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Abstract

The standardized annotation of biomedical related objects, often organized in dedicated cat-
alogues, strongly promoted the organization of biological concepts into controlled vocabu-

laries, i.e. ontologies by which related terms of the underlying biological domain are structured
according to a predefined hierarchy. Indeed large ontologies have been developed by the sci-
entific community to structure and organize the gene and protein taxonomy of all the living
organisms from Archea to Metazoa, i.e. the Gene Ontology, or human specific ontologies, such
as the Human Phenotype Ontology, that provides a structured taxonomy of the abnormal human
phenotypes associated with diseases.

These ontologies, offering a coded and well-defined classification space for biological entities
such as genes and proteins, favor the development of machine learning methods able to predict
features of biological objects like the association between a human gene and a disease, with the
aim to drive wet lab research allowing a reduction of the costs and a more effective usage of the
available research funds.

Despite the soundness of the aforementioned objectives, the resulting multi-label classifi-
cation problems raise so complex machine learning issues that until recently the far common
approach was the “flat” prediction, i.e. simply training a classifier for each term in the con-
trolled vocabulary and ignoring the relationships between terms. This approach was not only
justified by the need to reduce the computational complexity of the learning task, but also by
the somewhat “unstable” nature of the terms composing the controlled vocabularies, because
they were (and are) updated on a monthly basis in a process performed by expert curators and
based on biomedical literature, and wet and in-silico experiments.

In this context, two main general classes of classifiers have been proposed in literature. On
the one hand, “hierarchy-unaware” learning methods predict labels in a “flat” way without
exploiting the inherent structure of the annotation space. On the other hand, “hierarchy-aware”
learning methods can improve the accuracy and the precision of the predictions by considering
the hierarchical relationships between ontology terms. Moreover these methods can guarantee
the consistency of the predicted labels according to the “true path rule”, that is the biological
and logical rule that governs the internal coherence of biological ontologies.

To properly handle the hierarchical relationships linking the ontology terms, two main classes
of structured output methods have been proposed in literature: the first one is based on ker-
nelized methods for structured output spaces, the second on hierarchical ensemble methods for
ontology-based predictions. However both these approaches suffer of significant drawbacks. The
kernel-based methods for structured output space are computationally intensive and do not scale
well when applied to complex multi-label bio-ontologies. Most hierarchical ensemble methods
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have been conceived for tree-structured taxonomies and the few ones specifically developed for
the prediction in DAG-structured output spaces are, in most cases, unable to improve prediction
performances over flat methods.

To overcome these limitations, in this thesis novel “ontology-aware” ensemble methods have
been developed, able to handle DAG-structured ontologies, leveraging previous results obtained
with “true-path-rule”-based hierarchical learning algorithms. These methods are highly modular
in the sense that they adopt a “two-step” learning strategy: in the first step they learn separately
each term of the ontology using flat methods, and in the second they properly combine the flat
predictions according to the hierarchy of the classes.

The main contributions of this thesis are both methodological and experimental. From
a methodological standpoint, novel hierarchical ensemble methods are proposed, including:
a) HTD-DAG (Hierarchical Top-Down algorithm for DAG structured ontologies); b) TPR-
DAG (True Path Rule ensemble for DAG) with several variants; c) ISO-TPR, a novel ensemble
method that combines the True Path Rule approach with Isotonic Regression. For all these
methods a formal proof of their consistency, i.e. the guarantee of providing predictions that
“respect” the hierarchical relationships between classes, is provided.

From an experimental standpoint, extensive genome and ontology-wide results show that the
proposed methods: a) are competitive with state-of-the-art prediction algorithms; b) are able to
improve flat machine learning classifiers, if the base learners can provide non random predictions;
c) are able to predict new associations between genes and human abnormal phenotypes, a crucial
step to discover novel genes associated with human diseases ranging from genetic disorders to
cancer; d) scale nicely with large datasets and bio-ontologies.

Finally HEMDAG, a novel R library implementing the proposed hierarchical ensemble
methods has been developed and publicly delivered.
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Chapter 1

Introduction

In modern biomedical research the integration, manipulation and exchange of information
between researchers are based on the availability of controlled vocabularies used to unam-

biguously annotate different concepts (i.e. molecular function) related to entities (genes and
proteins, just to cite a few) under investigation.

The constant increasing in the volume and in the variety of genomic, metabolomic, transcrip-
tomic and proteomic data is a another characteristic trait of the modern biomedical sciences.
Relevant and exciting problems in this area are, for example, the assignment of functions to
macromolecules, especially proteins, and the association of abnormal phenotypes to genes. Both
these tasks involve complex multi-class, multi-label and multi-path problems that can be mod-
eled as classification or ranking problems. From a computational standpoint both these problems
are challenging for the following reasons:

1. multi-class: the number of ontology classes is usually large. Hundreds for the Functional
Catalogue (FunCat) [1] and thousands for both the Gene Ontology (GO) [2] and the
Human Phenotype Ontology (HPO) [3]. It follows that we need computational methods
that scale well with the number of classes;

2. multi-label: each gene or gene product may be annotated to more than one class at the
same time;

3. multi-sources: high-throughput biotechnologies produce an increasing number of genomic,
transcriptomic and proteomic data. Hence, in order to exploit all the information available
for each gene, we need to integrate different source of data in order to achieve more accurate
predictions [4–7];

4. dependencies among labels: annotations are dependent from each other because the on-
tology terms are hierarchically organized (a direct acyclic graph for both GO and HPO,
a forest of trees for the FunCat [8]). The terms specificity depend on the level they are
located: on the top-level of the hierarchy we find the more general terms, whereas on the
lower level we find the most informative classes from a bio-medical standpoint (i.e. leaves
node);

5. classes are unbalanced: usually the classes are severely unbalanced, with a small core
number of “positive” annotations, and a large number of “negative” annotations;
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6. multiple definitions for negative examples: since typically we assess only the positive mem-
bership to a functional class, the negative instances are not uniquely defined. Nevertheless
different strategies have been proposed in literature to properly select them [9–11];

7. different reliability of functional labels: functional terms are supported by different degrees
of evidence. This means that each label is assigned to a gene with a specific level of
reliability;

8. complex and noisy data: data are usually complex, (e.g., high-dimensional, large-scale,
graph-structured) and noisy;

To deal with the issues described above, several computational approaches were proposed
in literature ranging from sequence-based methods [12–14] to network-based methods [15–17].
However, both these strategies predict labels independently from each other, neglecting the
structural information between classes. It follows that these approaches can introduce major
inconsistencies in the classification, due to the violation of the true path rule, that governs both
the GO [18] and the HPO [19] bio-ontologies. According to this rule, also known as annotation
propagation rule, if a gene is annotated with a given functional term, it must be annotated with
all the parent terms and with all its ancestors in a recursive way. On the contrary if a gene
is not annotated to a term, it cannot be annotated to its offspring. Moreover, flat predictions
are difficult to interpret because they are inconsistent with one another. For example, if we use
the HPO to predict gene-phenotype relationships, a flat classifier can associate to a human gene
the HPO term Hyperplasia of metatarsal bones, but not the parent term Abnormality of the
metatarsal bones, introducing inconsistency since Hypoplasia of metatarsal bones is a subclass
of Abnormalities of the metatarsal bones. Again, if we adopt the GO to catalog the protein
functions, a method that claim, for example, that a protein has a tyrosine binding activity but
not an amino acid binding activity is clearly incorrect and a molecular biologist attempting to
interpret these results would likely not trust either annotations [20]. Besides inconsistency, flat
methods do not exploit the a priori knowledge about the constraints of the hierarchical labeling
thus potentially suffering a reduction in the accuracy of the predictions.

To fill this gap two main classes of structured output prediction methods have been proposed
in literature, i.e. methods able to exploit in the learning process the hierarchical structure of
terms.

The first category of methods exploits joint input and output kernelization techniques based
on large margin methods for structured and interdependent output variables [21–24]. The sec-
ond general class of structured output methods is based on ensembles of learning machines able
to exploit the hierarchical relationship between classes [8,20,25–27]. More in general, both these
families of structured output methods, exploit the hierarchical relationships between terms to
significantly improve the performances of the “flat” approach [28,29]. In addition, the results of
the two international challenge for the Critical Assessment of Functional Annotation, (CAFA [30]
and CAFA2 [31]) emphasized the need of structured-output learning algorithms for predicting a
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subset of GO terms for a given protein or a subgraph of HPO term for a given human gene. In
particular, it is worth noting that one of the best performing method of the CAFA2 challenge
improved flat predictions with an approach similar to that adopted by hierarchical ensemble
methods [32]. More precisely, the hierarchical ensemble methods adopt a two-step learning
strategy: in the first step a learning machine is trained to learn a specific ontology term and
then, in a second step, the resulting prediction are “reconciled” by taking into account the topol-
ogy of the ontology [33–36] Theoretical studies [37] as well as applications in several domains [38]
showed the effectiveness of adopting a hierarchical instead of a flat approach [39]. Indeed hi-
erarchical classification, and in particular ensemble methods for hierarchical classification, have
been successfully applied in several domains, ranging from gene [40–42], to protein [43–45] and
enzyme [46] function prediction, from speech [47, 48] to document [49, 50] classification, from
image [51,52] to music [53,54] and video categorization [55,56].

Even if structured output methods have been successfully applied in the context of biological
ontologies, kernel based methods are not able to nicely scale with large ontologies and large data.
On the other hand, most hierarchical ensemble methods have been applied to tree-structured
ontologies, such as the FunCat, and are not directly applicable to DAG structured ontologies
such as the Gene Ontology or the Human Phenotype Ontology [6,8]. Moreover the few ensemble
methods applied in the context of DAG-structured ontologies showed serious problems to improve
over flat classification methods [20].

For this reason in this thesis novel ontology-aware ensemble methods are proposed, able to
handle DAG-structured taxonomies, to provide consistent predictions and to significantly im-
prove flat prediction methods. Large experimental results, involving genome-wide and ontology-
wide prediction of protein function for six model organisms, show the effectiveness of the pro-
posed approach for the prediction of protein function in the context of the Gene Ontology, and
human genome-wide experiments for the prediction of abnormal phenotypes coded in the Hu-
man Phenotype Ontology show that the newly proposed hierarchical ensemble methods achieve
state-of-the-art results in this challenging prediction task [28].

The thesis is structured as follows. In Chapter 3 we provide a short overview of the main
classes of computational approaches used to predict the protein function in order to properly
contextualize the hierarchical ensemble methods in the state-of-the-art scenario. In Chapter 4 we
describe in detail the proposed hierarchical ensemble algorithms and we also prove that our meth-
ods always provide consistent predictions that obey to the true path rule, that is crucial to assure
biologically predictions coherent with the topology of the ontology. In Chapter 5 we compare
the proposed hierarchical ensemble algorithms with an array of different flat approaches in order
to show that our approaches can improve flat predictions independently of the choice of the base
learner. To accomplish this goal we applied our hierarchical ensemble methods to the GO term
prediction by considering six different model organisms, ranging from nematodes to mammals.
In Chapter 6 we present a genome and ontology-wide experimental comparison of our hierarchical
ensembles with state-of-the-art methods for HPO term prediction and we show that the pro-
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posed approaches can accurately predict novel candidate gene–HPO term associations [28]. In
Chapter 7 we discuss the achieved results and we outline possible future developments. Finally
in Appendix A and B we provide supplementary materials about the experiments performed
respectively in Chapter 5 and 6, whereas in Appendix C we show a step-by-step application of
HEMDAG (the R software library implementing the hierarchical ensemble methods proposed
in Chapter 4) both for the hierarchical prediction of associations between human gene and ab-
normal phenotype and for protein function prediction. The HEMDAG (Hierarchical Ensemble
Methods per DAG) library is publicly available both from cran and bioconda repository under
the GNU General Public License, version 3 (GPL-3.0). The HEMDAG package is available
for Linux, Windows and Macintosh operating systems.
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Chapter 2

Ontologies in Biology and Medicine

Ontologies are controlled vocabularies enabling reasoning at multiple levels in the study
and comparison of complex concepts and entities and are widely used in biomedical re-

search. What makes ontologies attractive for the usage in biomedical research is their ability to
provide standard identifiers for classes and relations that represent complex molecular, physio-
logical and pathological phenomena; to provide a vocabulary for the considered domain and all
its sub domains; to manage metadata that can describe the intended meaning of the terms and
relations between them and, last but not least, their ability to provide machine-readable axioms
and definitions that enable computational access to some aspects of the meaning of terms and
relations. Each of these features enables applications that facilitate data integration, data access
and analysis.

The use of ontologies began in the biological sciences around 1998 with the development
of the Gene Ontology (GO). By 2007, there was sufficient interest and activity in the area to
deserve national and international coordination efforts such as the Open Biomedical Ontologies
(OBO) Foundry or the National Center for Biomedical Ontologies.

At today many ontologies are routinely used in biomedical research. Gene Ontology is used
for the description of gene-related functions and processes and is capable to describe them
at molecular and subcellular level. The Human Phenotype Ontology (HPO) provides a stan-
dardized vocabulary of phenotypic abnormalities encountered in human disease. The Medical
Subject Headings (MeSH) is the medical vocabulary resource curated by the US National Li-
brary of Medicine (NLM) with the aim to provide a hierarchically-organized terminology for
indexing and cataloging of biomedical information such as MEDLINE/PUBmed and other NLM
databases and for the usage in patients diagnosis and treatment-related data management in
public and private hospitals.

The number of actively maintained biomedical ontologies is raising fast. The interested reader
can find an updated list at the OBO Foundry web site (link). Independently by the entities
specifically modeled by the ontology two broad classes of biomedical ontologies can be defined
on the basis of the eventual availability of information about the relationships between the terms
of the considered ontology. In absence of these information the ontology is considered “flat” or
unstructured. When formal definitions of between terms relationships are available (here the
word “formal” refer to the fact that some ontologies have diverse types of terms relationships that
are not semantically equivalent) the ontology is said to be “structured”. Structured ontology can,
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in turn, be divided into two broad categories based on the type of hierarchical structure adopted
to describe the functional relationships between terms: tree structured ontologies and directed
acyclic graphs (DAG) structured ontologies. Given the availability of biomedical ontologies it
is possible to predict the functional role of a broad collection of entities (i.e. genes, transcripts,
genetic variants, proteins) in both physiological and pathological processes with positive impact
on the development of novel clinical protocols or the improvement-refinement of existing ones.

Of great help in this kind of problems is the application of machine learning (ML) methods
able to properly integrate and exploit diverse information about the entities whose functional
prediction is the goal of the learning task. From a learning perspective the availability of
relationships between the terms of the ontology, acting as labels in a multi-class learning problem,
on one hand allow the usage of ML methods able to exploit the interdependencies between the
labels, and this usually translates in better prediction performances, but on the other hand poses
some challenges specifically related to the adaptation of the learning scheme to different types
of structured output space (trees or DAGs).
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Chapter 3

Protein Function Prediction
Methods

Machine learning methods for Automated Function Prediction, can be schematically grouped
in the following four large families:

1. sequence-based methods;

2. network-based methods;

3. kernel-based output structured methods;

4. hierarchical ensemble methods.

This grouping is neither exhaustive nor strict, meaning that certain methods do not belong
to any of these groups, and others belong to more than one.

It is important to note that, although protein functions are clearly dependent (e.g., a protein
can carry-out many functions, which can be further specialized into sub-functions) the methods
described in Section 3.2 and 3.1 predict biological functions independently from each other.
In contrast, the approaches outlined in Section 3.3 and 3.4 explicitly take into account the
hierarchical relationships between labels in order to improve classification performance [28,57].

3.1 Sequence-Based Methods

Sequence-based algorithms represent the first attempts to computationally predict the protein
functions [58–60]. Most of the computational approaches for annotating protein function follow
the “transfer-of-annotation” paradigm where a gene product is compared against a database and
annotated with the function of another protein on the basis of sequence similarity [61]. Such
approaches, inspired by nearest-neighbor methodology, suffers of serious limitations in that they
fail to exploit the inherent hierarchical structure of the annotation space. Nevertheless, it is
important to note that in the CAFA challenge [30] and in the CAFA2 challenge [31] one of the
best performing methods is represented by a sequence-based algorithm [62, 63]. Indeed, when
the only information available is represented by a raw sequence of amino acids or nucleotides,
sequence-based methods can be competitive with state-of-the-art machine learning methods
by exploiting homology-based inference [64]. Finally, algorithms inferring similarities between
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sequences are still nowadays standard approaches used for assigning functions to proteins in
newly sequenced organisms [12,65].

3.2 Network-Based Methods

The availability of large-scale networks, in which nodes are genes/proteins and edges their func-
tional pairwise relationships, has promoted the development of several machine learning methods
where novel annotations are inferred by exploiting the topology of the underlying biomolecu-
lar network. Network-based approaches are able to transfer annotations from previously la-
beled nodes to unlabeled ones by exploiting “proximity relationships” between connected nodes.
These algorithms relied on the so called guilt-by-association (GBA) rule, which makes predic-
tions assuming that interacting proteins are likely to share similar functions [17,66,67]. Indirect
neighbors were also exploited to modify the notion of pairwise-similarities among nodes by con-
sidering the pairs of nodes connected through intermediate ones [68, 69]. Other approaches
exploited the semantic similarity between ontology terms [70, 71] to derive functional similarity
measures between genes to construct functional terms, using then supervised or semi-supervised
learning algorithm to infer ontology annotations of genes [72–75]. Other strategies propagate
the protein function in the network with an iterative process until convergence [76, 77], by tun-
ing the amount of propagation allowed in the graph through Markov random walks [78, 79], by
adopting Hopfield networks to handle the class imbalance problem [80, 81], by evaluating the
functional flow through the graph nodes [82], by exploiting kernelized score functions [83] and
by modeling protein memberships through Markov Random Fields [84] and Gaussian Random
Field [85,86]. Bengio at al. [87] showed that different graph-based algorithms can be cast into a
common framework where a quadratic cost objective function is minimized. In this framework
closed form solutions can be derived by solving a linear system of size equal to the cardinality of
nodes (proteins), or using fast iterative procedures such as the Jacobi method [88]. Cesa-Bianchi
et al [89] proposed a network-based approaches alternative to label propagation and exhibiting
strong theoretical predictive guarantees in the so-called mistake bound model.

3.3 Kernel Methods for Structured Output Spaces

Structured output methods represent a learning problem using a joint representation of the
input-output space, and try to learn a compatibility function f(x, y) that quantifies how related
is an input x (e.g. protein) with a label y of the output space (e.g. set of ontology terms) [21].
More precisely, given a feature space X , a space of structured labels Y and a training set of
labeled examples (xi, yi)ni=1 where xi ∈ X and yi ∈ Y, the structured output methods learn a
compatibility function f : X × Y → R which maps input-output pairs to a score that indicates
how likely is a protein x to be associated with a set of ontology categories. The compatibility
function is expressed as a linear function in a feature space representing the labels and inputs,
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i.e. f(x, y) = wTφ(x, y) where φ(x, y) is the joint input-output feature map and w is a weight
vector. The predicted label ȳ for an input x can be obtained by using the argmax operator:

ȳ = arg max
y∈YC

f(x, y)

where YC ∈ Y is the set of all candidate labels.
In order to obtain correct classification, the compatibility value of the true label (i.e correct

set of ontology annotations) of an input instance (i.e protein) needs to be higher than that of
any other candidate label. This is captured by the following large-margin formulation [21]:

min
w,ε

1
2 ||w||

2
2 + C

n

n∑
i=1

εi

subject to the following constraint:

f(xi, yi) −max
y∈YC

f(xi, yi) ≥ 1− εi i = 1, . . . , n ε ≥ 0 (3.1)

where w is the weight vector, C is a user-specified soft-margin constant, YC is the set of candidate
labels, εi are the slack variables which allow margin violations, and || · ||2 is the L2 norm. The
Equation 3.1 ensures that the compatibility score for the actual label of a protein is higher
than all other candidate labels, and the use of slack variables allow flexibility in satisfying this
constraint.

Ben-Hur and coworkers, proposed a Structured Support Vector Machine (SSVM) approach
for the prediction of GO [29] and HPO terms [24]. The authors named the methods respec-
tively GOstruct and PHENOstruct just to emphasize the different problem domain. Both these
approaches try to maximize the margin, or the difference between the compatibility value for
the actual label and the compatibility for the next best candidate. In the structured-output
setting, kernels correspond to dot products in the joint input-output feature space, and they
are functions of both inputs and outputs. Both GOstruct and PHENOstruct, for the prediction
of ontology terms, use a joint kernel that is a product of the input-space and the output-space
kernels:

K((x1, y1), (x2, y2)) = KX (x1, x2)KY(y1, y2)

The rationale of using a product kernel is that two input/output pairs are considered similar
if they are similar in both their input feature space and their output label space. Recently,
Kahanda et al. proposed an updated version of GOstruct, named GOstrut v2.0, which better
handles the incompleteness of annotations [57].

Structured output maximum-margin algorithms, besides being applied to the GO [29, 57]
and HPO term [24] prediction, have been applied to the tree-structured prediction of enzyme
functions as well [90, 91]. The main limitation of these approaches is that they are computa-
tionally intensive and do not scale well when applied to complex multi-label bio-ontologies, as
GO and HPO.
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3.4 Hierarchical Ensemble Methods

Ensemble methods are one of the main topics of research in machine learning [92–95]. From a
general standpoint, ensemble methods employ a set of learning machines to solve a classification
problem. The advantage is that the combination of many classifiers improve the single one [96].

Protein function prediction (PFP) is a hierarchical multi-label classification (HMC) task,
where a single biological object is associated with more than one label and all these labels are
structured in a hierarchical fashion [45]. Depending of the domain problem, the hierarchical class
structure can assume the form of a tree (e.g., FunCat) or a DAG (e.g., GO). HMC approaches
can be divided into global or local [97]. Global approaches train a single classifier to cope
with the whole classes hierarchy [98]. Local approaches employ reduction strategies to reduce
the problem to smaller problems and then the local solutions are combined to solve the entire
problem [45]. In others words these strategies associate to each node of the hierarchy a local
learning machine. Then, the predictions provided by the trained classifier are assembled in a
“consensus” decision by taking into account the hierarchical information among classes. There
are advantages and drawbacks of using global or local approaches. Global approaches are usually
cheaper than local ones (just one classifier is trained to cope with all the classes), but they
neglect the local modularity in the label hierarchy, such as parent-child, ancestor-descendant
and siblings relationships between different labels. Moreover, global approaches are unable of
handling large scale datasets because the model becomes too complex and time-consuming [99].
Local approaches are more suitable for extracting information from regions of the class hierarchy,
but they are computationally intensive since they are based on a cascade of classifiers. According
to Silla et. al [38] a local classifier can be trained using three different strategies: one local
classifier per node (LCN), one local classifier per parent node (LCPN), and one local classifier
per hierarchical level (LCL). While LCN trains one binary classifier for each class [100], LCPN
induces a multi-class classifier for each parent node in order to predict its child subclasses [101].
Finally, LCL trains one multi-class classifier for each level of the class hierarchy [102].

To properly position our True-Path-Rule ensemble algorithms (discussed in detail in Chap-
ter 4) in the scenario of computational methods for AFP, below we present several cutting-edges
HMC global-based and local-based approaches.

Obozinski and colleagues in [20] proposed several ensemble methods, that they named recon-
ciliation, able to provide consistent predictions, that is predictions whose confidence (i.e., pos-
terior probability) increases ascending from more specific to more general ontology terms. More
precisely, they proposed eleven distinct reconciliation ensemble methods: three heuristic meth-
ods, four variants of a Bayesian network, an extension of logistic regression to the structured case
and three novel projection methods, that is isotonic regression and two variants of a Kullback-
Leibler projection method. These reconciliation approaches achieved outstanding results in the
prediction of functions of mouse (M. musculus) proteins [20]. However, it is important to note
the authors did not analyze the impact of the concurrent use of data integration and hierarchical
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multi-label methods on the overall classification performances. Guan and coworkers in [26] pro-
posed HIER-MB (hierarchical Bayesian combination involving nodes in the Markov Blanket).
HIER-MB modifies the output of SVMs (used as base learners) by considering the Bayesian
network constructed using the Markov blanket surrounding the node (i.e. ontology term) of
interest. The Markov blanket of a node i is represented by its parents, its children and its chil-
dren’s other parents. The Bayesian network involving the Markov blanket of the node i is used
to provide the ensemble prediction. HIER-MB does not take into account the overall topology of
the network, thus its main drawback is represented by the locality of the hierarchical integration,
limited only to the Markov blanket nodes. Alaydie et al. [103] designed HiBLADE (Hierarchical
multi-label Boosting with LAbel DEpendency), an algorithm that takes advantage both of the
predefined hierarchical structure of the labels and of the hidden correlation among the classes
that is not shown through the hierarchy. In particular, the dependencies of the children for each
label in the hierarchy are captured and analyzed using Bayesian method and instance-based sim-
ilarity. Vens et al. [98] investigated three different methods based on Predictive Clustering Trees
(PCT): Clus-HMC, a global-based approach which trains only one decision tree considering all
the classes in the hierarchy, the local-based Clus-SC, which trains a binary decision tree for each
class ignoring the relationships between classes, and the local-based Clus-HSC, which induces
a separate decision tree for each class exploring the hierarchical relationships between them.
In another study, Schietgat and coworkers [33] proposed a bagging strategy (Clus-HMC-Ens)
for combining the decision trees induced by Clus-HMC, enhancing Clus-HMC performances.
Triguero and Vens [104] studied alternatives to perform the final labeling in HMC problems.
The authors evaluated the Clus-HMC-Ens method when it uses single and multiple thresholds
to transform the continuous prediction scores into actual binary labels. The authors proposed
two distinct strategies to select thresholds: optimizing on a given evaluation measure or simu-
lating training set properties in the test set. They concluded that choosing thresholds for each
class lead to an improved label-sets and faster execution time. Bi and Kwok [105] formulated
the HMC as a graph problem of finding the best subgraph in a tree or DAG. The authors em-
ployed Kernel Dependency Estimation (KDE) [106] to reduce the original hierarchy of labels
to a manageable number of single-label learning problems. To preserve the parent-child rela-
tionships among labels, they implemented a generalized Condensing Sort and Select Algorithm
(CSSA) [107], which is used to find approximate subtrees. Cesa-Bianchi and Valentini [6] inves-
tigated the synergy between different local-based strategies related to gene function prediction
(GFP) in FunCat taxonomy. The authors and coworkers integrated kernel-based data fusion
tools and ensemble algorithms with cost-sensitive HMC methods [35,100]. Synergy was defined
as the improvement in the prediction accuracy, considering any evaluation measure, due to the
use of concurrent learning strategies. Synergy is detected if the combination of two strategies
achieves better correct classification rates than the average of the correct classification of the
two strategies used individually [6]. Cerri et al. [45,102,108] proposed HMC-LMLP, Hierarchical
Multi-label Classification with Local Multi-Layer Perceptrons, a local HMC approach based on
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a chain of Multi-Layer Perceptrons (MLPs) with a single hidden layer. HMC-LMLP associates a
MLP neural network to each hierarchical level. Then, the MLP predictions obtained at one level
are used to augment the feature vectors of the instances employed to train the MLP associated
with the next level. A gene product is annotated to a class if its corresponding output in the
MLP is larger than a predefined threshold. Afterwards, in the second step of the hierarchical
classification the inconsistent predictions (i.e. subclasses predicted without the predictions of
their superclasses) are removed. Vateekul et al. [109] introduced a Hierarchical R-SVM system
(HR-SVM) for gene function prediction. The threshold adjustment from R-SVM [110] is used
to mitigate the problem of false negatives in HMC. Yu et al. [27] propose a method to predict
protein function using incomplete hierarchical labels. The idea is to take the hierarchical and
non-hierarchical similarities between functions and define a combined similarity between the la-
bels. This similarity, together with the known labels, is used to estimate the missing functions of
the proteins in the hierarchy. Subsequently, the approach predicts the protein functions by ex-
ploiting the information about their interactions. Sun et al. [111] proposed PLS+OPP, in which
the classification task is formulated as a path selection problem. They used partial least squares
(PLS) to transform the label prediction problem into an optimal-path prediction (OPP) strat-
egy. Each multi-label prediction is a connected subgraph that includes a small number of paths
and the final predictions are provided by merging optimal paths. Zhang et al. [51], proposed
a cost-sensitive method. Similarly to [45], binary classifiers are trained for each node. Next,
a weight matrix is created based on error minimization. Then, both predictions and weights
are combined to provide final predictions. Since the weight matrix scales for a large amount of
classes, parallel computing techniques may be required. Shou et al. [41] proposed a method to en-
hance gene function prediction performance. Firstly, to tackle the imbalanced data set problem,
the authors applied a negative instances selecting policy associated with the SMOTE strategy.
Secondly, they applied a nodes interaction method to combine the results of binary classifiers
and to ensure the hierarchical constraints. Nakano et al. [36] proposed Stacking methods for
protein function prediction and transposable elements classification. Stacking is an ensemble
technique that employs many classifiers to achieve high generalization [112]. More specifically,
Nakano and coworkers proposed three different stacking approaches: Augmented Stacking (AS),
which extends Stacking by building a more robust meta-classifier; Cascade Sacking (CS) which
employs a cascade of stacking where predictions made by previous classifiers are concatenated by
considering the hierarchical constraints; and Cascade Augmented Stacking (CAS) that merely
combines the benefits of the previous methods AS and CS. Caruna et al. [113,114] proposed an
iterative algorithm that starts with an empty ensemble and in each iteration adds a the base
predictor that best improve the resultant ensemble’s performance, partially due to the added
predictor’s complementary to the current ensemble. The process continues until the ensemble’s
performance does not improve anymore or starts decreasing. Wang et al. [115] assessed the
ability of a variety of heterogeneous ensemble methods across a multitude of functional terms,
proteins and organism. The experimental results shown that the ensemble methods, especially
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Stacking using Logistic Regression, produce more accurate predictions for a variety of Gene On-
tology terms differing in size and specificity. Wehrmann et al. [116] proposed an hybrid method
named HMCN, Hierarchical Multi-label Classification Network, which is a multi-output deep
neural network able to concurrently optimize both local and global loss functions. The authors
proposed two distinct variants of HMCN: a more robust feed-forward version (HMCN-F) and
a more efficient recurrent version (HMCN-R) inspired on Long Short Term Memory (LSTM)
networks [117] for encoding hierarchical information. Both HMCN version can be applied to
either tree or DAG structured hierarchies.

