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Abstract

This thesis aims to prove the following statement, where the Weierstrass p-function

has algebraic invariants and complex multiplication by Q(«):

“If B1,..., 0B, are algebraic numbers which are linearly independent over

Q(«), then p(B), ..., p(B,) are algebraically independent over Q.”

This was proven by Philippon in 1983, and the proof in this thesis follows his ideas.
The difference lies in the strength of the tools used, allowing certain arguments to be
simplified.

This thesis shows that the above result is equivalent to imposing the restriction

(Bi,....B.) = (1,8,...,8™ 1),

where n = [Q(«, 5) : Q(«)]. The core of the proof consists of developing height
estimates, constructing representations for morphisms between products of elliptic
curves, and finding height and degree estimates on large families of polynomials which

are small at a point in

Q(a, 8,92, 93) (p(1), ' (1), ..., (8", ' (6"1)).

An application of Philippon’s zero estimate (1986) and his criterion of algebraic in-

dependence (1984) is then used to obtain the main result.

ii
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Introduction

The existence of transcendental numbers was first established by Liouville in 1844.
He proved the existence of a non-empty class of numbers called Liouville numbers,
which are, vaguely, real numbers that satisfy a certain strong rational approximation
inequality that no algebraic number can satisfy. He also gave an explicit example in
1851, the so-called Liouwville constant, namely

a0
Z 10~ = 0.1100010000000 . . .

n=1

However, Liouville’s constant was constructed for the sake of proving the existence of
transcendental numbers, and does not answer whether or not numbers which arise in
more “natural” contexts can be transcendental. It was in 1873 that Charles Hermite
answered this question affirmatively, proving that Euler’s number, e, is transcenden-
tal. This naturally spurred greater interest in the theory of transcendental numbers,
further promoted by Cantor’s proof in 1874 that the set of transcendental numbers is
in fact larger than the set of algebraic numbers. The methods in the proof by Hermite
provided much of the basis with which several classes of numbers have historically
been shown to be transcendental. Indeed, Hermite’s methods formed the basis of the
proof, given by Lindemann in 1882, that e” is a transcendental number for each non-
zero algebraic number 3, which in particular implies the transcendence of 7. In 1885,
Weierstrass generalized this result by proving the Lindemann-Weierstrass Theorem,
which states that if 5y,..., 3, are algebraic numbers which are linearly independent

over Q, then e, ..., e’ are algebraically independent over Q. Several more proofs of
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this theorem have appeared over the course of nearly a century, but they all relied on
reducing the problem of algebraic independence to one of linear independence. It was
not until a paper by Chudnovsky published in 1980 [I3] that algebraic independence
methods had managed to yield a partial result. The significance of this is that it
allowed Chudnovsky in the same year to adapt his methods to prove an analogous
result for Weierstrass p-functions which have complex multiplication and which are
defined over the algebraic numbers, with the caveat that only six algebraic numbers
could be considered. Nevertheless, it was his methods that ultimately led Philippon
and Wiistholz to prove the complete result independently of each other in 1983. The
result can be stated as follows, where the Weierstrass p-function is assumed to have

algebraic invariants and complex multiplication by Q(«):

“If B1,..., B, are algebraic numbers which are linearly independent over

Q(a), then ©(B1), ..., p(B,) are algebraically independent over Q.”

The main goal of this thesis is to demonstrate this result, based on Philippon’s meth-
ods. The main difference lies in the strength of the tools used, allowing several
arguments to be simplified.

The first chapter consists of a brief exposition on Algebraic Geometry, establish-
ing the notion of an elliptic curve, and stating a few results on morphisms between
projective algebraic varieties. The second chapter establishes the notion of an elliptic
function, and defines the related Weierstrass functions. The section on the Weier-
strass p-function is of particular importance, as it presents many results which will
be key in proving the main result. The rest of the thesis consists of proving the main
result. The first step in doing so is to show that the statement of the main result
is equivalent to a simpler one, stated as follows, where the Weierstrass p-function is

assumed to have algebraic invariants and complex multiplication by Q(«):

“Let 8 be an algebraic integer, and let d = [Q(a, 8) : Q(«)]. Then the
numbers p(1), p(B),..., (B2 1) are algebraically independent over Q.”
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The proof of this statement relies heavily on the construction of an auxiliary function
for each sufficiently large L € N*. To make this more precise, let E be the elliptic curve
induced by g, and let ® : C — C3 be a holomorphic representation of the exponential
map on E, i.e. expp(z) = [®(2)]. Further, let p : C¢ — C% be defined as p(t) =
(t,t8,...,t897"), and let ¥ : C? — (C?)% be defined as ¥(z) = (P(21), ..., P(24a)).

The auxiliary function is then of the form
F(t) = P(1,t,Wop(t)) (vteC?),

where P € Z[Z,Xy, ..., X, with X; = (X0, Xi1,Xi2) € C for 1 < i < ¢d, and
with Z = (Z, ..., Z,) € C?™'. The polynomial P satisfies
degz P =L and degx, = |(logL)]+1 (1<i<qd),
and is of height bounded by L, whereas I’ satisfies
max max [F7)(t)] < exp(~L(log L)""")

where € > 0 can be chosen arbitrarily small. This auxiliary function differs only
slightly from the one constructed by Philippon in []], in that ¥ is embedded in a large
product of low-dimensional projective spaces, instead of a single high-dimensional pro-
jective space. Its construction also differs, in that it follows rather straightforwardly
from a result of Waldschmidt in [7], combined with Cauchy’s inequality in several
variables. The usefulness of the auxiliary function lies in providing a link between
the algebraic arguments and the analytic arguments inherent in attempting to prove
the main result.

The proof will also require certain morphisms to be represented by families of
polynomials whose degrees and heights are bounded, and so some useful results on
heights of polynomials are demonstrated. In order to find these representations, a

complete system of bidegree (2,2) for the group law on elliptic curves with complex

multiplication is given, whose proof is attributed to [6], and the multiplication-by-2
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map is shown to be represented by a single triple of polynomials. These representa-
tions allow several families of polynomials to be constructed, each such family rep-
resenting one of several morphisms between products of elliptic curves with complex
multiplication.

In order to adequately describe the ideas underlying how the auxiliary function
and representations of morphisms are used in this thesis, the following notation is

established. Let A denote the lattice associated to p, and define for each j € {1,...,d},

(Lp(B77h), ¢/ (6771) if g7t ¢ A;
(0,0,1) if BT e A,

U; =

let u = (uy,...,uq), and let K = Q(g2, g3, v, 5), where gs, g3 are the invariants of p.
Though the details surrounding the use of the auxiliary function and the constructed
representations of morphisms are technical, let it suffice to begin with the following.

For each sufficiently large L € N*, the partial derivatives of F' are shown to be
small at points v = (71,...,7,), with v; € Z[a, 8]. These are normalized to yield
elements of K |[u] which have absolute values that are small. These elements are then
shown to be the image at u of polynomials whose heights and degrees are bounded.

Denote by F; the family consisting of the aforementioned polynomials. The
completion of the proof is then reliant on an application of Philippon’s zero estimate
(1986) followed by an application of Philippon’s criterion of algebraic independence
(1984). The zero estimate shows that F7 has no common zeros in E? < (P?(C))%.
Adding to F7, the d polynomials which define £, a new family is constructed, denoted
F, which has no common zeros in (P?(C))%. The criterion of algebraic independence
then uses the fact that 7, has no common zeros in (P?(C))%, as well as the estimates
on the heights and degrees of the polynomials in F;, and the bound on the values they
take at the point u, to deduce that K (uq,...,uys) has transcendence degree d. Since
the invariants are algebraic, the relation 2 = 403 — gop — g3 allows the deduction of

the main result.



Chapter 1

Algebraic Geometry

This chapter provides the details concerning algebraic geometry which are relevant
to this thesis. Its content is attributed to [1] and [2]. Throughout this chapter, fix a

field kg of characteristic zero, and let £ 2 kg be an algebraically closed field extension.

1.1 Algebraic Varieties

In what follows, notions related to both affine algebraic varieties and projective alge-
braic varieties will be treated simultaneously, due to similarities in their exposition.
Let A" := k™ denote the affine n-space over k, and let P" := P"(k) denote the

projective n-space over k. Further, denote the equivalence classes of points in P" by
[To, ..y xn] = (xo - 1 xn) = {(Axo, ..., Azp) | A € B™}.

Let A = k[zy,...,2,] be a polynomial ring in n variables. Given a subset T' € A,

denote by Z(T) the set of common zeros of all polynomials in T, i.e.
Z(T)={acA"| f(a) =0 for all feT}.

Let S = k[xo, ..., x,] be a polynomial ring in n + 1 variables.
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Definition. A polynomial f € S is homogeneous of degree d if
fAzg, ..., zn) = M f(2o,...,20) (YA€)

Let Sy be the set of polynomials in S which are homogeneous of degree d, and
denote the set of homogeneous polynomials by Sy = | J;_, S4¢ - Notice that while a
homogeneous polynomials f € S; is not a function of P, it does make sense to ask
whether or not f is zero at a point in P". Indeed, if f is zero for some representative

(xo,...,2,) of a point p € P*, then
fAxo, ..., zn) = Mf(xg,...,2,) =0 (YA€),

and so f is zero for every representative of p. Thus, given a subset T' < Sy, denote

by Z(T') the set of common zeros of all polynomials in T, i.e.
Z(T)={peP"|f(p) =0forall feT}.

Definition. A subset X of A" (resp. P™) is said to be an algebraic set if there exists
a subset T' of A (resp. Sy) such that X = Z(T). If T can be chosen such that the

coefficients of the polynomials in T lie in kg, then X is said to be defined over k.

Proposition 1.1.1. Consider the following sets to be contained in A™ (resp. P").
Then,

a) the union of two algebraic sets is an algebraic set;
b) the intersection of a family of algebraic sets is an algebraic set;
c) @ and A" (resp. P™) are algebraic sets.

Definition. The Zariski topology on A™ (resp. P") is defined by taking the open sets

to be the complements of the algebraic sets in A" (resp. P").

Remark that, by the proposition above, this is indeed a topology.



1. Algebraic Geometry 7

Definition. A non-empty subset Y of a topological space X is said to be irreducible
if it can not be written as the union of two proper subsets, Y; and Y5, both of which

are closed in Y.

Definition. An affine (resp. projective) algebraic variety is an algebraic set which is

irreducible in the Zariski topology on A" (resp. P™).

Proposition 1.1.2. Fach algebraic set can be uniquely written as a finite union of

algebraic varieties, none containing another.

Definition. Let X be a topological space. The dimension of X, denoted dim X, is
defined to be the supremum of all integers n such that there exists a chain 7y ¢ Z; <
- < Z, of irreducible closed subsets of X. The dimension of an algebraic variety is

its dimension as a topological space.

Definition. Let X = Z(f1,...,fs) be an algebraic variety in A" (resp. P"); let

p € X. Then, X is smooth at p if the rank of the Jacobian is maximal, i.e.

rank (af ! (p)) — n — dim(X).

(I‘j

An algebraic variety is said to be smooth if it is smooth at every point.

1.2 Morphisms

Note that understanding morphisms between projective algebraic varieties will suffice
for the scope of this thesis. As such, the following exposition will be simplified

accordingly. For more details on morphisms, see [I].

Definition. Let V < P*(C) and W < P™(C) be algebraic varieties. Let ¥ : V — W

be a map. If there exists a Zariski open cover (U;),e; of V, such that

(W) (2),..., P (x)) #0 (Vie I;VeeUy);

m
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for some family (U®),c;, where each U@ = (U{’ .. ¥%)), and where each \If§-i) is a
polynomial which is homogeneous of degree d;, independent of j. Then, ¥ is said to

be a morphism, and it is said to be represented by the family (\Il(i))iej.

Note that the choice of a family which represents a morphism is not unique.
Also, given morphisms ¢ : U — V', 1 : V — W, the composition Yo ¢ : U — W is a

morphism.

Proposition 1.2.1. Let V : V — W be a morphism. Then, the family (V@) which
represents W can be chosen with a finite indexing set I. Furthermore, if v € V and
1€ I are such that

(W (z),..., 09D (z)) £ 0,

then
U(z) = [U(2), ..., 09 (z)].

Definition. Let ¥ : V' — W be a morphism which is represented by a finite family
(U®);e;. Then, the family (I®);.; is said to form a complete system for .

Reciprocally, if a finite family (¥?);c; is such that, for each i, € I,
WP ()., 0D(2)) £ 0 = (TP (2),..., 09D (x))

implies that
[ (@), ... W (@)] = [¥ (@), ..., ¥ ()],

m

then (W®);c; forms a complete system for a unique morphism ¥ : V — W,

1.3 Elliptic Curves

This section introduces the notion of algebraic groups, as well as that of elliptic curves

defined over fields of characteristic zero. A few key results are also stated.



1. Algebraic Geometry 9

Definition. Let X be an algebraic set defined over k3. Suppose that X possesses a
group structure whose group operations can be given locally by polynomials whose
coefficients lie in k3. Then, X is said to be an algebraic group, and it is said to be

defined over k.

For instance, the algebraic set C" is an algebraic group defined over QQ for each

n € NT, taking ‘4’ as the group law.

Definition. An elliptic curve is a smooth projective algebraic variety of genus 1 [2],
with a specified basepoint O. It is said to be defined over ky if the polynomials
defining it can be chosen to have coefficients in kg, and if there exists a representative

of O whose coordinates are in k.

Proposition 1.3.1. Let E be an elliptic curve defined over ko. Then, it is isomorphic

as an algebraic variety to an elliptic curve which is in Weierstrass normal form, i.e.
E = Z(zox; — 42% + goxizy + g370).

The quantities g, and g3 are called the invariants of FE, and are such that if £
is defined over kg, then gs, g3 € kg. Further, the smoothness condition on E requires
that g3 — 27¢3 # 0.

In order to show the following proposition, consider the following. Let E be an
elliptic curve which is in Weierstrass normal form. One can consider the points of F
which are at infinity, i.e. the points [0, 1, x2] € E. Since E is in Weierstrass normal
form, it follows that [0,0,1] is the only point at infinity. Let O = [0,0,1] be the
specified basepoint of E. If L is a line in P2, then Bézout’s theorem [2] yields that
LN E has exactly three points, counting multiplicities. It thus makes sense to define

the composition law in the upcoming proposition.

Proposition 1.3.2 (Group Law). Let P,Q € E. Let L be the line connecting P and
Q (if P = Q, then L is the line tangent to E at P), and let R be the unique third
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point of intersection of L with E. Let L' be the line connecting R and O, and define
P®Q to be the unique third point of intersection of L' with E. Then, the composition

law given by @ turns E into an abelian group with identity element O.

Definition. Let X be an algebraic group which is also a projective algebraic variety.

Then, X is said to be an abelian variety.

For example, an elliptic curve is an abelian variety of dimension 1, as the group
law on E given above can be expressed locally by polynomials, as seen in [2]. However,

all that will be needed throughout this thesis is its reformulation (Theorem [2.2.9) in

terms of the Weierstrass p-function which is defined in the next chapter.
Definition. An isogeny is a basepoint preserving morphism between abelian varieties.
Proposition 1.3.3. Aside from the zero isogeny, an isogeny is finite-to-one and onto.
Definition. The endomorphism ring of E, denoted End(FE) is defined by

End(FE) = {isogenies ¢ : E — E}.

Proposition 1.3.4. Let E be an elliptic curve. Then, End(FE) is either isomorphic

to Z or to a quadratic imaginary extension of Z.

If the endomorphism ring of an elliptic curve F is not isomorphic to Z, i.e.
if End(E) = Z[a] for some quadratic imaginary integer «, then E is said to have

complex multiplication.



