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Recent advances in high-throughput experimentation have put the exploration of genome 
sequences at the forefront of precision medicine. In an effort to interpret the sequencing 
data, numerous computational methods have been developed for evaluating the effects 
of genome variants. Interestingly, despite the fact that every person has as many 
synonymous (sSNV) as non-synonymous single nucleotide variants, our ability to predict 
their effects is limited. The paucity of experimentally tested sSNV effects appears to be 
the limiting factor in development of such methods. Here, we summarize the details and 
evaluate the performance of nine existing computational methods capable of predicting 
sSNV effects. We used a set of observed and artificially generated variants to approximate 
large scale performance expectations of these tools. We note that the distribution of these 
variants across amino acid and codon types suggests purifying evolutionary selection 
retaining generated variants out of the observed set; i.e., we expect the generated set 
to be enriched for deleterious variants. Closer inspection of the relationship between the 
observed variant frequencies and the associated prediction scores identifies predictor-
specific scoring thresholds of reliable effect predictions. Notably, across all predictors, 
the variants scoring above these thresholds were significantly more often generated 
than observed. which confirms our assumption that the generated set is enriched for 
deleterious variants. Finally, we find that while the methods differ in their ability to identify 
severe sSNV effects, no predictor appears capable of definitively recognizing subtle 
effects of such variants on a large scale.
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INTRODUCTION

The vast majority of human genomic variation is accounted for by Single Nucleotide Variants 
(SNVs) (Bromberg et al., 2013). The roughly 10,000 variants in the coding region of every human 
genome that have no effect on the resulting product protein sequence are termed synonymous 
SNVs (sSNVs) (Shen et al., 2013). sSNVs are a product of the degeneracy of genetic code, where 
amino acids may be encoded by more than one codon. The effects of sSNVs on molecular 
functionality of the corresponding genes/proteins are often assumed to be minimal. However, 
earlier studies have argued that sSNVs are as likely to be pathogenic as non-synonymous 
variants (Chen et al., 2010). sSNVs have been implicated in many diseases, including pulmonary 
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sarcoidosis, attention deficit/hyperactivity disorder, and 
cancer (Sauna and Kimchi-Sarfaty, 2011; Supek et al., 2014). 
Synonymous variants can disrupt transcription (Stergachis 
et al., 2013), splicing (Pagani et al., 2005), co-translational 
folding (Pechmann and Frydman, 2013), mRNA stability 
(Presnyak et al., 2015) (Figure 1), and cause a plethora of 
other functionally-relevant changes. In addition, sSNVs can 
affect transcription and splicing regulatory factors within 
protein coding regions (Plotkin and Kudla, 2011), thus 
modulating gene expression (Shabalina et al., 2013; Boël 
et al., 2016). There is also evidence of evolutionary constraint 
on both synonymous and non-synonymous variants, which 
plays a role in shaping codon bias (organism or tissues-
specific codon set preference) (Stergachis et al., 2013). An 
informative experimental approach to evaluating functional 
effects of sSNVs is saturation genome editing followed by 
protein function assays (Findlay et al., 2014; Findlay et al., 
2018). Unfortunately, there are exceedingly few reports of 
these experiments in the literature. While there has been a 

concerted effort in the field to evaluate the effects of non-
synonymous single nucleotide variants (nsSNVs) (Mahlich 
et al., 2017) for the purposes of precision medicine, as well 
as improving basic understanding of concepts in molecular 
biology, interpretation of sSNVs is severely lacking. However, 
considering the significant number of observed synonymous 
variants, their possible effects, and the dire lack of their 
systematic experimental interpretations, there is a compelling 
need for a reliable sSNV effect computational predictor.

In this paper, we review the existing sSNV-effect predictors 
and apply them to a dataset containing observed and artificially 
generated sSNVs. Since there are few experimentally-determined 
SNVs with deleterious effects, and those that exist have been 
used as training or testing sets of the predictors, the cornerstone 
of this study is validating our data set assumption that deleterious 
sSNVs are enriched in the artificially generated set of variants. 
To support this assumption, in addition to previously published 
work, e.g., Stergachis et al., 2013, we show that the distributions 
of observed sSNVs by amino acids and codons are highly 

FIGURE 1 | Possible mechanisms of sSNVs impact on biological function. Yellow triangles represent sSNV sites and the dashed lines indicate aberrant processes. 
sSNVs may affect (A) transcription factor binding, (B) splicing of pre-mRNA, (C) mRNA secondary structure and stability, (D) wobble-based tRNA binding, and  
(E) cotranslational folding (and thus the protein structure). Figure was created with BioRender.com.
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non-random. We also demonstrate that existing predictor high-
scoring variants are enriched among the artificially generated 
sSNVs, additionally validating of our assumption. We finally 
note that these predictors appear unable to definitely identify 
subtle effect sSNVs.

METHODOLOGY OF THE PREDICTORS

SNV Predictors Vary by Targeted Variant 
Type, Training Data, and  
Descriptive Features
We identified from the literature four sSNV-specific effect 
predictors: SilVA (Silent Variant Analyzer) (Buske et al., 2013), 
regSNPs-splicing (Zhang et al., 2017), DDIG-SN (Detecting 
Disease-causing Genetic SynoNymous variants) (Livingstone 
et al., 2017), and IDSV (Identification of Deleterious Synonymous 
Variants) (Shi et al., 2019). Additionally, we considered TraP 
(Transcript-inferred Pathogenicity) (Gelfman et al., 2017), which 
addresses both synonymous and intronic variants. Specifically, 
1) SilVA was trained on 33 pathogenic and 785 neutral variants 
from 1000 Genomes Project (1000G) (Birney and Soranzo, 2015), 
using conservation scores, splicing, DNA, and RNA properties, 
2) DDIG-SN and IDSV used positive data from the Human Gene 
Mutation Database (HGMD) (Cooper et al., 1998; Stenson et 
al., 2003; Stenson et al., 2009; Stenson et al., 2017) and negative 
data from 1000G (DDIG-SN) and VariSNP (IDSV) (Schaafsma 
and Vihinen, 2015) as negative data for training, described 
using features of translational efficiency and protein properties 
in addition to those used by SilVA, 3) regSNPs-splicing also 
used HGMD and 1000G data, but it considers sSNVs only in 
the context of mRNA splicing and protein function, while 4) 
TraP was trained on positive data combining SilVA’s data with 
Online Mendelian Inheritance in Man (OMIM) (Hamosh, 2004) 
variants and negative data from control trios de novo variants. 
TraP uses transcript-affecting features, specific to intronic and 
synonymous variants.

