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Abstract

This thesis aims to prove the following statement, where the Weierstrass ℘-function

has algebraic invariants and complex multiplication by Qpαq:

“If β1, . . . , βn are algebraic numbers which are linearly independent over

Qpαq, then ℘pβ1q, . . . , ℘pβnq are algebraically independent over Q.”

This was proven by Philippon in 1983, and the proof in this thesis follows his ideas.

The difference lies in the strength of the tools used, allowing certain arguments to be

simplified.

This thesis shows that the above result is equivalent to imposing the restriction

pβ1, . . . , βnq “ p1, β, . . . , β
n´1
q,

where n “ rQpα, βq : Qpαqs. The core of the proof consists of developing height

estimates, constructing representations for morphisms between products of elliptic

curves, and finding height and degree estimates on large families of polynomials which

are small at a point in

Qpα, β, g2, g3qp℘p1q, ℘
1
p1q, . . . , ℘pβn´1

q, ℘1pβn´1
qq.

An application of Philippon’s zero estimate (1986) and his criterion of algebraic in-

dependence (1984) is then used to obtain the main result.
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Introduction

The existence of transcendental numbers was first established by Liouville in 1844.

He proved the existence of a non-empty class of numbers called Liouville numbers,

which are, vaguely, real numbers that satisfy a certain strong rational approximation

inequality that no algebraic number can satisfy. He also gave an explicit example in

1851, the so-called Liouville constant, namely

8
ÿ

n“1

10´n!
“ 0.1100010000000 . . .

However, Liouville’s constant was constructed for the sake of proving the existence of

transcendental numbers, and does not answer whether or not numbers which arise in

more “natural” contexts can be transcendental. It was in 1873 that Charles Hermite

answered this question affirmatively, proving that Euler’s number, e, is transcenden-

tal. This naturally spurred greater interest in the theory of transcendental numbers,

further promoted by Cantor’s proof in 1874 that the set of transcendental numbers is

in fact larger than the set of algebraic numbers. The methods in the proof by Hermite

provided much of the basis with which several classes of numbers have historically

been shown to be transcendental. Indeed, Hermite’s methods formed the basis of the

proof, given by Lindemann in 1882, that eβ is a transcendental number for each non-

zero algebraic number β, which in particular implies the transcendence of π. In 1885,

Weierstrass generalized this result by proving the Lindemann-Weierstrass Theorem,

which states that if β1, . . . , βn are algebraic numbers which are linearly independent

over Q, then eβ1 , . . . , eβn are algebraically independent over Q. Several more proofs of
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Introduction 2

this theorem have appeared over the course of nearly a century, but they all relied on

reducing the problem of algebraic independence to one of linear independence. It was

not until a paper by Chudnovsky published in 1980 [13] that algebraic independence

methods had managed to yield a partial result. The significance of this is that it

allowed Chudnovsky in the same year to adapt his methods to prove an analogous

result for Weierstrass ℘-functions which have complex multiplication and which are

defined over the algebraic numbers, with the caveat that only six algebraic numbers

could be considered. Nevertheless, it was his methods that ultimately led Philippon

and Wüstholz to prove the complete result independently of each other in 1983. The

result can be stated as follows, where the Weierstrass ℘-function is assumed to have

algebraic invariants and complex multiplication by Qpαq:

“If β1, . . . , βn are algebraic numbers which are linearly independent over

Qpαq, then ℘pβ1q, . . . , ℘pβnq are algebraically independent over Q.”

The main goal of this thesis is to demonstrate this result, based on Philippon’s meth-

ods. The main difference lies in the strength of the tools used, allowing several

arguments to be simplified.

The first chapter consists of a brief exposition on Algebraic Geometry, establish-

ing the notion of an elliptic curve, and stating a few results on morphisms between

projective algebraic varieties. The second chapter establishes the notion of an elliptic

function, and defines the related Weierstrass functions. The section on the Weier-

strass ℘-function is of particular importance, as it presents many results which will

be key in proving the main result. The rest of the thesis consists of proving the main

result. The first step in doing so is to show that the statement of the main result

is equivalent to a simpler one, stated as follows, where the Weierstrass ℘-function is

assumed to have algebraic invariants and complex multiplication by Qpαq:

“Let β be an algebraic integer, and let d “ rQpα, βq : Qpαqs. Then the

numbers ℘p1q, ℘pβq, . . . , ℘pβd´1q are algebraically independent over Q.”
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The proof of this statement relies heavily on the construction of an auxiliary function

for each sufficiently large L P N`. To make this more precise, let E be the elliptic curve

induced by ℘, and let Φ : CÑ C3 be a holomorphic representation of the exponential

map on E, i.e. expEpzq “ rΦpzqs. Further, let ρ : Cq Ñ Cqd be defined as ρptq “

pt, tβ, . . . , tβd´1q, and let Ψ : Cqd Ñ pC3qqd be defined as Ψpzq “ pΦpz1q, . . . ,Φpzqdqq.

The auxiliary function is then of the form

F ptq “ P p1, t,Ψ ˝ ρptqq p@t P Cq
q,

where P P ZrZ,X1, . . . ,Xqds, with Xi “ pXi,0, Xi,1, Xi,2q P C3 for 1 ď i ď qd, and

with Z “ pZ0, . . . , Zqq P Cq`1. The polynomial P satisfies

degZ P “ L and degXi
“ tplogLqεu` 1 p1 ď i ď qdq,

and is of height bounded by L, whereas F satisfies

max
|σ|ďL

max
|t|ďlogL

|F pσqptq| ď expp´LplogLq1`ε{2q

where ε ą 0 can be chosen arbitrarily small. This auxiliary function differs only

slightly from the one constructed by Philippon in [8], in that Ψ is embedded in a large

product of low-dimensional projective spaces, instead of a single high-dimensional pro-

jective space. Its construction also differs, in that it follows rather straightforwardly

from a result of Waldschmidt in [7], combined with Cauchy’s inequality in several

variables. The usefulness of the auxiliary function lies in providing a link between

the algebraic arguments and the analytic arguments inherent in attempting to prove

the main result.

The proof will also require certain morphisms to be represented by families of

polynomials whose degrees and heights are bounded, and so some useful results on

heights of polynomials are demonstrated. In order to find these representations, a

complete system of bidegree p2, 2q for the group law on elliptic curves with complex

multiplication is given, whose proof is attributed to [6], and the multiplication-by-2
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map is shown to be represented by a single triple of polynomials. These representa-

tions allow several families of polynomials to be constructed, each such family rep-

resenting one of several morphisms between products of elliptic curves with complex

multiplication.

