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Abstract. In the existing reports regarding free and forced vibrations of the beams, most of them studied a uniform beam carrying
various concentrated elements using Bernoulli-Euler Beam Theory (BET) but without axial force. The purpose of this paper is to
utilize the numerical assembly technique to determine the exact frequency-response amplitudes of the axially-loaded Timoshenko
multi-span beam carrying a number of various concentrated elements (including point masses, rotary inertias, linear springs
and rotational springs) and subjected to a harmonic concentrated force and the exact natural frequencies and mode shapes of
the beam for the free vibration analysis. The model allows analyzing the influence of the shear and axial force and harmonic
concentrated force effects and intermediate concentrated elements on the dynamic behavior of the beams by using Timoshenko
Beam Theory (TBT). At first, the coefficient matrices for the intermediate concentrated elements, an intermediate pinned support,
applied harmonic force, left-end support and right-end support of Timoshenko beam are derived. After the derivation of the
coefficient matrices, the numerical assembly technique is used to establish the overall coefficient matrix for the whole vibrating
system. Finally, solving the equations associated with the last overall coefficient matrix one determines the exact dynamic
response amplitudes of the forced vibrating system corresponding to each specified exciting frequency of the harmonic force.
Equating the determinant of the overall coefficient matrix to zero one determines the natural frequencies of the free vibrating
system (the case of zero harmonic force) and substituting the corresponding values of integration constants into the related
eigenfunctions one determines the associated mode shapes. The calculated vibration amplitudes of the forced vibrating systems
and the natural frequencies of the free vibrating systems are given in tables for different values of the axial force. The dynamic
response amplitudes and the mode shapes are presented in graphs. The effects of axial force and harmonic concentrated force on
the vibration analysis of Timoshenko multi-span beam are also investigated.

Keywords: Axial force effect, dynamic response amplitudes, exact natural frequency, free and forced vibrations, numerical
assembly technique.

1. Introduction

The free and forced vibration characteristics of a uniform beam carrying various concentrated elements (such as
point masses, rotary inertias, linear springs, rotational springs, etc.) is an important problem in engineering. The
situation of structural elements supporting motors or engines attached to them is usual in technological applications.
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The operation of the machine and its dynamic force may introduce severe dynamic stresses on the beam. Thus, a lot
of studies have been published in this area.

The normalmode summation technique to determine the fundamental frequencyof the cantilevered beams carrying
masses and springs was used by Gürgöze [1,2]. Hamdan and Jubran investigated the free and forced vibrations of a
restrained uniform beam carrying an intermediate lumped mass and a rotary inertia [3]. Gürgöze et al. solved the
eigenfrequencies of a cantilevered beam with attached tip mass and a spring-mass system and studied the effect of an
attached spring-mass system on the frequency spectrum of a cantilevered beam [4–6]. Moreover, they studied on two
alternative formulations of the frequency equation of a Bernoulli-Euler beam to which several spring-mass systems
being attached in-span and then solved for the eigenfrequencies. Liu et al. formulated the frequency equation for
beams carrying intermediate concentratedmasses by using the Laplace Transformation Technique [7]. Wu and Chou
obtained the exact solution of the natural frequency values and mode shapes for a beam carrying any number of
spring masses [8]. Gürgöze and Erol investigated the forced vibration responses of a cantilevered beam with single
intermediate support [9,10]. Naguleswaran obtained the natural frequency values of the beams on up to five resilient
supports including ends and carrying several particles by using Bernoulli-Euler Beam Theory and a fourth-order
determinant equated to zero [11,12]. Abu-Hilal studied forced vibration of Bernoulli-Euler beams by using Green
functions [13]. Lin and Chang studied the free vibration analysis of a multi-span Timoshenko beam with an arbitrary
number of flexible constraints by considering the compatibility requirements on each constraint point and using a
transfer matrix method [14]. Lin and Tsai determined the exact natural frequencies together with the associated
mode shapes for Bernoulli-Euler multi-span beam carrying multiple point masses [15]. In the other study, Lin
and Tsai investigated the free vibration characteristics of Bernoulli-Euler multiple-step beam carrying a number of
intermediate lumped masses and rotary inertias [16]. The natural frequencies and mode shapes of Bernoulli-Euler
multi-span beam carrying multiple spring-mass systems were determined by Lin and Tsai [17]. Wang et al. studied
the natural frequencies and mode shapes of a uniform Timoshenko beam carrying multiple intermediate spring-mass
systems with the effects of shear deformation and rotary inertia [18]. Yesilce et al. investigated the effects of attached
spring-mass systems on the free vibration characteristics of the 1–4 span Timoshenko beams [19]. In the other
study, Yesilce and Demirdag described the determination of the natural frequencies of vibration of Timoshenko
multi-span beam carrying multiple spring-mass systems with axial force effect [20]. Lin investigated the free
and forced vibration characteristics of Bernoulli-Euler multi-span beam carrying a number of various concentrated
elements [21]. Yesilce investigated the effect of axial force on the free vibration of Reddy-Bickford multi-span
beam carrying multiple spring-mass systems [22]. Lin investigated the free vibration characteristics of non-uniform
Bernoulli-Euler beam carrying multiple elastic-supported rigid bars [23].

Unfortunately, a suitable example that studies the free and forced vibration analysis of axially-loaded Timoshenko
multi-span beam carrying a number of various concentrated elements and subjected to a harmonic force has not been
investigated by any of the studies in open literature so far. In the presented paper, we describe the determination of
the exact natural frequencies and the exact frequency-response amplitudes of the uniform axially-loadedTimoshenko
multi-span beam carrying a number of various concentrated elements. The dynamic response amplitudes of the
forced vibrating systems and the natural frequencies of the free vibrating systems are calculated, the dynamic
response amplitudes and the first three mode shapes are plotted and the effects of the axial force and the harmonic
concentrated force and the influence of the shear are investigated by using the computer package, Matlab.