As opposed to the sSNV-specific tools, more generic 
predictors, including CADD (Kircher et al., 2014), DANN 
(Quang et al., 2014), FATHMM-MKL (Shihab et al., 2015), and 
MutationTaster2 (Schwarz et al., 2014), evaluate synonymous, 
non-synonymous, regulatory and other kinds of variants. CADD 
was developed by training a support vector machine (SVM) 
to differentiate observed vs. simulated variants of all variant 
categories (Kircher et al., 2014). DANN attempts to capture 
nonlinear signals in (CADD-generated) variant data using a 
deep neural network (Quang et al., 2014). FATHMM-MKL is 
a Hidden Markov Model-based method integrating ENCODE 
(Consortium, 2012) functional annotations of SNVs to evaluate 
non-coding and synonymous variants (Shihab et al., 2015). 
MutationTaster2 (Schwarz et al., 2014) uses a naïve Bayes model 
trained on disease variants vs. variants from 1000G variants to 
evaluate all SNVs. Notably, these general-purpose predictors are 
heavily conservation-driven and may lack features to describe 
the subtle changes induced by sSNVs.

All predictors described here are machine learning-based 
[using random forests (RFs), SVMs, or deep neural network] 

and trained to predict pathogenicity, using different data and 
feature sets (Table 1). Supervised machine learning, often used 
for predicting variant effects, requires selecting a proper training/
evaluation set, a number of relevant variant-, gene-, or disease-
features, and an appropriate model for identifying feature 
patterns representative of variant effect/disease-association (Rost 
et al., 2016).

Available Variant Sets Are Limited in Size 
and Reliability
Association between genomic variants and diseases can be 
identified by carefully designed statistical tests, e.g., via 
Genome Wide Association Studies (GWAS) (Visscher et al., 
2012). However, unequivocally identifying variants that cause 
disease are significantly more difficult; this is a particularly 
hard problem for sSNVs, which carry no corresponding 
protein sequence changes. Clinical or experimental validation 
of the causative relationships between genomic variation 
and disease is either infeasible altogether (as for polygenic 
disorders) or exceedingly difficult on a large scale due 
to the necessary resource and time investments. Instead, 
computational annotation of genomic variant pathogenicity 
(or simply functional effects) is a cost- and time-efficient 
substitute, providing a starting point for further experimental 
validation and discovery.

Most predictors described here (regSNPs-splicing, DDIG-SN, 
FATHMM-MKL, and MutationTaster2) collect variants 
identified as causative (positive) from HGMD. The latest version 
of HGMD (March 2017) comprises over 203,000 variants in over 
8,000 genes, manually curated from scientific literature (Stenson 
et al., 2017). Despite its apparent utility, studies have questioned 
the reliability of HGMD data. George et al. (2007), for example, 
point out flaws like inconsistent mutation nomenclature and 
incomplete incorporation of all applicable data. Yue and Moult 
(2006) note that some mutations in HGMD are named causes 
of monogenic disease but are not fully penetrant, while Bell 
et  al. (2011) question disease annotation of recessive variants. 
In a study of 1,000 exomes, Dorschner et al. (2013) note that 
only 16 of 585 of HGMD disease-causing variants were actually 
pathogenic, while in a subsequent study with 6,503 individuals, 
none of the identified 615 HGMD disease-causing variants were 
pathogenic (Amendola et al., 2015). Other studies (Xue et al., 
2012; Cassa et al., 2013) have shown that many disease-causing 
variants in HGMD are present in the relatively healthy 1000G 
individuals (Birney and Soranzo, 2015).

Other sources of positive training/testing data, including 
OMIM (used by TraP) and ClinVar (used by TraP, regSNPs-
splicing, IDSV, CADD, MutationTaster2, and FATHMM-MKL) 
(Landrum et al., 2014), appear no more reliable. Notably, there 
is considerable inconsistency between the HGMD and OMIM 
(George et al., 2007). ClinVar’s entries from different sources 
often conflict between themselves (Landrum and Kattman, 
2018), as the reliability of ClinVar’s data curation and workflow 
of medical interpretation has not been proven (Bauer et al., 
2018). Substantial discordance between ClinVar and laboratory 
test results has also been reported (Gradishar et al., 2017).

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Evaluating Synonymous Variant-Effect PredictorsZeng and Bromberg

4 October 2019 | Volume 10 | Article 914Frontiers in Genetics | www.frontiersin.org

Mutation databases vary drastically (George et al., 2007), not 
in the least because of experimental interpretation differences; 
e.g., roughly 17% of the variant effects reported by different 
laboratories carry contradictory clinical significance (Rehm 
et al., 2015). Labels of pathogenicity are not fixed, switching from 
disease to benign and back as evidence accumulates (Shah et al., 
2018). As these binary labels also do not provide a quantitative 
measure of risk (Shah et al., 2018) or penetrance, the term 
“disease-causing” should be used with caution. One key problem 
in the field, and a reason for many of the above data limitations, 
is the absence of a gold standard for identifying disease-causing 
variants (Dorschner et al., 2013). Moreover, even the “silver-
standard” available annotations are far and few between. In 
fact, while there are many known pathogenic nsSNVs, there 
are currently much fewer known pathogenic sSNVs available: 
dbDSM (Wen et al., 2016) (including those from ClinVar, 
PubMed, NHGRI GWAS catalog (Welter et al., 2013), etc.) 
contains 1,289 pathogenic sSNVs, and HGMD contains roughly 
900 pathogenic sSNVs (Livingstone et al., 2017). Arguably, this 
number is too small to build a generalizable model for evaluating 
tens of millions of the possible synonymous variants in human 
genome. Note that an additional problem is the absence of a true 
negative set of variants, i.e., those that have been verified to have 
no effect on protein function or no relationship to some disease 
(Bromberg et al., 2013).