In order to adequately describe the ideas underlying how the auxiliary function

and representations of morphisms are used in this thesis, the following notation is

established. Let Λ denote the lattice associated to ℘, and define for each j P t1, . . . , du,

uj “

$

’

&

’

%

p1, ℘pβj´1q, ℘1pβj´1qq if βj´1 R Λ;

p0, 0, 1q if βj´1 P Λ,

let u “ pu1, . . . , udq, and let K “ Qpg2, g3, α, βq, where g2, g3 are the invariants of ℘.

Though the details surrounding the use of the auxiliary function and the constructed

representations of morphisms are technical, let it suffice to begin with the following.

For each sufficiently large L P N`, the partial derivatives of F are shown to be

small at points γ “ pγ1, . . . , γqq, with γi P Zrα, βs. These are normalized to yield

elements of Krus which have absolute values that are small. These elements are then

shown to be the image at u of polynomials whose heights and degrees are bounded.

Denote by FL the family consisting of the aforementioned polynomials. The

completion of the proof is then reliant on an application of Philippon’s zero estimate

(1986) followed by an application of Philippon’s criterion of algebraic independence

(1984). The zero estimate shows that FL has no common zeros in Ed Ă pP2pCqqd.

Adding to FL the d polynomials which define Ed, a new family is constructed, denoted

F̃L, which has no common zeros in pP2pCqqd. The criterion of algebraic independence

then uses the fact that F̃L has no common zeros in pP2pCqqd, as well as the estimates

on the heights and degrees of the polynomials in F̃L and the bound on the values they

take at the point u, to deduce that Kpu1, . . . , udq has transcendence degree d. Since

the invariants are algebraic, the relation ℘12 “ 4℘3´ g2℘´ g3 allows the deduction of

the main result.



Chapter 1

Algebraic Geometry

This chapter provides the details concerning algebraic geometry which are relevant

to this thesis. Its content is attributed to [1] and [2]. Throughout this chapter, fix a

field k0 of characteristic zero, and let k Ě k0 be an algebraically closed field extension.

1.1 Algebraic Varieties

In what follows, notions related to both affine algebraic varieties and projective alge-

braic varieties will be treated simultaneously, due to similarities in their exposition.

Let An – kn denote the affine n-space over k, and let Pn – Pnpkq denote the

projective n-space over k. Further, denote the equivalence classes of points in Pn by

rx0, . . . , xns “ px0 : ¨ ¨ ¨ : xnq “ tpλx0, . . . , λxnq |λ P k
ˆ
u.

Let A “ krx1, . . . , xns be a polynomial ring in n variables. Given a subset T Ď A,

denote by ZpT q the set of common zeros of all polynomials in T , i.e.

ZpT q “ ta P An
| fpaq “ 0 for all f P T u.

Let S “ krx0, . . . , xns be a polynomial ring in n` 1 variables.

5



1. Algebraic Geometry 6

Definition. A polynomial f P S is homogeneous of degree d if

fpλx0, . . . , λxnq “ λdfpx0, . . . , xnq p@λ P kq.

Let Sd be the set of polynomials in S which are homogeneous of degree d, and

denote the set of homogeneous polynomials by SH “
Ť8

d“0 Sd . Notice that while a

homogeneous polynomials f P Sd is not a function of Pn, it does make sense to ask

whether or not f is zero at a point in Pn. Indeed, if f is zero for some representative

px0, . . . , xnq of a point p P Pn, then

fpλx0, . . . , λxnq “ λdfpx0, . . . , xnq “ 0 p@λ P kq,

and so f is zero for every representative of p. Thus, given a subset T Ď SH , denote

by ZpT q the set of common zeros of all polynomials in T , i.e.

ZpT q “ tp P Pn | fppq “ 0 for all f P T u.

Definition. A subset X of An (resp. Pn) is said to be an algebraic set if there exists

a subset T of A (resp. SH) such that X “ ZpT q. If T can be chosen such that the

coefficients of the polynomials in T lie in k0, then X is said to be defined over k0.

Proposition 1.1.1. Consider the following sets to be contained in An (resp. Pn).

Then,

a) the union of two algebraic sets is an algebraic set;

b) the intersection of a family of algebraic sets is an algebraic set;

c) ∅ and An (resp. Pn) are algebraic sets.

Definition. The Zariski topology on An (resp. Pn) is defined by taking the open sets

to be the complements of the algebraic sets in An (resp. Pn).

Remark that, by the proposition above, this is indeed a topology.
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Definition. A non-empty subset Y of a topological space X is said to be irreducible

if it can not be written as the union of two proper subsets, Y1 and Y2, both of which

are closed in Y .

Definition. An affine (resp. projective) algebraic variety is an algebraic set which is

irreducible in the Zariski topology on An (resp. Pn).

Proposition 1.1.2. Each algebraic set can be uniquely written as a finite union of

algebraic varieties, none containing another.

Definition. Let X be a topological space. The dimension of X, denoted dimX, is

defined to be the supremum of all integers n such that there exists a chain Z0 Ă Z1 Ă

¨ ¨ ¨ Ă Zn of irreducible closed subsets of X. The dimension of an algebraic variety is

its dimension as a topological space.

Definition. Let X “ Zpf1, . . . , fsq be an algebraic variety in An (resp. Pn); let

p P X. Then, X is smooth at p if the rank of the Jacobian is maximal, i.e.

rank

ˆ

Bfi
Bxj

ppq

˙

“ n´ dimpXq.

An algebraic variety is said to be smooth if it is smooth at every point.

1.2 Morphisms

Note that understanding morphisms between projective algebraic varieties will suffice

for the scope of this thesis. As such, the following exposition will be simplified

accordingly. For more details on morphisms, see [1].

Definition. Let V Ď PnpCq and W Ď PmpCq be algebraic varieties. Let Ψ : V Ñ W

be a map. If there exists a Zariski open cover pUiqiPI of V , such that

pΨ
piq
0 pxq, . . . ,Ψ

piq
m pxqq ‰ 0 p@i P I; @x P Uiq;
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Ψpxq “ rΨ
piq
0 pxq, . . . ,Ψ

piq
m pxqs

for some family pΨpiqqiPI , where each Ψpiq “ pΨ
piq
0 , . . . ,Ψ

piq
m q, and where each Ψ

piq
j is a

polynomial which is homogeneous of degree di, independent of j. Then, Ψ is said to

be a morphism, and it is said to be represented by the family pΨpiqqiPI .