Chapter 2

Welerstrass Functions

The aim of this chapter is to provide the reader with a foundation of the theory
surrounding the Weierstrass g-function. Its content is standard, and some of it is

presented for the sake of completion. Of particular noteworthiness are Theorem [2.1.1]

Propositions [2.3.1] and [2.4.1] and the entire section devoted to the Weierstrass -

function. Further, it should be noted throughout this chapter that when a statement
is lacking a proof or reference, it can be found in Chapter 6 from [2].

The following terminology will be useful. A lattice is defined to be a discrete
subgroup of C which contains an R-basis for C. Throughout this chapter, fix a lattice
A < C. It should be noted that many of the definitions in this chapter depend on the

choice of A.

2.1 Elliptic Functions

Definition. An elliptic function (relative to A) is a meromorphic function f(z) on C
satisfying
fz+w)=f(z) forallweA, zeC.

The set of all elliptic functions, relative to A, is denoted by C(A). The set C(A)

11
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is a field.

Definition. A fundamental parallelogram for A is a set of the form
{CL + t1w1 + tQ(JJg ‘ 0< tl,tg < 1},
where a € C and where wy,wy € C are such that A = Zw; + Zw,.

Definition. The order of an elliptic function is defined to be its number of poles,

counting multiplicities, in any fundamental parallelogram.

The following notation will be used frequently. Let g : C — C be such that for
each fundamental parallelogram D, g|p has finite support. If the value of }, _, g(w)
is independent of the choice of a fundamental parallelogram D, then define

>, g(w) =Y g(w).
weC/A weD

Theorem 2.1.1. Let f € C(A). Then,

a) Z res, f =0

weC/A

b) > ord,f =0
weC/A

c) Z w-ord, feA
weC/A

Corollary 2.1.2. A non-constant elliptic function has order at least two.

Definition. The divisor group of C/A, denoted by Div(C/A), is the group of formal

linear combinations

Z nw(w)v

weC/A

where n,, € Z, with n,, # 0 for only finitely many w. The degree of D € Div(C/A),
with D = Y n,(w), is defined by

deg D = an.
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Further, define
Div’(C/A) = {D € Div(C/A) | deg D = 0},
and define a group homomorphism div : C(A)* — Div?(C/A) by
div(f) = ) (orduf)(w).

weC/A

Proposition 2.1.3. If f,g € C(A)* are such that div(f) = div(g), then f = cg for
some ce C*, i.e.

ker(div) = C*.

2.2 The Weierstrass gp-function

Definition. The Weierstrass o-function (for A) is defined by the series

o=l -5+ Y (o)

weA\{0}

Theorem 2.2.1. The series defining the Weierstrass p-function defines a meromor-
phic function on C. It is an even function, and its poles are situated at each z € A
and are all of order 2. Further, p and ¢’ are elliptic functions, and the roots of ¢’

are precisely the elements of %A\A, i.e.
O'(z) =0 ze FA\A.

The following theorem provides insight into the significance of the Weierstrass

p-function.

Theorem 2.2.2. The elements of C(A) are precisely the rational functions of p and

/

o, te.
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Proposition 2.2.3. Let Dy be a fundamental domain for (C/A)/{x1}. If f € C(A)

18 even, then

div(f) = 3 mul(w) +(=w)] (for some n, & )

anDO

f)=c [ lp@)—p]™ (for somece C).

weDo\{0}

Definition. The Fisenstein series of weight 2k (for A) is the series

Gop = Go(A) = > w.

weA\{0}

The series Gg, is absolutely convergent for each integer k > 1.

Theorem 2.2.4. The Laurent series for p(z) about z = 0 is given by

p(2) = 272+ ). (2k + 1)Gapra2™.

k=1

Definition. The invariants of A, denoted gs, g3, are defined as
go = gg(A) = 60G4 and gs = gg(A) = 140G6
According to [3], the Laurent series for p(z) has coefficients in Q(gs, g3)-

Theorem 2.2.5. There is an algebraic relation between the meromorphic functions
© and ¢, namely
0" = 40° — 920 — g.

In particular, we also have that " = 6p* — go/2.

Proposition 2.2.6. The polynomial f(x) = 43— gox — g3 has non-zero discriminant,
denoted
A= A(A) = g5 - 2743

In particular, E = Z(xox3 — 423 + goxdzy + g323) is an elliptic curve, and
[Lp(2), ¢'(2)] € E,

for each z € C\A.
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The lattice A is said to induce the elliptic curve E. The following notion is linked

to the endomorphism ring of an elliptic curve E.

Definition. The order of A is defined as
O:=0A)={reC|TAc A}
Proposition 2.2.7. Let E be the elliptic curve induced by A. Then,
O ~ End(F).

In particular, if £ does not have complex multiplication, then O = Z, and if
E has complex multiplication, then O = Z[«]| for some quadratic imaginary integer
«. In order to provide insight into the isomorphism involved, some terminology is
introduced. Given a Lie group GG with tangent space T¢(C), the ezponential map of
G is the unique map expg : T(C) — G satisfying

e exp(0) = lg;
o Z(expg(tv)) = Ly(expg(tv)) (Vv e Tg(C)),

where L,(z) = m/(v), and where m, : G — G is such that m,(¢g) = xg. Then, the

isomorphism is induced by the ezponential map of E, expy : C — E, defined as

[1,0(2),¢'(2)] if ze C\A
expp(z) =
[0,0,1] if z € A.

It is a complex analytic homomorphism of complex Lie groups.

Proposition 2.2.8. Let 7 € O. The multiplication-by-7 map [7] : E — E defined by

[7](p) = expg(7 - expy'(p)) (Vpe E)

is an isogeny, i.e. [T] € End(E). Further, every isogeny in End(E) arises in this way.
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The following theorem is an amalgamation of results in [4].

Theorem 2.2.9 (Addition Law). Let z,y € C\A. Then the following holds:
Ify# £z mod A, then p(z) # p(y) and

LY@ =W\ .
oe+) =3 (S50 o) - ol

Oz +y) = @' (2)py) — ' We(z) — p(z +y)(¢'(2) — 9'(y))
p(2) — o) '

If y=2%# —z mod A, then ¢'(z) # 0 and

o+ ) = 9i22) = 1 (5 ) 20000

" (2)p(2) — ¢'(2)* — p(22)p"(2)
¢ (2)
Recalling that " = 6p* — g,/2 yields the following corollary.

Pz+y) =¢(22) =

Corollary 2.2.10. Let z,y € C\A. If 2+ y ¢ A, then

p(z+y), 9 (2 +y) € Qlg2)(p(2), p(y), ' (2), 9’ (¥))-

2.3 The Weierstrass (-function

Though the following function is not explicitly used in this thesis, it is used to define
the n-function in Proposition This n-function is noteworthy, as it figures in a

useful result, namely Proposition [2.4.1

Definition. The Weierstrass (-function (for A) is defined by the series

G=cen -1+ B (Zornrs)

2
weA\{0} w W

The Weierstrass (-function is an odd function which satisfies

() = —ol2).
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Proposition 2.3.1. Definen: A — C by

n(w) = n(w; A) = 2¢(w/2; A).

Then, n is an additive map satisfying, for each z € C\A and each w € A, the equation

((z+w) = ((2) +n(w).

2.4 The Weierstrass o-function

Definition. The Weierstrass o-function (for A) is defined by the series

z

o(2) = oz ) == [ (1-2) i,

weA\{0} W
The infinite product for o(z) defines a holomorphic function on all of C. It has
simple zeros at each z € A, and no other zeros. The Weierstrass o-function also

satisfies
2

d
- logo(z) = ((z) and @log o(z) = —p(2).
Proposition 2.4.1. Let w e A and let z € C. Then
0(z +w) = ee"@EF2 (2,
where e =1 if we 2N and e = —1 if w ¢ 2A.
The following proposition provides a reciprocal to Theorem [2.1.1}
Proposition 2.4.2. Let ny,...,n,. € Z and let zy, ..., z. € C be such that
Zni =0 and anz, =\eA.
i=1 i=1
Then
O-<Z) - Mg
f(z) = mﬂﬂz 2;)

belongs to C(A). Furthermore, it satisfies

div(f) = > niz).



Chapter 3

Equivalence Theorem

This chapter shows that the main theorem of this thesis is in fact equivalent to a
statement which will be simpler to demonstrate. This problem reduction appears in
Philippon’s original proof, but its proof in this chapter is independent of Philippon’s
methods.

3.1 Preliminaries

Throughout this section, fix a field K of characteristic zero, a field extension C' 2 K,
and a subfield k < C. The following lemma is a standard result [11]. Note that while
it can be proven very quickly using the standard fact that any non-zero meromorphic
function on an open connected subset of C has isolated zeros and poles, the proof

provided below is more elementary.

Lemma 3.1.1. Let D be an open connected subset of C. If f1, fa: D — CU {0} are

meromorphic functions such that fy - fo =0, then either fy =0 or f, = 0.

Proof: Let f be a meromorphic function on D, and define the set

Uy = {x € D|There exists ¢ > 0 such that f|p. = 0}.

18
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Clearly, Uy is open, but it can be shown that it is also closed.

Since J is closed, assume without loss of generality that Uy # J. Let a € ﬁf,
and so for all n > 0, there exists b, € B(a,%) NU; # &. Since b, € Uy, then
f9(b,) = 0 for j = 0. Since a is arbitrarily close to points for which f¥) is zero, we
get that f)(a) is not infinity, and so fU) must be continuous at the point a. Thus,
b, — a implies that fU)(a) = 0 for j > 0. Further, since f is differentiable at a, there

exists € > 0 such that f is represented by a Taylor series in B(a, ). Therefore,
Z f (7 (x—a)" =0

for all x € B(a,¢), and so a € Uy. Hence, Uy is closed.
Since Uy is both open and closed, and since D is connected, then either Uy = &
or Up = D. Thus, if f : D — C is a meromorphic function, then

Uf;ﬁ@:>Uf=D.

Let fi1, fo be meromorphic functions on D such that f; - fo = 0. Assume without
loss of generality that fo # 0. Then, there exists a € D such that fy(a) # 0, and
so there exists € > 0 such that fy # 0 on all of B(a,e). Thus, fi|p@,. = 0, and so
ae Uy # = Uy = D. Thus, fi =0, completing the proof. i

Before stating the following corollary, note that the binary relation < will be used to

denote the usual ordering on Z as well as the partial order over Z x Z defined by

(z1,91) < (22,92) © 71 <22 and Y1 < .
Also define (z1,y1) < (22,92) < (x1,41) < (22, y2) and either x; < x5 or y; < ys.

Corollary 3.1.2. Let hy, hy be meromorphic functions on C. If there exists H €
klz,y]\{0} such that H(hy,he) = 0, then there exists G € k[z,y|\{0} which is irre-
ducible and which satisfies G(hy, he) = 0.
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Proof: Suppose there exists H as described. Then, in particular, there exists
G € k[z,y]\{0} minimal in (deg, G, deg, G) which satisfies G(hy, hy) = 0. Suppose
to the contrary that G is not irreducible. Then, there exists g1, g2 € k[z,y]\{0} with
(deg, gi,deg, g;) < (deg, G,deg, G) such that G = g1go. Thus, the f; == gi(h1, h)
are meromorphic functions on C such that f; fo =0, and so Lemma yields that
fi1 or fo is zero, which contradicts the minimality for G. Thus, G is irreducible, as

required. |

Throughout what follows, view C'(z) and K ((z™!)) as subfields of C'((z™!)). Thus, it

makes sense to take their intersection.
Lemma 3.1.3. C(z) N K((z™')) = K(z)

Proof:  Since K(x) < C(z)NK((z™1)), it suffices to show C(z)NK ((x71)) = K(x).
To this end, given F' € C(x)\{0}, there exists A, B € C[z] such that (A, B) =1
and F' = A/B. Standard results in algebra yield the unicity of deg A + deg B for
(A, B) = 1, and so it makes sense to define a function h : C'(z) — N by

deg A+ degB if F # 0;
0 it =0,

where A, B satisfy the aforementioned properties. The proof that
FeCl)nK(z™) = FeK() (3.1.1)

is done by induction on h(F') = 0:

The base case h(F') = 0 yields that F(z) = ¢ € K((z)) for some ¢ € K, and
so F' € K(z). Suppose now that holds for h(F) € {0,...,n — 1}. Then, let
F e Clx) N K((z™")) with A(F) = n > 0. Thus, there exists A, B € C[x] with
(A,B) = 1 such that F = A/B. Notice that if R € C(x) N K((z71))\{0}, then
1/Re C(x) N K((z™1)). Thus, since h(1/F) = n, assume without loss of generality
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that deg A > deg B. Furthermore, letting r = deg A and s = deg B yields that

A(z) = Y a;z'  (for some a; € C);

B(z) = Z bz’ (for some b; € O).
Thus, F' satisfies
F(z)=ab;" (z7")"" mod (x’l)s_ﬂrl Cl[=]]
Since F' e K((x71)), it follows that a,b;! € K, and so
G(z) = F(r) —a,b;'2"* e K((z™")).

Since r > s, then

r—1 r—1
H(z) = G(x)B(x) = A(x) — ayb;'2" " B(z) = > @z’ — ayby' Y] bjpe s/,
1=0 Jj=r—s

is in fact a polynomial in C[z]. Suppose that H = 0, and so G = 0 which implies
that h(G) = 0 < n. Suppose that H # 0. Then deg H < r —1 < deg A, and so

G(z) = g ((g e C(x) N K((z7Y)

is such that h(G) < deg H +deg B < h(F') = n. The induction hypothesis then yields
that G(x) € K(z). Thus,

The desired result follows by induction. i

Corollary 3.1.4. C(z)NK((z)) = K(x)
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Proof: By the previous lemma, C(z™') N K((z)) = K(z™'). However, C(z7') =
C(z) and K (27 ') = K(z), thus completing the proof.

In order to state the following lemma, the technical issue regarding composition in a

given field of formal Laurent series over a field C' needs to be treated (cf. [I1]).

Definition. A family {g,(x)},en of formal Laurent series in C((x)) is called summable
if for each integer k,

ord,g, >k

for all but a finite number of g,’s.

Example. The family { Zf:n x”} is a summable family of Laurent series.

neN

Note in this context that ord, operates on Laurent series, and that it is not
to be confused with the order function introduce in Chapter 2 which operated on
meromorphic functions.

If a family {g,(x)}nen is summable, then the sum of the family defines a Laurent

series. Indeed, by letting m = min,{ord,g,} > —oo, the sum of the family can then

be defined as

o) = 3 (D)o

i=m “n=0

where g,(z) = ] an;x'. Since each sum ), a,; is in fact a finite sum, then

g € C((x))-

Proposition 3.1.5. Let f € C((x)), and let g € 2C[[x]]. Let | = ord,f, let m =

ord,g > 0, and write

o0 0
flz) = Z a,x" and g(x) = Z b, (for some a,,b, € C).
n=l n=m

Then, the composition fog is defined and belongs to C((x)). Further, ord,(fog) = lm,

and the coefficient of f o g in '™ is a;bl,.
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Proof: Since b,, # 0, it makes sense to define functions r,, via the relation

(1 + 2 b;mxi) =1+r,(x) (YneZ).
i=1 "

Note that r,(z) € zC[[x]] for each integer n. Since g(x)" = b ™" (1 + r,(z)), then

ord,(¢g") = nm = nord,g, and so the sequence (ord,(g'),ord,(g'™),...) is strictly

increasing. It follows that {a,¢"(x)},>; is a summable family, and so

fog= ayg"(z) e C((x))

In particular, ord,(f o g) = Im, and the coefficient of f o g in 2™ is a;b!,,. |

Lemma 3.1.6. Let f € C((x)), and let g € xK[[x]]\{0}. If fog e K((x)), then
fe K((x)).

