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Abstract

Empirical Mode Decomposition (EMD) is a data-driven method for the decomposition

and time-frequency analysis of real world nonstationary signals. Its main advantages over

other time-frequency methods are its locality, data-driven nature, multiresolution-based

decomposition, higher time-frequency resolution and its ability to capture oscillation of

any type (nonharmonic signals). These properties have made EMD a viable tool for real

world nonstationary data analysis.

Recent advances in sensor and data acquisition technologies have brought to light

new classes of signals containing typically several data channels. Currently, such sig-

nals are almost invariably processed channel-wise, which is suboptimal. It is, therefore,

imperative to design multivariate extensions of the existing nonlinear and nonstationary

analysis algorithms as they are expected to give more insight into the dynamics and the

interdependence between multiple channels of such signals.

To this end, this thesis presents multivariate extensions of the empirical mode de-

composition algorithm and illustrates their advantages with regards to multivariate non-

stationary data analysis. Some important properties of such extensions are also explored,

including their ability to exhibit wavelet-like dyadic filter bank structures for white Gaus-

sian noise (WGN), and their capacity to align similar oscillatory modes from multiple

data channels. Owing to the generality of the proposed methods, an improved multi-

variate EMD-based algorithm is introduced which solves some inherent problems in the

original EMD algorithm. Finally, to demonstrate the potential of the proposed methods,

simulations on the fusion of multiple real world signals (wind, images and inertial body

motion data) support the analysis.
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Chapter 1

Introduction

1.1 Background and Motivation

TRADITIONAL linear statistical inference methods are well established and form a

powerful tool for time series analysis. Since their inception, these methods have

extensively been used in diverse fields; for instance, in signal estimation and detection [1] [2]

and time-frequency (TF) analysis [3]. However, besides the requirement that the input

signal is obtained from a linear system, these methods also assume that the statistical

characteristics (at least first and second order properties) of the signal do not change with

time, a property known as (weak)stationarity.1 These assumptions of linear systems and

the stationarity of the input signal limit the effectiveness of these methods in most natural

phenomena, as they mostly involve nonstationary data obtained from nonlinear sources.

Among these linear and stationary time series methods, the Fourier series has his-

torically been the most established and popular tool for signal analysis. Using Fourier

series, smooth and periodic functions in R can be expanded into a weighted sum of or-

thogonal sines and cosines (basis functions), whose frequencies are integral multiples of a

fundamental frequency, determined from the period of the input signal. In other words,

by using Fourier series, any periodic function can be fully specified via a set of coefficients

(weights) of the sines and cosines (trignometric functions); these coefficients are calculated

1In more formal terms, a stationary signal is the one whose joint probability properties are independent
of the time lag within the observation period of the whole signal.
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based on the linear dependence of the original signal with their corresponding trignometric

function, making the Fourier series a linear time series method.

The Fourier series uses global predefined functions (sines and cosines) as its basis

which also makes it unsuitable for nonstationary signal analysis. Due to the choice of fixed

basis functions, expansion through the Fourier series is achieved by projecting the input

signal onto a set of predefined trignometric functions which may not accurately represent

the signal in hand. Also, since these trignometric functions are defined globally (over the

whole observation interval), the time information is lost in the Fourier transformed signal:

by looking at the Fourier spectrum, one cannot tell at which precise instant a particular

event took place. This problem is not relevant for stationary signals whose properties do

not change over time, but for most real world signals, this is a major issue that must be

addressed.

Furthermore, due to predefined basis functions, additional harmonic terms are more

often required to approximate the input signal, causing the spread of signal energy over a

wide frequency range. This, in turn, results in the introduction of physically meaningless

harmonics in the corresponding spectral representation. For instance, while Fourier series

can effectively deal with the pure sine function, addition of any perturbations in the fixed

amplitude and/or frequency of the original signal will result in many spurious harmonics

in the Fourier spectrum even though the perturbed signal is similar to the original signal

with effectively the same frequency. This is due to the inflexibility in the choice of the

basis functions being used in the Fourier analysis, and will continue to cause problems in

other similar techniques which are based on projecting the input signal onto fixed a priori

chosen basis functions.

To alleviate the problem of loss of time information in traditional Fourier analysis,

Gabor came up with the idea of a Short-time Fourier Transform (STFT) method which

effectively operates by sliding the Fourier window along the time axis, resulting in a

time-frequency-amplitude distribution [4]. However, since the Fourier transform is being

applied across multiple windows of same sizes along the time axis, one must at least align

the data so as to ensure their stationarity within each window (piecewise stationarity); this
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is difficult to achieve, especially in real world nonstationary signals. Moreover, the choice

of window width, though crucial in estimating an accurate TF spectrum, poses conflicting

requirements regarding time and frequency resolution: a narrower window localizes the

signal in time better, however, a longer time series is required for a higher frequency

resolution. Despite its shortcomings, STFT has attracted much attention in practical

fields due to its ease of implementation via Fast Fourier Transform (FFT).

STFT adopts the same window length for all frequencies, which limits its resolu-

tion in both time and frequency. A wavelet-based approach corrects this deficiency by

adopting a windowing technique with variable window lengths: wider windows are used

to obtain more precise low frequency information and narrow windows for high frequency

information. In wavelet analysis, a function is decomposed by scaled and translated copies

of an a priori chosen finite length oscillating function, known as mother wavelet. Due to

the flexibility in choosing the mother wavelet function, the wavelet transform has shown

superiority over traditional Fourier methods, especially in representing signals with sharp

peaks and discontinuities [5].

Though the wavelet transform is quite effective in performing local analysis, the

method is still based on projecting the input signal on a fixed a priori chosen set of

wavelets. Moreover, once a mother wavelet function is selected, it is used for the whole

analysis. This may be problematic for nonstationary signals which do not correlate well

linearly with the chosen wavelet kernel, resulting in unwanted harmonics in the resulting

decomposition and TF spectrum.

Other methods for TF analysis employ quadratic time-frequency distributions

which, unlike the Fourier and the wavelet transform, do not use predefined basis functions

as templates. While these methods provide a more ‘crisp’ TF representation in certain

cases, they also introduce cross-interference terms in multi-component signals, thus, mak-

ing their TF distributions more complicated to analyse [6]. Though such interference can

be mitigated to some extent by additional processing, this is not without introducing a

blur in the resulting TF representation.

In scenarios involving nonstationary data, there are instances when the convenience
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of choosing an a priori fixed set of basis functions, and their orthogonality (in strict sense),

are less significant than the compactness and the physically meaningful nature of the

expansion. To this end, it might be worth investigating a class of methods which may

compromise the orthogonality and the choice of a fixed ‘dictionary’ of basis functions, but

provide a more compact and physically meaningful representation of the signal in hand.

This can be achieved by adopting a set of data-driven basis functions, where the expansion

terms are chosen based on the input signal. This way, each expanded term is expected to

carry significant information about the input signal in hand; otherwise, it is bound to get

spread over a large number of terms, causing unwanted distortion in the TF spectrum,

as experienced in the case of Fourier transform, STFT, and to some extent, the wavelet

transform.

The Empirical Mode Decomposition (EMD) is a recently developed algorithm by

N. Huang et al. which is specifically designed to address these issues [7]. It expands any

given function f(t) into a set of narrowband oscillatory modes, known as intrinsic mode

functions (IMFs), which, unlike the basis functions in the Fourier and wavelet transform,

are constructed from the input signal f(t) itself. This set of data-driven IMFs is more

generic as compared to the Fourier and wavelet basis functions and, due to the nonlinearity

of the EMD algorithm, also leads to a compact expansion of the input signal. These IMFs

are designed to ensure that the application of the Hilbert transform to the IMFs yields

physically meaningful frequency estimates, resulting in more accurate TF representation of

the signal [8]. Given that the IMFs are extracted from the input signal, they are expected

to carry more useful information in a variety of real world applications.

While the data-driven approach employed by EMD has its advantages in terms of

a compact expansion and more accurate TF representation, EMD also inherits its share of

flaws for that same reason: It lacks a theoretical foundation and is presently only defined

as an output of an iterative ‘sifting’ algorithm. As a result, the corresponding IMFs lack a

formal analytic definition that could be used for their performance evaluation. However,

recently, much emphasis is being put to understand the theoretical foundations of various

aspects of EMD, including its nonlinear nature, frequency resolution, and the dyadic filter
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bank properties.

The standard EMD algorithm by N. Huang et al. only deals with univariate time

series [7], i.e. a time series having a single data channel. However, several important

signal processing areas involve handling simultaneous recordings from multiple sources;

for instance, neurophysiological signals [9] [10], wind signals [11] [12] [13], inertial body

motion, and finance data [14] [15] [16].

In order to effectively process these signals within the EMD framework, general

multivariate extensions of EMD must be developed, which is the main aim of this thesis.

The proposed extensions will not only directly process the multivariate signal containing

any number of data channels, but are also expected to provide added information regarding

the correlation between multiple data channels.

1.2 Thesis Aims

This thesis mainly focuses on EMD, a data-driven technique for adaptively decomposing a

signal into its constituent oscillatory modes [7]. EMD considers an input signal at the level

of its ‘local’ oscillations, and does so by directly looking at a signal between its consecutive

local extrema; this attribute renders it suitable for describing real world phenomena of

nonlinear and nonstationary nature.

The main aim of this thesis is to develop multivariate extensions of EMD to make

it possible to be applied to a wide class of multivariate real world signals with an arbi-

trary number of channels. Depending on the application at hand, the input multivariate

signal might constitute simultaneous recordings from the same system (e.g. neurophysio-

logical signals [9]) or signals from different systems (e.g. as used in heterogeneous image

fusion [17]).

Next, the properties and the benefits associated with using these multivariate ex-

tensions over the standard ones are investigated. More specifically, this thesis studies

properties of these extensions in the presence of white Gaussian noise (WGN) and com-

pares their benefits over those obtained from standard EMD. Further, a noise-assisted
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EMD algorithm is presented which aims to provide a better decomposition as compared

to the standard EMD algorithm.

Finally, the potential applications of the proposed algorithms in the realm of data

fusion are illustrated.

1.2.1 Multivariate Extensions of EMD

Recently, multivariate time series analysis has gained immense popularity mainly because

of the advances in the sensor and data acquisition technology. As a result, we often

come across real world applications involving multiple recordings of signals from a single

system: simultaneous recordings of neurophysiological (Electroencephalography (EEG))

signals [9], trivariate wind signals corresponding to horizontal and vertical wind speed [12],

multivariate inertial body sensor data [18], and financial time series data [14] [15] [16] are

few examples. To this end, an assessment of the correlation between multiple channels

of these signals can give a new insight into the signal-generating systems. The univariate

algorithms applied to each channel of these multivariate signals separately cannot ac-

complish this task as they, by design, do not consider correlations between multiple data

channels. This calls for the development of multivariate algorithms which can process

multiple channels of a signal directly and, hence, can reveal hidden features of the system

under consideration.

Given that EMD, due to its local and data-driven nature, has become a viable tool

for nonstationary signal processing, its multivariate extensions are a prerequisite for the

analysis of a wide range of nonstationary multivariate signals encountered in real world

applications. To this end, several complex or bivariate extensions of EMD have been

recently proposed, which have already shown potential in various applications [19] [17].

Among these extensions, the most trivial is the complex empirical mode decompo-

sition (CEMD) which cleverly uses the properties of a complex plane to apply standard

EMD to two time series, corresponding to the negative and the positive half of the spec-

trum. Subsequently, the resulting set of IMFs are combined together into a single set

of complex-valued IMFs [20]. While CEMD preserves the desired feature of dyadic fil-



1.2 Thesis Aims 23

ter bank (on the average) for white Gaussian noise (WGN), it fails to produce so-called

‘aligned’ IMFs, as two separate instances of standard EMD are applied to a set of time

series. This results in two disjointed sets of IMFs which are difficult to merge into a single

set of complex IMFs.

The other two complex extensions, namely the rotation invariant EMD [21] (RI-

EMD) and bivariate EMD (BEMD) [22], are based on similar rationale: they attempt to

directly process a bivariate signal by estimating its local mean in two dimensional (2D)

space. This results in a set of bivariate IMFs which, unlike complex IMFs from CEMD,

have same number of IMFs for both real and imaginary parts, and generally are more

‘aligned’ in terms of the local oscillations they carry. Due to the above properties, RI-

EMD and BEMD have already found applications in data fusion [17] and measuring phase

synchronization in EEG signals [19].

In this thesis, the extensions of EMD to process multivariate signals with an arbi-

trary number of channels are proposed. The rationale behind these extensions is similar to

those of RI-EMD and BEMD, i.e. to directly process a multivariate signal by estimating

its local mean in higher dimension, where the signal resides. However, these extensions

are not trivial since accurate estimation of the local mean in higher domains, a key step

in the proposed multivariate extensions of EMD, requires the implementation of uniform

sampling schemes in multidimensional spheres. Once the local mean of a multivariate

signal is estimated this way, the stopping criteria catering for multivariate IMFs must also

be designed to complete the decomposition process.

1.2.2 Properties and Advantages of Multivariate Extensions of EMD

The next aim of this thesis is to study the properties of multivariate extensions of EMD,

and the benefits of their use as compared to the standard EMD, applied channel-wise.

The standard (univariate) EMD2 algorithm, when applied channel-wise on a mul-

tivariate signal, produces disjointed sets of IMFs in terms of their oscillatory components,

in turn, making it unsuitable for real world applications, such as data fusion [23], phase

2In the sequel, term ‘standard EMD’ will be used to refer to the original univariate EMD algorithm.
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synchronisation measurement [24], and classification [25]. In this thesis, the benefits of

using multivariate extensions of EMD in such cases are accentuated by showing that they

have a tendency to align similar oscillatory modes across the corresponding multivariate

IMFs, yielding improved results.

Another important property of multivariate extensions of EMD is their dyadic filter

bank structure; like standard EMD, decompositions obtained from multivariate extensions

of EMD also act as a dyadic filter bank for WGN inputs, resembling those found in

wavelet-based decompositions [26]. The study gives a better understanding of the way

the proposed extensions decompose WGN, and can serve to enhance the performance

of EMD against the well known mode-mixing problem, whereby, a single IMF contains

multiple oscillatory modes and/or a single mode resides in multiple IMFs, compromising

their physical meaning.

1.2.3 Applications in Data Fusion

Data fusion involves multiple signals (either from the same source or from different sources)

to be combined together in order to achieve improved accuracies and more specific infer-

ences that could not be achieved by the use of only a single signal [27] [28] [29] [30]. It

may also refer to the decomposition of a signal into a set of features and the subsequent

process of combining only the most informative ones.

At the first glance, EMD may seem a viable candidate in the latter case, since it

can adaptively decompose intrinsic data features at a ‘local’ level; however, it is yet to

show any significant potential in the context of data fusion. This is mainly because of a

lack of rigorous mathematical treatment regarding the significance of the extracted IMFs,

and also due to its undesirable tendency to depend heavily on parameter values and the

various methods to estimate these parameters. As a result, different number of IMFs can

be extracted from signals with similar statistics causing the problem of non-uniqueness

among EMD-based decomposition. The ‘correct’ estimation of the IMFs, therefore, is

currently an active area of research, with several computationally expensive methods like

Ensemble EMD (EEMD) and genetic based algorithms being proposed in an attempt to
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rectify the problem [31] [32] [33].

In this thesis, the multivariate extensions of EMD will be used to present a more

robust framework for data fusion. The problem of non-uniqueness observed in standard

EMD, which hindered its application in data fusion, is resolved by making use of the ability

of multivariate extensions of EMD to align common oscillatory modes across same-index

IMFs.

1.3 Original Contributions

Briefly, the main contributions presented in this thesis include:

1. Developing a trivariate extension of EMD (TEMD) which is capable of processing

signals containing three data channels.

2. Extending TEMD to develop a multivariate extension of EMD (MEMD) which can

process multivariate signals containing any number of data channels.

3. Demonstrating that MEMD exhibits a dyadic filter bank structure for white Gaus-

sian noise (WGN) inputs.

4. Based on the dyadic filter bank property of MEMD for WGN, developing a noise-

assisted MEMD (N-A MEMD) method and showing that it outperforms traditional

EMD-based methods in reducing the mode-mixing problem.

5. Showing that the proposed multivariate extensions of EMD achieve mode-alignment

in multivariate IMFs, and using this property to develop a robust MEMD-based

data fusion framework.

1.4 Thesis Outline

In Chapter 2, a review of the current time-frequency (TF) analysis methods has been

presented, with the main emphasis on standard EMD. Moreover, details of the available

complex or bivariate extensions of EMD algorithm are also included in this chapter.
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In Chapter 3, a trivariate extension of EMD (TEMD) is presented. It is based

on the principle of estimating the local mean of a trivariate input signal by taking signal

projections in 3D space. It has also been shown that TEMD is not a trivial extension

of bivariate extensions of EMD as it aims to find a uniform point set (for set of uniform

direction vectors) in 3D space; a point set based on a spherical coordinate system is used

in TEMD. Furthermore, the mode-alignment property of TEMD has been validated via

simulations on synthetic and real world signals, while its usefulness in TF analysis has

been shown on real world wind speed signal. Finally, an experimental study has been

included to observe if the IMFs retain the (non)linearity in the original input signal.

Next, in Chapter 4, a multivariate extension of EMD (MEMD) capable of handling

any number of data channels, has been proposed. Again, it is not a straightforward exten-

sion of TEMD since a trivial extension of the point set used in TEMD has been shown to

be suboptimal in higher domains. Therefore, a uniform point set in n-dimensional spaces

is proposed for MEMD which is derived from a low-discrepancy Hammerseley sequence;

it has been shown to retain its uniformity better as compared to the hyperspherical co-

ordinate system, which is nothing but an extension of spherical coordinate system in an

n-dimensional Euclidian space. Like TEMD, MEMD has also been shown to ensure the

mode-alignment property on synthetic signals, while simulations on real world inertial

motion data have also supported this property.

The main focus of Chapter 5 is on the study of the dyadic filter bank property of

the proposed multivariate extensions of EMD. This is of considerable importance since

standard EMD has been shown to have similar characteristic in the presence of WGN. It

has been shown in this chapter that not only the multivariate extension of EMD obeys

similar characteristics for WGN, but it also aligns similar oscillatory modes across the

same-indexed IMFs, facilitating its use in data fusion applications.

Furthermore, by using the property of multivariate EMD to behave as a filter bank

in the presence of white noise, a noise-assisted multivariate EMD (N-A MEMD) algorithm

is given in Chapter 6, whereby by introducing extra channels of multivariate noise, the

effects of mode-mixing and mode-misalignment in multivariate IMFs can be reduced.
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In Chapter 7, an application of multivariate EMD algorithm has been presented in

the context of image fusion. This application makes use of the mode-alignment property

of MEMD to achieve better results as compared to conventional techniques.

Finally, in Chapter 8, the conclusions of the thesis have been presented and some

directions for future work are also outlined.
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Chapter 2

Empirical Mode Decomposition

and its Complex Extensions

EMPIRICAL Mode Decomposition (EMD) is a data-driven method designed to de-

compose any data set into a finite number of oscillatory modes, known as the intrin-

sic mode functions (IMFs) [7]. The IMFs are zero-mean amplitude-frequency modulated

(AM-FM) signals, especially designed to ensure that the application of Hilbert transform,

known as Hilbert-Huang transform, yields physically meaningful instantaneous frequency

estimates of the input signal [8]. Due to the ability of EMD and the Hilbert-Huang

transform to process nonstationary data, it has found a number of different real world

applications [34] [35] [24] [36] [13] [11].

2.1 Review of Conventional Time-Frequency (TF) Analysis

Techniques

Historically, the prowess and the simplicity of the Fourier spectral analysis had made

it one of the most widely used tools for the examination of global amplitude-frequency

distributions. However, as evident from its definition given in equation (2.1); where f(t)

represents the input signal at hand, and X(w) denotes the Fourier transformed signal; the

Fourier analysis provides a global representation of the signal, resulting in a complete loss
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of time information, hence, making it unsuitable for nonstationary signal analysis.

X(ω) =
∫ ∞

−∞
f(t)e−ıωt dt (2.1)

Before presenting a review of the established time-frequency (TF) analysis methods

for nonstationary signals, let us revise the definition of stationarity; A time series f(t) is

strictly stationary if the joint distributions of

[
f(t1), f(t2), . . . , f(tn)

]
and

[
f(t1 + τ), f(t2 + τ), . . . , f(tn + τ)

]
(2.2)

are independent of the time difference τ . In most practical cases, however, one is more

interested in wide sense stationarity which is limited to the preservation of only first and

second order statistics with respect to time:

E
(|f(t)|2) < ∞

E
(
f(t)) = m

Cov (f(t), f(t + τ)) = Cov(τ), (2.3)

Here, E(·) and Cov(·) denote the expectation and the covariance operators, respectively.

To incorporate the time information within the Fourier analysis, a short-time

Fourier transform (STFT) method was developed by Gabor which obtained the TF dis-

tribution by successively sliding a window along the time axis and applying the Fourier

transform. Mathematically, the STFT of a time series f(t) can be written as

X(τ, ω) =
∫ ∞

−∞
w(t− τ)f(t)e−ıωt dt (2.4)

where w(t) represents the window function centered at the origin. Since STFT effectively

applies the conventional Fourier spectral analysis on each window, data must be linear

and stationary within each window (piece-wise stationarity) for the analysis to be valid.

This assumption of piece-wise stationarity, however, may not be always valid for real world

nonstationary data and even in those cases where it can be imposed, it is hard to make sure
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that the window length coincides with the stationary scales, as evident by the constant

window length used in STFT. Furthermore, the approach has conflicting requirements

regarding the window size, resulting in a compromise between the localization in time and

frequency domain.

In wavelet analysis, the window length can be adjusted according to the temporal

scales being observed and can thus be seen as an adjustable window Fourier transform

analysis [37]. However, unlike the Fourier transform which only uses sines and cosines

as basis functions, wavelet analysis adopts a broad class of signals as its basis functions,

ψ(t), which satisfy very general conditions1 [38]. Mathematically, the continuous wavelet

transform of a signal f(t) can be given by:

W (a, b; f, ψ) = a−
1
2

∫ ∞

−∞
f(t)ψ∗

(
t− b

a

)
dt (2.5)

in which a is the dilation factor, also known as the scale factor, and b denotes the trans-

lation from the origin and (·)∗ represents the operation of complex conjugate.

Though the wavelet transform has become very popular over the past two decades,

it still uses predefined basis functions on to which the input signal is linearly projected,

and hence yields a less compact and less meaningful decomposition, especially for ‘non-

harmonic’ signals [39].

Another established method for TF analysis of nonstationary signals is known as the

Wigner-Ville distribution, which uses the Fourier transform of central covariance function

to give the following distribution:

V (ω, t) =
∫ ∞

−∞
f

(
t− τ

2

)
f

(
t +

τ

2

)
e−ıωt dt (2.6)

where f(t) represents the input signal to be transformed. A major drawback of the

approach is that it suffers from the interference between signal components, which causes

spurious artifacts in the spectrogram [4].

1Function ψ(t) is normally taken as a zero average function, centered around zero and with finite energy.
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2.2 The Concept of Instantaneous Frequency

In the previous section, some established algorithms for time-frequency (TF) analysis of

nonstationary data were briefly reviewed. In order to define a local frequency estimate [40],

which is an essential requirement for nonstationary data analysis, the above methods

projected the input signal on some fixed basis functions of certain frequency.

