T0
y(t, i)xH(t)dt)

=vec(HT) + n̂(i)
(6)

In (6), vec( · ) describes the vectorization operator that stacks the columns of a matrix into one long
column vector, and n̂(i) denotes the MN×1 zero-mean white Gaussian noise with covariance δ2

zIMN.

2.2. Information-Embedding Scheme

It is assumed that a phase symbol denotes B bits of binary sequence. During the i-th
radar pulse, the binary sequence that needs to be embedded is used to select phase symbols
Ωm,q(i), m = 1, . . . , M, q = 1, . . . , Q from a pre-defined constellation of K = 2B symbols. It is considered
that the constellation is uniformly distributed between [0, 2π], which can be expressed as:

CPSK =
{
0,

2π
K

, . . . ,
(K − 1)2π

K

}
(7)

The set of PM-based FH waveforms at time i can be rewritten as:

xm(t, i) =
Q∑

q=1

e jΩm,q(i)e j2πcm,q∆ f tu(t− ∆t), m = 1, . . . , M (8)

In (8), Ωm,q(i)∈CPSK. To simplify discussion and implementation, it is assumed that a
communication receiver equipped with a single antenna is located at a known direction θc. Therefore,
the received signal at the output of the communication receiver can be expressed as:

y(t, i) = αcaT(θc)x(t, i) + n(t, i) (9)

where αc denotes the channel attenuation coefficient. It is considered that αc keeps constant during the
whole processing interval. a(θc) indicates the steering vector of the transmit antenna array, and n(t, i)
denotes the zero-mean white Gaussian noise with covariance δ2

w.
It is assumed that the communication receiver has full knowledge of the code cm,q and the

step ∆ f . Hence, the communication received signals (5) are matched-filtered to the orthogonal FH
sub-pulses yields:

rm,q(i) =
∫ ∆t

0 y(t, i)e− j2πcm,q∆ f tu(t− ∆t)dt
= αce− jπdm sinθceΩm,q(τ)+nm,q(i)

m = 1, . . . , M, q = 1, . . . , Q
(10)

In (10), dm denotes the distance between the first and the m-th antennas of the transmit array.
The communication receiver has the ability to undo e− jπdm sinθc before it estimates the symbol Ωm,q(i).
rm,q(i) is viewed as a phase-rotated and noisy version of the m-th entry of a(θc). Hence, Ωm,q(i) that
need to be embedded is estimated as:

Ω̂m,q(i) = Angle(rm,q(i))−Angle(αc)+2πdm sinθc (11)

Then, the communication receiver compares Ω̂m,q(i) to the predefined CPSK. Ωm,q(i) is restored
from rm,q(i) at the output of the (m,q)-th matched filter. It allows the communication receiver to
determine Ωm,q(i) and convert Ωm,q(i) into the original sequence. The advantages of the communication
information embedding scheme have been presented in [44].
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3. Multiple-Input Multiple-Output (MIMO) Radar Ambiguity Function

In this section, we consider a radar target at χ(τ, v, f ) where τ describes the delay of the target
range, v denotes the Doppler frequency, f = 2π dR

λ sinθ indicates the spatial frequency. Here θ and λ
are the angle of the target and the wavelength, respectively. dR and dT are the distance between the
transmit antennas and between the receiver antennas, respectively. To simplify the discussion, we
assume dT = dR in this paper. xm(t), m = 1, . . . , M denotes the waveform radiated by the m-th transmit
antenna. In [17], the MIMO radar ambiguity function can be defined as:

χ(τ, v, f , f
′

) =
M∑

m=1

M∑
m′=1

χm,m′ (τ, v)e j2π( f m− f ′m′) (12)

where

χm,m′ (τ, v) =
∫
∞

−∞

xm(t)x∗m′ (t+τ)e j2πvtdt (13)