Note that the choice of a family which represents a morphism is not unique.

Also, given morphisms φ : U Ñ V , ψ : V Ñ W , the composition ψ ˝ φ : U Ñ W is a

morphism.

Proposition 1.2.1. Let Ψ : V Ñ W be a morphism. Then, the family pΨpiqqiPI which

represents Ψ can be chosen with a finite indexing set I. Furthermore, if x P V and

i P I are such that

pΨ
piq
0 pxq, . . . ,Ψ

piq
m pxqq ‰ 0,

then

Ψpxq “ rΨ
piq
0 pxq, . . . ,Ψ

piq
m pxqs.

Definition. Let Ψ : V Ñ W be a morphism which is represented by a finite family

pΨpiqqiPI . Then, the family pΨpiqqiPI is said to form a complete system for Ψ.

Reciprocally, if a finite family pΨpiqqiPI is such that, for each i, j P I,

pΨ
piq
0 pxq, . . . ,Ψ

piq
m pxqq ‰ 0 ‰ pΨ

pjq
0 pxq, . . . ,Ψ

pjq
m pxqq

implies that

rΨ
piq
0 pxq, . . . ,Ψ

piq
m pxqs “ rΨ

pjq
0 pxq, . . . ,Ψ

pjq
m pxqs,

then pΨpiqqiPI forms a complete system for a unique morphism Ψ : V Ñ W .

1.3 Elliptic Curves

This section introduces the notion of algebraic groups, as well as that of elliptic curves

defined over fields of characteristic zero. A few key results are also stated.
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Definition. Let X be an algebraic set defined over k0. Suppose that X possesses a

group structure whose group operations can be given locally by polynomials whose

coefficients lie in k0. Then, X is said to be an algebraic group, and it is said to be

defined over k0.

For instance, the algebraic set Cn is an algebraic group defined over Q for each

n P N`, taking ‘`’ as the group law.

Definition. An elliptic curve is a smooth projective algebraic variety of genus 1 [2],

with a specified basepoint O. It is said to be defined over k0 if the polynomials

defining it can be chosen to have coefficients in k0, and if there exists a representative

of O whose coordinates are in k0.

Proposition 1.3.1. Let E be an elliptic curve defined over k0. Then, it is isomorphic

as an algebraic variety to an elliptic curve which is in Weierstrass normal form, i.e.

E “ Zpx0x
2
2 ´ 4x3

1 ` g2x
2
0x1 ` g3x

3
0q.

The quantities g2 and g3 are called the invariants of E, and are such that if E

is defined over k0, then g2, g3 P k0. Further, the smoothness condition on E requires

that g3
2 ´ 27g2

3 ‰ 0.

In order to show the following proposition, consider the following. Let E be an

elliptic curve which is in Weierstrass normal form. One can consider the points of E

which are at infinity, i.e. the points r0, x1, x2s P E. Since E is in Weierstrass normal

form, it follows that r0, 0, 1s is the only point at infinity. Let O “ r0, 0, 1s be the

specified basepoint of E. If L is a line in P2, then Bézout’s theorem [2] yields that

L∩E has exactly three points, counting multiplicities. It thus makes sense to define

the composition law in the upcoming proposition.

Proposition 1.3.2 (Group Law). Let P,Q P E. Let L be the line connecting P and

Q (if P “ Q, then L is the line tangent to E at P ), and let R be the unique third
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point of intersection of L with E. Let L1 be the line connecting R and O, and define

P ‘Q to be the unique third point of intersection of L1 with E. Then, the composition

law given by ‘ turns E into an abelian group with identity element O.

Definition. Let X be an algebraic group which is also a projective algebraic variety.

Then, X is said to be an abelian variety.

For example, an elliptic curve is an abelian variety of dimension 1, as the group

law on E given above can be expressed locally by polynomials, as seen in [2]. However,

all that will be needed throughout this thesis is its reformulation (Theorem 2.2.9) in

terms of the Weierstrass ℘-function which is defined in the next chapter.

Definition. An isogeny is a basepoint preserving morphism between abelian varieties.

Proposition 1.3.3. Aside from the zero isogeny, an isogeny is finite-to-one and onto.

Definition. The endomorphism ring of E, denoted EndpEq is defined by

EndpEq “ tisogenies φ : E Ñ Eu.

Proposition 1.3.4. Let E be an elliptic curve. Then, EndpEq is either isomorphic

to Z or to a quadratic imaginary extension of Z.

If the endomorphism ring of an elliptic curve E is not isomorphic to Z, i.e.

if EndpEq – Zrαs for some quadratic imaginary integer α, then E is said to have

complex multiplication.



Chapter 2

Weierstrass Functions

The aim of this chapter is to provide the reader with a foundation of the theory

surrounding the Weierstrass ℘-function. Its content is standard, and some of it is

presented for the sake of completion. Of particular noteworthiness are Theorem 2.1.1,

Propositions 2.3.1 and 2.4.1, and the entire section devoted to the Weierstrass ℘-

function. Further, it should be noted throughout this chapter that when a statement

is lacking a proof or reference, it can be found in Chapter 6 from [2].

The following terminology will be useful. A lattice is defined to be a discrete

subgroup of C which contains an R-basis for C. Throughout this chapter, fix a lattice

Λ Ă C. It should be noted that many of the definitions in this chapter depend on the

choice of Λ.

2.1 Elliptic Functions

Definition. An elliptic function (relative to Λ) is a meromorphic function fpzq on C

satisfying

fpz ` ωq “ fpzq for all ω P Λ, z P C.

The set of all elliptic functions, relative to Λ, is denoted by CpΛq. The set CpΛq

11
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is a field.

Definition. A fundamental parallelogram for Λ is a set of the form

ta` t1ω1 ` t2ω2 | 0 ď t1, t2 ă 1u,

where a P C and where ω1, ω2 P C are such that Λ “ Zω1 ` Zω2.

Definition. The order of an elliptic function is defined to be its number of poles,

counting multiplicities, in any fundamental parallelogram.