2. The mathematical model and formulation

An axially-loaded Timoshenko uniform beam supported by k pins by including those at the two ends of beam,
carrying intermediate concentrated elements (n including point masses, rotary inertias, s linear springs and/or
rotational springs) and subjected to j harmonic forces of the same frequency over bar is presented in (Fig. 1). From
(Fig. 1), the total number of stations is M ′ = k + n + s + f .

The kinds of position coordinates which are used in this study are given below:

xv′ are the position coordinates for the stations, (1 � v′ � M ′),
x∗

p are the position coordinates of the intermediate point masses with rotary inertias, (1 � p � n),
x̄r are the position coordinates of the pinned supports, (1 � r � k),
x′

u are the position coordinates of the linear springs and/or rotational springs, (1 � u � s),
x̂f are the position coordinates of the applied harmonic forces, (1 � f � j).
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Fig. 1. The axially-loaded Timoshenko uniform beam supported by k pins and carrying various intermediate concentrated elements and subjected
to j harmonic concentrated forces.

In (Fig. 1), the symbols of 1′, 2′, . . . , v′, . . . , M ′ − 1, M ′ above the x-axis refer to the numbering of stations.
The symbols of 1, 2, . . . , p, . . . , n below the x-axis refer to the numbering of the intermediate point masses with
rotary inertias. The symbols of (1) , (2) , . . . , (r) , . . . , (k) below the x-axis refer to the numbering of the pinned
supports. The symbols of [1] , [2] , . . . , [u] , . . . , [s] below the x-axis refer to the numbering of the linear springs
and/or rotational springs. The symbols of < 1 >, < 2 >, . . . , < f >, . . . , < j > below the x-axis refer to the
numbering of the applied harmonic forces.

Using Hamilton’s principle, the equations of motion for axially-loaded Timoshenko beam can be written as:

EIx · ∂2θ(x, t)
∂x2

+
AG·
k̄

·
(

∂y (x, t)
∂x

− θ (x, t)
)
− m · ∂2θ (x, t)

∂t2
= Fi (t) · δ (x − xi) (1a)

AG·
k̄

·
(

∂2y (x, t)
∂x2

− ∂θ (x, t)
∂x

)
− N · ∂2y (x, t)

∂x2
− m · Ix

A
· ∂2y (x, t)

∂t2
= 0 (0 � x � L) (1b)
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where y (x, t) represents transverse deflection of the beam; θ (x, t) is the rotation angle due to bending moment; m
is mass per unit length of the beam; N is the axial compressive force; A is the cross-section area; Ix is moment
of inertia; k̄ is the shape factor due to cross-section geometry of the beam; E, G are Young’s modulus and shear
modulus of the beam, respectively; x is the beam position; t is time variable; Fi(t) is a force (with its magnitude
equal to external load per unit length) at time t; δ (x − xi) is the Dirac delta with xi denoting the coordinate at
which the concentrated harmonic force Fi(t) applied. The details for the application of Hamilton’s principle and the
derivation of the equations of motion are presented in Appendix-A at the end of the paper.

The parameters appearing in the foregoing expressions obey the following relationships:

∂y(x, t)
∂x

= θ (x, t) + γ (x, t) (2a)
−
M (x, t) = EIx · ∂θ (x, t)

∂x
(2b)

T (x, t) =
AG

k̄
· γ (x, t) =

AG

k̄
·
(

∂y (x, t)
∂x

− θ (x, t)
)

(2c)

where
−
M (x, t) and T (x, t) are the bending moment function and shear force function, respectively, and γ (x, t) is

the associated shear deformation.
After some manipulations by using Eqs (1) and (2), one obtains the following uncoupled equations of motion for

the axially-loaded Timoshenko beam as:(
1 − N ·k̄

AG

)
· EIx · ∂4y(x,t)

∂x4 + N · ∂2y(x,t)
∂x2 + m · ∂2y(x,t)

∂t2 −
(
1 + E·k̄

G − N ·k̄
AG

)
· ∂4y(x,t)

∂x2·∂t2

+m2·Ix·k̄
A2·G · ∂4y(x,t)

∂t4 = Fi (t) · δ (x − xi)
(3a)(

1 − N ·k̄
AG

)
· EIx · ∂4θ(x,t)

∂x4 + N · ∂2θ(x,t)
∂x2 + m · ∂2θ(x,t)

∂t2 −
(
1 + E·k̄

G − N ·k̄
AG

)
· ∂4θ(x,t)

∂x2·∂t2

+m2·Ix·k̄
A2·G · ∂4θ(x,t)

∂t4 = 0
(3b)

If the applied concentrated force takes the harmonic form as

Fi (t) = F ∗ · sin (ω̄ · t) (4)

then, the displacement and slope functions of the beam can be written by using the method of separation of variables
as:

y(x, t) = φ(x) · sin(ω̄ · t) (5a)

θ(x, t) = θ̄(x) · sin(ω̄ · t) (5b)

where φ(x) and θ̄(x) are the amplitudes of the displacement function and slope function, respectively, and F ∗ is
the amplitude of the applied concentrated harmonic force, ω̄ is the exciting frequency of the applied concentrated
harmonic force.