Use of Allele Frequency to Approximate 
Variant Effect
SilVA was trained on 33 experimentally defined deleterious 
and 785 assumed neutral (observed in 1000G) variants. While 
the former set was very stringently selected, this small number 
of samples could hardly produce a generalizable model. Other 
predictors use less well curated data from available databases, 
but as such run into a problem of reliability. To supplement the 
lack of experimentally annotated variation, variant population 
frequency had been suggested as a sign of effect/pathogenicity; 
i.e., it is generally assumed that disease/effect variants are of low 
allele frequency (Gibson, 2012), although the precise threshold 
for “low” is unclear. Predictors (CADD, DANN, FATHMM-
MKL, SilVA, regSNP-splicing) often filter out effect variants of 
higher frequency and/or neutral variants of lower frequency. 
CADD and DANN training data, for example, contains simulated 
human variants, appearing after human-chimpanzee divergence, 
labelled as the effect group (depleted by natural selection) and 
observed fixed or nearly fixed derived alleles as neutral (Kircher 
et al., 2014; Quang et al., 2014). Note although simulated variants 
are likely enriched in deleterious variants, and CADD scores have 
been shown useful in prioritizing variants in clinical settings 
(Amendola et al., 2015; Nakagomi et al., 2018; Van Der Velde 
et al., 2015), it is difficult to directly link the CADD predictions 
to pathogenicity (Kircher et al., 2014).

TABLE 1 | Summary of sSNV-specific predictors.

Ref/Tool name Training data Model Features Performance

(Buske et al., 2013)
SilVA (2013)

33 deleterious from literature, 
785 neutral from one 1000 
Genomes Project individual

Random forest with 1,001 
trees and default number 
of features

26 in total
• conservation
• RNA properties
• DNA properties
• Splicing

Dataset: 8 DM from literature and 752 
NM from literature and 1000G.
Result: DM’s scores ranked higher 
than NM’s

(Gelfman et al., 2017) 
TraP (2017)

75 DM from literature and 
OMIM and 402 de novo NM 
from control trios

Random forest with 1,000 
trees, each with 

20 in total
• Conservation
• DNA properties
• Splicing

Dataset: 66 DM and 4,418 NM from 
ClinVar.
Result: AUC = 0.88

(Zhang et al., 2017)
regSNPs-splicing (2017)

~655 DM from HGMD and 
~655 NM from 1000G

Random forest with 51 
trees and 35 features at 
each node

455 in total
• Conservation
• RNA properties
• protein properties
• splicing 

Dataset: ~325 DM from HGMD and 
230 DM from ClinVar, ~325 NM from 
1000G and 4,535 NM from ClinVar
Result: For HGMD vs. 1000G data, 
AUC = 0.91 for variants in Splice Sites 
and AUC = 0.82 for all others
For ClinVar data, AUC = 0.85 for 
variants in splice sites and AUC = 0.70 
for the all others

(Livingstone et al., 2017)
DDIG-SN (2017)

592 DM from HGMD and 
10,925 putatively benign from 
1000G

Support Vector Machine 
with radial function kernel

54 in total (including all of the 
26 features used in SilVA)

• conservation
• DNA properties
• RNA properties
• Protein properties
• Splicing

Dataset: 279 DM from HGMD and 
4,945 NM from 1000G
Result: AUC = 0.85

(Shi et al., 2019)
IDSV (2019)

300 DM from dbDSM and 300 
NM from VariSNP

Random forest with 500 
trees and 3 features at 
each split

10 in total
• Conservation
• DNA properties
• Splicing
• Translational efficiency

Dataset: 153 DM and 5,178 NM from 
ClinVar
Result: AUC = 0.87

DM, disease/deleterious mutations; NM, neutral mutations; HGMD, human gene mutation database; 1000G, 1000 genome project; OMIM, online mendelian inheritance in man; 
AUC, area under the ROC curve (axes in Eqn. 1).

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Evaluating Synonymous Variant-Effect PredictorsZeng and Bromberg

5 October 2019 | Volume 10 | Article 914Frontiers in Genetics | www.frontiersin.org

Allele frequency, however, is not necessarily correlated 
with variant effect, particularly when effect being considered 
is “function change” not “disease.” In an earlier study, we 
found that common [minor allele frequency (MAF) > 5%] 
non-synonymous variants were more often predicted to have 
a functional effect than rare (MAF < 1%) ones (Mahlich 
et al., 2017). Here a high-frequency allele may be beneficial/
advantageous and on the way to becoming common, or 
slightly deleterious and on its way out (Bromberg et al., 
2013). Moreover, trivially, allele frequency estimated from the 
sequenced genomes may be subject to change as the number 
of samples increases. Thus, 1) low allele frequency is not 
equivalent to having an effect and 2) although high frequency 
alleles are unlikely to be disease causing, they may have some 
impact. Additionally, and perhaps most fundamentally, note 
that the currently observed SNVs are unlikely a complete 
set of naturally occurring variants, i.e., many SNVs may be 
yet unseen.

Features Used Vary From Predictor 
to Predictor
A variety of features have been considered by predictors as 
described below. Note that the number of features used in existing 
predictors ranges from 26 (SilVA) to 1,281 (FATHMM-MKL).

Conservation
Evolutionary conservation, derived from multiple sequence 
alignments (MSAs) of homologous sequences (Niroula and 
Vihinen, 2016), is perhaps the most extensively used feature of 
variant-effect predictors. Commonly used DNA conservation 
scoring algorithms include GERP (Cooper et al., 2005), phastCons 

(Siepel et al., 2005), and PhyloP (Pollard et al., 2009) scores. 
GERP (Genomic Evolutionary Rate Profiling) is a statistical 
method identifying genomic constrained elements from MSAs. 
GERP uses a statistical model estimating species divergence 
times (Hasegawa et al., 1985) and a structural expectation 
maximization algorithm for phylogenetic inference (Friedman 
et al., 2002); the later GERP++ is a faster version of the original 
(Davydov et al., 2010). phastCons fits MSAs to phylogenetic 
hidden Markov models to identify conserved elements (Siepel et 
al., 2005). The major difference between phastCons and GERP 
is that the former models the size and distribution of conserved 
elements within an MSA, while the latter first individually 
assesses the conservation at a locus and then searches for 
clusters of highly conserved loci (Chen et al., 2010). PhyloP 
combines statistical tests and GERP to detect conservation and 
acceleration in nucleotide substitution rates (Pollard et al., 2009). 
All variant effect predictors use at least one of these conservation 
scoring techniques (Tables 1,  2). DDIG-SN also additionally 
uses protein conservation as conserved protein positions are 
often structurally important (Ng, 2003), suggesting possible 
misfolding due to decreased rate of translation at the relevant 
codon. Similarly, sSNVs may lead to mistranslation (Kramer and 
Farabaugh, 2006; Kramer et al., 2010; Komar, 2016) resulting in 
amino acid substitutions—a particularly problematic occurrence 
at conserved protein positions.