Another class of methods for nonstationary signal analysis define the local frequency

estimates based on the Hilbert transform [7]; they perform highly localised analysis, unlike

the projection-based schemes, such as STFT and wavelet analysis, which require at least

one full oscillation to define the local frequency value. For an input signal x(t), its Hilbert

transform is given by:

y(t) =
1
π

P

∫ ∞

−∞

x(t′)
t− t′

dt (2.7)

where x(t) and y(t) represent the input and the output signals respectively, and P denotes

the principal Cauchy value. Using this definition, x(t) and y(t) form a complex conjugate

pair and can be combined to form an analytic signal, z(t), defined as:

z(t) = x(t) + ıy(t) = a(t)eıθ(t), (2.8)

where

a(t) =
[
x2(t) + y2(t)

] 1
2 and θ(t) = tan−1 y(t)

x(t)
. (2.9)

Essentially y(t), as given in equation (2.7), is the convolution of x(t) with 1
t , highlighting

the local properties of x(t). Using equation (2.8), a local estimate of the instantaneous

frequency can be defined as

ω(t) =
dθ(t)
dt

(2.10)

However, for instantaneous frequency given in equation (2.10) to be meaningful, some

limitations must be imposed on the data; since, the instantaneous frequency ω can only

take a single value at a time, it can only represent one component (narrowband) signals.

The standard bandwidth measure, denoted as ν, can be defined in terms of the ith
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moment (mi) of the spectrum as follows [41] [42] [43]:

N2
1 −N2

0 =
ν

π2
=

1
π2

m4m0 −m2
2

m2m0
(2.11)

where N0 and N1 denote the number of zero crossings and extrema per unit time, re-

spectively. Hence, for a narrow-band signal ν = 0, the number of zero crossings and the

number of extrema should be approximately equal.

It has also been argued in [44] [45] [7] that real part of the Fourier transform of

a signal must have only positive frequencies for the local frequency estimate to be physi-

cally meaningful. Furthermore, simple examples have been given in [7] to illustrate these

restrictions locally, and shown that, for such signals, instantaneous frequency estimates

can only be defined accurately if the function is restricted to have a zero local mean.

This local restriction, along with the global restrictions given in equation (2.11), leads

to defining a class of functions, designated as intrinsic mode functions (IMFs), for whom

the instantaneous frequency can be defined everywhere. EMD aims to decompose input

data as a summation of these ‘local’ IMFs via an iterative procedure, known as the sifting

algorithm. The properties of IMFs are listed in the next section.

2.3 Intrinsic Mode Functions

Intrinsic mode functions (IMFs) belong to a class of functions designed to conform to

the global and local conditions which are necessary to yield accurate and meaningful

instantaneous frequency estimates, obtained via Hilbert transform [46]. Formally, these

functions must satisfy the following two conditions:

1. The upper and lower envelope are symmetric: at every point the mean value of the

upper and lower envelope should be zero;

2. The number of zero crossings and the number of extrema are equal or they differ at

most by one.
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2.4 Empirical Mode Decomposition

Empirical mode decomposition is a data-driven technique to decompose a signal, by means

of an iterative process called the sifting algorithm, into a finite set of oscillatory compo-

nents called intrinsic mode functions (IMFs), which represent the temporal modes (scales)

present in the data [7]. Given an arbitrary time series x(k), EMD decomposes it into a

sum of IMFs {cm(k)}, m = 1, . . . , M and the residual r(k), that is

x(k) =
M∑

m=1

cm(k) + r(k) (2.12)

The residual r(k), unlike {cm(k)}M
m=1, does not contain any oscillations and its physical

meaning is a trend within the signal.

0 50 100 150 200 250 300 350 400 450 500
−5

0

5

x

0 50 100 150 200 250 300 350 400 450 500
−5

0

5

c 1

0 50 100 150 200 250 300 350 400 450 500
−2

0

2

c 2

0 50 100 150 200 250 300 350 400 450 500
−2

0

2

c 3

0 50 100 150 200 250 300 350 400 450 500
−1

0

1

Time Index

r

Figure 2.1: An example of the EMD sifting operation applied to white Gaussian noise
(x in the top panel) for which seven IMFs (only first three are shown) and a trend
were obtained.
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Algorithm 1 The sifting algorithm for univariate EMD
1: Find the locations of all the extrema of x(k)

2: Interpolate (using spline interpolation) between all the minima (resp. maxima) to

obtain the signal envelope passing through the minima, emin(k) (resp. emax(k))

3: Compute the local mean m(k) =
(
emin(k) + emax(k)

)
/2

4: Subtract the mean from the signal to obtain the ‘oscillating’ signal d(k) = x(k)−m(k)

5: If the resulting signal d(k) obeys the stopping criterion, it becomes the first IMF,

otherwise set x(k) = d(k) and repeat the process from Step 1 until the first IMF is

obtained.

2.4.1 Sifting Algorithm

The IMFs are extracted from an input signal x(k) by means of an iterative algorithm

called the sifting algorithm, described in Algorithm 1. The listed algorithm only describes

the method to extract the first IMF (d1(k)) from the input signal x(k), and the same

iterative process is applied again on the local trend, x(k) − d1(k), to obtain the second

IMF and so on. The process is repeated until all oscillatory modes in the input signal are

extracted in the form of IMFs and we are left with a monotonic function, which can be

characterized by lack of enough extrema to form an oscillation. At the end of the sifting

operation, a data-driven decomposition of the input signal in the form of equation (2.12)

is obtained. An example decomposition is shown in Figure 2.1, where EMD was applied

to a realisation of white Gaussian noise (denoted by x in the top panel) which gave seven

IMFs (c1, . . . , c7) and a trend (r).

As is evident in the Algorithm 1, an important step in the sifting process is to

estimate the local mean of the input signal via upper and lower envelopes. These envelopes

are in turn obtained by locating all the extrema (both maxima and minima) of the input

signal. The maxima of the input signal are then interpolated to yield an upper envelope

and, similarly, the minima are connected to obtain the lower envelope of the signal; this

process is shown graphically in Figure 2.2. Though, any interpolation method can be used

in the sifting process, cubic spline interpolation scheme is widely used in practice [47].
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Figure 2.2: Local mean estimation during sifting process in EMD. Upper envelope and
lower envelope (dashed lines) of the input signal (solid line) are averaged to obtain
the local mean signal (dotted line).

However, selecting extrema of the input signal as interpolation points and employ-

ing cubic splines for their interpolation is not the only available method for envelope es-

timation. In [48], a method is given for the optimization of both the interpolation points

and the piece-wise interpolating polynomials for the estimation of the upper and lower

envelopes of the signal. For a set of well-defined multicomponent signals, the method per-

formed optimization of the EMD free parameters within a genetic algorithm framework

and yielded improved results as compared to the standard approach involving extrema

points and cubic spline interpolation [49].

Next, the upper and the lower envelopes are averaged to obtain the local mean of

an input signal, as shown in Figure 2.2. The local mean is then subtracted from the input

signal to yield the ‘local detail’. As described earlier, the sifting process is iteratively

applied on a ‘local detail’ until it fulfils the requirement for an IMF.
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2.4.2 Stopping Criteria in EMD Sifting Process

The stopping criterion in the sifting process of EMD is used to check whether the ‘local

trend’ d(k), obtained in Step 5 of the Algorithm 1, fulfills the IMF criteria. The choice of

a suitable stopping criterion is important as if the data is over-sifted, it will result in over-

decomposition of IMFs with uniform amplitude modulations, whereas, under-sifted IMFs

will not satisfy mono-component criteria and the estimate of instantaneous frequency will

be erratic. The sifting criterion also determines the compactness of EMD-based decom-

position: A strict criterion results in more sifting iterations of the algorithm and hence

the greater number of IMFs, whereas a weak criterion gives comparatively less number of

IMFs. The following are some of the most commonly used stopping criteria used in EMD:

The stoppage criterion proposed by Huang in [7] uses the normalized squared dif-

ference between two successive sifting iterates dn(k) and dn−1(k), that is

K∑

k=0

‖dn−1(k)− dn(k)‖2

d2
n−1(k)

≤ SD (2.13)

where K represents the total number of samples in the original series x(k), and the em-

pirical value of SD is usually set within the range (0.2-0.3). A low value of SD, that is,

sifting to the extreme, would remove all the amplitude modulation from the signal which

would result in purely frequency modulated components. This is not desired as IMFs in

that case will not have a physical meaning. The downside of this criterion is that it does

not depend on the actual definition of IMF, and may underperform in practice.

A more robust criterion, based on the original definition of IMF, stops the sifting

process only after the condition of an IMF is met for S consecutive times [46]; the condition

checked for an IMF is that the difference between the number of extrema and zero crossings

should not exceed by more than one. It has also been shown in [46] that the empirical

range of S should be chosen between 4 and 8.

In [50], another stopping criterion is presented, which defines the envelope ampli-

tude, a(k), as

a(k) =
emax(k)− emin(k)

2
(2.14)
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Next, the evaluation function is defined based on the envelope amplitude and the

local mean of the data, as

f(k) =
∣∣∣∣
m(k)
a(k)

∣∣∣∣ (2.15)

where m(k) = emax(k)+emin(k)
2 is the local mean signal. The sifting process is continued

till the value of the evaluation function, f(k), is greater than or equal to some predefined

thresholds; Sifting is performed until f(k) < θ1 for some preselected fraction (1 − α) of

the total duration, while f(k) < θ2 for the remaining fraction. In this way, the stopping

criterion ensures globally small fluctuations in local mean while taking into account the

overall large excursions in the input signal.

In [50], the values of the three parameters recommended were [θ1 = 0.05, θ2 =

0.5, α = 0.05]. The criterion involving the equality of the number of extrema and zero

crossings of a signal can also be used in combination with equation (2.15) to yield a

robust stopping criterion. For all the simulations involving univariate signals in this thesis,

this composite criterion has been used with parameter values taken as [θ1 = 0.05, θ2 =

0.5, α = 0.05] and S = 1, unless stated otherwise.2

2.5 The Hilbert-Huang Spectrum

After obtaining the IMFs using the EMD method, the Hilbert transform can be applied

to each IMF separately and the instantaneous frequency can be computed according to

equation (2.10). Given a signal x(k) and its corresponding IMFs {cm(k)}M
m=1, application

of the Hilbert transform to the decomposition given in equation (2.12) yields

x(k) =
M∑

m=1

am(k)eıθm(k) =
M∑

m=1

am(k)eı
∫

wm(k)dt (2.16)

The residual r is left purposely as it is either a monotonic function or a constant. Note that

equation (2.16) yields a variable amplitude am(k) and instantaneous frequency wm(k),

making the corresponding expansion suitable for processing nonstationary data. The

2For simulations involving multivariate signals, a multichannel variant of this criterion, formally pre-
sented in Chapter 4, has been used as a stopping criterion.
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Figure 2.3: Comparing the Hilbert-Huang spectrum with established linear time-
frequency methods on a carefully chosen synthetic signal s(t). (a, b, c) The signal
s(t) = s1(t) + s2(t) and its two components s1(t) and s2(t). (d) The instantaneous
frequency of s1(t) and s2(t). (e, h) Two examples of short-time Fourier transform
(STFT) with a narrow window (128) (e) and wide window (256) (h). (f, i) Two
examples of a scalogram generated via continuous Wavelet transform (CWT) with
Morlet wavelet (f) and Haar wavelet (i). (g) The Hilbert-Huang spectrum generated
by applying EMD to s(t). A comparison between the Hilbert-Huang transform and
other linear TF analysis methods demonstrates the superiority of EMD due to its data-
driven nature; the Hilbert-Huang spectrum clearly gives a ‘crisp’ TF representation
of s(t) than its spectrogram (STFT) and scalogram (wavelet transform). The presence
of ‘extra’ low frequency component in the spectrum is due to the fact that s(t) is not
a zero mean signal.
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amplitude am(k) and instantaneous frequency wm(k) can be plotted versus time index

k to yield a time-frequency-amplitude representation of the entire signal known as the

Hilbert-Huang spectrum, H(k,w).

To demonstrate the power of the Hilbert-Huang spectrum as a signal analysis

tool, its results are compared with other established linear time-frequency representa-

tions, including the STFT and the wavelet transform. The synthetic signal chosen for

this analysis was used in [51] for similar purposes; The signal s(t) = s1(t) + s2(t)

consists of two frequency components s1(t) = 0.5t + cos 20t for 0 ≤ t ≤ 5π
2 , and

s2(t) = cos
(

4
3 [(t− 10)3 − (2π − 10)3] + 10(t− 2π)

)
for 2π ≤ t ≤ 4π, as shown in the

top row of Figure 2.3. The instantaneous frequency for the two components are also

shown in Figure 2.3(d) and are given by: f1(t) = 20
2π for s1(t), and f2(t) = 4(t− 10)2 + 10

for s2(t).

Next, the spectrogram and scalogram, obtained by applying the STFT and the

continuous wavelet transform to s(t) are plotted in the middle and the right columns of

Figure 2.3, respectively. More precisely, Figures 2.3(e, h) show the spectrograms corre-

sponding to the narrow window (128) and the wide window (256), whereas Figures 2.3 (f,

i) show the scalograms obtained by applying the continuous Wavelet transform (CWT)

to s(t) using the Morlet and the Haar wavelets, respectively. It can be noticed that while

the instantaneous frequency profile is recognizable in the case of these linear TF analysis

methods, it is significantly blurred in each case depending on the choice of basis func-

tions (transform method) and other parameters, e.g. window length in STFT, and type of

wavelet function in CWT. On the other hand, the Hilbert-Huang spectrum of s(t), plotted

in Figure 2.3(h), clearly shows better resolution properties than the STFT and the wavelet

analysis.

2.6 EMD Properties and Applications

Due to the empirical nature and the lack of solid mathematical foundation in EMD, most

of the work in understanding its properties is based on performing extensive numerical
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simulations in controlled situations. As a result, the performance evaluation of EMD as

compared to other existing methods is hard to achieve. However, despite the above flaws,

the empirical and data-driven nature of EMD makes it a viable tool in many real world

scenarios, where the convenience of choosing an a priori fixed set of basis functions and

their orthogonality are less significant than the compactness and the physically meaningful

nature of the expansion. In this section, some of the important developments regarding

the theory and properties of EMD algorithm will be presented.

The nature of the sifting process in EMD algorithm ensures the completeness of

EMD algorithm, since equation (2.12) is an identity. Completeness is an important prop-

erty for mathematical tractability of a decomposition.

The orthogonality of EMD output (IMFs) was studied in [7] and it was found that

it was satisfied in practical sense but could not be guaranteed theoretically [7]. This is

due to the approximations involved in the calculation of local mean of a signal through

envelopes. Therefore, while the following equation3

E{(x(k)− E{x(k)})E{x(k)}} = 0 (2.17)

holds ‘locally’ in practice by virtue of the EMD decomposition, it is not strictly applicable

due to the fact that the local mean calculated here is only an approximation. As a result,

leakage is unavoidable, but is negligible in most practical cases, as demonstrated in [7]

via numerical simulations on real world wind speed data using the so called orthogonality

index.

A study of the characteristics of white Gaussian noise (WGN) using EMD was

carried out in [26] and [52], and it was found that EMD effectively acts as a dyadic filter

bank similar to those found in the wavelet-based decompositions. The Fourier spectra of

the IMF components were found to be ‘self-similar’ in a sense that they had similar shape

and covered the same area (had same energy) on semi-logarithmic time scale.

Based on the above results on statistical characteristics of WGN, Wu and Huang

3The equation can be interpreted as an inner product of the first and second IMFs obtained from x(k)
given that only a single sifting iteration on x(k) yielded the ‘true’ local mean and the hence the second
IMF E{x(k)}.
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proposed a denoising (detrending)4 method by assigning ‘statistical significance’ to each

IMF, extracted from an input noisy data, based on the a priori knowledge of IMF statistics

in the case of WGN. The resulting denoising (detrending) method rejects (keeps) those

IMFs whose energies are found to be similar to the ones obtained from the decomposition

of reference WGN. A generalization of this method has been proposed in [53] to denoise a

wider class of signals which are corrupted by fractional Gaussian noise (with known Hurst

exponent, H). Moreover, recently, a number of EMD-based denoising techniques inspired

from standard wavelet thresholding and translation invariant thresholding have also been

developed, yielding improved results [54].

Though EMD fulfills the mathematical uniqueness property resulting in a unique

set of IMFs for a given input data and a set of EMD parameters, it sometimes fails to

observe ‘physical uniqueness’ due to its empirical nature and sensitivity to algorithm pa-

rameters [55]; this problem of EMD will be further highlighted in detail, via examples,

in section 2.6.1. To alleviate this problem, an ensemble empirical mode decomposition

(EEMD) method was proposed in [31] which adds multiple realizations of white noise, say

{wn(k)}N
n=1, to the input signal, x(k), resulting in the following set of multiple observa-

tions:

xn(k)}N
n=1 = x(k) + wn(k)}N

n=1 (2.18)

The resulting data set, xn(k) is then decomposed via multiple applications of EMD algo-

rithm to yield N sets of IMFs, which are averaged together to yield a single set of ‘true’

IMFs. As evident, the EEMD method is computationally expensive and its improved ver-

sion in terms of computational requirements has been recently proposed in [56]. Another

issue with EEMD is its reconstruction error due to the added WGN [31]; a new method

avoiding this problem will be presented in Chapter 6. The main aim of such noise-aided

EMD analysis is to establish a dyadic reference frame in time-frequency (TF) space, and

owing to the filter bank property of EMD, this enables a more natural separation of the

IMFs.

Since EMD was initially designed to offer improved TF analysis via its accurate in-

4Denoising refers to removing the modes identified as noise, whereas, detrending aims to keep them.
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Figure 2.4: Two tone signal decomposition using EMD: (a) IMFs of the two tone signal
corresponding to a = 10 and f = 0.45 in equation (2.19). EMD correctly decomposed
two tones as separate IMFs. (b) IMFs of the two tone signal corresponding to a = 10
and f = 0.65; EMD created new frequency components in C3 and C4 which were not
present in the input signal. (c) IMFs of the two tone signal corresponding to a = 10
and f = 0.85; EMD considered input signal as a single component.

stantaneous frequency estimates, several studies have focussed on its ability to distinguish

neighboring frequency components [57] [58]. In [57], for instance, the behavior of EMD

algorithm in the case of the following simplified two-tones model was studied:

x(t; a, f) = cos 2πt + a cos(2πft + φ), (2.19)

where a and f ∈]0, 1[ refer to the amplitude and frequency ratio respectively; therefore,

the term cos 2πt effectively becomes the high frequency component and cos(2πft+φ) can

be considered as low frequency component, by design.

It was shown in [57] that, depending on the value of relative amplitude a and

frequency f in the above model equation (2.19), EMD answered the basic question of
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two tone separation problem by revealing the following three scenarios: (1) when two

individual tones were correctly separated, (2) when the input signal was seen as a single

component, and (3) when something else was done by EMD. Though, the results mostly

followed intuition, for instance, it was found that EMD only resolved two frequencies when

f was below some threshold; it was also observed that the cutoff frequency depended on the

amplitude ratio in a non-symmetric way, owing to nonlinear nature of the EMD algorithm.

The performance of the EMD algorithm was next analysed by exploring the three

scenarios mentioned in the previous paragraph, by using a well defined set of two tone input

signals. The set of signals was chosen such that each signal in the set corresponded to one of

the three conditions mentioned above. For that cause, the value of amplitude parameter

a was set to a = 10, whereas the frequency ratio was set to f = 0.45, f = 0.65 and

f = 0.85 to obtain the three signals used in the analysis. The resulting signals were then

decomposed using the EMD algorithm and the IMFs in each case are shown in Figure 2.4.

It can be seen that for f = 0.45 (Figure 2.4(a)), EMD correctly decomposed the input

signal to two input tones, whereas for f = 0.85 (Figure 2.4(c)) EMD considered the signal

as a single component. For the signal corresponding to f = 0.65 (Figure 2.4(b)), however,

the behaviour of EMD was not intuitive as it created new lower frequency components

(IMF3 and IMF4) which were not present in the original signal. This example highlights

a specific scenario where EMD failed to provide the correct answer as the new frequency

components could be wrongly interpreted as intrinsic mode of the signal when its physical

relevance is doubtful.

While studying the spectral resolution of EMD, it must be kept in mind that EMD

doesn’t always aim to separate closely spaced frequency components but, in effect, its

goal is to extract physically meaningful components in accordance with the definition of

IMF. Having said that, the separation of closely spaced components via EMD may be

important in certain cases, and in [58], the addition of a masking signal (a high frequency

component) has been proposed for this cause. However, this method needs some a priori

information about input data to choose the appropriate frequency for the masking signal,

thus, compromising the data-driven nature of EMD algorithm.
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Figure 2.5: Non-uniqueness of EMD: Decomposition of a sinusoid corrupted by two
different realizations of white Gaussian noise, obtained by EMD. Different number of
intrinsic mode functions, M = 8 in (a) and M = 9 in (b) are obtained. Moreover, the
original sinusoid is located in different modes: c4 in (a) and c4 + c5 in (b), highlighting
the non-uniqueness of decomposition.

Recently, Daubechies et al. have proposed a method which yields IMF-like compo-

nents by using a combination of wavelet transform and reallocation method [51]. Specifi-

cally, they first give a precise definition of the class of these IMF-like functions and then

show that their method can decompose arbitrary functions within that class. The result-

ing synchrosqueezed wavelet transform method is expected to overcome the difficulties

in EMD which makes it hard to analyse mathematically. This method is still in infancy

though and requires further studies regarding its properties and scope of application.

In addition, a method has been proposed recently for the optimization of the in-

terpolation points and the interpolating polynomials in order to estimate the upper and

the lower envelopes of an input signal. The method adopts genetic algorithm framework

to perform the optimization of the EMD free parameters [48] [49].

2.6.1 Non-uniqueness in EMD-based Decomposition

The data-driven nature of EMD, though having its clear advantages, also compromises

the uniqueness of EMD-based decomposition. As a result, signals with similar statistics
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may yield different decompositions, both in terms of the number and the properties of

resulting IMFs. This problem is mainly caused due to the mode-mixing, whereby a single

IMF contains multiple oscillatory modes and/or a single mode resides in multiple IMFs,

compromising the physical and practical meaning of IMFs in certain cases [17] [31].

To illustrate the (non-)uniqueness of EMD, a sinusoid X of unit amplitude and

frequency was corrupted by two different realisations, W1 and W2, of a white Gaussian

noise signal with the same statistical properties (zero mean and standard deviation of 0.2).

The EMD algorithm was subsequently applied to them. The IMFs extracted from both

cases are shown in Figure 2.5; in Figure 2.5(a), which shows the decomposition of the first

signal (corrupted by W1), the original sinusoid corresponds to the fourth IMF c4, whereas

the noise is contained within the IMFs c1−c3. Figure 2.5(b) shows the decomposition of a

sinusoid corrupted by W2; here, in addition to having different number of IMFs, (M = 9),

as compared to the first case, (M = 8), mode-mixing also occurred across c4 and c5, as

the signal of interest (sinusoid) is present in both these IMFs .

Though, the issue of mode-mixing can be addressed by performing EMD over a

number of independent realizations of WGN (Ensemble EMD [31]), it is computation-

ally very expensive. Other studies in this regard include combining EMD with adaptive

learning algorithms based on temporal neural networks to make it robust to its parameter

selection (stopping criterion, envelope interpolation) and against the mode-mixing and the

non-uniqueness problems [59]. In [17] [60], the problem of mode-mixing is addressed, in

the context of fusion applications using the complex extensions of EMD.

2.7 Complex Extensions of EMD

This section focuses on the extensions of EMD capable of handling bivariate or complex

data. These extensions are a prerequisite to cater for a large class of real world complex

signals. Applying EMD separately on two channels of a complex signal is suboptimal, as it

does not consider correlations among channels; complex extensions of EMD, on the other

hand, process complex signals directly, and take into account interchannel correlations.
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The main challenge in the complex extensions of EMD is to estimate the local

mean of a complex signal as it is hard to define local extrema of a complex signal directly.