Proof:  Let f,g be as described above. If f = 0, then f € K((z)). Thus, assume
without loss of generality that f # 0. Let [ = ord, f and m = ord,g for some [, m € Z.
Thus,
0
flz) = Z apx” (for some a, € C);

g(x) = 2 b,x™  (for some b, € K).

n=m

Suppose to the contrary that f ¢ K((z)). Then there exists a smallest integer p such
that a, ¢ K. Thus, f,(z) = '+ +a, 1277 € K((x)),and so h == fog— f,0g €
K((z)). Then, ord,h = pm, and so a,b?, € K. Since b,, # 0, this implies that a, € K,

which is a contradiction. Therefore, f € K((z)) as required. i

Lemma 3.1.7. Let f € C(x), and let g € zK|[[z]]\{0}. If fog e K((x)), then
feK(z).
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Proof:  Let f,g be as described above. Then, since f € C(x) < C((z)), Lemma
[3.1.6) yields that f € K((z)). Thus, f € C(z) N K((x)), and so f € K(z) by Corollary
B.14 I

3.2 Equivalence Theorem

Throughout this section, fix a lattice A = C, and recall that O = {7 € C|7A < A}.
Fix K = Q(g2,93), and fix k = Frac(O), i.e. the fractional field of O. The following

notion will prove to be useful.

Definition. Let z1,...,x25 € C. The set {z1,...,x,} is said to be irreducible (with

respect to A) if
Z x; #0 mod A,

iel

for each non-empty subset I < {1,...,s}.

Suppose that z,...,x, € C are such that z; + --- + 2, ¢ A. Then, there exists

a non-empty subset I < {1,..., s} with minimal cardinality such that
in = sz mod A.
icl i=1
In this case, the set (z;),s is called a reduction of the {xq,...,z,}. If it is not

irreducible, then there exists a non-empty subset J < I such that >, x; € A,
but then I\J # & contradicts the minimality of I. Thus, any reduction must be

irreducible.

Proposition 3.2.1. Let {z1,...,xs} = C be irreducible. Then

p(xl +oee+ :L‘S)’ @,@71 +et ‘/ES) € @<92)<p<x1)’ SR p(:)ﬁs), p/(w1)7 SRR p/(ZES)).
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Proof: The claim is proven by induction on s > 1. For the base case s = 1,

x1 ¢ A, and so p(x1), 9’ (z1) € Q(g2)(p(z1), @' (1)) is trivially true. Suppose for
s=1,...,n—1that p(z; + -+ + x5) and p'(z1 + - - - + x) belong to

@(92)(@($1), R @(IES), p,(xl)v SRR p/(l's)).

Let {z1,...,x,} beirreducible and so {1, ..., 2,1} is irreducible. Thus, by induction

hypothesis, p(z1 + -+ + x,-1) and ¢'(x1 + -+ - + x,_1) belong to

Q(g2)(p(@1), - - p(Tn—1), 9" (@1), .. 9 (W)

Corollary yields that o(zy + -+ + x,) and ¢'(z1 + - -+ + x,) belong to
Qg2) (91 + -+ + Tn1), 9(wn), (w1 + -+ + Tna), ¢ (20)),
and so
plar+ -+ ), 9 (21 + -+ 20) € Qg2) (p(21), - p(@n), @' (1), .., ¢ (20)).

The desired result follows by induction. i
Before stating the next lemma, define for each ¢ e C*

pc(2) = p(cz) and () = ¢'(cz) (Vz€C).
Remark that this is strictly notation, as (p.)" = cgl.

Lemma 3.2.2. Let c € k* = Frac(O)*. Then, p. and ¢, belong to K(p).

Proof: Remark that

(9L)? = 4(pe)® — g2 — g5 (Ve e C¥),

and so . € K(p.). Thus, it suffices to show that p. is algebraic over K(gp). Let
D e N* be such that v = Dc e O\{0}. The first step is to show that g, is in K(p).
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Note that ., € C(A) is an even function, and so there exists f(z) € C(z) such that
o, = f(p~'). Since p € x2K[[z]\e ' K[[z]], then g == p~' € 2*K[[z]]\{0}. Since
o € K((z)) and vz € xK[[x]], then the composition p. belongs to K ((z)). Hence,

fog=flp™") =p,e K((x)).

Lemma then yields that f € K(z), and so g, is in K(gp). Similarly, pp € K(p)
since D € Nt < O\{0}, and so there exists G € K[z,y]\{0} such that G(p,pp) = 0.

Hence,
m

G(z,y) = ). Ai(y)r',

i=0
for some A;(y) € K|[y], not all zero. Thus,

m

2, Ailpp)p’ =0,
i—0
from which it follows that
D Ailpy)(9yp) =0 (VyeCX).
i=0

Since a meromorphic function over C cannot be the root of a polynomial in constant
coefficients without being a constant itself, then each non-zero A; satisfies 4;(p,) # 0.
Thus, G(z, p,) € K(py)[=]\{0}, and it admits p,/p as a root. Therefore, p. = p,/p
is algebraic over K(p,) € K(p). i

Corollary 3.2.3. Let zg € C\A, and let ¢ € k™ be such that czo ¢ A. Then p(czp)
and ¢ (czy) are algebraic over K(p(z0)).

Proof:  Since ¢'(czp) € K(p(czp)), it suffices to show that p(czg) € K(p(z0)). By
Lemma and Corollary [3.1.2] there exists irreducible G(z,y) € K[z, y]\{0}, such
that G(p(cz), p(z)) = 0 for all z € C. Hence,

m

G(z,y) = D Aily)r',

1=0
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for some A;(y) € K|[y], not all zero. Thus,

2 Ailp(2)p(ez) = 0.

Suppose that G(z, p(20)) € K (p(20))[z] is the zero polynomial. Then each A4;(p(29)) =
0, and so p(2p) is algebraic over K. Thus, there exists a minimal polynomial m € K|[y]
with degm > 1 such that m(p(z)) = 0. It follows that m(y)|A;(y) for 0 < i < n,
and so m(y) divides G(z,y). Since G is irreducible, then G = am for some a € K.
Thus, am(p(z)) = 0 for all z € C, and so p(z) has a finite image, which yields a
contradiction. Therefore, G(z, p(z0)) € K(p(20))[x]\{0}, and it admits p(czy) as a

root, which yields the desired conclusion. i

Theorem 3.2.4. Suppose that ANQ = {0}. The following statements are equivalent.

(A) If B1,...,Bs € Q are linearly independent over k, then o(B1),...,0(Bs) are

algebraically independent over Q.

(B) Let 5 be a non-zero algebraic integer, and d = [k(B) : k]. Then, it follows that

(1), p(B), ..., p(B4Y) are algebraically independent over Q.

Proof: Suppose that (A) is true. Let § be a non-zero algebraic integer and let
d=[k(B) : k]. Then 1,8,...,3% ! € Q are linearly independent over k. Since (A) is
true, then p(1), p(B),...,p(B3%1) are algebraically independent over @, and so (B)
holds. Thus, (A) implies (B).

Suppose that (B) is true, and let 3y,..., 3, € Q be linearly independent over
k. By the primitive element theorem, there exists v € Q\{0} such that k(y) =
k(Bi,...,0Bs). Since 7 is an algebraic number, there exists D € N* such that a = D~y
is an algebraic integer. Letting d = [k(«a) : k] and viewing k(«) as a k-vector space,

then, since {f1,..., s} € k(v) = k(D~v) = k(«) is a linearly independent subset over
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k, there exists an extension B = {f3, ..., 84} such that B is a k-vector space basis of

k(). Thus,

d
o = Z%’ﬁi (for some ¢;; € k;0 < j < d).
i=1

Notice that o/ € Q\{0} for 0 < j < d. It follows from the hypotheses of the theorem

that .
i=1
Further, there exists I; such that (c;j)ics, is a reduction of {c1;B, ..., cqB4}, i.e.

o = Z cijBi  mod A,

’LG]]'

and each subsum of the above sum is not in A. Thus, Proposition yields that

Qlp(1), p(a), ..., (™)) = QUp(cyBi), ¢ (ciiB) |0 < j < d; (i, 5) € [ x{j}}) = .

Then, under the hypothesis that (B) is true, it follows that p(1), p(«),. .., p(a?™1)

are algebraically independent over Q, and so in particular, tr.degg (M) = d. Corollary

yields that 0N is algebraic over Q(p(B1), ..., ©(B4)), and so

tr.degg(Q(p(B1), - .-, p(Ba))) = tr.degy(MN) > d.

Thus, ©(B1), ..., ©(Bq) are algebraically independent over Q, and so over Q as well. In
particular, p(B1), ..., p(08s) are algebraically independent over Q. Thus, (B) implies
(A). i



Chapter 4

Analytic Estimates

The goal of this chapter is to demonstrate three theorems. The first provides an
estimate on the exponential map for some fixed elliptic curve. This estimate is based
on an estimate in Philippon’s original proof, but is obtained independently. The
second is a generalization of Cauchy’s inequality in several variables. Finally, the third
theorem will deal with the construction of an auxiliary function, due to Philippon,
but proven independently by using a result of Waldschmidt. Throughout this chapter,
fix a lattice A < C, let E be the induced elliptic curve, and define

¢ = (¢07¢1a¢2) = (0.3703@, 0-3@/)'

Proposition 4.0.5. The meromorphic functions ¢g, ¢1 and ¢o are holomorphic on

C. Furthermore,

expg(z) = [®(2)] (VzeC).

Proof: Since o is entire, it is clear that ¢g is entire. Remark that the poles of p
are of order 2 and are situated on A, and that the poles of @' are of order 3 and are

3

situated on A. Thus, since ¢ is entire with zeros of order 3 at each point of A, then

¢1 and ¢9 are entire functions. To show that expy = [®], consider the following two

29
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cases. If z ¢ A, then 03(2) # 0 and so
expp(2) = [1,9(2), ¢'(2)] = [®(2)] (V2 e C\A).
If 2 € A, then 0(2) = 0®(2)p(2) = 0, and 3(2)¢/(2) # 0. Thus,
expp(z) =[0,0,1] = [®(2)] (Vz e A).

Thus, expy(2) = [P(2)] for each z € C, as required. i

4.1 Estimates for ¢

This section is devoted to finding estimates on the functions ¢y, ¢; and ¢o. Recall

that n: A — C is the unique additive map such that
oz +w) = ") (Ywe A;Vz e C),
where e = 1 ifwe 2A and € = —1 if w ¢ 2A.
Lemma 4.1.1. Let i € {0,1,2}. Then,
bi(z 4+ w) = ee®@WEF2 g (2)  (Ywe A;Vz e C),
where e = 1 if we 2A and e = —1 if w ¢ 2A.

Proof: Since 1, p, and ¢’ are all periodic functions with respect to A, the formula
for o shows that the equation above is valid so long as z ¢ A. Suppose then that

z € A. Since ¢; is continuous, then
$i(z +w) = Pm ¢i(t +w) = 511eim MR g, (1) = PR g, (2),

for all w € A, thus proving the claim. i
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Before stating the following lemma, write A = Zw; + Zws, and let D be the funda-
mental parallelogram associated to {w,ws} which is centered at the origin. For each
z € C, there exists a unique choice a, € D and w, € A such that z = a, + w,. This
defines functions

a,:C—>D and w,:C— A.

Accordingly, it makes sense to define
g9(z) = 3n(w,)(a, + w,/2) (VzeC).

Lemma 4.1.2. There exists ¢; > 0 such that |g(z)| < ¢1]z|* for all z € C.

Proof:  Let z € C, and let , R > 0 be such that B(0;r) =« D < B(0; R). Suppose

that |z| < r, and so in particular z € D. Thus, a, = z and w, = 0, which implies that
|a.|, |w.| < [2].

Suppose now that |z| > r, and note that |a,| < R, and that |w,| < |z]|+|a,| < |2]|+ R.
Thus,

jaz, lw| < ¢lz] (¢ =1+ R/r).

Since ¢ > 1, the above equation holds for all z € C. A bound for n(w,) can be
obtained as follows.

Since {wy,ws} is a Z-basis for A, then w, = m,w; + n,ws for a unique choice of
m,,n, € Z. This defines functions m,,n, : C — Z. In order to find estimates for m.
and n,, let P be the parallelogram in the complex plane whose vertices are located

at wy,wq, —w; and —ws. Since w; and wy are linearly independent over R, then

biwi + bowy € P = |bz| <1 (Vbl,bQER).

Let ro > 0 be such that B(0;7y) < P, and so

m.wy + n.wy € B(0; |w.|) < (lw.|/r0)P.
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Thus, |m.|, |n.| < |w.|/ro < (¢//ro)|z|. Since 7 is additive, then

[n(w2)| < fmelln(wi)] + [nz[In(w2)] < (¢/ro)(In(wi)] + [n(w2) )2l

Thus, letting ¢’ = (¢//ro)(|n(w1)| + |n(we)|) yields that n(w,) < ”|z].

Let ¢; = 6 ¢”, and so

l9(2)| = 3In(w:)(a: + w=/2)] < a1l

from which the conclusion follows. |

Corollary 4.1.3. Let ¢; > 0 be as in the previous lemma, let i € {0,1,2}, and let
ze€C. Then

[gilaz)le™F" < |gi(2)] < |oi(as) e
Proof: By Lemma it follows that
[i(2)] = "¢ (a)],
and Lemma yields that
—cil2* < Re(g(2)) < a2,

from which the claim follows. |

Corollary 4.1.4. Leti€ {0,1,2}, and let R > 1. There exists c; > 0 depending only
on A, such that
[@i(2)] < €™ (V]2 < R).

Proof: By Corollary £.1.3] there exists ¢; > 0 such that

6i(2)] < |i(a:)|e ™ (V]z| < R).
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Since ¢; is entire and D is bounded, there exists M; > 0 such that |¢;(2)| < M; for
all ze D. Let M = max; M;, let N = logmax{1l, M}, and let ¢co = N + ¢;. Thus

|¢z(z)| < M661R2 < 6N+61R2 < e(N+Cl)R2 — 60232
for all |z| < R, thus proving the claim. i
In order to state the following theorem, define the smallest vector length
Q:=0Q(A) = min |w|,
weA\{0}
and denote by Cy the set of all points which are closer to %A\A than to A, i.e.
1
Co = {z € C | there exists w € §A\A such that |z —w| < |z — A| for all A € A}.
Denote the complement of Cy by Cs, i.e. Cy = C\C.

Theorem 4.1.5. There exists cg > 0 satisfying the following. Let R > max{1,Q/4},
let |20] < R, and let k € {0,2} be such that 2y € Cy. Then,

e < Jg(2)]
for all z € B(zy;/4).
Proof: From Corollary [£.1.3] there exists ¢; > 0 such that
[@x(az)le™ " < gu(z)] (VzeC).
Let B be the closed set defined by
B = {z € C| There exists c € C}, such that |z — c| < Q/4}.

Notice that each point in Cj is at least 2/2 away from all zeros of ¢;. Thus, each
point in the set B is at least at a distance of Q/4 from any zero of ¢;. Also note

that Cj is invariant under translation by elements of A, and so B is as well. Let
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A= BnND, and so A is compact. Thus, since ¢, is entire and non-zero on A, there

exists M > 0 such that M < ¢x(z) for all z € A. Let z € B(zp;€2/4), and so |z| < 2R,
and z = a, + w, € B. Thus,

e(B—w,)ND=BND=A,
and so M < ¢i(a,). Let N = logmin{l, M}, and let c3 = |N| + 4¢;. Thus,
e (N R) £ @R < (g ()|

as required. |

4.2 Cauchy’s Inequality

This section proves a generalization of Cauchy’s inequality. Throughout this section,
fix an integer n € NT. For a complex continuous function F' : C* — C and a real
number r > 0, define

|Fl, = sup{|F(2)]; z € B(0,7)}.