Conservation is a very important signature of variant effect. For 
example, for ClinVar’s missense dataset the solely-conservation-
based component of CADD, GerpS (a derivative of GERP++), as 
well as PhastCons and PhyloP, attained ROC AUCs (area under 
the receiver operating characteristic curve) of over 0.82, while 
CADD’s ROC AUC was only slightly higher (0.93) (Kircher et al., 

TABLE 2 | Summary of generalized SNV predictors.

Ref/Tool name Training data Model Features Performance

(Kircher et al., 2014)
CADD (2014)

13,141,299 SNVs, 627,071 
insertions, and 926,968 deletions 
from simulated and observed 
variant sets

SVM with linear kernel 63 in total
• Conservation
• Variant consequence
• DNA features
• Other 

No testing of synonymous 
variants

(Quang et al., 2014)
DANN (2014)

13,302,220 observed variants; 
13,302,220 simulated variants 
selected from CADD data

Neural network with 3 1,000-
node hidden layers

63 features from CADD All types of variants, amount 
of sSNVs not stated
Dataset: 162,777 observed 
and 162,777 simulated variants 
(including synonymous variants).
Result: Overall accuracy = 0.66

(Shihab et al., 2015)
FATHMM-MKL (2015)

1,073 coding DM from HGMD 
and 1,073 coding NM from 
1000G for 10-feature-group 
model; 3,000 coding DM from 
HGMD and 3,000 coding NM 
from 1000G for 4-feature-group 
model

Multiple kernel learning 1,281 in total
• Conservation
• DNA properties
• Other

Coding variants, amount of 
sSNVs not stated
Dataset: 5-fold cross-validation 
from training data
Result: AUC = 0.93 and 
0.91for 10-feature-group model 
and 4-feature-group model, 
respectively

(Schwarz et al., 2014)
MutationTaster2 (2014)

122,238 DM from ClinVar and 
HGMD; 6,807,269 NM from 
1000G

Bayesian classifier ~ 7 (not explicitly stated) in total
• Conservation
• DNA properties
• Splicing 

No testing of synonymous 
variants

DM, disease/deleterious mutations; NM, neutral mutations; HGMD, human gene mutation database; 1000G, 1000 genome project; AUC, area under the receiver operating 
characteristic curve.
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2014). In FATHMM-MKL’s cross-validation on coding variants, 
its ROC AUCs was = 0.93 while the ROC AUCs for conservation 
scores alone was = 0.91 (Shihab et al., 2015). Similar results are 
observed for DDIG-SN (DDIG-SN’s ROC AUCs = 0.85, PhyloP’s 
ROC AUCs = 0.76) (Livingstone et al., 2017) and TraP (TraP’s 
ROC AUCs = 0.88, GERP++’s ROC AUCs  = 0.87) (Gelfman 
et al., 2017) datasets. These results suggest that over billions of 
years of evolution, nature’s laboratory has tested and discarded 
most of the detrimental variants. However, it is important to 
note that functional tuneability, i.e., development of new or 
environment-specific versions of functions is an ongoing process, 
which requires the presence of variants in positions of all levels of 
conservation, in any given snapshot of a population (Miller et al., 
2017; Miller et al., 2019).

DNA Properties
The DNA properties describing the biological effects of sSNVs 
include but are not limited to localization to transcription factor 
(TF) binding sites, overall GC content of genes and genomes, and 
CpG island locations (cytosine followed by guanine in 5’ to 3’ 
direction). In more detail: many studies have shown that coding 
exons can serve as regulatory elements for transcription (Lang 
et al., 2005; Khan et al., 2012); i.e., roughly 15% of the human 
genome codons both code for amino acids and specify TF 
recognition (Stergachis et al., 2013). Thus, synonymous variants 
in TF-relevant codons can affect TF binding and alter gene 
transcription rates. Exonic and the flanking intronic region GC 
architectures can affect DNA methylation and exon recognition 
(Gelfman et al., 2013). Additionally, CpG sites often host DNA 
methylation (Bernstein et al., 2007), playing an important role 
in gene transcription (Gelfman et al., 2013). As mutation rates 
at CpG dinucleotides are an order higher than at other sites 
(Nachman and Crowell, 2000), sSNVs can thus alter methylation 
patterns by disrupting site-specific GC architectures.

All predictors covered in this manuscript, except regSNPs-
splicing, incorporate one or more of these DNA properties 
(Tables 1, 2).

RNA Properties
Codon bias. The preference (frequency of use) of particular 
codons by specific organisms or tissues is termed codon bias. 
Codon bias correlates with and informs gene expression levels 
(Coghlan and Wolfe, 2000; Carbone et al., 2003; Dos Reis et al., 
2003; Boël et al., 2016; Komar, 2016), translation rate (Sørensen 
et al., 1989), as well as protein structure (Zhou et al., 2009) and 
cotranslational folding (Pechmann and Frydman, 2013; Buhr 
et al., 2016). There are many different metrics describing codon 
bias including codon adaptation index (Sharp and Li, 1987), 
synonymous codon usage order (Angellotti et al., 2007), relative 
synonymous codon usage (Sharp and Li, 1987), etc. Surprisingly, 
only SilVA and DDIG-SN have considered codon bias as a factor 
in their models (Table 1).

A related factor governing translation rate is the supply of 
tRNA during translation. Note that tRNA concentrations are 
different across organisms and that some organisms lack certain 

tRNA altogether, supplementing the necessary functionality via 
third position wobble (Novoa et al., 2012). It is hypothesized 
that codon composition in coding regions coevolved with tRNA 
abundances to reach the desired translation rates (Plotkin and 
Kudla, 2011). tRNA adaptation index (tAI) (Reis et al., 2004), 
used only by IDSV (Table 1), is a measure aimed to describe 
codon bias from the perspective of tRNA supply and demand.