In the next chapter the True-Path-Rule-based ensemble algorithms are described in depth
since they represent the “core methods” on which the experiments of this thesis (illustrated in
Chapter 5 and 6) are based.
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Chapter 4

Hierarchical Ensemble Methods for
Directed Acyclic Graphs

In this chapter, we present several novel hierarchical ensemble methods able to provide theoret-
ically guaranteed consistent predictions for any DAG-structured taxonomy and consequently

also for any ontology structured according to a tree. The proposed ensemble learning strategies
can be classified in two general categories. The first one includes the algorithms character-
ized by just one step, that are named Hierarchical Top-Down for DAG (HTD-DAG) [28] 1

and Generalized Pool-Adjacent-Violators (GPAV ) [119]. The second one encompasses ensemble
approaches characterized by a double flow of information, i.e. True Path Rule for DAG (TPR-
DAG) [28] 2, DEScendant Classifier ENSemble (DESCENS) [121] and Isotonic True-Path-Rule
(ISO-TPR) [122].

In their more general form, the proposed hierarchical ensemble methods adopt a two-step
learning strategy [44]:

1. Flat learning of the terms of the ontology. In the first step each base classifier learns a
specific ontology term. This yields a set of independent classification problems, where each
base learning machine is trained to learn a specific class, independently of the other base
learners.

2. Hierarchical combination of the predictions. In the second step the predictions provided by
the trained classifiers are combined by considering the hierarchical relationships between
the base classifiers modeled according to the hierarchy of the underlying bio-ontology.

Figure 4.1 illustrates the two learning steps of hierarchical ensemble methods. In the first
step, a learning machine (represents by an ellipse object in Figure 4.1(a)) is applied to train the
base classifiers (circles) associated with each class (represented with integer numbers from 1 to
n). Then in the second step, the resulting base classifiers exploit the hierarchical relationships
between classes to combine its predictions with those provided by the other base classifiers
(Figure 4.1(b)). Note that a fake node R is added to obtain a rooted hierarchy.

This ensemble approach is highly modular: in principle any learning algorithm can be used
to train the classifiers in the first step, and in the second step the hierarchical relationships

1a preliminary version of HTD-DAG was presented at the iwbbio conference [118]
2a preliminary version of TPR-DAG was presented at the and mcs conference [120]
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(a) (b)

Figure 4.1: Schematic representation of the two main learning steps of hierarchical ensemble methods. (a)
Training of the base classifiers; (b) Hierarchical combination of the base classifiers.

between the ontology terms are exploited to achieve the final ensemble predictions of the set of
classes associated with a specific gene or gene product.

The main limitation of the flat learning of the ontology terms is that each class is separately
learned without taking into account the relationships between classes. Other methods, such as
the ensemble approach proposed in [33] can overcome this limitation by applying a multi-label
classification “global” models to predict all the ontology terms at the same time, explicitly by
considering the relationships between the classes just during the learning process. On the other
hand, the hierarchical ensemble methods proposed here are able to correct the flat predictions,
by splitting in two separate steps the process of flat learning of ontology terms and the process
of evaluating the hierarchical relationships between classes.

Before explaining in detail the proposed hierarchical ensemble methods one-by-one, in the
next section we will give some general and basic notations and definition of DAGs.

4.1 Basic Notations and Definitions

Let G =< V,E > a Directed Acyclic Graph (DAG) with vertices V = {1, 2, . . . , |V |} and
edges e = (i, j) ∈ E, i, j ∈ V . G represents a taxonomy structured as a DAG, whose nodes
i ∈ V represent classes (terms) of the ontology and a directed edge (i, j) ∈ E the hierarchical
relationships between i and j: i is the parent term and j is the child term. The set of children of
a node i is denoted by child(i), the set of its parents by par(i), the set of its ancestors by anc(i)
and the set of its descendants by desc(i). A “flat multi-label scoring” predictor f : X → Y
provides a score f(x) = ŷ, where ŷ ∈ Y = [0, 1]|V | is the flat score for a given example x ∈ X,
with X a suitable input space for the predictor f . In other words a flat predictor provides a
score ŷi ∈ [0, 1] that represents the likelihood that a given gene (or gene product) belongs to a
given node/term i ∈ V of the DAG G, and ŷ =< ŷ1, ŷ2, . . . , ŷ|V | >. We say that the multi-label
scoring y is consistent if it obeys the true path rule:

y is consistent ⇐⇒ ∀i ∈ V, j ∈ par(i)⇒ yj ≥ yi (4.1)

It is straightforward to show that (4.1) holds even with flat classifiers that do not provide a
score but a label ŷi ∈ {0, 1} indicating that a given gene belongs (ŷi = 1) or does not (ŷi = 0)
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to a given bio-ontology term i. From equations 4.1 descends that if we predict that a protein is
annotated with a given term i then to provide consistent predictions the same protein must be
annotated also with all the ancestor terms of i.

In real cases it is very unlikely that a flat multi-label scoring predictor satisfies the true path
rule, since by definition the predictions are performed without considering the hierarchy of the
classes. Nevertheless, by adding an additional topology-aware step we can modify the labeling
and the scores of the flat predictors to obtain a hierarchical classifier that fairly satisfies the
constraints imposed by the true path rule. More precisely, we can provide a prediction function
g (f (x)) : Y → Y such that the true path rule (4.1) holds for all the predictions g (f (x)) = ȳ:
∀i ∈ V, j ∈ par(i)⇒ ȳj ≥ ȳi, where ȳ is the score achieved by the hierarchical classifier.

4.2 Flat Learning of Ontology Terms

The ensemble algorithms first adopts a flat learning strategy by which each term i ∈ V of the
GO is independently learned through a term specific predictor fi : X → [0, 1]. Accordingly, the
output of the flat classifier f : X → Y on the instance x ∈ X is f(x) = ŷ:

f(x) =< f1(x), f2(x), . . . , f|V |(x) >=< ŷ1, ŷ2, . . . , ŷ|V | >

In other words a classifier fi is associated to each GO class i in order to provide a flat evaluation
of the membership of a specific example x ∈ X to the class i.

To this end any supervised or semi-supervised base predictor can be applied, including also
flat binary classifiers. Indeed both learners able to provide a probability or a score related to the
likelihood that a gene product is annotated with a GO term (that is scores ŷi ∈ [0, 1]), and base
binary classifiers that can directly provide a label (but not a score) about the protein-GO term
association (that is a label ŷi ∈ {0, 1}) can be used to generate the flat predictions. Note that
the training of per-class predictors f1, f2, . . . , f|V | can be performed in parallel, and it is easy to
achieve a linear speed-up in the number of the available processors by adopting simple parallel
computational techniques.

4.3 Hierarchical Top-Down ensembles for DAG (HTD-DAG)

The main idea behind the Hierarchical top-down algorithm (HTD-DAG) consists in modifying
the predictions of each base learner from “top to bottom”, i.e. from the least to the most
specific terms by exploiting at each step the predictions provided by the less specific predictors,
e.g. predictors associated to parent terms. This is performed in a recursive way by transmitting
the predictions from each node to the their children, and from the children to the children of the
children through a propagation of the information towards the descendants of each node of the
ontology. For instance in Figure 4.2 (a) the information can flow along the path traversing nodes
1, 5, 6, 7 or 1, 3, 7, and a prediction for e.g. the node 5 depends on the predictions performed
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Figure 4.2: Flow of information in hierarchical ensembles. (a) Top-down flow (b) Bottom-up flow. See text for
more explanations.

by the base learners for the parent nodes 4, 1 and 3. This operating mode of the ensemble is
performed in an ordered way from the top to the bottom nodes (Figure 4.2 (a)).

More precisely, the HTD-DAG algorithm modifies the flat scores according to the hierarchy
of a DAG through a unique run across the nodes of the graph. For a given example x ∈ X, the
flat predictions f(x) = ŷ are hierarchically corrected to ȳ, by per-level visiting the nodes of the
DAG from top to bottom, according to the following simple rule:

ȳi :=


ŷi if i ∈ root(G)
minj∈par(i) ȳj if minj∈par(i) ȳj < ŷi

ŷi otherwise
(4.2)

The node levels correspond to their maximum path length from the root. If p(r, i) represents a
path from the root node r and a node i ∈ V , l (p (r, i)) the length of p(r, i), L = {0, 1, . . . , ξ}
the set of observed levels, with ξ the maximum node level, then ψ : V −→ L is a level function
which assigns each node i ∈ V to its level ψ(i):

ψ(i) = max
p(r,i)

l (p(r, i)) (4.3)

Nodes {i|ψ(i) = 0} correspond to the root nodes, {i|ψ(i) = 1} is the set of nodes with a
maximum path length from the root (distance) equal to 1, and {i|ψ(i) = ξ} are nodes that lie
at a maximum distance ξ from the root. The consistency of the predictions is guaranteed if
and only if the levels are defined according to the maximum path length from the root. In the
Section 4.8 we provide a formal proof of this fact.

The Figure 4.3 shows the pseudo-code of the second step of HTD-DAG algorithm, by which
the flat predictions ŷ computed in the first step are combined and updated according to top-
down per-level traversal of the DAG. The block A of the algorithm (rows 01− 04) computes the
maximum distance of each node from the root; to this end the classical Bellman-Ford algorithm
or the methods based on the Topological Sorting algorithm can be applied [123]. The block B
of the algorithm implements a per-level top-down visit of the graph (rows 05 − 16). Starting

19



�

�

�

�

Figure 4.3: Hierarchical Top-Down algorithm for DAGs (HTD-DAG)

Input:
- G =< V,E >

- ŷ =< ŷ1, ŷ2, . . . , ŷ|V | > (flat predictions)
begin algorithm

01: A. Compute ∀i ∈ V the max distance from root(G):
02: E′ := {e′|e ∈ E, e′ = −e}
03: G′ :=< V,E′ >

04: dist := Bellman.Ford(G′, root(G′))
05: B. Per-level top-down visit of G:
06: ȳroot(G) := ŷroot(G)

07: for each d from 1 to ξ do

08: Nd := {i|dist(i) = d}
09: for each i ∈ Nd do

10: x := minj∈par(i) ȳj
11: if (x < ŷi)
12: ȳi := x

13: else

14: ȳi := ŷi

15: end for

16: end for

end algorithm

Output:
- ȳ =< ȳ1, ȳ2, . . . , ȳ|V | >

from the children of the root (level 1) for each level of the graph the nodes are processed
and the hierarchical top-down correction of the flat predictions ŷi, i ∈ {1, . . . , |V |} is performed
according to equations 4.2, thus obtaining the HTD-DAG ensemble prediction ȳi. More precisely,
the nested loops starting respectively at line 07 and 09 ensure that nodes are processed by level
in an increasing order. Lines 10− 14 perform the hierarchical correction of the flat predictions
ŷi, i ∈ {1, . . . , |V |}. The algorithm ends when nodes at distance ξ from the root are processed
(last iteration of the external loop within lines 07− 16) and it finally provides the hierarchically
corrected predictions ȳ.

The complexity of block A is O(|V | + |E|) (if the Topological Sort algorithm is used to
implement ComputeMaxDist), while it is easy to see that the complexity of block B (rows
3 − 13) is O(|V | + |E|). Hence the overall complexity of the top-down step of HTD-DAG is
O(|V |+ |E|)), that is linear in the number of nodes of the corresponding DAG, considering that
usually the bio-ontologies are sparse.
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4.4 Hierarchical True Path Rule ensembles for DAG (TPR-
DAG)

The HTD-DAG algorithm removes the constraints violations, by propagating towards the bot-
tom of the hierarchy the negative predictions (i.e. instances predicted to be unannotated to an
ontology term), as we can see from the equations 4.2. Consequently, in the worst case, might hap-
pen that the predictions at the leaves nodes (i.e. the most informative classes from a bio-medical
standpoint) are all negatives. To overcome this limitation we introduce the TPR-DAG algorithm,
in which we propagate from bottom to top the positive predictions (i.e. instances predicted to be
annotated to an ontology term), before applying the top-down step. Indeed by considering the
bottom-up flow of information we can construct the prediction of the ensemble by recursively
propagating the predictions provided by the the most specific nodes toward their parents and
ancestors. For instance in Figure 4.2 (b) a possible flow of information could be along the path
8, 5, 4, 2, 1 or 7, 6, 5, 1, and the prediction of the ensemble for e.g. node 3 depends on children
nodes 5, 6 and 7. The proposed TPR-DAG adopts this bottom-up flow of information, to take
into account the predictions of the most specific ontology terms, but also the opposite flow from
top to bottom to consider the predictions of the least specific terms. The Figure 4.4 provides a
pictorial toy example of the operating mode of the TPR-DAG algorithm.

It is important to mention that the TPR-DAG algorithm presented in this thesis is related
to the TPR algorithm for tree-structured taxonomies [8], but despite the similarity of their
names, the TPR for trees cannot be applied to ontology as HPO and GO, since it provides
inconsistent predictions when applied to DAG-structured taxonomies. One difference respect to
the tree-version is that the the per-level traversal of the graph in the DAG-version is performed
in two distinct and strictly separated steps: (1) the bottom-up per-level traversal of the DAG is
followed by (2) a per-level top-down visit. The separation of the bottom-up and top-down
steps is necessary to assure the true path rule consistency of the predictions in DAG-structured
taxonomies (see Section 4.8). On the contrary in the tree-version the per-level traversal is
performed in an “interleaved” fashion, i.e. the bottom-up and top-down traversal are alternated
at each level, [8]. Another main difference consists in the way in which the levels are computed:
in the new DAG version the levels are constructed according to the maximum distance from
the root, since this guarantees that in the top- down step all the ancestor nodes have been
processed before their descendants, assuring so the true path rule consistency of the predictions
(see Section 4.8 for a formal proof of this fact).

The TPR-DAG algorithm provides a “consensus” ensemble predictions by integrating the
flat predictions ŷi through a per-level visit of the DAG:

ȳi := 1
1 + |φi|

(ŷi +
∑
j∈φi

ȳj) (4.4)

where φi are the “positive” children of i.
Note that only positive predictions of the children obey the true path rule. Indeed, according
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Figure 4.4: A toy example of the operating mode of the TPR-DAG method. Left: The nodes represent the
terms of a bio-ontology and the numeric values the flat scores associated to each node of the graph. The different
colors represent the levels, i.e. the maximum distance of the node from the root node A. Center: The bottom-up
step introduces a correction of the flat scores by taking into account the scores of the children of each node. This
procedure is methodically repeated from the bottom to the top nodes of the DAG; as an example, the bottom
part shows that the correction for the F node is performed by averaging the flat score of the F parent node with
those of the “positive” children, i.e. that children nodes having a value larger than that of the F parent node.
Right: The Top-down step introduces a further correction by taking into account the scores of the parent nodes,
by methodically parsing this time the DAG from the root node A down to descendant nodes; as an example, the
bottom part of the figure shows that the score of the F node is set to the minimum of the bottom-up scores of F
and that of its parents A, B and C.

to this rule, we may have a gene (or gene product) annotated to a term t, but not annotated to
a terms s ∈ child(t). Hence if we have a negative prediction for the terms s it is not meaningful
to use this prediction to predict the term t. It is worth noting that we can combine children
predictions using aggregation strategies other than the average. For instance using the maximum,
we could likely improve the sensitivity, but with a plausible decrement of the precision. Different
strategies to select the “positive” children φi can be applied, according to the usage of a specific
threshold to separate positive from negative examples:

1. Constant Threshold (T) strategy. For each node the same threshold t̄ is a priori selected:
tj = t̄, ∀j ∈ V . In this case ∀i ∈ V we have:

φi := {j ∈ child(i)|ȳj > t̄} (4.5)

For instance if the predictions represent probabilities it could be meaningful to a priori
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select t̄ = 0.5.

2. Adaptive Threshold (AT) strategy. The threshold is selected to maximize some perfor-
mance metric M estimated on the training data, e.g. the F-score or the AUPRC. In
other words the threshold is selected to maximize some measure of accuracy of the pre-
dictionsM(j, t) on the training data for the class j with respect to the threshold t. The
corresponding set of positives ∀i ∈ V is:

φi := {j ∈ child(i)|ȳj > t∗j , t
∗
j = arg max

t
M(j, t)} (4.6)

For instance internal cross-validation can be used to select t∗j from a set of t ∈ (0, 1).

3. Threshold Free (TF) strategy. This strategy does not require an a priori or experimentally
selected threshold. We select as positive those children that increment the score of their
parent node i:

φi := {j ∈ child(i)|ȳj > ŷi} (4.7)

Consequently, we can derive three different algorithmic variants from the “vanilla” TPR:

a) TPR-T: TPR with constant threshold, corresponding to strategy 1);

b) TPR-AT: TPR with adaptive thresholds, corresponding to strategy 2);

c) TPR-TF: TPR threshold-free, corresponding to strategy 3).

All the three variants of the TPR-DAG algorithms propagate the positive predictions to-
wards the parents and recursively towards the ancestors of each node, moving in such way the
predictions from bottom to top. The high-level pseudo-code of the TPR-DAG algorithm is
shown in Figure 4.5. It is structured into three parts. The block A computes the maximum
distances of each node Vi from the root via the Bellman-Ford algorithm (row 01). The block B
(rows 02 − 09) performs a bottom-up visit of the graph and updates the predictions ȳi of the
TPR-DAG ensemble according to the equation 4.4 and together with one of the three positive
selection strategies described above. It is worth noting that this step assures the propagation
of positive predictions, but it does not guarantee their consistency. This is accomplished by the
block C (rows 10 − 21) that simply performs a hierarchical top-down step, in the same way of
the HTD-DAG algorithm.

The complexity of the TPR-DAG algorithm is quadratic in the number of nodes for the
block A, but can be O(|V |+ |E|) if the Topological Sort algorithm is used instead. It is easy to
see that the complexity is O(|V |) for both the B and C blocks when graphs are sparse. Hence,
by considering the sparseness of the bio-ontology, the algorithm is linear with respect to the
number of the terms of the considered ontology.

To modulate the contribution to the ensemble prediction of the parent node and its chil-
dren, we design a TPR-DAG variant similar to the weighted True Path Rule algorithms for
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Figure 4.5: Hierarchical True Path Rule algorithm for DAGs (TPR-DAG)

Input:
- G =< V,E >

- V = {1, 2, . . . , |V |}
- ŷ =< ŷ1, ŷ2, . . . , ŷ|V | >, ŷi ∈ [0, 1]
begin algorithm

01: A. dist := ComputeMaxDist (G, root(G))
02: B. Per-level bottom-up visit of G:
03: for each d from max(dist) to 0 do

04: Nd := {i|dist(i) = d}
05: for each i ∈ Nd do

06: Select the set φi of “positive” children
07: ȳi := 1

1+|φi|(ŷi +
∑
j∈φi

ȳj)
08: end for

09: end for

10: C. Per-level top-down visit of G:
11: ŷ := ȳ

12: for each d from 1 to max(dist) do

13: Nd := {i|dist(i) = d}
14: for each i ∈ Nd do

15: x := minj∈par(i) ȳj
16: if (x < ŷi)
17: ȳi := x

18: else

19: ȳi := ŷi

20: end for

21: end for

end algorithm

Output:
- ȳ =< ȳ1, ȳ2, . . . , ȳ|V | >

tree-structured taxonomies [6]. This variant, that we named TPR-Weighted (TPR-W), can be
obtained simply by substituting the row 07 of the TPR-DAG algorithm with the following line
of pseudo-code:

ȳi := wŷi + (1− w)
|φi|

∑
j∈φi

ȳj (4.8)

In this approach a weight w ∈ [0, 1] is added to balance between the contribution of the node
i and that of its “positive” children. If w = 1 no weight is attributed to the children and the

24



TPR-DAG reduces to the HTD-DAG algorithm, since in this way only the prediction for node
i is used in the bottom-up step of the algorithm. If w = 0 only the predictors associated to the
children nodes “vote” to predict node i. In the intermediate cases for increasing values of w we
attribute more importance to the predictor for the node i with respect to its children and for
decreasing values of w we put more weight on children.

A different way to implement a weighting strategy could be also pursued not only considering
balancing between the predictions on node i and nodes j ∈ child(i), but including also weighting
with respect to the estimated accuracy of each base learner, estimated e.g. by internal cross-
validation.

4.5 Descendant Classifier Ensemble (DESCENS)

The novelty of DESCENS with respect to TPR-DAG algorithm consists in strongly considering
the contribution of all the descendants of each node instead of only that of its children. Indeed,
as shown in the TPR tree-version [8], the contribution of the descendants of a given node
decays exponentially with their distance from the node itself, and it is easy to see that this is
true also for the TPR-DAG algorithm. On the contrary, the DESCENS predictions are more
influenced by the information embedded in the leaves nodes, that are the classes containing the
most informative and meaningful information from a biological and medical standpoint. The
pseudo-code of the DESCENS algorithm is shown in the Figure 4.6.

By looking at the pseudo-code of the DESCENS algorithm (Figure 4.6) it easy to see that
the main difference respect to the TPR-DAG algorithm (Figure 4.5) consists in the selection
of the set of “positive” descendants ∆i of a node i instead of the set of “positive” children φi

in the bottom-up step (block B rows 06 − 07). For the choice of the “positive” descendants
we can use the same strategies adopted for the selection of the “positive” children in the TPR-
DAG algorithm (see 4.4).

Furthermore, we added a new variant specific only for DESCENS algorithm, that we named
DESCENS-τ . DESCENS-τ balances the contribution between the “positive” children of a node
i and that of its “positive” descendants excluding its children by adding a weight τ ∈ [0, 1]:

ȳi := τ

1 + |φi|
(ŷi +

∑
j∈φi

ȳj) + 1− τ
1 + |δi|

(ŷi +
∑
j∈δi

ȳj) (4.9)

where φi are the “positive” children of i and δi = ∆i\φi the descendants of i without its children.
If τ = 1 we consider only the contribution of the “positive” children of i, and if τ = 0 only the
descendants that are not children contribute to the score, while for intermediate values of τ we
can balance the contribution of φi and δi positive nodes.

Considering the sparseness of the bio-ontologies, it is easy to see that the overall computa-
tional complexity of DESCENS algorithm is O(|V |).
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Figure 4.6: DEScendant Classifier ENSemble for DAGs (DESCENS)

Input:
- G =< V,E >

- V = {1, 2, . . . , |V |}
- ŷ =< ŷ1, ŷ2, . . . , ŷ|V | >, ŷi ∈ [0, 1]
begin algorithm

01: A. dist := ∀i ∈ V ComputeMaxDist (G, root(G))
02: B. Per-level bottom-up visit of G:
03: for each d from max(dist) to 0 do

04: Nd := {i|dist(i) = d}
05: for each i ∈ Nd do

06: Select the set ∆i of “positive” descendants
07: ȳi := 1

1+|∆i|(ŷi +
∑
j∈∆i

ȳj)
08: end for

09: end for

10: C. Per-level top-down visit of G:
11: ŷ := ȳ

12: for each d from 1 to max(dist) do

13: Nd := {i|dist(i) = d}
14: for each i ∈ Nd do

15: x := minj∈parents(i) ȳj
16: if (x < ŷi)
17: ȳi := x

18: else

19: ȳi := ŷi

20: end for

21: end for

end algorithm

Output:
- ȳ =< ȳ1, ȳ2, . . . , ȳ|V | >

4.6 Generalized Pool-Adjacent-Violators (GPAV)

Another strategy to make flat predictions coherent with the underlying ontology predictions is
to apply the isotonic regression or monotonic regression [124]. More precisely, the monotonic
regression problem (MR) involves finding a weighted least-squares fit x ∈ Rn to a vector y ∈ Rn

with weights vector w ∈ Rn subject to a set of given constraints of the kind xi ≤ xj . Such
constraints define a partial or a total ordering and can be represented as a directed acyclic
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graph G(V,E), where V = {1, 2, 3 . . . |V |} is the set of nodes and E is the set of pairs (i, j)
∀(i, j) ∈ V . Each node is associated with an observed value and each edge is associated with
one monotonicity relationship. The MR problem can be formulated as follow. Given a vector of
observed values y ∈ Rn, a strictly positive vector of weights w ∈ Rn and a directed acyclic graph
G(V,E), we must find the vector of fitted values x? ∈ Rn that solves the following problem:

min
∑
i∈V wi(xi − yi)2

s.t. xi ≤ xj ∀(i, j) ∈ E
(4.10)

In other words, the MR problem involves finding among all vectors x ∈ Rn which preserve the
monotonicity relationships, the one closest to the vector of observed values y ∈ Rn in the least
square sense. Since the problem 4.10 is a strictly convex quadratic programming problem, its
solution x? is unique.

It is easy to solve the problem 4.10 when the constraints are in the simple form:

x1 ≤ x2 ≤ . . . x|V | (4.11)

i.e., when the associated graphG(V,E) is a path. For this special case of complete order, the most
efficient and widely used algorithm is the Pool-Adjacent-Violators algorithm (PAV) [125, 126],
which computational complexity is O(|V |) [127]. On the contrary, to solve the general MR
problem 4.10, the conventional quadratic programming algorithms [128] can be used only when
the number of observations is quite small (up to few hundred). In addition, the existing approx-
imate MR algorithms [129, 130] are characterized either by a high computational complexity
O(|V |4) [131, 132] (which is prohibitive for large V ) or by a too low accuracy of their solu-
tions [119].

Burdakov and coworkers [133] proposed an approximate algorithm, that combines both low
computational complexity and high accuracy, to figure out the problem 4.10. They named
this algorithm Generalized Pool-Adjacent-Violators (GPAV ), because it can be viewed as a
generalization of the PAV algorithm. GPAV generates some splitting of the set of nodes V into
disjoint block of nodes. The subset of nodes B ⊂ V is called block if, for any i, j ∈ B, all the
nodes in all the paths from i to j belong to B. For each nodes i ∈ V , we denote the set of its
immediate predecessors {j ∈ V : (j, i) ∈ E} by i−. The block Bi is said to be adjacent to Bj
(or an immediate predecessor for Bj), if there exist k ∈ Bi and l ∈ Bj such that k ∈ l−. Let
B−i denote the set of all blocks adjacent to block Bi. GPAV associates each block with one of
its upper nodes, which is called head node. If i is the head node for some block, this block is
denoted by Bi. The set of all head nodes is denoted by H. The set of blocks {Bi}i∈H , where
H ⊂ V is called a block partitioning of V if⋃

i∈H
Bi = V

and
Bi ∩Bj = ∅, ∀i 6= j, i, j ∈ H.
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For any point x ∈ Rn feasible in 4.10, the set of nodes V can be uniquely partitioned into
disjoint subsets using the following principles [119]:

• if j ∈ i− and xi = xj , then i and j belong to the same subset;

• if xi 6= xj then i and j belong to different subsets;

• if there is no path connecting the node i and j, they belong to different subsets;

It is easy to see that these subsets are blocks and that for any block Bk

xi = Uk ∀i ∈ Bk

where Uk denotes the common value of the components x associated to the block Bk. Uk is
computed as follow:

Uk =
∑
i∈Bk

wiyi

Wk
(4.12)

where Wk

Wk =
∑
i∈Bk

wi

denote the weight of the block Bk.
The pseudo-code of the GPAV algorithm is shown in Figure 4.7 (adapted from [119]).