The solution of Eq. (1) is obtained as:

y(z, t) = φ (z) · sin(ω̄ · t) − F ∗ · L4(
1 − Nr · π2 · EIx · k̄/AG

) · α4
· δ (z − zi) (6a)

θ(z, t) = θ̄(z) · sin(ω̄ · t) (0 � z � 1) (6b)

in which

φ(z) = [C1. cosh(D1.z) + C2. sinh(D1.z) + C3. cos(D2.z) + C4. sin(D2.z)] ;

θ̄(z) = [K3 · C1. sinh(D1.z) + K3 · C2. cosh(D1.z) + K4 · C3. sin(D2.z) − K4 · C4. cos(D2.z)] ;

D1 =

√
1
2
·
(
−β +

√
β2 + 4 · α4

)
; D2 =

√
1
2
·
(
β +

√
β2 + 4 · α4

)
;

β =

[
Nr·π2·EIx

L2 +
(
1 + E·k̄

AG − Nr·π2·EIx·k̄
AG·L2

)
· m·Ix

A · ω̄2
]
· L2(

1 − Nr·π2·EIx·k̄
AG·L2

)
· EIx

;
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α4 =
λ4 · EIx − m2·Ix·k̄·ω̄4·L4

A2·G(
1 − Nr·π2·EIx·k̄

AG·L2

)
· EIx

;

Nr =
N · L2

π2 · EIx
(nondimensionalized multiplication factor for the axial compressive force);

λ = 4

√
m.ω̄2.L4

EIx
(frequency parameter)

K3 =
AG · D1

k̄ · (−EIx · D2
1 − m·Ix

A · ω̄2 + AG
k̄

) ; K4 =
−AG · D2

k̄ · (EIx · D2
2 − m·Ix

A · ω̄2 + AG
k̄

) ;
z = x

L ; C1, . . . , C4 = constants of integration; L = total length of the beam.
The bending moment and shear force functions of the beam with respect to z are given below:

−
M (z, t) =

EIx

L
· dθ (z)

dz
· sin (ω̄ · t) (7a)

T (z, t) =
AG

k̄
·
(

1
L

· dφ (z)
dz

− θ (z)
)
· sin (ω̄ · t) (7b)

The solutions of the free vibrating system can be written as:

y(z, t) = [C1. cosh(D1.z) + C2. sinh(D1.z) + C3. cos(D2.z) + C4. sin(D2.z)] · sin(ω · t) (8a)

θ̄(z, t) = [K3 ·C1. sinh(D1.z)+K3·C2. cosh(D1.z)+K4 ·C3. sin(D2.z)−K4 ·C4. cos(D2.z)]·sin (ω ·t) (8b)

where ω is the natural circular frequency of the free vibrating system.
For the free vibrating systems, the frequency values of the applied concentrated harmonic forces are changed by

the natural frequency values of the free vibrating systems in all equations.

3. Determination of natural frequencies, mode shapes and frequecny-response curves of the beam

The state is written in terms of the values of the displacement, slope, bending moment and shear force functions
at the locations of z and t for Timoshenko beam, as:

{S (z, t)}T =
{

φ (z) θ̄ (z) M̄ (z) T (z)
} · sin (ω̄.t) (9)

where {S (z, t)} shows the state vector.
If the left-end support of the beam is pinned, the boundary conditions for the left-end support are written as:

φ1′ (z = 0) = 0 (10a)

M̄1′ (z = 0) = 0 (10b)

From Eqs (6a) and (7a), the boundary conditions for the left-end pinned support can be written in matrix equation
form as:

[B1′ ] · {C1′} = {0} (11a)

1 2 3 4[
1 0 1 0

K1 0 −K2 0

]
1
2 ·

⎧⎪⎪⎨
⎪⎪⎩

C1′,1
C1′,2
C1′,3
C1′,4

⎫⎪⎪⎬
⎪⎪⎭ =

{
0
0

}
(11b)
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where K1 = EIx·K3·D1
L ; K2 = −EIx·K4·D2

L
If the left-end support of the beam is clamped, the boundary conditions are written as:

φ1′ (z = 0) = 0 (12a)

θ̄1′ (z = 0) = 0 (12b)

From Eqs (6a) and (6b), the boundary conditions for the left-end clamped support can be written in matrix equation
form as:

1 2 3 4[
1 0 1 0
0 K3 0 −K4

]
1
2 ·

⎧⎪⎪⎨
⎪⎪⎩

C1′,1
C1′,2
C1′,3
C1′,4

⎫⎪⎪⎬
⎪⎪⎭ =

{
0
0

}
(13)

The boundary conditions for the pth intermediate concentrated element including point mass, rotary inertia, linear
springs and rotational spring are written by using continuity of deformations, slopes and equilibrium of bending
moments and shear forces, as (the station numbering corresponding to the pth intermediate concentrated element is
represented by p′):

φL
p′ (zp′) = φR

p′ (zp′) (14a)

θ̄L
p′ (zp′) = θ̄R

p′ (zp′) (14b)

M̄L
p′ (zp′) +

(
Jp − Ip · ω̄2

) · θL
p′ (zp′) = M̄R

p′ (zp′) (14c)

T L
p′ (zp′) − (

Rp − mp · ω̄2
) · φL

p′ (zp′) = T R
p′ (zp′) (14d)

where mp is the magnitude of the lumped mass; Ip is the rotary inertia; Rp is the linear spring constant; Jp is the
rotational spring constant; L and R refer to the left side and right side of the pth intermediate concentrated element,
respectively.

In Appendix-B, the boundary conditions for the pth intermediate concentrated element are presented in matrix
equation form.

The boundary conditions for the rth intermediate pinned support are written by using continuity of deformations,
slopes and equilibrium of bending moments, as (the station numbering corresponding to the rth intermediate pinned
support is represented by r′):

φL
r′ (zr′) = φR

r′ (zr′) = 0 (15a)

θ̄L
r′ (zr′) = θ̄R

r′ (zr′) (15b)

M̄L
r′ (zr′) = M̄R

r′ (zr′) (15c)

In Appendix-B, the boundary conditions for the rth intermediate pinned support are presented in matrix equation.
The boundary conditions for the f th intermediate harmonic concentrated force are written by using continuity of

deformations, slopes and equilibrium of bending moments and shear forces, as (the station numbering corresponding
to the f th intermediate harmonic concentrated force is represented byf ′):

φL
f ′ (zf ′) = φR

f ′ (zf ′) (16a)

θ̄L
f ′ (zf ′) = θ̄R

f ′ (zf ′) (16b)

M̄L
f ′ (zf ′) = M̄R

f ′ (zf ′) (16c)

T L
f ′ (zf ′) + F ∗

f ′ = T R
f ′ (zf ′) (16d)

In Appendix-B, the boundary conditions for the f th intermediate harmonic concentrated force are presented in
matrix equation.