A potentially important feature also missing from all 
predictors is codon autocorrelation. In codon autocorrelated 
sequences, same codons follow each other in sequence, i.e., 
sequence AAABB is more autocorrelated (less anticorrelated) 
than sequence ABABA, where A and B are two codons of the 
same amino acid (Cannarozzi et al., 2010). Autocorrelated 
yeast transcripts are translated faster than anticorrelated ones 
(Cannarozzi et al., 2010) and many prokaryotes modulate 
translation through codon correlation (Guo et al., 2012). Thus, 
using codon correlation may help characterizing sSNV effect.

mRNA structure, stability, and abundance. sSNVs can alter 
mRNA secondary structure, thus impacting translational 
efficiency and mRNA decay rate (Hunt et al., 2014), which, in 
turn, impacts protein production (Komar, 2016) and abundance 
(Maier et al., 2009). mRNA sequences are more stable than 
random collections of nucleotides (Seffens, 1999), suggesting 
that mRNA stability is evolutionarily selected to accommodate 
sufficient levels of translation before decay. The secondary 
structure of mRNAs harbors conserved elements (Meyer, 2005) 
and is tightly interwoven with GC content and codon usage. 
In fact, an earlier study found that 26% of the expressed genes 
display differential mRNA stability across individuals (Duan 
et al., 2013). In these genes, higher GC3 (G or C at the third 
position of the codon) percentage correlated with higher mRNA 
stability. This finding is in line with the fact that among the 
different SNVs, G and C alleles generally result in higher mRNA 
stability than A and T alleles (Duan et al., 2013). Furthermore, 
stability is enhanced in mRNA sequences enriched in optimal 
codons corresponding to tRNAs of higher concentrations 
(Presnyak et al., 2015).

A number of in silico tools have been developed to predict 
the mRNA structure and stability, including mFold (UNAFold) 
(Zuker, 2003; Markham and Zuker, 2008), remuRNA (Salari et al., 
2012), KineFold (Xayaphoummine et al., 2005), and RNAfold 
(ViennaRNA package) (Hofacker, 2003). Note, however, that 
RNA molecules are very thermodynamically flexible and can take 
on many possible structures. Thus, the predicted RNA structure 
and its stability depend on the pre-set prediction strategy, which 
can be aimed to find the minimum free energy structure, the 
structure closest to other possible structures, or to maximize 
expected prediction accuracy, which is difficult for RNAs longer 
than 500 nucleotides (Lorenz et al., 2016). Consequentially, the 
prediction of RNA structure and stability is inherently uncertain. 
Among all the sSNV predictors, only SilVA and DDIG-SN 
use predictive tools to compute the variant-induced changes 
of energy and structures in pre-mRNA and mature mRNA 
sequences (Table 1).

Note that sSNVs, as well as other variant types (Shah and 
Gilchrist, 2010), are particularly relevant to functionality of 
highly expressed genes. Thus, the Genotype-Tissue Expression 
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(GTEx) project’s database containing large-scale human tissue-
specific gene expression data (Lonsdale et al., 2013) can be 
used to establish genes that are likely to manifest sSNV effect. 
However, none of the predictors described here use expression 
information to inform their effect predictions.

Splicing Properties
mRNA splicing is a major predictive feature in some predictors, 
especially regSNPs-splicing and IDSV. It is estimated that up to 
15% of disease SNVs cause aberrant splicing (Krawczak et al., 
1992). sSNVs can impact exonic splicing enhancers (ESEs) and 
silencers (ESSs), i.e., short DNA sequence motifs that promote 
or suppress splicing of pre-mRNA by binding to SR proteins 
(proteins with long repeats of serine and arginine) (Wang and 
Burge, 2008). Moreover, sSNVs can change the affinity of pre-
mRNA to spliceosomes, leading to false recognition of exon-
intron boundaries and producing abnormal mRNAs and 
dysfunctional proteins (Bali and Bebok, 2015). Taken together, 
the sSNVs’ potential of disrupting splicing is the likely reason for 
slower evolution at within-ESE sites (Parmley, 2005).

Predictors describe the potential impact of sSNVs on 
splicing by relying on the identified putative ESE and ESS 
motifs. Identification of these motifs and the corresponding 
splicing regulatory proteins has been an ongoing experimental 
and computational effort (Wang and Burge, 2008; Shepard and 
Hertel, 2009); identified motifs and regulatory proteins are 
available via public repositories (Desmet et al., 2009; Giulietti 
et al., 2013; Xing et al., 2016). Tools such as SPANR (Splicing-
based Analysis of Variants) (Xiong et al., 2015), have also been 
developed to predict the splicing effects of SNVs. Splicing is 
considered by all sSNV-specific predictors, although represented 
via different values.

Protein Properties
One often overlooked aspect in evaluating sSNV effect 
is the protein structure. Rare codon variants of frequent 
synonymous codons may slow down the translation rate due 
to low concentration of tRNAs, slow or stop the elongation 
of the peptide chain (Zhang et al., 2009), and influence 
co-translational folding (Kimchi-Sarfaty et al., 2007; Pechmann 
and Frydman, 2013). Cotranslational folding is closely related 
to the formation of protein secondary and tertiary structures 
(Holtkamp et al., 2015); alpha-helix formation can occur in 
the ribosomal tunnel (Komar, 2009), while tertiary structure 
formation may take place before the protein completely exits 
the ribosome (Zhang and Ignatova, 2011). Translationally 
fast codons are enriched for alpha helices, while beta strands 
and coil regions prefer translationally slow codons (Thanaraj 
and Argos, 1996). Optimal codons are enriched in buried and 
structurally important sites but are negatively correlated with 
solvent accessible sites (Zhou et al., 2009). Pathogenic sSNVs 
are generally enriched within the buried sites, intrinsic disorder 
regions, and alpha-helices, as well as in exons overlapping with 
known or predicted protein family domains (Zhang et al., 
2017). These findings suggest that protein structure should 
be considered when modelling the effects of sSNVs. However, 

only regSNPs-splicing and DDIG-SN predictors incorporate 
protein structural information (Table 1).