Among existing complex extensions of EMD, complex EMD (CEMD) [20] makes use of

the analyticity of the signal to apply standard EMD [7] component-wise, whereas rotation

invariant EMD (RI-EMD) [21] and bivariate EMD (BEMD) [22] estimate the local mean

based on the envelopes obtained by taking projections of the input signal in different

directions.

2.7.1 Complex EMD

For bivariate signals, complex EMD (CEMD) [20] uses the positive and negative frequency

components to apply standard EMD to two univariate time series. This is achieved by

converting a general non-analytic signal into two analytic signals, each corresponding

to either the positive or the negative frequency components of the original signal. The

standard EMD is then applied to the real part of the resulting analytic signals to obtain

two sets of IMFs. These sets are then combined to form complex-valued IMFs.

More precisely, let x(k) be a complex-valued sequence and X(eıw) its Discrete

Fourier Transform (DFT). By processing signal x(k) with the filter having a transfer

function

H(eıw) =





1, 0 < ω ≤ π

0, −π < ω ≤ 0
(2.20)

the DFT of two analytic signals, denoted by X+(eıw) and X−(eıw), are generated, which

correspond respectively to the positive and the negative frequency parts of X(eıw). The

subsequent application of the Inverse Fourier Transform, denoted by F−1(·), to X+(eıw)

and X−(eıw) yields time series x+(k) and x−(k), defined as

x+(k) = R[F−1[X+(eıw)]
]

(2.21)

x−(k) = R[F−1[X−(eıw)]
]

(2.22)
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where the operator R(·) extracts the real component of a complex signal. Standard uni-

variate EMD can then be applied to x+(k) and x−(k), to give

x+(k) =
M+∑

m=1

cm(k) + r+(k) (2.23)

x−(k) =
−M−∑

m=−1

cm(k) + r−(k) (2.24)

where symbols M+ and M− denote, respectively, the number of IMFs for the positive

and the negative frequency parts, cm(k) are the IMFs, and r+(k) and r−(k) are residual

signals for x+(k) and x−(k). The original complex signal x(k) can then be reconstructed

in terms of x+(k) and x−(k) as

x(k) = (x+(k) + ıH[x+(k)]) + (x−(k) + ıH[x−(k)])∗, (2.25)

where H(·) is the Hilbert transform operator and the symbol (·)∗ denotes the complex

conjugation operator.

For the mth complex IMF ym(k), defined as

ym(k) =





cm(k) + ıH[
cm(k)

]
, m = 1, . . . ,M+,

(
cm(k) + ıH[

cm(k)
])∗

, m = −M−, . . . ,−1
(2.26)

the original complex valued signal x(k) can also be written as

x(k) =
m=M+∑

m=−M−,m6=0

ym(k) + r(k), (2.27)

where r(k) represents the trend in the data, and is represented in terms of the residuals

of x+
n and x−n as

r(k) =
(
r+(k) + r−(k)

)
+ ıH(

r+(k)− r−(k)
)
, (2.28)

The so defined CEMD retains the generic structure of standard EMD; however,

as the number of IMFs for x+(k) and x−(k) can in general be different, it is difficult to
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interpret the physical meaning of the extracted IMFs. Moreover, this approach is also not

suitable for extension to higher dimensions.

2.7.2 Rotation-Invariant EMD

The main difficulty with the CEMD arises because it does not operate directly in C. The

Rotation-Invariant EMD (RI-EMD) algorithm [21] operates directly in C, and defines the

extrema of a complex signal as points where the angle of the first derivative of the signal

becomes zero. For a complex signal, z(t) = x(t)+ ıy(t), it can be shown that this criterion

is equivalent to y′(t) = 0, that is, the extrema of the imaginary part. Mathematically, for

a complex signal z(t) = x(t) + ıy(t), the extrema locations are at

∠z′(t) = 0 ⇒ ∠{x′(t) + ıy′(t)}

tan−1 y′(t)
x′(t)

= 0 ⇒ y′(t) = 0. (2.29)

As it is assumed that a local maximum is followed by a minimum, these sets can be

interchanged. The spline interpolation is then performed on both components separately

to obtain complex-valued envelopes, which are averaged to obtain the local mean. This

method yields a single set of complex-valued IMFs, and the ambiguity at the zero frequency

within the CEMD is avoided due to the direct operation in C. However, since this method

uses the extrema of only the imaginary component of a bivariate signal to calculate the

local mean, its accuracy is compromised.

The RI-EMD gives a set of complex IMFs in which the common frequency modes

are properly aligned. The complex IMFs thus obtained have meaningful physical relevance;

this is demonstrated on the a set of wind5 speed and direction measurements, which have

been made complex by convenience of representation. Figure 2.6(a) shows the polar plot

of the original wind signal, whereas Figure 2.6(b) shows the contribution of the sixth and

seventh IMF (c6 + c7). It is clear that the complex IMFs have physical meaning as they

can reveal the dynamics of the original signal at different scales.

5Publicly available from http://mesonet.agron.iastate.edu/request/awos/1min.php



2.7 Complex Extensions of EMD 49

  1

  2

  3

  4

  5

30

210

60

240

90

270

120

300

150

330

180 0

(a) Polar plot of the input wind signal
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(b) Sum of sixth and seventh complex IMF

Figure 2.6: A complex wind signal analysed by the Rotation-Invariant EMD algo-
rithm.

2.7.3 Bivariate EMD

The bivariate EMD algorithm [22] calculates the local mean envelopes based on the ex-

trema of both (real and imaginary) components of a complex signal, yielding more accurate

estimates than RI-EMD.

It proceeds by projecting an input bivariate signal in V different directions, with

each direction vector defined based on equidistant points along the unit circle. Next, the

corresponding envelopes for each direction are obtained by interpolating the extrema of

projected signals via component-wise spline interpolation; these envelopes are then aver-

aged to obtain the local mean. The larger the number of directions employed in BEMD,

i.e. larger the value of V , the more accurate the estimate of the envelope. Assuming four

directions, the center of envelopes at a point in space is given by either of the following

methods:

1. The barycenter of the four points.

2. The intersection of two straight lines that pass though the middle of the horizontal

and vertical tangents.
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Figure 2.7: Illustration of local mean estimation in BEMD using (left) Barycenter of
the four points, (right) Straight lines passing through the center of the tangents [22].

Figure 2.7 shows how the local mean of a bivariate signal can be calculated by the

above two methods; the left figure illustrates the mean estimation by taking barycenter

of four points, whereas, the figure on right shows the mean calculation via straight lines

passing through the middle of the tangents. Figure 2.8 shows the decomposition obtained

by applying BEMD to a complex real world wind signal6. It can be noticed that, similarly

to RI-EMD, the method generates an equal number of IMFs for the real and imaginary

parts and can therefore be given a physical meaning. Moreover, the residual signal r

clearly captures the overall ‘trend’ of the real and imaginary components.

The BEMD algorithm extends the intuitive notion of ‘oscillations’ in standard EMD

to its two dimensional counterpart–the rotations, thus yielding bivariate or complex in-

trinsic mode functions. The details of the sifting operation in BEMD is summarised in

Algorithm 2; the rest of the method is similar to standard EMD, that is, if d(t) meets the

stoppage criterion for bivariate IMF, then the process is reapplied to z(t) − d(t), other-

wise, it is applied to d(t). The stopping criterion used with the BEMD algorithm in this

thesis is similar to the one employed for the standard EMD algorithm as given in section

2.4.2, with the same parameter values ([θ1 = 0.05, θ2 = 0.5, α = 0.05] and S = 1). The

only difference is that the conditions for the stopping criteria are imposed on V multiple

6The complex wind signal has the north-south velocity as its real component and the east-west velocity
as its imaginary component. The data was captured at 50 Hz.
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Figure 2.8: Wind data (denoted by z in the first row) decomposed by BEMD (IMFs
denoted by c1−c4 and ‘trend’ denoted by r in the lower subplots). Real and imaginary
components are given by solid and dashed lines respectively.

projections each and the sifting process is stopped when all the projections fulfill these

conditions.

Notice from RI-EMD and BEMD algorithms that the critical point in the complex

extensions of EMD is to find the local mean of an input signal which, in turn, depends on

the locations of its extrema. Since extrema of a complex signal can not be defined due to

the property of complex fields [61], RI-EMD and BEMD employ projections of the input

signal along multiple directions to estimate the mean value. While RI-EMD is a generic

extension of standard EMD, it only uses projections in two directions to find the extrema,

whereas bivariate EMD can take projections in any number of directions, in turn, yielding

more accurate estimate of the local mean as compared to RI-EMD.

This issue is illustrated further in Figure 2.9 which graphically shows the process

of finding the local mean of a complex signal using RI-EMD (Figure 2.9(a)) and BEMD
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Algorithm 2 The sifting process in bivariate EMD

1: Obtain V signal projections, {pθv(t)}V
v=1, by projecting the complex signal z(t) by

means of a unit complex number e−ıθv , in the direction of θv, as

pθv(t) = R(
e−ıθvz(t)

)
, v = 1, . . . , V (2.30)

where R(·) denotes the real part of a complex number, and θv = 2vπ/V ;

2: Find the locations {tvj}V
v=1 corresponding to the maxima of {pθv(t)}V

v=1;

3: Interpolate (using spline interpolation) between the maxima points [tvj , z(tvj )], to ob-

tain the envelope curves {eθv}V
v=1;

4: Calculate the mean, m(t), of all the envelope curves;

5: Subtract m(t) from the input signal z(t) to yield an “oscillatory” component, that is,

d(t) = z(t)−m(t).

(Figure 2.9(b)), respectively. In both cases, envelopes were calculated in multiple direc-

tions, and then averaged to obtain the local mean. However, as expected, the estimates

of BEMD were found to be more accurate than RI-EMD. This is evident in Figure 2.9(a),

where the estimate of local mean using RI-EMD at around point 50 on X-axis is inaccu-

rate due to limited number of projections V = 2, whereas, BEMD precisely calculated the

mean value at that point since it used the larger number of projections V = 4.

2.8 Addressing the Problem of Uniqueness via BEMD

It was highlighted earlier that despite the potential of EMD in nonstationary signal analy-

sis, it suffers from the problem of non-uniqueness due to its empirical nature and sensitivity

to variations of its parameters (envelope estimation and stopping criteria) [17]. This prob-

lem was illustrated in section 2.6.1 via simulation on a sinusoid corrupted by different

realizations of WGN, which yielded different sets of IMFs, as illustrated in Figure 2.5.

Given that both RI-EMD and BEMD process a bivariate signal directly in the

complex plane, their potential with regards to data fusion was explored in [17], and it was
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Figure 2.9: Local mean of a bivariate signal calculated using the RI-EMD algorithm
(a) and BEMD (V = 4) (b). Notice the inaccuracy in local mean estimation at around
point 50 on X-axis, in (a), due to limited number of projections used in RI-EMD;
BEMD on the other hand captured the signal dynamics more accurately.

found that they could address the uniqueness problem suffered by standard EMD. It was

proposed to consider data from multiple sources as a single multivariate entity which, for

two sources, allows the use of BEMD.

To demonstrate the ability of RI-EMD and BEMD in this regard, BEMD was

applied to a complex signal U + ıV , for which the real and the imaginary part, U and
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Figure 2.10: Uniqueness of BEMD: Decomposition of a complex signal, for which real
and imaginary parts correspond to sinusoids with two different realizations of WGN,
obtained by BEMD. Note that the mode-mixing occurs exactly at same points in both
real and imaginary parts of complex IMFs.

V , are the same signals as those used in section 2.6.1 to study the non-uniqueness of

standard EMD-based decomposition. Figure 2.10 shows the decomposition achieved by

BEMD; Note that, as compared to Figure 2.5, the mode-mixing now occurs at exactly the

same points in both channels. As a result, mode-mixing does not pose a problem and,

therefore, the complex IMFs can be used in data-scale fusion applications. Due to this

reason, complex extensions of EMD have also been successfully used to accurately measure

the phase synchrony estimates between multichannel observations of EEG signals [19] [62].

2.9 Conclusions

Empirical Mode Decomposition (EMD) has shown considerable strength in the processing

of nonlinear and nonstationary real world data. Its real potential lies in its fully adaptive

nature, local orthogonality and completeness of its decompositions. However, despite the

potential for EMD-based multiscale analysis, the problems of uniqueness and mode-mixing

make it difficult to perform robust data-scale fusion.

Extensions of EMD to the complex domain C enable the modelling of amplitude-
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phase relationships within the complex data, and also help with the problems of mode-

mixing and the uniqueness of decomposition. However, to process a large class of multivari-

ate signals containing more than two channels, extensions of EMD to process multivariate

real world signals must be developed, which is the main aim of this thesis.
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Chapter 3

Trivariate Empirical Mode

Decomposition

IN this chapter, a trivariate empirical mode decomposition (TEMD) algorithm is pre-

sented, which has been designed to extend the EMD algorithm to process trivariate

signals. Estimation of the local mean envelope of an input trivariate signal is performed

by taking projections along multiple directions in three dimensional (3D) spaces, using the

rotation property of quaternions. The proposed algorithm thus extracts rotating compo-

nents embedded within the signal, and performs accurate time-frequency (TF) analysis,

via the Hilbert-Huang transform. Simulations on synthetic and real world trivariate signals

support the analysis.

3.1 Rationale: Extracting 3D Rotations

The main idea behind standard EMD method is to extract the local oscillations of the

input signal which is intuitively related to the concept of local extrema. However, the

notion of oscillations can not be easily extended to signals with more than one component

as the concept of extrema is not properly defined for signals residing in higher dimensional

spaces [61]; For instance, the complex field C is not ordered, and hence, operators such

as < and > are not defined in C. Therefore, the approach adopted in recent complex
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extensions of EMD, including the rotation-invariant EMD (RI-EMD) and bivariate EMD

(BEMD), aim to extract 2D rotational components, instead of oscillatory components,

within the input bivariate signal [21] [22].

In the proposed trivariate extension of EMD (TEMD), the idea of rotations has been

extended to three dimensions resulting in the notion of extracting 3D rotations in the case

of trivariate signals. The main rationale behind the proposed TEMD algorithm, therefore,

is to consider an input trivariate signal as consisting of faster 3D rotations imposed on

slower 3D rotations. This concept is graphically illustrated in Figure 3.1 which shows a

trivariate signal (top), its constituent slower 3D rotating component (middle), and higher

3D rotating component (bottom). Similarly to standard EMD, and also intuitively, the

local mean of the input signal is considered as a slower rotating component, whereas the

resulting residual, obtained by subtracting the mean from the original signal, is considered

as a faster rotating component.

3.2 Local Mean Estimation in Trivariate Signals

The local mean estimation for univariate signals, in standard EMD algorithm, is not hard

to achieve given that the upper (lower) envelope of a signal can be easily defined via spline

interpolation of maxima (minima). For multivariate signals, however, it is a challenging

task since the concept of extrema is not clearly defined in multidimensional spaces [61].

To alleviate this problem, recently proposed bivariate extensions of EMD [21] [22] employ

the concept of taking multiple signal projections in 2D space to define multiple signal

envelopes and, in turn, the local mean (see Section 2.7.3 for further details.).

To calculate the local mean of a trivariate signal, it is natural to consider taking

signal projections in multiple directions in 3D spaces. Hence, effectively, a trivariate signal,

for which the local extrema cannot be identified, is approximated via multiple univariate

projections with each corresponding to a particular direction in 3D space. The extrema

of these (univariate) projections can be easily defined and interpolated to yield multiple

envelopes of the input trivariate signal which form a 3D tube tightly enclosing the signal.
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Figure 3.1: Principle of the trivariate extension of EMD: A composite trivariate signal
(top) can be decomposed into slower rotation (middle), defined by its local mean, and
faster rotations (lower), obtained from subtracting local mean from the input signal.

The local mean can then be considered as the center of this so-called 3D tube, and is

calculated by taking the barycenter of these multiple envelopes.
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Figure 3.2: Set of direction vectors in 2D space used for calculating the local mean in
BEMD, with V = 24 directions.

Since the local mean estimation is a crucial step in EMD and its proposed trivariate

extension, its accuracy is vital for proper decomposition of signal into constituent ‘local’

scales. In the proposed method for mean estimation in trivariate signals, it is evident

that its accuracy depends heavily on the estimation of enclosing 3D tube via multiple

envelopes: the greater the number of envelopes used to form the tube, greater the accu-

racy of estimated local mean. One can also make an argument that since each envelope

corresponds to a particular direction in 3D space, enlarging the set of envelopes means

that we are effectively capturing the dynamics of the signal in more directions and, hence,

in much wider area in 3D space resulting in accurate estimates of local mean. However,

taking a larger set of envelopes comes at a high computational cost, and given the already

intense computational requirements of EMD method, the number of envelopes must be

carefully chosen in practice.

The density of envelopes is not the only issue effecting the accuracy of local mean;

the choice of the set of direction vectors in 3D space is also very important in this regard

and will be discussed in the next section.
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3.3 Choosing the Set of Direction Vectors for Local Mean

Estimation

The choice of the set of direction vectors to estimate signal envelopes is an important step

to accurately determine the local mean of a trivariate signal. This is due to the fact that

the chosen set of direction vectors determines how much ‘weight’ the proposed method

gives to each direction in space, while calculating the local mean of a signal. Assuming

no a priori information about the signal dynamics, the TEMD method should aim for a

uniform set of vectors in 3D space.

Among the existing bivariate extension of EMD, RI-EMD uses only two direction

vectors in a 2D plane, which correspond to the extrema of an imaginary part of a complex

signal [21]; BEMD, on the other hand, uses a uniform set of direction vectors in 2D space

taken along the polar coordinate system [22]. An example of a set of V = 24 sample

vectors generated for the bivariate EMD are shown in Figure 3.2; it can be seen that

the polar coordinate system inherently generates a uniform set of direction vectors in 2D

space.

In the proposed extension for trivariate signals, the set of direction vectors cor-

responding to the spherical coordinate system is proposed to be used for local mean

estimation. The spherical coordinate system is chosen since the input trivariate signal

resides in 3D space and, hence, the direction vectors must also be distributed in the same

(3D) space; the choice of spherical coordinate system, in this regard, can be seen as an

extension of polar coordinate system used in BEMD, to 3D space.

For convenience of presentation, the direction vectors can be conveniently repre-

sented by points on the surface of a unit sphere: each point on the surface corresponds to

the terminal point of a direction vector, drawn from the center of the sphere. One such

point and its associated direction vector is shown Figure 3.3(a).

Assuming that envelope curves, eφ
θ , are defined for any value of angles 0 < θ ≤ π

and 0 < φ ≤ π in 3D space, then the envelope mean corresponding to the projections

along points on a spherical coordinate system can be written as
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m(t) =
1
π2

∫ π

θ=0

∫ π

φ=0
eφ
θ dθdφ, (3.1)

≈ 1
IJ

I∑

i=1

J∑

j=1

e
φj

θi
(3.2)

where I and J represent the number of directions chosen along azimuth (φ) and co-latitude

(θ) respectively.

However, while projections of the input signal on points (direction vectors) along

the spherical coordinate system, using equation (3.2), provide a reasonable estimate of

local mean; it can be noticed from Figure 3.3(b) that there is greater concentration of

points close to the North and South pole of the sphere, and therefore, the points close to

the poles are given more weight in the calculation of the local mean signal. As a result,

the method would not be strictly invariant to 3D rotations, although it spans the whole

3D space for a large number of points and hence provides a satisfactory solution.

To improve the algorithm in terms of invariance to 3D rotations, one solution is to

make the average over the point set at least asymptotically uniform using an appropriate

weighting. This asymptotic uniform weighting is very important as it would ensure that

the dependency of the decomposition on the choice of axes can be made arbitrarily small.

Computing the mean of the envelope curves is a numerical approximation of the uniform

integral over all possible directions, and is thus related to the techniques of quasi Monte

Carlo numerical integration [63]. In such techniques, the emphasis is on having the ‘best

point set’, which can be evaluated using tools such as ‘dispersion’ or ‘discrepancy’. How-

ever, having the ‘best point set’ is only necessary to compute the integral efficiently for

finite point sets. Asymptotically, when the number of points tends to infinity, all point

sets that converge to the same density will lead to convergence to the same integral.

Therefore, given a point set along a spherical coordinate system, a weighting scheme

can be employed to make the average, given in equation (3.2), asymptotically uniform so

that it converges to the correct integral. In that case, asymptotically rotation invariant

average of envelopes can be taken on the surface of the sphere S using



3.4 The Trivariate EMD Algorithm 62

m(t) =
1
4π

∫∫

S
eφ
θ dΩ (3.3)

=
1
2π

∫ π

θ=0

∫ π

φ=0
eφ
θ | sin 2θ| dθdφ, (3.4)

where dΩ = |2 sin 2θdφdθ|1 corresponds to the differential solid angle on sphere S. The

mean can then be approximated using the following summation

m(t) ≈ π

2IJ

I∑

i=1

J∑

j=1

e
φj

θi
|sin 2θi| (3.5)

The weighting factor |sin 2θi| compensates for the higher density of the point set

by giving smaller weights to envelopes near poles; this scheme, however, is not stable for

smaller values of I and J .

3.4 The Trivariate EMD Algorithm

In trivariate EMD (TEMD) algorithm, the input signal is represented as a pure quaternion

signal for convenience of representation and the computational gains which it offers as

compared to R2. Moreover, the rotation property of quaternions is used to generate

projections along multiple directions in 3D space to estimate the local mean.

As discussed earlier, a major challenge in extending standard EMD to trivariate

signals is to find an accurate method for calculating the local mean, since the concept

of extrema cannot always be rigorously defined for multivariate signals. For this cause,

in TEMD algorithm, signal projections in multiple directions in 3D spaces are obtained,

whose extrema are then interpolated using component-wise spline interpolation to yield

pure quaternion-valued envelope curves. The use of component-wise spline interpolation

1For θ ∈ [0, π
2
], 2θ is the colatitude, hence the differential solid angle corresponding to (θ, φ) is

dΩ = 2 sin 2θdφdθ; for θ ∈ [π
2
, π], 2θ, 2π − 2θ is the colatitude, hence the differential solid angle is

dΩ = −2 sin 2θdφdθ. This formula is not the standard one because the angle θ in this thesis is not
the standard colatitude or latitude.

2See Appendix A for further details about the quaternion algebra and benefits of using the quaternion
representation as compared to R4.
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Figure 3.3: Proposed set of direction vectors in 3D space for local mean estimation
in TEMD: (a) The direction vector OA in 3D space, which has unit norm, can also be
represented by a point on the surface of a unit sphere. (b) Set of direction vectors
used for calculating the local mean in TEMD, with V = 64 directions. .

for pure quaternion signals represents an extension of the concept of ‘complex splines’,

employed in RI-EMD and bivariate EMD. The resulting ‘quaternion-valued envelopes’ are

then averaged to obtain an estimate of the local mean of a trivariate signal.
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To obtain signal projections along different directions, multiple direction vectors

are chosen in 3D space which can be represented by points on the surface of a unit sphere

(Figure 3.3(a)). In TEMD, these direction vectors are taken along equidistant points on

multiple longitudinal lines on the sphere, obtaining so-called ‘equi-longitudinal lines’. The

projections of an input signal along points (direction vectors) on an equi-longitudinal line

can then be obtained by rotating the input signal along a rotation axis in the xy plane

and mapping it along the z-axis.

Multiple points (direction vectors) on a single longitudinal line, corresponding to

rotation axis q, along which signal projections can be taken, are shown in Figure 3.4(b).

Every rotation in three dimensions can be treated as a rotation about an axis by a given

angle. Thus, a unit quaternion, which gives an efficient and convenient mathematical

notation for rotation using an angle-axis representation, is a natural choice for performing

3D rotations.