If the right-end support of the beam is pinned, the boundary conditions for the right-end support are written as:
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φM ′ (z = 1) = 0 (17a)

M̄M ′ (z = 1) = 0 (17b)

From Eqs (6a) and (7a), the boundary conditions for the right-end pinned support can be written in matrix equation
form as:[

BM ′
] · {CM ′} = {0} (18a)

4M′
i + 1 4M′

i + 2 4M′
i + 3 4M′

i + 4[
cosh (D1) sinh (D1) cos (D2) sin (D2)

K1 · cosh (D1) K1 · sinh (D1) −K2 · cos (D2) −K2 · sin (D2)

]
q − 1

q
·

⎧⎪⎪⎨
⎪⎪⎩

CM ′,1
CM ′,2
CM ′,3
CM ′,4

⎫⎪⎪⎬
⎪⎪⎭ =

{
0
0

}
(18b)

If the right-end support of the beam is free, the boundary conditions are written as:

M̄M ′ (z = 1) = 0 (19a)

TM ′ (z = 1) = 0 (19b)

From Eqs (7a) and (7b), the boundary conditions for the right-end support can be written in matrix equation form
as:

4M′
i + 1 4M′

i + 2 4M′
i + 3 4M′

i + 4[
K1 · cosh (D1) K1 · sinh (D1) −K2 · cos (D2) −K2 · sin (D2)
K5 · sinh (D1) K5 · cosh (D1) K6 · sin (D2) −K6 · cos (D2)

]
q − 1

q
·

⎧⎪⎪⎨
⎪⎪⎩

CM ′,1
CM ′,2
CM ′,3
CM ′,4

⎫⎪⎪⎬
⎪⎪⎭ =

{
0
0

}
(20)

where K5 = AG
k̄

· (D1
L − K3

)
; K6 = AG

k̄
· (−D2

L − K4

)
In Eqs (18) and (20), M ′

i is the total number of intermediate stations and is given by:

M ′
i = M ′ − 2 (21a)

with

M ′ = k + n + s + f (21b)

In Eq. (21b), M ′ is the total number of stations.
In Eqs (18b) and (20), q denotes the total number of equations for integration constants given by

q = 2 + 4 · (M ′ − 2) + 2 (22)

From Eq. (22), it can be seen that; the left-end support of the beam has two equations, each intermediate station
of the beam has four equations and the right-end support of the beam has two equations.

In this paper, the coefficient matrices for left-end support, each intermediate concentrated element, each inter-
mediate pinned support, each applied harmonic force and right-end support of a Timoshenko beam are derived,
respectively. In the next step, the numerical assembly technique is used to establish the overall coefficient matrix for
the whole vibrating system as is given in Eq. (23).

[B] · {C} = {D} (23)

For the case of the free vibrations (in such a case, one must set ω̄ = ω), the applied harmonic force is zero and
Eq. (23) reduces to

[B] · {C} = {0} (24)

For non-trivial solution of the free vibrating system, equating the determinant of the last overall coefficient matrix
to zero one determines the natural frequencies of the free vibrating system as is given in Eq. (25) and substituting of
the last integration constants into the related eigenfunctions one determines the associated mode shapes.

|B| = 0 (25)



742 Y. Yesilce / Free and forced vibrations of an axially-loaded Timoshenko multi-span beam

y 

x 
N N 

0 m1 m2 m3

I1 I2 I3

R1 R2

J1 J2

L1.0

L2.0

L3.0

L4.0

L6.0

L7.0

L8.0

L

Fig. 2. A pinned-pinned Timoshenko beam carrying three intermediate point masses, three rotary inertias, two linear springs, two rotational
springs and with two intermediate pinned supports.

4. Numerical analysis and discussions

In this study, three numerical examples are considered. For the example of the free vibrating system, the first
five frequency parameters, λi (i = 1, . . . , 5) are calculated by using a computer program prepared by author. In
this program, the secant method is used in which determinant values are evaluated for a range (ωi) values. The (ωi)
value causing a sign change between the successive determinant values is a root of frequency equation and means
a frequency for the system. The iterative computations are determined when the value of the determinant changed
sign due to a change of 10−6 in the value of ωi.

For the examples of the forced vibrating systems, the dimensionless vibration amplitudes are calculated at different
locations of the axially-loaded Timoshenko beam carrying various intermediate concentrated elements and subjected
to harmonic concentrated forces.

All numerical results of this paper are obtained based on a uniform, circular Timoshenko beam with the following
data as:

Diameter d = 0.05 m; EIx = 6.34761 × 104 Nm2; m = 15.3875 kg/m; L = 1.0 m; for the shear effect, k̄ = 4/3
and AG= 1.562489231× 108 N; for the axial force effect, Nr = 0, 0.25, 0.50 and 0.75.

4.1. Free vibration analysis of the axially-loaded Timoshenko beam carrying three point masses, three rotary
inertias, two linear springs, two rotational springs and with two intermediate pinned supports

In the first numerical example (see Figs 2 and 3), the uniform pinned-pinned and clamped-free Timoshenko beams
carrying three point masses with rotary inertias at three locations, two linear springs and two rotational springs at
the other two locations and having two intermediate pinned supports are considered. In this numerical example, the
magnitudes and locations of the intermediate point masses are taken as: m1 = (0.10 · m · L), m2 = (0.60 · m · L)
and m3 = (0.80 · m · L) located at z∗1 = 0.10, z∗2 = 0.60 and z∗3 = 0.80, respectively. The given data for the three
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Table 1
The first five frequency parameters of the uniform Timoshenko beam with two intermediate pinned
supports and carrying three point masses, three rotary inertias, two linear springs, two rotational springs
for different values of Nr