GPAV assumes that the nodes V of the directed acyclic graph G(V,E) have a topological order.
GPAV starts by setting Bi = i and B−i = i−∀i ∈ V and then works with blocks. GPAV treats
the blocks in the order consistent with the topological sort, i.e. B1, B2, B3 . . . B|V |. For each
block Bk its common value 4.12 is compared with those of its adjacent blocks. While exists
an adjacent violator of the monotonicity, the block Bk absorbs the one with the most severe
violation and inherits the list of blocks adjacent to the absorbed one. Therefore, the common
value Uk is updated. The “absorption” operation is repeated until all the constraints involving
a block Bk and its adjacent ones are satisfied. GPAV algorithm deals with a reduced acyclic
graph of blocks, which is initially identical to G(N,E). The graph shrinks whenever one block
absorbs another one. This assures the low computational complexity of the GPAV algorithm,
that is estimated to be O(|V |2) [119].
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Figure 4.7: Generalized Pool-Adjacent-Violators (GPAV)

Input:
- G =< V,E >

- V = {1, 2, . . . , |V |} topologically ordered;
- ŷ =< ŷ1, ŷ2, . . . , ŷ|V | >, ŷi ∈ [0, 1]
- w =< w1, w2, . . . , w|V | >, wi ∈ [0, 1]
begin algorithm

01: set H = V

02: ∀i ∈ V set Bi = {i}; B−i = i−; Ui = ŷi; Wi = wi;
03: for each k from 1 to |V | do

04: while exists i ∈ B−k such that Ui > Uk do

05: find j ∈ B−k such that Uj := max{Ui : i ∈ B−k }
06: H := H \ {j}
07: B−k := B−j ∪B

−
k \ {j}

08: Uk := (WkUK +WjUK)/(Wk +Wj)
09: Bk := Bk ∪Bj
10: Wk := Wk +Wj

11: ∀i ∈ H such that j ∈ B−i set B−i := B−i ∪ {k} \ {j}
12: end while

13 ∀i ∈ Bk and ∀k ∈ H set ȳ := Uk

14: end for

end algorithm

Output:
- ȳ =< ȳ1, ȳ2, . . . , ȳ|V | >

4.7 Isotonic True-Path-Rule for DAG (ISO-TPR)

Simply by replacing the top-down step of the TPR-DAG algorithm (block C of the pseudo-code
shows in Figure 4.5) with the GPAV approach (Figure 4.7) we design the ISO-TPR algorithm,
whose pseudo-code is shown in Figure 4.8.

The most important feature of ISO-TPR is that it maintains the hierarchical constraints by
construction and selects the closest solution (in the sense of the least squared error) to the flat
predictions that obeys to the true path rule.

Variants of the ISO-TPR algorithm can be easily designed. For instance, if in the bottom-up
step of the ISO-TPR pseudo-code (block B) we consider the “positive” descendants instead of
the “positive” children we design the algorithm variant ISO-DESCENS. Obviously, the choice of
the “positive” children (or descendants) can be done by adopting any of the strategies shown in
Section 4.4. Finally, it easy to see the overall complexity of the ISO-TPR algorithm is O(|V |2).
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Figure 4.8: Isotonic True-Path-Rule for DAG (ISO-TPR)

Input:
- G =< V,E >

- V = {1, 2, . . . , |V |}
- ŷ =< ŷ1, ŷ2, . . . , ŷ|V | >, ŷi ∈ [0, 1]
- w =< w1, w2, . . . , w|V | >, wi ∈ [0, 1]
begin algorithm

01: A. dist := ∀i ∈ V ComputeMaxDist (G, root(G))
02: B. Per-level bottom-up visit of G:
03: for each d from max(dist) to 0 do

04: Nd := {i|dist(i) = d}
05: for each i ∈ Nd do

06: Select the set φi of “positive” children
07: ȳi := 1

1+|φi|(ŷi +
∑
j∈φi

ȳj)
08: end for

09: end for

10: C. GPAV algorithm
12: ŷ := ȳ

14: V = {1, 2, . . . , |V |} topologically ordered;
14: H := V

15: ∀i ∈ V set Bi = {i}; B−i = i−; Ui = ŷi; Wi = wi;
16: for each k from 1 to |V | do

17: while exists i ∈ B−k such that Ui > Uk do

18: find j ∈ B−k such that Uj := max{Ui : i ∈ B−k }
19: H := H \ {j}
20: B−k := B−j ∪B

−
k \ {j}

21: Uk := (WkUK +WjUK)/(Wk +Wj)
22: Bk := Bk ∪Bj
23: Wk := Wk +Wj

24: ∀i ∈ Bk and ∀k ∈ H set ȳ := Uk

25: end while

26: ȳ := Uk ∀i ∈ Bk and ∀k ∈ H
27: end for

end algorithm

Output:
- ȳ =< ȳ1, ȳ2, . . . , ȳ|V | >
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4.8 Correctness and Consistency of the Predictions

Hierarchical ensemble methods can improve flat predictions by reducing both the number of
false positives (FP ) and of false negatives (FN). For instance, the Figure 4.9 shows that
hierarchical ensembles can correct FN flat predictions to TP for the gene RGS9 (regulator of
G-protein signaling 9) that encodes a member of the RGS family of GTPase whose mutations
cause bradyopsia [134]. Instead by looking at the Figure 4.10 we can observe the ability of

FN TP FN TP

FN TP

TP TP TP TP

FN FN

FN FN

FN TP

FN FN

CORRECT PREDICTION FOR BOTH

NOT  IMPROVED PREDICTION

IMPROVED PREDICTION

SVM

TPR-W

LEGEND

Figure 4.9: Flat and hierarchical (TPR-W) HPO predictions for the gene RGS9. The boxes close to each
HPO term display the correct (TP or TN) or incorrect (FP or FN) predictions made respective by flat-SVM
(purple rectangles) and by hierarchical-TPR-W (blue rectangles). Green rectangles represent correct predictions
for both flat and hierarchical methods; light-red rectangles represent the predictions that the hierarchical method
was able to correct respect to flat method (FN → TP ), while the orange rectangles represent the incorrect
predictions that the hierarchical method was not able to correct respect to the flat method.

hierarchical ensembles of correcting FP to TN for the gene ENAM (enamelin) that encodes the
largest protein in the enamel matrix whose deficiency is associated with amelogenesis imperfecta
type 1C [135]. More precisely, the ensemble variant TPR-W was able to “recover” four TP and
correct six FP to TN (red rectangles of Figure 4.9 and Figure 4.10). It is worth nothing that the
hierarchical ensemble methods can improve but they cannot always guarantee the correctness
of all the predictions. Indeed when the flat predicted scores are too “weak”, the hierarchical
ensembles algorithms may fail in improving the recovery of FP or FN . For example, in Figure 4.9
and Figure 4.10 we can observe how TPR-W fails in removing respectively three FN and FP
(orange rectangles).
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Figure 4.10: Flat and hierarchical (TPR-W) HPO predictions for the gene ENAM. The boxes close to each
HPO term display the correct (TP or TN) or incorrect (FP or FN) predictions made respective by flat-SVM
(purple rectangles) and by hierarchical-TPR-W (blue rectangles). Green rectangles represent correct predictions
for both flat and hierarchical methods; light-red rectangles represent the predictions that the hierarchical method
was able to correct respect to flat method (FP → TN), while the orange rectangles represent the incorrect
predictions that the hierarchical method was not able to correct respect to the flat method.

On the other hand, the hierarchical ensemble methods can guarantee the consistency of the
predictions, i.e they provide predictions that always obey the true path rule. To this end we
must visit the hierarchical taxonomy according to the maximum and not the minimum distance
from the root. The Figure 4.11 shows an intuitive example of this fact. Indeed by looking at
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Figure 4.11: Levels defined in terms of the minimum distance from the root (node 1) lead to inconsistent
predictions. The small numbers close to nodes correspond to the ŷi scores of the flat predictions. The Hierarchical
top-down scores obtained respectively by crossing the levels according to the minimum and the maximum distance
from the root are shown in the bottom-left. Scores in boldface represent inconsistent predictions.
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the HTD-DAG scores obtained respectively with the minimum and maximum distance from the
root in the bottom-left corner of the Figure 4.11), we can see that only the maximum distance
preserves the consistency of the predictions. For instance, focusing on node 5, by traversing the
DAG levels according to the minimum distance from the root, we have that the level of node
5 is 1 (ψmin(5) = 1) and in this case by applying the HTD-DAG rule (eq. 4.2) the flat score
ŷ5 = 0.8 is wrongly modified with the HTD-DAG ensemble score ȳ5 = 0.7. If we instead traverse
the DAG levels according to the maximum distance from the root, we have ψmax(5) = 3 and the
HTD-DAG ensemble score is correctly set to ȳ5 = 0.3. In other words at the end of the HTD-
DAG, by traversing the levels according to the minimum distance we have ȳ5 = 0.7 > ȳ4 = 0.3.
Therefore a child node has a score larger the score of its parent and the true path rule is not
preserved. On the contrary by traversing the levels according to the maximum distance we
achieve ȳ5 = 0.3 ≤ ȳ4 = 0.3 and the true path rule consistency is assured. This is due to the
fact that by adopting the minimum distance when we visit node 5, node 4 has not just been
visited, and hence the value 0.4 has not been transmitted by node 2 to node 4; on the contrary
if we visit the DAG according to the maximum distance all the ancestors of node 5 (including
node 4) have just been visited and the score 0.4 is correctly transmitted to node 5 along the
path 2→ 4→ 5.
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Figure 4.12: Flat and hierarchical (TPR-W) HPO predictions for the gene C1QC. The numbers close to each
predicted HPO term represent flat (yellow rectangles) and hierarchically corrected (green) scores. The TPR-
W predictions obey the true-path rule (the scores of the parent nodes are always larger or equal than that
of their children nodes), while flat predictions are inconsistent for 5 HPO terms highlighted in light-red: Au-
toimmunity, Abnormality of complement system, Abnormal renal physiology, Abnormality of the nephron and
Glomerulonephritis.
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Instead Figure 4.12 shows a real example of the capability of obtaining hierarchically cor-
rected consistent predictions starting from inconsistent flat predictions by considering the gene
C1QC (complement C1q C chain), that encodes a 18 polypeptide chains protein whose deficiency
is associated with lupus erythematosus and glomerulonephritis [136].

To prove that the hierarchical ensemble methods provide consistent prediction with the
topology of the ontology, we need the following lemma:

Lemma 1. Given a DAG G =< V,E >, a level function ψ that assigns to each node its
maximum path length from the root (equation 4.3), it holds that ∀i ∈ V , ψ(j) < ψ(i) ∀j ∈ par(i).

Proof. The proof is based on the optimal-substructure property holding for the longest path
problem in DAGs, that is a longest path between two vertices contains other longest path within
it [137]. Indeed, let p̄(r, i) be the longest path from r = root(G) to node i ∈ V , and suppose
that there exists j ∈ par(i) such that ψ(j) ≥ ψ(i). Let p̄(r, j) be the path between r and j

whose length is ψ(j) (that is the longest path between them). Note that the path p(r, j) does
not contain the node i, otherwise the DAG would contain a cycle. By adding the edge (j, i)
to p̄(r, j), we obtain a path from r to i whose length is ψ(j) + 1 > ψ(i), which contradicts the
hypothesis that p̄(r, i) is the longest path between nodes r and i.

By using Lemma 1, we can prove that the the top-down visit of the DAG obeys the true
path rule:

Theorem 1. Given a DAG G =< V,E >, a level function ψ that assigns to each node its maxi-
mum path length from the root and the set of HTD-DAG flat predictions ŷ =< ŷ1, ŷ2, . . . , ŷ|V | >,
the top-down hierarchical correction of the HTD-DAG algorithm assures that the set of ensemble
predictions ȳ =< ȳ1, ȳ2, . . . , ȳ|V | > satisfies the following property:

∀i ∈ V, j ∈ par(i)⇒ ȳj ≥ ȳi

Proof. For an arbitrary node i ∈ V , when it is processed by the top-down step of HTD-DAG
algorithm, we may have two basic cases:

1. i ∈ root(G). By applying the HTD-DAG rule (equation 4.2) we set ȳi := ŷi and the
property j ∈ par(i)⇒ ȳj ≥ ȳi trivially holds, since par(i) = ∅.

2. i /∈ root(G). We may have two cases:

(a) ŷi ≤ minj∈par(i) ŷj . In this case the HTD-DAG rule (4.2) of the main manuscript sets
ȳi := ŷi and hence it holds that j ∈ par(i)⇒ ȳj ≥ ȳi.

(b) ŷi > minj∈par(i) ȳj . In this case by applying (4.2) of the main manuscript we have
ȳi := minj∈par(i)ȳj and hence also in this case the property j ∈ par(i) ⇒ ȳj ≥ ȳi

holds.

34



Summarizing, in all cases we have that j ∈ par(i)⇒ ȳj ≥ ȳi, after the node i has been processed.
Moreover, we note that for the currently processed node i both ȳi and ȳj , j ∈ par(i) will not
be further changed by the “per level” top-down visit of the HTD-DAG algorithm. Indeed, the
score ȳi is modified only once, since each node is visited exactly one time (each node belongs
to one and only one level of the hierarchy); moreover, since the visit is top-down, Theorem 1
implies that parent nodes are processed before their children, and hence also the scores ȳj of the
nodes j ∈ par(i) will not be further changed, since j ∈ par(i) have just been visited and their
scores ȳj have just been set before visiting node i. As a consequence, once a node i is visited
the property j ∈ par(i) ⇒ ȳj ≥ ȳi will hold till to the end of the algorithm. Finally, since the
top-down step of the algorithm visits each node exactly one time, at the end of this step the
property j ∈ par(i)⇒ ȳj ≥ ȳi holds for each node i ∈ V .

From Theorem 1 it is easy to prove that the consistency of the predictions holds for all the
ancestors of a given node i ∈ V .

Corollary 1. Given a DAG G =< V,E >, the level function ψ and the set of flat predictions
ŷ =< ŷ1, ŷ2, . . . , ŷ|V | >, the HTD-DAG algorithm assures that for the set of ensemble predictions
ȳ =< ȳ1, ȳ2, . . . , ȳ|V | > the following property holds: ∀i ∈ V, j ∈ anc(i)⇒ ȳj ≥ ȳi.

Proof. The corollary can be proven by “reductio ad absurdum” from Theorem 1. We suppose
that for an arbitrary node i does exist a node z ∈ anc(i) such that ȳz < ȳi. Let us consider all the
edges (k, l) included in the path p̄(z, i) connecting node z with node i. Without loss of generality,
we focus on a specific path, since we can repeat the same reasoning for any path connecting z
with i. We claim that ∃(k, l) ∈ p̄(z, i) such that ȳk < ȳl, and we show this again by “reductio ad
absurdum”. By absurd we suppose that ∀(k, l) ∈ p̄(z, i) we have ȳk ≥ ȳl. By transitivity along
the path p̄(z, i), we obtain that ȳz ≥ ȳi, but this contradicts our first hypothesis that ȳz < ȳi

and hence it does exist an edge (k, l) ∈ p̄(z, i) such that ȳk < ȳl. But for Theorem 1 it is not
possible that ȳk < ȳl, since k ∈ par(l). Since this contradiction comes from the assumption that
does exist a node z ∈ anc(i) such that ȳz < ȳi, it follows that ∀i ∈ V, j ∈ anc(i)⇒ ȳj ≥ ȳi.

Independently of the choice of the positive children, the following consistency theorem holds
for TPR-DAG and its variants:

Theorem 2. Given a DAG G =< V,E >, a set of flat predictions ŷ =< ŷ1, ŷ2, . . . , ŷ|V | > for
each class associated to each node i ∈ {1, . . . , |V |}, the TPR-DAG algorithm assures that for
the set of ensemble predictions ȳ =< ȳ1, ȳ2, . . . , ȳ|V | > the following property holds: ∀i ∈ V, j ∈
anc(i)⇒ ȳj ≥ ȳi.

The proof is substantially the same of Theorem 1 and is omitted for brevity.
It is worth noting that HTD-DAG and TPR-DAG algorithms hold the following properties:

Lemma 2. Given a DAG G =< V,E >, a set of flat predictions ŷ =< ŷ1, ŷ2, . . . , ŷ|V | >

for each class associated to each node i ∈ {1, . . . , |V |}, a set of ensemble predictions ȳ =<
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ȳ1, ȳ2, . . . , ȳ|V | > for the HTD-DAG and a set of ensemble predictions ỹ =< ỹ1, ỹ2, . . . , ỹ|V | >

for the TPR-DAG with “positive” children selected according to eq. 4.7, we have that ∀i ∈
V, ỹi ≥ ȳi.

The proof is based on the fact that the bottom-up step of TPR-DAG can only increment
the scores ỹi with respect to the flat predictions ŷi. Hence the successive top-down step of the
TPR-DAG starts from higher scores than that of the HTD-DAG, and the applied top-down
procedure is the same for both algorithms.

A good property of TPR-DAG is that its sensitivity is always equal or better than that of
HTD-DAG:

Theorem 3. The TPR-DAG ensemble algorithm with “positive” children selected according to
eq. 4.7, achieves always a sensitivity equal or higher than the HTD-DAG ensemble algorithm.

Proof. From Lemma 2 we have that ∀i ∈ V, ỹi ≥ ȳi. Hence the TPR-DAG ensemble algorithm,
with respect to the HTD-DAG algorithm:

a) increments or maintains equal the number of true positives;

b) decreases or maintains equal the number of false negatives.

By definition of the sensitivity TPR-DAG achieves a sensitivity equal or higher than the HTD-
DAG.

Unfortunately there is no guarantee that the precision of TPR-DAG is always larger or equal
than that of the HTD-DAG algorithm.

Finally, it is immediate to see that all the aforementioned theorems, corollaries and lemmas
hold also for GPAV and ISO-TPR algorithm.

36



Chapter 5

Hierarchical Prediction of GO terms

The Automated Protein Function Prediction (AFP) is a complex multi-class and multi-label
classification problem characterized by several features, such as the hierarchical organi-

zation of protein functions, the integration of several heterogeneous data source (e.g. genomic,
proteomic, transcriptomic), the lack of annotated proteins for most biological functions with a
consequently imbalance of functional classes, with rare positive instances and not uniquely de-
fined negative instances. Furthermore, the hierarchical relationships between functional classes
that characterizes the Gene Ontology (GO) [2], motivate the development of hierarchy-aware
methods, since they capture the inherent structure of the annotation space. Nevertheless, al-
though protein functions are unmistakably dependent (for instance, the GO terms protein kinase
activity and protein-tyrosine kinase activity are clearly related, with the first the parent function
of the latter), most of the approaches proposed in the literature, ranging from sequence-based
methods [12–14] to network-based methods [15, 16, 138], predicted protein functions indepen-
dently each from the other. However, two international challenges for the Critical Assessment
of Function Annotation (CAFA [30] and CAFA2 [31]), organized to compare and evaluate com-
putational methods that automatically assign to a protein its function, emphasized the need of
using output-structured learning algorithms to predict a subgraph of GO terms, starting from a
given protein. In this chapter we will exactly tackle this problem, putting a particular emphasis
on the comparison between methods “hierarchical-unaware” and “hierarchical-aware”.

5.1 Experimental Design

The experiments presented here aim at showing that the hierarchical ensemble methods proposed
in Chapter 4 are able to provide consistent predictions with respect the underlying GO ontology
and can improve upon flat predictions independently of the choice of the base learner. We com-
pared the generalization performance of our hierarchical ensemble method versus several machine
learning-based flat approaches by using a classical 5-fold cross-validation procedure. To reduce
the computational burden we applied simple univariate feature selection methods. To assess the
soundness of the hierarchical ensemble methods proposed in Chapter 4, we predicted the protein
function of several species belonging to the Animalia kingdom, ranging from invertebrates to
vertebrates. More precisely, for our experiments we used the following six model organisms:
C. elegans (CAEEL), G. Gallus (CHICK), D. rerio (DANRE), D. melanogaster (DROME), H.
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sapiens (HUMAN), M. musculus (MOUSE). From a computational standpoint, the considered
task is intensive, since overall we considered over than 100 thousands of proteins (see Table 5.1)
and more than 15 thousands of functional GO terms (by considering the GO terms having 10
or more annotations, see Table 5.2).

5.2 Data and Annotations

STRING is a database of known and predicted functional protein-protein interactions. The
interactions stem from high-throughput experimental data, from the mining of databases and
literature, from predictions based on genomic context analysis, from knowledge transfer between
organisms and from interactions aggregated from other primary databases [139]. Consequently,
the interaction network provided by STRING is built by integrating different heterogeneous
sources of information.

The Gene Ontology (GO) [2] is the current standard for annotating gene products and
proteins in a species independent manner. It is a structured vocabulary with thousands of terms
which describes different aspects of the protein function using a hierarchy of keywords. It is
composed of three independent subontologies for annotating the molecular functions (MF) of
proteins, the biological processes (BP) they participate in, and the cellular components (CC) in
which these occur. Examples of tuple of GO terms (MF, BP, CC) are for instance, (RNA binding,
chromosome segregation, nucleus) or (citrate synthase activity, Krebs cycle, mitochondrion).

5.2.1 Protein-Protein Interaction Network Data

As datasets, for each considered model organism, we downloaded from the STRING website
the most updated protein-protein interaction network (version 10.5) [140]. Each protein-protein
interaction in the STRING database is annotated with a confidence score, ranging by default
between zero and one-thousand and that we scaled between zero and one, representing the weight
of the edges connecting a pair of proteins [141]. The STRING protein-protein interactions are
derived from different data sources, such for instance co-expression, co-occurrence, gene-fusion
and conserved genomic neighborhood. By combining these evidences types (named “evidence
channels”), STRING provides, for each protein-protein interaction, a “combined score”, that is
the final measure used to weight the edges of the network. For a full and detailed description
about the computation of the STRING edge score we refer the reader to [139]. Finally, it is
worth noting that the STRING interactions have a gene-locus resolution. This means that for
each gene STRING takes into account only the longest protein in terms of number of amino
acids independently by the coverage of the exons set defined by the set of transcript encoded
by gene. In the Table 5.1 are shown the features of the STRING protein-protein interaction
network of the model organisms that we took into account in the experiments.
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Organism Proteins Interactions
CAEEL (C. elegans) 15,752 2,889,134
CHICK (G. Gallus) 14,093 3,172,417
DANRE (D. rerio) 23,449 13,187,568

DROME (D. melanogaster) 13,702 3,981,727
HUMAN (H. sapiens) 19,576 5,676,528
MOUSE (M. musculus) 21,151 6,307,021

Table 5.1: The column Organism refers to the mnemonic name of the model organism such as specified in the
UniProtKB, whereas in brackets is reported the Latin scientific name; the column Proteins and Interactions
refer respectively to the number of Protein and Interactions in the STRING network of the considered organism.

5.2.2 GO DAG and Annotations

The experiments presented here are based on the December 2017 GO release by considering
separately the three main GO domains: Biological Process (BP), Molecular Function (MF)
and Cellular Component (CC). From the GO obo file we extracted both the is_a and the
part_of relationships, since it is safe grouping annotations by using both these GO relationships.
However is important to mention that whereas the is_a relations are disjoint (i.e. do not exist
is_a relationships that operate between terms of different ontologies), the part_of relations may
operate between terms of different ontologies. Because we considered the three GO subontologies
separately each from the other, this aspect could lead to graphs with inconsistent nodes, i.e.
graphs whose nodes are unreachable from the root. Hence we took the inconsistent nodes away
by applying the Dijkstra’s shortest paths algorithm. At the end we obtained a BP directed
graph having 29, 678 nodes and 62, 544 edges, a MF directed graph with 12, 147 nodes and
14, 854 edges and a CC directed graph having 4, 150 nodes and 7, 527 edges.

For every organism, we downloaded from the Gene Ontology Annotation (GOA) website,
the protein-GO term associations, released on the 20th of December 2017. We extracted just
the experimentally supported annotations, i.e. the annotations that are directly supported
by experimental evidences. The Experimental Evidence codes used to annotate the proteins
are the following: (i) Inferred from Experiment (EXP), (ii) Inferred from Direct Assay (IDA),
(iii) Inferred from Physical Interaction (IPI), (iv) Inferred from Mutant Phenotype (IMP), (v)
Inferred from Genetic Interaction (IGI), (vi) Inferred from Expression Pattern (IEP).

The GOA database [142] provides high-quality GO annotations for proteins in the UniProt
Knowledgebase (UniProtKB) [143]. Consequently, from the GOA website, we downloaded
also the UniProtKB identifier mapping file, to map the UniProtKB proteins annotated with
a GO term versus the STRING proteins, using as identifiers respectively the UniProtKB ac-
cession number (UNIPROT-AC) and the locus STRING-ID. Moreover, to limit as much as
possible the number of the unmapped identifiers, we designed a precise pipeline whose proce-
dure is schematically illustrated in Figure 5.1. For the detailed step-by-step explanation, please
refer to the Appendix Section A.1.
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Figure 5.1: Pipeline for the data preparation for the experiments presented here. See Appendix Section A.1 for
the detailed step-by-step explanation.

Furthermore, we performed the transitive closure of annotations, i.e. we transfered the most
specific annotations from leaves to ancestors. Finally, to avoid the prediction of those GO terms
having too few annotations for a reliable assessment and in order to consider the terms with a
minimum amount of prior information we pruned all the GO terms having less than 5 and 10
annotations. In the Section 5.5.3 we will motivate the choice of the GO terms that we used in the
experiments. The propriety of the graphs and of the annotations table, before and after applying
these filters, are shown in Table 5.2. It is important to note that since the transitive closure
of annotations was performed before applying the filters, the numbers of proteins annotated
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with 5 ore more GO terms is equal to the numbers of proteins annotated with 10 ore more
GO terms. For the sake of the simplicity, in Table 5.2 we just show the number of proteins
having at least one experimental annotation when only GO terms with at least 5 annotations
are taken into account. Finally, we chose negative examples (proteins) according to a “basic”
selection strategy [20], this means that for positives we used all the instances annotated with a
GO term, while for negatives we simply used all the not annotated instances. In theory other
more refined strategies to select negatives may lead to improved performances [144,145].

Organism Domain Classes Edges Classes ≥ 5 Edges ≥ 5 Classes ≥ 10 Edges ≥ 10 Proteins ≥ 5

CAEEL
BP 4068 8066 2013 3845 1335 2458 2597
MF 1163 1567 341 434 186 231 1806
CC 578 1082 321 585 221 392 1924

CHICK
BP 2309 4401 503 856 246 411 330
MF 520 690 94 113 43 53 292
CC 319 588 106 168 58 88 318

DANRE
BP 4441 8492 1804 3268 1182 2088 3351
MF 865 1153 239 305 118 153 1000
CC 291 528 134 231 89 145 550

DROME
BP 6029 11850 3104 5943 2244 4197 5238
MF 1736 2295 530 701 327 419 2928
CC 899 1720 515 943 348 614 3748

HUMAN
BP 11036 22292 5143 9903 3460 6492 8169
MF 3405 4482 1209 1588 760 988 11203
CC 1429 2665 788 1484 541 1001 9412

MOUSE
BP 11786 23820 5717 11046 3899 7372 8139
MF 2522 3349 851 1120 511 662 7248
CC 1137 2163 629 1191 445 818 7496

Table 5.2: Propriety of the graph and annotation table for each of the considered model organisms. The first
column refer to the name of the model organism; the column Domain refers to one of the GO domains (BP, MF,
CC); the column Classes refers to the number of GO classes/terms having at least one experimental annotations;
the column Edges refers to whole edges number in the GO graph; the column Classes ≥ 5 refers to the number
of GO terms having 5 or more experimental annotations; the column Edges ≥ 5 refers to the number of edges of
the subgraph whose nodes having 5 or more experimental annotations and finally the column Proteins ≥ 5 refers
to the number of protein having at least one experimental annotation when only terms with at least 5 annotations
are considered.

5.3 Evaluation Metrics

We evaluated the generalization performance of the methods considering two different scenarios,
i.e. (i) term-centric and (ii) protein-centric measure [31]. These two types of evaluations were
chosen to address the following related questions: (i) what are the gene products associated
with a specific functional GO term and (ii) what is the function of a particular protein. Then
term-centric evaluation is more appropriate for the gene prioritization scenario, whereas the
protein-centric evaluation is more related to the protein function prediction mode.
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1. Term-centric metric. For each GO term we computed the classical Aurea Under the
ROC Curve (AUROC) and the Area Under the Precision Recall Curve (AUPRC) to take into
account the imbalance of annotated versus unannotated GO terms. Indeed the AUPRC is
more informative on unbalanced dataset than the classical AUROC [146]. The ROC curve is
computed by plotting the recall (or sensitivity) against the false positive rate (or 1− specificity)
at different different threshold; whereas the precision-recall curve shows the trade-off between
precision and recall at different cutoffs. For a particular functional term i, the recall (Rc), the
specificity (Sp) and the precision (Pc) at a given score threshold τ ∈ [0, 1] are defined as follow:

Rci(τ) =
∑
j 1(ygj

i > τ ∧ gj ∈ i)∑
j 1(gj ∈ i)

(5.1)

Spi(τ) =
∑
j 1(ygj

i ≤ τ ∧ gj /∈ i)∑
j 1(gj /∈ i)

(5.2)

Pci(τ) =
∑
j 1(ygj

i > τ ∧ gj ∈ i)∑
i 1(i ∈ Pgi(τ)) (5.3)

where ygj

i ∈ [0, 1] is the predicted score (probability) that gene product gj is associated with
the GO term i, Pyi(τ) denotes the set of gene product that have a predicted scores greater
than or equal to τ for a given GO term i, τ ∈ [0, 1] is the given threshold and 1 indicates the
standard indicator function. Both the AUROC and the AUPRC can assume values in [0 . . . 1].
AUROC values close to 0.5 denote random predictions and AUROC values substantially larger
than 0.5 denote good predictive ability. Instead a high area under the precision-recall curve
represents both high recall and high precision, where high precision relates to a low false positive
rate, and high recall relates to a low false negative rate.