To take projections along direction vectors spanning the whole 3D space, multiple

rotation axes along the xy plane are employed. By rotating the input signal along these

axes, signal projections along directions corresponding to multiple equi-longitudinal lines

on the surface of a sphere are taken, as shown in Figure 3.5. Since rotation axes are 3D

vectors, they can also be represented by a set of unit quaternions q in the xy plane, under

an angle φ to the x-axis as shown in Figure 3.4(a). Rotation axes, represented by a vector

of quaternions q, can therefore be expressed as

q = 0 + cos(φ)ı + sin(φ) + 0κ. (3.6)

Since a trivariate signal can also be represented as a pure quaternion x(t), its

projections along multiple direction vectors on a sphere can be calculated by rotating it
(
by using equation (A.7)

)
about a set of vectors q, by an angle 2θ, and then taking its

projection along the z-axis (κ), using
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Figure 3.4: Generating multiple direction vectors on a 3D sphere. (a) Choices of rota-
tion axes to obtain projections along multiple directions in 3D space. For projections
along longitudinal lines on a sphere, multiple axes represented by a set of vectors q
are chosen in the xy plane, with angle φ taken with respect to +x-axis. (b) Multiple
direction vectors represented by points on a longitude line. Projections of the input
signal are taken by rotation about the vector qφ. To encompass the whole 3D space,
direction vectors on multiple longitudinal lines should be considered.



3.4 The Trivariate EMD Algorithm 66

Figure 3.5: Points on multiple longitudinal lines on a sphere, representing directions
along which projections of the input signal can be taken by rotating the input signal
along rotation axes represented by a set of unit quaternions q

.

pφ
θ = eqθx(t)(eqθ)∗ · κ (3.7)

where symbol (·) denotes the dot product. To calculate the envelopes in multiple direc-

tions, angles φ and θ can be selected to have respectively J and I values between 0 to π.

The range of π is necessary since both q and −q give projections in the same direction

and also because the application of a unit quaternion q represents rotation by an angle 2θ

(See Appendix A for details).

While projections of the input signal on points (direction vectors) along equi-

longitudinal lines on a sphere provide a reasonable solution, it can be noticed from Fig-

ure 3.5 that there is greater concentration of points close to the North and South pole

of the sphere, and therefore, the points close to the poles are given more ‘weight’ in the

calculation of the local mean signal. As a result, the method would not be strictly in-
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Figure 3.6: Local mean (dotted line) calculated for a trivariate signal (solid line) using
equation (3.2)

.

variant to 3D rotations for a relatively small number of directions. However, for a large

number of directions, the whole 3D space is spanned and the proposed method effectively

becomes invariant to 3D rotations. Alternatively, one can adopt the weighting scheme

given in equation (3.5). The extension of EMD for pure quaternion signals is summarized

in Algorithm 3.

The stopping criterion used with the TEMD algorithm is similar to the one em-

ployed for the standard EMD algorithm as given in section 2.4.2, with the same parameter

values ([θ1 = 0.05, θ2 = 0.5, α = 0.05] and S = 1). The only difference is that the con-

ditions for the stopping criteria are imposed on V = IJ number of multiple projections

each and the sifting process is stopped when the stopping conditions are fulfilled for all

those projections 3. Figure 3.6 shows the results of employing the mean envelope, given

in equation (3.2), for calculation of the local mean of a trivariate signal, using I = 6 and

J = 6. Notice that the local mean correctly tracks the dynamics of the signal.

3A detailed illustration of the stopping criterion used for general multivariate extensions of EMD will
be given in Section 4.4
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Algorithm 3 Trivariate extension of EMD

1: Calculate projections, denoted by p
φj

θi
(t), of a trivariate quaternion signal x(t) using

equation (3.7), where θi = iπ
I for i = 1, . . . , I, and φj = jπ

J for j = 1, . . . , J ;

2: Find the time instants {(tji )l} corresponding to the maxima of p
φj

θi
(t), for all values of

i and j;

3: Interpolate [(tji )l, x((tji )l)] to obtain quaternion envelope curves e
φj

θi
, for all i and j;

4: Compute the mean m(t) of all the envelope curves by using equation (3.2);

5: Extract ‘detail’ d(t) using d(t) = x(t)−m(t). If d(t) fulfills the stoppage criterion for

a quaternion-valued IMF, then the above procedure is applied to x(t)−d(t), otherwise

it is applied to d(t).

The original EMD method aims to extract the oscillatory components embedded

in the data, called IMFs. The bivariate intrinsic mode functions, obtained from bivariate

extensions of EMD, extend the notion of oscillation in two dimensions to extract 2D rota-

tional modes. Similarly, the proposed method is designed to obtain rotational components

in 3D spaces, if present, within the trivariate signal. The mean envelope, which defines

the overall trend in the signal, is considered as a slowly rotating signal and is subtracted

from the input signal until the ‘detail’ (fast rotating component) is extracted. While defin-

ing trivariate extensions of EMD in terms of rotations may seem restrictive in terms of

the class of signals it can process, the proposed trivariate extension, like univariate and

bivariate EMD, is fully capable of decomposing signals which may not be composed of

rotations, e.g. white noise.

3.5 Simulation Results

This section presents the results of applying the TEMD algorithm to both synthetic data

and real world trivariate orientation data respectively. The number of direction vectors

used in the simulations were V = I ∗ J = 64 (I = 8 and J = 8). The values of the

parameters of the stopping criterion were [θ1 = 0.05, θ2 = 0.5, α = 0.05] and S = 1.



3.5 Simulation Results 69

0 500 1000
−5

0

5

X
0 500 1000

−5

0

5

Y

0 500 1000
−5

0

5

Z

0 500 1000
−4

0 

4 

X
1

0 500 1000
−4

0

4

Y
1

0 500 1000
−4

0 

4 

X
2

0 500 1000
−4

0 

4 

Y
2

0 500 1000
−4

0 

4 

Z
2

0 500 1000
−4

0 

4 

X
3

0 500 1000
−4

0 

4 

Y
3

0 500 1000
−4

0 

4 

Z
3

0 500 1000
−4

0

4

Time Index

X
4

:e
n

d

0 500 1000
−4

0

4

Time Index

Y
4

:e
n

d

0 500 1000
−4

0 

4 

Time Index

Z
4

:e
n

d

0 500 1000
−4

−2

0

2

4

Z
1

Figure 3.7: Decomposition of a synthetic quaternion signal, with multiple frequency
modes, via the proposed trivariate EMD algorithm. Each quaternion-valued IMF
carries a single frequency mode, thereby facilitating the alignment of common modes
within different components of a trivariate signal.

3.5.1 Mode-Alignment in Synthetic Signals

The analysis of quaternion-valued IMFs on carefully designed trivariate synthetic signal

is now presented to demonstrate their ability to align ‘common scales’ present within

the data. Complex extensions of EMD, exhibiting similar mode aligning property have

recently found application in data fusion [17]. The alignment of oscillatory modes of the

input trivariate signal represented by pure quaternion IMFs allows to combine information

of same nature from different IMFs, and hence, is expected to facilitate the fusion of

information from up to three sources.

To illustrate the mode-alignment property of the proposed TEMD method, pure
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quaternion signal was constructed from a set of three sinusoidal signals shown in the top

row of Figure 3.7 (denoted by X, Y and Z). One sinusoid (8 Hz) was made common

to all the components (X, Y , and Z), whereas the remaining two sinusoidal components

were used so that the resulting signal had a common frequency mode in both Y and

Z (16 Hz), and X and Z (2 Hz). The trivariate EMD algorithm was then applied to

the resulting quaternion signal yielding multiple quaternion-valued IMFs, as shown in

Figure 3.7. Observe that the sinusoid common to all the components of the input is

the second IMF, whereas the remaining two frequency modes are present in IMFs one and

three. Such mode-alignment cannot be achieved by using the real-valued EMD component-

wise, as it generally does not yield the same number of IMFs per component.

3.5.2 TEMD of Trivariate Orientation Data (Tai-Chi sequence)

The decomposition of a real world trivariate signal is performed next using TEMD, and

the results are shown in Figure 3.8. The signal represents a 3D orientation data generated

by hand movements in a Tai Chi sequence, with a synthetically added mode for illustration

purpose. The data was captured using an inertial 3D sensor from Xsens motion technology

company.

As shown in Figure 3.8, different 3D rotating modes of the input trivariate signal

are extracted by TEMD, whereby the lower index IMFs contain higher frequency 3D

rotations and the higher index IMFs represent lower frequency rotating modes, as shown

in Figure 3.8(left). The residual signal does not contain any 3D rotating components.

Time plots of the individual components of input trivariate signal and their respective

decomposition (IMFs) are also shown in Figure 3.8(right). The decomposition of individual

components exhibits the mode-alignment property, whereby common frequency modes in

different input components are aligned in a single IMF.

The significance of the mode-alignment observed in TEMD and EMD, applied

channel-wise, may be evaluated by examining the normalised cross-correlation measure

between IMFs in both cases. The larger the value of the correlation measure, the more

significant is the mode-alignment and vice versa; such correlation measure Υ(m, m′) can
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be given by

Υ(m,m′) =

∣∣∣∣∣∣
1
N

N∑

j=1

Υj(m,m′)√
Υj(m,m)Υj(m′,m′)

∣∣∣∣∣∣
(3.8)

and
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Figure 3.9: The schematic of the normalized IMF cross-correlation, given in equation
(3.8), from multiple channels obtained via TEMD (left column) and EMD channel-
wise (right column). The distribution of higher values of the cross-correlation mea-
sure along the diagonal line in the case of TEMD (left column) indicates the mode-
alignment between IMFs from multiple channels. The IMF indices grow from left to
right and from top to the bottom.

Υj(m,m′) =
1
K

K∑

k=1

(cj
m(k)− µ

cj
m

)(cj
m′(k)− µ

cj

m′
) (3.9)

where cj
m(k) is the mth IMF of jth ensemble and µ

cj
m

denotes its mean value. An ensemble

average over N = 100 noise realizations was taken to make the measure in equation (3.8),

robust to noise.

A quantitative evaluation of this cross-correlation measure is plotted in Figure 3.9

for the IMFs obtained from TEMD (left column) and EMD channel-wise (right column),

for the input signal given in Figure 3.8. It is evident that due to the mode-alignment in

IMFs from TEMD, the values of the correlation measure are comparatively greater for
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the same-indexed IMFs (m = m′) for any two given channels, as highlighted by higher

correlation values at the diagonal of the subfigures4 on the left column of the Figure 3.9.

On the other hand, applying EMD separately on channels X, Y , and Z yielded miss-

aligned IMFs, as evident from ‘random’ distribution of the correlation values in the right

hand side of the Figure 3.9.

3.5.3 Time-Frequency Analysis of Trivariate Wind Signal

In this set of simulations, an application of TEMD in time-frequency (TF) analysis of

a trivariate wind5 signal was conducted. TF analysis of wind can provide important

information in order to identify critical episodes of wind behaviour, including gusts and

turbulence. Traditional Fourier-based spectral methods are bound to fail in those cases due

to the nonstationarity of the wind signal. The East, North, and Upward velocity, shown

in Figure 3.10(a), are represented as X, Y and Z components of the pure quaternion signal

x(t), that is

x(t) = 0 + Xı + Y  + Zκ. (3.10)

Figure 3.10(b) shows the trend in the wind dynamics visualized through the mean

envelope of trivariate wind signal. Figure 3.10(a) also shows segments of the wind signal

with different dynamics, denoted respectively by ‘A’, ‘B’, and ‘C’. A wind regime with

high dynamic (‘A’) exhibits larger changes in wind speed in relatively small time inter-

vals, and should contain high frequency components in the corresponding Hilbert-Huang

spectrum, while medium (‘B’) and lower dynamic (‘C’) regimes are expected to contain

predominantly lower frequency components.

This is illustrated in Figure 3.11, which shows the Hilbert-Huang spectra of the

wind signal from Figure 3.10. The spectrum of the North wind speed component
(
see

Figure 3.11(b)
)
, belonging to the low dynamics wind regime, was mostly dominated by

4Since the input signal is trivariate, the correlation measure is shown for a couple of pairs of variates:
XZ and Y Z.

5Thanks to Gill Instruments Ltd. who have provided WindMaster, a 3D ultrasonic anemometer, used
for wind readings.
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Figure 3.10: A trivariate wind signal represented as a pure quaternion. (a) Wind speed
in the east-west (X), north-south (Y) and the vertical (Z) direction. Wind regime
with high dynamics is denoted by ‘A’. The regimes with mild and low dynamics are
denoted by symbols ‘B’ and ‘C’. (b) The 3D local mean of the wind signal from (a),
obtained by applying the mean-envelope detection method, given in Algorithm 3.

low frequency components. Wind regimes denoted by ‘C’ had mostly lower frequency

components in the corresponding frequency spectrum, for instance, around sample 500 in
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Figure 3.11: Hilbert-Huang spectra of IMFs of wind signal components in (a) east-
west direction (b) north-south direction and (c) vertical direction.

Figure 3.11(a). In contrast, for wind regimes with high dynamics, the spectrum had more

pronounced magnitudes at higher frequencies. The high variations in the wind speed in the

Upward and the East components, observed at samples 1200-1400, can be clearly observed

in the corresponding spectra in Figure 3.11(a) and Figure 3.11(c), showing the power is

spread over a wide range of frequencies, exhibiting several bursts at high frequency.
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3.6 Qualitative Analysis of Quaternion IMFs from TEMD

this would be the hypothesis that the data has been generated by a stationary Gaus-

sian linear stochastic process (equivalently, an autoregressive moving average or ARMA

process)

For real world processes, signal modality characterization, that is the degree of

linearity/nonlinearity6 and determinism/stochasticity is of great interest. Moreover, in

the absence of nonlinear behaviour in a signal, it is unnecessary to use nonlinear methods.

Since EMD is a powerful signal decomposition tool and has been applied in conjunction

with adaptive filtering [64], it is crucial to establish whether the modality of the original

signal is altered by EMD. To this end, Chen et al. have provided a qualitative assessment

of the IMFs of the standard EMD [65]. However, as multivariate extensions of EMD are

only emerging, the nature of multivariate IMFs also needs to be explored.

To this end, a qualitative analysis of the quaternion-valued IMFs within TEMD

algorithm is presented; more precisely, some intricate properties of the quaternion (pure)

IMFs, such as its (non-)linearity and determinism, are investigated to establish whether

these IMFs preserve the nature of the original signal in phase space. It is important,

for instance, in the data fusion methods for the modelling of the relevance of input vari-

ables [66]. This is achieved by using the delay vector variance (DVV) method, within

the surrogate data framework, which examines the signal predictability in phase space to

assess the determinism and nonlinearity within the signal7. This analysis is vital since an

insight into the role of IMFs from TEMD is a prerequisite to applying the algorithm to

real world nonlinear and nonstationary signals.

3.6.1 How Informative are Quaternion IMFs?

To provide qualitative assessment of the quaternion-valued IMFs generated from TEMD,

following on [65], the DVV method is employed. The DVV scatter plots are generated for

6Linear signal here refers to the one that has been generated by a stationary Gaussian linear process
or equivalently, by an autoregressive moving average or ARMA process[94].

7Appendix B gives more detail on DVV method and the surrogate data framework.
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Figure 3.12: Component-wise DVV scatter plots for pure quaternion signal Q(t) (a)
Henon map X(t); (b) real world wind signal Y (t); (c) linear AR(2) signal Z(t).

two cases: the sum of first and second quaternion IMFs, and the sum of all the remaining

IMFs. The root mean squared (rms) value is calculated over the difference between the

local variance of the original signal and that of individual IMFs. This metric is then used

to quantify the degree of similarity between the DVV scatter plots of the original signal

and that of the IMFs, and is given by

ε =
√

1
N

∑

valid rd

(σ∗2ori(rd)− σ∗2imf (rd))2, (3.11)

where σ∗2ori(rd) denotes target variance, at span rd, for the original signal, and σ∗2imf (rd)

denotes the variance value for an individual IMF, and N is the number of valid variance

(rd) values. The greater the value of the above metric for any two given signals, the greater

the difference in their fundamental properties in phase space.

To perform both the qualitative and quantitative analysis of IMFs from trivariate

EMD, for illustration, a pure quaternion signal was generated, consisting of three signals
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Figure 3.13: DVV scatter plots and the corresponding values of similarity measure
(3.11) for the three components X, Y , and Z (a,b, and c) the sum of the 1st and 2nd
IMFs generated from TEMD algorithm; (d,e, and f) the sum of remaining (all except
IMF1 and IMF2) IMFs.

of different nature, that is

Q = 0 + Xı + Y  + Zκ (3.12)

Signal X(t) was a realization of Henon map, a chaotic nonlinear signal, given by

xn = 1− ax2
n−β + yn−β

yn = bxn−β (3.13)

where β was set to unity, and parameters a and b were respectively set to 1.4 and 0.3.

The x-component of the Henon map was used in simulations.

Signal Y (t) was chosen as a vertical speed component of the real world wind signal,
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Figure 3.14: DVV scatter plots of 1st IMF (a); 2nd IMF (b); 3rd IMF (c); and 4th
IMF (d) of X(t), generated by TEMD.

while Z(t) was a benchmark linear AR(2) signal, given by

z(k) = 0.8z(k − 1) + 0.1z(k − 2) + w(k) (3.14)

where w(k) is white Gaussian noise (WGN) signal of zero mean and unit variance.

Figure 3.12 shows the DVV scatter plots of the three components of Q(t). Observe

that for Henon map X(t), the scatter plot deviates away from the bisector line, indicat-

ing its nonlinear behaviour. For the linear AR(2) signal Z(t), the plot coincides with

the bisector line, indicating its linear nature, whereas Y (t) was either nonlinear or/and

nonstationary.

In the modality analysis of quaternion IMFs, TEMD algorithm was used to process
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the quaternion signal given in equation (3.12); the DVV method was then applied to all

the three components of resulting quaternion IMFs, and the corresponding scatter plots

were analysed. The metric in equation (3.11) was used to quantify the degree of similarity

between the scatter plots of IMFs and those of the original signal shown in Figure 3.12.

Figure 3.13 shows the DVV scatter plots of the components of the sum of 1st and 2nd IMFs

of a quaternion signal Q(t) (Figure 3.13(a), 3.13(b), and 3.13(c)), and scatter plots of the

remaining IMFs (Figure 3.13(d), 3.13(e), and 3.13(f)), together with their corresponding

values of similarity metric. Notice that the sum of first two IMFs preserve the original

nature for all three components of the input signal Q(t), which is also manifested by the

corresponding low values of similarity metric; while the sum of the rest of the IMFs have

relatively large values of the similarity metric, showing that the original signal modality

is not contained in lower IMFs. In order to further explore the contribution of individual

IMFs, the DVV scatter plots of the X-component of Q(t) for the first four IMFs are

separately plotted in Figure 3.14. Again, the values of similarity metric show that the

first two IMFs preserve the signal modality, while the remaining IMFs are largely linear

and predictable (deterministic).

3.7 Conclusions

An extension of empirical mode decomposition (EMD) in order to make it suitable for

the processing of trivariate signals has been proposed. The trivariate signal is represented

as a pure quaternion and the rotation property of unit quaternions is employed to obtain

multiple projections of the input signal along “equi-longitudinal” lines on a sphere, thus

offering a compact and convenient mathematical representation. The method extracts

the 3D rotating components of the input trivariate signal, and also generates common

oscillatory modes, facilitating the fusion of information from multiple sources. Simulations

on real world trivariate data have also illustrated the potential of TEMD in time-frequency

(TF) analysis.
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Chapter 4

Multivariate Empirical Mode

Decomposition

RECENT advances in the sensor and engineering technologies have brought to light a

new class of multivariate signals containing multiple channels [61]. Currently, these

signals are mostly processed channel-wise [14] [67] [23], but their simultaneous analysis is

a prerequisite for a better understanding of the underlying signal generating mechanism.

Given that the empirical mode decomposition (EMD) has the potential to become a stan-

dard for the decomposition and time-frequency (TF) analysis of nonlinear and nonstation-

ary signals, its extensions to multivariate signals are, therefore, imperative for accurate

analysis of such processes.

In complex domain, the mode-alignment property of bivariate EMD (BEMD) has

already proven to facilitate its applications in data fusion [17] and phase synchrony mea-

surement [19], by circumventing the mode-mixing problem experienced with standard

EMD. Multivariate extensions of EMD are also expected to achieve mode-alignment for

multivariate data, which corresponds to finding a set of common modes across different

channels of a multivariate signal, thus ensuring that the IMFs are matched both in their

number and scale properties. Using such extensions will also allow us to develop robust

frameworks for data fusion, for data sets containing any number of input channels.

Recently, the mode-alignment in standard EMD-based decomposition has also been
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attempted by clustering the IMFs corresponding to their spectral similarity [68] [69] [70].

However, such methods result in complex cluster ‘dendograms’ which are specifically hard

to interpret for multivariate signals with large number of channels. Multivariate exten-

sions of EMD, on the other hand, are expected to provide a simpler and more elegant

solution by automatically generating similar modes, in the same-indexed IMFs, from mul-

tiple channels.

To this end, a new algorithm, namely multivariate empirical mode decomposition

(MEMD), has been presented in this chapter for extending EMD to process a signal

containing any number of data channels. The rationale of the proposed method is first

presented followed by the discussion on the choice of a suitable set of direction vectors

in multidimensional space for calculation of the local mean signal. Next, the MEMD

algorithm is formally presented along with the discussion on possible stopping criteria for

MEMD sifting algorithm. Finally, the potential of the proposed algorithm to find common

oscillatory modes within multivariate data is demonstrated by simulations performed on

both synthetic and real world signals.

4.1 Rationale: Extracting Rotations in Rn

The rationale behind the proposed multivariate extension of EMD (MEMD) is that it

aims to extract local rotational components from within the input signal; while BEMD

and TEMD look for 2D and 3D rotational components, MEMD separates rotational com-

ponents in Rn.

The key issue in EMD algorithm is the computation of the local mean of the

original signal, a step which depends critically on finding the local extrema. However, as

already mentioned, for multivariate signals, this is not straightforward; for instance, the

complex and quaternion fields are not ordered [61]. This problem is alleviated by using

multiple real-valued projections of the signal; the extrema of such projected signals are

then interpolated component-wise to yield multidimensional envelopes of the signal. The

envelopes obtained this way are then averaged to give an estimate of the local mean. More
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specifically, if e{θ1,θ2,··· ,θn−1} denotes the envelope in the direction represented by a vector

θ = {θ1, θ2, · · · , θn−1} in Rn, then the local mean can be estimated by using

m(t) =
1

2πn−1

∫ π

θ1=0

∫ π

θ2=0
· · ·

∫ 2π

θn−1=0
e{θ1,θ2,··· ,θn−1} dθ1dθ2 · · · dθn−1, (4.1)

≈ 1
V1V2 . . . Vn−1

V1∑

v1=1

V2∑

v2=1

· · ·
Vn−1∑

vn−1=1

e{θv1 ,θv2 ,··· ,θvn−1} (4.2)

By comparing the above equation with equation (3.2) for trivariate signal mean, it

is evident that the local mean estimate in MEMD is an extension of TEMD mean in Rn.

The choice of a suitable set of direction vectors θv = {θv1 , θv2 , . . . θvn−1} in Rn, however,

is a crucial and a more challenging step in MEMD algorithm and is discussed next.

4.2 Choosing the Set of Direction Vectors for Multivariate

Signals

The choice of a suitable set of direction vectors for estimating local mean is important

as it is proposed to generate multiple envelopes by taking signal projections in Rn; these

envelopes are then averaged to obtain the local mean. This idea of mapping an input mul-

tivariate signal into multiple real-valued projected signals, to generate multidimensional

envelopes, can be seen as a generalisation of the concept employed in existing bivariate [22]

and trivariate [71] extensions of EMD.