In (13), χm,m′ (τ, v) describes the cross ambiguity function, which implicates two radar waveforms
xm(t) and xm′ (t). χm,m′ (τ, v) is analogous to the SIMO ambiguity function presented in [19]. We now
discuss the MIMO radar ambiguity function for the case when xm(t) is composed of the shifted forms
of a rectangular pulse um(t).

xm(t) =
L∑

l=1

um(t− Tl) (14)

where l denotes the number of the rectangular pulse and T describes pulse repetition interval (PRI).
The cross ambiguity function of the waveform xm(t) is defined as:

χm,m′ (τ, v) =
L∑

l′=1

L∑
l=1

χu
m,m′ (τ+Tl − Tl′ , v)e j2πvTl (15)

where χu
m,m′ (τ, v) describes the cross ambiguity function of the rectangular pulses um(t) and um′ (t).

We assume that the pulse duration T0 and the Doppler frequency v are small enough so that T0v≈0.
At a result, the envelope of the Doppler frequency keeps unchanged within an entire pulse period.
The cross ambiguity function χu

m,m′ (τ, v) reduces to the cross correlation function ru
m,m′ (τ), which is not

a function of v any more, we obtain:
χu

m,m′ (τ, v)≈ru
m,m′ (τ) (16)

We further assume that little reflections take place at these second trip ranges. Therefore, the cross
ambiguity function of xm(t) can be rewritten as:

χm,m′ (τ, v) ' ru
m,m′ (τ)

L∑
l=1

e j2πvTl (17)

The MIMO ambiguity function of xm(t) can be expressed as:

χ(τ, v, f , f
′

) =
M∑

m=1

M∑
m′=1

ru
m,m′ (τ)e j2π( f m− f ′m′)

L∑
l=1

e j2πvTl (18)

It is worth noting that the MIMO ambiguity function χ(τ, v, f , f ′) depends on the cross correlation
functions ru

m,m′ (τ). Furthermore, the shifted forms of a rectangular pulse {um(t)} just have an impact on
the range and spatial resolution. The pulses have no effect on the Doppler resolution. Consequently,
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to gain a sharp MIMO ambiguity function, these waveforms should be designed such that the function
Ω(τ, f , f

′

) is denoted as:

Ω(τ, f , f
′

) =
M∑

m=1

M∑
m′=1

ru
m,m′ (τ)e j2π( f m− f ′m′) (19)

Next, we discuss the MIMO radar ambiguity function of the PM-based information embedding
FH waveforms. The proposed waveforms can be expressed as (3). We intend to obtain the expression
for the function Ω(τ, f , f ′) in terms of {cm,q} and {Ωm,q}. To derive Ω(τ, f , f

′

), we therefore begin with
the cross correlation function of the PM-based FH waveform. Making use of (3) and (16), the cross
correlation function can be expressed as:

rx
m,m′ (τ) =

Q∑
q=1

Q∑
q′=1

χrect(τ− (q′ − q)∆t, (cm,q − cm′,q′ )∆ f )e jΩm,q e j2π∆ f (cm,q−cm′ ,q′ )q∆te j2π∆ f cm′ ,q′τ (20)

and the function Ω(τ, f , f
′

) can be expressed as:

Ω(τ, f , f
′

) =
M∑

m,m′=1

Q∑
q,q′=1

χrect(τ− (q′ − q)∆t, (cm,q − cm′,q′ )∆ f )e jΩm,q e j2π∆ f (cm,q−cm′ ,q′ )q∆te j2π∆ f cm′ ,q′τe j2π( f m− f ′m′) (21)

where χrect(τ, v) describes the ambiguity function of u(t), which can be denoted by:

χrect(τ, v) =
{ ∆t−|τ|

∆t sin c(v(∆t− |τ|))e jπv(τ+∆t), if|τ| < ∆t
0, otherwise

(22)

For M = 1, the function is the special case of the SIMO radar. For the general case of the
MIMO radar M > 1, not only the auto-correlation functions but also the cross-correlation functions
between the waveforms should be taken into account such that the function (22) is sharp around
{ (τ, f , f

′

)
∣∣∣τ = 0, f = f

′

}.