2. Gene-centric metric. Precision (Pr), Recall (Rc) and the maximum achievable F − score
(Fmax) using thresholds τ ∈ [0, 1] are calculated as follows:

Pr(τ) = 1
N

N∑
j=1

∑
i 1(i ∈ Pgj (τ) ∧ i ∈ Tgj )∑

i 1(i ∈ Pgj (τ)) (5.4)

Rc(τ) = 1
N

N∑
j=1

∑
i 1(i ∈ Pgj (τ) ∧ i ∈ Tgj )∑

i 1(i ∈ Tgj )) (5.5)

Fmax = maxτ

{2 · Pr(τ) ·Rc(τ)
Pr(τ) +Rc(τ)

}
(5.6)

where i denotes a protein function (GO term) in the gene ontology (excluding the root node),
Pgj (τ) denotes the set of terms that have a predicted scores greater than or equal to τ for
a given protein gj , Tgj denotes the set of experimentally determined terms for a given gene
product gj , N the number of examples having at least one annotation with an GO term and
1 indicates a standard indicator function. In other words the Fmax measure is the maximum
hierarchical F-score achievable by “a posteriori” setting the optimal decision threshold [31].
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We warn the reader that the hierarchical F − score as defined in eq. 5.6 provides an over-
optimistic assessment of the hierarchical score. Indeed the threshold τ in eq. 5.6 is by definition
“a posteriori” selected, by choosing the optimal τ∗ that optimizes the F − score having a set
of pre-computed scores. An unbiased evaluation should embed the selection of the optimal τ
within the learning process. Nevertheless, we use this measure since it is the reference gene-
centric metric within the computational biology community, as witnessed by its usage in the
CAFA2 international challenge [31], and in the ongoing CAFA3 challenge.

For both measures, by averaging across proteins or terms, we can obtain an overall picture
of the prediction performance of the methods.

5.4 Estimate of the Overall Time Complexity

Initially, we estimated the overall computational time needed to evaluate the generalization
performance of each flat method through a classical 5-fold cross-validation procedure. It is
worth noting that here we are not interested in predicting the protein function of a given model
organism, but instead we would only like to estimate the overall time complexity required by each
flat approach. With this goal in mind we assessed the empirical time complexity by calculating
the computational time on a subset of 30 randomly chosen GO classes.

At the beginning, we evaluated the time complexity by using all the available functional
protein-protein interactions of the STRING network of a given organism (Table 5.1). Neverthe-
less, this resulted unfeasible from a computational standpoint. Let us consider for instance as
model organism C. elegans (one of the smallest among those considered, see Table 5.1) and as
flat classifiers C5.0 Decision Tree, Glmnet, Multi Layer Perceptron, Support Vector Machine and
Extreme Gradient Boosting, by setting their parameters to the default values (see Table 5.3).
These algorithms would employ, in average and across the three GO subontologies, about 42
days to predict the protein function only on the subset of 30 randomly chosen GO terms using a
workstation equipped with 12 cores (64bit, 2.60GHz) and 128GB of RAM. Consequently, we did
not perform experiments considering other base learners (Table 5.3) and other model organisms
(Table 5.1). The detailed results about the computational time using all the available functional
protein-protein interactions for the organism C. elegans are shown in the Appendix Table A.2.

We used the weighted adjacency matrix representing the STRING network by considering
the rows as examples (i.e. proteins) and the columns as features. In this way the features of each
protein are represented by its functional interactions with all the other proteins of the network.
In order to reduce the empirical temporal complexity, we applied simple univariate feature se-
lection methods to choose the most informative features. More precisely, we selected the first
100 top-ranked features by applying the Pearson’s correlation coefficient. It is important to note
that in such a way we reduced the computational complexity of the algorithms without causing
a decreasing in the performance, since we took the less informative features away (data not
shown). For instance, by considering the first 100 top-ranked features of C. elegans, the same
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set of flat classifiers used for the previous estimation, would employ about 7 hours to predict the
protein function of the same subset of 30 randomly chosen GO terms. The detailed results about
the evaluation of the overall time complexity by considering the first 100 top-ranked features
are shown in Appendix Table A.3. In this table, for the sake of the visualization, for each flat
approach we show only the two pairs model organism-ontology for which we estimated the max-
imum and the minimum empirical computational estimation. We warn the reader that since the
evaluation of the overall computational time strictly depends on the number of GO classes and
since we selected them randomly, this represents only a “raw” estimation of the empirical overall
computational time. The step-by-step procedure used to assess the overall time complexity by
selecting the first 100 top-ranked features, is explained in the Appendix Section A.3.

All experiments were performed on a workstation equipped with 12 processors Intel(R)
Xeon(R) CPU E5-2630 2.60GHz, with 128GB of RAM and having Ubuntu Linux 14.04 as
operating system.

5.5 Experimental Set-Up

The hierarchical ensemble algorithms are two step learning strategies. The first step consists in a
flat learning of the ontology terms, while the second step hierarchically combines the predictions.
Consequently we organized the experiments as follow: in Section 5.5.1, we introduce the flat
classifiers, whereas in Section 5.5.2 we show the hierarchical ensemble methods used to reconcile
the flat predictions according to the topology of the ontology. In Section 5.5.3 we explain the
experiments setting.

5.5.1 Flat classifiers

As flat methods, used as base learners in the hierarchical ensemble methods proposed in Sec-
tion 5.5.2, we applied the supervised machine learning methods shown in Table 5.3. Because
of the high-dimensionality of our dataset (Table 5.1) and consequently due to the high running
time of the flat classifiers, we did not tune the respective learning parameters, but we used their
default configuration as specified in Table 5.3. For the sake of simplicity, in the rest of the
thesis, we refer to the flat classifiers by using the short form shown in brackets in the column
Flat Classifier of Table 5.3. To implement the flat classifier shown in Table 5.3 we made use of
the caret R package (short for Classification And REgression Training) [147], since it provides
an uniform interface to execute more than 250 predictive models. We warn the reader that the
main goal of this chapter is to show that our hierarchical ensemble methods outperform flat
approaches independently of the choice of the base learner. As a consequence we chose a range
as broad as possible of flat classifier, ranging from linear classifiers, to probabilistic classifiers,
to neural networks, to ensemble of learning machines and to gradient boosting algorithms (see
Table 5.3).
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Flat Classifier Reference Paper Learning Parameter Set Value

C5.0 Decision Tree (C50) [148]
trees number 1

mtry 2

Lasso and Elastic-Net Regularize Generalized Linear Models (glmnet) [149]
alpha 1
lambda 100

Linear Discriminant Analysis (lda) [150] none none
Logit Boost (logit) [151] boosting iterations 10

Multi Layer Perceptron (mlp) [152]
hidden neurons 5
hidden layers 1

Naive Bayes (nb) [153] Laplace smoothing 0

Random Forest (rf) [154]

mtry 10
Trees Numbers 500
splitting rule gini

maximum tree depth 1
Support Vector Machine (svm) [155] C 0.001

Bagging Ensemble of Decision Tree (treebag) [156]
bootstrap replications 25

mtry 2
maximum tree depth 30

Extreme Gradient Boosting (xgboost) [157]

boosting iterations 15
learning rate 0.3

L2 Regularization 0
L1 Regularization 0

Table 5.3: Flat classifiers (in brackets the short form) and their parameter setting configuration used as base
learners with the hierarchical ensemble methods.

5.5.2 Hierarchical Ensemble Methods

We applied upon flat scores, the non-parametric hierarchical ensemble methods shown in Ta-
ble 5.4.

Hierarchical Ensemble Method Reference Paper Ensemble Variant
HTD-DAG [28] None
GPAV-DAG [119] None
TPR-DAG [28] Threshold-Free (TF)
DESCENS [121] threshold-Free (TF)
ISO-TPR None Threshold-Free (TF)

ISO-DESCENS None Threshold-Free (TF)

Table 5.4: Hierarchical ensemble variants adopted in the experiments presented here. None in the column
Reference Paper means that the corresponding ensemble methods is presented for the first time in this thesis;
None in the column Ensemble Variant means that the corresponding hierarchical algorithm does not have
variants.

For a detailed description about the hierarchical ensemble variants shown in Table 5.4, please
refer to Chapter 4. To execute the hierarchical ensemble variants, we used the in-house developed
R package HEMDAG, whose source code is publicly available on the CRAN repository under
the GNU General Public License, version 3 (GPL-3.0).
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5.5.3 Experimental Execution

We evaluated the generalization performance of the flat methods, cross-validating each model
on the fourth-fifths of the data (training set) and evaluating the performance on the remaining
one-fifths (test data). More precisely we created stratified-folds, that is folds containing the
same amount of positives and negatives examples (proteins). In such way, by adopting a 5-
stratified-fold cross-validation, we guarantee (in the worst scenario) to have at least 2 positive
instances in each fold. In order to reduce the computational time complexity, we carried-out
the experiments by using only those GO terms having 10 or more annotations (see Table 5.2).
Moreover, as explained in the Section 5.4, during the training phase, we did not use all the
features available, but instead we selected from the STRING network the first 100 top-ranked
features by using the classical Pearson’s correlation coefficient. The supervised feature selection
method was cross-validated in an unbiased way, since we chose the top-ranked features during
the training phase and then we used the selected features in the test phase [158]. However this
entails to repeat the feature selection “on the fly” in each training fold of the cross-validation,
with a consequent selection of diverse top-ranked features in every training set.

Due to the high running time of the flat classifiers, we did not tune their learning parameters,
but we adopted the default parameter settings (Table 5.3). Furthermore, for a fair comparison
with the flat methods, we used parameter-free hierarchical ensemble variants as well. In such a
way, we avoid that the improvement yield by the hierarchical ensemble methods are due to the
tuning of their hyperparameters.

Finally, since the supervised base learners reported in 5.3 return a probability or a score that
a gene product belongs to a given functional class, we did not normalize the flat scores according
to any procedure and we normalized the flat scores of each GO classes by dividing the score
values for the maximum score of that class [28].

5.6 Experimental Results

The heatmaps illustrated in Figures 5.2, 5.3, 5.4 show that our hierarchical ensemble methods
improve flat predictions independently of the choice of the base learner. Furthermore, the
improvement occurs in all the considered model organisms and across all the three GO domains.
Let us consider for instance the AUPRC as performance metric. The values of an heatmap cell
of Figure 5.2 is computed as specified in formula 5.7:

HeatmapCell[i, j] =
AUPRChierj

−AUPRCflati
max(AUPRChierj

, AUPRCflati)
(5.7)

where AUPRC is the average AUPRC, i is one of the flat classifiers shown in Table 5.3 and j
is one of the hierarchical ensemble methods shown in Table 5.4.

In other words, the value of an heatmap cell is computed by dividing the difference between
the average AUPRC of a hierarchical algorithm with that of a flat approach, by the maximum
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Figure 5.2: Heatmap of each model organism for the performance metric AUPRC. No normalization method
was applied upon flat scores before the hierarchical algorithms. See text for further details.
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Figure 5.3: Heatmap of each model organism for the performance metric AUROC. No normalization method
was applied upon flat scores before the hierarchical algorithms. See text for further details.
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Figure 5.4: Heatmap of each model organism for the performance metric Fmax. Flat scores was normalized in
the sense of the maximum before applying hierarchical algorithms. Refer to text for further details.
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value between these two values. In such a way, a positive value (associated with a green shade
in the heatmap) indicates that the hierarchical method “wins” against the flat approach and
vice versa a negative value (associated with a red shade in the heatmap) indicates that the flat
approach “beats” the hierarchical one. The darker is the green shade and the higher is the differ-
ence (in positive) between the average AUPRC of a hierarchical algorithm versus that of a flat
classifier. On the contrary, the darker is the red shade and the higher is the difference (in neg-
ative) between the average AUPRC of a hierarchical method versus that of flat approach. The
heatmap in Figures 5.3 and 5.4 was produced by extending the formula 5.7 respectively to the
metric AUROC and Fmax. Observing all these figures both across performance and organisms,
we can note in general that, except the HTD-DAG algorithm, all the other hierarchical methods
win against the flat ones. This behavior of the HTD-DAG algorithm occurs almost always for
the heatmap depicted in Figure 5.2 and 5.3, but almost never for the heatmap illustrated in
Figure 5.4. This may due to the fact the Fmax measure (defined in the equation 5.6) provides an
over-optimistic evaluation of the hierarchical score. Indeed by definition, Fmax measure is the
maximum hierarchical F-score achievable by “a posteriori” setting the optimal threshold [31].
However, Fmax is the benchmark protein-centric measure in the computational biology commu-
nity, as witnessed by its usage in the CAFA2 international challenge [31], and in the ongoing
CAFA3 challenge. Instead, for the heatmap represented in Figure 5.2 and 5.3, a reason for
which HTD-DAG performs worse than the other hierarchical approaches is that, as pointed out
in Section 4.3, this algorithm removes the constraints violations merely by reducing the flat
scores. Consequently, it might happen that the predictions at the most specific nodes of the hi-
erarchy (i.e., leaves nodes) are all negatives and and this may lead to a performances decreasing.
Interestingly, the best results for the term-centric measures AUPRC and AUROC have been
obtained without applying any normalization method before the hierarchical correction (Fig-
ures 5.2 and 5.3). Contrarily, the best results for the protein-centric measure Fmax have been
achieved by normalizing the flat scores in the sense of the maximum before executing any hier-
archical ensemble methods. Furthermore, in Appendix Section A.4 we also show the heatmaps
for AUPRC (Figure 5.2) and AUROC (Figure 5.3) obtained normalizing the flat scores in the
sense of the maximum before the hierarchical correction, whereas in the Appendix Figure 5.4
we portray the heatmap for the metric Fmax obtained without normalizing the flat scores before
applying an ensemble algorithm.

To create the heatmaps shown in Figure 5.5 we firstly computed a two sided paired Wilcoxon
rank sum test for each pair “hierarchical algorithm - flat classifier” and then we counted how
many times a hierarchical algorithm “won” or “lost” against a flat classifier. We say that a
hierarchical method “beats” a flat approach if the Wilcoxon test rejects the null hypothesis
(α < 10−6) and if the average performance value of the hierarchical algorithm is greater than
that of the flat classifier. Finally, we combined the results coming from all the model organisms
and GO subontologies. Since we took into account six different model organisms and all the
three GO ontologies, the value of each heatmap cell can range from a maximum of 18 (i.e., the
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Figure 5.5: “Win-Loss” Heatmap. See text for further details.

hierarchical algorithm always wins against the flat approach) to a minimum of −18 (i.e., the
hierarchical algorithm always “loses” against the flat approach). These procedure was repeated
separately for each considered performance metric and normalization method. It is worth noting
that the “win-loss” heatmaps depicted in Figure 5.5 support the “pattern” normalization in the
sense of the maximum → best results in terms of protein-centric measure and no normalization
→ best results in terms of term-centric measure, previously discussed and shown in Figures 5.2,
5.3, 5.4. Finally, the “win-loss” heatmaps confirm also that the worst performing hierarchical
algorithm is again HTD-DAG.

Figures 5.6, 5.7, 5.8, show, for each model organism, the distribution of the AUPRC values
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across the GO terms (MF ontology) having 10 or more annotations. In Appendix Section A.3
are also illustrated the distribution of the AUPRC values across the GO terms of both the
BP and CC ontology, always separately for each model organism. The star symbol (?) above
each whisker plot, indicates the significance level between the flat approach and the hierarchical
algorithm according to the two sided Wilcoxon sum rank test. More precisely, we adopted the
following coding to map the p-value between the two compared approaches:

• if p value is < 10−6 we used three asterisks (? ? ?);

• if p value is < 10−4 we used two asterisks (??);

• if p value is < 10−2 we used one asterisk (?);

• if p value is ≥ 10−2 we said the difference is not statistically significant (ns);

Observing these box-and-whiskers plots over all the model organisms it easy to note, one
more time, that the hierarchical algorithms achieve statistically significant better results than
flat machine learning classifiers. These results also show that the performance of hierarchical
ensembles mostly depends on that of the underlying flat base learners. This is not surprising
since the improvement introduced by hierarchical methods is determined also by the capability
of the base learners to provide correct and at least partially consistent predictions. Indeed
when the flat classifier provides random or very noisy predictions, it is really unlikely that the
hierarchical ensemble approaches are able to improve the flat predictions (see for instance the
predictions returned by glmnet methods). On average non linear classifiers, as Random Forests
and Gradient Boosting machines work better than linear ones, and from this standpoint the
box-and-whiskers plots of Figures 5.6, 5.7, 5.8 show that these kind of classifiers lead to better
results, both in the “flat” and the improved hierarchical ensemble predictions.

It is likely that, the performances of the flat classifiers C5.0, glmnet and naive bayes are very
low, because we did not tune the learning parameter, but we use the default setting (specified
in Table 5.3) due to the high computational complexity of the base learns. In addition it is
important to mention that the improvement of hierarchical ensemble methods upon flat machine
learning classifier is not due to the tuning of any hyper-parameters, since all the hierarchical
algorithms used in these experiments are parameter-free.

About support vector machines (SVMs), there are different kernels which can be employed
for this classifier, such as polynomial, gaussian and radial kernel. Probably these non-linear
classifiers may lead to improved results. However, in these experiments we run just the linear
kernel since the other kernels had a too high computational complexity for the task of predicting
thousands of different GO terms in different model organisms.

Finally, our hierarchical ensemble methods are quicker than the flat classifiers. Indeed, the
flat methods employ to end, in average and across all the organisms, about 21 hours, whereas the
hierarchical algorithms about 39 minutes. Consequently, the hierarchical algorithms turned out
to be (in average across all the organisms) 32 times faster than the flat approaches. On the other
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hand, please note that the hierarchical ensemble methods require as first step flat predictions.
All flat and hierarchical experiments were performed on Linux running machines with 12 cores
(64bit, 2.60GHz) and 128GB of RAM. For the detailed results about the average running time
of both the flat classifiers and the hierarchical algorithms, please see the Appendix Table A.4
and the Appendix Figure A.10.
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Figure 5.6: Distribution of AUPRC values across the GO terms (MF ontology) having 10 or more annotation
respectively for the model organisms C. elegans (CAEEL) and G. Gallus (CHICK). No normalization was applied
on the flat scores before the hierarchical correction.
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Figure 5.7: Distribution of AUPRC values across the GO terms (MF ontology) having 10 or more annotation
respectively for the model organisms D. rerio (DANRE) and D. melanogaster (DROME). No normalization was
applied on the flat scores before the hierarchical correction.
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Figure 5.8: Distribution of AUPRC values across the GO terms (MF ontology) having 10 or more annotation
respectively for the model organisms H. sapiens (HUMAN) and M. musculus (MOUSE). No normalization was
applied on the flat scores before the hierarchical correction.
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Chapter 6

Hierarchical Prediction of HPO
Terms

Differently from its general meaning that usually refers to the traits or characteristics of
an organism, in medical contexts, the word “phenotype” is defined as a deviation from

normal morphology, physiology, or behavior [159]. The analysis of phenotype is essential for
understanding the pathophysiology of cellular networks and plays a key role in medical research
and in the mapping of disease genes [19, 160]. In this context, the Human Phenotype Ontology
(HPO) project [3] provides a standardized vocabulary of human phenotypic abnormalities and of
their semantic relationships. It is important to note that each HPO term does not denote a dis-
ease, but rather it describes a phenotypic abnormality that characterize a disease, such as Atrial
septal defect. The HPO is currently developed using the medical literature, and OMIM [161],
Orphanet [162] and DECIPHER [163] databases, and contains over 13, 000 terms and over
156, 000 annotations to hereditary diseases. HPO terms are arranged in a directed acyclic graph
(DAG) and are connected by simple is-a (subclass-of) edges, such that a term represents a more
specific or limited instance of its parent term(s). The relationships are transitive, meaning that
they are inherited up all paths to the root.

While the problem of the prediction of gene–disease associations has been widely investi-
gated [164], the related problem of gene– phenotypic feature (i.e., HPO term) associations has
been considered in few studies [24], even if for most of human genes no HPO term associations
are known and despite the quickly growing application of the HPO to relevant medical prob-
lems [165,166]. The prediction of human gene–abnormal phenotype associations is a crucial step
towards the discovery of novel genes associated with human disorders, especially considering
that for about half of Mendelian disease the causative genes are unknown [167]. In addition,
to the best of my knowledge, no methods based on hierarchical ensembles have been proposed
in the context of structured output prediction of HPO terms associated with human genes.
Indeed most of the hierarchical ensemble methods proposed in literature are conceived for tree-
structured taxonomies [6], and the few ones specific for DAGs have been mainly applied to the
prediction of the gene and protein functions [20, 26]. Nevertheless, several of these methods,
mainly proposed in the context of GO term classification, could be in principle applied to the
prediction of HPO terms. For a review of these approaches we refer the reader to [44].
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6.1 Experimental Design

We performed two different sets of experiments to compare our proposed hierarchical ensemble
approach with the state-of-the-art methods for the prediction of abnormal human phenotypes
structured according to the HPO. In the first set of experiments (Section 6.2) we compared
the hierarchical ensemble methods for DAGs, i.e. HTD-DAG and TPR-DAG and its ensemble
variants with state-of-the-art methods using the same data and experimental set-up adopted
by [24]. In the second set of experiments (Section 6.2) we evaluated the ability of our proposed
hierarchical ensemble methods to predict newly annotated genes of the April 2016 HPO release,
by using annotations of a previous release (January 2014). Finally we provided a list of currently
unannotated genes that could be possible candidate genes for novel annotations, on the basis of
the predictions performed by our proposed hierarchical ensemble methods.

6.2 Prediction of Human Phenotype Ontology Terms

We compared the hierarchical ensemble methods for DAGs, HTD-DAG (Section 4.3) and TPR and
its variants (Section 4.4) against several state-of-the-art and baseline methods:

• PHENOstruct, a state-of-the art joint-kernel structured support vector machine approach [24].
This method uses the product of the input and output space kernel to construct the joint
kernel. The rationale behind this approach is that two input/output pairs are considered
similar if they are similar in both their input feature space and their output label space.

• Clus-HMC-Ens, a state-of-the art Hierarchical Multilabel classification (HMC) based on
decision tree ensembles [33]. Differently from the proposed HTD-DAG and TPR methods,
where each base learner solves a separate binary classification problem, each decision tree
in the Clus-HMC-Ens ensemble is a “global” model built to predict all classes at the same
time, thus allowing to explicitly take into account the relationships between the classes
just at the level of each base learner.

• SSVM → disease → HPO method, an indirect two-step method that first predicts gene-
disease associations and then maps them to HPO terms using the associations available
on the HPO website [24].

• PhenoPPIOrth, a computational tool that can predict a set of OMIM diseases for given
human genes using protein-protein interaction and orthologous proteins data and then
maps the predicted OMIM terms to HPO terms by direct mapping [168].

• Probabilistic support vector machines (SVMs) [169]. This is a variant of the classical SVM
algorithm, by which the output of the SVM is fitted to a sigmoid in order to provide an
estimation of the probability that a given example belongs to the class to be predicted.
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• RANKS, a semi-supervised method base on kernelized score functions [83], resulted one of
the top-ranked methods in the recent CAFA2 challenge for the HPO term prediction [31].

To implement the base learners of the proposed hierarchical ensemble methods, we used both
a semi-supervised (RANKS [83]) and a supervised (Support Vector Machines–SVM) machine
learning method. The semi-supervised approach RAnking of Nodes with Kernalized Score func-
tions (RANKS) is a very fast network-based method that combines local and global learning
strategies to exploit both “local” similarities between nodes and “global” similarities embedded
in the topology of the biomolecular network. From this standpoint RANKS can be considered
a generalization of both guilt-by-association (GBA) methods [170], and kernel based algorithms
for semi-supervised network analysis [171]. The GBA approach is generalized through efficient
local learning strategies based on an extended notion of functional distance between nodes. In-
stead the global learning strategies are introduced by using kernel functions able to exploit the
relationships and the overall topology of the underlying biological network. In principle, any
valid kernel can be used (e.g. linear, polynomial, gaussian, Laplacian, Cauchy and inverse mul-
tiquadric kernels), but in the context of biomolecular networks it is often meaningful to use a
random walk kernel [172] constructed from the weighted adjacency matrix of the graph under
study. Indeed a random walk kernel can capture not only relationships coming from direct neigh-
borhoods between nodes, similarly to guilt by association methods [170], but also relationships
coming from shared and more in general indirect neighbors between nodes. In RANKS score
functions are based on distance measures defined in a suitable Hilbert space, also called feature
space. A distance measure in the Hilbert space can be introduced by using a proper kernel
function and different score functions can be derived by choosing diverse distance measures.
The score functions currently implemented in RANKS are the following: Nearest Neighbours
score, K-Nearest Neighbours score and Average score. For further details about these kernelized
score functions please refer to [83]. In this experiment we apply the average score function at
1, 2 and 3-step random walk kernels (that are respectively able to explore direct neighbors and
genes at 2 or 3 step away in the network). RANKS was previously successfully applied in the
prioritization of disease genes [173], the prediction of gene function [174] as well as for drug repo-
sitioning problems [175]. It is worth noting that RANKS returns a score and not a probability,
that represents the likelihood that a gene belongs to a given class, but the “magnitude” of the
scores may vary across different classes [174]. To make the scores comparable across classes, we
considered two distinct normalization procedures:

1. Normalization in the sense of the maximum: the score of each class is normalized by
dividing the score values for the maximum score of that class [28];

2. Quantile normalization: a method originally designed for the normalization of probe
intensity levels for high density oligonucleotide microarray data across multiple experi-
ments [176]. In our case we applied quantile normalization to make the scores comparable
across different HPO terms.
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SVMs were trained for each term using the R interface of the machine learning library
LiblineaR [177] with default parameter settings. Because of the high running time of SVMs we
implemented a multicore version of LiblineaR using doParallel and foreach R packages.

6.2.1 Experimental Set-Up

We used the same dataset and the same experimental set-up applied in [24] for a fair comparison
with previously proposed methods [24, 33, 168]. Indeed, to our knowledge, [24] presented one
of the largest comparative evaluation of different methods for the prediction of HPO terms at
genome-wide level. Moreover PHENOstruct, described in the same paper, was one one of the
top-ranked method in the recent CAFA2 challenge [31]. The generalization performance of the
methods was evaluated through a classical 5-fold cross-validation procedure, according to [24].
It is worth noting in the training phase we selected the negative examples (genes) according to
a “basic” selection strategy [6], i.e. for positives we used all the instances annotated with that
HPO term, while for negatives we simply used all the not annotated instances. In principle
other more refined strategies to select negatives may lead to improved performances [145,178].

We used the same version of the the STRING (v. 9.1, [179]) and BioGRID (v. 3.2.106, [180])
databases used in [24]. More precisely we downloaded physical and genetic experimental inter-
actions relative to 4970 proteins from BioGRID 3.2.106, and the integrated protein-protein
interaction and functional association data for 18172 human proteins from STRING 9.1. From
the same STRING website we also downloaded the protein aliases file to map proteins to genes,
using as identifiers respectively the Locus STRING ID and the ENTREZ Gene ID. Moreover,
starting from the Gene Ontology annotations for the three main sub-ontologies (Biological Pro-
cess, Molecular Function and Cellular Component [2]) and from OMIM annotations [181], both
represented as binary feature vectors, we constructed 4 more networks by using the classical Jac-
card index to represent the edge weight (functional similarity) between the nodes (genes) of the
resulting network. In our context the Jaccard index of two genes measures the ratio between the
cardinality of their common annotations and the cardinality of the union of their annotations.
The rationale behind the usage of this index is that two genes are similar if they share most of
their annotations. All these annotations were obtained by parsing the raw text annotation files
made available by UniProt knowledge-base considering only its SWISSprot component (release
May 2013). Finally the resulting n = 6 networks were integrated by averaging the edge weights
wdij between the genes i and j of each network d ∈ {1, n} after normalizing their weights in the
same range of values wdij ∈ [0, 1] (Unweighted Average (UA) network integration, [173]):

w̄ij = 1
n

n∑
d=1

wdij (6.1)

The weighted adjacency matrices representing the obtained networks have been directly used as
the input of network-based transductive methods (e.g. RANKS), while the input for supervised
feature-based inductive methods (e.g. SVM) has been constituted by the rows of the same
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adjacency matrices. In other words for each gene its input features are represented by the
interactions and functional similarities with all the other genes of the network.

Following the same experimental set-up of [24], we considered separately the three main
sub-ontologies of the HPO (January 2014 release): Organ Abnormality, Mode of Inheritance
and Onset and Clinical Course. Organ Abnormality is the main ontology and includes terms
related to clinical abnormalities. Mode of Inheritance is a relatively small ontology and describes
the inheritance pattern of the phenotypes. Onset and Clinical Course contains classes that
describe typical modifiers of clinical symptoms, as the speed of progression, and the variability
or the onset. For the sake of simplicity in the rest of the thesis we refer to these sub-ontologies
respectively as Organ, Inheritance and Onset. Following the experimental set-up of [24], we
pruned the HPO terms having less than 10 annotations in the January 2014 release, thus resulting
in DAGs having respectively 2134 (Organ), 13 (Inheritance) and 23 (Onset) terms.