Theorem 4.2.1 (Cauchy’s inequality). Let r € R*, let ¢ € N*, and let a € C9.
Suppose that F' is a holomorphic function on B(a;r) < CY, and that it is continuous

on its closure. Then,
o!
[FO(@)| < 1 [Fla+z)], (YoeN).
r g
Furthermore, if r > 1, then
|F(a+2)|,_1 <ol|F(a+2z)], (YoeN9).

Proof: Cauchy’s integral formula in several variables yields

olol J J )
_ — " dz---dz
01+1 oq+q 4
z=a 27” [z1]|=" |Zq‘_7” Zl q

0z° F(z)
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and so

! F a+z |
() ol |F(
[F'7(a)] < (2m)a  plolta Jzﬂ_r qul—r

ol |F(a+z)|,
© (2m)e rlol+a

~(2mr),

thus proving the first inequality. For the second inequality, let zy € C? be such that

|20| <7 —1, and so F' is holomorphic on B(a + 2o;1) and continuous on its closure.
Thus,
[F7(a+ 2)| < ol|F(a+2)],,

and so

|F(")(a +2z)|,_1 < o!|F(a+2z)|,

as required. |

4.3 Auxiliary Function

In order to construct an auxiliary function, the following result which is due to Wald-

schmidt 7] will be used.

Lemma 4.3.1. Let M,n e N*, let S,;U, R,r € RT, and let @1, ...,pn be continuous
functions on B(0, R) = {z € C";|z| < R}, which are analytic inside. If

M
3<U7S<U7€<R/T<€U7Z|90)\|R<€U7

and
n+1 R !

then, there exists py,...,py € Z with

0=y Il =<
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such that the function
M
F =) per
A=1
satisfies

|F|, < e Y.

In order to prove the following theorem, which is in essence a simplified construc-
tion of Philippon’s auxiliary function found in Lemma 4.1 of [§], define p : C? — C4¢
by

pt) = (6, t6,....t677),
and define ¥ : Ci¢ — (C3)%? by

U(z) = (P(z1),..., P(24a)).
Also note the following notation and definition.

e f(L) « g(L) signifies that there exists ¢ > 0 such that 0 < f(L) < cg(L) for
sufficiently large L.

e f(L) = g(L) signifies that f(L) « g(L) and g(L) < f(L).

Definition. A polynomial P(zy,...,z,) is said to be multihomogeneous of multidegree

(dy,...,d,) if it is homogeneous of degree d; in z; for each i € {1,...,n}.

Theorem 4.3.2. Fiz d € N*. Let e € Rt be arbitrarily small, and fix ¢ € N such
that ¢ > (2 + €)/(e(2d — 1)). Then, for each sufficiently large L € N*, there ezists a

non-zero multihomogeneous polynomial
PeZ|Z,Xy,..., Xl

of degree L in Z = (Zy,...,Z;) and of degree D = |(logL)*| + 1 in each X; =
(Xi0, Xi1, Xio) with degy, , P < 1, and with h(P) < L such that the function,

F(t) = P(1,t,¥ o p(t)),



4. Analytic Estimates 37

satisfies

max |F(7)| o, 1, < exp(—2L(log L)' *?).

lo|<L

The following commutative diagram illustrates the relation between F and P.

Cu
(1,idge, ¥ o p) F
(Cq+1 % (C3 qd (C
@ ——
Proof: Note that ¢ and d are fixed parameters, so any constant appearing in this

proof might implicitly depend on the choice of ¢ and d. Let M = (L;rq)(QD + 1)94,
n=q S=L R=+L,r=log(L)+1, U =3L(log L)"**? and let o1, ..., @y cover
the monomials

t/D(t) - Dt B

with |j| < L, |e;] = D and e;» < 1. By Corollary [4.1.4] there exists ¢ > 0 such that

[exlre < Ry exp (cRi(lea] + -+ + eqal))
= R} exp (cR2qdD)

= exp (Llog Ry + cR2qdD)
for each A e {1,..., M} and for each Ry > 1. Then,
M
Z lox|lr < M exp (Llog R + cR?qdD)
A=1

= (%49)(2D + 1) exp (Llog R + cR?qdD)
« 2lratad(log 1) exp (L log L + ¢L(log L)€)

< exp (L + Llog L + ¢L(log L))

This last expression is of order strictly less than exp (3L(log L)'*</?), and so

M
Z loalr < exp (3L(log L)'+9/?) = exp U
A=1
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for sufficiently large L. Further, for sufficiently large L, it follows that
er = e(log(L) +1) < VL = R < (log(L) + 1) - e = ré’.
Since g > (2 +€)/(e(2d — 1)), then

1/q < (de — €/2)/(1 + ¢/2)
/g < (1+de)/(1+¢/2)—1
(1+q)/q<(1+de)/(1+¢€/2)
(14 ¢)(1+¢/2) < q(1 + de).

Note that (8U)4*! = (L(log L)'*</?)1*4 = L1*4(log L)1*9(+/2) "and that
L' (log L)7%% = LL((log L)) (log L)
L q
= L(LF1)(2((log L) + 1) + 1)* (log (%))
q
=SM <log E) :
T
Thus, since (1 + ¢)(1 + €/2) < q + qde, it follows that
(8U)™ < MS(log(R/r))"

for sufficiently large L. It is also easy to see that S < U and that U > 3 for sufficiently
large L. Thus, for sufficiently large L, Lemma [£.3.1] provides integers py, ..., py such

that
0 < max |py| <e®,
1<ASM
and such that
M
F =) pe
A=1

satisfies
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This induces the polynomial in the statement of the lemma, namely

M
P(Z, X1, ..., Xga) = > pa(Z, Xa1, ., Xga)®  (where ey € N7 x (NF)a),
A=1

with degy P = L, each degx, = D, and each degx, , < 1. Furthermore,

Finally, if 1 < |o| < L, then Cauchy’s inequality yields

[F g < [o]!|Fly
< L¥exp(—U)
= exp (Llog L — 3L(log L)'*?)

< exp (—2L(log L)'*?),

which is the desired result. |



Chapter 5

Heights

This chapter introduces the notion of the height of an algebraic number. The main
goal, however, is to find estimates for the simultaneous height of several algebraic
numbers, for instance the height of the set of coefficients of some polynomial. These
results are obtained independently, and will ultimately be used to bound the heights of
several families of polynomials so that Philippon’s criterion for algebraic independence
may be applied. Throughout this chapter, fix a number field K < C, let D = [K : Q],

and fix n e N*T.

5.1 Preliminaries

Definition. An absolute value on an integral domain R, denoted |- |, is said to be
ultrametric it

|z + yl, < max{|z|,, |yl.} (Vz,y € R).

Otherwise, it is said to be Archimedean.

By Ostrowski’s theorem, every non-trivial absolute value on K restricted to Q
is equivalent (i.e. they yield the same topology) either to the usual absolute value on

Q (in which case the absolute value is Archimedean), or to a p-adic absolute value

40
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(in which case the absolute value is ultrametric). Given an absolute value v, let v|oo
denote that v is Archimedean, and let v|p if v extends the p-adic valuation of Q. For
each equivalence class v, choose the following representative, denoted |- |,, and said

to be normalized by

|z|, =2 ifxeQ, x>0, and v|wo,

Iply = % if v|p.

Denote the set of normalized absolute values by 9y, and define the local degree of
K at v e Mg to be D, = [K, : Q,], where K, is the completion of K by v, and
where @Q, is the completion of Q by v|gp. One fact that will be used frequently is that

1
— > D,=1.

For v f oo, the only fact concerning D, that will be used in this thesis is that D, € NT.

For a more detailed exposition on the absolute values which arise over a number field

K, see [5].

Definition. Let (ay,...,a,) € K™. The height of (ay,...,a,) is defined to be

1
h(an,... om) = & > D,logmax{L, [alo, .. ., |anl}-

’UG?J.RK

Notice that for a € K, h(«) is equal to the Weil absolute logarithmic height [5].
Remark also that permuting the coordinates of the vector does not change the height,

and so it makes sense to extend the height to finite sets, i.e.

h(()1<i<n) = hlaq, ..., an).

Thus, this height can further be extended to a height for polynomials

P=chxkeK[x1,...,xn] (where n € N)
k
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by defining
1
h(P) = ") Z D, logmax{1, | P||,},

veEJJtK

where

IP), = maxe.

The following lemma relates the height of a polynomial to its coefficients.

Lemma 5.1.1. Let Q € K[z1,...,x,], and write

Q(x) = Zakxk (for some ay € K).

k
Then
x|, < ePM@ (Vk e N™; Vo e My).
Proof: Let v € M. Since the claim holds trivially for a; = 0, assume without

loss of generality that a; # 0. Thus, log|ai|, < logmax;{1,|a;|,}. Thus,

logmiax{l, ’ai‘v} < Z Dv’ IOgmiaX{L ‘ai’v’} = [K : Q]h(Q)a

’UIEfDTK

and so |as], < elf:QN@), i

Further still, for an m-tuplet of polynomials (P, ..., P,,), each P; with coefficients in

K, define the height of (P, ..., Py,) by
1
h(Py,....Pn) = 7 Y, Dylog max {1 |Fi.}.
veEmK
It follows trivially that

hW(Pi,...,Py,) <h(P)+ - +h(P,).

However, something stronger will typically be required.
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5.2 Height inequalities for polynomials

The following two lemmas provide a foundation with which the estimation of the
height of a polynomial with unknown height can potentially be reduced to an ex-
pression which can be understood in terms of the heights of polynomials whose
heights are known. In order to state these lemmas, define for each v € g the
map {-}, : N* — N* by

(m}, = e

1 v f 0.

Notice that this map is multiplicative. Its use primarily arises in concisely capturing

the fact that
|a1+...+am‘v < {m}vmax|ai|v (VaiEK;VUEWIK).

The reader should note that the results in this chapter will ultimately be used to
estimate the heights of polynomials which represent morphisms between projective
algebraic varieties, and will thus focus on estimating the heights of homogeneous

polynomials.

Lemma 5.2.1. Let m € N; s € NT, and let x be a multivariable over C™*'. Let
ai,...,a5 € K, and let Py,..., Py € K[x] be homogeneous of respective degrees

D1y .., Ps. Then, for all ve M,

loa P+ - -+ @By < {s}, max |as|, max | Pl.; (5.2.1)

m s—1
1P Pl < {75 P [Pl (522
where p = max{py, ..., Ps}-
Proof: Write P, = Zlklép a;xx*. Thus,

a1 Py + -+ + asPsl, = max laa x + -+ + asas ko
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< ml?x({s}v max |aa; x|v)
7

< {s}, max|agl, max | P,

which proves the first inequality. The second inequality is proven by induction, whose
base case s = 1 holds trivially. Suppose the inequality holds for s € {1,...,r — 1}.
Let p = max{py,...,p,} and write

P---P_= Z a;x'  (for some a; € K;where i e N™*1):

lil=p1+-+pr-1
P. = Z b} (for some by € K;where j € N™™),
‘j|=pr
so that
PP = 2 ( 2 asb;)x®  (where k e N™*1).

[k|=p1+-+pr i+j=k

Since each sum »’ a;b; has at most (p;;m) terms, the induction hypothesis yields that

Z aibj

i+j=k

|Py--- P, = max
k

v

N

{(7hm)}, - max |asl, - max|b,
i J
= {(pjnm)}v HPI ) "PrlevHPr”v

{75y A Y P P

N

The second inequality follows by induction. i

Lemma 5.2.2. Let Py,..., P, be polynomials with coefficients in K, and, for each
Jedl,...,r}, let Qju,...,Qjs; be polynomials with coefficients in K. Suppose for

each v € My and for some integer N > 1 that

max P, < (N}, max Qi

1<i<s

<k<s; v 12}1}; HQT’,]{JHU?
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Then
h((P):) <log N + > h((Qjx)k).

j=1

Proof: Indeed, this follows immediately by

b(P)) = & O Dylogmax (1. |P1.}
veDﬂK
D > Dylog[{N}, H max {1, |Qjxlo}]
vEM K
=log N + Z h((Qjk)k)-

As trivial as the previous result may seem, its use lies in both guiding one to seek
such bounds, and primarily to compactify arguments. Throughout, note that a

multivariable over C" is taken to signify an n-tuplet of indeterminates over C.

Lemma 5.2.3. Let z be a multivariable over C**', and let z' be a multivariable over

CV*'. Let ¥/ : CV*+! — C™"' and ¥ : C"*' — C"*' be such that
U'(z') = (Vi(2),..., ¥ (2) and ¥(z) = (Vy(z),...,Vm(z)),
where each V' € K[z'] and each V; € K|z] are homogeneous polynomials. Let

d" = max deg, V.

)
o<isn

and d = max deg, V,.

o<isn”
Then
h(V o ') < log (4m) + (d— 1) log (¥4 ) + h(¥) + dh(P’).

Proof: Remark that each ¥; consists of at most (dzn) monomials, and so by

applying Lemma [5.2.1], it follows for each v € Mk that

max [ W;(¥, ..., ¥, < {(4%")

1<5<n”

5, Wl J(W0)" - ()"

<

’U1<< "
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< {(%m)}, max Wy, {(“H )} max [wpln w5

v 1<]<n” v |1|

<{ (5 ()" max 9], max [,
v 1<g<n” 0<i<n

Since (¥ o W'); = W,;(Vg, ...,V ) for 1 < j <n’”, Lemma yields the result.  H

In order to state the following proposition, define iteratively for a set S and a map
v:S -G,
gl — glm=Uo @ and WO —idg (¥YmeN*).

Proposition 5.2.4. Let z be a multivariable over C**'. Let ¥ : C"*' — C"*! be

such that
U(z) = (Vo(z),...,¥,(2)),

where each V; € K|z] is a homogeneous polynomial. Let d = max; deg, ¥;. Then

h(UI™) < [h(W) + log (44 )] mz:l d" + mnlog2 + m?*nlogd.
i=0
Proof: Let B : Nt — R be the function defined by
B(i) =log (*;m) + (d' — 1) log (") + d'h(W),
so that Lemma yields
h(TEH) = h(0l o ) < B(i) + h(T)  (Vie NT).

Thus, for all m € Nt with m > 1, it follows that

h(T™)) < (W) + mZ
m— ;:1 m—1 m—1
) Z d’ + log (%" Z )+ Z log (@'3m).
i=0 i=1 i=1

Notice that (44") < (d + 1), and so

log (4'+n) < nlog(d' + 1) < nlog(2d’) = nlog?2 + nilogd.
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Thus, it follows that

m—1 m—1
DUy <h(D) D d +log (44m) Y (dF = 1) + (m — )nlog2 + (% )nlogd
=0 =1

m—1

= [L(®) + log(44™)] Z d' —mlog(94™) + (m — D)nlog2 + (% )nlogd

S
Il
o

< [0(®) +log(44m)] >, d' + mnlog2 + m*nlogd,

i

3

Il
=

as required. |
The following proposition, which is a generalization of Lemma[5.2.3] is the main result
of this chapter, and will be used repeatedly throughout this thesis.