4. Waveform Optimization

In this section, we aim to enhance the target detection and feature estimation performance by
maximizing the MI between the target response and the target returns in the first step, and then
minimizing the MI between successive target scattering signals in the second step. These two stages
correspond to the design of the ensemble of excitations and the selection of a suitable signal out of the
ensemble, respectively. The two-step cognitive waveform design strategy is based upon continuous
learning from the radar scene. The dynamic information about the target feature is utilized to design
PM-based FH codes. In this way the transmitter adjusts its probing signals to suit the dynamically
changing environment.

Step 1: this step involves the design of PM-based FH waveforms for the dual-function transmit
array. The main idea of waveform design is to maximize the MI between the target scattering signal
and the target response, subject to the transmit power constraint.

Step 2: once an ensemble of optimal transmit waveforms has been designed, then we select the
most reasonable waveform for emission from the ensemble. The key concept of waveform selection is
to minimize the MI between the target scattering signals at present and the next target-scattering signals.
The step ensures that we continually obtain target scattering signals that are independent of each other
in time, in order to achieve more feature information of the target at each time instant of reception.
Figure 2 describes the architecture of an adaptive dual-function MIMO radar communication system.
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Step 1: during the i-th radar scan, the set of PM-based FH waveforms xm(t, i), m = 1, . . . , M can be
expressed as a matrix Xi ∈ CM×K after discrete sampling, where C describes the number domain and K
indicates the sample number. N ∈ CN×K is zero-mean white noise matrix. Therefore, the N ×K matric
of the target scattering signals is written as:

Yi = HT
i Xi+N (23)

Here Hi ∼ C
(
0,RHi

)
and N ∼ C(0,RN), and RHi = E

{
HiHH

i

}
and RN = E

{
NHN

}
indicate the

covariance matrices of the channel response Hi and the zero-mean white noise N, respectively.
We intend to maximize the MI between the target-scattering signal and the target response given the
transmit waveforms. This involves that the target-scattering signals would be more dependent upon
the actual target feature information. According to the definition of MI, we have:

I(Yi; Hi|Xi) = H(Yi|Xi) −H(N) (24)

In (24), I(Yi; Hi|Xi) represents the MI between two random variates Yi and Hi given the transmit
matrix Xi, and H(Yi|Xi) indicates the conditional entropy that Xi conveys about Yi. The main objective
of this step is to maximize I(Yi; Hi|Xi) between Yi and Hi given Xi. According to the definition of
entropy, we have:

H(Yi|Xi) =

∫
−p(Yi|Xi)In[p(Yi|Xi)]dYi (25)

Here p(Yi|Xi) indicates the conditional probability density function (PDF) of the received matrix
Yi given transmit matrix Xi. The conditional PDF p(Yi|Xi) can be expressed as follows:

p(Yi|Xi) =
N∏

n=1
p
(
yn,i

∣∣∣Xi
)

=
N∏

n=1

1
πKdet(XH

i RHi Xi+RN)
e−yH

n,i(X
H
i RHi Xi+RN)

−1
yn,i

= 1
πNK[det(XH

i RHi Xi+RN)]
N e−tr[(XH

i RHi Xi+RN)
−1

YH
i Yi]

(26)
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Solving (25) and (26) gives rise to the following result for the conditional entropy [40]:

H(Yi|Xi) = NKIn(π) + NK + NIn
[
det

(
XH

i RHiXi + RN
)]

(27)

Similarly, the result for the entropy of the noise can be derived as follows:

H(N) = NKIn(π) + NK + NIn[det(RN)] (28)

Making use of Equations (24), (27) and (28), the MI between the target-scattering signal and the
channel response given transmit waveforms can be rewritten as follows:

I(Yi; Hi|Xi) = NIn
[
det

(
XH

i RHiXi + RN
)]
−NIn[det(RN)] (29)

Therefore, we can formulate the MI maximization criterion as follows:

max
Xi

{
NIn

[
det

(
XH

i RHiXi + RN
)]
−NIn[det(RN)]