Boundary λi (BET) Nr = 0.00 (TBT)
conditions Ref. [21] Nr = 0.00 Nr = 0.25 Nr = 0.50 Nr = 0.75

Pinned-pinned λ1 6.613083 6.517031 6.477434 6.436984 6.395638
λ2 8.214078 8.018377 7.991200 7.963509 7.935285
λ3 9.235993 8.957345 8.929905 8.902323 8.874599
λ4 11.506641 11.062908 11.054649 11.046312 11.037896
λ5 13.353669 12.164230 12.154437 12.144547 12.134560

Clamped-free λ1 4.089879 4.058147 4.057505 4.056363 4.054690
λ2 7.633916 7.491407 7.467522 7.443442 7.419168
λ3 10.002664 9.599952 9.590746 9.581441 9.572034
λ4 10.948062 10.518501 10.498724 10.478822 10.458793
λ5 11.986887 11.680263 11.678383 11.676463 11.674500

Fig. 3. A cantilevered Timoshenko beam carrying three intermediate point masses, three rotary inertias, two linear springs, two rotational springs
and with two intermediate pinned supports.

rotary inertias are: I1 = 0.001 · (m · L3
)
, I2 = 0.002 · (m · L3

)
and I3 = 0.003 · (m · L3

)
; those for the two

linear springs and two rotational springs are: R1 = 10 · (EIx

/
L3
)
, R2 = 20 · (EIx

/
L3
)

and J1 = 3 · (EIx/L),
J2 = 4 · (EIx/L) located at z′1 = 0.20 and z′2 = 0.40, respectively; and two intermediate pinned supports are located
at z̄1 = 0.3 and z̄2 = 0.7. The frequency parameters obtained for the first five modes are presented in (Table 1) being
compared with the frequency parameters obtained for Nr = 0, 0.25, 0.50, and 0.75 and for Nr = 0.75, the first three
mode shapes of the axially-loaded Timoshenko beam with pinned-pinned and clamped-free boundary conditions are
presented in (Figs 4 and 5), respectively.

From (Table 1) one can sees that increasing Nr causes a decrease in the first five mode frequency parameters
for two different boundary conditions, as expected. The frequency parameters obtained for the Timoshenko beam
without the axial force effect in this study are a little less than the values obtained for the Bernoulli-Euler beam in
the reference [21], as expected, since the shear deformation is considered in Timoshenko Beam Theory.
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Fig. 4. The first three mode shapes of the pinned-pinned Timoshenko beam carrying three intermediate point masses, three rotary inertias, two
linear springs, two rotational springs and with two intermediate pinned supports, Nr = 0.75.

Fig. 5. The first three mode shapes of the cantilevered Timoshenko beam carrying three intermediate point masses, three rotary inertias, two
linear springs, two rotational springs and with two intermediate pinned supports, Nr = 0.75.
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Fig. 6. A cantilevered Timoshenko beam with single intermediate pinned support and subjected to a harmonic force.

Fig. 7. The dimensionless vibration amplitudes of the cantilevered Timoshenko beam with single intermediate pinned support and subjected to a
harmonic force for different values of Nr .

4.2. Forced vibration responses of the cantilevered Timoshenko beam with an intermediate pinned support and
subjected to a harmonic concentrated force

In the second numerical example (see Fig. 6), the axially-loaded cantilevered Timoshenko beam with one in-
termediate pinned support and subjected to a harmonic concentrated force (located at ẑ1 = 1.0) is considered. In
this numerical example, the location of intermediate pinned support is at z̄1 = 0.5. The frequency parameter and
magnitude of the applied force are λ =

√
5 and F ∗ = 1.0 N, respectively. The dimensionless vibration amplitudes[

ȳ (z) = y (z) · EIx

/(
F ∗ · L3

)]
obtained for the different locations of Timoshenko beam are presented in (Table 2)

being compared with the dimensionless vibration amplitudes obtained for Nr = 0, 0.25, 0.50, and 0.75 and for Nr =
0 and 0.75, the dimensionless vibration amplitudes of the cantilevered Timoshenko beam with single intermediate
pinned support and subjected to a harmonic force are presented in (Fig. 7).

From (Table 2) one can sees that, as the axial compressive force acting to the beam is increased, the dimensionless
vibration amplitudes of the first span of the beam are increased, but, the dimensionless vibration amplitudes of the
second span are decreased, as expected. The dimensionless vibration amplitudes obtained for the Timoshenko beam
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Table 2
The dimensionless vibration amplitudes at different locations of the cantilevered Timoshenko beam
subjected to a harmonic concentrated force and with an intermediate pinned support for different
values of Nr

Dimensionless Dimensionless vibration amplitudes, ȳ (z)

coordinates (BET) Nr = 0.00 (TBT)
z = x/L Ref. [21] Nr = 0.00 Nr = 0.25 Nr = 0.50 Nr = 0.75

0.00 0.000000 0.000000 0.000000 0.000000 0.000000
0.10 −0.001380 −0.001468 −0.001497 −0.001529 −0.001564
0.20 −0.004136 −0.004266 −0.004353 −0.004450 −0.004557
0.30 −0.006197 −0.006324 −0.006441 −0.006571 −0.006715
0.40 −0.005501 −0.005583 −0.005661 −0.005748 −0.005847
0.50 0.000000 0.000000 0.000000 0.000000 0.000000
0.60 0.011747 0.012056 0.012024 0.012007 0.012000
0.70 0.028814 0.029455 0.029008 0.028600 0.028230
0.80 0.049712 0.050696 0.049062 0.047516 0.046054
0.90 0.073026 0.074353 0.070292 0.066452 0.062814
1.00 0.097467 0.099130 0.090900 0.083219 0.076042

Fig. 8. The pinned-pinned Timoshenko beam shown in (Fig. 2) subjected to a harmonic force.

without the axial force effect in this study are a little more than the values obtained for the Bernoulli-Euler beam in
the reference [21].