Proposition 5.2.5. Let (z,,...,2,) be a V-tuplet of multivariables over C*'*', and

y Hyl

let (z1,...,2,) be a v-tuplet of multivariables over C**1. Let U and W' be such that
U (CTY - (€YY and W (C) -

with
U(z1,...,2,) = (Vo(z1, ...y 20)y o Vo (21, ..., 2));
V'(zy,...,z,,) = (¥(2z},...,2,),..., V. (Z},...,2,));

Uiz, z,) = (Wig(2), o 20), o V5, (20,0, 20),
where for 1 < j<v,0<i <nand0<i<n”, the maps
v, C""' > C and ¥;:C"M' > C
are polynomials satisfying
e %, is homogeneous of degree dj (1 <j<v;0<i <n);

o U, is homogeneous of degree d; inz; (1<j<wv;0<i<n").
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Then,
where d’ = max; \d;\, andd=d; + - +d,,.

Proof: Remark that U; consists of at most [[/_, (%:") monomials. Thus, for
each v € Mg, it follows by Lemma that

max ¥ (W, ..., ),

O<j< "

é{ﬂ(dixn)} mas, [0, mas | ()" - (¥))"],

0< < "
i=1

: {H<df:">} mas [ max | (9]0 (9],)7 - (80 - (8],

0< < "
i=1

Note that the above product consists of d factors of the form W’ ., and that each of

3
these is a polynomial in (n’ + 1)/ variables with degree bounded by d'. Thus, it

follows by Lemma that

max |0, (W), ..., 0|,

0<]<n”
d/+(n/+1)1/71 i1, Zul
{ } Jmax, 15 {( (/1)1 } max <H||\Pu| : ]_[H\If )
n+1)zx'71 -1 dy
Y man [ e W2 ma

Since (VoW'); = U;(¥),..., V) for 0 < j < n”, then Lemma yields the result. I



Chapter 6

Representations of maps

The goal of this chapter is to construct polynomial representations for morphisms
between products of elliptic curves. These polynomials are shown to have heights and
degrees controlled. Philippon’s original proof requires such representations, but the
constructions and estimates in this thesis are independent of his methods. Throughout
this chapter, fix a lattice A, fix K = Q(g2, g3), and fix E = Z(h), where

2 3 2 3
h($07$1, 902) = Tory — 4T] + g2x5T1 + 3Ty

Note that F is an elliptic curve which is in Weierstrass normal form. Denote by
o9 1 E x E — E, the map representing the group law on E, and let x = (¢, x1, 22)
and y = (yo,%1,%2) be triples of indeterminates over £ < C3. By definition, the

multiplication-by-2 map satisfies

[2](xo : 21 1 @) = 09((mo = @1 : 2), (xo : 21 & X2)).

6.1 Group law of bidegree (2, 2) for an elliptic curve
According to [6], the following three addition laws form a complete system for oy
which is of bidegree (2,2). Lange and Ruppert denote

(z0:21: 22) = 0o((xo : 1 = T2), (Yo : Y1 = Y2)),

49
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and use the abbreviations p;; = z;y; + z;y;, and ¢;; = 2;y; — v;v;. Further writing

abbreviations
Dijki = TiTjYrYr + TpT1Y:Y; and Qijkl = TiT;YpYi — TET1YilY5,

allows the complete system of bidegree (2,2) to be written as

I 2o = paogoo + (122191 — G20y )qo1
21 = @201 + G2P01g01 + (222y2 + 393%0Y0)q01

2y = TaYaGao + 92q1200 + (292%0Y0 — 1221Y1)g21 + 393%0Y0q20

I 2y = 4g2201 + 492p01901 + (129520Y0 — 8%2Y2)qm
21 = 4po1gar + (4g2x1y1 + ggflfoyo)%o + 12g3p10qi0
29 = (9%90090 + 8g271Y1)qo2 + (2493700 — 4T2y2)q12 + 492q1102 + 12930012

I 2y = (47292 — 12g320Y0)Po2 + (4871y1 — 8g2z0Yo)P12 — 4g2P1200
21 = (4zay2 + 24g3m0y0) P12 + (8927191 + g5T0Yo)Poz + 12g3P1200 + 4g2P0211
22 = dwiys — 48gortyt + (95 — 3693)x5ys — 493p51 — 8g3T0T 1Yoy
— (144g37191 + 12g293T0Y0)Por

Note that all ¢ terms are antisymmetric in (x,y), and so are zero when x = y. Thus,
laws I and II have z = 0 whenever x = y. Since the above system is complete, it
follows that law III represents o(x,y) whenever x = y. Therefore, the isogeny [2] is
represented by a single triplet of homogeneous polynomials, induced by III. Moreover,

noting that zg of law III can be written as

Zy = 96l‘§)$2 + 8930x§ — 24ggx(2)$1:v2 — 2493933:@ = 24$2(43:§’ — ggxgxl — ggzvg) + 8x0x§,
then zq = 32zx3. Thus, [2] can be represented by
Ry = (Rzo, Ry, R2,2) € (K[X])37

where

Roo(xg 211 29) = 32x0m§’;
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Roq(zo: 2yt 29) = 8x1x3 + 24g2x0x%x2 + 7293x3x1x2 + 2g§x3x2;

Roo(xo 1 @1 @ 29) = 4ay — 4A8gpx] — 288937075 — 24952523 — 2492937571 + (g5 — 3643) 7]

6.2 Multiplication by 2

The goal of this section is to prove that the isogeny [2] is represented by a single
triplet of polynomials of degree 4, independently of the result of Lange and Ruppert.
In order to do so, note that multiplication-by-2 on E can be reduced to the following

three cases.

[2](1: p(2) 1 () = (1: p(22) 1 9(22)) (V2 ¢ 50); (6.2.1)
[2](1: p(w/2):0)=(0:0:1) (Ywe A\2A); (6.2.2)
[2](0:0:1)=(0:0:1). (6.2.3)

To show that R, represents the first case, let z ¢ %A, and write © = p(z) and
y = ¢'(2). Thus,

(1222 — g2)* — 322y
16y2 ’
(122 — go)(48zy® — (122° — go)?) — 32y"
32y3 ’

p(22) =

¢'(22) =
and so can be rewritten as

[21(1: 2 y) = (fo(L 2z, y) - fi(L,2,) : fa(1, 2, 9)),
where

fO(x()?xlwrZ) 32x0x2
fi(zo, 21, 12) = 2wow2[ (1207 — goxl)? — 32w021 23]

fQ(x0,$1,:B2)=(12$1 ggxo)[48x0x1x2 (12331 92270)] 32$0£U2
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Recall throughout that

42° = y* + gox + gs.

Thus,
(122 — g)* = 362(y” + ga + g3) — 24g22” + g
= 12x(3y2 + g2 + 3g3) + g%,
and so
fil,z,y) = 4oy’ + 249207y + T2g32y + g3y,
and

f2(1,337y) = (12352 - 92)[125]5@2 — 393 — 921’) - g%] - 323/4
= 12(12x3 — ggx)(y2 — 393 — go) — g%(le2 — o) — 32y4

= 12(3y” + 2g27 + 3g3)(y* — g2 — 3g3) — g5(1220% — g) — 32¢*

= 4y4 — 369§x2 + (gg — 108g§) — 12(921’312 + 6ggy2 + 9g2957).

Alternatively, noting that
(g2 + 693)y° = 4gax” + 24g32° — g32° — Tgagsw — 63
yields

fo(1,2,y) = Ayt — 3693952 + (gg’ — 108g§) — 12(ggxy2 + 6g3y° + 9g2g3x)
= dy* — 24g37% + (g5 — 369g3) — 48gax" — 288g37° — 249937

Evaluating at (xg, z1,22) = (1, z,y) immediately yields

R2(17 Z, y) = (f0(17 z, y)a fl(]-u Z, y)u fQ(]-v €, y))a
thus showing that Ry indeed represents (6.2.1). Remark that

23 Ro o (0, 21, 2) = fo(o, 21, 72) mod (h).
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To show that Ry represents the second case, let w € A\2A, and write x = p(w/2).
Thus,
ngo(l, xZ, 0) = ngl(l, xZ, O) = 0,

and so representation by Rs requires that Roo(1,2,0) # 0. For the sake of attaining a
contradiction, suppose that Res(1,2,0) = 0. Thus, f2(1,2,0) = 0, and so 1222 = gs,

which in particular implies that

(22)? = g9/3.
Since h(1,x,0) = 0, then
42° = gox + g3,
and so
1227 = gy = 122° = g2 = 82° = —g3 = (22)% = —gs.
Thus,

(92/3)° = g5 = g5 — 27g3 = 0,

and so A(A) = g5 — 27g3 = 0, which is impossible. Thus, Ry2(1,2,0) # 0 and so
[2](1: p(w/2):0)=(0:0:1) = (Reo(l,2,0) : Ro1(1,2,0) : Rya(1,2,0)),

from which it follows that (6.2.2)) is represented by Rs. Finally, R2(0,0,1) = (0,0,4),

and so
[2](0 20 1) = (0 10 RZQ(0,0, 1)) = (RQ}O(0,0, 1) : RQJ(0,0, 1) : RQ}Q(0,0, 1)),

and so R represents (6.2.3). Thus, Ry is a complete system for the isogeny [2], as

required.

6.3 Multiplication by 7€ O

Throughout this section, suppose that O = Z[«a] where « is an imaginary quadratic

integer. In the previous section, a representation which forms a complete system
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for the multiplication-by-2 map has been fixed. In what follows, whenever a new
morphism is introduced, either a representation will be fixed in tandem, or a fixed
representation will be chosen to be induced by the new morphism’s relation to mor-
phisms whose representations have already been fixed. Notice that if a morphism has
already been given a representation, then re-identifying it via a new relation may, a
priori, lead to a conflict in the chosen representation. Thus, it will be important to
eliminate such cases when treating classes of morphisms which contain at least one
morphism whose representation has already been fixed.

The first step to acquiring representations for the isogenies [7] with 7 € O is to
note that it suffices to fix representations for the isogenies [0], [1], [2], [-1], and [«],
so that a representation for 7] can be inferred by iterating via the representation
for o, provided by Lange and Ruppert. The case m = 2* can be treated as follows.
For each k > 2, the multiplication-by-2¥ map is given by [2¥] = [2¥7!] o [2], where
[21] = [2], is a morphism requiring a single law. Indeed, the map [2¥] is represented

by the triplet of homogeneous polynomials, denoted
RQ’“ - <R2k,07 RZk,la RQ’“,Z)?

where each Ror; = Ror-1 0 Ry; = (ng])i € K|[x]. Further, define [2°] = [1] = idp,

with representation R;(x) = x, and let

R§2 = <R< R< Rgz ,2)

0—2707 0—2717

be the polynomials in (x,y) such that ng- = z; for law ¢ € {I, II, III} of oy. The
task of fixing a representation for [m] with m € N and m > 2 can be induced by
iterating via the representation for o and representations for [2¥] where k € N. Let
m € Nt with m not a power of 2. From the binary expansion of m, it follows that

m = 2F +m/ with 0 < m’ < 2F for unique k, m’ € N*. Thus, iterating via the relation

[m] = o ([2°], [m])
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induces a family of triplets of homogeneous polynomials in K [x] which represent [m],
denoted
R

'm,1

RS, = (RS

m,0)

R$n,2>7

for a finite set of indices (. Note also that the zero isogeny is represented by
Ro(x) = (Roo(x), Ro,1(x), Ro2(x)) = (0,0,1).
Finally, for each m € N*, the map [—m] is represented by

RS, = (R, 0, RS0 1, RS pn) = (Ropg R

_R1<n,2)7

thus fixing representations (RS,); for all maps [m] with m € Z.
Since [«] is an isogeny, there exists a family of triplets of homogeneous polyno-

mials in K'[x] which represents [«], denoted

Rgv = (Rio, RC

a,l)

Rgz,Z)a
for a finite set of indices ¢. Thus, for each 7 = m + na € O\(Z U {a}), the relation

[7] = oa([m], [e] o [n])

induces a family of triplets of homogeneous polynomials in K[x] which represent [7],
denoted
Rg - <R£,07 RE‘,U RE,Q)

for a finite set of indices (.
In order to state the results which follow in this section, take note of the following
notation. Given a morphism ¥ and a fixed representation by a family of (n+1)-tuples

of homogeneous polynomials, denoted
R\CI/ = (RSI/,()? T 7R§Il,n)7
for a finite set of indices (, define

deg, (V) = max deg, (R, ,);
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h(T) = mcaxh(Rﬁ,yo, Ry ).

Note that this definition is contingent on the choice of representation for ¥, which is
why it is crucial that many of the morphisms which will arise in this thesis have fixed
representations.

Since the representation for [2] is fixed by Rox = (Ry)[¥], then
deg, [2"] = (deg, [2])" = 4% = (2")2. (6.3.1)
Further, given that
y<2tey’ <2yea®+27 <(x+y)? (Va,y=0), (6.3.2)
then the following two lemmas can be shown.
Lemma 6.3.1. Let m € Z. Then, deg,[m] < 2m?.

Proof: First note that deg,[0] = 0, which verifies the claim for m = 0. Also, if

the claim holds for m > 0, then the representation for [—m]| shows that
degx[_m] = degx[m] < 2m2 = 2(_m)27

and so assume without loss of generality that m > 0. The proof is by induction, for
which the base case m = 1 holds, since deg,[1] = 1. Suppose that deg,[s] < 2s* for
s=1,...,m— 1. Then,

m =28+ m' (for some k,m' e Nym' < 28 <m).

If m' = 0, then m = 2%, so deg, [m] = m? < 2m? If m’ > 0, then [m] = oo ([2%], [m]),
and so

deg,[m] = 2deg,[2°] + 2 deg, [m'],

since (RS, )¢ is of bidegree (2,2). By induction hypothesis and by (6.3.1),

deg, [m] < 2-4% +2-2m™ = 2((2")% + 2m™),
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and so by (6.3.2)), it follows that deg,[m] < 2m?. Induction yields the desired result.
|

In order to prove results concerning the heights of the maps [m], note the following.
Since Ror = ng], then Lemma yields that

k

h([2"]) < [h([2]) + log 15] + (2log 2)k + (2log4)k* < "(2%)? (6.3.3)

for some ¢ € R*.
Lemma 6.3.2. There exists ¢ € R™ such that h([m]) < dm? for all m € Z\{0}.

Proof:  Given m € NT| it is clear from the representations that h([—m]) = h([m]),
and so it suffices to verify the claim for m > 0. In this case, write m = 2% + m/
with m’ < 2%, for some k,m’ € N. Let ¥ = 0y and let ¥ = ([2*],[m/]), so that
[m] = VoW Let

d' = max{4* deg, [m']} < max{4* 2m™} < max{4" 2(2F — 1)%},

and so d' +1 < 2-4". Since deg, , U = (2,2), then Proposition and (6.3.3]) yield
that

h([m]) < 2log6 + 3log(¥;?) + h(¥) + 2h([2"]) + 2h([m])
< 2log6 + 6log(d + 1) + h(V) + 2¢"4% + 2h([m])

< 2log6 + 6(2k + 1) log2 + h(¥) + 2¢"4% + 2h([m']).
Define L : N — R by
L(k) =2log6 + 6(2k + 1) log2 + h(W).
Choose ¢” € R* such that L(k) < ¢”4%. Then, let ¢ = ¢” + 2¢”, and so

h([m]) < 4" + 2h([m']).
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The rest of the proof is by induction. The base case m = 1 holds, since h([1]) <
" < . Suppose that h([s]) < ¢s® for s = 1,...,m — 1. Since m = 2F + m' has

m’ < 2% < m, then the induction hypothesis and yield that

h([m]) < d4F + 2¢m/* = ¢((2%)? + 2m™) < Im?.
The conclusion follows by induction. i
In order to get estimates for the map [7] for 7 € O, define for each S € R the set

Os = {m+na|m,n e Z,|m|,|n| < S} < End(E).