The following notation will be used frequently. Let g : C Ñ C be such that for

each fundamental parallelogram D, g|D has finite support. If the value of
ř

wPD gpwq

is independent of the choice of a fundamental parallelogram D, then define

ÿ

wPC{Λ

gpwq–
ÿ

wPD

gpwq.

Theorem 2.1.1. Let f P CpΛq. Then,

a)
ÿ

wPC{Λ

reswf “ 0

b)
ÿ

wPC{Λ

ordwf “ 0

c)
ÿ

wPC{Λ

w ¨ ordwf P Λ

Corollary 2.1.2. A non-constant elliptic function has order at least two.

Definition. The divisor group of C{Λ, denoted by DivpC{Λq, is the group of formal

linear combinations
ÿ

wPC{Λ

nwpwq,

where nw P Z, with nw ‰ 0 for only finitely many w. The degree of D P DivpC{Λq,

with D “
ř

nwpwq, is defined by

degD “
ÿ

nw.



2. Weierstrass Functions 13

Further, define

Div0
pC{Λq “ tD P DivpC{Λq | degD “ 0u,

and define a group homomorphism div : CpΛqˆ Ñ Div0
pC{Λq by

divpfq “
ÿ

wPC{Λ

pordwfqpwq.

Proposition 2.1.3. If f, g P CpΛqˆ are such that divpfq “ divpgq, then f “ cg for

some c P Cˆ, i.e.

kerpdivq – Cˆ.

2.2 The Weierstrass ℘-function

Definition. The Weierstrass ℘-function (for Λ) is defined by the series

℘pzq– ℘pz; Λq “
1

z2
`

ÿ

ωPΛzt0u

ˆ

1

pz ´ ωq2
´

1

ω2

˙

.

Theorem 2.2.1. The series defining the Weierstrass ℘-function defines a meromor-

phic function on C. It is an even function, and its poles are situated at each z P Λ

and are all of order 2. Further, ℘ and ℘1 are elliptic functions, and the roots of ℘1

are precisely the elements of 1
2
ΛzΛ, i.e.

℘1pzq “ 0 ô z P 1
2
ΛzΛ.

The following theorem provides insight into the significance of the Weierstrass

℘-function.

Theorem 2.2.2. The elements of CpΛq are precisely the rational functions of ℘ and

℘1, i.e.

CpΛq “ Cp℘, ℘1q.
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Proposition 2.2.3. Let D0 be a fundamental domain for pC{Λq{t˘1u. If f P CpΛq

is even, then

divpfq “
ÿ

nwPD0

nwrpwq ` p´wqs pfor some nw P Zq;

fpzq “ c
ź

wPD0zt0u

r℘pzq ´ ℘pwqsnw pfor some c P Cq.

Definition. The Eisenstein series of weight 2k (for Λ) is the series

G2k – G2kpΛq “
ÿ

ωPΛzt0u

ω´2k.

The series G2k is absolutely convergent for each integer k ą 1.

Theorem 2.2.4. The Laurent series for ℘pzq about z “ 0 is given by

℘pzq “ z´2
`

8
ÿ

k“1

p2k ` 1qG2k`2z
2k.

Definition. The invariants of Λ, denoted g2, g3, are defined as

g2 – g2pΛq “ 60G4 and g3 – g3pΛq “ 140G6.

According to [3], the Laurent series for ℘pzq has coefficients in Qpg2, g3q.

Theorem 2.2.5. There is an algebraic relation between the meromorphic functions

℘ and ℘1, namely

℘12 “ 4℘3
´ g2℘´ g3.

In particular, we also have that ℘2 “ 6℘2 ´ g2{2.

Proposition 2.2.6. The polynomial fpxq “ 4x3´g2x´g3 has non-zero discriminant,

denoted

∆ – ∆pΛq “ g3
2 ´ 27g2

3.

In particular, E “ Zpx0x
2
2 ´ 4x3

1 ` g2x
2
0x1 ` g3x

3
0q is an elliptic curve, and

r1, ℘pzq, ℘1pzqs P E,

for each z P CzΛ.
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The lattice Λ is said to induce the elliptic curve E. The following notion is linked

to the endomorphism ring of an elliptic curve E.

Definition. The order of Λ is defined as

O – OpΛq “ tτ P C | τΛ Ď Λu.

Proposition 2.2.7. Let E be the elliptic curve induced by Λ. Then,

O – EndpEq.

In particular, if E does not have complex multiplication, then O “ Z, and if

E has complex multiplication, then O “ Zrαs for some quadratic imaginary integer

α. In order to provide insight into the isomorphism involved, some terminology is

introduced. Given a Lie group G with tangent space TGpCq, the exponential map of

G is the unique map expG : TGpCq Ñ G satisfying

• expp0q “ 1G;

• d
dt
pexpGptvqq “ LvpexpGptvqq p@v P TGpCqq,

where Lvpxq “ m1
xpvq, and where mx : G Ñ G is such that mxpgq “ xg. Then, the

isomorphism is induced by the exponential map of E, expE : CÑ E, defined as

expEpzq “

$

’

&

’

%

r1, ℘pzq, ℘1pzqs if z P CzΛ

r0, 0, 1s if z P Λ.

It is a complex analytic homomorphism of complex Lie groups.

Proposition 2.2.8. Let τ P O. The multiplication-by-τ map rτ s : E Ñ E defined by

rτ sppq “ expEpτ ¨ exp´1
E ppqq p@p P Eq

is an isogeny, i.e. rτ s P EndpEq. Further, every isogeny in EndpEq arises in this way.
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The following theorem is an amalgamation of results in [4].

Theorem 2.2.9 (Addition Law). Let z, y P CzΛ. Then the following holds:

If y ı ˘z mod Λ, then ℘pzq ‰ ℘pyq and

℘pz ` yq “
1

4

ˆ

℘1pzq ´ ℘1pyq

℘pzq ´ ℘pyq

˙2

´ ℘pzq ´ ℘pyq;

℘1pz ` yq “
℘1pzq℘pyq ´ ℘1pyq℘pzq ´ ℘pz ` yqp℘1pzq ´ ℘1pyqq

℘pzq ´ ℘pyq
.

If y ” z ı ´z mod Λ, then ℘1pzq ‰ 0 and

℘pz ` yq “ ℘p2zq “
1

4

ˆ

℘2pzq

℘1pzq

˙2

´ 2℘pzq;

℘1pz ` yq “ ℘1p2zq “
℘2pzq℘pzq ´ ℘1pzq2 ´ ℘p2zq℘2pzq

℘1pzq
.