Since typically molecular biologists and physicians are interested in knowing both the set
of genes associated with a certain HPO term and the phenotypic abnormalities associated with
a particular human gene, we evaluated the results using two different performance metrics:
(i) term-centric and (ii) gene-centric. These two types of evaluations were chosen to address
the following related questions: (i) what are the genes associated with a specific abnormal
phenotype? and (ii) what are the abnormal phenotypes associated with a particular gene?

For the experiments presented in this section, as term-centric measure we used the classical
AUROC, wheres as gene-centric measure we used the hierarchical F-score (5.6). For further
details on these two types of performance metrics, please refer to Section 5.3.

6.2.2 Experimental Results

The best results have been obtained with the STRING network and among the different variants
of the TPR-DAG algorithm, TPR-W (eq. 4.8), with the Threshold Free (TF) strategy (equa-
tion 4.7) to select the set of “positive” children, achieved the best results. For this reason we
firstly report the results obtained with STRING and the TPR-W ensemble, while the detailed
results obtained with the other variants of the TPR-DAG algorithm as well as those obtained
with the UA integrated network are respectively available in Appendix Table B.1 and B.2.

Table 6.1 summarizes the results achieved by the proposed hierarchical ensemble meth-
ods HTD-DAG and TPR-DAG, using as base learner RANKS (TPR-W-RANKS and HTD-
RANKS) and a linear SVM (TPR-W-SVM and HTD-SVM). The results were compared with
those achieved by state-of-the-art methods and the two flat methods used as base learner by
the hierarchical ensembles (RANKS and SVM). HTD-DAG and TPR-DAG ensembles achieve
statistically significant better results than state-of-the-art methods in terms of term-centric mea-
sures, independently of the base learner used: indeed, by applying the Wilcoxon rank sum test,
the Bonferroni corrected p-value for multiple hypothesis testing resulted in a family wise er-
ror rate FWER ≤ 10−4. Considering the hierarchical multi-label score (Fmax), TPR-W-SVM
achieves significantly better results with respect to the other methods, with the only exception
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of the smallest HPO sub-ontology (Inheritance) that includes only 13 HPO terms (Table 6.1).
The best precision is obtained by Clus-HMC-Ens and the best recall by PHENOstruct, but the
best compromise between these measures is obtained by TPR-W-SVM, thus resulting in the
best overall Fmax score. Interestingly enough, the hierarchical ensemble methods are always
able to improve the results of the flat methods used as base learner; in particular we have a very
large improvement of the Fmax when RANKS is used as base learner, while the improvement

Organ sub-ontology
AUROC Fmax Precision Recall

TPR-W-RANKS 0.89 0.40 0.34 0.48
TPR-W-SVM 0.77 0.44 0.38 0.51
HTD-RANKS 0.88 0.37 0.30 0.49
HTD-SVM 0.75 0.43 0.37 0.49
PHENOstruct 0.73 0.42 0.35 0.56
Clus-HMC-Ens 0.65 0.41 0.39 0.43
PhenoPPIOrth 0.52 0.20 0.27 0.15
SSVM→Dis→HPO 0.49 0.23 0.16 0.41
RANKS 0.87 0.30 0.23 0.43
SVM 0.74 0.42 0.36 0.50

Inheritance sub-ontology
AUROC Fmax Precision Recall

TPR-W-RANKS 0.91 0.57 0.45 0.80
TPR-W-SVMs 0.82 0.69 0.59 0.82
HTD-RANKS 0.90 0.57 0.44 0.81
HTD-SVMs 0.81 0.69 0.59 0.82
PHENOstruct 0.74 0.74 0.68 0.81
Clus-HMC-Ens 0.73 0.73 0.64 0.84
PhenoPPIOrth 0.55 0.12 0.16 0.10
SSVM→Dis→HPO 0.46 0.11 0.07 0.25
RANKS 0.90 0.56 0.43 0.81
SVMs 0.82 0.69 0.59 0.82

Onset sub-ontology
AUROC Fmax Precision Recall

TPR-RANKS 0.86 0.44 0.33 0.70
TPR-SVMs 0.75 0.48 0.38 0.66
HTD-RANKS 0.86 0.42 0.30 0.69
HTD-SVMs 0.74 0.46 0.37 0.67
PHENOstruct 0.64 0.39 0.31 0.52
Clus-HMC-Ens 0.58 0.35 0.27 0.48
PhenoPPIOrth 0.53 0.25 0.25 0.24
SSVM→Dis→HPO 0.49 0.07 0.06 0.10
RANKS 0.83 0.41 0.30 0.67
SVMs 0.74 0.47 0.37 0.63

Table 6.1: Cross-validated prediction of genes associated with HPO terms of the Organ, Inheritance and Onset
sub-ontology: average AUROC across terms and average Fmax, Precision and Recall across genes of HTD-DAG,
TPR-W ensembles and state-of-the-art methods. Best results for each metric are highlighted in bold.
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is smaller with the AUROC, for which RANKS alone achieves relatively high values. These
results also show that the performance of hierarchical ensembles largely depends on that of the
flat base learners: for instance HTD-RANKS and TPR-W-RANKS achieve a significantly larger
average AUROC than HTD-SVM and TPR-W-SVM (Table 6.1). This is not surprising since
the improvement introduced by hierarchical methods depends also on the ability of the under-
lying flat base learners to provide correct and at least partially consistent predictions. However,
not always flat scores can be improved by hierarchical ensemble methods, as shown for instance
in Figure 4.9 and 4.10. Indeed when very noisy or incorrect flat scores are provided, it is un-
likely that hierarchical ensemble methods can improve the predictions. This is also true in the
opposite case, i.e. when flat scores are very close to optimal Bayes predictions, it is of course
hard to improve performances for any method, including also HTD-DAG and TPR-DAG. With
the Onset sub-ontology we obtain similar results, while with the smallest sub-ontology (Inheri-
tance) including only 13 terms, PHENOstruct and Clus-HMC-Ens achieve the best performances
(Table 6.1).

Overall, these results show that the proposed hierarchical ensemble methods are competitive
with state-of-the-art methods such as PHENOstruct and Clus-HMC-Ens and moreover show
that they can improve the results of different flat methods, such as the network-based semi-
supervised RANKS algorithm and the supervised SVM classifier. Detailed results obtained with
different variants of TPR, including TPR-W, TPR-TF, TPR-T (Section 4.4) and DESCENS-T
(Section 4.5) are shown in Appendix Table B.1: TPR-W achieves most times the best results
thanks to the tuning of the w parameter. The w parameter was selected through a classical
double cross-validation procedure: the generalization performance was evaluated by the external
cross-validation, while the “optimal” w parameter was chosen by internal cross-validation at each
step of the external cross-validation. In this way we never accessed the examples of the test set
for the selection of the w parameter. It is worth noting that the performance of other competing
methods such as PHENOstruct or Clus-HMC-Ens could be enhanced by finely tuning their
learning parameters. Nevertheless, TPR-W can further enhance its performance, by fine tuning
the learning parameters of its base learners. We also observe that other TPR variants achieve
competitive results without the need of tuning any parameter. For instance TPR-TF-RANKS
shows an average Fmax very close to that of TPR-W-RANKS in all the three HPO subontology.

In the Appendix Table B.2 we show the results attained through the UA integrated network.
As is easy to note the results are in most cases worse than those obtained with STRING data
alone: this is not so surprising since STRING just combines different sources of information to
construct the integrated network.

6.3 HPO Prediction of Newly Annotated Genes

In this section we assess the capacity of our proposed hierarchical ensemble methods to predict
novel HPO annotations for human genes. To this end we used annotations of an old HPO
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release (January 2014) to predict the newly annotated genes of a recent HPO release (April
2016).

6.3.1 Experimental Set-Up

We compared the generalization performance of HTD-DAG and TPR-DAG hierarchical ensemble
methods versus PHENOstruct, the best performing state-of-the-art method in the previous set
of experiments (Section 6.2).

Let us denote with T the set of genes having at least 1 annotation with an HPO term of the
“old” January 2014 HPO release (2804 genes) and with S the set of newly annotated genes, i.e.
genes having at least one new annotation in the “new” April 2016 HPO release, but previously
unannotated in the January 2014 HPO release (608 genes). Hence we have that S ∩ T = ∅.
We used the set T as training set and the set S as test set, and we applied a classical hold-out
procedure to assess the capability of predicting newly annotated genes using only the annotations
of the previous HPO release.In this way we predicted the newly annotated 608 genes of the test
set, having on the average about 100 annotations per gene, distributed across 2445 HPO terms.

For the HTD-DAG and TPR-DAG methods we used the SVMs as base learners. To evaluate
the performance of PHENOstruct, we downloaded and adapted the freely available C++PHENOstruct
code to perform the hold-out procedure described above.

As dataset we used the STRING 9.1 network, i.e one of the data sets used in the previous
experiments. Indeed the previous experiments as well as the experiments performed by [24]
revealed that STRING 9.1 was the most informative source of information for the prediction
of HPO terms. We did not use the most recent release of the STRING database (v.10, [140]),
since we might introduce an indirect bias in the prediction, considering that STRING 10 was
not available when the January 2014 HPO version was released.

The experiments presented in this section are based on the January 2014 HPO release (10, 320
terms and 13, 549 between-term relationships) to predict the newly annotated genes of the April
2016 HPO release (11, 673 terms and 15, 459 between-term relationships). Since in different
releases some terms could have been removed, others changed or become obsolete, we mapped the
old HPO terms to the new ones by parsing the annotation file of the January 2014 HPO release
using as key the alt-ID taken from the obo file of the April 2016 HPO release. From the same
HPO releases we downloaded all the corresponding gene-term associations. Then we pruned
HPO terms having less than 10 annotations obtaining a final HPO DAG composed of 2445
terms and 3059 between-terms relationships, to avoid the prediction of HPO terms having a too
few annotations for a reliable assessment.

Unlike the previous experimental part (Section 6.2), in the experiments presented here we
considered the whole HPO, without splitting it up in its main sub-ontologies and we used
the same gene-centric and term-centric performance measures mentioned in Section 5.3. It is
worth nothing that respect to the previous experiments (Section 6.2), in the experiments carried
out here we considered also the term-centric measure Area Under the Precision Recall Curve
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(AUPRC) to take into account the imbalance of annotated versus unannotated HPO terms [146].

6.3.2 Experimental Results

Table 6.2 shows that TPR-W and HTD are able to predict newly annotated genes, even if
with a certain decay in the overall performance, as expected, with respect to the cross-validated
results of Table 6.1. Hierarchical ensemble methods attain significantly better results than

Method AUROC AUPRC Fmax Precision Recall
SVM 0.6506 0.1230 0.3774 0.3457 0.4155
HTD 0.6464 0.1207 0.3794 0.3581 0.4033
TPR-W 0.6512 0.1237 0.3826 0.3512 0.4202
PHENOstruct 0.6661 0.1089 0.3635 0.3040 0.4519

Table 6.2: Prediction of newly annotated human genes. Average AUROC and AUPRC across terms and average
Fmax, Precision and Recall across genes. Results significantly better than the others according to the Wilcoxon
Rank Sum test (α = 10−9) are highlighted in bold.

PHENOstruct both in terms of average AUPRC and Fmax (Wilcoxon paired rank sum test,
p-value < 10−9), while PHENOstruct achieves the best AUROC results. It is worth noting
that the precision of TPR-W and HTD is higher than that of PHENOstruct at any recall level
(Figure 6.1a), and these results are confirmed also by the “per-gene” hierarchical Fmax score:
TPR-W “wins” with 431 and “loses” with 177 human genes (Figure 6.1b). Results obtained
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Figure 6.1: (a) Compared precision at different recall levels averaged across 2444 HPO terms. (b) Scatter plot
of Fmax values. Each point represent one of the 608 genes of the test set. PHENOstruct values are in abscissa,
TPR-W values in ordinate.

with other different TPR-DAG variants are comparable with those obtained by TPR-W (see
Appendix Table B.3). We observe that on this task the SVM performance is close to that of
the hierarchical ensemble methods. If on the one hand TPR-W achieves better results than
the SVM, on the other hand not always the difference is statistically significant: more precisely
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the difference is statistically significant with the Fmax measure, while for the per-term metric
AUPRC no statistical difference is detected. These results show that on this task is difficult to
improve also on relatively simple baseline methods, and more research is needed to significantly
enhance the performance.

We noted that the best method (TPR-W ) for about half of the newly annotated genes (296)
obtained a reasonable accuracy, i.e. Fmax > 0.3, as well as a relatively large area under the
curve (AUROC > 0.7) for about 800 HPO terms. Results limited to these best predicted genes
and terms are summarized in Table 6.3. Figure 6.2 shows the distribution of the best “per-

Method AUROC AUPRC Fmax Precision Recall
SVM 0.8208 0.1589 0.4727 0.4560 0.4908
HTD 0.8155 0.1551 0.4716 0.4429 0.5042
TPR-W 0.8219 0.1594 0.4793 0.4572 0.5037
PHENOstruct 0.7565 0.1241 0.4297 0.3583 0.5366

Table 6.3: Prediction of newly annotated human genes considering only the best predictions. Results significantly
better than the others according to the Wilcoxon Rank Sum test (α = 10−9) are highlighted in bold.

term” AUROC and AUPRC results of HTD-DAG and different variants of TPR-DAG, and in
the Appendix Table B.4 are shown their best results in terms of average AUROC, AUPRC and
Fmax. While the results of Figure 6.2 and those shown in Appendix Figure B.4 are biased in
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Figure 6.2: Distribution of the AUROC and AUPRC values across the best predicted terms (778 HPO terms).
(a) AUROC (b) AUPRC. HTD-DAG and different TPR variants are compared with PHENOstruct

favor of TPR-W (only the genes and terms best predicted by TPR-W are included), Figure 6.3
shows that hierarchical ensemble methods achieve competitive results in terms of precision at
any recall level independently if the best predicted HPO terms are selected with respect to
TPR-W or PHENOstruct best predictions.

The empirical computational time of hierarchical ensemble methods is significantly lower
than that of state-of-the-art joint kernel structured output methods. Indeed the overall training
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Figure 6.3: Precision at different recall levels of the newly annotated genes, considering only the best predicted
terms. (a) Results considering only the HPO terms predicted with AUROC > 0.7 by TPR-W (778 terms);(b)
results considering only the HPO terms predicted with AUROC > 0.7 by PHENOstruct (852 terms).

and test time for the hold-out processing is about 12 minutes with HTD and about 18 hours with
PHENOstruct using an Intel Xeon CPU E5-2630 2.60GHz with 128GB of RAM. The overall
computation time with TPR-W is significantly larger than HTD (about 3 hours), due to the tun-
ing of the w parameter of the algorithm, but in any case significantly lower than PHENOstruct.
It is worth noting that the overall computational time of the hierarchical ensemble methods
depend on the training time of the base learner, and may of course vary with the complexity of
the base learner used. We can also observe that TPR-W usually achieves slightly better results
than HTD (Table 6.1 and 6.3), but if the computational time is an issue, we can safely use HTD
or other TPR variants with lower computational complexity, such as TPR-TF or TPR-D, with
only a small decay in performance.

6.4 Prediction of “Candidate” Genes for Novel Annotations

Table 6.4 provides a list of currently unannotated genes that could be possible candidate for
novel annotations. To this purpose we selected a list of the HPO terms best predicted by the
hierarchical ensemble methods, and then we selected among these HPO terms, those currently
unannotated genes that achieved a hierarchical score larger than those of the annotated genes.
More precisely, by exploiting the scores computed by TPR-W in the hold-out experiments, we
selected genes not annotated in the April 2016 release of HPO, but predicted to be annotated
by our method to specific HPO terms, thus resulting to be possible candidate genes for being
annotated with that term.

First of all, by considering the hierarchical ensemble TPR-W-SVM, that achieved the best
results in the detection of newly annotated genes, we selected the HPO terms best predicted
by our method, i.e. terms predicted with AUROC larger than a given threshold. To this end
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Gene Symbol HPO term AUROC Depth Distance from Leaves Evidence (DOI/HPO release)
XRCC2 Clubbing of Toes 1 9 0 HPO (March 2017)
MSH3 Breast Carcinoma 0.9723 5 0 10.1371/journal.pone.0125571
COX10 Abnormal Mitochondria in Muscle Tissue 0.9967 6 0 10.1001/jamaneurol.2013.3242
CFB Systemic Lupus Erythematosus 0.9967 5 0 10.1016/j.imbio.2015.08.001
CAD Abnormality of Pyrimidine Metabolism 0.9951 4 0 10.1093/hmg/ddv057
LIPE Insulin-Resistance Diabetes Mellitus 0.9934 6 0 HPO (March 2017)

TGFBR3 Emphysema 0.9785 5 0 10.1165/rcmb.2008-0427OC
IGF2 Neoplasm of the Adrenal Gland 0.9781 5 0 HPO (March 2017)
ECHS1 Abnormality of Fatty-Acid Metabolism 0.9753 4 0 10.1002/humu.22730
BARD1 Nephroblastoma aka Wilms Tumor 0.9615 8 0 10.1016/j.ebiom.2017.01.038

Table 6.4: List of novel gene-abnormal phenotype associations predicted by our algorithms using HPOApril
2016 and STRING v9.1. Confirmed by literature or by the HPO March 2017 release. See text for further detail
about each confirmed associations. Depth stands for the maximum distance of a given term from the root node
(in the considered HPO graph the longest path from a node to a root is 14). Distance from leaves indicates the
minimum distance of a given node from one of the leaves of the HPO-DAG. A value equal to 0 is assigned to the
leaves, 1 to nodes with distance 1 from a leaf and so on.

we considered the 130 HPO terms that obtained an AUROC value higher than 0.95 (Appendix
Table B.5). From this set of HPO terms we selected the most specific nodes of the hierarchy, that
is those that correspond to the leaves of the HPO DAG (65 HPO terms). Finally we selected
for these most specific and best predicted terms, the genes candidate to be annotated for that
term. To this end, for each of the selected 65 HPO terms we adopted the following procedure:

1. Sort in descending order all the genes on the basis of the TPR-W-SVM scores;

2. Select the first top 5 ranked genes (set S);

3. Select the top ranked genes in S annotated for the HPO term (set A ⊆ S);

4. Select the maximum score s̄ among the annotated genes belonging to A;

5. The candidate genes are those unannotated genes in S (the top ranked 5 genes) having a
score larger or equal than s̄, or all the genes in S if A = ∅.

As a result, for each HPO term we selected the top ranked unannotated genes having a
TPR-W-SVM score higher or equal than the highest score achieved by the genes annotated
for that term. In other words the procedure selects those unannotated genes that TPR-W
strongly thinks to be annotated for that term. The procedure limits the analysis to the top
5 ranked genes for each best predicted and most specific term, in order to provide a list of
genes well-characterized about their abnormal phenotype and possibly reliable, according to
the performance of the TPR-W-SVM ensemble. It is worth noting that following the above
procedure for selecting the candidate genes, not necessarily for each HPO leaf term we have
always five candidate genes. Indeed it may happen that for a given HPO term an annotated
gene fills, e.g., the third position in the rank, and hence for that term we will have only two
candidate genes. The full list of the the genes candidate to be annotated for the best predicted
and most specific 65 HPO terms are available in the Appendix Table B.6. We note that some
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of these newly predicted gene-HPO term associations have been confirmed in the most recent
literature and in the newer HPO release (March 2017). Table 6.4 summarized these findings.

For instance, the predicted association of the gene XRCC2 with HPO term HP:0100760
(Clubbing of toes) has been confirmed in the March 2017 HPO release, as well as the association
of the gene LIPE (that encodes the protein LIPE E) with the HPO term HP:0000831 (Insulin-
resistant diabetes mellitus). Interestingly enough LIPE is correlated also with the disease LIPE-
related familial partial Lipodystrophy (ORPHA:435660). The March 2017 HPO release also
confirmed the predicted association of gene IGF2, that encodes a member of the insulin family of
polypeptide growth factor, with the phenotype HP:0100631 (Neoplasm of the adrenal gland), and
moreover recent works postulated the association of IGF2 with adrenal tumors ed in particular
with adrenocortical carcinomas and pheochromocytomas [182].

Besides the aforementioned evidence of associations, the novel predicted gene-HPO term
pairs show a clear relationship with specific diseases, according to the most recent literature.
For example the human gene ECHS1, that encodes the enzyme that catalyzes the second step
of the mitochondrial fatty acid β-oxidation (FAO) pathway, is correlated with the phenotype
HP:0004359 (Abnormality of fatty-acid metabolism) and from literature is also known being
associated with FAO disorders and in particular with the Leigh syndrome [183]. Moreover
the predicted association between the Complement factor B (CFB) and the term HP:0002725
(Systemic lupus erythematosus) is supported by recent literature, since CFB is an important
activator of the alternative complement pathway and increasing evidence supports reducing
factor B as a potential novel therapy to lupus nephritis [184].

Another strong evidence of associations between the gene–HPO term pair predicted by our
ensemble method and the corresponding disease is given by the work of Hersh et al. [185]. In
this work the authors demonstrated the importance of TGFBR3 gene (encoding the transform-
ing growth factor (TGF)-beta type III receptor) in the Chronic Obstructive Pulmonary Disease
(COPD), confirming the prediction made by our method which associated TGFBR3 gene with
the HPO term Emphysema (HP:0002097). Furthermore the predicted association between the
gene BARD1 and Nephroblastoma, also known as Wilms’ tumor (HP:0002667), is supported
in the very recent work of Fu et al. [186], in which the authors claim that the BARD1 gene
polymorphism is significantly associated with increased nephroblastoma risk. As stated in [187],
in-frame and frameshift mutations in the MSH3 gene play an important role in the development
of breast cancer (HP:0003002), supporting in this way the selfsame gene–HPO term association
predicted by our methods. The predicted association between the CAD gene (encoding for a
tri-functional enzyme involved in the pyrimidine biosynthesis) and the phenotype HP:0004353
(Abnormality of pyrimidine metabolism) is confirmed by the fact that a mutation in CAD im-
pairs de novo pyrimidine biosynthesis [188]. Another interesting example is represented by the
predicted association between the COX10 gene (Cytochrome c Oxidase) and the phenotype
Abnormal mitochondria in muscle tissue (HP:0008316), supported by literature evidence that
correlates the COX10 dysfunction with mitochondrial disease [189]. Overall, the novel annota-
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tions in the recent (March 2017) HPO release as well as recent bio-medical literature support
the novel predictions obtained with our hierarchical ensemble methods.
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Chapter 7

Discussion and Conclusions

Several real-world problems ranging from web page categorization, to transposable element
classification and to gene or protein function prediction are characterized by hierarchical

multi-label classification tasks. In this context flat methods may provide inconsistent predictions
and more in general are not able to exploit the hierarchical constraints between classes. Indeed,
many computational methods that exploit “omics” data can be successfully applied to predict the
biomolecular function of a protein (Chapter 6) or to rank a gene with respect to an abnormal
phenotype of a rare Mendelian disease [28], but usually their predictions are inconsistent, in
the sense that do not necessarily obey the parent-child relationships between ontology terms
(i.e. a gene or a protein may achieve a score for a child term larger than that of its parent
class). In this PhD thesis work we presented efficient computational methods (Chapter 4) that
guarantee biologically meaningful predictions that obey to the true path rule which governs both
the GO and the HPO. In Section 4.8 we also showed a formally proof of this fact.

The proposed hierarchical learning algorithms have a highly modular structure: the first step
consists in a “flat” learning of the ontology terms, while the second step combines the predictions
to make them consistent with the underling ontology. On the one hand, the experimental results
achieved by using the Gene Ontology (Chapter 5), show that our proposed hierarchical ensemble
methods significantly outperform flat approaches, by considering six different model organisms
and independently of the base learner used. On the other hand, the experimental results obtained
by using the Human Phenotype Ontology (Chapter 6), show that our hierarchical ensemble
methods are able to predict novel associations between genes and abnormal phenotypes with
results competitive with state-of-the-art algorithms. From this standpoint, our “true-path-rule”-
based hierarchical learning algorithms can be conceptualized as a flexible tool that can be applied
to any off-the-shelf flat classifier to improve its predictions for any DAG-structured taxonomy
(e.g. GO and HPO), and consequently also for any tree-structured taxonomies (e.g. FunCat),
since obviously trees are DAGs. Our experiments results (Section 5.6 and 6.3.2) confirmed this
aspect, by showing that the proposed hierarchical algorithms are able to improve the predictions
of both semi-supervised flat methods, such as the RANKS algorithm, that resulted one of the top
ranked method in the recent CAFA2 challenge for HPO term prediction [31], and of supervised
methods such as SVM, MLP and decision trees.

We provided also a list of unannotated genes that could be possible candidate for novel
HPO annotations, and we showed that several predicted gene - HPO term associations have
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been confirmed in the March 2017 HPO release and in the most recent bio-medial literature.
Since for several disorders no disease genes have been discovered (e.g. for about half of Mendelian
diseases no causative genes are known [167]), our methods can contribute to the discovery of
such genes, and to unravel the full spectrum of phenotypes associated with them.

It is worth pointing out that the complexity of our hierarchical methods is linear in the
number of the ontology classes (O(|V |)) for HTD-DAG and TPR, whereas is quadratic in the
number of the ontology classes for GPAV and ISO-TPR (O(|V |2)). The empirical computational
time of the hierarchical algorithms is significantly lower both than several flat classifiers (Sec-
tion 5.6) and state-of-the-art joint kernel structured output approach (Section 6.3.2). Therefore,
the proposed approaches scale nicely with large data sets and ontologies.

Last but not least, all the ensemble methods described in the Chapter 4 of this PhD thesis,
were packaged in the R library called HEMDAG, which is publicly available both from cran
and bioconda repository under the GNU General Public License, version 3 (GPL-3.0). In addi-
tion, in order to simplify the integration of our approaches within other works, all the HEMDAG
methods are fully documented alongside a comprehensive step-by-step tutorial, available at the
following link.

For future research work, different bottom-up and top-down variants of the proposed hier-
archical learning algorithms could be investigated. Considering bottom-up learning strategies,
we could design algorithms characterized by contributions of “positive” descendants that decay
linearly with their distance from the root. An opposite strategy could consist in an increment of
the weights from bottom to top, to put more weights on predictions made on the most specific
terms. Otherwise, in the bottom-up step instead of taking into account the children or descen-
dants, we can consider the “Markov blanket” as proposed in [26]. Alternative top-down learning
strategies to be explored could be based for instance on the Kullback-Leibler divergence [20]. In
addition, by exploiting the relationships between classes induced by the hierarchy of the ontology
we could also apply multi-task learning strategies [190] to take into account the relationships
between classes just during the learning phase, in order to establish a functional connection
among the learning processes. In this way, just during the training of the base learners, the
learning process will be dependent on each other, making possible a “mutual learning” between
related classes in the taxonomy. It is worth noting that multi-task learning strategies alone does
not assure the consistency of the predictions, but it can be used to enhance the faithfulness of
the predictions during the learning phase before applying a topology-aware step. Indeed, the
improvement introduced by hierarchical methods depends also on the ability of the base learners
to provide correct predictions. Finally, in order to further test the soundness and the robustness
of our hierarchical ensemble algorithms, we could compare them with the most recent literature
works, such as HPO2GO [191] or the top-ranked methods of the international CAFA3 challenge,
that at the time of writing this thesis, is still ongoing.
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Appendix

A Prediction of GO Terms: Supplementary Material

Here are collected all the supplementary materials on experiments on the GO terms prediction
(Chapter 5).