Proposition 6.3.3. There exists Cy € RT such that if T = m+na € Og, with S > 1,
then
deg,[7] < C15® and h([7]) < C,5°

Proof:  From the representation for [7] and oy, it follows that
degy[7] < 2deg,[m] + 2deg,[a] deg,[n]

< 4m? + 4deg,[a]n®

2
SclS,

where ¢; = 4(1 + deg,[a]). Applying Proposition with U = [a] and ¥/ = [n]
yields
h(la] o [n]) < log(4&1*2) + (degy[a] — 1)log(**&<}"*?) + h([a]) + deg,[a]h([n])
< o+ c3log((dS? +2)(dS? +1)/2) + deg, [a]d' S?
< C4S2,

for some ¢; € R*. Using the same result for ¥ = oy and V' = ([m], [a] o [n]), it

follows that

h([r]) < 2log(3) + 3log (%) + h([o2]) + 2h([m]) + 2h([a] o [n])
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< cs + 3log((e1S% 4 2)(c1S? + 1)/2) 4 2¢'5? + 2¢4,5?

2
<CGS7

for some cg € R*. Letting C1 = max{cy, ¢g} yields the desired result. i

6.4 Multiplication by (7,...,7,) € O"

In order to state the main result of this section, define the n-sum maps, denoted
on: E" — E, by

on = 09(idg,0,-1) (Vn > 2).

This relation induces, iteratively, a fixed representation for o, by a family of triplets

of homogeneous polynomials in K(x;,...,X,), denoted
Rgn = (Rgn,oaRgn,lngn,Q)

for a finite set of indices (. Consider for n > 2 the multiplication-by-7 map, denoted

7|, for vectors 7 = (7, ...,7,) € O", iLe.
7], T=(T1,.-sTa) ,

[T](Z1,...,2n) = ono ([11] x - x [m])(Z1, ..., 20) = on([T1](Z1), - - -, [T0](Z0)).

This fixes a representation of [7] by a family of triplets of multi-homogeneous poly-

nomials in K (xi,...,x,), denoted

RE = (RéOv Rém Réo):

for a finite set of indices (.

Proposition 6.4.1. Let n € N*. There exists Co € Rt depending only on n such
that if T € (Og)™, with S = 1, then

deg, [7] < C5S® and h([7]) < CoS* (1<

/A
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Proof:  Let (d},...,d,) be an upper bound for the multidegrees of (RS )c. Then,
deg,,[7] < dj deg,[r;] < djC15”.

By Proposition [5.2.5] with ¥ = ¢,, and V' = [11] x - -+ x [7,], it follows that

h([7]) < anlog(dé;?) + (dy + -+ d)) log (G5 H30-1) + h(oy,) + and;h([n])

< er + cg(3n — 1) log(C1S? + 1) + n(max d])C, S
< CgSQ,
for some cg € R which depends only on n. Thus, let Cy = max{(max; d;C}),co}. 1
For the sake of completion, define [(7;;)] : E™ — E™ by
[(Tip)](z1, .. 20) = ([T1](21,s - 20), o [T )(21s -, 20))  (V(7i5) € Mat,xn(O)),
where each 7; = (71, ..., 7;q). Then fix
¢ _(pS
R(Tij) o <R[Il]’ B
for a finite set of indices (, as the representation of [(7;;)].

Proposition 6.4.2. Let n € N*. There exists c € R* such that if (1;;) € Mat,«,(Os),
with S > 1, then
deg, [(75)] < ¢S* and h([(7;)]) < S

Proof: It is easy to see that

deg,,[(7;5)] = maxdeg,, [r;] < C25%
J

h[(7;;)] < Z h([r,]) < nC»S°.

Thus, by letting ¢ = nC}, the result follows. i



Chapter 7

Estimates on the derivatives of the

auxiliary function

The main goal of this chapter is to provide estimates on the derivatives of the auxiliary
function. This is in line with Philippon’s original proof, but the work in this chapter
remains independent of his methods. Throughout this chapter and the remainder of
the thesis, fix a lattice A < C, and suppose that the induced elliptic curve E has
complex multiplication, and that E is defined over Q. Thus, there exists a quadratic
integer v such that O = Z[«a| = Z @ Za. Remark then that there exists a,b € Z such
that a? = aa + b. Further, fix 3, an integral element over O, fix d = [O[S] : O], and

fix K = Q(avﬁmg??g?))'

7.1 Preliminaries

Remark that {1,3,...,3% !} is an O-basis for O[], and so, for each v € O[], there

exists a unique matrix B, € Matgy.q(O) such that

7(1’/8a e 7ﬁd_1)T = B’y(Lﬁ» e 7/8d_1)T'

61
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Define

F={n+mnf+ - +1b""n, . qe0}=0[p],

and

Ts={n+nB+ - +78 " 7,...,7a€c Os} (VSeN).

Given an S > 1, and « € I'g, it will be useful to have an estimate on the height of v
as well as an estimate on the entries of B.,, such as those provided in the upcoming

propositions.
Proposition 7.1.1. Let (v) = (71,...,7) € I'§. Then

h(v) <log(2dS) + h(a) + (d — 1)h(B).
Proof: Write

d
Z (Mg + ni o) )B*1 (for some M ks N € Z)
k=1

with each |m; x|, |nix| < S. Then, for cach v e M,

max ||, = Ima

X
1<i<q <q

d
k—1
Z m2k+nzkaﬂ

v

< masx {2d), max {lmil, »[nasl, lal,} 571,

< {2dS}, max{l, |a,} max{1, fﬁ‘u}d_l'

Remark that h(1,0) = h(d) for each 6 € K. Thus, by viewing elements of K as
constant polynomials, Lemma yields the result. |

To prove the second estimate, the following lemma will be used.

Lemma 7.1.2. There exists ¢ € Nt depending only on O(A) such that for each
S,S €N,

1. Os+ Og € Os. 5

2. Os0gq < O.55
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Proof: Let m1 + maoar € Og and let ny + noav € Ogr. Then |m; +n;| < S+ 5 for
i € {1,2}. Thus,

(mq + maat) + (ng + ngar) = (Mmq +ny) + (Mo + ng)a € Og g1,

which proves (1). To prove the second claim, let ¢ = max{2 + |a|, 1 + [b|}. Then, it
follows that

|m1n1 + m2n2b| < SS/ + |b|SS/ = (]. + |b|)SS, < CSS,;

Iming + mang + mangal < 255" + [a|SS" = (2 + |a])SS" < ¢SS,

Therefore,
(mq + maar)(ny + nocr) = (Mmyng + mangb) + (Myng + mang + maonsa)a € O.sgr,

which completes the proof of the lemma. i

Proposition 7.1.3. There exists ¢ € N satisfying
Y E Fs = B’Y € Matdxd((’)cfg) (VS € N)

Proof: For each 7 € N, there exists ¢; € NT such that
d
it = Z awﬂd_J (for some a; ; € O,).
j=1

Let ¢ = max{co,...,cq—2} € NT, let ¢ be as in Lemma [7.1.2) and let ¢/ = dec”. To
show that ¢ has the desired property, let

Y=1+1f+ -+ 187 (for some 7; € O),
and write B, = (7;;)1<ij<d- For each i € {0,...,d — 2}, write

T+ T = (A BT
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=B b T B T

d d
— Tlﬂz_l 4t Td+2—i<2 aO,jﬁd_]> et Td(z ai—z,jﬁd_]>-

Jj=1 Jj=1

Thus, it follows by Lemma that
Tij € OsOur + -+ + OO0 < Oug (1 <4, < d)

where the sum consists of d copies of OgO.s. Therefore, B, is in Matgxa(Ows), as

desired. ]

7.1.1 Length inequalities for polynomials

This subsection introduces the notion of the length of a polynomial, and provides a

few related estimates.

Definition. Let F' € C[zy,...,x,]. Thus,
F(xy,...,z,) = Z cr' (for some ¢ € C),
ieN»
for a unique choice of (¢;)jenn. By definition, only finitely many of the coefficients ¢

are not equal to zero. Thus, it makes sense to define the length of the polynomial F

denoted L(F), by
L(F) = Yail.

iel
Proposition 7.1.4. Let F,G € C[zy,...,x,]|. Then, the following holds.
L(F + G) < L(F) + L(G) (7.1.1)
L(0F/0x;) < deg, (F)L(F) (7.1.2)
L(FG) < L(F)L(G) (7.1.3)
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Proof: Write

F(xy,...,x,) = Z cr' (for some ¢; € C);

ieNn
G(z1,...,x,) = Z diz' (for some d; € C).

ieNn

Then, it follows that

LF+G)= Y la+di] < ) la| + ). |di| = L(F) + L(G);

ieNm ieN” ieN”
L(OF [ox;) = Y lijas] < deg, (F) ) |ai| = deg,, (F)L(F);
ieNn ieNn
LIFG) = Y | D adi| < 3 > lalldl= ) ) lalld] = LF)L(G),
keN” li+j=k keN" i+j=k ieN” jeN™
thus completing the proof. |

Proposition 7.1.5. Let k be a number field. Let (ay,...,a,) € k™, let x be a
multivariable over C™, and let F' € Z|x] with deg, F' = n. Then

|Fog ..., o), <AL(F)}, max{l, |oa|,,...,|oam|,}"  (YveMy),
recalling that
{m}, =mifvlo and {m},=1ifv}foo (VmeZ\{0}).

Proof:  Write
F(x) = Z cx' (for some ¢ € Z),

ieN™
from which it follows that
|Flai,...,om)|, = 2 Gall .- alm
ieN™ v
< {L(F)}, max{[al - aiz] }
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< A{L(F)}, max{l, |aq|, ..., |oum|,}",
as required. |

Applying Lemma to the above proposition immediately yields the following.
Corollary 7.1.6. Following the same notation as in Proposition then

h(F(ay,...,am)) <logL(F) + (degy F)h(ay, ..., amn).

7.1.2 Holomorphic representation of & around 0

This subsection will provide a function that represents points on the elliptic curve
around its origin, which will be useful in finding the derivatives of the auxiliary
function. The core goal of this subsection is to establish estimates on this function.

Notice that there exists ¢ > 0 such that the functions g/’ and 1/¢" are holo-
morphic on B(0;¢). Thus, the function

Oy : z€ B(0,¢) — (/L, ﬁ,l)
@'(2) ¢'(2)

is a triplet of holomorphic functions. Notice that its equivalence class in projective

space is such that
[Po(2)] = expp(2) = [®(2)]
for all z € B(0;e) < C. The derivatives of the auxiliary function will involve the

derivatives of the coordinates of the function ®. Define functions f,h: B(0;e) —» E

1 23
el =
hz) = o) - 2"

Recall that o = 493 — gop — g3, and that " = 6p* — g,/2. Thus, it follows that



7. Estimates on the derivatives of the auxiliary function 67

2
Y g2
- (5) g

= —6h2 + g2f2/2,

and that
h/ B @,2 _ @”@
- p/2
0 gap
=1 GE + 207
- 3(¢%+ g0+ 03 9o
=1- 5 p/2 + Qp/Q
1 © 393

STy TR T e
= —1/2— gofh — 3g31°/2.

Thus, f® and R® are both polynomials in (gs, g3, f,h) for each k € N. In order
to see this, let x = (z1,79) and y = (y1,y2) be multivariables over C?, and define

recursively

oF, oF,
Fn+1<X7 y) = a_y1<xv y) : (_12y§ +$1y%) + a_y2(x7 y) ’ (_1 - 21’12/11!2 - 31;23/%)7 (714>

0H, oH,
Hn+1(XaY) = ) (X7y)'(_12y§+xly%>+a_y2<xa Y)‘(_1—2$1y1y2—3$2y%)5 (7-1-5)

Fo(x,y)=vy1 and Hy(x,y) = 4o (7.1.6)

Proposition 7.1.7. Let k € N. Then, it follows for each z € B(0;¢) that

210 (2) = Fulgz, g5, F(2), () and  2°h®)(2) = Hy(g2, g3, £(2), h(2)).

Proof:  Equations (7.1.4) and (7.1.5) yield

Fn+1(92,93, f’ h) = 2(Fn(927g37 f? h))/ = 2n+1<F0(g27g37 f? h))(nJrl)’

Hn+1(927g37 f’ h) = 2(Hn(927g37 f7 h))/ = 2n+1(H0(g2>g37f7 h))(n+1)

Equation " y1€ldS that F0<927g37 f’ h) = f and that H0(927937 f7 h) = h. i
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Proposition 7.1.8. Let k € N. Then

Fk‘) Hk € Z[X7 y]7
degx Fka degx Hk < ka
deg, Fy,deg, Hy < k + 1;
L(Fy),L(Hy) < k!19*,
Proof:  The proof is by induction on k£ > 0, whose base cases Fy = y; and Hy = y»

clearly hold. Now, suppose that the claim holds for & = 0,...,n. Since Z[x,y] is

closed under the operators d/dy; and 0/0ys, it follows by (7.1.4) and (7.1.5) that
Foi1,Hy € Z[x,y]. Thus, by induction, it follows for each k € N that Fy, Hy €
Z|x,y]. It also follows by induction hypothesis that

0F,
deg, F,, ;1 < max deg, — o + max{deg, (— 12y§ + xlyf), deg, (—1 — 2z1y1y2 — 3x2yf)}

1<i<2

<n+1,
and that

oF,
degy, Flp1 < max de gy e + max{deg, (— 1295 + 2197), degy, (=1 — 219132 — 379y7)}

<((n+1)-1)+2=n+2.

Letting F), .1, F,, in the above computations go to H,,1, H,, respectively, it follows

that

degx n+l =X sn+ 1)
degy H, .1 <n+2.

Thus, for each k € N, it follows that
degx Fk7 degx Hk? < k7

degy, Fy,deg, Hy < k + 1.
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Finally, Proposition yields that
L(F,1) <19(n + 1)L(F,) < 19" Y (n + 1)!;

L(Hyy1) <19(n + 1)L(H,) < 19" (n + 1)1,

from which induction yields the desired result. i

Corollary 7.1.9. Let N € N. Then
B(F(0), AO(0).... FO(0), A (0)) < Nlog N + N ((ga. gs) + log38).

Proof: Write F,(x) = F,(x,0), and write H,(x) = H,(x,0). By noting that
f(0) = h(0) = 0, it follows that

Thus, for each v € My,

) }h(n)(o)Lj} = max {|2_nFn<927g3)|U7 |2_an(92;93)|v}

os<n<N

max {|£*(0)

0<n<N

v

< max{1, 2_1‘1}}]\[ Orsr;agv{|ﬁ’n(gz,gg)|v, |H, (g2, 93)|v}
By Proposition and Proposition [7.1.8] it follows that
oﬁi}ivﬂf(n)(o)‘v |0} < max{1, [271| WV {NY19V} max{1, |ga], . gs],}"
Therefore, Lemma, yields that
h(f©(0),h9(0), ..., FM(0),AM(0)) < Nlog N + N (h(gs, g5) + h(271) + log 19),

as required. |



7. Estimates on the derivatives of the auxiliary function 70

7.2 Estimates on the derivatives of the auxiliary
function

The aim of this section is to show that the derivatives of the auxiliary function are of

bounded degree and height, and are small at the point (uy, ..., uq), where each w; is

defined by
(L, p(B77h), 0/ (B71) i P71 ¢ A
(0,0,1) if 771 e A.

Uj:

This will in turn allow the use of Philippon’s zero lemma and independence criterion,
from which the main theorem of this thesis will follow.