}
n!

r!(n−r)!

s.t. tr
[
XH

i Xi
]
≤ P0

cm,q , cm′,q, for m = m′,∀q ∆t∆ f = 1

(30)

where P0 indicates the transmit power. The work of [40] has given a rigorous solution of the above
optimization problem (30). Then, we can obtain the ensemble CX̂i

out of the whole set of PM-based
FH sequences, and the corresponding power allocation vector over diverse dual-function transmit
antennas. We start the design procedure with the transmit waveforms from the PM-based FH matrix,
and allocate the power on a pulse level as well as across the transmit antennas based on the MI
maximization criterion.

Step 2: we then proceed to the waveform selection procedure, in which the successive target
scattering signals are different from each other. The step ensures that we achieve more information of
the target feature at each time instant of reception. We denote the MI between the successive target
scattering signals at time i and at time i + 1 as:

I(Yi+1, Yi) = H
(
Yi+1

∣∣∣Xi+1
)
+ H(Yi|Xi) −H

(
Yi+1, Yi

∣∣∣Xi+1, Xi
)

(31)

In (31), the term H(Yi|Xi) (or H
(
Yi+1

∣∣∣Xi+1
)
) denotes the entropy of Yi (or Yi+1) at time i (or i + 1)

given the knowledge of Xi (or Xi+1). The term H
(
Yi+1, Yi

∣∣∣Xi+1, Xi
)

is defined similarly. According to
the literature [6,34], the above Equation (31) can be rewritten as follows:

I(Yi, Yi+1) = −NIn
(
det

(
I(M×M)−D2

i,i+1

))
= −N

M∑
m=1

In
(
1−

(
dm

i,i+1

)2
) (32)

where dm
i,i+1(d

1
i,i+1 ≥ d2

i,i+1 ≥ . . . ≥ dM
i,i+1) is the diagonal element of the diagonal matrix Di,i+1. Di,i+1 is

achieved by singular value decomposition (SVD) of the covariance matrix, which can be denoted as:

RYi,Yi+1 = E
{
YH

i Yi+1
}
= XH

i RHi
Xi+1 (33)

In (33), RYi,Yi+1 is the cross-covariance of the expressions for Yi and Yi+1. Hence, the MI
minimization criterion can be expressed as:
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min
Xi+1∈CX̂i

{
−N

M∑
m=1

In
{
1−

(
dm

i,i+1

)2
}}

s.t. tr
[
XH

i+1Xi+1
]
≤ P0

cm,q , cm′,q, for m = m′,∀q ∆t∆ f = 1

(34)

We can estimate the values for Yi+1 over all possible values of X̂i+1 ∈ CX̂i
using (23). Thus, we can

also form an estimate of all the values of the corresponding Di,i+1 (d
m
i,i+1(d

1
i,i+1 ≥ d2

i,i+1 ≥ . . . ≥ dM
i,i+1))

and choose the value for X̂i+1 that minimizes (34). The above waveform optimization problem (34) is
convex. We can obtain the optimal solution directly by using a MATLAB optimization toolbox, such
as CVX.

Step 1 designs the optimal ensemble CX̂i
based on MI maximization criterion over the spatial

domain, and step 2 selects the optimized PM-based FH waveform for each dual-functional transmit
antenna from the ensemble CX̂i

based on MI minimization criterion over the temporal domain.
The proposed adaptive waveform design and selection procedures can be summarized as Algorithm 1.