EVALUATION OF THE PREDICTORS

Collecting the Evaluation Data Set
sSNV effect predictor evaluation is hampered by three major 
problems: 1) there is no clear definition of neutral and 
effect variants and 2) available neutral/effect experimental 
evaluations are limited, and 3) most have been used in 
predictor development. Here, we created our own data set 
of variants for evaluation purposes as follows: we collected 
the observed sSNVs [all non-singleton sSNVs that have 
been observed in either 1000G, ExAC (Lek et al., 2016), or 
gnomAD (Karczewski et al., 2019)] and the generated sSNVs 
(all possible sSNVs in human genes, excluding observed and 
singleton sSNVs); we thus extracted 1,362,607 observed and 
24,008,961 generated sSNVs. For evaluation purposes, we 
randomly selected 1,362,607 generated variants from our set 
to create a balanced observed/generated variant Test set (details 
in Supplementary Material).

There are multiple equally valid reasons for why nearly 95% 
of all possible sSNVs are not observed; the most obvious ones are 
technical, i.e., insufficient data or sequencing technology bias, 
and evolutionary, i.e., purifying selection, genetic drift, and 
genetic hitch-hiking (Smith and Haigh, 1974). As per the latter, 
we assume that drastically deleterious variants, which would 
be eliminated on a population scale due to purifying selection, 
are significantly more frequent in the set of generated sSNVs 
than in observed ones. However, the former suggests that we 
may have simply not (yet) sequenced many of the un-observed 
(generated) variants, which are actually equivalent in potential 
effect to observed ones. Notably, since a large proportion of 
discovered sSNVs are singletons (Lek et al., 2016), an equivalent 
proportion of similarly neutral or mild-effect variants can likely 
be found on the other side of the “sequencing barrier,” i.e., they 
have yet to be sequenced. Moreover, different categories of 
variants vary in the likelihood of being observed. For example, 
according to the ExAC project, the discovery of CpG transitions 
(C- > T, where C is followed by G) is likely close to saturation, 
while additional transversion and non-CpG transitions are yet 
to be identified (Lek et al., 2016).

We observe that 1) most of the large effect variants are likely 
in the generated set and either 2a) they make up much of that set, 
i.e., the generated set contains mostly effect variants, or 2b) there 
are relatively few of them, i.e., the distribution of effect and neutral 
variants is roughly equivalent across the generated and observed 
variants. Note that if (2a) is true, we expect that a precise and 
sensitive sSNV effect predictor should be able to differentiate the 
observed sSNVs from the generated ones, while (2b) would mean 
that the same predictor would produce similar effect distributions.

Note that our Test set data are collected in a somewhat similar, 
but ultimately very different, way as CADD’s (and DANN’s) 
training data. CADD’s observed variants are the fixed or nearly 
fixed alleles at sites where human genes are different from the 
inferred human-chimpanzee ancestor and thus may encompass 
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our excluded observed singletons. CADD’s simulated variants 
follow an estimated de novo mutation rate since human-
chimpanzee divergence, and thus are a subset of all our variants, 
including generated, observed, and singletons. Importantly, even 
with down-sampling of generated variants to create a balanced 
set, our Test set is much larger (~2.8 million) and more broadly 
defined than CADD’s strictly curated training set (~100,000).

We calculated the enrichment of observed sSNVs relative to 
generated sSNVs separately by amino acid (Figure 2A) and codon 
(Figure 2B) type. We observe that the distribution of naturally 
occurring sSNVs is non-random across amino acids and codons. 
Thus, over a fifth of all tyrosine (Y) and histidine (H) codons in 
our genome is affected by sSNVs, as compared to roughly 8% 
of lysine (K) codons. Curiously, the most mutated codons are 
threonine ACG, serine TCG, and proline CCG (> 43% of each is 
affected by an sSNV) and alanine GCG (37%). Thus, the CG end-
of-codon nucleotide pair seems to indicate least stable codons. 
On the other hand, the isoleucine ATA codon is almost never 
mutated (~1%), suggesting that it is preferentially maintained 
as error free. Moreover, the enrichments of observed sSNVs by 
amino acids (or codon) are not proportional to the abundance 
amino acids (or codon) in human transcriptome. The amino 
acids (e.g., Y, H, N, D) and codons (e.g., ACG, TCG, CCG, GCG, 
TAC, CAC) with high enrichment of observed sSNVs are those 
of low abundances. This decidedly non-random distribution of 
variants across codons and amino acids strongly suggests that 
our generated and observed variants are likely indeed different 
from the evolutionary, and thus likely effect, perspective.

Predictors Do Not Distinguish Observed 
and Generated sSNVs
To the best of our knowledge, our collection of tools (CADD, 
DANN, MutationTaster2, FATHMM-MKL, SilVA, TraP, 
DDIG-SN, regSNP-splicing, and IDSV) make up a complete set of 
publicly available methods for sSNV analysis. We first evaluated 
(Figure S2) the ability of all predictors (except regSNP-splicing, 
which was not functional at the time of writing) to differentiate 
50,000 observed and 50,000 generated sSNVs (Supplementary 
Materials). We did not include IDSV for more further analysis 
because its performance was similar to that of other predictors 
and it was not available for running it locally or online for the 
entire set of our variants. Unfortunately, we also had to exclude 
MutationTaster2, which experienced server problems when 
running large batches of data.

We used CADD, DANN, FATHMM-MKL, SilVA, TraP, and 
DDIG-SN to make predictions for our complete variant Test 
set. We calculated the fraction of consensus binary predictions 
(Figure 3A) (FCBP; i.e., the number of predictions agreed upon) 
for all pairs of predictors and the correlation between scores 
(Figure 3B). As per CADD creators (https://cadd.gs.washington.
edu/info), it is hard to threshold its raw scores, while the 
recommended neutral/deleterious cutoff for phred-scaled scores 
is 15. For the rest of the predictors, we used 0.5 as the binary 
threshold (> 0.5 is deleterious). We observed (Figure 3A) that the 
CADD and other sSNV-specific predictors agree with each other 
because their scores are mostly low (Figures 3F–H). Scores from 
general-purpose predictors do not have high correlation with 