Let v € I', and note that B, € Matg«4(O) is such that

[B,J([e@)], [@(A)],.... [2(tA)]) = ([2(yt)]. [®(v¢B)], ..., [(vtB*7H]).

Define

b, = (byj1,---sbyja) = “5" row vector of B,” (1< j<d).

Following an idea by Baker-Coates-Anderson [12], the following map helps to simplify
the task of estimating the derivatives of the auxiliary function at specific points.

Specifically, define the map ¢, ; : E4™' — FE by
¢rj =020 ([by;] xidg) (1<j<d).

Then, use the representations for o, [b, ;] and idg to induce a family of triplets of

homogeneous polynomials in K(xy,...,X4,¥), denoted

¢ _ ¢ ¢ ¢
Qw‘ o (Q%J}O’ Q%J}l’ Qwﬂ)’

where ¢ € Z, ;, and Z, ; is a finite indexing set. Further denote

Zy ={(Gjlij|Gje Zyjfor I1<i<gl<j<d} (Vy=(m,...,7)el?).
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Proposition 7.2.1. There exists C € Rt such that if S > 1 and v € I'g, then
degy, ¢,; <CS* and h(q,;) <CS* (Vke{l,...,d}).
Furthermore, the representation for g, ; satisfies degy q,; = 2.
Proof:  Since (RS,). is of bidegree (2,2), then
deg,, ¢, = 2deg,, [b, ;] +2deg,, idg = 2deg, [b,;];

deg, ¢y, = 2degy[b%j] + 2deg, idg = 2deg, idp = 2.

By Proposition [7.1.3] there exists ¢; € Rt such that b, ; € (O,,5)%. Thus, Proposition
vields
deng Q.5 < 202(015)2.

By Proposition [5.2.5] with ¥ = 09 and ¥’ = [b, ;] x idg, it follows that

h(gy,;) < 2log(4) + 3log (@15 +342) 4 h(oy) + 2h([b, ;]) + 2h(idp)

< ey +3(3d + 2) log(205¢35? + 1) + 20y (c1.9)?

< 352,
for some c3 € RT. Thus, letting C' = max{2C5¢?, c3} yields the desired result. i
Write u = (ug, ..., uq), and recall that
s e e

(0,0, 1) if Bi1e A,

and so u; o« P(B71) for each j € {1,...,d}. Adopt the following notation. Let
f,g : C* - C™ be functions in a variable x. If there exists a function p : C* — C

such that
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then write
f(x) ok g(x).

Remark that while this binary operator is not symmetric, it is in fact transitive, which

will be used in the proof of the following lemma.

Lemma 7.2.2. Let v € ', and let w € C be a variable. Let 1 < j < d, and let
(e Zy;. Then

@55, @o(w ™)) oc, (v +w) )

for |w| < €/cg, where cg = max{1, |31}
Proof: = Remark that

uy o B(F) (1< <d)

Qo(wf ™) oy (wF ™) (Yw € B(0;¢/cp)).
Since @, ; is homogeneous in each x; and in y, then
QS (1, Bo(wf 1)) oty QS (B(1), .., BB 1), Buwf )

for |w| < €/cg. Notice that (0,0,0) trivially satisfies

(0,0,0) ocyy @((y +w)B ).
Thus, assume without loss of generality that |w| < e/cg is such that

Q5 ;(0, @o(wp’™")) # (0,0,0).

Thus,
QS ;(®(1),...,®(8*), d(wp 1)) # (0,0,0),

and so by Proposition it follows that

[Q5,(2(1),....®(B"), (wB )] = goi([R(D)],.... [®(B* )], [(ws)])
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— [®(byy - (1,..., 857 + wp )]
= [y +wp )]
= [®((y +w)#)].

Therefore, Qg,j(¢(1)7 BB, d(wpiTY)) oy B((y + w) BT, from which transi-
tivity yields that Qij(u, Oo(wp 1)) ooy P((y +w) 7). i

In finding estimates on the proportionality function implied in the result of the above
lemma, define for each v € I', for each j € {1,...,d}, and for each ¢ € Z,;, the

functions
8y 5(w) = dr((y + w)F71);
AL (w) = Q5 (w, Bo(wh ™)),
where k € {0,2} is such that v87~! € Cy. Recall that Q = mingen oy |w|, and let

o =1+ al.

Lemma 7.2.3. There exists ¢c; € RT such that if S > 1 and v € I'g, then
6,(w)| = e (1< j<d)

for [w] < Q/(4cp).

Proof:  Let yeTlg, and let j € {1,...,d}. Then,

d

Z B!

k=1

Since |7x| < ¢, S, and |37 < ¢, then

| =

d
< Z I7]|B]F! (for some 7 € Og).
k=1

”Y‘ < dCaCﬁS,
and so |y~ < dcac3S. Note that

8y 5(w) = de((y +w) 1) = (v +wp ),
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where 7377 € Cy. If |w| < Q/(4cg), then [wB~'| < Q/4, and so by Theorem [4.1.5]
it follows that

e (Y87 + W) = e,
for some ¢ € R* which does not depend on R, and where R = dcac%S . Let
1 = c(dcac)? > 0, so that

6,5 (w)] = e i

Lemma 7.2.4. There exists co € RT such that if S > 1 and v € I'g, then
|Q§7M(u, Do(wBf )| <exp(eS?) (1<ji<d0<k<2;V(eZ,;),
for |w| < e/(2¢5). In particular,
|Afm-(w)| <exp(eS?) (1<j<d;V(eZ,,).
Proof: Write

¢ — €1 €d+1
Qs = Qey,...;eqr1 X1 Xd+1 -

— <
|el ‘7degxl Q’Y,j,k

Let m; = max,{|u;,|} for 1 <[ < d. The functions f,h,1 are entire on B(0;¢/2)

which is compact, and so let M be an upper bound for |f|, |h],1 on B(0;¢/2). Since
lwB7~1| < &/2, then Proposition and Lemma yield that

¢ j—1 Cs? CS?% 3 r2
QS Qo(wF NS D ey eqn ImET - -mGT M
|el|:degxl Qg,j,k
< Z (lK:QICS? meQ o deSQ M2
|el|:degxl Qg,j,k

< ((CS? + 2)(CS? + 1)/2) 1 elKQUCS? 087 087 2.
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since ngk consists of at most ((CS? + 2)(CS? + 1)/2)%"! monomials. Thus, there

i 8 OIIStaIltS 0/7 C//7 C”/ > O S lC:h l I a
‘ ;’Cy 1 k( l? Io(wﬁj ))‘ < eC/S +CN og S+c///
2T )

Finally, there exists ¢ > 0 such that ¢/.S? + ¢"log S + ¢” < ¢S |

The following proposition and theorem justify the reasoning behind Lemma [7.2.2]
7.2.3 and [7.2.4], and illustrate the usefulness of the aforementioned idea by Baker-

Coates-Anderson. Recall that P denotes the polynomial for the auxiliary function F

constructed in Theorem (4.3.2]

Proposition 7.2.5. Let v = (71,...,7,) € I'Y, and let ( € Z,. Then,

Cu AN D
Py +w,..., Q5 (u, ®o(w; ") (H 5% ) F(y+w),
for w e B(0;¢/cp).

Proof:  Letie {l,...,q}, and let j € {1,...,d}. Then, Lemma implies the

existence of a function pc” : C — C such that
Q525 (w, ®o(wiB1) = pS (wi)@((vi + wi)B7Y) - (Vw; € B(0s2/cp))-

Since Theorem implies that 0., j(w;) # 0, then

Cij
o A%{j (wl)

P (wi) = 5 (W) (Vw; € B(0;¢/cg)).

Since P(1,2,X11,...,Xqq) is homogeneous of degree D in each x; ;, then

(H?gﬁ] )D <HP<” ) (Ly+w, o, (i +w)B )

=P(1,y + W, ..., p57 (w) (v + w) 7Y, ..)
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as required. |

For the sake of compactness, define the polynomial

P(1y+w, ..., Q7 (x, Po(wiF71),..)|

w=0

olol
ng(X) = awo-

where x is a multivariable over (C3)?. Let n = min{Q/(4cg),£/(2cs), 1}. Throughout
the remainder of this thesis, fix S := S(L) such that it satisfies

q"?dcqcsS +n = (logL)* (VL e NT),
where ¢ = 1/(2d — 1) < 1.

Theorem 7.2.6. Let v = (71,...,7,) € [, and let ( € Z,. If L is sufficiently large,
then
[P c(w)] < e T (v]o| < L),

Proof:  Since y € I'}, then

Y+ W< |y +n< q1/2dca055 +n<loglL (V|w|<n).
Then, Theorem yields
—2L(log L)1+¢/2 '

[y +w)ly <e

Then, from Lemma and Lemma [7.2.4] it follows that

(T3 vty 4

i,j YisJ

+¢2)S2gdD—2L(log L)1 +¢/2
<6(01 c2)S%q (log L) _

Iwl<n
Remark that (4., j(w))™" is holomorphic for |w| < 1. Thus, Cauchy’s inequality yields

‘0-‘ Af{z]] D
‘aw(Ha ) F(y+w)

|
gl! 2 _ 1+e/2
< ’ ie(cl-i-Cg)S qdD—2L(log L) (\V/O_ c Nq)
w=0 n
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Thus, if |o| < L, then

|0-|!e(cl+Cg)52qu—2L(10gL)1+€/2 < eLlogL—Llogn+(cl+62)52qu—2L(logL)1+€/2 < e—L(mgL)He/2
nlo

Y

for sufficiently large L. Proposition [7.2.5] yields the conclusion. i

Theorem 7.2.7. Let v = (y1,...,7) € I's, and let € Z,. Then, for all sufficiently
large L,
deg, pJ ((x) < d*CqDS*;

h(pf¢) <3L(log L) (Vlo| < M),

where M = L/log L.

Proof:  Let 0 € N? with |o| < M. Differentiating by w does not affect the degree

in x of

P(Ly+w, . QS (x o(wy @), . ),

IRV

which has degree in x bounded by qd - D - dC'S?. Thus, it follows that
deg, pJ (x) < d°CqDS?.

Define
i é’wi"i’

and write D = (Dy,...,D,) so that D7 = DJ* - -- Dg?, and so

(%) = D7P(Ly + w, ..., Q5 (x, ®o(wiB' ), ... ) lw=o.
Define
Ai=7i+w; and By = Q57 (x, ®o(wi# 7)),
and write

B;; = (Bijo, Bij1, Bij2) and B; = (B;,...,Bia).
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By writing
q d
P = Z Z Ch02? H(zf HXZJ) (for some ¢y o € Z),
‘k|=L \eij|=D =1 ]=1
then
s q
P(Ly+w,.. Q” (x, Po(w; 771) Z Z ckeH H )

k|=L |e;;|=D j=1
Since each w; only appears in the A; and B;; terms, it follows that
DIP(L,y + W, ..., Q5 (x, Bo(w; ) = > > ckeHD"’ (Ak B,
k|=L |ei;|=D i=1

Define
Tike = D72<A51B?> w=0

(7.2.1)

Since the sum above has at most M; = (qu)(2D+ 1)4? terms, and deg, Tike < My =
d*DCS?, then Lemma yields that

o 2 — -1
o] < {M ()T P, max Tael? (Y0 € Dic). (7.2.2)

Note that if i € {1,..., ¢}, then

min{o;,k;}

k;!
o kipe; o; 1 k;—lmo;—1 e;
D7 (A7By) = Z (l)(k-—l)'Ai D7 (B7).
1=0 v )
Define
Uie = D{'(B§) w0, (7.2.3)
and so _
min{o;,k;} N kz' o
Tike = IZ: ( ll)(k-—l)'%z Uite-
=0 ? :

Since [,0; < M, and k; < L, then Lemma yields that

max | Tige, < {M - 2" - LY} max{l, [y],}" max [Usel, (vveMy).  (7.24)
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Note that if i € {1,..., ¢}, then

o;—l e;\ _ Sijk DCijk
DZ’ (BZ ) - Z S’Lll szd3 HD BZ_]]C ‘

Z]ksljk oi—l
Define
Ve = DIBE o, (7.2.5)

ijk

and so

— Sijk€ijk
Ulle - Z 111 szd3 | |‘/;jk :

ijs”k g;— -1

The sum above has at most Ms = (M+3d_1) terms, deg, VZS”’“ “ik < My = dDCS?,

and (,, 77 ) < (3d)™. Thus, Lemma [5.2.1| yields for each v € My that

S'Lll szd3

max Uie|, < {M3(3d)M(M4ﬁ4d*1)3d_l} max max max HV (7.2.6)

HSd
v ijk s<M e<D

Note that if i € {1,..., ¢}, then

s ne S Gij j— e S Cij j—
D; Bfjy = DI(Q57; (¢, ®o(wiB))) = D7 (1. ]_[D 'Q5 (%, Bo(wiF7H)).
S1+ - +Se=s
By writing

ik dc € 0,5,k
by x%y < (for some by" € K),

then

D;Bi = Y (s, e 2 ( D b D (Do (wi ) )xé.
[

S1++8e=8 =1 le|=2

Since ®¢ = (f, h, 1), then it is possible to write for each |¢| = 2 that

Do (w; A = X1 (Wi )Xo (Wi (1<i<gl<j<d),

for some X1, x2.c € {f, h,1}. Notice then that
D} (tne (i) lw=o = X312 (008" (YA€ {1,2};Vn e N),

and so
Sy

D (®g(w; 8771)) o = Z (if )ﬁs’(j R X?Q(O)ngé )‘)(0). (7.2.7)
A=0
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Thus, it follows

e = Sl
V=3 (aie) (2( Bk 3 (5) g l>x92<o>xéf;‘”<o>)x5)
)

S14++Se=5s =1 le|=2 A=0
e Sq
s s(7— 7 A S;—A
-3 s TS (X o Vo )x)
s1+4-FSe=s I=1 % 30 M¢=2 A=0

Since s < M, e < D,and § = (0;,...,0,) has each |§ ;| < C'S?, then }( 5,55, ) < DM,
and each polynomial in the product of polynomials has degree in x bounded by

= dCS?. Then, Lemma yields for each v € My that

max [V,

ijkse
D
M (d—1)M M5+3d 1 i,k ( ) Sz A)
<
{D}," max{L,[8], "} {( |8 ]%( ||226 Z X (Oae = (0))
¢ (>\) (s1=2) i
M My 3d M is 5
< (DR a1, 182 ({01362}, 052 [E2onge <o>v)'
By letting Mg = DM (M3 -6 - 2M)D it follows for each v € M that
max [V,
(7.2.8)

D
< { Mg}, max HQSYJMH max{1, |B|dM
ijk W

F(0)

(M) 2D
0<KASM v’}h (O>|v} :

Let
_ 1\ ¢
M; = Z\{1<Mg—]i;432d—1)q 1 <M(6dL)MM (Mt 1)3d 1) VA

and note that Proposition yields that

h(<ngj,k>ijk) < qdCS?.

Thus, Lemma and equations ([7.2.2)), (7.2.4), (7.2.6), and (7.2.8)) yield that

h(pg ) < log My + h(P) + gLh(y) + 3¢dDCS?