Recalling that ℘2 “ 6℘2 ´ g2{2 yields the following corollary.

Corollary 2.2.10. Let z, y P CzΛ. If z ` y R Λ, then

℘pz ` yq, ℘1pz ` yq P Qpg2qp℘pzq, ℘pyq, ℘
1
pzq, ℘1pyqq.

2.3 The Weierstrass ζ-function

Though the following function is not explicitly used in this thesis, it is used to define

the η-function in Proposition 2.3.1. This η-function is noteworthy, as it figures in a

useful result, namely Proposition 2.4.1.

Definition. The Weierstrass ζ-function (for Λ) is defined by the series

ζpzq– ζpz; Λq “
1

z
`

ÿ

ωPΛzt0u

ˆ

1

z ´ ω
`

1

ω
`

z

ω2

˙

.

The Weierstrass ζ-function is an odd function which satisfies

d

dz
ζpzq “ ´℘pzq.
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Proposition 2.3.1. Define η : Λ Ñ C by

ηpωq– ηpω; Λq “ 2ζpω{2; Λq.

Then, η is an additive map satisfying, for each z P CzΛ and each ω P Λ, the equation

ζpz ` ωq “ ζpzq ` ηpωq.

2.4 The Weierstrass σ-function

Definition. The Weierstrass σ-function (for Λ) is defined by the series

σpzq– σpz; Λq “ z
ź

ωPΛzt0u

´

1´
z

ω

¯

epz{ωq`
1
2
pz{ωq2 .

The infinite product for σpzq defines a holomorphic function on all of C. It has

simple zeros at each z P Λ, and no other zeros. The Weierstrass σ-function also

satisfies
d

dz
log σpzq “ ζpzq and

d2

dz2
log σpzq “ ´℘pzq.

Proposition 2.4.1. Let ω P Λ and let z P C. Then

σpz ` ωq “ εeηpωqpz`ω{2qσpzq,

where ε “ 1 if ω P 2Λ and ε “ ´1 if ω R 2Λ.

The following proposition provides a reciprocal to Theorem 2.1.1.

Proposition 2.4.2. Let n1, . . . , nr P Z and let z1, . . . , zr P C be such that
r
ÿ

i“1

ni “ 0 and
r
ÿ

i“1

nizi “ λ P Λ.

Then

fpzq “
σpzq

σpz ´ λq

r
ź

i“1

σpz ´ ziq
ni

belongs to CpΛq. Furthermore, it satisfies

divpfq “
ÿ

nipziq.



Chapter 3

Equivalence Theorem

This chapter shows that the main theorem of this thesis is in fact equivalent to a

statement which will be simpler to demonstrate. This problem reduction appears in

Philippon’s original proof, but its proof in this chapter is independent of Philippon’s

methods.

3.1 Preliminaries

Throughout this section, fix a field K of characteristic zero, a field extension C Ě K,

and a subfield k Ď C. The following lemma is a standard result [11]. Note that while

it can be proven very quickly using the standard fact that any non-zero meromorphic

function on an open connected subset of C has isolated zeros and poles, the proof

provided below is more elementary.

Lemma 3.1.1. Let D be an open connected subset of C. If f1, f2 : D Ñ C∪ t8u are

meromorphic functions such that f1 ¨ f2 ” 0, then either f1 ” 0 or f2 ” 0.

Proof: Let f be a meromorphic function on D, and define the set

Uf “ tx P D |There exists ε ą 0 such that f |Bpx,εq “ 0u.

18
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Clearly, Uf is open, but it can be shown that it is also closed.

Since H is closed, assume without loss of generality that Uf ‰ H. Let a P Uf ,

and so for all n ą 0, there exists bn P Bpa, 1
n
q ∩ Uf ‰ H. Since bn P Uf , then

f pjqpbnq “ 0 for j ě 0. Since a is arbitrarily close to points for which f pjq is zero, we

get that f pjqpaq is not infinity, and so f pjq must be continuous at the point a. Thus,

bn Ñ a implies that f pjqpaq “ 0 for j ě 0. Further, since f is differentiable at a, there

exists ε ą 0 such that f is represented by a Taylor series in Bpa, εq. Therefore,

fpxq “
8
ÿ

j“0

1

j!
f pjqpaqpx´ aqn “ 0

for all x P Bpa, εq, and so a P Uf . Hence, Uf is closed.

Since Uf is both open and closed, and since D is connected, then either Uf “ H

or Uf “ D. Thus, if f : D Ñ C is a meromorphic function, then

Uf ‰ H ñ Uf “ D.

Let f1, f2 be meromorphic functions on D such that f1 ¨ f2 ” 0. Assume without

loss of generality that f2 ı 0. Then, there exists a P D such that f2paq ‰ 0, and

so there exists ε ą 0 such that f2 ‰ 0 on all of Bpa, εq. Thus, f1|Bpa,εq “ 0, and so

a P Uf1 ‰ H ñ Uf1 “ D. Thus, f1 ” 0, completing the proof.

Before stating the following corollary, note that the binary relation ď will be used to

denote the usual ordering on Z as well as the partial order over Zˆ Z defined by

px1, y1q ď px2, y2q ô x1 ď x2 and y1 ď y2.

Also define px1, y1q ă px2, y2q ô px1, y1q ď px2, y2q and either x1 ă x2 or y1 ă y2.

Corollary 3.1.2. Let h1, h2 be meromorphic functions on C. If there exists H P

krx, yszt0u such that Hph1, h2q ” 0, then there exists G P krx, yszt0u which is irre-

ducible and which satisfies Gph1, h2q ” 0.
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Proof: Suppose there exists H as described. Then, in particular, there exists

G P krx, yszt0u minimal in pdegxG, degy Gq which satisfies Gph1, h2q ” 0. Suppose

to the contrary that G is not irreducible. Then, there exists g1, g2 P krx, yszt0u with

pdegx gi, degy giq ă pdegxG, degy Gq such that G “ g1g2. Thus, the fi – giph1, h2q

are meromorphic functions on C such that f1f2 ” 0, and so Lemma 3.1.1 yields that

f1 or f2 is zero, which contradicts the minimality for G. Thus, G is irreducible, as

required.

Throughout what follows, view Cpxq and Kppx´1qq as subfields of Cppx´1qq. Thus, it

makes sense to take their intersection.