FIGURE 2 | Ratios of observed and generated sSNVs vary across codons and amino acids. Ratios of observed to generated sSNVs (barplot, left axis) affecting 
specific (A) amino acids and (B) codons in the human transcriptome differ. Lines (right axis) in plots indicate the fractions of (A) amino acids and (B) codons (“*” 
is a stop codons). Trivially, 2-codon amino acids are generally enriched for observed sSNVs, while higher degeneracy codons are depleted. However, there is a 
significant difference between the most and least frequent 2-codon amino acid sSNVs. Codons with an NCG pattern (N = any nucleotide) are most often affected by 
sSNVs. On the other hand, codons with a CGN pattern (also CpG) are relatively rarely affected. Note that amino acid degeneracy is correlated with % composition, 
although a single codon is often responsible for coding most of each of these amino acids (e.g. Leucine CTG and Valine CTG).
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sSNV-specific predictors. Meanwhile, DANN and FATHMM-
MKL did not agree with others or between themselves. This lack 
of agreement across the Test set indicates that, in the best case, 
predictors are orthogonal, correctly identifying a different subset 
of variants each or, in the worst case, they are mostly unable to 
recognize effect. Curiously, for each predictor, the distributions of 
sSNV scores of observed and generated variants were very similar 
(Figure 3), i.e., predictors disagreed between themselves and 
with our dataset labels. Note that since the data is large, statistical 
tests to establish their difference could easily achieve significance 
and may not be meaningful (Kim and Bang, 2016). Instead, we 
directly evaluated predictor ability (Table 3) to differentiate the 
two types of variants using ROC AUCs. ROC curve is a plot of 
true positive rate (TPR) against false positive rate (FPR), which 
are computed with true positive (TP), false negative (FN), and 
false positive (FP) (Eqn. 1). No predictor was able to accurately 
differentiate generated and observed variants well. To evaluate the 
variation of different predictors introduced by the sampling of 
the generated set, we also subsampled the observed and generated 

sets for 20 times (each with 100,000 samples) and calculated the 
resulting standard errors of ROC AUCs (Table 3).

 TPR TP
TP FN

FPR FP
FP TN

    ,     =
+

=
+

 (1)

FIGURE 3 | Predictor scores correlate somewhat, but do not differentiate observed vs. generated sSNVs. Panel (A) shows the amount of agreement (i.e., FCBP) 
for any pair of predictors. High FCBP values indicate that two predictors agree in assigning binary (neutral/deleterious) predictions to variants. Panel (B) shows the 
Pearson correlations among the prediction scores. (C–I) Violin/box plots of prediction score distributions across predictors: CADD raw, CADD phred-scaled, DANN, 
FATHMM-MKL, SilVA, TraP, and DDIG-SN, respectively.

TABLE 3 | AUCs of the predictors on sSNVs and nsSNVs.

Observed vs. generated sSNVs Observed 
vs. 

generated 
nsSNVs

AUC on  
Test set

Average of AUCs 
±SD *

CADD raw score 0.518 0.517±0.0012 0.564
CADD phred-scaled score 0.518 0.518±0.0013 0.564
DANN 0.506 0.506±0.0023 0.491
FATHMM-MKL 0.540 0.540±0.0013 0.555
SilVA 0.527 0.527±0.0009
TraP 0.495 0.496±0.0038
DDIG-SN 0.535 0.535±0.0012

*Test set was sampled 20 times (each with 100,000 observed and 100,000 generated 
variants) to produce averages and standard deviations (SD) of AUCs for sSNVs.
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Predictor Performance Is Only Slightly 
Better for nsSNVs Than for sSNVs
As mentioned previously, the unexpected inability of predictors 
(Figure 3) to differentiate observed and generated variants may 
indicate either the inappropriateness of the data set for the 
evaluation task or limited predictor abilities. The latter may 
be related to the specific variant type; i.e., general-purpose 
predictors, such as CADD and FATHMM-MKL, are good 
at analyzing non-synonymous variants (Kircher et al., 2014; 
Shihab et al., 2015), but they may be less sensitive to effects of 
synonymous variants. To evaluate this possibility, we randomly 
selected 500,000 each observed and generated non-synonymous 
variants from dbNSFP (Liu et al., 2011; Liu et al., 2016) and 
extracted their associated predictor scores (see Supplementary 
Material). Briefly, an nsSNV was considered observed if it was 
reported by either 1000G, ExAC, or gnomAD; otherwise it was 
deemed a generated nsSNV. While some of the predictors were 
slightly better at differentiating generated from observed nsSNVs 
(Figure 4, Table 3) than sSNVs, their performance was still not 
up to the expectations. We also calculated FCBP (Figure 4A; 
cutoffs as above) and score correlation (Figure 4B) to find that 
CADD, DANN, and FATHMM-MKL have a considerably higher 
agreement on nsSNVs than on sSNVs (Figure 3A).

Inferring a Predictor Scoring 
Threshold From Prediction of Common 
Variant Effects
The predictor inability to differentiate observed and generated 
variants may also be due to the difficulty of defining effect 
threshold; i.e., variants of low effect are harder to precisely 
annotate, both computationally and experimentally, and can 

be equally well classified as effect or neutral. In an effort to 
increase resolution between the two, predictors often link high 
allele frequency to absence of effect. In fact, CADD, DANN, 
FATHMM-MKL, SilVA, and regSNP-splicing effectively label 
high allele frequency variants as neutral. Taken further, TraP 
scores were reported (Gelfman et al., 2017) to have negative 
correlation (−0.51) with bin-average ExAC allele frequencies 
(Lek et al., 2016). Note that, as mentioned above, this reasoning 
side-steps evolutionary flow where common (not yet fixed or 
removed) variants may be advantageous or damaging. To further 
elaborate on allele frequency relationship with effect predictions, 
we obtained frequency data from multiple sources (1000G, ExAC, 
and gnomAD, see Supplementary Material) for our observed 
variants. Notably, we saw no correlation, positive or negative, 
between allele frequency and any predictor score (Figure 5). This 
observation highlights predictor binary classification abilities 
rather than a continuous spectrum of effect.

For some of the predictors (CADD, SilVA, TraP, DDIG-SN) 
high scoring variants were overwhelmingly of low frequency. 
At the same time, many of the low frequency variants were 
low scoring. Assuming that the predictor scores can be used as 
reliable indicators of common variant neutrality (low scoring), 
this result reinforces the idea that low frequency variants are as 
likely to be pathogenic/effect as neutral/benign. Furthermore, 
common variant score distributions could help approximate the 
predictor thresholds of effect. Thus, while variants scoring above 
a certain threshold can be considered to have an effect, below this 
threshold binary predictor resolution is questionable.