A.1 Data Preparation

Separately for each model organism listed in 5.1, we extracted the annotations supported by
one of the following Experimental Evidences codes: (i) Inferred from Experiment (EXP), (ii)
Inferred from Direct Assay (IDA), (iii) Inferred from Physical Interaction (IPI), (iv) Inferred
from Mutant Phenotype (IMP), (v) Inferred from Genetic Interaction (IGI), (vi) Inferred from
Expression Pattern (IEP). Successively, we used the UniProtKB identifier mapping file to map
the UniProtKB proteins annotated with a GO term versus the STRING proteins, using as identi-
fiers respectively the UniProtKB accession number (UNIPROT-AC) and the locus STRING-ID.
As key we used the UNIPROT-AC. In a separated file we stored all the unmatched UNIPROT-
AC identifiers. Afterwards, we downloaded the whole SWISS (82MB, zipped) and TREMBL
(22GB, zipped) databases, and we isolated the protein FASTA sequence of the UNIPROT-AC for
which we did not find a match towards a STRING identifiers. Hence, we downloaded and trans-
formed the FASTA file of the STRING proteins as BLAST database by using the command
makeblastdb of the standalone BLAST+ package (version 2.7.1) of the NCBI C++ toolkit.
Therefore we blasted the protein FASTA sequences of the unmapped UNIPROT-AC identifiers
against the FASTA sequences of the STRING proteins, in order to retrieve the mapping between
the two identifiers whenever their corresponding protein sequences show a percentage of identity
of 100%. To blast the protein FASTA sequences we used the command blastp of the standalone
BLAST+ package. The goal is to reduce as much as possible the number of the UNIPROT-AC
identifiers that did not have a corresponding STRING identifiers in the UniProtKB mapping
file. It could happen that the map between the couple of identifiers retrieved by BLAST (i.e.
BLAST hit) already exists in the mapping file provided by UniprotKB, but the two identifiers
are mapped differently. In other words, it could occur that a same UNIPROT-AC identifier is
mapped with different STRING proteins. This kind of “mismatch”, is due to the recovery of
a post-translationally modified isoforms, since we blasted FASTA protein sequences. To avoid
this issue we removed from the BLAST output file all the BLAST hits with a 100% of identity
and whose STRING identifier already exists in the UniProtKB mapping file. Therefore we en-
riched the original UniProtKB identifier mapping file by adding in it all the retrieved BLAST
hits having an identity of 100% and whose STRING identifier does not exist in the UniProtKB
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identifier mapping file provided by GOA database. At the end of this process, we remapped the
UNIPROT-AC proteins annotated with a GO term versus the STRING proteins, by using this
time the enriched UniprotKB mapping file. The soundness of the above procedure is shown in
Table A.1 where, for each organism, are shown some statistics before and after the enrichment
of the UniProtKB mapping file. The first entry of the column Stats Entry of the Tables A.1

Organism Stats Entry At the Beginning After Enrichment

CAEEL

UNIPROT-AC associated with a GO term 3449 3449
GO term associated with a UNIPROT-AC 3083 3083
STRING-ID mapped with a UNIPROT-AC 3338 3405
STRING-ID unmapped with a UNIPROT-AC 111 44
GO term associated with a STRING-ID 3052 3061
GO terms not associated with a STRING-ID 31 22

CHICK

UNIPROT-AC associated with a GO term 740 740
GO term associated with a UNIPROT-AC 1204 1204
STRING-ID mapped with a UNIPROT-AC 521 544
STRING-ID unmapped with a UNIPROT-AC 219 196
GO term associated with a STRING-ID 1018 1048
GO terms not associated with a STRING-ID 186 156

DANRE

UNIPROT-AC associated with a GO term 4227 4227
GO term associated with a UNIPROT-AC 3051 3051
STRING-ID mapped with a UNIPROT-AC 3566 3736
STRING-ID unmapped with a UNIPROT-AC 661 491
GO term associated with a STRING-ID 2840 2880
GO terms not associated with a STRING-ID 211 171

DROME

UNIPROT-AC associated with a GO term 6179 6179
GO term associated with a UNIPROT-AC 5510 5510
STRING-ID mapped with a UNIPROT-AC 5675 6025
STRING-ID unmapped with a UNIPROT-AC 504 154
GO term associated with a STRING-ID 5393 5444
GO terms not associated with a STRING-ID 117 66

HUMAN

UNIPROT-AC associated with a GO term 13603 13603
GO term associated with a UNIPROT-AC 11134 11134
STRING-ID mapped with a UNIPROT-AC 12795 13160
STRING-ID unmapped with a UNIPROT-AC 808 443
GO term associated with a STRING-ID 11006 11042
GO terms not associated with a STRING-ID 128 92

MOUSE

UNIPROT-AC associated with a GO term 11265 11265
GO term associated with a UNIPROT-AC 11101 11101
STRING-ID mapped with a UNIPROT-AC 10592 10948
STRING-ID unmapped with a UNIPROT-AC 673 317
GO term associated with a STRING-ID 10959 11029
GO terms not associated with a STRING-ID 142 72

Table A.1: Mapping statistics before and after the enrichment of the UniProtKB mapping file. Refer to text for
further details about the entries of the column Stats Entry.
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points out the total number of UNIPROT-AC associated with a GO terms, whereas the second
entry indicates the total unique GO terms associated to an UNIPROT-AC identifier. These two
entries are identical before and after the enrichment because the UniProtKB identifiers map-
ping file provided by GOA database contains annotations towards UNIPROT-AC proteins. The
third and fourth entry show respectively the number of mapped and unmapped STRING-ID to
UNIPROT-AC before and after the enrichment of the UniProtKB mapping file according to the
pipeline illustrated above. Finally, the fifth and the sixth entry points out respectively to the
total number of GO terms associated with a STRING-ID and to the total number of GO terms
not associated with a STRING-ID before and after the enrichment of the UniProtKB map-
ping file. Looking at the Table A.1 and considering all the organisms, using the above pipeline
we were able to rescue in average the 3% of the UNIPROT-AC identifiers that did not have
a corresponding STRING-ID in the UniProtKB mapping file provided by the GOA database.
Consequently, we rescued also in average the 1% of GO terms associated to a STRING proteins.
Nevertheless, it is worth noting that just using the mapping file provided by GOA database the
mapping between the couple of identifiers UNIPROT-AC-STRING-ID is around the 89% and
the associations STRING-ID-GO terms are covered at 96%.

A drawback of the above pipeline is that some of the retrieved STRING proteins might be
lost during the construction of the annotations matrix, since these proteins might be “singleton”
in the corresponding STRING network. Nevertheless, this risk should be low since we rescued
an high number of STRING proteins that were initially “unseen” in the UniProtKB mapping file
provided by the GO database. The most time-consuming step of the above pipeline, is the part
in which we isolated the FASTA sequence of the unmapped UNIPROT-AC identifiers from the
TREMBL database (22Gb zipped). This step requires about a couple of hours for each organism
(using an Intel Xeon CPU E5-2630 2.60GHz with 128GB of RAM), but it must be repeated just
once. Finally, the pipeline was repeated separately for each model organism and then we did
not retrieve orthologues proteins (i.e. protein sequence belongs to different organisms) during
the BLAST phase.
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A.2 Estimate of the Overall Time Complexity

In Table A.2 are shown the execution times required by some flat classifiers (with the default
parameters configuration) to predict the protein function of the model organism CAEEL by
considering all the available interactions (Table 5.1). Due to the high running time we did not
perform experiments considering other base learners (Table 5.3) and other model organisms
(Table 5.1).

Flat Classifier Domain Days Days Estimate

C5.0 Decision Tree
BP 2.54 113.03
MF 2.15 13.33
CC 2.13 15.69

Glmnet
BP 1.5 66.75
MF 1.46 9.05
CC 1.56 11.49

Multi Layer Perceptron
BP 4.07 181.12
MF 3.55 22.01
CC 3.24 23.87

Support Vector Machine
BP 1.43 63.63
MF 1.65 10.23
CC 1.94 14.29

Extreme Gradient Boosting
BP 1.43 63.63
MF 1.4 8.68
CC 1.4 10.31

Table A.2: Evaluation of the empirical time complexity using all the protein-protein interactions of the model
organism CAEEL. The flat algorithms was run by using the default parameter configuration shown in Table 5.3.
The column Flat Classifier refers to the name of the flat classifiers; the column Domain refers to one of the
GO subontology (BP, MFor CC); the column Days refer to the total amount of time in days required by each
classifier to make flat predictions on the 30 randomly chosen GO terms and finally the column Days Estimate
indicates an estimation of the total amount of time in days required by each flat approach to compute the
predictions considering all the GO classes having 10 or more annotations (column Classes ≥ 10 of the Table 5.2).

In Table A.3 are shown the results of the evaluation of the overall computational time (in
terms of hours and days of computing) by considering the first 100 top-ranked features. For the
sake of the visualization, for each flat approach, are shown just the two pairs model organism-
ontology for which the maximum and the minimum empirical computational estimation were
estimated. Looking at the Table A.3 it easy to see that, over the organisms, the most computa-
tional time-consuming flat approaches are Bagging Ensemble of Decision Tree and Glmnet.

76



Flat Classifier Organism Domain Hours Days Hours Estimate Days Estimate

C5.0 Decision Trees
MOUSE BP 0.51 0.02 66.28 2.60
CHICK MF 0.27 0.01 0.39 0.01

Glmnet
MOUSE BP 1.01 0.04 131.27 5.20
CHICK MF 0.78 0.03 1.12 0.04

Linear Discriminant Analysis
MOUSE BP 0.38 0.02 49.39 2.60
CHICK MF 0.18 0.01 0.26 0.01

Logit Boost
MOUSE BP 0.38 0.02 49.39 2.60
CHICK MF 0.19 0.01 0.27 0.01

Multi Layer Perceptron
MOUSE BP 0.74 0.03 96.18 3.90
CHICK MF 0.49 0.02 0.70 0.03

Naive Bayes
MOUSE BP 0.36 0.02 46.79 2.60
CHICK MF 0.17 0.01 0.24 0.01

Random Forest
MOUSE BP 0.46 0.02 59.78 2.60
CHICK MF 0.21 0.01 0.30 0.01

Support Vector Machine
MOUSE BP 0.75 0.03 97.48 3.90
CHICK MF 0.26 0.01 0.37 0.01

Bagging Ensemble of Decision Tree
MOUSE BP 1.08 0.04 140.36 5.20
CHICK MF 0.63 0.03 0.90 0.04

Extreme Gradient Boosting
MOUSE BP 0.50 0.02 64.98 2.60
CHICK MF 0.26 0.01 0.37 0.01

Table A.3: The column Flat Classifier refers to the name of the flat classifiers; the column Organism refers
to the name of the model organism; the column Domain refers to one of the GO subontology (BP, MF or CC);
the columns Hours and Days refer to the total amount of time, respectively in hours and days, required by each
classifier to make flat predictions on the 30 GO terms randomly chosen and finally the columns Hours Estimate
and Days Estimate refers to the total amount of time, respectively in hours and days, required by each flat
approach to compute the predictions considering all the GO classes having 10 or more annotations, i.e the number
of terms shown in the column Classes ≥ 10 of the Table 5.2.

A.3 Empirical Time Complexity Pipeline

For each of the considered model organisms, we adopted the following procedure to assess the
empirical time complexity of each flat method, by using the default parameter setting reported
in Table 5.3:

1. during the training phase we selected from the STRING network the first 100 top-ranked
features (i.e. columns of the weighted adjacency matrix) using the classical Pearson’s
correlation coefficient;

2. during the test phase we computed the performance metrics (AUPRC and AUROC) and
we stored the flat predictions, using the most informative features selected in 1;

3. we took note of the computational time required to do the step 1 and 2, that is the time
to compute a single fold;

4. we repeated the step 3 for all the k fold of the cross-validation, with k = 5, achieving in
this way the computational time to compute a single GO class;

5. we repeated the step 4 for 30 randomly chosen GO classes;
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6. we calculated the average time of a single GO class, using the total elapsed time obtained
in 5;

7. we multiplied the average time calculated in 6 for all the GO classes listed in the column
Classes ≥ 10 of the Table 5.2;

A.4 Experimental Results

In Figure A.1 and A.2 are respectively illustrated the heatmap for the metric AUPRC and
AUROC. The flat scores was normalized in the sense of the maximum before applying the hier-
archical correction. Instead, in Figure A.3 are depicted the results for the metric Fmax obtained
without normalizing the flat scores before applying the ensemble algorithms.

In Figures A.4, A.5, A.6 are shown the distribution of the AUPRC values across the GO terms
(BP ontology) having 10 or more annotations. Instead in Figures A.7, A.8, A.9 are depicted
the distribution of the AUPRC values across the GO terms (CC ontology) having 10 or more
annotations.

In Table A.4 we compare the average execution time (in minutes) of the flat classifiers against
that of the hierarchical ensemble methods. The columns Flat Timing and Hierarchical Tim-
ing refer respectively to the average computational time achieved by the flat classifier over the
three domain of GO (BP, MF, CC) and to the average running time (across GO subontologies)
of all the six non-parametric hierarchical ensemble methods (Table 5.4) to correct the flat scores.
Finally the third column shows the speed-up of the hierarchical ensemble methods respect the
flat ones. The large speed-up of the hierarchical algorithms is mainly due to the fact that the
elapsed time of the flat classifier includes both the time for the training and the test phase of the
5-fold cross-validation. Instead the ensemble approaches shown in Table 5.4 are parametric-free
and do not require any cross-validated technique for the tuning of the hyper-parameters. Look-
ing at the bar plots of Figure A.10 it is easy to note that the maximum speed-up is achieved in
the CHICK organism with the glmnet method, whereas the minimum speed-up is obtained in
HUMAN with the flat classifier lda.
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Figure A.1: Heatmap of each model organism for the performance metric AUPRC. Flat scores was normalized
in the sense of the maximum before applying the hierarchical correction. Refer to text for further details.
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Figure A.2: Heatmap of each model organism for the performance metric AUROC. Flat scores was normalized
in the sense of the maximum before applying the hierarchical correction. Refer to text for further details.
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Figure A.3: Heatmap of each model organism for the performance metric Fmax. None normalization method
was applied upon flat scores before applying the hierarchical correction. Refer to text for further details.
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Figure A.4: Distribution of AUPRC values across the GO terms (BP ontology) having 10 or more annotation
respectively for the model organisms C. elegans (CAEEL) and G. Gallus (CHICK). None normalization was
applied on the flat scores before the hierarchical correction.
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Figure A.5: Distribution of AUPRC values across the GO terms (BP ontology) having 10 or more annotation
respectively for the model organisms D. rerio (DANRE) and D. melanogaster (DROME). None normalization was
applied on the flat scores before the hierarchical correction.
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Figure A.6: Distribution of AUPRC values across the GO terms (BP ontology) having 10 or more annotation
respectively for the model organisms H. sapiens (HUMAN) and M. musculus (MOUSE). None normalization was
applied on the flat scores before the hierarchical correction.

84



CAEEL (CC Ontology)

ns *** *** *** *** *** ns * ** ** ** ** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** ***

0.0

0.2

0.4

0.6

C50

C50−htd

C50−GPAV

C50−tprT
F

C50−desc
ensT

F

C50−IS
OtprT

F

C50−IS
Odesc

ensT
F

glm
net

glm
net−

htd

glm
net−

GPAV

glm
net−

tprT
F

glm
net−

desc
ensT

F

glm
net−

IS
OtprT

F

glm
net−

IS
Odesc

ensT
F lda

lda−htd

lda−GPAV

lda−tprT
F

lda−desc
ensT

F

lda−IS
OtprT

F

lda−IS
Odesc

ensT
F

logit

logit−
htd

logit−
GPAV

logit−
tprT

F

logit−
desc

ensT
F

logit−
IS

OtprT
F

logit−
IS

Odesc
ensT

F
mlp

mlp−htd

mlp−GPAV

mlp−tprT
F

mlp−desc
ensT

F

mlp−IS
OtprT

F

mlp−IS
Odesc

ensT
F

*** *** *** *** *** *** ** *** ** *** *** *** * *** *** *** *** *** ** *** *** *** *** *** ns *** *** *** *** ***

0.00

0.25

0.50

0.75

1.00

nb

nb−htd

nb−GPAV

nb−tprT
F

nb−desc
ensT

F

nb−IS
OtprT

F

nb−IS
Odesc

ensT
F rf

rf−
htd

rf−
GPAV

rf−
tprT

F

rf−
desc

ensT
F

rf−
IS

OtprT
F

rf−
IS

Odesc
ensT

F
sv

m

sv
m−htd

sv
m−GPAV

sv
m−tprT

F

sv
m−desc

ensT
F

sv
m−IS

OtprT
F

sv
m−IS

Odesc
ensT

F

tre
ebag

tre
ebag−htd

tre
ebag−GPAV

tre
ebag−tprT

F

tre
ebag−desc

ensT
F

tre
ebag−IS

OtprT
F

tre
ebag−IS

Odesc
ensT

F

xg
boost

xg
boost−

htd

xg
boost−

GPAV

xg
boost−

tprT
F

xg
boost−

desc
ensT

F

xg
boost−

IS
OtprT

F

xg
boost−

IS
Odesc

ensT
F

CHICK (CC Ontology)

ns * * * ns ns ns ns ns ns ns ns ns * * * * * * *** ** *** *** *** ns * * ** * **

0.00

0.05

0.10

C50

C50−htd

C50−GPAV

C50−tprT
F

C50−desc
ensT

F

C50−IS
OtprT

F

C50−IS
Odesc

ensT
F

glm
net

glm
net−

htd

glm
net−

GPAV

glm
net−

tprT
F

glm
net−

desc
ensT

F

glm
net−

IS
OtprT

F

glm
net−

IS
Odesc

ensT
F lda

lda−htd

lda−GPAV

lda−tprT
F

lda−desc
ensT

F

lda−IS
OtprT

F

lda−IS
Odesc

ensT
F

logit

logit−
htd

logit−
GPAV

logit−
tprT

F

logit−
desc

ensT
F

logit−
IS

OtprT
F

logit−
IS

Odesc
ensT

F
mlp

mlp−htd

mlp−GPAV

mlp−tprT
F

mlp−desc
ensT

F

mlp−IS
OtprT

F

mlp−IS
Odesc

ensT
F

* *** *** *** *** *** ns ** * * ** ** * * * ns ** ** ns *** *** ** *** *** ns ** ** * ** *

0.00

0.05

0.10

0.15

0.20

nb

nb−htd

nb−GPAV

nb−tprT
F

nb−desc
ensT

F

nb−IS
OtprT

F

nb−IS
Odesc

ensT
F rf

rf−
htd

rf−
GPAV

rf−
tprT

F

rf−
desc

ensT
F

rf−
IS

OtprT
F

rf−
IS

Odesc
ensT

F
sv

m

sv
m−htd

sv
m−GPAV

sv
m−tprT

F

sv
m−desc

ensT
F

sv
m−IS

OtprT
F

sv
m−IS

Odesc
ensT

F

tre
ebag

tre
ebag−htd

tre
ebag−GPAV

tre
ebag−tprT

F

tre
ebag−desc

ensT
F

tre
ebag−IS

OtprT
F

tre
ebag−IS

Odesc
ensT

F

xg
boost

xg
boost−

htd

xg
boost−

GPAV

xg
boost−

tprT
F

xg
boost−

desc
ensT

F

xg
boost−

IS
OtprT

F

xg
boost−

IS
Odesc

ensT
F

Figure A.7: Distribution of AUPRC values across the GO terms (CC ontology) having 10 or more annotation
respectively for the model organisms C. elegans (CAEEL) and G. Gallus (CHICK). None normalization was
applied on the flat scores before the hierarchical correction.
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Figure A.8: Distribution of AUPRC values across the GO terms (CC ontology) having 10 or more annotation
respectively for the model organisms D. rerio (DANRE) and D. melanogaster (DROME). None normalization was
applied on the flat scores before the hierarchical correction.
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Figure A.9: Distribution of AUPRC values across the GO terms (CC ontology) having 10 or more annotation
respectively for the model organisms H. sapiens (HUMAN) and M. musculus (MOUSE). None normalization was
applied on the flat scores before the hierarchical correction.
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Table A.4: Computational complexity (in minutes) of flat classifiers vs. hierarchical ensemble methods. See
text for further details about each column entry.

Organism Flat Classifier Flat Timing Hierarchical Timing Speed-Up
C5.0 Decision Trees 321.593 11.987 26.828
Glmnet 1085.77 6.436 168.703
Linear Discriminant Analysis 230.817 12.44 18.554
Logit Boost 235.25 6.782 34.687
Multi Layer Perceptron 517.723 12.431 41.648
Naive Bayes 196.623 12.02 16.358
Random Forest 413.367 11.51 35.914
Support Vector Machine 413.43 11.467 36.054
Bagging Ensemble of Decision Tree 788.097 6.543 120.449
Extreme Gradient Boosting 310.243 11.623 26.692

CAEEL

C5.0 Decision Trees 104.453 0.777 134.431
Glmnet 243.71 0.725 336.152
Linear Discriminant Analysis 91.463 0.808 113.197
Logit Boost 91.17 0.711 128.228
Multi Layer Perceptron 140.06 0.863 162.294
Naive Bayes 85.46 0.762 112.152
Random Forest 105.037 0.848 123.864
Support Vector Machine 111.473 0.745 149.628
Bagging Ensemble of Decision Tree 184.003 0.711 258.795
Extreme Gradient Boosting 117.197 0.842 139.189

CHICK

C5.0 Decision Trees 1579.36 14.106 111.964
Glmnet 2518.833 7.546 333.797
Linear Discriminant Analysis 1583.543 16.912 93.634
Logit Boost 1177.283 9.323 126.277
Multi Layer Perceptron 1689.153 15.388 109.771
Naive Bayes 1264.457 16.072 78.675
Random Forest 1077.747 15.687 68.703
Support Vector Machine 1658.31 14.378 115.337
Bagging Ensemble of Decision Tree 1112.157 9.239 120.376
Extreme Gradient Boosting 1073.753 14.858 72.268

DANRE

C5.0 Decision Trees 2307.08 41.487 55.61
Glmnet 3021.547 12.067 250.398
Linear Discriminant Analysis 2046.9 42.589 48.062
Logit Boost 1796.327 19.828 90.595
Multi Layer Perceptron 2227.793 41.988 53.058
Naive Bayes 1796.743 41.731 43.055
Random Forest 818.277 40.264 20.323
Support Vector Machine 2072.273 39.839 52.016
Bagging Ensemble of Decision Tree 1878.28 19.741 95.146
Extreme Gradient Boosting 414.327 40.342 10.27

DROME

C5.0 Decision Trees 1294.683 115.926 11.168
Glmnet 3093.427 33.742 91.679
Linear Discriminant Analysis 875.75 121.143 7.229
Logit Boost 915.453 54.801 16.705
Multi Layer Perceptron 1937.6 121.695 15.922
Naive Bayes 874.7 119.586 7.314
Random Forest 1116.37 115.752 9.644
Support Vector Machine 2185.65 119.202 18.336
Bagging Ensemble of Decision Tree 3267.49 59.825 54.617
Extreme Gradient Boosting 1108.483 124.471 8.906

HUMAN

C5.0 Decision Trees 1793.42 94.616 18.955
Glmnet 3771.763 29.058 129.801
Linear Discriminant Analysis 1175.71 94.081 12.497
Logit Boost 1241.787 47.001 26.42
Multi Layer Perceptron 2446.127 93.453 26.175
Naive Bayes 1386.397 99.17 13.98
Random Forest 1644.5 94.538 17.395
Support Vector Machine 2585.91 96.612 26.766
Bagging Ensemble of Decision Tree 3661.213 51.174 71.544

MOUSE

Extreme Gradient Boosting 1340.663 97.34 13.773
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Figure A.10: Speed-up of the hierarchical ensemble algorithms respect to the flat approaches
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B Prediction of HPO Terms: Supplementary Material

Here are collected all the supplementary materials of experiments on the HPO terms prediction
(Chapter 6).

Table B.1: Average AUROC across terms and average Fmax, Precision and Recall across genes of HTD-DAG and
TPR-DAG ensemble variants using RANKS and SVMs as base learner and the STRING network. Results of
“flat” RANKS and SVMs are also reported. Results are estimated through 5-fold cross-validation. For each
sub-ontology and each metric best results are highlighted in bold. Results significantly better than all the others
methods according to the Wilcoxon Rank Sum test (α = 10−6) are underlined.

Subontology Method AUROC Fmax Precision Recall
RANKS 0.8540 0.3048 0.2349 0.4338
SVM 0.7440 0.4188 0.3598 0.5008
HTD-RANKS 0.8812 0.3743 0.3041 0.4865
HTD-SVM 0.7475 0.4249 0.3739 0.4919
TPR-T-RANKS 0.8604 0.3775 0.3048 0.4973
TPR-T-SVM 0.7602 0.4318 0.3850 0.4931
DESCENS-T-RANKS 0.8598 0.3986 0.3409 0.4798
DESCENS-T-SVM 0.7723 0.4341 0.3883 0.4933
TPR-TF-RANKS 0.8609 0.3752 0.3056 0.4858
TPR-TF-SVM 0.7584 0.4330 0.3696 0.5227
TPR-W-RANKS 0.8857 0.3999 0.3429 0.4805

Organ

TPR-W-SVM 0.7713 0.4354 0.3782 0.5107

RANKS 0.8983 0.5601 0.4292 0.8061
SVM 0.8164 0.6835 0.5876 0.8167
HTD-RANKS 0.9005 0.5682 0.4392 0.8045
HTD-SVM 0.8101 0.6869 0.5892 0.8234
TPR-T-RANKS 0.9043 0.5718 0.4469 0.7950
TPR-T-SVM 0.8187 0.6894 0.5939 0.8219
DESCENS-T-RANKS 0.9044 0.5718 0.4469 0.7950
DESCENS-T-SVM 0.8187 0.6894 0.5939 0.8219
TPR-TF-RANKS 0.9150 0.5385 0.4024 0.8139
TPR-TF-SVM 0.8254 0.6848 0.5854 0.8248
TPR-W-RANKS 0.9147 0.5718 0.4470 0.7950

Inheritance

TPR-W-SVM 0.8187 0.6898 0.5951 0.8208

RANKS 0.8325 0.4143 0.3025 0.6568
SVM 0.7365 0.4656 0.3689 0.6309
HTD-RANKS 0.8605 0.4174 0.2999 0.6861
HTD-SVM 0.7433 0.4584 0.3651 0.6156
TPR-T-RANKS 0.8575 0.4184 0.2926 0.7432
TPR-T-SVM 0.7432 0.4616 0.3691 0.6171
DESCENS-T-RANKS 0.8563 0.4372 0.3214 0.6868
DESCENS-T-SVM 0.7434 0.4618 0.3594 0.6528
TPR-TF-RANKS 0.8580 0.4218 0.3046 0.6853
TPR-TF-SVM 0.7463 0.4668 0.3670 0.6410
TPR-W-RANKS 0.8573 0.4401 0.3264 0.7004

Onset

TPR-W-SVM 0.7442 0.4770 0.3741 0.6644
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Table B.2: Average AUROC across terms and average Fmax, Precision and Recall across genes of HTD-DAG and
TPR-DAG ensemble variants using RANKS and SVMs as base learner and the UA integrated network. Results
are estimated through 5-fold cross-validation. For each sub-ontology and each metric best results are highlighted
in bold. Results significantly better than all the others methods according to the Wilcoxon Rank Sum test
(α = 10−6) are underlined.

Subontology Method AUROC Fmax Precision Recall
RANKS 0.8493 0.3106 0.2407 0.4377
SVM 0.7128 0.1668 0.1688 0.1648
HTD-RANKS 0.8446 0.3411 0.2717 0.4583
HTD-SVM 0.8328 0.3155 0.2370 0.4718
TPR-T-RANKS 0.8646 0.3575 0.2933 0.4586
TPR-T-SVM 0.8240 0.3155 0.2370 0.4718
TPR-D-RANKS 0.8408 0.3773 0.3231 0.4538
TPR-D-SVM 0.7883 0.3209 0.2800 0.3782
TPR-TF-RANKS 0.8420 0.3547 0.2880 0.4615
TPR-TF-SVM 0.7060 0.2359 0.2074 0.2736
TPR-W-RANKS 0.8377 0.3620 0.3025 0.4515

Organ

TPR-W-SVM 0.8238 0.3171 0.2343 0.4916

RANKS 0.8715 0.5986 0.4709 0.8215
SVM 0.7637 0.1668 0.1688 0.1648
HTD-RANKS 0.8846 0.6034 0.4709 0.8396
HTD-SVM 0.7991 0.5429 0.3885 0.9008
TPR-T-RANKS 0.8708 0.6066 0.4795 0.8276
TPR-T-SVM 0.7909 0.5444 0.3892 0.9063
TPR-D-RANKS 0.8659 0.6064 0.4793 0.8278
TPR-D-SVM 0.7919 0.5441 0.3889 0.9063
TPR-TF-RANKS 0.8675 0.6029 0.4757 0.8228
TPR-TF-SVM 0.7546 0.4480 0.2972 0.9099
TPR-W-RANKS 0.8636 0.6070 0.4769 0.8355

Inheritance

TPR-W-SVM 0.7900 0.5448 0.3897 0.9059

RANKS 0.8159 0.4494 0.3821 0.5455
SVM 0.7025 0.3978 0.2717 0.7421
HTD-RANKS 0.8253 0.4466 0.3563 0.5981
HTD-SVM 0.7781 0.4492 0.3374 0.6719
TPR-T-RANKS 0.8249 0.4631 0.3791 0.6021
TPR-T-SVM 0.7511 0.4517 0.3385 0.6813
TPR-D-RANKS 0.8170 0.4684 0.3839 0.6077
TPR-D-SVM 0.7513 0.4519 0.3394 0.6780
TPR-TF-RANKS 0.8148 0.4553 0.3782 0.5718
TPR-TF-SVM 0.6788 0.3983 0.2714 0.7483
TPR-W-RANKS 0.7901 0.4682 0.3914 0.5856

Onset

TPR-W-SVM 0.7496 0.4522 0.3404 0.6757
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Table B.3: Prediction of newly annotated genes. Average AUROC and AUPRC across 2444 HPO terms and
average Fmax, Precision and Recall of HTD-DAG and TPR-DAG ensemble variants across the newly annotated
608 genes. Best results for each metric are highlighted in bold.