Lemma 3.1.3. Cpxq ∩Kppx´1qq “ Kpxq

Proof: Since Kpxq Ď Cpxq∩Kppx´1qq, it suffices to show Cpxq∩Kppx´1qq Ď Kpxq.

To this end, given F P Cpxqzt0u, there exists A,B P Crxs such that pA,Bq “ 1

and F “ A{B. Standard results in algebra yield the unicity of degA ` degB for

pA,Bq “ 1, and so it makes sense to define a function h : Cpxq Ñ N by

hpF q “

$

’

&

’

%

degA` degB if F ‰ 0;

0 if F “ 0,

where A,B satisfy the aforementioned properties. The proof that

F P Cpxq ∩Kppx´1
qq ñ F P Kpxq (3.1.1)

is done by induction on hpF q ě 0:

The base case hpF q “ 0 yields that F pxq “ c P Kppxqq for some c P K, and

so F P Kpxq. Suppose now that (3.1.1) holds for hpF q P t0, ..., n ´ 1u. Then, let

F P Cpxq ∩ Kppx´1qq with hpF q “ n ą 0. Thus, there exists A,B P Crxs with

pA,Bq “ 1 such that F “ A{B. Notice that if R P Cpxq ∩ Kppx´1qqzt0u, then

1{R P Cpxq ∩Kppx´1qq. Thus, since hp1{F q “ n, assume without loss of generality
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that degA ě degB. Furthermore, letting r “ degA and s “ degB yields that

Apxq “
r
ÿ

i“0

aix
i
pfor some ai P Cq;

Bpxq “
s
ÿ

j“0

bjx
j
pfor some bj P Cq.

Thus, F satisfies

F pxq ” arb
´1
s

`

x´1
˘s´r

mod
`

x´1
˘s´r`1

Crrx´1
ss

Since F P Kppx´1qq, it follows that arb
´1
s P K, and so

Gpxq– F pxq ´ arb
´1
s xr´s P Kppx´1

qq.

Since r ě s, then

Hpxq– GpxqBpxq “ Apxq ´ arb
´1
s xr´sBpxq “

r´1
ÿ

i“0

aix
i
´ arb

´1
s

r´1
ÿ

j“r´s

bj`s´rx
j,

is in fact a polynomial in Crxs. Suppose that H “ 0, and so G “ 0 which implies

that hpGq “ 0 ă n. Suppose that H ‰ 0. Then degH ď r ´ 1 ă degA, and so

Gpxq “
Hpxq

Bpxq
P Cpxq ∩Kppx´1

qq

is such that hpGq ď degH`degB ă hpF q “ n. The induction hypothesis then yields

that Gpxq P Kpxq. Thus,

F pxq “ Gpxq ` arx
r´s

P Kpxq.

The desired result follows by induction.

Corollary 3.1.4. Cpxq ∩Kppxqq “ Kpxq



3. Equivalence Theorem 22

Proof: By the previous lemma, Cpx´1q ∩Kppxqq “ Kpx´1q. However, Cpx´1q “

Cpxq and Kpx´1q “ Kpxq, thus completing the proof.

In order to state the following lemma, the technical issue regarding composition in a

given field of formal Laurent series over a field C needs to be treated (cf. [11]).

Definition. A family tgnpxqunPN of formal Laurent series in Cppxqq is called summable

if for each integer k,

ordxgn ą k

for all but a finite number of gn’s.

Example. The family

"

ř8

k“n x
n

*

nPN
is a summable family of Laurent series.

Note in this context that ordx operates on Laurent series, and that it is not

to be confused with the order function introduce in Chapter 2 which operated on

meromorphic functions.

If a family tgnpxqunPN is summable, then the sum of the family defines a Laurent

series. Indeed, by letting m “ minntordxgnu ą ´8, the sum of the family can then

be defined as

gpxq “
8
ÿ

i“m

ˆ 8
ÿ

n“0

an,i

˙

xi,

where gnpxq “
ř8

n“ordxgn
an,ix

i. Since each sum
ř8

n“0 an,i is in fact a finite sum, then

g P Cppxqq.

Proposition 3.1.5. Let f P Cppxqq, and let g P xCrrxss. Let l “ ordxf , let m “

ordxg ą 0, and write

fpxq “
8
ÿ

n“l

anx
n and gpxq “

8
ÿ

n“m

bnx
n
pfor some an, bn P Cq.

Then, the composition f˝g is defined and belongs to Cppxqq. Further, ordxpf˝gq “ lm,

and the coefficient of f ˝ g in xlm is alb
l
m.
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Proof: Since bm ‰ 0, it makes sense to define functions rn via the relation
˜

1`
8
ÿ

i“1

bi`m
bm

xi

¸n

“ 1` rnpxq p@n P Zq.

Note that rnpxq P xCrrxss for each integer n. Since gpxqn “ bnmx
mnp1 ` rnpxqq, then

ordxpg
nq “ nm “ nordxg, and so the sequence pordxpg

lq, ordxpg
l`1q, . . . q is strictly

increasing. It follows that tang
npxquněl is a summable family, and so

f ˝ g “
8
ÿ

n“l

ang
n
pxq P Cppxqq.

In particular, ordxpf ˝ gq “ lm, and the coefficient of f ˝ g in xlm is alb
l
m.

Lemma 3.1.6. Let f P Cppxqq, and let g P xKrrxsszt0u. If f ˝ g P Kppxqq, then

f P Kppxqq.

Proof: Let f, g be as described above. If f “ 0, then f P Kppxqq. Thus, assume

without loss of generality that f ‰ 0. Let l “ ordxf and m “ ordxg for some l,m P Z.

Thus,

fpxq “
8
ÿ

n“l

anx
n
pfor some an P Cq;

gpxq “
8
ÿ

n“m

bnx
n
pfor some bn P Kq.

Suppose to the contrary that f R Kppxqq. Then there exists a smallest integer p such

that ap R K. Thus, fppxq– alx
l`¨ ¨ ¨`ap´1x

p´1 P Kppxqq, and so h– f ˝g´fp ˝g P

Kppxqq. Then, ordxh “ pm, and so apb
p
m P K. Since bm ‰ 0, this implies that ap P K,

which is a contradiction. Therefore, f P Kppxqq as required.