Predictor thresholds were chosen as the score below which 
most (99%) of the common variants (allele frequency >0.01) 
reside (Figure 5). Thus, scores above this threshold indicate 
effect, while scores below the threshold could be effect or neutral. 

FIGURE 4 | Predictor scores correlate, but do not clearly differentiate observed vs. generated nsSNVs. Panel (A) shows the amount of agreement (i.e., FCBP) 
for any pair of predictors. High FCBP values indicate that two predictors agree in assigning binary (neutral/deleterious) predictions to variants. Panel (B) shows 
the Pearson correlations among the prediction scores. (C–F) Violin/box plots of prediction score distributions across predictors: CADD raw, CADD phred-scaled, 
DANN, and FATHMM-MKL, respectively.
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We further applied the selected thresholds to both observed and 
generated sSNVs (Table 4). We define resolution (Eqn 2, where 
“N” stands for number) as a predictor’s ability to capture the 
enrichment of deleterious variants above threshold.

 resolution N
N

sSNVs above the threshold

observe
         =

dd sSNVs

generated sSNVs

generated sSNVs abov

N
N 

   

   
×

ee the threshold   

 (2)

The resolutions were greater than one for all the predictors, with 
CADD attaining the highest resolution (> 2). Note that only a small 
fraction of variants in both sets scored above the threshold, but since 
the total number of generated variants is nearly 18 times higher than 
the number of observed variants, the estimated number of potential 
identifiably-deleterious sSNVs is only an order of magnitude less 
than ALL observed sSNVs (~475K vs. ~1.3M). These results suggest 
that the generated set indeed contains many more deleterious 
variants than the observed set and that a new predictor train to 
recognize these differences may identify deleterious variants more 
reliably than existing methods.

CONCLUSION

Training data is perhaps the most critical component for a 
machine learning-based variant-effect-predictor. Most sSNV 
effect predictors we reviewed, retrieved training data from disease 
mutation databases, such as HGMD and ClinVar. Disease-causing 
variants can be thought of as severely functionally deleterious, 
although non-disease variants could also be deleterious or 
beneficial. Moreover, identifying an sSNV as disease causing, as 
opposed to associated with disease, is extremely difficult, if not 
impossible. In fact, studies have revealed flaws of existing disease 
mutation databases, which may further undermine the reliability 
of the contained data. Progress in saturation genome mutagenesis 
may improve data availability in the near future. Currently, 
however, there is no publicly available, sufficiently large collection 
of variants with experimentally validated effect annotations that 
can be used for building a generalizable sSNV effect-predictor.

The lack of gold standard data also prevents proper evaluation 
of the predictors. Here, we proposed a Test set of observed and 
generated sSNVs. We assumed that the generated set is enriched 
for deleterious sSNVs due to purifying selection and expected 
the predictors to differentiate these from the observed variants. 
However, the predictor performance on this data was below our 
expectations. Note that predictor scores for the variants in our 
set were poorly correlated and the amount of binary prediction 
agreement was limited. This observation suggests that predictions 
may be biased by shared input features, but do not sufficiently 
well indicate variant effect. We proposed a scoring threshold to 
separate reliable predictions from the highly uncertain ones for 
each of the predictor. With the thresholds identified, we further 
observed that all predictors had significantly more reliably 
identified sSNVs in the generated set than in observed set, in line 
with our earlier expectations of the quality and contents of the 

FIGURE 5 | Some predictors assign higher scores to rare variants. In all panels, the scatterplots display the density of observed variant prediction scores vs. 
log10(allele frequency). A scoring threshold (red dashed line) for each predictor identifies scores above the threshold as reliable. The threshold is placed at the score 
that is higher than 99% of common (allele frequency > 0.01) variant scores. (A-G) represents the scatterplot for CADD raw, CADD phred-scaled, DANN, FATHMM-
MKL, SilVA, TraP, and DDIG-SN, respectively.

TABLE 4 | Percentage of sSNVs scoring above threshold and the corresponding 
predictor resolutions.

% Above-the-
threshold sSNVs 

in observed

% above-the-
threshold sSNVs 

in generated

Resolution

CADD raw score 0.871 1.981 2.274
CADD phred-
scaled score

0.868 1.979 2.280

DANN 1.594 2.156 1.352
FATHMM-MKL 1.639 2.522 1.538
SilVA 4.902 6.015 1.227
TraP 2.376 2.912 1.226
DDIG-SN 1.764 2.414 1.368
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Test set. However, the inability of the predictors to clearly identify 
effect variants below the severity threshold, suggests that more 
work is necessary to understand sSNV effects.

We note that our Test set is not a gold-standard testing set and 
is only appropriate for predictor testing only if our underlying 
biological/data distribution assumptions hold. Thus, we cannot 
make concrete recommendations of best-practice prediction 
tools. However, our results clearly indicate that the predictions are 
highly correlated across sSNV-specific methods, i.e., there is little 
difference between using SilVA, DDIG-SN, or TraP. On the other 
hand, outputs of general purpose-predictors (CADD, DANN, 
and FATHMM-MKL) do not correlate as well. Of these, CADD 
phred-scaled scores are least likely to classify common variants 
as having a large effect; i.e., CADD high scores may be deemed 
reliably non-neutral. Note, however, that this does not mean 
that CADD low scores indicate variant neutrality – a necessary 
distinction that evades much of the variant effect literature.

Looking forward to a future sSNV effect-predictor, we note that 
comparing observed vs. generated, rather than effect vs. no-effect, 
variants drastically increases the amount of data useful for 
training. We also note that this variant collection will need further 
filtering to address the problem of false positives, i.e., the yet-to-
be-observed generated variants. Moreover, the transition from 
observed to no-effect and from generated to effect annotations will 
not be trivial. As mentioned earlier, while severe effect variants are 
likely predominantly confined to the generated set, the mild effect 
variation is probably distributed throughout both observed and 
generated collections. Despite these difficulties, the observation 
that existing predictors identify more higher-scoring effect 
variants in the generated data, suggests that the effect signal can 
indeed be learnable by models trained to differentiate observed vs 
generated variants. Thus, a model using the previously mentioned 
set of features, possibly in combination with an ensemble of 
(orthogonal, as evaluated above) existing classifiers, may provide 
a more reliable description of variant effects.
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