4.3. Forced vibration responses of the axially-loaded Timoshenko beam carrying three point masses, three rotary
inertias, two linear springs, two rotational springs with two intermediate pinned supports and subjected to a
harmonic concentrated force

In the third numerical example, the uniform Timoshenko beams shown in (Figs 2 and 3) subjected to a harmonic
concentrated force located at various positions along the beam length are considered (see Figs 8 and 9). For a
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Table 3
The dimensionless vibration amplitudes at different locations of the uniform pinned-
pinned Timoshenko beam with two intermediate pinned supports, subjected to a
harmonic concentrated force and carrying three point masses, three rotary inertias,
two linear springs, two rotational springs for different values ofNr andF ∗ = −1.0N

Dimensionless Dimensionless vibration amplitudes, ȳ (z) × 10−3

coordinates z = x/L Nr = 0.00 Nr = 0.25 Nr = 0.50 Nr = 0.75

0.00 0.000000 0.000000 0.000000 0.000000
0.10 0.134273 0.139518 0.145091 0.151020
0.20 0.169573 0.175575 0.181936 0.188686
0.30 0.000000 0.000000 0.000000 0.000000
0.40 −0.409739 −0.419338 −0.429441 −0.440089
0.50 −0.666766 −0.681219 −0.696413 −0.712410
0.60 −0.414009 −0.423772 −0.434049 −0.444885
0.70 0.000000 0.000000 0.000000 0.000000
0.80 0.172071 0.178272 0.184849 0.191836
0.90 0.137850 0.143352 0.149204 0.155438
1.00 0.000000 0.000000 0.000000 0.000000

Fig. 9. The cantilevered Timoshenko beam shown in (Fig. 3) subjected to a harmonic force.

harmonic forcewith frequencyparameterλ =
√

5 and force amplitudeF ∗ = −1.0N orF ∗ = −4.0N located at ẑ1 =
0.5. The dimensionless vibration amplitudes

[
ȳ (z) = y (z) · EIx

/(
F ∗ · L3

)]
obtained for the different locations of

pinned-pinned Timoshenko beam are presented in (Table 3) for F ∗ = −1.0 N, in (Table 4) for F ∗ = −4.0 N being
compared with the dimensionless vibration amplitudes obtained for Nr = 0, 0.25, 0.50, and 0.75. The dimensionless
vibration amplitudes of cantilevered Timoshenko beam are presented in (Table 5) for F ∗ = −1.0 N, in (Table 6) for
F ∗ = −4.0 N being compared with the dimensionless vibration amplitudes obtained for Nr = 0, 0.25, 0.50, and
0.75. The dimensionless vibration amplitudes of the pinned-pinned Timoshenko beam are presented in (Fig. 10a)
for different values of Nr and F ∗ = −1.0 N, in (Fig. 10b) for different values of F ∗ and Nr = 0.75. Similarly, the
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Table 4
The dimensionless vibration amplitudes at different locations of the uniform pinned-
pinned Timoshenko beam with two intermediate pinned supports, subjected to a
harmonic concentrated force and carrying three point masses, three rotary inertias,
two linear springs, two rotational springs for different values ofNr andF ∗ = −4.0N

Dimensionless Dimensionless vibration amplitudes, ȳ (z) × 10−3

coordinates z = x/L Nr = 0.00 Nr = 0.25 Nr = 0.50 Nr = 0.75

0.00 0.000000 0.000000 0.000000 0.000000
0.10 0.537093 0.558073 0.580364 0.604081
0.20 0.678293 0.702301 0.727743 0.754745
0.30 0.000000 0.000000 0.000000 0.000000
0.40 −1.638958 −1.677352 −1.717762 −1.760356
0.50 −2.667065 −2.724877 −2.785654 −2.849641
0.60 −1.656036 −1.695088 −1.736198 −1.779541
0.70 0.000000 0.000000 0.000000 0.000000
0.80 0.688284 0.713087 0.739396 0.767345
0.90 0.551401 0.573410 0.596818 0.621752
1.00 0.000000 0.000000 0.000000 0.000000

Table 5
The dimensionless vibration amplitudes at different locations of the uniform can-
tilevered Timoshenko beam with two intermediate pinned supports, subjected to a
harmonic concentrated force and carrying three point masses, three rotary inertias,
two linear springs, two rotational springs for different values ofNr andF ∗ = −1.0N

Dimensionless Dimensionless vibration amplitudes, ȳ (z) × 10−3

coordinates z = x/L Nr = 0.00 Nr = 0.25 Nr = 0.50 Nr = 0.75

0.00 0.000000 0.000000 0.000000 0.000000
0.10 0.079386 0.082091 0.084951 0.087978
0.20 0.151405 0.156423 0.161725 0.167335
0.30 0.000000 0.000000 0.000000 0.000000
0.40 −0.492855 −0.505438 −0.518696 −0.532685
0.50 −0.853524 −0.874725 −0.897057 −0.920616
0.60 −0.615733 −0.632234 −0.649628 −0.667991
0.70 0.000000 0.000000 0.000000 0.000000
0.80 0.687902 0.704425 0.721850 0.740253
0.90 1.388322 1.404107 1.420919 1.438844
1.00 2.091165 2.071629 2.052563 2.033985

dimensionless vibration amplitudes of the cantilevered Timoshenko beam are presented in (Fig. 11a) for different
values of Nr and F ∗ = −1.0 N, in (Fig. 11b) for different values of F ∗ and Nr = 0.75.

It can be seen from (Tables 3 and 4) that, as the axial compressive force acting to the beam is increased, all
dimensionless vibration amplitudes of the pinned-pinnedTimoshenko beam are increased. From (Tables 5 and 6) one
can see that, as the axial force is increased, the dimensionless vibration amplitudes of the cantilevered Timoshenko
beam (apart from free end of the beam) are increased. But, the dimensionless vibration amplitudes of the free end of
the cantilevered Timoshenko beam are decreased, as expected. It can be seen from the tables that, as the harmonic
concentrated force applied to the beam is increased for Nr is being constant, all dimensionless vibration amplitudes
of Timoshenko beams are increased for two boundary conditions.