Lemma 3.1.7. Let f P Cpxq, and let g P xKrrxsszt0u. If f ˝ g P Kppxqq, then

f P Kpxq.
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Proof: Let f, g be as described above. Then, since f P Cpxq Ď Cppxqq, Lemma

3.1.6 yields that f P Kppxqq. Thus, f P Cpxq∩Kppxqq, and so f P Kpxq by Corollary

3.1.4.

3.2 Equivalence Theorem

Throughout this section, fix a lattice Λ Ă C, and recall that O “ tτ P C | τΛ Ď Λu.

Fix K “ Qpg2, g3q, and fix k “ FracpOq, i.e. the fractional field of O. The following

notion will prove to be useful.

Definition. Let x1, . . . , xs P C. The set tx1, . . . , xsu is said to be irreducible (with

respect to Λ) if
ÿ

iPI

xi ı 0 mod Λ,

for each non-empty subset I Ď t1, . . . , su.

Suppose that x1, . . . , xs P C are such that x1 ` ¨ ¨ ¨ ` xs R Λ. Then, there exists

a non-empty subset I Ď t1, . . . , su with minimal cardinality such that

ÿ

iPI

xi ”
s
ÿ

i“1

xi mod Λ.

In this case, the set pxiqiPI is called a reduction of the tx1, . . . , xsu. If it is not

irreducible, then there exists a non-empty subset J Ă I such that
ř

iPJ xi P Λ,

but then IzJ ‰ ∅ contradicts the minimality of I. Thus, any reduction must be

irreducible.

Proposition 3.2.1. Let tx1, . . . , xsu Ă C be irreducible. Then

℘px1 ` ¨ ¨ ¨ ` xsq, ℘
1
px1 ` ¨ ¨ ¨ ` xsq P Qpg2qp℘px1q, . . . , ℘pxsq, ℘

1
px1q, . . . , ℘

1
pxsqq.
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Proof: The claim is proven by induction on s ě 1. For the base case s “ 1,

x1 R Λ, and so ℘px1q, ℘
1px1q P Qpg2qp℘px1q, ℘

1px1qq is trivially true. Suppose for

s “ 1, . . . , n´ 1 that ℘px1 ` ¨ ¨ ¨ ` xsq and ℘1px1 ` ¨ ¨ ¨ ` xsq belong to

Qpg2qp℘px1q, . . . , ℘pxsq, ℘
1
px1q, . . . , ℘

1
pxsqq.

Let tx1, . . . , xnu be irreducible and so tx1, . . . , xn´1u is irreducible. Thus, by induction

hypothesis, ℘px1 ` ¨ ¨ ¨ ` xn´1q and ℘1px1 ` ¨ ¨ ¨ ` xn´1q belong to

Qpg2qp℘px1q, . . . , ℘pxn´1q, ℘
1
px1q, . . . , ℘

1
pxn´1qq.

Corollary 2.2.10 yields that ℘px1 ` ¨ ¨ ¨ ` xnq and ℘1px1 ` ¨ ¨ ¨ ` xnq belong to

Qpg2qp℘px1 ` ¨ ¨ ¨ ` xn´1q, ℘pxnq, ℘
1
px1 ` ¨ ¨ ¨ ` xn´1q, ℘

1
pxnqq,

and so

℘px1 ` ¨ ¨ ¨ ` xnq, ℘
1
px1 ` ¨ ¨ ¨ ` xnq P Qpg2qp℘px1q, . . . , ℘pxnq, ℘

1
px1q, . . . , ℘

1
pxnqq.

The desired result follows by induction.

Before stating the next lemma, define for each c P Cˆ

℘cpzq “ ℘pczq and ℘1cpzq “ ℘1pczq p@z P Cq.

Remark that this is strictly notation, as p℘cq
1 “ c℘1c.

Lemma 3.2.2. Let c P kˆ “ FracpOqˆ. Then, ℘c and ℘1c belong to Kp℘q.

Proof: Remark that

p℘1cq
2
“ 4p℘cq

3
´ g2℘c ´ g3 p@c P Cˆq,

and so ℘1c P Kp℘cq. Thus, it suffices to show that ℘c is algebraic over Kp℘q. Let

D P N` be such that γ “ Dc P Ozt0u. The first step is to show that ℘γ is in Kp℘q.
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Note that ℘γ P CpΛq is an even function, and so there exists fpxq P Cpxq such that

℘γ “ fp℘´1q. Since ℘ P x´2Krrxsszx´1Krrxss, then g – ℘´1 P x2Krrxsszt0u. Since

℘ P Kppxqq and γx P xKrrxss, then the composition ℘γ belongs to Kppxqq. Hence,

f ˝ g “ fp℘´1
q “ ℘γ P Kppxqq.

Lemma 3.1.7 then yields that f P Kpxq, and so ℘γ is in Kp℘q. Similarly, ℘D P Kp℘q

since D P N` Ď Ozt0u, and so there exists G P Krx, yszt0u such that Gp℘, ℘Dq “ 0.

Hence,

Gpx, yq “
m
ÿ

i“0

Aipyqx
i,

for some Aipyq P Krys, not all zero. Thus,

m
ÿ

i“0

Aip℘Dq℘
i
“ 0,

from which it follows that

m
ÿ

i“0

Aip℘γqp℘γ{Dq
i
“ 0 p@γ P Cˆq.

Since a meromorphic function over C cannot be the root of a polynomial in constant

coefficients without being a constant itself, then each non-zero Ai satisfies Aip℘γq ‰ 0.

Thus, Gpx, ℘γq P Kp℘γqrxszt0u, and it admits ℘γ{D as a root. Therefore, ℘c “ ℘γ{D

is algebraic over Kp℘γq Ď Kp℘q.

Corollary 3.2.3. Let z0 P CzΛ, and let c P kˆ be such that cz0 R Λ. Then ℘pcz0q

and ℘1pcz0q are algebraic over Kp℘pz0qq.

Proof: Since ℘1pcz0q P Kp℘pcz0qq, it suffices to show that ℘pcz0q P Kp℘pz0qq. By

Lemma 3.2.2 and Corollary 3.1.2, there exists irreducible Gpx, yq P Krx, yszt0u, such

that Gp℘pczq, ℘pzqq “ 0 for all z P C. Hence,

Gpx, yq “
m
ÿ

i“0

Aipyqx
i,
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for some Aipyq P Krys, not all zero. Thus,

m
ÿ

i“0

Aip℘pzqq℘pczq
i
“ 0.