Algorithm 1. The adaptive waveform design and selection algorithm

Initialize the transmit matrix X0 and the covariance matrix of the noise RN.
1. At the initial time t = 0, measure the target scattering signal Y0 and calculate the covariance of the
target-scattering signal RY0 . The covariance matrix of the channel response RH0

can be obtained through
successive measurements with uniform power allocation over the transmit antennas by solving (36).
2. The optimized waveform ensemble CX̂0

can be obtained through the waveform design process by
solving (30).
3. At time t = 1, measure Y1 and calculate RY1 and the cross-covariance matrix RY0,Y1 . The actual channel
response H1 is obtained by de-convolving the target-scattering signal with the transmit signal by using (23).
4. Calculate the corresponding singular values dm

0,1, m = 1, . . . , M of RY0,Y1 and X̂1 ∈ CX̂0
can be acquired

through the waveform selection process by solving (38).
5. At time t = 1, emission X̂1 and observe the corresponding received signal Ŷ1 to achieve RH1

by using (36).
6. If i = Imax, the iterative procedure ends; or else, repeat steps 2–5 iteratively.

It is worth noting that adaptation is included in the waveform design and selection procedures
through the feedback process and numerous interactions with the radar channel. In summary, the
adaptive waveform optimization strategy for target detection is implemented according to the block
diagram in Figure 3.
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5. Simulation

In this section, numerical results based on Monte Carlo simulations have been provided to validate
the effectiveness of the proposed method. Without loss of generality, each entry of the channel matrices
follows the standard complex Gaussian distribution. The simulation parameters are based on radar
application with a high Pulse Repetition Frequency (PRF), such as in X-band radar. A data rate
in the range of dozens of Mbps can be achieved. We provide a comparison between the proposed
scheme and the method of [32]. To implement the method in [32], we consider a dual-function MIMO
system operating in the X-band with carrier frequency fc = 8.2 GHz and bandwidth B = 500 MHz.
The sampling frequency is fs = 109 sample/sec, which is taken as the Nyquist rate. The PRI is T0 = 10µs.
We assume an arbitrary linear transmit array consisting of M = 16 elements. We further assume that
the minimum transmit/receive antenna spacing is sufficiently larger than half wavelength (distributed
MIMO configuration). Hence, the correlation introduced by finite antenna element spacing is low
enough that the fades associated with two different antenna elements can be considered independent.
To implement the radar function, we further assume that the FH step is ∆ f = 10 MHz, the length of
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the FH code is Q = 20 and the FH interval duration is ∆t = 0.1 µs. We generate a set of 16 FH pulse
waveforms. The parameter J = 50 is used. Therefore, the 320 FH code is generated randomly from the
set {1, 2, . . . , J}, where J = 50.

We employ orthogonal sequences of the FH pulse over the transmit antenna elements.
The backscatter signals are matched filtered at the receivers and the transmitted signals are later
modified by the waveform optimization module as shown in Figure 2. The optimized transmission
sequence at one particular transmit antenna after the two-step optimization process. The target response
extracted from the received target echoes after matched filtering at the end of 20 iterations of the
algorithm, where an excellent performance of the target response estimation can be observed. At each
iteration, the scattering coefficients for the target and non-target scatterers in Hi vary as described by
the Swerling III model [45,46]. This causes the amplitude returns of the backscatter signals to vary
at each instance. However, the amplitudes of the echoes from the target are always assumed to be
stronger than those from the clutter sources.

5.1. Target Detection Performance

Figure 4a illustrates the detection probability offered by the proposed scheme versus the
signal-to-noise ratio (SNR) for different iterations. The iteration process is run 20 times. All optimal
waveforms are generated by the proposed two-step algorithm. The value of requested SNR increases
as the probability increase for a particular number of iterations. The SNR decreases as the number of
iterations increase for a certain detection probability. The detection performance offered by the proposed
scheme improves as the number of iterations increases. Simulation results show that, on average,
20 iterations of the waveform optimization algorithm are required in order to achieve convergence of
the target response estimation for a wide range of radar scenes.

Figure 4b illustrates the ROC for the following four approaches while the value of received
SNR equals to 8 dB. (1) 4 × 4 MIMO system based on conventional maximum a posterior (MAP)
approach; (2) 4× 4 MIMO system using the Kalman filtering [42]; (3) 4× 4 MIMO system based on MI
optimization (step 2) scheme; (4) 4× 4 dual-function MIMO radar-communications system using the
proposed scheme.