5. Conclusion

In this study, frequency values, frequency parameters and the mode shapes for free vibration of the axially-loaded
Timoshenko multi-span beam carrying a number of various concentrated elements (including point masses, rotary
inertias, linear springs and rotational springs) for different values of axial compressive force. In the first numerical
example, the frequency parameters are determined for Timoshenko beams with and without the axial force effect
and are presented in the tables. The frequency parameters obtained for the Timoshenko beam without the axial force
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Table 6
The dimensionless vibration amplitudes at different locations of the uniform can-
tilevered Timoshenko beam with two intermediate pinned supports, subjected to a
harmonic concentrated force and carrying three point masses, three rotary inertias,
two linear springs, two rotational springs for different values ofNr andF ∗ = −4.0N

Dimensionless Dimensionless vibration amplitudes, ȳ (z) × 10−3

coordinates z = x/L Nr = 0.00 Nr = 0.25 Nr = 0.50 Nr = 0.75

0.00 0.000000 0.000000 0.000000 0.000000
0.10 0.317545 0.328364 0.339802 0.351913
0.20 0.605620 0.625691 0.646898 0.669339
0.30 0.000000 0.000000 0.000000 0.000000
0.40 −1.971420 −2.021752 −2.074784 −2.130741
0.50 −3.414098 −3.498898 −3.588229 −3.682466
0.60 −2.462934 −2.528935 −2.598513 −2.671966
0.70 0.000000 0.000000 0.000000 0.000000
0.80 2.751607 2.817698 2.887400 2.961011
0.90 5.553290 5.616427 5.683678 5.755377
1.00 8.364662 8.286516 8.210254 8.135938

Fig. 10. Thedimensionless vibration amplitudes of the pinned-pinnedTimoshenko beamcarryingfive concentrated elements with two intermediate
pinned supports and subjected to a harmonic force. a. For different values of Nr and F ∗ = −1.0 N; b. For different values of F ∗ and Nr =
0.75.

effect in this study are a little less than the values obtained for the Bernoulli-Euler beam in the reference [21]. The
increase in the value of axial force also causes a decrease in the frequency parameters.

In addition, the exact frequency-response amplitudes of the axially-loaded Timoshenko multi-span beam carrying
a number of various concentrated elements and subjected to a harmonic concentrated force with a specified exciting
frequency are determined in this study for different values of Nr and F ∗. As the axial compressive force acting
to Timoshenko beam is increased, the dimensionless vibration amplitudes (apart from free end of the cantilevered
beam) are increased. This result indicates that, the increasing for the axial compressive force leads to augmentation in
the frequency-response amplitudes of the axially-loaded Timoshenko multi-span beam carrying a number of various
concentrated elements and subjected to a harmonic concentrated force. But, in the frequency-response amplitudes of
the free end of the cantilevered Timoshenko beam, the increasing for the axial compressive force leads to reduction.

As the harmonic concentrated force applied to the beam is increased for Nr is being constant, all frequency-
response amplitudes of axially-loaded Timoshenko multi-span beam carrying a number of various concentrated
elements and subjected to a harmonic concentrated force are increased for two boundary conditions.



750 Y. Yesilce / Free and forced vibrations of an axially-loaded Timoshenko multi-span beam

Fig. 11. The dimensionless vibration amplitudes of the cantilevered Timoshenko beam carrying five concentrated elements with two intermediate
pinned supports and subjected to a harmonic force. a. For different values of Nr and F ∗ = −1.0 N; b. For different values of F ∗ and Nr =
0.75.

Appendix A

The details for the application of Hamilton’s principle and the derivation of the equations of motion are presented
below.

The virtual kinetic energy δV and the virtual potential energy δΠ can be written for an axially-loaded Timoshenko
beam as:

δV =

L∫
0

[
m · ∂y (x, t)

∂t
· ∂δy (x, t)

∂t
+

m · Ix

A
· ∂θ (x, t)

∂t
· ∂δθ (x, t)

∂t

]
· dx (A1)

δ
∏

=

L∫
0

[
EIx · ∂θ (x, t)

∂x
· ∂δθ (x, t)

∂x
+

AG

k̄
·
(

∂y (x, t)
∂x

− θ (x, t)
)
·
(

∂δy (x, t)
∂x

− δθ (x, t)
)

−N
∂y (x, t)

∂x
· ∂δy (x, t)

∂x

]
· dx (A2)

The virtual work δW due to the external dynamic load Fi (t) · δ (x − xi) is given by

δW =

L∫
0

[Fi (t) · δ (x − xi)] · δy (x, t) · dx (A3)

The equations of motion for an axially-loaded Timoshenko beam are derived by applying Hamilton’s principle,
which is given by

δ

t2∫
t1

L∫
0

Lg · dx · dt = 0 (A4)

where

Lg = V −
∏

+W (A5)

is termed as the Lagrangian density function.
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By taking the variation of the Lagrangian density function; integrating Eq. (A4) by parts, and then collecting all
the terms of the integrand with respect to δy(x,t) and δθ (x, t), one can derive the following equations of motion as
the coefficients of δy(x,t) and δθ (x, t):

EIx · ∂2θ(x, t)
∂x2

+
AG·
k̄

·
(

∂y (x, t)
∂x

− θ (x, t)
)
− m · ∂2θ (x, t)

∂t2
= Fi (t) · δ (x − xi) (A6)

AG·
k̄

·
(

∂2y (x, t)
∂x2

− ∂θ (x, t)
∂x

)
− N · ∂2y (x, t)

∂x2
− m · Ix

A
· ∂2y (x, t)

∂t2
= 0 (0 � x � L) (A7)