Since the calculation of the local mean for multivariate signals can be considered

as an approximation of the integral of all the envelopes along multiple directions in Rn, as

shown in equation (4.2), the accuracy of this approximation is dependent on the uniformity

of the chosen set of direction vectors. This is especially relevant if one only has a finite

number of direction vectors. Therefore, the issue of choosing a suitable set of direction

vectors for taking signal projections in Rn needs special attention.

In order to represent direction vectors in n-dimensional (nD) space, for convenience
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Figure 4.1: Set of direction vectors in 3D space obtained from equation (4.4), for
n = 2. Note the nonuniform density of points at the poles.

of presentation, sample points on the surface of corresponding unit (n − 1)-spheres are

considered1. The corresponding direction vector can then be seen as the one originating

from center of the (n − 1)-sphere to that point on its surface; refer to Figure 3.3 for its

graphical representation in the case of a sphere (2-sphere). It is important to mention

that the direction vectors are chosen in Rn since the input multivariate signal resides in

that space. We adopt the terminology that an n-sphere resides in an (n + 1)-dimensional

Euclidean coordinate system (Rn+1), therefore, the problem of finding a suitable set of

direction vectors Rn can be treated as that of finding a uniform sampling scheme on an

(n− 1)-sphere.

1An n-sphere, or equivalently a hypersphere, can be considered as an extension of the ordinary sphere
to an arbitrary dimension and is represented mathematically in equation (4.3), given in the next section.
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4.2.1 Uniform Angular Sampling on n-sphere

A simple and practically convenient choice for a set of direction vectors is to employ

uniform angular sampling of a unit (n − 1)-sphere in hyperspherical coordinate system

(Rn). The resulting set of direction vectors covers the whole (n − 1)-sphere, as shown in

Figure 4.1 for a particular example of a 2-sphere. For the generation of a point set on

an (n − 1)-sphere, consider an (n − 1)-sphere with center point cj = {c1, c2, . . . , cn} and

radius R, given by

R =
n∑

j=1

(xj − cj)2. (4.3)

A coordinate system in an nD Euclidean space (Rn) can then be defined to serve as

a point set (and the corresponding set of direction vectors) on an (n − 1)-sphere. Let

{θ1, θ2, ..., θ(n−1)} be the (n − 1) angular coordinates of a point in Rn, then an nD co-

ordinate system, having {xi}n
i=1 as the n coordinates on a unit (n − 1)-sphere, is given

by:

x1 = cos(θ1)

x2 = sin(θ1)× cos(θ2)

x3 = sin(θ1)× sin(θ2)× cos(θ3)

...

xn−1 = sin(θ1)× · · · × sin(θn−2)× cos(θn−1)

xn = sin(θ1)× · · · × sin(θn−2)× sin(θn−1). (4.4)

where θn−1 ranges over [0, 2π] radians and the other angles range over radians [0, π].

Note that the set of direction vectors in BEMD and TEMD are also based on the

point set given in equation (4.4), for special cases of n = 1 and n = 2 respectively. However,

while the given point set corresponding to this uniform angular coordinate scheme is very

convenient to generate, it does not provide a uniform sampling distribution for n > 1 .

Therefore, while the point set used in BEMD (n = 1) is inherently uniform, the one used
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Figure 4.2: Direction vectors for taking projections of a quaternion signal on a unit
four dimensional sphere (3-sphere) generated by using a uniform angular sampling
method, for n=4, given in equation (4.4). For visualization purposes, the point set
is plotted on three unit spheres (2-spheres), defined respectively by WXY , XY Z, and
WY Z axes.

in TEMD (n = 2) is non uniform. This is illustrated in Figure 4.1 where a higher density

of the points is observed when approaching the poles of a 2-sphere (R3).

Apparently, this non uniformity of sample points in multidimensional space in-
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creases for larger values of n. To demonstrate this further, Figure 4.2 shows the direction

vectors on a 3-sphere2 generated by uniform angular sampling using equation (4.4). A vi-

sual comparison of this point set with that on a 2-sphere, as shown in Figure 4.1, confirms

that for higher dimensional problems, the performance of uniform angular coordinate sys-

tem gets worse. Therefore, while uniform angular sampling serves the purpose well in the

case of R2 (BEMD) and R3 (TEMD), it may not be optimal for extending EMD to higher

dimensions, n > 3.

4.2.2 Sampling based on Vertices of Polyhedron

A better solution in the case of 2-sphere, in terms of the uniformity of point set, would be

to base the choice of projections on the faces or vertices of regular polyhedron inscribed in

a 2-sphere. The chosen polyhedron can be a: tetrahedron (4 faces, 4 vertices), hexahedron

(6 faces, 8 vertices), octahedron (8 faces, 6 vertices), icosahedron (20 faces, 12 vertices),

and dodecahedron (12 faces, 20 vertices). Hence, the choice of direction vectors is limited

to 20 for this case, and therefore, rotation invariance can not be achieved using this set of

directions.

Another option could be to consider the imperfect regular polyhedra like the ones

found in the fullerenes molecules, the most well-known being the C60 or bucky ball. Its

dual structure is a familiar soccer ball design which consists of 32 regular polyhedra (20

hexagons and 12 pentagons), giving only 60 possible choices of projections; research is still

going on to find larger stable fullerenes. The limited choice of direction vectors offered

by these polyhedra, therefore, is again a limiting factor. The point set on a 2-sphere

corresponding to a bucky ball structure is shown in Figure 4.3.

To increase the number of possible projected directions on a sphere using these

polyhedra, a triangulation method [72] could be another option: For instance, for an

icosahedron (20 faces, 12 vertices) inscribed within a sphere, the triangulation process

can be initiated by connecting the midpoints of the sides of each triangular face of an

icosahedron, giving four new triangles for each face. The midpoints of each new triangles

2Note that while ideally, the point set should be plotted on a 3-sphere, for visualization purposes,
direction vectors on three 2-spheres (WXY , XY Z, and WY Z) have been shown.
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Figure 4.3: Set of direction vectors in R3 corresponding to a bucky ball structure.

are then radially projected outwards to the surface of the sphere, giving added points on

the sphere. This process can be repeated until the desired density of points on the sphere

is achieved. However, the number of points added between two iterations of triangulation

process is very large, thus, limiting the number of directions that can be taken on a sphere.

Moreover, these points are not uniformly distributed since the new triangles, obtained by

joining the midpoints of the sides of icosahedron’s faces, generally do not all have the same

area, and thus their middle points are not equidistant from each other. A similar type

of method can be used with other polyhedra, such as hexahedron (cube) inscribed in a

sphere, but it also yields somewhat distorted grid on a sphere [73].

4.2.3 Sampling based on Low-Discrepancy Point Set

In numerical analysis, a class of techniques known as the quasi-Monte Carlo method is nor-

mally adopted which uses the low-discrepancy sequences for the computation of integrals.

These low-discrepancy sequences are related to the mathematical concept of discrepancy

which can be seen as a quantitative measure for irregularity or nonuniformity of a distri-



4.2 Choosing the Set of Direction Vectors for Multivariate Signals 89

−1

0

1

−1

0

1
−1

0

1

X
Y

Z

Figure 4.4: Set of direction vectors in 3D space obtained from low-discrepancy Ham-
mersley sequence.

bution3. The low-discrepancy sequences are, therefore, more uniformly distributed and

provide an accurate estimate of integrals in the case of a finite point set.

Since the computation of local mean via envelope curves is a numerical approxi-

mation of the uniform integral over all possible directions in Rn, as evident from equa-

tion (4.2), it can also be achieved via quasi-Monte Carlo integration techniques. Using

this technique, the low-discrepancy sequences are used to generate uniform point set on

(n−1)-sphere for generating signal envelopes along direction vectors which are evenly dis-

tributed in Rn, ensuring more efficient and accurate implementation of the integral given

in equation (4.2) for a given finite point set.

A convenient method for generating multidimensional low-discrepancy sequences

involves the family of Hammersley sequences, which are proven to show considerable im-

provement, in terms of error bounds, over other standard methods [63]. It has also been

shown [74] [75] that the set of direction vectors on 2-sphere, generated by the Hammersley

3See Appendix C for more details on the discrepancy measure.
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Figure 4.5: Direction vectors for taking projections of a quaternion signal on a unit
four dimensional sphere (3-sphere) generated by using the Hammersley sequence.
For visualization purposes, the point set is plotted on three unit spheres (2-spheres),
defined respectively by WXY , XY Z, and WY Z axes.

sequence, yields lower discrepancy estimate as compared to other sampling methods, and

hence, is comparatively more uniformly distributed on a sphere. Details about generating

the Hammersley sequences, and their corresponding projections on (n − 1)-sphere (Rn)

can be found in the Appendix C.
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It is worth mentioning here that the quasi-Monte Carlo methods using low-

discrepancy sequences provide improved error bounds as compared to the standard Monte

Carlo methods which are based on pseudorandom sequences. Also, developing multivari-

ate extensions of EMD via standard Monte Carlo methods would result in probabilistic

error bounds: any two applications of the algorithm with similar input signal and parame-

ters may yield different decompositions. Hence, in the proposed multivariate extension of

EMD, the point set for generating direction vectors is generated using the low-discrepancy

Hammersley sequence.

To illustrate the benefits of the proposed scheme, Figure 4.4 and Figure 4.5 show, re-

spectively, the point set on the surface of a sphere (2-sphere) and hypersphere (3-sphere),

generated by the low-discrepancy Hammersley sequence. Observe that, as desired, the

points generated by the low-discrepancy method are more uniformly distributed as com-

pared to the point set generated by uniform angular sampling method, which are shown

in Figure 4.1 and Figure 4.2. In Figure 4.5, the point set should have been plotted on

a 3-sphere, however, for visualization purposes, representations of direction vectors are

shown separately on three 2-spheres.

4.3 Multivariate EMD Algorithm

Given that a suitable set of direction vectors on (n− 1)-sphere has been generated using

the low-discrepancy Hammersley sequence, projections of the input signal are calculated

along this set. The extrema of such projected signals are then interpolated component-

wise to yield multidimensional envelopes of a multivariate signal. The multiple envelope

curves, each corresponding to a particular direction vector, are then averaged to obtain

multivariate signal mean.

More specifically, consider a sequence of n-dimensional vectors s(t) =

{s1(t), s2(t), . . . , sn(t)}, representing a multivariate signal with n components, and xθv =

{xv
1, x

v
2, . . . , x

v
n} denoting a set of v = 1, 2, . . . , V direction vectors along the directions

given by angles θv = {θv1 , θv2 , . . . θvn−1} in Rn. Then, the proposed multivariate extension
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of EMD suitable for operating on general nonlinear and nonstationary multivariate time

series is summarised in Algorithm 4.

Once the first IMF is extracted, it is subtracted from the input signal and the same

process (Algorithm 4) is applied to the resulting signal yielding the second IMF and so on;

the process is repeated until all the IMFs are extracted and only a residual is left; in the

multivariate case, the residual corresponds to a signal whose projections do not contain

enough extrema to form a meaningful multivariate envelope.

Algorithm 4 Multivariate EMD
1: Choose a suitable point set for sampling an (n− 1)-sphere;

2: Calculate a projection, denoted by pθv(t), of the input signal s(t) along the direction

vector xθv , for all v (the whole set of direction vectors), giving pθv(t)}V
v=1 as the set of

projections;

3: Find the time instants {tiθv
}V

v=1 corresponding to the maxima of the set of projected

signals pθv(t)}V
v=1;

4: Interpolate [tiθv
, s(tiθv

)] to obtain multivariate envelope curves eθv(t)}V
v=1;

5: For a set of V direction vectors, the mean m(t) of the envelope curves is calculated

as:

m(t) =
1
V

V∑

v=1

eθv(t) (4.5)

6: Extract ‘detail’ d(t) using d(t) = s(t)−m(t). If d(t) fulfills the stoppage criterion for

a multivariate IMF, apply the above procedure to s(t) − d(t), otherwise apply it to

d(t).

4.4 Stopping Criterion for Multivariate IMFs

The sifting process for a multivariate IMF can be stopped when all the projected signals

fulfill any of the stoppage criteria adopted in standard EMD. One popular stopping cri-

terion used in EMD stops the sifting when the number of extrema and the zero crossings
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differ at most by one for S consecutive iterations of the sifting algorithm [46]. However,

caution must be exercised while using this criterion for multivariate cases as it has been

found to be computationally very expensive for long signals.

Another criterion introduces an evaluation function based on the envelope ampli-

tude, which is given by

a(t) =
1
V

V∑

v=1

|eθv(t)−m(t)| (4.6)

The sifting process is continued until the value of the evaluation function, defined

as f(t) =
∣∣∣m(t)

a(t)

∣∣∣, where m(t) is the local mean signal, is less than or equal to predefined

thresholds [θ1theta2α] [50].

Similarly to the BEMD and TEMD algorithm, both the above criteria are used

in combination to give a robust stopping criterion for MEMD: the conditions of both the

above stopping criteria are imposed on V number of multiple projections each. The sifting

process is stopped when the stopping conditions are fulfilled for all those projections.

4.5 Simulation Results

Simulations4 were conducted on both synthetic signal and a real world multivariate inertial

body motion recording. For all signals, the low-discrepancy Hammersley sequence was

used to generate a set of V = 512 direction vectors for taking signal projections, and the

stopping criteria given in equation (4.6) was used. The values of the parameters of the

stopping criterion used in the subsequent simulations were [θ1 = 0.05, θ2 = 0.5, α = 0.05]

and S = 1.

4.5.1 Common Mode-Alignment using Multivariate IMFs

Similarly to bivariate [22] and trivariate [18] extensions of EMD, MEMD algorithm has

the ability to align ‘common scales’ in multivariate data: similar oscillatory scales are

aligned in the same-indexed IMFs from multiple channels. Such mode-alignment helps to

4The simulations were performed in Matlab using the MEMD toolbox provided at:
http://www.commsp.ee.ic.ac.uk/∼mandic/research/emd.htm.
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Figure 4.6: Decomposition of a synthetic multivariate signal (U, V, W,X, Y, Z) exhibiting
multiple frequency modes, via the proposed multivariate EMD algorithm. Each IMF
carries a single frequency mode, illustrating the alignment of common scales within
different components of a multivariate signal.

identify similar scales in different data sources, and hence, can be used for data fusion

purposes [66].

To illustrate the mode-alignment property of the proposed method, a synthetic

hexavariate time series was analysed; each component (variate), shown in the top row

of Figure 4.6 (denoted by U , V , W , X, Y and Z), was constructed from a set of four
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sinusoids. One sinusoid was made common to all components, whereas the remaining

three sinusoidal components were combined so that the resulting signal had a common

frequency mode in each UV WY , UV X, and UWXZ components. The MEMD algorithm

was then applied to the resulting hexavariate signal yielding multiple IMFs, as shown in

Figure 4.6. Observe that the sinusoid common to all components of the input signal is the

third IMF, whereas the remaining three frequency modes were also accurately extracted

in the respective IMFs. Such mode-alignment cannot be achieved by the standard EMD

applied component-wise, as it generally does not yield the same number of IMFs per

component.

4.5.2 MEMD of Hexavariate Orientation data (TaiChi)

To illustrate the ability of MEMD algorithm to extract common modes within multivariate

real world signals, the body motion data recorded in a Tai Chi sequence is next considered.

The data was captured using two inertial 3D sensors attached to the left hand and the left

ankle; these were combined to form a single hexavariate signal. The common rotational

modes were found within multiple hexavariate IMFs, and the components corresponding

to the hand and the ankle are plotted separately as 3D plots in Figure 4.7. Observe

that each such IMF represents a unique rotational mode embedded within the original

trivariate signal. Unlike the TEMD method applied separately on each trivariate signal,

the MEMD method guarantees the extraction of common rotational modes, as the direct

analysis of a hexavariate signal results in matched IMFs (both in number and frequency

scale).

4.5.3 Real World EEG Signal Processing via MEMD

In order to demonstrate the advantages of MEMD in multichannel signal processing and

its ability to align common frequency modes in same-index IMFs, it was applied to a real

world electroencephalography (EEG) signal with an aim to separate the brain electrical

activity from unwanted artefacts such as the electrooculogram (EOG) and electromyogram
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Figure 4.7: A real world hexavariate orientation signal and its decomposition using
multivariate EMD algorithm. Trivariate orientation signals corresponding to the left
hand movement, and the left ankle movement, are shown in the top row, with selected
IMFs below depicting the common rotational modes.
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Figure 4.8: Artefact removal from four EEG channels (Fp1, Fp2, C3 and C4) using
the MEMD algorithm. The estimated eye muscle activity (artefact) has been shown
in the middle column, whereas the conditioned EEG signal is presented in the right
hand column.

(EMG)5. Data used in these simulations were collected from 4 EEG channels (Fp1, Fp2,

C3, C4), and subjects were asked to move their eyes during the data collection, resulting in

the ocular interference in the recorded EEG signal. The four channels were then processed

by MEMD.

Owing to the property of MEMD to align IMF frequency sub-bands from different

channels, the decomposed EEG data was aligned in such a way that the high frequency

neurophysiological signals were contained in the lower-index IMFs, while low frequency

electrophysiological signals (EMG and EOG) were present in the higher-index IMFs. A

simple threshold on the IMF index was then used to separate non-EEG related interference

from the underlying brain activity. The EOG and clean EEG signal estimated this way are

5The goal here is to show the potential of MEMD in multivariate signal processing and not to propose
any new method for denoising surface EEG data. For advance EMD-based denoising methods, refer
to [54] [76].
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shown in the middle and right hand column of Figure 4.8, with the original contaminated

EEG signals shown in the left hand column. It is important to note that such separation

is difficult to achieve by applying univariate EMD to all the channels separately, as this

would result in spectrally uncorrelated components. For this purpose, a complex clustering

technique was used in the frequency domain in order to identify spatially correlated modes

from univariate EMD decompositions [70]. However, as EMD was applied channel-wise,

high frequency components were still present in the estimated EOG signal.

4.6 MEMD Studies and Applications

Since its inception, MEMD algorithm has gained popularity in the signal processing com-

munity and has been a focus of numerous studies and being employed in several real world

applications. The main reason for its popularity is its ability to process multiple channels

simultaneously and, in the process, ‘aligning’ the common frequency modes across the

same-indexed IMFs.

Due to the above properties, MEMD has been successfully used for the analy-

sis of electroencephalogram (EEG) signals with an aim to distinguish between ictal and

seizure-free intracranial EEG recordings [77]. In [78], an MEMD-based time-varying phase

synchrony measure is defined to quantify multivariate synchronization within a network

of oscillators; simulations showed that the proposed measure was found to be effective in

the case of both chaotic oscillators and real EEG data. Moreover, in [10], the mutual

information and multi-information measures are used in connection with MEMD to ex-

amine the interdependence between multiple channels of a data set, at multiple temporal

scales. In [79], owing to its filterbank property, MEMD has been used to generate multi-

ple aligned scales as a replacement to the coarse graining process in traditional multiscale

entropy analysis.

Recently, MEMD has also been combined with adaptive learning based on tem-

poral neural networks to make it robust against the problems associated with the algo-

rithm parameters [80]. The resulting so-called multivariate empirical mode decomposition
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Figure 4.9: Computational requirements of the MEMD algorithm: Time requirements
of the MEMD algorithm to process a quadrivariate WGN signal as a function of the
input size. Green and blue lines give time requirements of a vectorised and non-
vectorised MEMD implementation on Matlab respectively.

multi-channel least mean square (MEMD-MLMS) algorithm has been shown to bypass

the problems of mode-mixing and uniqueness experienced in existing univariate EMD al-

gorithm. Finally, an auditory oddball based brain computer interface (BCI) system using

MEMD has been designed, which selects the desired features of the input EEG signals

yielding improved results [81].

A study of the filter bank property of MEMD on white Gaussian noise (WGN) has

been presented in [82]. The resulting dyadic filter bank structure of MEMD on WGN has

then been utilised to good effect via a noise-assisted MEMD (N-A MEMD) algorithm,

which aims to reduce mode-mixing within multivariate IMFs; the details of the filter bank

property of MEMD and its benefits will be illustrated in the next chapter.

EMD-based algorithms, including MEMD, require large computational resources

to run. This is one of their disadvantages since it inhibits them to be used for real-time

(online) applications. The time requirement to run MEMD algorithm as a function of its

input size is shown in Figure 4.9. It gives a comparison of the computational requirements

of two different versions of MEMD algorithm in Matlab to process a quadrivariate WGN



4.7 Conclusions 100

signal of zero mean and unit variance. One implementation, shown by the green line in

Figure 4.9, preallocates large arrays and uses vectorised code suited to Matlab whereas

the other uses non-vectorised code (blue line). The vectorised MEMD implementation

is much faster than the non-vectorised one but still takes few minutes to process a large

input matrix.

Recently, a computationally light extension of EMD for multivariate signals has

been proposed [83] [84], in which the oscillation extremum are derived from a single real-

valued function instead of using multiple envelopes of the input signal. Due to this reason,

this method is less suitable for signals with large number of input channels, but it is

computationally less expensive than MEMD. A comparison between the computational

requirements of different MEMD-based algorithms is also given in [83] [84].

4.7 Conclusions

An extension of empirical mode decomposition (EMD) has been proposed to cater for a

general class of multivariate signals. The critical step of local mean estimation is per-

formed by taking projections of the multivariate signal along multiple directions in Rn.

These directions are generated via low-discrepancy Hammersley point set, giving uniformly

distributed direction vectors on (n − 1)-sphere, and, thus, making the resulting method

accurate and computationally efficient. It has been shown that the proposed method has

the ability to extract common rotational modes across the signal components, making it

suitable for the fusion of information from multiple sources. Simulations on synthetic and

real world multivariate data have been presented.
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Chapter 5

Multivariate Empirical Mode

Decomposition-based Dyadic

Filter banks

IN this chapter, a study showing the analysis of multivariate empirical mode decompo-

sition (MEMD) algorithm has been presented for white Gaussian noise (WGN) input.

It has been reported that similarly to EMD, MEMD also essentially acts as a quasi-dyadic

filter bank on each channel of the multivariate WGN input signal. However, unlike EMD,

MEMD better aligns the corresponding intrinsic mode functions (IMFs) from different

channels across the same frequency range which is crucial for its real world applications.

5.1 Introduction

Filter banks are a collection of band-pass filters designed to isolate different frequency

bands in the input signal. The analysis of standard EMD for the case of input white

Gaussian noise (WGN) and fractional Gaussian noise (fGn) has revealed that IMFs tend

to mimic a dyadic filter bank structure, similar to that observed in the case of wavelet

decompositions [26] [52]. This is shown in Figure 5.1, where the estimated IMF power

spectra are plotted for the input WGN. It can be noticed that the behaviour of first IMF
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Figure 5.1: Power spectra of first nine IMFs (c1, c2, . . . , c9), obtained by applying EMD
to white Gaussian noise, is plotted as a function of the logarithm of the frequency.
The quasi-dyadic filter bank structure observed by IMF spectra is quite evident.

is different from other modes: it essentially acts as a high pass filter, whereas, higher

indexed IMFs act similarly to a band-pass filters, with their spectra appearing nearly the

same, with some shifts along the frequency axis. These results are quite reminiscent of

the findings made in the case of wavelet-based decompositions for WGN [4] [38].

The multivariate empirical mode decomposition (MEMD) algorithm is the first

generic extension of standard EMD for multivariate data which has been shown to perform

well in deterministic settings involving synthetic sinusoidal signals [18]. However, for its

real world applications, it is also important to investigate how it behaves in the presence of

multichannel fGn and WGN, and is the main aim of this chapter. To this end, a study of

MEMD equivalent filter banks for WGN is presented. This is followed by the investigation

of the scaling and self-similar properties observed by MEMD-based filter banks.

5.2 MEMD Analysis of Broadband Noise

In this section, the chracterization of MEMD algorithm is carried out based on its re-

sponse to input multivariate broadband noise. For this purpose, a comprehensive set of
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simulations were performed by applying MEMD algorithm to a generalised broadband

fractional Gaussian noise (fGn), and the spectra of the corresponding intrinsic mode func-

tions (IMFs) were studied.