The plot is run at the end of 24 iterations. For the probability of false alarm P f a = 0.005, the of
target detection probability generated by the proposed scheme is 0.95 as compared with 0.75 provided
by the Kalman filtering method, 0.7 by MI optimization (step 2) criterion and 0.55 by conventional
MAP approach. As the two-step scheme can use the temporal correlation of target characteristic during
the radar scan interval, the dual-function MIMO system constantly adapts transmit mode to suit the
dynamic radar scene. Furthermore, the successive target returns are considered as independent of
each other. The property guarantees that information about the radar scene is learned at each instant
of reception. In this case, the detection performance offered by the proposed scheme is best.
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Figure 4. (a) The detection probability for different iterations provided by the proposed scheme; (b) The
receiver operating characteristics (ROC) for four approaches.

5.2. Target Response Estimation Performance

Figure 5a displays the MSE achieved by the proposed scheme with regard to the estimation of
target response. This plot demonstrates an improved MSE performance for the two-step optimization as
compared with the conventional MAP approach, the Kalman filtering method and the MI optimization
(step 2) modules, particularly for the first few iterations.

It is evident from Figure 5 that the MSE performance offered by the proposed scheme is superior
to the conventional MAP approach and the Kalman filtering method. The MSE performance offered
by the proposed scheme is superior to MI optimization (step 2) criterion. Similarly, Figure 5b shows
the MSE performance offered by the proposed scheme with respect to the estimate of target response.
The MSE of target response estimation provided by the two-step scheme and other several approaches
are compared to reveal the benefit of the proposed scheme.
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Figure 5. (a) The mean-square error (MSE) of target response estimation subject to power constraint;
(b) the MSE of target response estimation subject to power and probability constraint.

5.3. Delay-Doppler Resolution Performance

Figure 6a displays the 2× 2 MIMO radar ambiguity function contours of the original waveform.
The delay-Doppler resolution deteriorates owing to the presence of environment noise as shown
in Figure 6a. This phenomenon will became worse if the interference scatterers are placed in the
vicinity along the line linking the radar target and the antenna. The radar target is considered to be
located at the origin of the plan. Figure 6b displays the MIMO radar ambiguity function contours
of the optimization waveform by the proposed scheme at the end of 20 iterations. As can be seen
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from Figure 6a, the target discrimination capability becomes significantly enhanced by the increasing
iteration number. Specifically, the noise is suppressed by about 2.5 dB.

The delay-Doppler resolution, which is the output of matched filter at the radar receiver,
is connected to the MIMO radar ambiguity function of the transmit waveforms. The near-ideal
thumbtack response would appear if the statistically independent waveforms are employed for
emission. We constantly use the optimization waveforms provided by the proposed scheme to match
the estimated target response. It is worth noting that the estimated target response is continuously
updated at each iteration. At a result, the matching process ensures that the noise interference can
be suppressed over the radar channels and further enhance the SNR of the target-scattering signals.
Figure 6b illustrates the enhancement in SNR with multiple iteration number. The phenomenon shows
the enhanced ability of the proposed dual-function MIMO system to discriminate the target from radar
environment and resolve the target’s range and velocity.
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5.4. Symbol Error Rate Performance

We study the SER performance of the communication source embedding scheme using Binary
Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK), 16-Phase Shift Keying (16-PSK)
and 256-Phase Shift Keying (256-PSK) constellations and compare the original waveform with the
encoded waveform. The original waveform corresponds to data rate of R = 32; 64; 128 and 256 Mbps,
respectively. To obtain encoded waveform, a convolutional encoder of rate 2/3 is employed in the
original waveform. We use a Viterbi decoder to decode the received encoded waveform at the
communication receiver. The communication channel coefficient is taken as |αc| = 1, and the phase
of αc is uniformly distributed within the interval [0, 2π]. To test the SER performance, we generate a
number of 10× 1017 random BPSK, QPSK, 16-PSK and 256-PSK symbols. The SERs versus SNR for all
constellation sizes is illustrated in Figure 7.