Appendix B

From Eqs (6)and (7), the boundary conditions for the pth intermediate concentrated element can be written in
matrix equation form as:[

Bp′
] · {Cp′} = {0} (B1)

where{
C′

p

}T =
{

Cp′−1,1 Cp′−1,2 Cp′−1,3 Cp′−1,4 Cp′,1 Cp′,2 Cp′,3 Cp′,4
}

(B2)

4p′ − 3 4p′ − 2 4p′ − 1 4p′ 4p′ + 1 4p′ + 2 4p′ + 3 4p′ + 4

[
B′

p

]
=

⎡
⎢⎢⎣

ch1 sh1 cs2 sn2 −ch1 −sh1 −cs2 −sn2

K3 · sh1 K3 · ch1 K4 · sn2 −K4 · cs2 −K3 · sh1 −K3 · ch1 −K4 · sn2 K4 · cs2

K7 K8 K9 K10 −K1 · ch1 −K1 · sh1 K2 · cs2 K2 · sn2

K11 K12 K13 K14 −K5 · sh1 −K5 · ch1 −K6 · sn2 K6 · cs2

⎤
⎥⎥⎦

4p′ − 1
4p′

4p′ + 1
4p′ + 2

(B3)

ch1 = cosh (D1 · zp′) ; ch2 = cosh (D2 · zp′) ; sh1 = sinh (D1 · zp′) ; sh2 = sinh (D2 · zp′) ;

cs1 = cos (D1 · zp′) ; cs2 = cos (D2 · zp′) ; sn1 = sin (D1 · zp′) ; sn2 = sin (D2 · zp′) ;

K7 = K1 · ch1 − K3 ·
(
Ip · ω̄2 − Jp

) · sh1; K8 = K1 · sh1 − K3 ·
(
Ip · ω̄2 − Jp

) · ch1;

K9 = −K2 · cs2 − K4 ·
(
Ip · ω̄2 − Jp

) · sn2; K10 = −K2 · sn2 + K4 ·
(
Ip · ω̄2 − Jp

) · cs2;

K11 = K5 · sh1 −
(
Rp − mp · ω̄2

) · ch1; K12 = K5 · ch1 −
(
Rp − mp · ω̄2

) · sh1;

K13 = K6 · sn2 −
(
Rp − mp · ω̄2

) · cs2; K14 = −K6 · cs2 −
(
Rp − mp · ω̄2

) · sn2

From Eqs (6) and (7), the boundary conditions for the rth intermediate pinned support can be written in matrix
equation form as:[

Br′
] · {Cr′} = {0} (B4)

where

{C′
r}T =

{
Cr′−1,1 Cr′−1,2 Cr′−1,3 Cr′−1,4 Cr′,1 Cr′,2 Cr′,3 Cr′,4

}
(B5)

4r′ − 3 4r′ − 2 4r′ − 1 4r′ 4r′ + 1 4r′ + 2 4r′ + 3 4r′ + 4

[B′
r]=

⎡
⎢⎣

chr1 shr1 csr2 snr2 0 0 0 0
0 0 0 0 chr1 shr1 csr2 snr2

K3 · shr1 K3 · chr1 K4 · snr2 −K4 · csr2 −K3 · shr1 −K3 · chr1 −K4 · snr2 K4 · csr2

K1 · chr1 K1 · shr1 −K2 · csr2 −K2 · snr2 −K1 · chr1 −K1 · shr1 K2 · csr2 K2 · snr2

⎤
⎥⎦

4r′ − 1
4r′

4r′ + 1
4r′ + 2

(B6)

chr1 = cosh (D1 · zr′) ; chr2 = cosh (D2 · zr′) ; shr1 = sinh (D1 · zr′) ; shr2 = sinh (D2 · zr′) ;

csr1 = cos (D1 · zr′) ; csr2 = cos (D2 · zr′) ; snr1 = sin (D1 · zr′) ; snr2 = sin (D2 · zr′)

From Eqs (6) and (7), the boundary conditions for the f th intermediate harmonic concentrated force can be written
in matrix equation form as:
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[
Bf ′

] · {Cf ′} = {Df ′} (B7)

where

{Cf ′}T =
{

Cf ′−1,1 Cf ′−1,2 Cf ′−1,3 Cf ′−1,4 Cf ′,1 Cf ′,2 Cf ′,3 Cf ′,4
}

(B8)

{Df ′}T =
{

0 0 0 −F ∗} (B9)
4f ′ − 3 4f ′ − 2 4f ′ − 1 4f ′ 4f ′ + 1 4f ′ + 2 4f ′ + 3 4f ′ + 4

[Bf ′ ]=

⎡
⎢⎣

chf1 shf1 csf2 snf2 −chf1 −shf1 −csf2 −snf2

K3 · shf1 K3 · chf1 K4 · snf2 −K4 · csf2 −K3 · shf1 −K3 · chf1 −K4 · snf2 K4 · csf2

K1 · chf1 K1 · shf1 −K2 · csf2 −K2 · snf2 −K1 · chf1 −K1 · shf1 K2 · csf2 K2 · snf2

K5 · shf1 K5 · chf1 K6 · snf2 −K6 · csf2 −K5 · shf1 −K5 · chf1 −K6 · snf2 K6 · csf2

⎤
⎥⎦

4f ′ − 1
4f ′

4f ′ + 1
4f ′ + 2

(B10)

chf1 = cosh (D1 · zf ′) ; chf2 = cosh (D2 · zf ′) ; shf1 = sinh (D1 · zf ′) ; shf2 = sinh (D2 · zf ′) ;

csf1 = cos (D1 · zf ′) ; csf2 = cos (D2 · zf ′) ; snf1 = sin (D1 · zf ′) ; snf2 = sin (D2 · zf ′)
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[4] M. Gürgöze, On the eigenfrequencies of a cantilever beam with attached tip mass and a spring-mass system, Journal of Sound and Vibration

190 (1996), 149–162.
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