5.2.1 Fractional Gaussian Noise

A fractional Gaussian noise (fGn) can be seen as an incremental process of a fractional

Brownian motion (fBm); fBm is a continuous time Gaussian process depending entirely

on its second order properties and a so-called Hurst parameter 0 < H < 1. It is a

generalization of the ordinary Brownian motion for H = 0.5 whose derivative is white

noise. Hence, fGn can be considered as a generalization of white noise. More specifically,

{xH(k), k = · · · − 1, 0, 1 . . . } is a fGn of index H (with 0 < H < 1) if and only if it is a

zero-mean Gaussian stationary process with autocorrelation sequence, which is given by

rH(k) =
σ2

2
(|k − 1|2H − 2|k|2H + |k + 1|2H

)
. (5.1)

It is well understood that the sequence xH(k) for H = 0.5 corresponds to white noise,

whereas, it exhibits negative correlations for 0 < H < 0.5 and positive correlations for

0.5 < H < 1. By taking the Fourier transform of equation (5.1), the power spectral

density (PSD) of fGn is obtained, which can be written as

SH(f) = Kσ2|ei2πf − 1|2
∞∑

k=−∞

1
|f + k|2H+1

. (5.2)

with f ≤ 0.5. In the limiting case of f → 0, and H 6= 0.5, the PSD can be written as

SH(f) ≈ Kσ2|f |1−2H , showing that fGn can be used as a model of power law spectra

at low frequencies. In addition, for 0 < H < 0.5 (short-range correlations), we have

SH(0) = 0, and the spectrum is effectively high-pass, while for 0.5 < H < 1 (long-range

correlations), we have SH(0) = ∞. In both cases, the power law form of the spectrum is

approximately held and, in log-log coordinates, we have a quasi-linear relation which is

given by

log SH(f) = (1− 2H) log f + C. (5.3)
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5.2.2 MEMD-based Filter Banks for Multivariate WGN

In this section, it is investigated whether the dyadic filter bank structure is preserved by

MEMD for multichannel WGN. It is worth emphasizing that the idea of a filter bank for

multivariate inputs, in a strict sense, is still ambiguous since the concept of frequency is

not clearly defined for multivariate signals. However, even if the frequency response of

individual channels of a multivariate signal are considered, the dyadic filter bank struc-

ture imposes an additional constraint on the frequency output of each multivariate IMF–

overlapping of the filter bands associated with the corresponding (same-index) IMFs from

multiple channels. This is vital for the IMFs obtained from MEMD to be physically

meaningful, as any mismatch in frequency contents of the corresponding multichannel

IMFs would render their correlation or subsequent fusion applications meaningless.

To perform the spectral analysis of MEMD, extensive simulations were carried out

on multiple realizations of 8 channel WGN process, which can be considered as a special

case of fGn, for H = 0.5. In simulations, N = 500 WGN realizations were used, each of

length K = 1000, which were then ensemble averaged to yield an averaged power spectra.

The stopping criterion used for MEMD is given in [46], with the value of S = 5. While

the number of IMFs varied for different input realizations, it never got less than 9 IMFs

and, thus, first 9 IMFs have been considered in the following analysis.

In the first case, the frequency response and the corresponding quasi-dyadic filter

bank property of MEMD are illustrated by applying MEMD on a single realization of an

8 channel WGN; the power spectra of its resulting first 9 IMFs are plotted in the top of

Figure 5.2. Next, the same 8 noise channels were separately processed via standard EMD

and the estimated power spectra of its IMFs are shown in the lower half of Figure 5.2.

It can be seen that the overlapping of frequency bands of same-index IMFs, associated

with different channels, is more prominent in the case of MEMD as compared to standard

EMD. This alignment of IMF-based frequency bands for a single noise realization, in the

case of MEMD, results in the stabilization of the shape of individual spectra and allows

for the estimation of these spectra using fewer noise realizations.

Next, the average spectra of IMFs obtained from N = 500 realizations of WGN are
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Figure 5.2: Spectra of IMFs (c1, c2, . . . , c9) obtained for a single realization of an 8-
channel white Gaussian noise via MEMD (top) and the standard EMD (bottom).
Overlapping of the frequency bands corresponding to the same-index IMFs is more
prominent in the case of MEMD-based filters.

plotted in Figure 5.3, both for standard EMD (lower half) and multivariate EMD (top

row). It is evident from Figure 5.3 that for a given number of noise realizations N , standard

EMD failed to properly align the band-pass filters associated with the corresponding IMFs

from different noise channels. Although this alignment is expected to become better with

an increase in the number of noise realizations, MEMD-based spectra achieved much better

results with same number of ensembles.

A quantitative evaluation of the mode-alignment observed in the case of MEMD-

based filter banks is shown in Figure 5.4, where the normalised cross-correlation measure

between IMFs obtained from MEMD and standard EMD, applied on bivariate WGN, are

plotted. In simulation, N = 500 bivariate WGN realizations were used, each of length

K = 1000. The cross-correlation measure Υ(m,m′) can be given by

Υ(m,m′) =

∣∣∣∣∣∣
1
N

N∑

j=1

Υj(m,m′)√
Υj(m,m)Υj(m′,m′)

∣∣∣∣∣∣
(5.4)
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Figure 5.3: Averaged spectra of IMFs obtained for N = 500 realizations of 8-channel
white Gaussian noise via MEMD (top) and the standard EMD (bottom). Overlapping
of the frequency bands corresponding to the same-index IMFs is improved in both
cases after averaging, but MEMD bands show much better alignment.

where

Υj(m,m′) =
1
K

K∑

k=1

cj
m(k)cj

m′(k) (5.5)

where cj
m(k) is the mth IMF of jth noise ensemble.

It can be observed that due to significant overlapping of the spectra of corresponding

(same-indexed) IMFs, from multiple channels, obtained from MEMD, the cross-correlation

measure given in equation 5.4 has comparatively larger values along the diagonal (m =

m′), in Figure 5.4(left). In EMD-based decomposition, however, higher values of cross-

correlation estimates are even observed for (m 6= m′), yielding miss-aligned IMFs, as

shown in the right hand side of Figure 5.4.

Since the number of zero crossings in an IMF is directly related to the number of

oscillations, a rough indicator of the frequency content within the signal, it is possible to
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Figure 5.4: The schematic of the normalized IMF cross-correlation, given in equa-
tion (5.4), from multiple channels obtained via MEMD (left) and EMD channel-wise
(right). The distribution of higher values of the cross-correlation measure along the
diagonal line in the case of MEMD (left column) indicates the mode-alignment be-
tween IMFs from multiple channels. The IMF indices grow from left to right and
from top to the bottom.

analyse the nature of MEMD as a quasi-dyadic filter bank with respect to the IMF index.

For standard EMD, it was shown in [26] and [52] that the IMFs followed the structure of

a quasi-dyadic filter with the linear (slope close to -1) relationship between the logarithm

of number of zero crossings and the IMF index.

Figure 5.5(top) shows that the same analysis for IMFs obtained via MEMD revealed

similar results to those obtained for standard EMD, with the slope of approximately -0.92

for all the 8 channels, indicating a quasi-dyadic filter bank nature of MEMD for white

noise.

Another important property of quasi-dyadic filter bank structure, obtained from

standard EMD, is the self-similarity of its constituent band-pass filters [26]. To illustrate

that the IMFs of individual channels obtained from MEMD also exhibit this self-similar

behaviour, let Sm(f) denote the frequency response of the mth IMF. Then due to the

similarity between different IMF based band-pass filters, the frequency response of m′th

IMF can be described by

Sm′(f) = Sm(γm′−mf) (5.6)
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Figure 5.5: MEMD as a quasi-dyadic filter bank. Top: Average number of zero cross-
ings plotted vs the IMF index for all 8 channels. The slope of -0.92 indicates similarity
to a dyadic filter (with slope -1). Bottom: Fourier spectra of IMFs from MEMD with
(c3, . . . , c9) shifted to the right hand side, overlapping the spectrum associated with c2.

where m′ > m ≥ 2. Parameter γ can be calculated from the slope of the straight line

between the number of zero crossings and the IMF index; for a fully dyadic filter bank,

its value is 2. Using the normalized equation (5.6), spectra of all IMFs (m′ > 2) obtained

from MEMD collapsed to a single curve as shown in Figure 5.5(bottom).

This shows that the IMFs obtained by MEMD follow the quasi-dyadic filter bank

structure similar to the IMFs from standard EMD, facilitating its applications based on

vector sensors and in data fusion.

5.2.3 MEMD-based Mode-Alignment for Multivariate fGn

Next, simulations were carried out on multiple realizations of 8 channel fGn process gen-

erated for different values of the Hurst exponent, H = 0.1, 0, 2, . . . , 0.9. All other settings

were similar to those used in MEMD-based WGN filters.

The resulting IMF spectra are plotted in Figure 5.6 for different values of H; it is
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Figure 5.6: Power spectra of multivariate IMFs in the case of fractional Gaussian noise
(fGn). The estimated power spectrum densities are plotted against the logarithm of
the frequency, for the first 9 IMFs, for different values of the Hurst exponent H =
0.1, 0, 2, . . . , 0.9. Overlapping of the frequency bands corresponding to the same-index
IMFs is clearly visible in all cases rendering MEMD an improved mode-alignment
property.

evident that the mode-alignment property of the multivariate IMFs which was observed

in the case of WGN is also held for fGn. Moreover, it can be noted that as H varies from

0 to 1, the spectrum of the last IMF c9 changes from band-pass to increasingly low-pass,

in accordance with the increasing predominance of low frequencies.
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5.3 Conclusions

It has been shown that the multivariate empirical mode decomposition (MEMD) algorithm

follows a filter bank structure (channel-wise) for multivariate white Gaussian noise (WGN)

inputs. MEMD-based filters have also been shown to align similar modes present across

multiple channels in same-index IMFs, both for WGN and fGn inputs, which is hard to

achieve by applying standard EMD channel-wise.
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Chapter 6

Noise-Assisted Multivariate

Empirical Mode Decomposition

BASED on the dyadic filter bank property of MEMD for multivariate white Gaussian

noise (WGN), a noise-assisted multivariate empirical mode decomposition algorithm

is presented. The method aims to provide a better decomposition as compared to the

standard EMD algorithm by reducing its inherent mode-mixing problem; the performance

of the proposed method is also compared with the well established ensemble empirical

mode decomposition (EEMD) algorithm.

6.1 A Review of Noise-Aided EMD Algorithms

In this section, a quick review of the recent algorithms have been reported which make

use of the dyadic filter bank property observed by EMD, for WGN, in order to solve some

inherent problems in standard EMD algorithm.

One such notable problem of EMD is the decomposition of a class of signals which

lack necessary number of extrema, e.g. dirac pulse (delta function), since its operation

depends heavily on the existence of extrema. In the extreme case of dirac pulse (containing

a single extremum), Flandrin et al. proposed adding multiple realizations of noise to

such a signal first, as a pre-whitening step, and then applying EMD to the resulting
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ensemble [39] [53]; the mean of the ensemble was then taken as the final output. Clearly,

in this case, the addition of noise to the dirac pulse can greatly facilitate the EMD process

due to the added extrema.

In the same spirit, Gledhill used an ensemble of original input signal and noise to

check the robustness of EMD algorithm against noise [55]. Though, he never employed

the idea of taking ensemble mean as the final output, he did define the composite Hilbert

spectrum based on the ensemble mean of the noise added analysis. However, due to the

non-negativity of the spectrum, the added noise could not cancel out and he, therefore,

had to limit the noise level to infinitesimal values to make their contribution negligible.

Another area where noise-aided analysis has been greatly beneficial in EMD is

to reduce its inherent mode-mixing problem. Mode-mixing is characterized by having

multiple modes in a single IMF or a single mode or scale distributed across more than one

IMFs. It clearly compromises the physical significance of EMD-based decomposition and

limits its use in several real world applications [25] [23]. Mode-mixing is mainly caused

due to significant overlapping of the frequency responses of multiple IMFs; this problem

was addressed by Wu et al. by making use of the dyadic filter bank structure of EMD for

WGN [26] [52] [53]. In their proposed algorithm, known as ensemble EMD (EEMD) [31],

multiple realizations of WGN are combined with the original signal to form an ensemble,

over which EMD algorithm is run. The mean of the ensemble is then taken as the final

output. Multiple realizations of WGN are considered to average out the effects of white

noise. However, despite the averaging, the reconstructed signal still includes the residual

noise and different realizations of signal plus noise yield different number of IMFs.

Recently, a couple of advancements in the EEMD algorithm have been proposed;

one such algorithm adds a particular noise at each decomposition stage and computes a

unique residual to obtain an IMF [56]. Another, named complementary ensemble empirical

mode decomposition (CEEMD), removes the residual of added white noise in EEMD via

pairs of complementary ensemble IMFs obtained from positive and negative added noise to

the signal [85]. In this chapter, however, EEMD algorithm has been considered for analysis

and comparison with the method proposed in this chapter because of its popularity in the
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signal processing community.

6.2 Ensemble Empirical Mode Decomposition

The ensemble empirical mode decomposition (EEMD) algorithm is a noise-aided EMD

analysis, which was originally designed to overcome the frequently occurring mode-mixing

problem in standard EMD. Before describing the details of EEMD algorithm, the mode-

mixing problem is first explored in the next section.

6.2.1 Mode-Mixing in EMD

Mode-mixing is mainly characterized by a situation where a single IMF either carries

signals of widely disparate scales, or a single mode or scale resides in more than one IMF

components. It is mainly caused by signal intermittency and results in the overlapping of

IMF spectra and aliasing in the time-frequency (TF) domain. The mode-mixing seriously

compromises the physical meaning of IMFs by wrongly suggesting that there might be

different physical processes represented in a single IMF or a single process. It was first

detected by Huang et al. in [31] where the modeled data was a mixture of intermittent high

frequency oscillations modulated on a low frequency tone; A similar example is presented

here for illustration:

The synthetic data and its sifting process are shown in the top row of Figure 6.1;

the signal consists of a low frequency tone, with another high frequency and low amplitude

tone riding on its selected crests (around time index 4000, 6000, and 8000). Due to the

maxima (minima) introduced by the high frequency intermittent wave, the estimates of

upper and the lower envelopes are inaccurate and the resulting local mean signal (thick

dotted line in the top panel of Figure 6.1) does not reflect the true dynamics of the signal.

Consequently, the estimate of the first IMF is a combination of both the low frequency

tone and high frequency intermittent waves, resulting in the mode-mixing problem. This

is shown in the lower panel of Figure 6.1, which gives the decomposition of the synthetic

signal via standard EMD.
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Figure 6.1: Mode-mixing in standard EMD: (top) Sifting process illustrating the
mode-mixing phenomenon in a synthetic signal. The presence of the intermittent
high frequency tone at the crests, at around time index 4000, 6000, and 8000, results
in inaccurate local mean estimation due to discrepancy in the calculation of upper
and lower envelopes. (bottom) Decomposition of the signal via standard EMD; mode-
mixing is evident, since the first IMF contains both the low frequency tone and the
intermittent high frequency riding wave.
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To overcome this problem, Huang et al. proposed an intermittence test which aimed

to identify oscillations with significantly higher frequencies in the input, as compared to

an a priori chosen reference frequency value [86]. Another method based on the similar

principle pre-treated the original data using wavelet transform to avoid the mode mixture

in the subsequent empirical mode decomposition [87]. While these methods performed

well for certain synthetic signals, choosing a priori value of reference frequency (period)

was always going to be impractical for real world signals; consequently, these methods

were not widely adopted.

6.2.2 Ensemble EMD Algorithm

The Ensemble EMD (EEMD) algorithm makes use of the dyadic filter bank property

of EMD on white Gaussian noise (WGN) by populating the whole time-frequency (TF)

space. This is achieved by adding multiple realizations of WGN to the input signal to form

an ensemble, over which EMD is run. The mean of the corresponding IMFs is then taken

as the final output of EEMD. More specifically, if x(t) denotes the input signal, and wn(t)

the nth realization of WGN, then the ensemble of signal and WGN can be expressed as

{sn(t)}N
n=1 = x(t) + {wn(t)}N

n=1 (6.1)

for 1 ≤ n ≤ N , where N is the total number of ensembles used in the process. The EEMD

algorithm is described in Algorithm 5.

Algorithm 5 Ensemble Empirical Mode Decomposition
1: Generate sn(t) = x(t) + wn(t) for n = 1, . . . , N ; wn(t) (n = 1, . . . , N) are N different

realizations of WGN;

2: Fully decompose sn(t) (n = 1, . . . , N) by applying standard EMD to each realisation

sn(t) separately, obtaining M IMFs for sn(t), denoted by {cn
m(t)}M

m=1;

3: Average the corresponding IMFs from the whole ensemble to obtain the averaged

IMFs; for instance, mth IMF can be obtained by using c̄m(t) = 1
N

∑N
n=1 cn

m(t) ;
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The effect of added WGN series should cancel while taking the mean over a sufficient

ensemble in accordance with the following well established rule:

γn =
η√
N

(6.2)

where η is the amplitude of the added noise, and γn is the standard deviation of the error

signal between the final output from EEMD and the original signal x(t).

The relation given by equation (6.2) highlights a significant drawback in EEMD: To

completely cancel the effect of added noise from the final output, in other words to ensure

full completeness of EEMD method, an infinite number of ensembles must be considered.

In practical scenarios, however, a sufficiently large value of N is taken so as to reduce

the corresponding error power (standard deviation) between the EEMD output and the

original input signal to an acceptable level.

To illustrate the benefits of EEMD in terms of reducing the mode-mixing phe-

nomenon, it was applied to the data set shown in Figure 6.1. The power of the added

noise was chosen to be 0.05 as compared to the original data, and N = 50 number of

ensembles were considered. The decomposition achieved by EEMD is shown in Figure 6.2.

It is clear that the low frequency primary component was completely extracted in IMF6,

whereas, the high frequency intermittent signal was decomposed in IMF4 and IMF5. The

first three IMFs contained the residual noise due to added WGN; its contribution, how-

ever, could be reduced by increasing the ensemble size N in accordance with the relation

given in equation (6.2).

6.3 Noise-Assisted MEMD

In the last section, it was shown that while ensemble EMD (EEMD) can significantly re-

duce the mode-mixing phenomena, it compromises the ‘completeness’ of the reconstructed

signal since it adds the realizations of white Gaussian noise (WGN) directly to the input

signal, giving rise to the residual noise in the final output. Moreover, the output compo-

nents obtained from EEMD, after taking the mean of IMFs over all realizations, do not
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Figure 6.2: Decomposition of the signal in Figure 6.1 via ensemble EMD; it has been
shown that the low frequency tone and the intermittent high frequency riding wave
have been separated accurately using EEMD.

strictly conform to the definition of an IMF.

To overcome these problems, a more suitable approach would be to somehow sepa-

rate noise from the input signal while still using the dyadic filter bank property of EMD on

WGN. Fortunately, the emergence of multivariate empirical mode decomposition (MEMD)

algorithm and the fact that its decomposed components exhibit a dyadic filter bank struc-

ture for WGN both provide necessary tools to do so.

Based on the above idea, a noise-assisted MEMD (N-A MEMD) algorithm is pre-

sented which adds extra channels containing multivariate independent white Gaussian

noise to the original multivariate signal, and then process such a composite signal via

MEMD. Adding extra noise channels gives the desired separation between the input sig-

nal and the added noise, while still enforcing the dyadic filter bank structure on the input

signal. Next, the IMF channels corresponding to white noise are discarded yielding a set

of IMFs associated with only the original input signal. The details of the N-A MEMD

method are outlined in Algorithm 6.

Since added noise channels occupy a broad range in the frequency spectrum, MEMD
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Algorithm 6 Noise-Assisted MEMD
1: Create an uncorrelated Gaussian white noise time series (l-channel) of the same length

as that of the input, with l ≥ 1;

2: Add the noise channels (l-channel) created in step 1 to the input multivariate (n-

channel) signal n ≥ 1, obtaining an (n + l)-channel multivariate signal;

3: Process the resulting (n + l)-channel multivariate signal n + l ≥ 2 using MEMD

algorithm, to obtain multivariate IMFs;

4: From the resulting (n + l)-variate IMFs, discard the l channels corresponding to the

noise, giving a set of n-channel IMFs corresponding to the original signal.

aligns its different components (IMFs) in accordance with the quasi-dyadic filter bank

structure, with each component carrying a frequency subband of the original signal. In

doing so, IMFs corresponding to the original input signal also align themselves according to

the structure of a quasi-dyadic filter bank1; this, in turn, helps to reduce the mode-mixing

problem within the extracted IMFs.

Note that while the basic principle behind N-A MEMD method is similar to that

of EEMD: enforcing the quasi-dyadic filter bank structure on the input signal, it operates

more effectively by separating the noise from the input signal via MEMD algorithm.

Consequently, N-A MEMD overcomes the inherent flaws of EEMD algorithm, including

residual noise in the reconstructed signal and the deviation from strict IMF definition.

Moreover, unlike EEMD, N-A MEMD algorithm can inherently process multivariate data,

as it employs MEMD. A more detailed comparison between the two methods will be

presented later in the chapter.

6.3.1 Simulations

To illustrate the benefits of N-A MEMD in terms of reducing mode-mixing in univariate

signals and also mode-misalignment in multivariate signals, simulations were performed on

1The effect of adding WGN channels on the spectrum of the original signal is illustrated via a synthetic
simulation in the next section
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synthetic signals consisting of a combination of several tones. In both sets of simulations

presented here, two added noise channels, l = 2, were chosen and the noise power was

taken as 0.05, corresponding to the SNR of 13 db. The number of directions used in the

MEMD algorithm2 were V = 512 and the parameters of the stopping criterion used were

[θ1 = 0.05, θ2 = 0.5, α = 0.05] and S = 1.

Mode-Mixing in Univariate Signals

This simulation was conducted to show the ability of N-A MEMD to reduce mode-mixing

in univariate signals. For this purpose, a synthetic signal consisting of a combination of

three different tones was chosen; two low frequency tones (0.23 Hz and 1.0 Hz) were added

together along with a high frequency sinusoid (2 Hz) added between samples 1000 and

1650. The resulting signal and its decomposition obtained from standard EMD are shown

in Figure 6.3(a). Mode-mixing is evident since IMF1 contains multiple modes. Moreover,

mode-mixing can also be seen in IMF2 and IMF3.

The same signal was next processed using the N-A MEMD method with two ex-

tra noise channels (l = 2). The IMFs from the resulting trivariate signal are shown in

Figure 6.3(b). Observe that the IMFs corresponding to the first channel are now free of

mode-mixing, as all the tones are decomposed as separate IMFs (IMF4, IMF5, and IMF6).

To analyse the effects of adding noise channels to the original synthetic signal, the

spectra of IMFs obtained from standard EMD and N-A MEMD are plotted in Figure 6.3(c)

and Figure 6.3(d), respectively. It can be noticed that in the case of standard EMD, the

spectra of IMF1-IMF2 and IMF2-IMF3 overlap with each other, resulting in mode-mixing

in the time domain, as evident in Figure 6.3(a). On the other hand, power spectra of

IMFs obtained from N-A MEMD are well separated in the frequency domain due to the

quasi-dyadic filter bank structure imposed by added WGN channels; the resulting decom-

position in the time domain, therefore, does not suffer from the mode-mixing problem

(Figure 6.3(b)).