The results demonstrate that the smaller the constellation size is, the better the SER performance
will be. As the constellation size increases, it is more difficult to detect the symbols. It can be explained
that the defective cross-correlation between the non-orthogonal transmit sequences influences the
detection performance. Obviously, the encoded waveform achieves greater SER performance as
compared to the original waveform. Therefore, intersymbol interference is a significant source of
detection error resulting in performance degradation. It is expected that the SER performance gets
worse if longer FH waveforms are used. It is worth noting that, for all techniques tested, the SER
performance offered by the encoded waveform outperforms the performance provided by the original
waveform. Therefore, the SER superiority comes at the price of lower data rate.
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Figure 7. The symbol error rates (SERs) versus signal-to-noise ratio (SNR) for Binary Phase Shift Keying
(BPSK), Quadrature Phase Shift Keying (QPSK), 16-Phase Shift Keying (16-PSK) and 256-Phase Shift
Keying (256-PSK).

Figure 8 illustrates the throughput result provided by the proposed optimization waveform versus
distance for BPSK, QPSK, 16-PSK, and 256-PSK constellation. 256-PSK waveform provides a data rate
of approximately 8 Mbps at a distance of 10 m, which is better than that generated by BPSK, QPSK,
16-PSK constellations. The highest data rate is acquired by the 256-PSK waveform within a distance of
60 m, as the distance between the system nodes increases the data rate decreases.

Sensors 2020, 20, x FOR PEER REVIEW 17 of 22 

 

 
Figure 7. The symbol error rates (SERs) versus signal-to-noise ratio (SNR) for Binary Phase Shift 
Keying (BPSK), Quadrature Phase Shift Keying (QPSK), 16-Phase Shift Keying (16-PSK) and 
256-Phase Shift Keying (256-PSK). 

The results demonstrate that the smaller the constellation size is, the better the SER 
performance will be. As the constellation size increases, it is more difficult to detect the symbols. It 
can be explained that the defective cross-correlation between the non-orthogonal transmit 
sequences influences the detection performance. Obviously, the encoded waveform achieves 
greater SER performance as compared to the original waveform. Therefore, intersymbol 
interference is a significant source of detection error resulting in performance degradation. It is 
expected that the SER performance gets worse if longer FH waveforms are used. It is worth noting 
that, for all techniques tested, the SER performance offered by the encoded waveform outperforms 
the performance provided by the original waveform. Therefore, the SER superiority comes at the 
price of lower data rate. 

Figure 8 illustrates the throughput result provided by the proposed optimization waveform 
versus distance for BPSK, QPSK, 16-PSK, and 256-PSK constellation. 256-PSK waveform provides a 
data rate of approximately 8 Mbps at a distance of 10 m, which is better than that generated by 
BPSK, QPSK, 16-PSK constellations. The highest data rate is acquired by the 256-PSK waveform 
within a distance of 60 m, as the distance between the system nodes increases the data rate 
decreases. 

 
Figure 8. Comparative throughput of BPSK, QPSK, 16-PSK, 256-PSK. 

5.5. Detection Variation Performance 

The detection constraint optimization has recently been studied in works such as [38,39], 
where the authors address the problem of radar code design for target recognition in the presence 

5 10 15 20 25 30 35 40
SNR

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

256-PSK (encode)
256-PSK (origanl)
16-PSK (encode)
16-PSK (origanl)
QPSK (origanl)
QPSK (encode)
BPSK (orignal)
BPSK (encode)

0 10 20 30 40 50 60
Distance (m)

0

1

2

3

4

5

6

7

8

9

10

256-PSK
16-PSK
QPSK
BPSK
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5.5. Detection Variation Performance

The detection constraint optimization has recently been studied in works such as [38,39], where
the authors address the problem of radar code design for target recognition in the presence of colored
Gaussian disturbance. The objective function in [38] aims to maximize the weighted average Euclidean
distance between the ideal echoes from different target hypotheses. Furthermore, additional practical
constraints are considered in [38]. For example, the modulus of the waveform is restricted to be a
constant and the detection constraints require that the achievable SNR for each target hypothesis is
larger than a desired threshold.