+ 3qd® Mh(B) + 6qdDh((f™(0), A" (0))ocn<nr)-



7. Estimates on the derivatives of the auxiliary function 81

By Theorem [4.3.2] Proposition [7.1.1] and Corollary [7.1.9, this last expression, with
the log M7 term omitted, is thus bounded by

L + qL(log(2dS) + h(a) + dh(p))
+ 3qd(DCS* + dMh(B) + 2DM (log M + h(gs, g3) + log 38))
<2DMlog L = 2DL,

for sufficiently large L. Since all of the log M; terms for i € {1,...,6} have order less
than M log L, it follows that

log M7 < ¢M log L = ¢L,
for some ¢ € R™, and sufficiently large L. Therefore,
h(p? ) <2DL + ¢L < 2((log L) + 1)L + ¢L < 3L(log L),

for sufficiently large L, as required. i



Chapter 8

Zero Estimate

The main result of this chapter will use Philippon’s zero lemma, stated as Theorem
8.2.1] and whose proof is in [9]. Before doing so, some notation and terminology will
be established.

8.1 Preliminaries

Let G = C™" x E™, and note that it is an algebraic group. The exponential map on
g g

G, denoted expy : C" x C™ — G is defined by
eXpG<t’ Rlyeens Zm) = (t7 eXpE(Zl)7 ce 7eXpE(2m))'
The following notion will be quite relevant as well.

Definition. An algebraic subgroup is an algebraic set which is a subgroup of an

algebraic group.

Let H < G be a connected algebraic subgroup. The tangent space of H, denoted
Ty (C), is defined as the connected component of the preimage of exp, at H which
contains 0 € C"*™, In fact, there exists a subspace U < C™ and a subspace V' < C™
defined over Q(«) such that
Ty(C)=U x V.

82
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In particular, letting k = dime(U) and | = dime(V), it follows that H =~ C* x E'.
Let © : C" — C™ x C™ be a C-linear map, and let W = Im(©) be its image. Let

Z=(Z,...,2Z,) and X;=(X;0,Xi1,Xs2) (I1<i<m)
be indeterminates over C, and let P(Z,Xy,...,X,,) be multihomogeneous with
degz(P) =L and degx (P)=D (1<i<m). (8.1.1)

Let T' € N. The polynomial P is said to vanish at a point exp,(u) € G at an order
> T along W if

lo]

OwW?

0= P(1,expg(u+ O(w)))|w=o (Y]o| <T).
Finally, define, for a finite set ¥ < GG and an integer N > 1, the set

Y(N) ={x1+ -+ ay|each z; € £}.

8.2 Zero Estimate

The following theorem is due to Philippon, and specialized to the above context.

Theorem 8.2.1 (Philippon, 1986). Let 3 be a finite subset of G = C" x E™ which
contains the origin. Suppose that P satisfies (8.1.1) and vanishes at each point of

Y(n+m) at an order > T along W. Then, there exists a connected algebraic subgroup
H<G, H=CFxE,
such that H is contained in a translate of G N Z(P), and such that

. TdimC(W/(WﬂTH)) & Lnkamfl.

Y+ H
H

This theorem plays a crucial role in the proof of the following proposition.
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Proposition 8.2.2. Let the notation be as in Theorem and let K = Q(a, B).
Recall that d = [K : Q(«)], s = 1/(2d — 1), S = (log L), € > 0 is a real parameter
that can be chosen to be arbitrarily small, and that ¢ € NT is a parameter satisfying

q>(2+¢€)/(e(2d—1)). Let T = L/log L. Then, the polynomials in
Fp = {piﬁ |oe N, with |o| < T; Y=, 7) € res Ce Zl}
have no common zeros in E¢ < C3¢ for all sufficiently large L.

Proof: Take n = g and m = qd, so that G = C? x E9%. Recall that P denotes the
polynomial constructed in Theorem which satisfies (8.1.1]) with D = |log(L)+1]e.
Suppose that a € E4 < C3? is a common zero for the polynomials in F7. Then, there

exists z € C? such that a = expga(z). Thus, since

pgé(a) =0 (V]o| <T; Vy e Fg,vg € Zl)7

it follows that

olol

0
ow?

P(1,expg(y +wW,..., By (z)" +wi",...))|lw=0 (8.2.1)

for all |o| < T', and for all v € I'y. For what follows, identify C* with C!®C?, and let
ei®ej e Cl® C? identify with the vector in C% whose entries are all zero except for
a 1 in the j position of the i* bloc which consists of d coordinates. Let {ey,...,e,}

be the canonical basis for C?, and write 8 = (1,5, ... , 3971). Define
w; = (e;,¢,®B) e C? x (C'QCY) (1<i<yq),
and let © : C? — C? x (C?® C?) be the C-linear map for which
Oe;)) =w; (1<i<yq).
Define W = ©(C?) = {wy, ..., wy)c. Let

vij = (67 "ei e, ® (Bpi1(2)")) e C? x (C'®CY) (1<i<gl<j<d).
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Let ¢ = ¢ + qd, and let N = |S/c|. Define

q d
ZN = {ZETZ‘]'VZ‘]‘

i=1j=1

Tij € ON} (VN € N),

EN = expG(ZN) (VN S N)
Notice that since ¢cN < S, then for each point u € Z.y, there exists 7 € 'Y such that
u=(y,...,B,(2)",...).

Thus, by remarking that Y.y = Xy(c), we get by (8.2.1) that P vanishes at each
point of ¥y(c) at an order > T along W. Thus, by Theorem [8.2.1] there exists a

connected algebraic subgroup
H<G, H=x~CFxE,
such that H is contained in a translate of G N Z(P), and such that

L/log L)3imeW/(WnT)) « pa=k pad=t, (8.2.2)

Y+ H (
H

The next step is to show that (8.2.2)) is impossible. Note that
1< |(Ev+ H)/H|,
and so by comparing powers of L in (8.2.2), it follows that

dime(W /(W N Tw))) + k < g
q—dimc(WﬂTH) < C]—]{?

k< dime(W NTg). (8.2.3)
Define the projections

1 :Clx (C?®CY - C? and 7y :C?x (C?®CY) — (C1®CY

m(z,t) =2 and my(r,t) =t (VozeChVteCI®CY).
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In order to obtain an upper bound for dim¢(W N Ty), write
TH = 7T1(TH> X TQ(TH) =U x ‘/7

for some subspace U < CY and some subspace V < C? ® C? defined over Q(a),
satisfying
dimc(U) =k and dime(V) = 1.

Then, since |y : W — C? is a bijection, it follows that
dimc(W NTy) = dimem (W N Ty) < dime m1(Ty) = dime(U) < k,

and so, recalling (88.2.3)),
dlm(c(W N TH) = k.

Thus, (8.2.2)) yields

Sy + H
‘ N« Deillog(L)i* = log(L)7F+elad=D, (8.2.4)

Further, a lower bound for | = dim¢(V') can be deduced. Since
dimem (W NTy) =dimem(Ty) and m(WNTy) € m(Ty),
then m (W N Ty) = m(Ty). Thus, remarking that
(mlw) ™ (2) = ©(2) (vVzeCT),
yields that

U= 7T1(TH) = 7Tl<WmTH) = (7T1|W)<WHTH)
OWU)=WNTy STy
WQ(@(U)) - TQ(TH) =V.

By letting
k=dimg(K'NU) <k,
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it is claimed that [ > kd. Remark that the smallest subspace defined over Q(«) which

contains m5(0(U)) is R{ where
R, = {2 aje; ®e; € Q(a)?®@Q(a)! ‘ <Z aije; ®e;, Xx® ) =0 for all x € U} ,
ij
using the scalar product
<Z aijei ® €j, Z bijei ® €j> = Z aijbij-
ij ij ij
Note that,
dime (V) = dimg)(V N Q(a)? ® Q(a)?) = dimga)(Ry) = ¢d — dimg(a)(R:).

Now, define

q
Ry = {(bl,...,bq)eKq Zbil‘i=Oforallx=(xl,...,:rq)eU},

i=1
and notice that Ry = KYNUL < (K9NU)*L. Then, since {1, 3, ..., 3%} are linearly

independent over Q(«), the following is a bijection.

ngRQ

Eijaijei ® €j — (E?Zlaljﬁjil, ce Z?ZIquﬁjfU,
which is a Q(«)-linear map. Thus,
dimga) (R1) = ddimg(Ry) < d(q — dimg(K7NU)) = d(q — k),

and so

dim@(V) = (]d — dimQ(a)(Rl) = d/i,

which proves the claim. Notice then that

—k< -k and —1< —dk,
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and so

qg—k+elgd—1) <(q—r)(1+ed).

Thus, it follows by (8.2.4) that
Xy + H

« log(L)la—m1+ed), (8.2.5)

In order to find the desired contradiction, a lower bound for the cardinality of the set

Yy + H
H

will be required. Since ker(exps) = {0} x A% and expg(Tx) = H, the following is a

bijection:

Te/({0} x A% + Ty) =~ G/H

(z + {0}7 x A) + Ty > expg(x) + H.

Thus, it follows that

EN—FH . ZN+TH+{0}qXAqd
H | | Ty+{0}7xAd

Since m (Zy) = 'y, m(Ty) = U and 7 ({0}4 x A%) = {0}4, then the following is a

surjection:
Zy +Tg+ {0} x A T4 +U
Ty + {0}7 x A U
z+ Ty + {0} x A > 7 (2) + U,
and so
ZN+TH+{0}q><Aqd F?v—i-U
Ty +{0}exAed |7 | U |

Since I'}; < K1, it follows that

', +U
U

’ > |FN|q—dimK(KqﬁU) ‘
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Since {a!(7|0 < i <2,0<j<d}isa Zbasis for ', then [I'y| = (2N + 1)??, and so

v+ H
ON + 1)2da—r) < |ZNT 71
N +1) :

Therefore, it follows from (8.2.5) that (log L)s29=*) « log(L)@*)(+ed) and so
¢-2d(qg— k) < (q—k)(1+ed). (8.2.6)
Suppose that ¢ # k, then ¢ — k > 0. Thus, since ¢ = 1/(2d — 1), it follows that

2d/(2d —1) < 1+ ed
1+1/(2d—1)<1+ed

(d(2d — 1)) < e,

which is a contradiction, if € is chosen small enough, and so ¢ = k. Note that this
could not have been deduced if E did not have complex multiplication. Specifically,
if £ did not have complex multiplication, then [I'y| = (2N + 1), so that the above
inequalities would yield d/(2d — 1) < 1 + ed which does not yield a contradiction for
any choice of € and d. Since ¢ = &, it follows that gqd > | > kd, and so [ = qd.
Therefore, it follows that Ty = U x V = C? x (C?®C?), and so H = G. Since G = H
is contained in a translate of G N Z(P), then G = Z(P), and so

P(1,2,X11, ., X1ds s Xq1, - - -, Xga) =0 (Vz e C%,Vx,; € E < C?).

In particular, by letting x = (X311, ..., X1d,---,Xq1; - - -, Xqa), annd by defining

-~ 2 3 2 . 3
hij(X) = Tij0Ti5 — 47551 + 92755 0Tij0 + 93350,

it follows that
Pe (hij(x), ey hqd(x)).

Since P # 0, and since each distinct generating polynomial in the above ideal has

distinct indeterminates, it follows for some i € {1,..., ¢} and some j € {1,...,d} that

deg,, , P = 2.
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However, Theorem guarantees that degxij2 P < 1, yielding a contradiction.

Thus, the family F; has no common zeros in £¢ € C3?, as required. |



Chapter 9

Independence Criterion

In order to prove the main theorem, Philippon’s criterion for algebraic independence
from [I0] will be given, specialized to the case where the families of polynomials have

110 Comimnon zZeros.

Theorem 9.0.3 (Philippon, 1984). Let k€ N and let 0 = (,,...,0,) € (C"*1)?. Let
No e N, and let 6,7, and V' be increasing functions on {Ng, No+1,...} — [1,00) such
that 6(N) < 7(N) for all N = Ny, and such that

) B o T(N+1) . 6(N+T1) ) B

Suppose for each N sufficiently large that there exists a family of polynomials F which
has no common zeros in (P")?, and is such that
h(p) < 7(N), deg,(p) <d(N) (vVpeF);
max [p(0)] < exp(=V(N)T(N)3(N)*).
Then
tr.degg(Q(8,,...,0,)) > k.

By taking the family of polynomials from Proposition [8.2.2) and by applying the
estimates from Theorem and Theorem [7.2.7] an application of Theorem [9.0.3]

can be used to deduce the following theorem.
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Theorem 9.0.4. Let A < C be a lattice such that the corresponding elliptic curve has
complex multiplication, and such that gs(A), g3(A) € Q. Let 8 be a non-zero algebraic
integer with d = [Q(a, B) : Q(«)]. Then, by defining

(L3771, ¢ (6771)) if Bt ¢ A;
(0,0,1) if 1 e A,

Uj:

it follows that tr.dego(Q(us, ..., uq)) = d. In particular, {1, 8, ... BN A =2,

Proof: Following the notation in Theorem [9.0.3, let £k = d — 1, N = L, and

0 = (uq,...,uq). Further, define the functions
7(L) = 3L(log L)¢, (L) = d*CqDS? and V(L) = L(log L)***?/(r(L)§(L)*),
where D = [log(L) + 1]|¢ and S = (log L)* with ¢ = 1/(2d — 1). Notice that

V(L) = (log L)"**/((log L) (log(L)" log(L)*)")

= (log L)'~ e/27he2is,
Since 1 — 2k¢ = 1 — 2(d — 1)/(2d — 1) = 1/(2d — 1) =, then
V = (log L)*~(1+20)/2,
By choosing € > 0 such that ¢ > (1 + 2k)e/2, then
lim V(L) — .

L—

Define

_ 2 3 2 3 -
hi(x) = Li,0Lj9 — 4551’,1 + 925 0Ti1 + G3T; (1 <i<d),

and define for each L the family of polynomials

Fr=F,U{ht,... ha}.
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Since Z(hy, ..., hq) = BE? < (P?)?, Proposition yields for sufficiently large L that

F. has no common zeros in (P?)?. Note that

and so Theorem yields for sufficiently large L that

max [p(0)] < exp(=V(N)7(N)I(N)").

peFL,

Further, since each h; is of bounded height and degree, Theorem [7.2.7 yields
h(p) < 7(L), degu(p) <6(L) (V¥pe Fy)
for sufficiently large L. Thus, Theorem yields

tr.degg (Q(uy, . .., uq)) = d.

Since g¢s, g3 are algebraic over Q, then ¢'(z) is algebraic over K(p(z)). Thus,

tr'deg(@(@(uh s ,Ud)) < d7

and so

tr.degg(Q(uy, ..., uq)) = d.

In particular, {1,4,...,8 1} NA =2, or else tr.degg (Q(uy, . .., uq)) < d. |

Corollary 9.0.5. Let A < C be a lattice such that the corresponding elliptic curve
has complex multiplication, and such that gy(A), g3(A) € Q. Then,

QnNnA={0}.

Proof: Let 3 be an algebraic integer not in Z. Thus, Theorem gives that
B ¢ A. Furthermore, it gives that 1 ¢ A. Now, suppose that n € A for some
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n € Z\{1,0}. Then, it follows that 1 € n='A. To show that this is impossible, note

that p(z;n~'A) has invariants
g2(n'A) =n'gy € Q and gs(n'A) =nSg3 e Q.

Since O - n~'A < n~!A, then the associated elliptic curve must have complex multi-
plication. Thus, by Theorem , it follows that 1 ¢ n~'A, which is a contradiction.
Thus, every non-zero algebraic integer is not in A. Finally, letting ¢ € @X, there exists
D e N7 such that Dq is a non-zero algebraic integer. Thus, ¢D ¢ A which implies
that ¢ ¢ D™'A 2 A. Thus, ¢ ¢ A. |

The main result thus follows immediately from Theorem [9.0.4] and Theorem |3.2.4]

Theorem 9.0.6. Let k = Q(a), and let B, ..., B € Q be linearly independent over

k. Then ©(51),...,p(Bs) are algebraically independent over Q.
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