XXXXXXXXXXMethods
Meas.

AUROC AUPRC Fmax Precision Recall

HTD 0.6464 0.1207 0.3794 0.3581 0.4033
TPR-T 0.6466 0.1209 0.3795 0.3580 0.4036
TPR-D 0.6465 0.1211 0.3794 0.3584 0.4030
TPR-TF 0.6498 0.1224 0.3812 0.3560 0.4101
TPR-W 0.6512 0.1237 0.3826 0.3512 0.4202

Table B.4: Comparison among HTD-DAG and TPR-DAG ensemble variants considering only the best predic-
tions for the newly annotated genes. Average AUROC and AUPRC across terms and average Fmax, Precision and
Recall across genes considering only HPO terms with AUROC > 0.7 (778 terms) and Fmax > 0.3 (296 genes).
Best results for each metric are highlighted in bold.

XXXXXXXXXXMethods
Meas.

AUROC AUPRC Fmax Precision Recall

HTD 0.8155 0.1551 0.4716 0.4429 0.5042
TPR-T 0.8155 0.1553 0.4714 0.4443 0.5021
TPR-D 0.8155 0.1554 0.4714 0.4436 0.5030
TPR-TF 0.8200 0.1577 0.4765 0.4419 0.5171
TPR-W 0.8219 0.1594 0.4793 0.4572 0.5037
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Table B.5: The best predicted HPO terms sorted in descending order on the basis of AUROC. Depth stands for
the maximum distance of a given term from the root node (in the considered HPO graph the longest path from a
node to a root is 14). Distance from leaves indicates the minimum distance of a given node from one of the leaves
of the HPO-DAG. A value equal to 0 is assigned to the leaves, 1 to nodes with distance 1 from a leaf and so on.

HPO ID HPO term AUROC Depth Distance from Leaves
HP:0004942 Aortic aneurysm 1.000 7 0
HP:0100760 Clubbing of toes 1.000 9 0
HP:0000114 Proximal tubulopathy 0.9984 9 0
HP:0003557 Increased variability in muscle fiber diameter 0.9984 6 0
HP:0002040 Esophageal varix 0.9967 7 0
HP:0002913 Myoglobinuria 0.9967 6 0
HP:0003642 Type I transferrin isoform profile 0.9967 8 0
HP:0006477 Abnormality of the alveolar ridges 0.9967 7 1
HP:0006846 Acute encephalopathy 0.9967 5 1
HP:0006965 Acute necrotizing encephalopathy 0.9967 6 0
HP:0008316 Abnormal mitochondria in muscle tissue 0.9967 6 0
HP:0004339 Abnormality of sulfur amino acid metabolism 0.9967 5 0
HP:0004944 Cerebral aneurysm 0.9967 8 0
HP:0002725 Systemic lupus erythematosus 0.9967 5 0
HP:0001659 Aortic regurgitation 0.9951 7 0
HP:0004353 Abnormality of pyrimidine metabolism 0.9951 4 0
HP:0000831 Insulin-resistant diabetes mellitus 0.9934 6 0
HP:0001019 Erythroderma 0.9934 7 0
HP:0002223 Absent eyebrow 0.9934 9 0
HP:0003160 Abnormal isoelectric focusing of serum transferrin 0.9934 7 1
HP:0004481 Progressive macrocephaly 0.9934 9 0
HP:0010459 True hermaphroditism 0.9934 7 0
HP:0012345 Abnormal glycosylation 0.9934 4 4
HP:0012346 Abnormal protein glycosylation 0.9934 5 3
HP:0012347 Abnormal protein N-linked glycosylation 0.9934 6 2
HP:0003521 Disproportionate short-trunk short stature 0.9926 6 0
HP:0010996 Abnormality of monocarboxylic acid metabolism 0.9918 4 0
HP:0000991 Xanthomatosis 0.9901 6 0
HP:0003645 Prolonged partial thromboplastin time 0.9901 4 0
HP:0009161 Aplasia/Hypoplasia of the middle phalanx of the 5th finger 0.9885 11 0
HP:0010932 Abnormality of nucleobase metabolism 0.9885 3 1
HP:0003076 Glycosuria 0.9869 7 0
HP:0011016 Abnormality of urine glucose concentration 0.9869 6 1
HP:0002304 Akinesia 0.9868 6 0
HP:0003953 Absent forearm bone 0.9868 9 1
HP:0003974 Absent radius 0.9868 10 0
HP:0009822 Aplasia involving forearm bones 0.9868 9 1
HP:0003215 Dicarboxylic aciduria 0.9868 8 0
HP:0010995 Abnormality of dicarboxylic acid metabolism 0.9868 4 1
HP:0004219 Abnormality of the middle phalanx of the 5th finger 0.9852 10 1
HP:0002085 Occipital encephalocele 0.9835 8 0
HP:0000677 Oligodontia 0.9819 10 0
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HPO ID HPO term AUROC Depth Distance from Leaves
HP:0001218 Autoamputation 0.9819 3 0
HP:0003254 Abnormality of DNA repair 0.9819 4 0
HP:0100864 Short femoral neck 0.9819 10 0
HP:0009027 Foot dorsiflexor weakness 0.9810 7 0
HP:0009108 Foot dorsiflexor weakness 0.9802 9 1
HP:0002905 Hyperphosphatemia 0.9802 5 0
HP:0001436 Abnormality of the foot musculature 0.9794 5 1
HP:0002839 Urinary bladder sphincter dysfunction 0.9786 7 0
HP:0009617 Abnormality of the distal phalanx of the thumb 0.9786 11 0
HP:0002097 Emphysema 0.9785 5 0
HP:0100631 Neoplasm of the adrenal gland 0.9781 5 0
HP:0000073 Ureteral duplication 0.9769 6 0
HP:0002181 Cerebral edema 0.9769 8 0
HP:0002557 Hypoplastic nipples 0.9753 5 0
HP:0004359 Abnormality of fatty-acid metabolism 0.9753 4 0
HP:0009720 Adenoma sebaceum 0.9736 8 0
HP:0010615 Angiofibromas 0.9736 7 1
HP:0003233 Hypoalphalipoproteinemia 0.9730 7 0
HP:0010980 Hyperlipoproteinemia 0.9727 6 0
HP:0003002 Breast carcinoma 0.9723 5 0
HP:0001480 Freckling 0.9720 6 0
HP:0005293 Venous insufficiency 0.9720 5 0
HP:0005613 Aplasia/hypoplasia of the femur 0.9720 8 2
HP:0006443 Patellar aplasia 0.9719 9 0
HP:0002025 Anal stenosis 0.9711 8 0
HP:0002298 Absent hair 0.9711 6 1
HP:0007431 Congenital ichthyosiform erythroderma 0.9703 8 1
HP:0001992 Organic aciduria 0.9703 7 1
HP:0006498 Aplasia/Hypoplasia of the patella 0.9691 8 1
HP:0003310 Abnormality of the odontoid process 0.9686 6 1
HP:0009888 Abnormality of secondary sexual hair 0.9678 5 0
HP:0003311 Hypoplasia of the odontoid process 0.9671 7 0
HP:0010979 Abnormality of the level of lipoprotein cholesterol 0.9661 5 1
HP:0002898 Embryonal neoplasm 0.9655 4 1
HP:0004311 Abnormality of macrophages 0.9653 6 0
HP:0001974 Leukocytosis 0.9638 6 0
HP:0100578 Lipoatrophy 0.9638 5 0
HP:0000625 Cleft eyelid 0.9631 8 0
HP:0007361 Abnormality of the pons 0.9625 8 0
HP:0010981 Hypolipoproteinemia 0.9625 6 1
HP:0002667 Nephroblastoma (Wilms tumor) 0.9615 8 0
HP:0002612 Congenital hepatic fibrosis 0.9576 6 0
HP:0012144 Abnormality of cells of the monocyte/macrophage lineage 0.9570 4 1
HP:0011794 Embryonal renal neoplasm 0.9569 7 1
HP:0009733 Glioma 0.9555 7 1
HP:0002967 Cubitus valgus 0.9541 7 0
HP:0012072 Aciduria 0.9539 6 2
HP:0010286 Abnormality of the salivary glands 0.9539 7 0
HP:0010675 Abnormal foot bone ossification 0.9539 7 0
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HPO ID HPO term AUROC Depth Distance from Leaves
HP:0010899 Abnormality of aspartate family amino acid metabolism 0.9539 5 0
HP:0002922 Increased CSF protein 0.9522 6 0
HP:0000855 Insulin resistance 0.9516 5 1
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Table B.6: Top 5 candidate genes for each of the 65 leaf nodes showed in the Appendix Table B.5. Refer to
Section 6.4 for more details about the selection of the candidate genes for each HPO leaf term.

HPO ID HPO term Entrez Gene ID Gene Symbol
HP:0004942 Aortic aneurysm 72 ACTG2
HP:0100760 Clubbing of toes 7516 XRCC2
HP:0000114 Proximal tubulopathy 1892 ECHS1

HP:0003557 Increased variability in muscle fiber diameter
8516 ITGA8
3694 ITGB6

HP:0002040 Esophageal varix
85440 DOCK7
7049 TGFBR3

HP:0002913 Myoglobinuria
1962 EHHADH
1892 ECHS1

HP:0003642 Type I transferrin isoform profile
201595 STT3B
1109 AKR1C4
199857 ALG14

HP:0006965 Acute necrotizing encephalopathy
4697 NDUFA4
4539 MT-ND4L

HP:0008316 Abnormal mitochondria in muscle tissue

4697 NDUFA4
51204 TACO1
1352 COX10
4539 MT-ND4L
4538 MT-ND4

HP:0004339 Abnormality of sulfur amino acid metabolism

1757 SARDH
55811 ADCY10
1137 CHRNA4
271 AMPD2
272 AMPD3

HP:0004944 Cerebral aneurysm

1757 SARDH
55811 ADCY10
91137 SLC25A46
271 AMPD2
272 AMPD3

HP:0002725 Systemic lupus erythematosus 629 CFB

HP:0001659 Aortic regurgitation

27229 TUBGCP4
2239 GPC4
3340 NDST1
57822 GRHL3
5378 PMS1

HP:0004353 Abnormality of pyrimidine metabolism

790 CAD
7516 XRCC2
580 BARD1
10747 MASP2
58484 NLRC4

HP:0000831 Insulin-resistant diabetes mellitus

3991 LIPE
3764 KCNJ8

5260 PHKG1

96

http://compbio.charite.de/hpoweb/showterm?id=HP:0004942
https://www.ncbi.nlm.nih.gov/gene/?term=72
http://compbio.charite.de/hpoweb/showterm?id=HP:0100760
https://www.ncbi.nlm.nih.gov/gene/?term=7516
http://compbio.charite.de/hpoweb/showterm?id=HP:0000114
https://www.ncbi.nlm.nih.gov/gene/?term=1892
http://compbio.charite.de/hpoweb/showterm?id=HP:0003557
https://www.ncbi.nlm.nih.gov/gene/?term=8516
https://www.ncbi.nlm.nih.gov/gene/?term=3694
http://compbio.charite.de/hpoweb/showterm?id=HP:0002040
https://www.ncbi.nlm.nih.gov/gene/?term=85440
https://www.ncbi.nlm.nih.gov/gene/?term=7049
http://compbio.charite.de/hpoweb/showterm?id=HP:0002913
https://www.ncbi.nlm.nih.gov/gene/?term=1962
https://www.ncbi.nlm.nih.gov/gene/?term=1892
http://compbio.charite.de/hpoweb/showterm?id=HP:0003642
https://www.ncbi.nlm.nih.gov/gene/?term=201595
https://www.ncbi.nlm.nih.gov/gene/?term=1109
https://www.ncbi.nlm.nih.gov/gene/?term=199857
http://compbio.charite.de/hpoweb/showterm?id=HP:0006965
https://www.ncbi.nlm.nih.gov/gene/?term=4697
https://www.ncbi.nlm.nih.gov/gene/?term=4539
http://compbio.charite.de/hpoweb/showterm?id=HP:0008316
https://www.ncbi.nlm.nih.gov/gene/?term=4697
https://www.ncbi.nlm.nih.gov/gene/?term=51204
https://www.ncbi.nlm.nih.gov/gene/?term=1352
https://www.ncbi.nlm.nih.gov/gene/?term=4539
https://www.ncbi.nlm.nih.gov/gene/?term=4538
http://compbio.charite.de/hpoweb/showterm?id=HP:0004339
https://www.ncbi.nlm.nih.gov/gene/?term=1757 
https://www.ncbi.nlm.nih.gov/gene/?term=55811
https://www.ncbi.nlm.nih.gov/gene/?term=1137
https://www.ncbi.nlm.nih.gov/gene/?term=271
https://www.ncbi.nlm.nih.gov/gene/?term=272
http://compbio.charite.de/hpoweb/showterm?id=HP:0004944
https://www.ncbi.nlm.nih.gov/gene/?term=1757 
https://www.ncbi.nlm.nih.gov/gene/?term=55811
https://www.ncbi.nlm.nih.gov/gene/?term=91137
https://www.ncbi.nlm.nih.gov/gene/?term=271 
https://www.ncbi.nlm.nih.gov/gene/?term=272 
http://compbio.charite.de/hpoweb/showterm?id=HP:0002725
https://www.ncbi.nlm.nih.gov/gene/?term=629
http://compbio.charite.de/hpoweb/showterm?id=HP:0001659
https://www.ncbi.nlm.nih.gov/gene/?term=27229 
https://www.ncbi.nlm.nih.gov/gene/?term=2239 
https://www.ncbi.nlm.nih.gov/gene/?term=3340 
https://www.ncbi.nlm.nih.gov/gene/?term=57822 
https://www.ncbi.nlm.nih.gov/gene/?term=5378 
http://compbio.charite.de/hpoweb/showterm?id=HP:0004353
https://www.ncbi.nlm.nih.gov/gene/?term= 790 
https://www.ncbi.nlm.nih.gov/gene/?term= 7516 
https://www.ncbi.nlm.nih.gov/gene/?term= 580 
https://www.ncbi.nlm.nih.gov/gene/?term=10747 
https://www.ncbi.nlm.nih.gov/gene/?term=58484 
http://compbio.charite.de/hpoweb/showterm?id=HP:0000831
https://www.ncbi.nlm.nih.gov/gene/?term=3991
https://www.ncbi.nlm.nih.gov/gene/?term=3764
https://www.ncbi.nlm.nih.gov/gene/?term=5260


HPO ID HPO term Entrez Gene ID Gene Symbol

HP:0001019 Erythroderma

3149 HMGB3
7516 XRCC2
5657 PRTN3
28952 CCDC22
2224 FDPS

HP:0002223 Absent eyebrow
9463 PICK1
389549 FEZF1

HP:0004481 Progressive macrocephaly

4697 NDUFA4
4538 MT-ND4
54539 NDUFB11
4539 MT-ND4L

HP:0010459 True hermaphroditism

54585 LZTFL1
9786 KIAA0586
11020 IFT27
57822 GRHL3
26281 FGF20

HP:0003521 Disproportionate short-trunk short stature
54567 DLL4
3371 TNC
9096 TBX18

HP:0010996 Abnormality of monocarboxylic acid metabolism 790 CAD

HP:0000991 Xanthomatosis

9971 NR1H4
4047 LSS
3991 LIPE
80347 COASY
4744 NEFH

HP:0003645 Prolonged partial thromboplastin time

2266 FGG
3026 HABP2
10747 MASP2
733 C8G

199857 ALG14

HP:0009161 Aplasia/Hypoplasia of the middle phalanx of the 5th finger
26585 GREM1
2535 FZD2
57216 VANGL2

HP:0003076 Glycosuria
140628 GATA5
388753 COA6

HP:0002304 Akinesia

1139 CHRNA7
9037 SEMA5A
54567 DLL4
8506 CNTNAP1
3763 KCNJ6

HP:0003974 Absent radius

6909 TBX2
26585 GREM1
7468 WHSC1
23129 PLXND1
6997 TDGF1

HP:0003215 Dicarboxylic aciduria

1962 EHHADH
1892 ECHS1
3417 IDH1
4329 ALDH6A1
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http://compbio.charite.de/hpoweb/showterm?id=HP:0001019
https://www.ncbi.nlm.nih.gov/gene/?term= 3149
https://www.ncbi.nlm.nih.gov/gene/?term= 7516
https://www.ncbi.nlm.nih.gov/gene/?term= 5657
https://www.ncbi.nlm.nih.gov/gene/?term= 28952
https://www.ncbi.nlm.nih.gov/gene/?term= 2224
http://compbio.charite.de/hpoweb/showterm?id=HP:0002223
https://www.ncbi.nlm.nih.gov/gene/?term= 9463 
https://www.ncbi.nlm.nih.gov/gene/?term= 389549
http://compbio.charite.de/hpoweb/showterm?id=HP:0004481
https://www.ncbi.nlm.nih.gov/gene/?term= 4697
https://www.ncbi.nlm.nih.gov/gene/?term= 4538
https://www.ncbi.nlm.nih.gov/gene/?term=54539
https://www.ncbi.nlm.nih.gov/gene/?term= 4539
http://compbio.charite.de/hpoweb/showterm?id=HP:0010459
https://www.ncbi.nlm.nih.gov/gene/?term= 54585
https://www.ncbi.nlm.nih.gov/gene/?term= 9786
https://www.ncbi.nlm.nih.gov/gene/?term= 11020
https://www.ncbi.nlm.nih.gov/gene/?term= 57822
https://www.ncbi.nlm.nih.gov/gene/?term= 26281
http://compbio.charite.de/hpoweb/showterm?id=HP:0003521
https://www.ncbi.nlm.nih.gov/gene/?term= 54567
https://www.ncbi.nlm.nih.gov/gene/?term= 3371
https://www.ncbi.nlm.nih.gov/gene/?term= 9096
http://compbio.charite.de/hpoweb/showterm?id=HP:0010996
https://www.ncbi.nlm.nih.gov/gene/?term= 790 
http://compbio.charite.de/hpoweb/showterm?id=HP:0000991
https://www.ncbi.nlm.nih.gov/gene/?term= 9971
https://www.ncbi.nlm.nih.gov/gene/?term= 4047
https://www.ncbi.nlm.nih.gov/gene/?term= 3991
https://www.ncbi.nlm.nih.gov/gene/?term= 80347
https://www.ncbi.nlm.nih.gov/gene/?term= 4744
http://compbio.charite.de/hpoweb/showterm?id=HP:0003645
https://www.ncbi.nlm.nih.gov/gene/?term= 2266
https://www.ncbi.nlm.nih.gov/gene/?term= 3026
https://www.ncbi.nlm.nih.gov/gene/?term= 10747
https://www.ncbi.nlm.nih.gov/gene/?term= 733
https://www.ncbi.nlm.nih.gov/gene/?term= 199857
http://compbio.charite.de/hpoweb/showterm?id=HP:0009161
https://www.ncbi.nlm.nih.gov/gene/?term= 26585
https://www.ncbi.nlm.nih.gov/gene/?term= 2535
https://www.ncbi.nlm.nih.gov/gene/?term= 57216
http://compbio.charite.de/hpoweb/showterm?id=HP:0003076
https://www.ncbi.nlm.nih.gov/gene/?term= 140628
https://www.ncbi.nlm.nih.gov/gene/?term= 388753
http://compbio.charite.de/hpoweb/showterm?id=HP:0002304
https://www.ncbi.nlm.nih.gov/gene/?term= 1139
https://www.ncbi.nlm.nih.gov/gene/?term= 9037
https://www.ncbi.nlm.nih.gov/gene/?term= 54567
https://www.ncbi.nlm.nih.gov/gene/?term= 8506
https://www.ncbi.nlm.nih.gov/gene/?term= 3763
http://compbio.charite.de/hpoweb/showterm?id=HP:0003974
https://www.ncbi.nlm.nih.gov/gene/?term= 6909
https://www.ncbi.nlm.nih.gov/gene/?term= 26585
https://www.ncbi.nlm.nih.gov/gene/?term= 7468
https://www.ncbi.nlm.nih.gov/gene/?term= 23129
https://www.ncbi.nlm.nih.gov/gene/?term= 6997
http://compbio.charite.de/hpoweb/showterm?id=HP:0003215
https://www.ncbi.nlm.nih.gov/gene/?term= 1962
https://www.ncbi.nlm.nih.gov/gene/?term= 1892
https://www.ncbi.nlm.nih.gov/gene/?term= 3417
https://www.ncbi.nlm.nih.gov/gene/?term= 4329


HPO ID HPO term Entrez Gene ID Gene Symbol
126129 CPT1C

HP:0002085 Occipital encephalocele

284217 LAMA1
1109 AKR1C4
85301 COL27A1
8516 ITGA8
3694 ITGB6

HP:0000677 Oligodontia

25885 POLR1A
2535 FZD2
7161 TP73
7049 TGFBR3
28952 CCDC22

HP:0001218 Autoamputation

4916 NTRK3
51164 DCTN4
10715 CERS1
127833 SYT2
10087 COL4A3BP

HP:0003254 Abnormality of DNA repair

7516 XRCC2
4437 MSH3
7469 NELFA
580 BARD1
79991 STN1

HP:0100864 Short femoral neck

11020 IFT27
2239 GPC4
283375 SLC39A5
2817 GPC1
22978 NT5C2

HP:0009027 Foot dorsiflexor weakness
56776 FMN2
4744 NEFH
5859 QARS

HP:0002905 Hyperphosphatemia

844 CASQ1
26281 FGF20
6809 STX3
80055 PGAP1

HP:0002839 Urinary bladder sphincter dysfunction

25894 PLEKHG4
81570 CLPB
6327 SCN2B
23025 UNC13A
27445 PCLO

HP:0009617 Abnormality of the distal phalanx of the thumb

2619 GAS1
26585 GREM1
57216 VANGL2
22978 NT5C2
84976 DISP1

HP:0002097 Emphysema
5450 POU2AF1
3105 HLA-A
7049 TGFBR3

HP:0100631 Neoplasm of the adrenal gland
1021 CDK6
7468 WHSC1
3481 IGF2
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https://www.ncbi.nlm.nih.gov/gene/?term= 126129
http://compbio.charite.de/hpoweb/showterm?id=HP:0002085
https://www.ncbi.nlm.nih.gov/gene/?term=284217
https://www.ncbi.nlm.nih.gov/gene/?term= 1109
https://www.ncbi.nlm.nih.gov/gene/?term= 85301
https://www.ncbi.nlm.nih.gov/gene/?term= 8516
https://www.ncbi.nlm.nih.gov/gene/?term= 3694
http://compbio.charite.de/hpoweb/showterm?id=HP:0000677
https://www.ncbi.nlm.nih.gov/gene/?term= 25885
https://www.ncbi.nlm.nih.gov/gene/?term= 2535
https://www.ncbi.nlm.nih.gov/gene/?term= 7161
https://www.ncbi.nlm.nih.gov/gene/?term= 7049
https://www.ncbi.nlm.nih.gov/gene/?term= 28952
http://compbio.charite.de/hpoweb/showterm?id=HP:0001218
https://www.ncbi.nlm.nih.gov/gene/?term= 4916
https://www.ncbi.nlm.nih.gov/gene/?term= 51164
https://www.ncbi.nlm.nih.gov/gene/?term= 10715
https://www.ncbi.nlm.nih.gov/gene/?term= 127833
https://www.ncbi.nlm.nih.gov/gene/?term= 10087
http://compbio.charite.de/hpoweb/showterm?id=HP:0003254
https://www.ncbi.nlm.nih.gov/gene/?term= 7516
https://www.ncbi.nlm.nih.gov/gene/?term= 4437
https://www.ncbi.nlm.nih.gov/gene/?term= 7469
https://www.ncbi.nlm.nih.gov/gene/?term= 580
https://www.ncbi.nlm.nih.gov/gene/?term= 79991
http://compbio.charite.de/hpoweb/showterm?id=HP:0100864
https://www.ncbi.nlm.nih.gov/gene/?term= 11020
https://www.ncbi.nlm.nih.gov/gene/?term= 2239
https://www.ncbi.nlm.nih.gov/gene/?term= 283375
https://www.ncbi.nlm.nih.gov/gene/?term= 2817
https://www.ncbi.nlm.nih.gov/gene/?term= 22978
http://compbio.charite.de/hpoweb/showterm?id=HP:0009027
https://www.ncbi.nlm.nih.gov/gene/?term= 56776 
https://www.ncbi.nlm.nih.gov/gene/?term= 4744 
https://www.ncbi.nlm.nih.gov/gene/?term= 5859 
http://compbio.charite.de/hpoweb/showterm?id=HP:0002905
https://www.ncbi.nlm.nih.gov/gene/?term= 844
https://www.ncbi.nlm.nih.gov/gene/?term= 26281
https://www.ncbi.nlm.nih.gov/gene/?term= 6809
https://www.ncbi.nlm.nih.gov/gene/?term= 80055
http://compbio.charite.de/hpoweb/showterm?id=HP:0002839
https://www.ncbi.nlm.nih.gov/gene/?term= 25894
https://www.ncbi.nlm.nih.gov/gene/?term= 81570
https://www.ncbi.nlm.nih.gov/gene/?term= 6327
https://www.ncbi.nlm.nih.gov/gene/?term= 23025
https://www.ncbi.nlm.nih.gov/gene/?term= 27445
http://compbio.charite.de/hpoweb/showterm?id=HP:0009617
https://www.ncbi.nlm.nih.gov/gene/?term= 2619
https://www.ncbi.nlm.nih.gov/gene/?term= 26585
https://www.ncbi.nlm.nih.gov/gene/?term= 57216
https://www.ncbi.nlm.nih.gov/gene/?term= 22978
https://www.ncbi.nlm.nih.gov/gene/?term= 84976
http://compbio.charite.de/hpoweb/showterm?id=HP:0002097
https://www.ncbi.nlm.nih.gov/gene/?term= 5450
https://www.ncbi.nlm.nih.gov/gene/?term= 3105
https://www.ncbi.nlm.nih.gov/gene/?term= 7049
http://compbio.charite.de/hpoweb/showterm?id=HP:0100631
https://www.ncbi.nlm.nih.gov/gene/?term= 1021
https://www.ncbi.nlm.nih.gov/gene/?term= 7468
https://www.ncbi.nlm.nih.gov/gene/?term= 3481