Figure 9 indicates the detection variation offered by the proposed scheme subject to the detection
constraint. We assume a radar scene, which has three range-separated targets. The target-scattering
signals derived from the radar scene is normalized and the proposed dual-function MIMO system
intends to discriminate the scatterers by using a particular detection threshold.
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With subsequent iterations of the proposed algorithm, the detection performance of the multiple
targets is enhanced. As can be seen from Figure 9, by suppressing noise, the dual-function MIMO
system could discriminate three scatterers effectively at the end of 20 iterations. The result proves the
performance of target detection presented in Figure 6b as well.

The detection performance is enhanced by providing the waveform design (step 1) procedure
in the proposed scheme. The waveform design procedure ensures the maximum of the Euclidean
distance between the target echoes from different scatterers based on the MI maximization criterion in
(30). The proposed design procedure is similar to the optimization method in [43]. By increasing the
number of iterations, we can obtain more accurate estimates of the target responses, which are used to
improve detection of the multiple targets.
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Figure 9. Target-scattering signal profiles at (a) iteration 1, (b) iteration 5, (c) iteration 10, and (d)
iteration 20.

5.6. Comparison with Other Methods

We have assess the performance of the new approach in terms of the Bit Error Rate (BER) and
compare it with the method in [29]. Note that the latter approach uses a single sequence in tandem
with 4 sidelobe levels towards the communication direction to deliver 2 bits of information. On the
other hand, we use a PM-based FH waveform to deliver two bits per pulse. To test the BER, a
sequence of symbols unencoded (two bits each) is used. Furthermore, a convolutional encoder of
rate 2/3 is used in the original waveform leading to encoded waveform. Both the unencoded and the
encoded waveforms are embedded independently using the approach of [29] and the new approach.
The received encoded signal is decoded using a Viterbi decoder. The BERs versus the signal-to-noise
ratio (SNR) for the two approaches is presented in Figure 10 for both the unencoded as well as
the encoded data sequences. Obviously, the proposed approach achieves better BER performance
compared to the method of [29]. Note that the latter approach embeds 25% of the information via each
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of the four beams. Thus, intersymbol interference is a non-negligible source of detection error leading
to capability degradation. The behavior can be expected to be worse if longer pulses are transmitted.
Note that, for two approaches tested, the BER with respect to the encoded waveform outperforms the
BER with respect to the unencoded waveform. However, this BER superiority comes at the price of
slower data transmission rate.
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Figure 10. The SERs versus SNR for BPSK.

In Figure 11, we compare the performance for adaptive waveform provided by the proposed
method to the performance for a static waveform [32] over multiple snapshots. As the proposed
method selects specific waveforms, which generate target returns having low correlation over time, the
system adapts its transmit waveform better to the fluctuating target Radar Cross-Section (RCS). On the
other hand, the static waveform [32] is unable to match the time-varying target response. Therefore,
the performance of the static waveform [32] is worse than the proposed adaptive waveform.
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6. Conclusions

The problem of dual-functionality system design for joint radar and communications operation
was considered. We further presented a two-step waveform optimization algorithm for the proposed
system, which combines the waveform optimization and selection processes. The proposed algorithm
is based upon constant learning of the radar scene at the receiver and adaptation of the probing codes
to suit the dynamic target feature. The adaptive process ensures maximum information extraction
from the target of interest. The effectiveness of the proposed technique and its superiority over existing
techniques in terms of the BER performance and the target detection performance were demonstrated
through extensive simulations. The proposed system would form a joint platform for future intelligent
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transportation applications for which both environmental perception and establishment of data links
are crucial. Future research will look into the tradeoff between the performance improvement offered
by the proposed approach and the computational complexity involved.
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