2The simulations were performed in Matlab using the MEMD toolbox provided at:
http://www.commsp.ee.ic.ac.uk/∼mandic/research/emd.htm.
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Figure 6.3: N-A MEMD for reducing mode-mixing: (a) IMFs of a synthetic signal
obtained by applying standard EMD. (b) IMFs of a synthetic signal obtained by
applying the N-A MEMD (left hand column); IMFs of one of the two noise channels
(right column). (c) Spectrum of IMFs obtained from standard EMD. Mode-mixing
is evident due to overlapping of spectra from IMF1 and IMF2; and IMF2 and IMF3.
(d) Spectrum of IMFs obtained from N-A MEMD; due to the added noise channels,
the spectrum of the IMFs from the original signal do not overlap, in turn, reducing
mode-mixing. (See text for more detail).

Mode-Misalignment in Bivariate Signals

Simulations were also performed on a synthetic bivariate signal to show that the intro-

duction of noise in N-A MEMD method also reduces the so-called ‘mode-misalignment’

in multivariate extensions of EMD. The bivariate (complex) data used in the simulation
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Figure 6.4: N-A MEMD for reducing mode-misalignment in multivariate data: (top)
Decomposition of a synthetic bivariate tone signal using the bivariate EMD algo-
rithm. Mode-mixing and mode-misalignment are evident across all but the IMF1.
Simulations with different parameters for the stopping criterion yielded similar re-
sults. (bottom) Decomposition of a synthetic bivariate tone signal via N-A MEMD
for l = 2. Both the problems of mode-mixing and mode-misalignment are clearly
reduced. Again, the obtained results were generally found robust to changes in the
MEMD parameters.
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consisted of a real part which was a combination of a tone of 1 KHz and a tone of 3 KHz

just added at the beginning and end of the signal, whereas, the imaginary part was a

summation of two tones with frequencies of 0.75 KHz and 3 KHz.

Mode-alignment refers to the generation of similar frequency modes across same-

index IMFs in multiple channels, and is one of the characteristics of multivariate ex-

tensions of EMD [18]. However, in addition to mode-mixing within IMFs of a single

channel, mode-mixing also occurs within the same-indexed IMFs across multiple channels

(mode-misalignment). This is illustrated in the top half of Figure 6.4, which shows the

decomposition of a synthetically generated bivariate tone signal via bivariate extension

of EMD [22]. While the highest frequency mode was correctly decomposed as IMF1,

both mode-mixing in a single channel and mode-misalignment across multiple channels

are evident in the remaining IMFs; a single frequency mode was shared in both IMF2

and IMF3 in the first channel and also in IMF3 and IMF4 in the second channel (mode-

mixing). Moreover, different frequency modes can be seen across different channels in

IMF3 (mode-misalignment).

The lower half of Figure 6.4 shows the decomposition of the same bivariate signal

obtained by the proposed N-A MEMD method, with two extra channels of white noise3.

It can be seen that both mode-mixing and mode-misalignment are significantly reduced

in this case, with each IMF carrying only a single frequency mode, and no instance of

different modes across same-index IMFs of different channels. This was expected because

the quasi-dyadic structure enforced by the addition of noisy channels in N-A MEMD

resulted in the alignment of frequency subbands from different channels of a multivariate

signal, in turn, yielding ‘aligned’ IMFs in terms of their frequency contents.

6.4 N-A MEMD vs EEMD

Unlike EEMD, noise is not added directly to the input signal in N-A MEMD, but instead

is kept in separate channels of a multivariate signal and finally processed directly using

MEMD. This way, same number of IMFs are guaranteed for each channel and similar

3For clarity, WGN channels are not plotted here.
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oscillatory modes are extracted in same-indexed IMFs, a feat not possible to achieve using

EEMD. Moreover, since N-A MEMD is based on MEMD method, which can inherently

process multivariate signals containing any number of channels, N-A MEMD can handle

both univariate and multivariate signals, whereas, EEMD is only designed for univariate

signals.

In the following subsections, a comparison between the two methods is presented

in terms of their completeness, which depends on how much residual noise they allow in

the reconstructed signal, and their sensitivity to input noise power.

6.4.1 Residual Noise

Residual noise in EEMD is introduced because noise is added directly to the signal in

order to enforce the dyadic filter bank structure. Consequently, the reconstructed signal

in EEMD contains a significant residual noise compromising the completeness of EEMD,

though, its effects can be reduced by increasing the number of samples N , in accordance

with equation (6.2). On the other hand, in N-A MEMD, noise does not directly interfere

with the original signal as it is added to separate channels.

To verify the above statements, simulations were performed on a synthetic signal

shown in Figure 6.3 using both EEMD and N-A MEMD; N = 250 realizations of WGN

were used in EEMD and the noise power was taken as 0.05, whereas, for N-A MEMD,

l = 2 WGN channels were added to the signal with the same noise power as in EEMD. The

number of direction vectors used in MEMD were taken as V = 512. Figure 6.5 shows the

resulting decompositions, in (a) and (b) for EEMD and N-A MEMD respectively, and the

absolute values of the error function e(t) = X(t)− r(t), in (c) and (d) for EEMD and N-A

MEMD respectively, where X(t) and r(t) denote the input signal and the reconstructed

signal. It is clear that the absolute error function corresponding to N-A MEMD has

significantly smaller values as compared to that of EEMD because of negligible residual

noise in N-A MEMD. The error function in EEMD has larger values due to high levels of

residual noise caused by directly adding noise to the input signal X.
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Figure 6.5: Comparison of EEMD vs N-A MEMD in terms of the residual noise in the
reconstructed signal. (a) EEMD decomposition of input signal X. (b) N-A MEMD
decomposition of input signal X. (c) Absolute value of the error function e(t) between
X and the reconstructed signal for EEMD. (d). Absolute value of the error function
e(t) between X and the reconstructed signal for N-A MEMD. The absolute error in
case of N-A MEMD is significantly lower than EEMD (see the difference in the scales
of vertical axes between (c) and (d)).

6.4.2 Sensitivity to Noise Power

The power of added noise relative to the input signal power is an important factor in both

EEMD and N-A MEMD since it is crucial to establish filter bank structure. In EEMD,

however, this issue is more significant since noise is added directly to the signal and,

therefore, increasing its amplitude might raise the residual noise levels in the reconstructed
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Figure 6.6: Comparison of EEMD vs N-A MEMD in terms of sensitivity to added
noise power. (a) Plot of average power of the error signal as a function of noise to
signal power in case of EEMD; it is a monotonic increasing function highlighting an
increase in residual noise in EEMD with added noise power. (b) The same plot in (a)
but corresponding to N-A MEMD. The power of error function is much lower in this
case due to less residual noise (see the difference in the scales of vertical axes between
the two figures).

signal.

This is shown in Figure 6.6 where the average power of the error signal is plotted

as a function of ratio between the noise and the signal power, for the input signal X in

Figure 6.3, using EEMD (left) and N-A MEMD (right).

In the case of EEMD, as expected, the power of error signal, which is an indicator

of residual noise level, increase with the added noise power. On the other hand, residual

noise levels in the reconstructed signal, in the case of N-A MEMD, remain relatively stable

with the input noise power, as shown in Figure 6.6(right).

6.5 Discussion

Based on the improvements offered by N-A MEMD, in terms of less residual noise and

less sensitivity to added noise power, it is a viable alternative to EEMD for reducing the

mode-mixing problem. However, it should be mentioned that the so-called noise-assisted
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methods (both EEMD and N-A MEMD) are expected to be most useful, for reducing the

mode-mixing problem, only for those signals in which the dyadic filter bank decomposition

is relevant. For instance, if the desired signal resides in multiple dyadic subbands, then

choosing these noise-assisted methods for decomposition may even ‘spread’ the desired

signal across multiple IMFs, resulting in unwanted mode-mixing. This is due to the fact

that adding noise to the signal enforces the dyadic filter bank structure on to the input

signal, and in that process, the EEMD and N-A MEMD methods somewhat lose their

data-driven ability.

Another important aspect to consider in the case of N-A MEMD is its sensitivity to

the number of added noise channels. Though, at most, l = 2 noise channels were used in

simulations presented in this chapter, there is theoretically no limit to the number of noise

channels that can be used in N-A MEMD. However, it is expected that for multivariate

signals containing larger number of input channels, the number of input noise channels

might have to be increased to enforce the filter bank structure on the data. A formal study

on this matter is, however, still needed and might be a good avenue for future research.

To give a rough idea of the dependence of N-A MEMD on the number of noise

channels, simulations were performed on the input signal shown in Figure 6.3 by varying

the number of noise channels l and calculating the power of the reconstructed error4. The

results are shown in Figure 6.7 in which the power of the reconstructed error is plotted as

a function of the number of WGN channels l. It is clear that the reconstructed error is

negligible even for larger values of l ensuring the completeness of N-A MEMD for varying

l.

6.6 Conclusions

A noise-assisted MEMD (N-A MEMD) algorithm has been presented as a viable alternative

to ensemble EMD (EMD). It uses the filter bank property of MEMD on white Gaussian

noise (WGN) by introducing extra channels of multivariate WGN to the input signal.

4In the simulations, the noise power in the two channels was kept at 0.05, corresponding to the SNR of
17db, and the number of direction vectors used in MEMD algorithm were taken as V = 512.
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Figure 6.7: Power of the reconstructed signal plotted as a function of number of WGN
channels, l, for the input signal in Figure 6.3 using N-A MEMD. See text for further
detail.

Consequently, due to the proper alignment of frequency subbands, the effects of mode-

mixing and mode-misalignment in multivariate IMFs can be reduced using N-A MEMD.

Unlike ensemble EMD (EEMD), where several realizations of white noise are directly added

to the signal and then multiple instances of EMD are run, the framework of MEMD allows

adding white noise in separate channels. As a result, only a single application of MEMD

is sufficient, and due to the separation between the noise and input channels, the residual

noise in N-A MEMD is comparatively lower and is found to be less sensitive to noise power

than EEMD. Moreover, unlike EEMD, the framework of MEMD allows N-A MEMD to

handle a much broad class of multivariate signals.
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Chapter 7

Multiscale Image Fusion using

MEMD

IN this chapter, multivariate extensions of EMD have been proposed to be used for the

multiscale analysis of multichannel data. It has been shown that multivariate exten-

sions of EMD overcome the problem of uniqueness, owing to its property to align common

oscillatory modes from multiple channels in the same-indexed IMFs. Consequently, the

proposed approach allows the correlation analysis, at local level and at multiple scales,

between multiple input channels which can not be achieved by applying univariate EMD

channel-wise. This concept is illustrated further via image fusion examples.

7.1 Why Multiscale Analysis for Multichannel Data?

In multichannel data analysis, one often needs to compute correlation between a set of

data channels. For linear and stationary data, this can be achieved by simply taking the

correlation coefficient over the whole data set. However, most real world multivariate

signals are nonstationary and are obtained from nonlinear sources and, hence, ‘global’

measures such as the correlation coefficient are not adequate to capture the complete

relationship between them. For such signals, therefore, a local (time dependent) correlation

measure is required. For this cause, Papadimitriou [88] developed a method for obtaining a
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Figure 7.1: Multiscale analysis: The synthetic signals a(k) (solid line) and b(k) (dotted
line) (top) and signals x(k) and y(k) (bottom).

local similarity score for nonstationary data by computing the cross correlation coefficient

in a local sliding window. The resulting method, though effective in certain scenarios, was

not accurate since it did not consider correlation at multiple scales of the data.

To perform multiscale analysis of multichannel (multivariate) data, the input sig-

nal is first decomposed into its constituent scales and then an analysis is performed on

corresponding (matched) scales, from multiple channels, separately. This is important

since real world data mostly consists of a combination of multiple intrinsic time scales,

representing different dynamic regimes, and only performing the analysis separately on

each scale (dynamic regime) reveals meaningful correlation estimate between the two data

sets [17].

To illustrate this point, consider two signals x(k) = a(k) and y(k) = b(k) + w(k)

as shown in Figure 7.1, where a and b are highly correlated signals (with correlation

coefficient equal to 0.79) with the same mean time scale, and w(k) is the white Gaussian

noise of zero mean and unit standard deviation. Even with the presence of noise in y,



7.2 EMD and its Multivariate Extensions for Multiscale Analysis 130

intuitively, both x and y should have a reasonable correlation estimate due to the high

correlation between a and b. However, the value of the correlation coefficient of x and

y was found to be only 0.32. The main reason was that the correlation between the

two signals, due to the components a and b, was masked due to the noise component,

giving a meaningless correlation estimate. Had x and y been analysed using a multiscale

approach, the underlying relationship between a and b could be easily detected, illustrating

the importance of decomposing multichannel data into its intrinsic scales before applying

the correlation analysis.

7.2 EMD and its Multivariate Extensions for Multiscale

Analysis

To decompose data for the purpose of multiscale analysis, empirical mode decomposition

(EMD) is an intuitive and natural choice, because its IMFs represent different scales at

local level. By recognizing this potential of EMD, Huang et. al. developed a time depen-

dent intrinsic correlation (TDIC) method in order to perform local correlation analysis

of data using EMD [89]. This method is similar to the one given in [88] except that it

operates at multiple intrinsic scales of the data: the IMFs from standard EMD algorithm.

For applications involving multichannel data, however, the use of standard EMD method

poses the following problems:

1. Due to the problem of uniqueness, caused by the empirical nature of EMD, a dif-

ferent set of IMFs are obtained for each channel both in terms of their number and

properties (refer to section 2.6.1 for details).

2. Mode-mixing in EMD further destroys the alignment of common modes in corre-

sponding IMFs from multiple channels.

The above mentioned issues limit the use of standard EMD in applications such as

data fusion, since IMFs from multiple channels are not aligned. Consequently, it is hard

to conduct local correlation analysis (comparison) on scale-by-scale basis using standard
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EMD. Thus, in order to perform local analysis of multivariate data using EMD at multiple

scales, the number of IMFs from all channels must be equal in terms of both their number

and properties.

Fortunately, multivariate extensions of EMD fulfill these requirements, and their

potential in multiscale analysis of multichannel data is explored in this chapter. It should

be mentioned that the complex extensions of EMD have already been employed for fusion

applications involving bivariate data [17] [19], but with MEMD and N-A MEMD at dis-

posal, the multiscale signal processing framework based on EMD/BEMD can be extended

to signals containing any number of channels. The mode-alignment property observed by

MEMD is at the heart of these proposed applications and is briefly discussed next.

7.2.1 Mode-Alignment in Synthetic Sinusoids

For synthetic signals with a combination of sinusoids, it was shown, in section 3.5.2 and sec-

tion 4.5.1 respectively, that both trivariate EMD (TEMD) and MEMD produced matched

or aligned IMFs in terms of their frequency content. Moreover, it was shown in section

2.8 that even if the mode-mixing problem occurred in multivariate extensions, it affected

IMFs from multiple channels simultaneously, thus, allowing meaningful comparison at

multiple scales. In situations where mode-mixing is still an issue, noise-assisted MEMD

(N-A MEMD) may be used.

7.2.2 Mode-Alignment in White Gaussian Noise

The mode-alignment property of MEMD in the case of white Gaussian noise (WGN) was

illustrated in detail in Chapter 5. More specifically, it was shown that MEMD follows

quasi-dyadic filter bank structure for multivariate WGN with the overlapping frequency

spectra for same-indexed IMFs, from multiple channels, as was shown in Figure 5.3.
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7.3 Application: Multiscale Image Fusion

Fusion of multiple images is aimed at producing a single output image which carries the

salient features of all fused images [90]. Fusion techniques are particularly relevant in

cases where it is difficult to obtain an image in which all relevant objects are ‘in-focus’,

and multiple ‘out-of-focus’ images must be combined to yield a single ‘in-focus’ image.

Another important application is the fusion of multiple multi-exposure images from a

static scene, which is required when a wide range of luminosity/irradiance inhibits the

camera to capture all features of a scene in a single shot. In such cases, there will always

be regions of an image which are either over-exposed or under-exposed. These over- and

under-exposed regions usually carry less information as compared to regions which are

properly exposed to light, and therefore need to be fused.

For fusion of multiple images, one class of techniques perform ‘local’ fusion by ob-

taining local details from images by dividing them into several non-overlapping blocks.

Subsequently, image block carrying greater information is selected in the fused image.

Using this methodology, Goshtasby proposed entropy as an information measure for the

fusion of multiple exposure images [91]. This technique, however, does not perform fu-

sion at multiple intrinsic scales of the input signal (multiscale fusion), and is therefore

suboptimal.

Other established techniques operate within the transform domain such as the

wavelet transform [92] [38] and the discrete cosine transform (DCT) [93]. These techniques

commonly decompose an image into its constituent scale-images, after which coefficients

corresponding to each set of scale-images are conveniently combined in the fused image [92].

In effect, these techniques perform comparison between multiple images, at feature (scale)

level, and keep the most informative scale in the fused image. However, they fail to

accurately extract the local details at data level since they are mainly linear projection-

based schemes.

Multivariate extensions of EMD provide a unique opportunity to perform fusion

both locally and at feature (multiscale) level due to its data-driven nature. In addition,
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its mode-alignment property allows a scale-by-scale comparison between multiple images.

The next section present a framework for the fusion of multi-focus and multi-exposure

images using multivariate extensions of EMD.

7.3.1 The Proposed Framework

In this section, a framework is given for the fusion of three gray scale images to a single

enhanced image using multivariate EMD (MEMD). The methodology employed is similar

to that used in [17] for the fusion of two out-of-focus images. Here, a new fusion rule

is proposed for multiscale image fusion, which is more suited for the fusion of exposure

images. Also, a method to fuse two color images using multiple applications of bivariate

EMD (BEMD) is presented. In all subsequent simulations of MEMD, the stopping crite-

rion given in section 4.4 is used with parameter values of [θ1 = 0.05, θ2 = 0.5, α = 0.05]

and S = 1. The number of direction vectors considered in the simulations were V = 64.

Gray-Scale Image Fusion Scheme

A framework for fusion of three partially out-of-focus gray scale images is proposed as

follows: Three input images, labeled A, B, and C, are first converted to row vectors and

combined to form a trivariate signal. MEMD is then applied to the resulting trivariate

signal which yields M IMFs, each corresponding to the intrinsic features (scales) of the

input images. These IMFs are then reconverted back to 2D images1, resulting in M scale

images for each input image, denoted by Am, Bm, and Cm for m = 1, . . . , M , as shown

in Figure 7.2. Scale images are then combined locally, based on values of coefficients

calculated from local variance estimates at each spatial point, to give a fused image F

given by

F (x, y) =
M∑

m=1

αm(x, y)Am(x, y) + βm(x, y)Bm(x, y) + γm(x, y)Cm(x, y) (7.1)

1Applying standard EMD to inherently 2D images results in loss of information in vertical direction
which is manifested in horizontal artifacts in the fused image. To alleviate this problem, the IMFs carrying
sufficiently low frequencies are combined (added) together [17].



7.3 Application: Multiscale Image Fusion 134

MEMD

CBA

Fusion Rule

F

A1

A2

An

B1

B2

Bn

C1

C2

Cn

Figure 7.2: The proposed methodology for three gray scale image fusion using multi-
variate EMD (MEMD).

where αm(x, y), βm(x, y), and γm(x, y)2 are coefficients, determined at location (x, y),

based on the relative values of the local variance for each scale, and are given by

αm(x, y) =
var{Am(x, y)}

var{Am(x, y)}+ var{Bm(x, y)}+ var{Cm(x, y)} (7.2)

βm(x, y) =
var{Bm(x, y)}

var{Am(x, y)}+ var{Bm(x, y)}+ var{Cm(x, y)} (7.3)

γm(x, y) =
var{Cm(x, y)}

var{Am(x, y)}+ var{Bm(x, y)}+ var{Cm(x, y)} (7.4)

where var[Am(x, y)] represents the local variance of a scale image Am, calculated across a

small rectangular block around (x, y), as follows

2By choosing C = 0 and γ(x, y) = 0, the same methodology, as above, can be used for the fusion of two
gray scale images.
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var{Am(x, y)} =
Wi∑

i=−Wi

Wj∑

j=−Wj

[Am(x + i, y + j)− µij ]2 (7.5)

where µij denotes the mean of all the elements inside the window, and Wi and Wj deter-

mine the rectangular window size. In the simulations presented in this chapter, a square

window of size Wi ∗Wj = 100 was used.
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Figure 7.3: The proposed methodology for two RGB color image fusion using bivariate
EMD (BEMD).

RGB-Color Image Fusion Scheme

In order to extend the above fusion methodology to RGB-based colored images, it is applied

to three color channels, red (R), green (G), and blue (B), of an image separately. That is,

the red, green, and blue channels from two input images are processed by three separate
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applications of bivariate EMD algorithm, as shown in Figure 7.3. As a result, three sets of

bivariate IMFs are obtained which correspond to the red, green, and blue channels of two

input images. Note that although the three instances of bivariate EMD generally yield

different numbers of IMFs, each set is processed separately by the fusion algorithm to yield

the fused red, green and blue channel. The fusion rule on each color channel is similar to

the one used for gray scale fusion, in equation (7.1), but with γ(x, y) = 0. Finally, the

fused channels are combined to form a fused RGB-based color image, F .

7.3.2 Results: Multi-Exposure Image Fusion

The performance of the proposed method is evaluated on real-world multi-exposure images

shown in Figure 7.4(a) and Figure 7.4(b); these are images of a work table obtained

at multiple exposures. Observe that in the first input image, the details on the table

are hidden due to over-exposure, but the area below the table is well exposed. In the

second input image, the lower region is severely underexposed, whereas the upper part

of the image, showing details on the table itself, is well exposed. For comparison, a

multi-resolution wavelet-based fusion scheme is also used: the Discrete Wavelet transform

(DWT) was first applied to both input images to obtain their multiscale decompositions.

The wavelet transform coefficients corresponding to the same decomposition level of two

images, were combined to obtain fused multiscale coefficients. The coefficients were then

converted back to the fused image using the inverse wavelet transform. In simulations, the

largest coefficient which corresponds to the sharpest brightness changes in the image, such

as, edges and lines etc, were chosen. The selection of the largest wavelet coefficient is also

consistent with the local variance based fusion algorithm used in EMD-based approach,

since both criteria select variations in intensity as salient features in an image.

Figure 7.4(c) shows the results of the fusion of input images using the discrete

Wavelet transform (DWT). In the fused image, distortions are clearly evident, especially

in the upper part of the image where details on the table are shown; observe the artifacts

around the cable and the paper. It can also be observed that the container on the right

side of the table is still overexposed in the fused image.
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(a) (b)

(c) (d)

Figure 7.4: Local and Multiscale image fusion: (a, b) Images of a work table at
different exposures. In (a), details on the table are hidden due to overexposure to
light. whereas in (b), the lower region of the image is severely underexposed. (c)
A fused image obtained using the discrete Wavelet transform. (d) A fused image
obtained using the proposed framework in Figure 7.2.

The fused image from the EMD-based fusion scheme is shown in Figure 7.4(d); it

is clear that EMD-based fusion outperforms wavelet-based fusion, as less distortions are

present. The distortions around the wire and paper in the wavelet-based fusion arose due

to the fact that it is not performed at ‘local’ level in the spatial domain; the coefficient

merging occurs in the transform domain. As a result, the wavelet-based fusion scheme

cannot accurately align, compare and process high frequency scales. On the other hand,
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(a) (b)

(c)

Figure 7.5: RGB image fusion: (a) Over-exposed image. (b) Under-exposed image.
(c) Fused color image obtained by using the proposed framework in Figure 7.3.

data-driven nature of EMD facilitates fusion at the local level, yielding better results even

at high frequency scales.

The proposed scheme for RGB-based color image fusion, shown in Figure 7.3, was

also used to perform fusion of two exposure images shown in the top row of Figure 7.5;

The fused image is shown in Figure 7.5(c). Again, it is evident that both the local and

multiscale nature of the proposed fusion framework yielded good results, with fused image

being well exposed.
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Figure 7.6: Gray-scale image fusion using MEMD: Three out-of-focus images are fused
to extract all-in-focus image (lower right).