HPO ID HPO term Entrez Gene ID Gene Symbol

HP:0000073 Ureteral duplication

9091 PIGQ
7161 TP73
126129 CPT1C
1962 EHHADH
284098 PIGW

HP:0002181 Cerebral edema

790 CAD
4697 NDUFA4
4538 MT-ND4
4539 MT-ND4L
1892 ECHS1

HP:0002557 Hypoplastic nipples

9091 PIGQ
6909 TBX2
4040 LRP6
284098 PIGW
120 ADD3

HP:0004359 Abnormality of fatty-acid metabolism

1962 EHHADH
1892 ECHS1
126129 CPT1C
4329 CPT1C
57468 SLC12A5

HP:0009720 Adenoma sebaceum

2475 MTOR
4437 MSH3
2272 FHIT
5293 PIK3CD
5378 PMS1

HP:0003233 Hypoalphalipoproteinemia

9971 NR1H4
3991 LIPE
5260 PHKG1
27229 TUBGCP4
5446 PON3

HP:0010980 Hyperlipoproteinemia

9971 NR1H4
5446 PON3
8694 DGAT1
5445 PON2

HP:0003002 Breast carcinoma 4437 MSH3

HP:0001480 Freckling

4437 MSH3
5378 PMS1
7161 TP73
1021 CDK6
1031 CDKN2C

HP:0005293 Venous insufficiency

54567 DLL4
1303 COL12A1
1399 CRKL
3371 TNC
6678 SPARC

HP:0006443 Patellar aplasia 7994 KAT6A

HP:0002025 Anal stenosis
6909 TBX2

80055 PGAP1
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http://compbio.charite.de/hpoweb/showterm?id=HP:0000073
https://www.ncbi.nlm.nih.gov/gene/?term= 9091
https://www.ncbi.nlm.nih.gov/gene/?term= 7161
https://www.ncbi.nlm.nih.gov/gene/?term= 126129
https://www.ncbi.nlm.nih.gov/gene/?term= 1962
https://www.ncbi.nlm.nih.gov/gene/?term= 284098
http://compbio.charite.de/hpoweb/showterm?id=HP:0002181
https://www.ncbi.nlm.nih.gov/gene/?term= 790
https://www.ncbi.nlm.nih.gov/gene/?term= 4697
https://www.ncbi.nlm.nih.gov/gene/?term= 4538
https://www.ncbi.nlm.nih.gov/gene/?term= 4539
https://www.ncbi.nlm.nih.gov/gene/?term= 1892
http://compbio.charite.de/hpoweb/showterm?id=HP:0002557
https://www.ncbi.nlm.nih.gov/gene/?term= 9091
https://www.ncbi.nlm.nih.gov/gene/?term= 6909
https://www.ncbi.nlm.nih.gov/gene/?term= 4040
https://www.ncbi.nlm.nih.gov/gene/?term= 284098
https://www.ncbi.nlm.nih.gov/gene/?term= 120
http://compbio.charite.de/hpoweb/showterm?id=HP:0004359
https://www.ncbi.nlm.nih.gov/gene/?term= 1962
https://www.ncbi.nlm.nih.gov/gene/?term= 1892
https://www.ncbi.nlm.nih.gov/gene/?term= 126129
https://www.ncbi.nlm.nih.gov/gene/?term= 4329
https://www.ncbi.nlm.nih.gov/gene/?term= 57468
http://compbio.charite.de/hpoweb/showterm?id=HP:0009720
https://www.ncbi.nlm.nih.gov/gene/?term= 2475
https://www.ncbi.nlm.nih.gov/gene/?term= 4437
https://www.ncbi.nlm.nih.gov/gene/?term= 2272
https://www.ncbi.nlm.nih.gov/gene/?term= 5293
https://www.ncbi.nlm.nih.gov/gene/?term= 5378
http://compbio.charite.de/hpoweb/showterm?id=HP:0003233
https://www.ncbi.nlm.nih.gov/gene/?term= 9971
https://www.ncbi.nlm.nih.gov/gene/?term= 3991
https://www.ncbi.nlm.nih.gov/gene/?term= 5260
https://www.ncbi.nlm.nih.gov/gene/?term= 27229
https://www.ncbi.nlm.nih.gov/gene/?term= 5446
http://compbio.charite.de/hpoweb/showterm?id=HP:0010980
https://www.ncbi.nlm.nih.gov/gene/?term= 9971
https://www.ncbi.nlm.nih.gov/gene/?term= 5446
https://www.ncbi.nlm.nih.gov/gene/?term= 8694
https://www.ncbi.nlm.nih.gov/gene/?term= 5445
http://compbio.charite.de/hpoweb/showterm?id=HP:0003002
https://www.ncbi.nlm.nih.gov/gene/?term= 4437
http://compbio.charite.de/hpoweb/showterm?id=HP:0001480
https://www.ncbi.nlm.nih.gov/gene/?term= 4437
https://www.ncbi.nlm.nih.gov/gene/?term= 5378
https://www.ncbi.nlm.nih.gov/gene/?term= 7161
https://www.ncbi.nlm.nih.gov/gene/?term= 1021
https://www.ncbi.nlm.nih.gov/gene/?term= 1031
http://compbio.charite.de/hpoweb/showterm?id=HP:0005293
https://www.ncbi.nlm.nih.gov/gene/?term= 54567
https://www.ncbi.nlm.nih.gov/gene/?term= 1303
https://www.ncbi.nlm.nih.gov/gene/?term= 1399
https://www.ncbi.nlm.nih.gov/gene/?term= 3371
https://www.ncbi.nlm.nih.gov/gene/?term= 6678
http://compbio.charite.de/hpoweb/showterm?id=HP:0006443
https://www.ncbi.nlm.nih.gov/gene/?term= 7994
http://compbio.charite.de/hpoweb/showterm?id=HP:0002025
https://www.ncbi.nlm.nih.gov/gene/?term= 6909
https://www.ncbi.nlm.nih.gov/gene/?term= 80055


HPO ID HPO term Entrez Gene ID Gene Symbol

HP:0009888 Abnormality of secondary sexual hair

6909 TBX2
7161 TP73
4744 NEFH
4047 LSS
6862 T

HP:0003311 Hypoplasia of the odontoid process

3371 TNC
4774 NFIA
22926 ATF6
8239 USP9X
26137 ZBTB20

HP:0004311 Abnormality of macrophages

2214 FCGR3A
330 BIRC3
4671 NAIP
58484 NLRC4
6809 STX3

HP:0001974 Leukocytosis

3551 IKBKB
3932 LCK
5657 PRTN3
58484 NLRC4
330 BIRC3

HP:0100578 Lipoatrophy

3991 LIPE
23022 PALLD
844 CASQ1

29119 CTNNA3
6006 RHCE

HP:0000625 Cleft eyelid

23129 PLXND1
246243 RNASEH1
9463 PICK1
25885 POLR1A
10512 SEMA3C

HP:0007361 Abnormality of the pons

5297 PI4KA
9091 PIGQ

284098 PIGW
80055 PGAP1
163786 SASS6

HP:0002667 Nephroblastoma (Wilms tumor) 580 BARD1

HP:0002612 Congenital hepatic fibrosis

11020 CYP4B1
54585 LZTFL1
85440 85440
51164 DCTN4
55690 PACS1

HP:0002967 Cubitus valgus
26585 GREM1
26281 FGF20

HP:0010286 Abnormality of the salivary glands

4437 MSH3
7161 TP73
5378 PMS1
2272 FHIT

3417 IDH1
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http://compbio.charite.de/hpoweb/showterm?id=HP:0009888
https://www.ncbi.nlm.nih.gov/gene/?term= 6909
https://www.ncbi.nlm.nih.gov/gene/?term= 7161
https://www.ncbi.nlm.nih.gov/gene/?term= 4744
https://www.ncbi.nlm.nih.gov/gene/?term= 4047
https://www.ncbi.nlm.nih.gov/gene/?term= 6862
http://compbio.charite.de/hpoweb/showterm?id=HP:0003311
https://www.ncbi.nlm.nih.gov/gene/?term= 3371
https://www.ncbi.nlm.nih.gov/gene/?term= 4774
https://www.ncbi.nlm.nih.gov/gene/?term= 22926
https://www.ncbi.nlm.nih.gov/gene/?term= 8239
https://www.ncbi.nlm.nih.gov/gene/?term= 26137
http://compbio.charite.de/hpoweb/showterm?id=HP:0004311
https://www.ncbi.nlm.nih.gov/gene/?term= 2214
https://www.ncbi.nlm.nih.gov/gene/?term= 330
https://www.ncbi.nlm.nih.gov/gene/?term= 4671
https://www.ncbi.nlm.nih.gov/gene/?term= 58484
https://www.ncbi.nlm.nih.gov/gene/?term= 6809
http://compbio.charite.de/hpoweb/showterm?id=HP:0001974
https://www.ncbi.nlm.nih.gov/gene/?term= 3551
https://www.ncbi.nlm.nih.gov/gene/?term= 3932
https://www.ncbi.nlm.nih.gov/gene/?term= 5657
https://www.ncbi.nlm.nih.gov/gene/?term= 58484
https://www.ncbi.nlm.nih.gov/gene/?term=330
http://compbio.charite.de/hpoweb/showterm?id=HP:0100578
https://www.ncbi.nlm.nih.gov/gene/?term= 3991
https://www.ncbi.nlm.nih.gov/gene/?term= 23022
https://www.ncbi.nlm.nih.gov/gene/?term= 844
https://www.ncbi.nlm.nih.gov/gene/?term= 29119
https://www.ncbi.nlm.nih.gov/gene/?term= 6006
http://compbio.charite.de/hpoweb/showterm?id=HP:0000625
https://www.ncbi.nlm.nih.gov/gene/?term= 23129 
https://www.ncbi.nlm.nih.gov/gene/?term= 246243
https://www.ncbi.nlm.nih.gov/gene/?term= 9463 
https://www.ncbi.nlm.nih.gov/gene/?term= 25885 
https://www.ncbi.nlm.nih.gov/gene/?term= 10512 
http://compbio.charite.de/hpoweb/showterm?id=HP:0007361
https://www.ncbi.nlm.nih.gov/gene/?term= 5297 
https://www.ncbi.nlm.nih.gov/gene/?term= 9091 
https://www.ncbi.nlm.nih.gov/gene/?term= 284098 
https://www.ncbi.nlm.nih.gov/gene/?term= 80055 
https://www.ncbi.nlm.nih.gov/gene/?term= 163786 
http://compbio.charite.de/hpoweb/showterm?id=HP:0002667
https://www.ncbi.nlm.nih.gov/gene/?term= 580 
http://compbio.charite.de/hpoweb/showterm?id=HP:0002612
https://www.ncbi.nlm.nih.gov/gene/?term= 11020 
https://www.ncbi.nlm.nih.gov/gene/?term= 54585 
https://www.ncbi.nlm.nih.gov/gene/?term= 85440 
https://www.ncbi.nlm.nih.gov/gene/?term= 51164 
https://www.ncbi.nlm.nih.gov/gene/?term= 55690 
http://compbio.charite.de/hpoweb/showterm?id=HP:0002967
https://www.ncbi.nlm.nih.gov/gene/?term= 26585 
https://www.ncbi.nlm.nih.gov/gene/?term= 26281 
http://compbio.charite.de/hpoweb/showterm?id=HP:0010286
https://www.ncbi.nlm.nih.gov/gene/?term= 4437 
https://www.ncbi.nlm.nih.gov/gene/?term= 7161 
https://www.ncbi.nlm.nih.gov/gene/?term= 5378 
https://www.ncbi.nlm.nih.gov/gene/?term= 2272 
https://www.ncbi.nlm.nih.gov/gene/?term=3417


HPO ID HPO term Entrez Gene ID Gene Symbol

HP:0010675 Abnormal foot bone ossification

4047 LSS
3149 HMGB3
440275 EIF2AK4
389549 FEZF1
22926 ATF6

HP:0010899 Abnormality of aspartate family amino acid metabolism

1757 SARDH
55811 ADCY10
271 AMPD2
272 AMPD3
91137 SLC25A46

HP:0002922 Increased CSF protein

57468 SLC12A5
3106 HLA-B
3105 HLA-A
4179 CD46
283375 SLC39A5

101

http://compbio.charite.de/hpoweb/showterm?id=HP:0010675
https://www.ncbi.nlm.nih.gov/gene/?term= 4047 
https://www.ncbi.nlm.nih.gov/gene/?term= 3149 
https://www.ncbi.nlm.nih.gov/gene/?term= 440275 
https://www.ncbi.nlm.nih.gov/gene/?term= 389549 
https://www.ncbi.nlm.nih.gov/gene/?term= 22926 
http://compbio.charite.de/hpoweb/showterm?id=HP:0010899
https://www.ncbi.nlm.nih.gov/gene/?term= 1757 
https://www.ncbi.nlm.nih.gov/gene/?term= 55811 
https://www.ncbi.nlm.nih.gov/gene/?term= 271 
https://www.ncbi.nlm.nih.gov/gene/?term= 272 
https://www.ncbi.nlm.nih.gov/gene/?term= 91137 
http://compbio.charite.de/hpoweb/showterm?id=HP:0002922
https://www.ncbi.nlm.nih.gov/gene/?term= 57468 
https://www.ncbi.nlm.nih.gov/gene/?term= 3106 
https://www.ncbi.nlm.nih.gov/gene/?term= 3105 
https://www.ncbi.nlm.nih.gov/gene/?term= 4179 
https://www.ncbi.nlm.nih.gov/gene/?term= 283375 


C HEMDAG: Tutorial

Here we show some examples of how to perform experiments using theHEMDAG, the in-house
R software library implementing the hierarchical ensemble methods proposed in Chapter 4, to
the GO (Chapter 5)andHPO (Chapter 6) term prediction. For the full and detailed step-by-step
tutorial, please visit the following link. The documentation were created using SPHINX (link).
The HEMDAG library is publicly available both from cran and bioconda repository under
the GNU General Public License, version 3 (GPL-3.0).

C.1 Application to the Hierarchical Prediction of GO terms

Let us illustrate now a step-by-step application of HEMDAG package to the hierarchical predic-
tion of protein functions of the model organism DROME (D. melanogaster), one of the six model
organisms used in the experiments illustrated in Chapter 5. The data used for the experiments
shown below are available at: https://homes.di.unimi.it/notaro/DATA/HEMDAG_TUTORIAL/.

Firstly, we must load the input data (i.e. the flat scores matrix S, the graph g and the
annotation table ann) and we store them in the directory data. The output data (i.e. the
hierarchical scores matrix and the performances) will be store in the folder results:

# loading input data

link <- "https://homes.di.unimi.it/notaro/DATA/HEMDAG_TUTORIAL/";

load(url(paste0(link,"7227_DROME_GO_MF_DAG_STRING_v10.5_20DEC17.rda")));

load(url(paste0(link,"7227_DROME_GO_MF_ANN_STRING_v10.5_20DEC17.rda")));

load(url(paste0(link,"Scores.7227.DROME.GO.MF.pearson.100.feature.LogitBoost.5fcv.rda")));

if(!dir.exists("data"))

dir.create("data");

if(!dir.exists("results"))

dir.create("results");

# storing data

save(g,file="data/7227_DROME_GO_MF_DAG_STRING_v10.5_20DEC17.rda");

save(ann,file="data/7227_DROME_GO_MF_ANN_STRING_v10.5_20DEC17.rda");

save(S,file="data/Scores.7227.DROME.GO.MF.pearson.100.feature.LogitBoost.5fcv");

Here we will perform experiments by executing the novel “true-path-rule”-based hierarchical
learning algorithms GPAV and ISO-TPR. In the experiments shown below, we considered the
flat scores matrix achieved by using as base learner Logit Boost with its default parameter setting
(see Table 5.3). We normalized the flat scores matrix in the sense of the maximum, i.e. the
score of each GO term was normalized by dividing the score values for the maximum score of
that class (variable norm.type = MaxNorm).
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Now we are ready to run the GPAV high-level function:

Do.GPAV( norm=FALSE, norm.type= "MaxNorm", W=NULL, parallel=TRUE, ncores=7, folds=NULL,

seed=NULL, n.round=3, f.criterion ="F", recall.levels=seq(from=0.1, to=1, by=0.1),

flat.file=flat.file, ann.file=ann.file, dag.file=dag.file, flat.dir=flat.dir,

ann.dir=ann.dir, dag.dir=dag.dir, hierScore.dir=hierScore.dir, perf.dir=perf.dir);

By looking at the results it easy to see that GPAV outperforms LogitBoost:

## loading results

basefolder <- "results/";

perf <- "PerfMeas.MaxNorm.Scores"

orgonto <- "7227.DROME.GO.MF";

baselearner <- "pearson.100.feature.LogitBoost.5fcv";

hiermeth <- "hierScores.GPAV";

file <- paste0(basefolder, perf, ".", orgonto, ".", baselearner, ".", hiermeth, ".rda");

load(file);

## AUC performance: flat vs hierarchical

AUC.flat$average

[1] 0.8211

AUC.hier$average

[1] 0.8552

## PRC performance: flat vs hierarchical

PRC.flat$average

[1] 0.1995

PRC.hier$average

[1] 0.2352

## F-score performance: flat vs hierarchical

FMM.flat$average

P R S F avF A T

0.4255 0.5515 0.9781 0.4803 0.4055 0.9684 0.1190

FMM.hier$average

P R S F avF A T

0.4837 0.5582 0.9830 0.5183 0.4398 0.9735 0.1080

## Precision at different recall levels: flat vs hierarchical

PXR.flat$avgPXR

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4053 0.3349 0.2795 0.2304 0.1839 0.1349 0.0911 0.0597 0.0314 0.0105

PXR.hier$avgPXR

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4687 0.3896 0.3356 0.2924 0.2352 0.1778 0.1223 0.0797 0.0401 0.0119

Similarly as done for the experiment above, we can execute ISO-TPR‘’algorithm (a TPR-
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DAG variant), where in the top-down step instead of applying the HTD-DAG strategy we use
the GPAV algorithm.

1. ISO-TPRThreshold-Free variant (ISO-TPR-TF) with “positive” children

Do.TPR.DAG( threshold=0, weight=0, kk=NULL, folds=NULL, seed=NULL, norm=FALSE,

norm.type="MaxNorm", positive="children", bottomup="threshold.free",

topdown="GPAV", W=NULL, parallel=TRUE, ncores=7, n.round=3, f.criterion="F",

metric=NULL, recall.levels=seq(from=0.1, to=1, by=0.1), flat.file=flat.file,

ann.file=ann.file, dag.file=dag.file, flat.dir=flat.dir, ann.dir=ann.dir,

dag.dir=dag.dir, hierScore.dir=hierScore.dir, perf.dir=perf.dir);

2. ISO-DESCENS Threshold-Free variant (ISO-DESCENS-TF) with “positive” descendants;

Do.TPR.DAG( threshold=0, weight=0, kk=NULL, folds=NULL, seed=NULL, norm=FALSE,

norm.type="MaxNorm", positive="descendants", bottomup="threshold.free",

topdown="GPAV", W=NULL, parallel=TRUE, ncores=7, n.round=3, f.criterion="F",

metric=NULL, recall.levels=seq(from=0.1, to=1, by=0.1), flat.file=flat.file,

ann.file=ann.file, dag.file=dag.file, flat.dir=flat.dir, ann.dir=ann.dir,

dag.dir=dag.dir, hierScore.dir=hierScore.dir, perf.dir=perf.dir);
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By loading the results of the ISO-TPR-TF variant, we can see that the ensemble method
improves upon LogitBoost performances:

## loading results

basefolder <- "results/";

perf <- "PerfMeas.MaxNorm.Scores"

orgonto <- "7227.DROME.GO.MF";

baselearner <- "pearson.100.feature.LogitBoost.5fcv";

hiermeth <- "hierScores.ISOtprTF";

file <- paste0(basefolder, perf, ".", orgonto, ".", baselearner, ".", hiermeth, ".rda");

load(file);

## AUC performance: flat vs hierarchical

AUC.flat$average

[1] 0.8211

(AUC.hier$average

[1] 0.8544

## PRC performance: flat vs hierarchical

PRC.flat$average

[1] 0.1995

PRC.hier$average

[1] 0.2397

## F-score performance: flat vs hierarchical

FMM.flat$average

P R S F avF A T

0.4255 0.5515 0.9781 0.4803 0.4055 0.9684 0.1190

FMM.hier$average

P R S F avF A T

0.4857 0.5669 0.9821 0.5232 0.4433 0.9728 0.1190

## Precision at different recall levels: flat vs hierarchical

PXR.flat$avgPXR

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4053 0.3349 0.2795 0.2304 0.1839 0.1349 0.0911 0.0597 0.0314 0.0105

PXR.hier$avgPXR

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4848 0.4047 0.3472 0.2937 0.2382 0.1770 0.1224 0.0793 0.0402 0.0119

105



By looking at the results we can see that ISO-DESCENS outperforms LogitBoost:

## loading results

basefolder <- "results/";

perf <- "PerfMeas.MaxNorm.Scores"

orgonto <- "7227.DROME.GO.MF";

baselearner <- "pearson.100.feature.LogitBoost.5fcv";

hiermeth <- "hierScores.ISOdescensTF";

file <- paste0(basefolder, perf, ".", orgonto, ".", baselearner, ".", hiermeth, ".rda");

load(file);

## AUC performance: flat vs hierarchical

AUC.flat$average

[1] 0.8211

AUC.hier$average

[1] 0.8549

## PRC performance: flat vs hierarchical

PRC.flat$average

[1] 0.1995

PRC.hier$average

[1] 0.2449

## F-score performance: flat vs hierarchical

FMM.flat$average

P R S F avF A T

0.4255 0.5515 0.9781 0.4803 0.4055 0.9684 0.1190

FMM.hier$average

P R S F avF A T

0.4834 0.5703 0.9816 0.5233 0.4429 0.9724 0.1190

## Precision at different recall levels: flat vs hierarchical

PXR.flat$avgPXR

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4053 0.3349 0.2795 0.2304 0.1839 0.1349 0.0911 0.0597 0.0314 0.0105

PXR.hier$avgPXR

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5011 0.4115 0.3521 0.3028 0.2425 0.1779 0.1228 0.0783 0.0400 0.0118
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C.2 Application to the Hierarchical Prediction of HPO terms

For the sake of simplicity, in the examples shown below we make use of the pre-built dataset
available in the HEMDAG library. The HEMDAG library provides high-level functions for
batch experiments, where input and output data must be stored in compressed rda files. For
the following experiments we store the input data (i.e. the flat scores matrix S, the graph g and
the annotation table L) in the directory data and the output data (i.e. the hierarchical scores
matrix and the performances) in the folder results:

# loading data

data(graph);

data(scores);

data(labels);

if(!dir.exists("data"))

dir.create("data");

if(!dir.exists("results"))

dir.create("results");

# storing data

save(g,file="data/graph.rda");

save(L,file="data/labels.rda");

save(S,file="data/scores.rda");

Now, we can experiment with different ensemble variants by properly changing the arguments
of the high-level functions. Below we show how to perform experiments by using HTD-DAG
and some of the TPR-DAG ensemble variants.

1. HTD-DAG algorithm:

Do.HTD( norm=FALSE, norm.type="MaxNorm", folds=5, seed=23, n.round=3, f.criterion="F",

recall.levels=seq(from=0.1, to=1, by=0.1), flat.file="scores", ann.file="labels",

dag.file="graph", flat.dir="data/", ann.dir="data/", dag.dir="data/",

hierScore.dir="results/", perf.dir="results/");

2. TPR-DAG Threshold-Free (TPR-TF) variant with “positive” children:

Do.TPR.DAG( threshold=0, weight=0, kk=5, folds=5, seed=23, norm=FALSE, norm.type="MaxNorm",

positive="children", bottomup="threshold.free", topdown="HTD", n.round=3,

f.criterion="F", metric=NULL, recall.levels=seq(from=0.1, to=1, by=0.1),

flat.file="scores", ann.file="labels", dag.file="graph", flat.dir="data/",

ann.dir="data/", dag.dir="data/", hierScore.dir="results/", perf.dir="results/");
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3. DESCENS Threshold-Free variant (DESCENS-TF) with “positive” descendants:

Do.TPR.DAG( threshold=0, weight=0, kk=5, folds=5, seed=23, norm=FALSE, norm.type="MaxNorm",

positive="descendants", bottomup="threshold.free", topdown="HTD", n.round=3,

f.criterion="F", metric=NULL, recall.levels=seq(from=0.1, to=1, by=0.1),

flat.file="scores", ann.file="labels", dag.file="graph", flat.dir="data/",

ann.dir="data/", dag.dir="data/", hierScore.dir="results/", perf.dir="results/");

4. TPR-DAG Threshold variant (TPR-T) with “positive” children, maximizing the thresh-
old on the AUPRC (PRC):

Do.TPR.DAG( threshold=seq(0.1,0.9,0.1), weight=0, kk=5, folds=5, seed=23, norm=FALSE,

norm.type="Qnorm", positive="children", bottomup="threshold", topdown="HTD",

n.round=3, f.criterion="F", metric="PRC", recall.levels=seq(from=0.1, to=1,

by=0.1),↪→

flat.file="scores", ann.file="labels", dag.file="graph", flat.dir="data/",

ann.dir="data/", dag.dir="data/", hierScore.dir="results/", perf.dir="results/");

5. DESCENS-T variant with “positive” descendants, maximizing the threshold on the
F-score (FMAX):

Do.TPR.DAG( threshold=seq(0.1,0.9,0.1), weight=0, kk=5, folds=5, seed=23, norm=FALSE,

norm.type="Qnorm", positive="descendants", bottomup="tau", topdown="HTD",

n.round=3, f.criterion="F", metric="FMAX", recall.levels=seq(from=0.1, to=1,

by=0.1),↪→

flat.file="scores", ann.file="labels", dag.file="graph", flat.dir="data/",

ann.dir="data/", dag.dir="data/",hierScore.dir="results/", perf.dir="results/");

By loading the results of HTD-DAG and TPR-TF variant, we can see that both the
ensemble methods outperform the flat approach RANKS.
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Results achieved by HTD-DAG algorithm:

## loading results

load("results/PerfMeas.MaxNorm.scores.hierScores.htd.rda");

## AUC performance: flat vs hierarchical

AUC.flat$average

[1] 0.7742

AUC.hier$average

[1] 0.7799

## PRC performance: flat vs hierarchical

PRC.flat$average

[1] 0.4738

PRC.hier$average

[1] 0.5016

## F-score performance: flat vs hierarchical

FMM.flat$average

P R S F avF A T

0.5983 0.8419 0.5849 0.6995 0.6598 0.7768 0.5620

FMM.hier$average

P R S F avF A T

0.6244 0.8926 0.6455 0.7348 0.7125 0.8388 0.5204

## Precision at different recall levels: flat vs hierarchical

PXR.flat$avgPXR

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5702 0.5702 0.5702 0.5778 0.5687 0.5308 0.5081 0.5081 0.4738 0.4738

PXR.hier$avgPXR

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5846 0.5846 0.5846 0.5922 0.5831 0.5831 0.5346 0.5346 0.5014 0.5014
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Results achieved by TPR-T algorithm:

## loading results

load("results/PerfMeas.MaxNorm.scores.hierScores.tprTF.rda");

## AUC performance: flat vs hierarchical

AUC.flat$average

[1] 0.7742

AUC.hier$average

[1] 0.7855

## PRC performance: flat vs hierarchical

PRC.flat$average

[1] 0.4738

PRC.hier$average

[1] 0.5107

## F-score performance: flat vs hierarchical

FMM.flat$average

P R S F avF A T

0.5983 0.8419 0.5849 0.6995 0.6598 0.7769 0.5620

FMM.hier$average

P R S F avF A T

0.6021 0.9091 0.5552 0.7244 0.6933 0.7851 0.5696

## Precision at different recall levels: flat vs hierarchical

PXR.flat$avgPXR

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5702 0.5702 0.5702 0.5778 0.5687 0.5308 0.5081 0.5081 0.4738 0.4738

PXR.hier$avgPXR

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.6356 0.6356 0.6356 0.6356 0.6356 0.5750 0.5220 0.5220 0.4819 0.4819

HEMDAG library allows to do also classical hold-out experiments. Respect to the cross-
validated experiments performed above, we only need to load the indices of the examples to be
used in the test set:

data(test.index);

save(test.index, file="data/test.index.rda");

Now we can perform hold-out experiments. Below we perform experiments by using re-
spectively the hold-out version of HTD-DAG and TPR-DAG algorithm (DESCENS-WT
variant).
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1. HTD-DAG (Hold-out Version)

Do.HTD.holdout( norm=FALSE, norm.type="MaxNorm", n.round=3, f.criterion ="F", folds=NULL,

seed=23, recall.levels=seq(from=0.1, to=1, by=0.1), flat.file="scores",

ann.file="labels", dag.file="graph", flat.dir="data/", ann.dir="data/",

dag.dir="data/", ind.test.set="test.index", ind.dir="data/",

hierScore.dir="results/", perf.dir="results/");

2. DESCENS Weighted-Threshold variants (DESCENS-WT) with “positive” descen-
dants (Hold-out Version)

Do.TPR.DAG.holdout( threshold=seq(0.1,0.9,0.1), weight=seq(0.1,0.9,0.1), kk=5, folds=NULL,

seed=23, norm=FALSE, norm.type="Qnorm", positive="descendants",

topdown="HTD", bottomup="weighted.threshold", n.round=3,

recall.levels=seq(from=0.1, to=1, by=0.1), f.criterion="F",

metric="FMAX", flat.file="scores", ann.file="labels",

dag.file="graph", flat.dir="data/", ann.dir="data/", dag.dir="data/",

ind.test.set="test.index", ind.dir="data/", hierScore.dir="results/",

perf.dir="results/");

By loading the results of HTD-DAG and DESCENS-WT we can see that both the en-
semble approaches improve upon “RANKS“ performances:
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Results achieved by HTD-DAG algorithm:

## loading results

load("results/PerfMeas.MaxNorm.scores.hierScores.htd.holdout.rda");

## AUC performance: flat vs hierarchical

AUC.flat$average

[1] 0.8621

AUC.hier$average

[1] 0.9017

## PRC performance: flat vs hierarchical

PRC.flat$average

[1] 0.2789

PRC.hier$average

[1] 0.4376

## F-score performance: flat vs hierarchical

FMM.flat$average

P R S F avF A T

0.5952 0.8182 0.4190 0.6891 0.6404 0.7424 0.3770

FMM.hier$average

P R S F avF A T

0.8889 0.7576 0.6296 0.8180 0.7795 0.8485 0.3800

## Precision at different recall levels: flat vs hierarchical

PXR.flat$avgPXR

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4424 0.4424 0.4424 0.4379 0.4379 0.3708 0.3621 0.3621 0.3621 0.3621

PXR.hier$avgPXR

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.6174 0.6174 0.6174 0.5856 0.5856 0.4892 0.4851 0.4851 0.4851 0.4851
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Results obtained by DESCENS-WT algorithm:

## loading results

load("results/PerfMeas.Qnorm.scores.hierScores.descensWT.holdout.rda");

## AUC performance: flat vs hierarchical

AUC.flat$average

[1] 0.8621

AUC.hier$average

[1] 0.9102

## PRC performance: flat vs hierarchical

PRC.flat$average

[1] 0.2789

PRC.hier$average

[1] 0.4338

## F-score performance: flat vs hierarchical

FMM.flat$average

P R S F avF A T

0.5189 1.0000 0.1250 0.6833 0.6177 0.5758 0.4150

FMM.hier$average

P R S F avF A T

0.8667 0.8889 0.6273 0.8776 0.8721 0.9394 0.6460

## Precision at different recall levels: flat vs hierarchical

PXR.flat$avgPXR

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4424 0.4424 0.4424 0.4379 0.4379 0.3708 0.3621 0.3621 0.3621 0.3621

PXR.hier$avgPXR

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5947 0.5947 0.5947 0.5932 0.5932 0.5009 0.5067 0.5081 0.5081 0.5081
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