7.3.3 Results: Multi-Focus Image Fusion

The methodology given in Figure 7.2 for the fusion of gray images was applied to three

partially out-of-focus gray scale images shown in Figure 7.6. In all three images, different

portions of the girl’s face are obscured but the fused image obtained from the proposed

framework, as shown in Figure 7.6 (lower right), has all parts of the girl’s face in focus.
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7.4 Conclusions

It has been shown that multiscale analysis of a signal is a prerequisite for obtaining accurate

results especially in fusion applications. While standard EMD has shown potential for

obtaining multiple scales of a univariate signal, it is not suitable for multivariate signals as,

generally, it fails to align common modes from multiple channels. Multivariate extensions

of EMD, however, overcome these problems and thus are more suited for a robust fusion

framework, which can also operate locally; the benefits of such frameworks have been

shown in the context of real world image fusion.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

IN this thesis, several algorithms have been proposed to process multivariate signals

locally, at the data level, using data fission–the decomposition of a multivariate signal

into a set of its intrinsic components. These extensions are crucial because of the two

main reasons:

Firstly, the proposed extensions are aimed at handling real world signals exhibiting

complex properties such as nonlinearity and nonstationarity. These attributes though

commonly encountered in real world signals, such as inertial body motion data, images,

and wind, are generally overlooked in classical signal processing algorithms and, hence,

the need for nonstationary data-driven algorithms operating at multiple intrinsic scales of

the data.

Secondly, the recent advances in the data acquisition systems have given rise to

multivariate (multichannel) real world data in several fields, which in turn, has high-

lighted the need for direct processing of such data via multivariate signal processing tools.

Applying univariate algorithms channel-wise may be suboptimal in such cases as they do

not consider inter-channel correlations within the multivariate data.

In this thesis, extensions of Empirical Mode Decomposition (EMD) algorithm have

been proposed for multivariate signals, whereby signals containing any number of chan-
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nels can be processed. In addition to gaining benefits in terms of the direct processing of

multivariate real world nonstationary signals; highly localized MEMD analysis at multiple

scales; and accurate time-frequency (TF) distributions with the aid of Hilbert transform;

the proposed multivariate extension has also been shown to circumvent the non-uniqueness

problem in standard EMD algorithm, paving the way for its use in data fusion applica-

tions. The non-uniqueness in standard EMD is characterized by the emergence of different

number of decompositions and properties even for signals with similar statistics, and this

combined with other issues such as mode-mixing has rendered standard EMD not viable

for data fusion applications, where scale-by-scale comparison between sources is a pre-

requisite. In this thesis, multivariate extensions of EMD have been shown to be a viable

alternative in such cases. Moreover, by virtue of the filterbank property of MEMD on

white Gaussian noise (WGN) and using the multivariate framework of MEMD, an en-

hanced MEMD method is presented which reduces the mode-mixing problem in MEMD

and, hence, is even more suitable in practical scenarios.

In this thesis, details of the EMD algorithm and its complex extensions were first

presented in Chapter 2. This was followed by trivariate extension of EMD (TEMD),

presented in Chapter 3, which is designed for processing the signals containing three

channels. The main principle of TEMD is based on taking input signal projections along

multiple points on a spherical coordinate system, in 3D space, for estimating the local

mean. Furthermore, TEMD algorithm was shown to align common oscillatory modes just

like the complex extensions of EMD and was also demonstrated to perform accurate TF

analysis in the case of real world trivariate wind signal. In addition, linearity analysis of

IMFs from TEMD, via delay vector variance (DVV) method, showed that except for the

first couple of IMFs which preserved original signal’s modality, the rest of the IMFs were

found to be largely linear and deterministic.

In Chapter 4, an extension of EMD algorithm for general multivariate signals

(MEMD), containing any number of channels, was presented. Though the main prin-

ciple of this extension is similar to that of BEMD and TEMD, i.e. taking projections

of a signal in multiple directions, the main challenge was to choose a uniform point set
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in n-dimensional spaces, which was achieved by a low-discrepancy Hammersley sequence.

Moreover, MEMD was shown to exhibit similar characteristics to that of TEMD algorithm,

including the alignment of similar scales across the same-indexed IMFs.

Next, the filterbank property of MEMD on multivariate white Gaussian noise

(WGN) was demonstrated in Chapter 5. By virtue of this property and making use

of the ability of MEMD to process any number of channels, the noise-assisted MEMD

algorithm was proposed in Chapter 6, which aims to reduce mode-mixing in EMD and

MEMD algorithms. The rationale behind N-A MEMD is to impose the filter bank struc-

ture on the input multivariate signal by adding separate noise channels to it. This way,

the proposed method achieves the separation between the noise and the input signal while

still making use of the desired filter bank property, resulting in significantly lower recon-

struction errors as compared to other noise-assisted methods including ensemble EMD

(EEMD). Moreover, through extensive simulations, the proposed method was also found

to be more robust in terms of its sensitivity to noise power as compared to EEMD.

In Chapter 7, a fusion architecture was proposed for both bivariate and trivariate

data, whereby the most informative data at each mode was retained in the output sig-

nal. The approach was used to perform image fusion of multiple out-of-focus images and

multiple exposure images, and its performance was compared to the established image

fusion algorithms. Despite its effectiveness, however, the proposed architecture may not

be optimal for image fusion, since it is inherently designed for multivariate signal, rather

than multidimensional data such as images [94]; complex/bi-dimensional EMD extensions

must be designed for such applications.

8.2 Future Work

The material presented in this thesis has been published in leading research journals and

top conferences in the signal processing field. Given the known potential of EMD in real

world nonlinear and nonstationary signal processing, the proposed extensions are expected

to find numerous applications in several fields. Indeed, since their inception, the extensions
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proposed in this thesis have already found several practical applications, as evidenced by

more than 50 citations for TEMD and MEMD algorithms, combined.

Some avenues for future work are discussed below:

8.2.1 Choice of Optimal Number of WGN Channels and Noise Power

in N-A MEMD

Though N-A MEMD method is found to be stable for a wide range of values for the

number of noise channels and added noise power, currently these parameters are chosen in

an ad-hoc fashion, calling for a more systematic method for choosing their optimal values.

8.2.2 EMD-based Stationarity Testing via Surrogate Data

Stationarity within a signal is considered as a prerequisite for applying many signal pro-

cessing algorithms [4]. Consequently, for a class of nonstationary signals, such as speech

data, it is a common practice to first divide such data into stationary segments and then

process those segments separately. Therefore, a robust framework aimed at testing the

stationarity of a signal, in an operational sense, is required as a pre-processing step in

many signal processing applications.

Recently, stationarity testing has been attempted via surrogate data framework [95],

which was initially presented for the purpose of establishing a robust statistical test for

nonlinearity1 [96] [97] [98]. Though the test performs well in practice, it suffers from the

limitations of Fourier transform, which is not applicable to nonstationary signals, and the

lack of a robust discriminating statistic based on ‘local’ properties of a signal at multiple

scales.

EMD can be a useful alternative to Fourier transform for stationarity testing, as it

can handle nonstationary signals and can also perform multiscale analysis at the level of

local oscillations. Due to these properties, EMD has already been considered for quanti-

fying stationarity using the so-called ‘degree of stationarity’ (DOS) index [7]. The DOS

measure is similar to the intermittency defined in the wavelet analysis, but has a drawback

1Refer to Appendix B for further details on surrogate methods.
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that it is not a time-dependent measure and, thus, does not fully exploit the local nature

nature of EMD.

Recently, a time-dependent intrinsic correlation (TDIC) method, based on EMD,

has been proposed by Huang et. al which has a potential in stationarity testing at local

level [89]. The method measures the autocorrelation coefficient of the data over multiple

scales (IMFs), and uses the instantaneous frequency of the IMFs to determine a set of

sliding window sizes for the computation of running autocorrelation coefficients. The

method mainly gives an accurate intrinsic correlation analysis of the data but also has a

tremendous potential in the context of stationarity testing which is yet to be explored; a

robust framework using TDIC measure, as a discriminating statistic, in combination with

the surrogate data methodology will lead to a powerful local stationarity test based on

EMD.

Next, to alleviate the shortcomings of the Fourier transform in surrogate data

methods for stationarity, the potential of other frequency measures, such as the EMD-

based marginal Hilbert spectrum can be explored [7]. Thus, the main rationale behind

the proposed work would be to preserve the marginal Hilbert spectrum of the signal,

instead of Fourier spectrum, in order to yield the stationary surrogates. The resulting

distribution of the TDIC measure obtained from stationary surrogates would be compared

against the corresponding distribution of the original signal to obtain a statistical test for

stationarity. The advantage of using the Hilbert spectrum over the Fourier spectrum

stems from its improved accuracy as it is derived from the EMD, which, unlike Fourier

transform, is a completely data-driven algorithm and considers the signal at the level of

its local oscillations. In short, the resulting test is expected to provide better results for

the following reasons:

1. The time dependent intrinsic correlation (TDIC) is based on EMD and is a com-

pletely local measure making it highly suitable for nonstationarity testing as com-

pared to Fourier-based methods.

2. The proposed test will be performed at multiple intrinsic scales of the data; this

is motivated by the fact that performing local autocorrelation analysis on signals
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containing multiple scales may yield misleading estimates, if multiple scales are not

considered separately [89] [17].
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Appendix A

Quaternions

A.1 Quaternion Representation and its Rotation Property

A quaternion q ∈ H is defined as q = s+xı+y+zκ where s, x, y, and z are real numbers

and ı, , and κ are the unit vectors along the three vector dimensions [99]. Addition of

quaternions is defined as

q0 + q1 = (s0 + x0ı + y0 + z0κ) + (s1 + x1ı + y1 + z1κ)

= (s0 + s1) + (x0 + x1)ı + (y0 + y1) + (z0 + z1)κ. (A.1)

and the unit elements ı, , and κ are related as

ıκ = ı2 = 2 = κ2 = −1, ı = κ = −ı,

κ = ı = −κ,

κı = j = −ıκ. (A.2)

From A.1 and A.2, observe that the quaternion multiplication is not commutative.

Subtraction of quaternions can be described as the addition and multiplication by -1.

The conjugate of a quaternion q is defined as

q∗ = (s + xı + y + zκ)∗ = s− xı− y− zκ. (A.3)
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whereas the norm of the quaternion is given by

‖q‖ = ‖s + xı + y + zκ‖ =
√

s2 + x2 + y2 + z2. (A.4)

Of special interest for this work is the unit quaternion, which has a unit norm and can be

written as

q = cos θ + usin θ (A.5)

where u is a 3D vector of unit length. A unit quaternion also has an exponential form

given by

euθ = cos θ + usin θ. (A.6)

The above equation can be seen as the generalization of Euler’s identity for complex

numbers, and represents the rotation of a vector by an angle 2θ, about a 3D unit vector

u. Figure A.1 illustrates the rotation of a vector v by an angle θ, about the line segment

OA. The direction of OA is specified by a 3D unit vector u ∈ R3, and the rotated vector

is represented by v′, that is

v′ = qvq∗ = eu θ
2 v(eu θ

2 )∗. (A.7)

Note that both the quaternion q and −q represent the same rotation of a 3D vector v.

A.2 Benefits of Using Quaternion Representation Over R

Quaternions can be considered as a non-commutative extension of complex numbers, and

have found applications in image processing [100], adaptive filtering [101], gait analy-

sis [102], and animation [99]. In computer science, quaternions are being frequently em-

ployed for modelling of 3D rotations due to their efficiency in terms of computational

requirements, and convenient mathematical representation which they offer. The conve-

nience of representation and the efficiency of quaternions in representing 3D rotations, is

therefore, the main reason for using them in our work. In the context of our present work,

quaternions have been preferred over rotation matrices, also known as Direction Cosine

matrices (DCM), and Eulers’ angles, mainly due to the following reasons:
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Figure A.1: Rotation of a 3D vector v ∈ R3 about line segment OA, by an angle θ.

• The most important reason for using quaternions in our work is that it gives a much

more simplified and intuitive representation of rotation in terms of rotation axis and

angle of rotation. This results in a more compact and convenient representation of

3D rotations as compared to rotation matrices and Euler’s angle. Any rotation in 3D

can be described by a rotation about an axis by an angle. Given an axis and an angle,

the corresponding unit quaternion can be easily and directly constructed, whereas

corresponding rotation matrices are normally indirectly obtained by conversion from

unit quaternions. For example, the rotation matrix M corresponding to rotation

about an axis u = ı+√
2

by any given angle θ is very difficult to construct directly, and

is normally obtained from corresponding quaternion q = w + ıx + y + κ using:

M =




1− 2y2 − 2z2 2xy − 2zw 2xz + 2yw

2xy + 2zw 1− 2x2 − 2z2 2yz − 2xw

2xz − 2yw 2yz + 2xw 1− 2x2 − 2y2




(A.8)

whereas the quaternion q representing the same rotation can be easily and directly
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constructed using:

q = euθ; (A.9)

• Quaternions provide a more compact and simplified notation for 3D rotations as

compared to rotation matrices. A unit quaternion represents rotation in 3D by

using only four parameters. On the other hand, rotation matrices give coordinates

of basis of new set of coordinate axes in terms of original, un-rotated coordinate

axes, and therefore, require 9 parameters to represent rotations.

• When compared to rotation matrices, quaternion framework is much more robust to

rounding errors which may accumulate during multiple operations. This is achieved

because a slightly drifted quaternion, due to rounding error, can be easily normalised

to again represent rotation, whereas rotation matrices have to be orthogonalised to

represent rotation, which is computationally more demanding. This property along

the availability of several interpolation tools for quaternions makes them suitable a

suitable option for use in computer graphics.

• A quaternion framework provides a much faster and efficient method to implement

3D rotations as compared to rotation matrices.
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Appendix B

Surrogate Data Methods and

Delay Vector Variance (DVV)

B.1 Surrogate Data Methods

Surrogate data was initially proposed, in the context of nonlinear dynamics, for the purpose

of linearization of the data to establish a robust statistical test for nonlinearity [96] [97] [98].

In its original formulation, the method generates ‘surrogates’ of the original data which are

comparable to the measured data in certain respects, but which are also consistent with

the specified null hypothesis; a null hypothesis of a linear Gaussian stochastic process is

generally used for nonlinearity testing. Next, the values of a chosen nonlinear observable λ

is computed both for the measured data, λ0, and for the corresponding set of N surrogates,
{
λn

}N

n=1
. Finally, if the value λ0 falls significantly outside the distribution of the λn, then

the null hypothesis can be rejected.

In the context of nonlinearity testing via surrogate data, the surrogates are a real-

isation of the null hypothesis of linearity. The three major aspects of the surrogate data

method include: 1) the definition of the null hypothesis; 2) the method used to generate

surrogate data; and 3) the test statistic. The two main types of null hypotheses include

simple and composite null hypothesis. In simple null hypothesis the surrogate data is

generated by a specific and known (linear) process, whereas the composite null hypothesis
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asserts that the unknown underlying process is a member of a certain family of processes.

B.1.1 Iterative Amplitude Adjusted Fourier Transform (iAAFT)

method

An important composite null hypothesis used in practice assumes that the series is gen-

erated by a linear stochastic process driven by Gaussian white noise. Since the linear

signal properties can be fully described via its amplitude spectrum, this constraint can be

approximated by forcing the original and surrogate time series to have identical amplitude

spectra which leads to a simple and convenient method for generating surrogate data: it

is based on phase randomisation of the Fast Fourier Transform (FFT) of the original time

series and subsequently reconverting the resulting spectrum back to the time domain. This

way, the surrogates are designed to have the same amplitude spectrum, ensuring linear

properties similar to those of the original time series, but are otherwise random. This

approach is referred to as the Fourier Transform (FT) surrogate data method.

In order to exclude false rejections caused due to changes in the signal distribution,

Theiler [96] proposed an amplitude transform of the original time series such that the

distribution becomes Gaussian prior to the FT method, which after phase randomization

is reconverted to the original distribution via rank-ordering (Amplitude Adjusted Fourier

Transform, or AAFT method).

In [97], a fixed point iteration scheme referred to as the iterative Amplitude Ad-

justed Fourier Transform (iAAFT) method is presented, which produces surrogates with

identical signal distributions and approximately identical amplitude spectra as that of the

original time series. Let {|Sk|} be the spectrum of the original time series s, and {ck}
the sorted version of the original time series: at every iteration j generate two series a)

r(j) which has the correct signal distribution, and b) s(j), which has the correct amplitude

spectrum. Starting with r(0), a random permutation of the time samples of the original

time series, the iAAFT generation follows

1. compute the phase spectrum of r(j−1) → {φk}
2. s(j) is the inverse transform of {|Sk| exp(iφk)}
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3. r(j) is obtained by rank-ordering s(j) so as to match {ck}

These steps are iterated until the discrepancy between {|Sk|} and the amplitude spectrum

of r(j) stops decreasing, which occurs after a finite number of iterations [97].

B.2 Delay Vector Variance

The Delay vector variance (DVV) method uses predictability of the signal in phase space to

characterize the time series [103] [104]. Using the surrogate data methodology, so-called

DVV plots and DVV scatter diagrams can be generated using the DVV method, as a

test statistic, to examine the determinism/stochastisity and linearity/nonlinearity within

a signal simultaneously. If m represents an optimal embedding parameter [98], then DVV

method can be summarized as follows:

1. The mean, µd, and standard deviation, σd, are computed over all pairwise euclidean

distances between delay vectors (DVs), ‖x(i)− x(j)‖ (i 6= j);

2. The sets of ‘neighbouring’ delay vectors Ωk(rd) are generated, such that, Ωk(rd) =

{x(i)|‖x(k)−x(i)‖ ≤ rd}, that is, sets which consists of all DVs that lie closer to x(k)

than a certain distance rd, taken from the interval [max{0, µd − ndσd}; µd + ndσd],

where nd is a parameter controlling the span over which to perform the DVV analysis

for Ntv uniformly spaced distances;

3. For every set Ωk(rd), the variance of the corresponding targets, σ2
k(rd) is computed.

The average over all sets Ωk(rd) normalised by the variance of the time series, σ2
x,

yields the target variance σ∗2(rd),

σ∗2(rd) =

1
N

N∑
k=1

σ2
k(rd)

σ2
x

(B.1)

Variance measurements from (B.1) are considered valid only if the corresponding set

Ωk(rd) contains atleast No = 30 DVs, to avoid unreliable estimates of variance.
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The target variance is plotted as a function of standardized distance (rd−µd
σd

) to get

DVV plots in which the presence of strong deterministic component yields small target

variances σ∗2(rd) for small spans rd. To check for the nonlinearity within a signal, averaged

DVV plots over a number of surrogate signals (generated using iAAFT method) can be

generated and conveniently combined in a scatter diagram, where the horizontal axis

corresponds to the target variance of the original time series and the vertical to that of

the surrogate time series. DVV scatter diagram coincides with the bisector line if the

original time series is similar in nature to the surrogate series.

For illustration, the DVV method is applied on a benchmark linear signal (AR(4)),

given by

x(k) = 1.79x(k − 1)− 1.85x(k − 2) + 1.27x(k − 3)− 0.41x(k − 4) + n(k) (B.2)

and a benchmark nonlinear signal, the Narendra Model Three [105], given by

z(k) =
z(k − 1)

1 + z2(k − 1)
+ x3(k) (B.3)

where x(k) denotes the AR(4) signal defined above and n(k) ∼ N (0, 1). The average

DVV plots, computed over 25 iAAFT-based surrogates for these two benchmark signals

are shown, respectively, in Figure B.1(a) and Figure B.1(b), whereas, the DVV scatter

plots are shown in in Figure B.1(c) and Figure B.1(d). As expected, the scatter plot for

the linear AR(4) model coincides with the bisector line; on the other hand, the scatter

plot of nonlinear Narendra model deviates from the bisector line.
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Figure B.1: The DVV plots (top row) and DVV scatter plots (bottom row) for linear
AR4 (left) and nonlinear Narendra (right) signals.
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Appendix C

Low-Discrepancy Hammersley

Sequences

The discrepancy can be seen as a measure of irregularity of the distribution, or in other

words, a quantitative measure for the deviation from the uniform distribution. It is impor-

tant in quasi-Monte Carlo methods which are used to generate well-chosen deterministic

point sets for solving numerical integration problems. The low-discrepancy quasi-Monte

Carlo methods yield superior results as compared to Monte Carlo methods (using random

sequences) in terms of deterministic and improved (lower) error bounds and their lower

computational cost.

The discrepancy DN (B;P ) of a point set P containing N points, consisting of

x1, x2, . . . , xN ∈ Is where Is is the closed s-dimensional unit cube, is given by

DN (B; P ) = sup
B∈B

∣∣∣∣
A(B; P )

N
− λs(B)

∣∣∣∣ (C.1)

where B is a family of Lebesgue-measurable subsets of Is and A(B;P ) is the number of

elements of the set x1, x2, . . . , xN ∈ Is in B. The resulting value of DN is always between

0 ≤ DN (B; P ) ≤ 1.

The error analysis of the quasi-Monte Carlo integration shows that the error bounds

are small for point sets with low discrepancy measure. This leads to an informal definition
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of the low-discrepancy sequences as those having lower value of DN (B;P ).

Some classical constructions for low-discrepancy sequences include: van der Corput

sequence, only valid for univariate sequences; Halton sequence, which is a generalisation

of van der Corput sequence for higher dimensions; and Hammersley sequence.

C.1 The van der Corput Sequence

If n is a positive integer n ≥ 0, then it can be represented in base b using

n =
L−1∑

j=0

aj(n)bj (C.2)

For an integer b ≥ 2, a radical inverse function φb in base b can then be defined as

φb(n) =
L−1∑

j=0

aj(n)b−j−1 for all n ≥ 0, (C.3)

The van der Corput sequence in base b is the sequence x1, x2, . . . with xn = φb(n) for all

n ≥ 0.

C.2 Halton Sequence

Halton sequence is a natural generalisation of the van der Corput sequence in higher

dimensions. Let s ≥ 1 be the given dimension and b1, . . . , bs be arbitrary coprime integers

≥ 2. Then the Halton sequence in the bases b1, . . . , bs can be defined as the sequence

x1,x2, . . . with

xn =
(
φb1(n), . . . , φbs(n)

)
for all n ≥ 0, (C.4)

For s = 1, this definition reduces to the van der Corput sequence given in equation (C.3).
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C.3 Hammersley Sequence

Let b1, . . . , bs−1 be the coprime positive integers ≥ 2. For a given value of s and N , the

multidimensional Hammersley set of size N is defined by

xn =
( n

N
, φb1(n), . . . , φbs−1(n)

)
for n = 0, . . . , N − 1, (C.5)

If S represents a Halton sequence, generated for bases b1, . . . , bs, and P denotes the

Hammersley sequence for bases b1, . . . , bs−1, then their discrepancy estimates are given by

D∗
N (S) ≤ As

(log N)s

N
(C.6)

D∗
N (P ) ≤ As−1

(log N)s−1

N
(C.7)

The discrepancy bounds for low-discrepancy Halton and Hammersley sequences serve as

benchmarks for the construction of other low-discrepancy point sets, and its error bound

O( (log N)s−1

N ) provides a significant improvement over Monte Carlo error bound O(N−1/2).

The original Hammersley sequence generates the point set in the range of [0, 1)

and hence, therefore, has to be modified to produce the directional vectors on (n − 1)-

sphere. For a particular case of a 2-sphere (three dimensional sphere), this is achieved

by first performing a linear scaling of the sequence to the cylindrical domain (φ, t) ∈
[0, 2π)× [−1, 1]. The transformation from (φ, t) to the unit sphere is then achieved via the

following radial projection:

(φ, t) 7→ (
√

1− t2 cos(φ),
√

1− t2 sin(φ), t)T (C.8)

To generate the uniform samples on a general n-sphere, a linear mapping to (n−1)

angular coordinates is first done, and then the direction vectors based on these coordinates

are generated.