Suppose thatGpx, ℘pz0qq P Kp℘pz0qqrxs is the zero polynomial. Then eachAip℘pz0qq “

0, and so ℘pz0q is algebraic over K. Thus, there exists a minimal polynomial m P Krys

with degm ě 1 such that mp℘pz0qq “ 0. It follows that mpyq|Aipyq for 0 ď i ď n,

and so mpyq divides Gpx, yq. Since G is irreducible, then G “ αm for some α P K.

Thus, αmp℘pzqq “ 0 for all z P C, and so ℘pzq has a finite image, which yields a

contradiction. Therefore, Gpx, ℘pz0qq P Kp℘pz0qqrxszt0u, and it admits ℘pcz0q as a

root, which yields the desired conclusion.

Theorem 3.2.4. Suppose that Λ∩Q “ t0u. The following statements are equivalent.

(A) If β1, . . . , βs P Q are linearly independent over k, then ℘pβ1q, . . . , ℘pβsq are

algebraically independent over Q.

(B) Let β be a non-zero algebraic integer, and d “ rkpβq : ks. Then, it follows that

℘p1q, ℘pβq, ..., ℘pβd´1q are algebraically independent over Q.

Proof: Suppose that (A) is true. Let β be a non-zero algebraic integer and let

d “ rkpβq : ks. Then 1, β, . . . , βd´1 P Q are linearly independent over k. Since (A) is

true, then ℘p1q, ℘pβq, . . . , ℘pβd´1q are algebraically independent over Q, and so (B)

holds. Thus, (A) implies (B).

Suppose that (B) is true, and let β1, . . . , βs P Q be linearly independent over

k. By the primitive element theorem, there exists γ P Qzt0u such that kpγq “

kpβ1, . . . , βsq. Since γ is an algebraic number, there exists D P N` such that α “ Dγ

is an algebraic integer. Letting d “ rkpαq : ks and viewing kpαq as a k-vector space,

then, since tβ1, . . . , βsu Ď kpγq “ kpDγq “ kpαq is a linearly independent subset over
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k, there exists an extension B “ tβ1, . . . , βdu such that B is a k-vector space basis of

kpαq. Thus,

αj “
d
ÿ

i“1

cijβi pfor some cij P k; 0 ď j ă dq.

Notice that αj P Qzt0u for 0 ď j ă d. It follows from the hypotheses of the theorem

that

αj “
d
ÿ

i“1

cijβi R Λ p0 ď j ă dq.

Further, there exists Ij such that pcijqiPIj is a reduction of tc1jβ1, . . . , cdjβdu, i.e.

αj ”
ÿ

iPIj

cijβi mod Λ,

and each subsum of the above sum is not in Λ. Thus, Proposition 3.2.1 yields that

Qp℘p1q, ℘pαq, . . . , ℘pαd´1
qq Ď Qpt℘pcijβiq, ℘1pcijβiq | 0 ď j ă d; pi, jq P Ijˆtjuuq “: N.

Then, under the hypothesis that (B) is true, it follows that ℘p1q, ℘pαq, . . . , ℘pαd´1q

are algebraically independent over Q, and so in particular, tr.degQpNq ě d. Corollary

3.2.3 yields that N is algebraic over Qp℘pβ1q, . . . , ℘pβdqq, and so

tr.degQpQp℘pβ1q, . . . , ℘pβdqqq ě tr.degQpNq ě d.

Thus, ℘pβ1q, . . . , ℘pβdq are algebraically independent over Q, and so over Q as well. In

particular, ℘pβ1q, . . . , ℘pβsq are algebraically independent over Q. Thus, (B) implies

(A).



Chapter 4

Analytic Estimates

The goal of this chapter is to demonstrate three theorems. The first provides an

estimate on the exponential map for some fixed elliptic curve. This estimate is based

on an estimate in Philippon’s original proof, but is obtained independently. The

second is a generalization of Cauchy’s inequality in several variables. Finally, the third

theorem will deal with the construction of an auxiliary function, due to Philippon,

but proven independently by using a result of Waldschmidt. Throughout this chapter,

fix a lattice Λ Ă C, let E be the induced elliptic curve, and define

Φ “ pφ0, φ1, φ2q “ pσ
3, σ3℘, σ3℘1q.

Proposition 4.0.5. The meromorphic functions φ0, φ1 and φ2 are holomorphic on

C. Furthermore,

expEpzq “ rΦpzqs p@z P Cq.

Proof: Since σ is entire, it is clear that φ0 is entire. Remark that the poles of ℘

are of order 2 and are situated on Λ, and that the poles of ℘1 are of order 3 and are

situated on Λ. Thus, since σ3 is entire with zeros of order 3 at each point of Λ, then

φ1 and φ2 are entire functions. To show that expE “ rΦs, consider the following two

29
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cases. If z R Λ, then σ3pzq ‰ 0 and so

expEpzq “ r1, ℘pzq, ℘
1
pzqs “ rΦpzqs p@z P CzΛq.

If z P Λ, then σ3pzq “ σ3pzq℘pzq “ 0, and σ3pzq℘1pzq ‰ 0. Thus,

expEpzq “ r0, 0, 1s “ rΦpzqs p@z P Λq.

Thus, expEpzq “ rΦpzqs for each z P C, as required.

4.1 Estimates for Φ

This section is devoted to finding estimates on the functions φ0, φ1 and φ2. Recall

that η : Λ Ñ C is the unique additive map such that

σpz ` ωq “ εeηpωqpz`ω{2qσpzq p@ω P Λ; @z P Cq,

where ε “ 1 if ω P 2Λ and ε “ ´1 if ω R 2Λ.

Lemma 4.1.1. Let i P t0, 1, 2u. Then,

φipz ` ωq “ εe3ηpωqpz`ω{2qφipzq p@ω P Λ; @z P Cq,

where ε “ 1 if ω P 2Λ and ε “ ´1 if ω R 2Λ.

Proof: Since 1, ℘, and ℘1 are all periodic functions with respect to Λ, the formula

for σ shows that the equation above is valid so long as z R Λ. Suppose then that

z P Λ. Since φi is continuous, then

φipz ` ωq “ lim
tÑz

φipt` ωq “ ε lim
tÑz

e3ηpωqpt`ω{2qφiptq “ εe3ηpωqpz`ω{2qφipzq,

for all ω P Λ, thus proving the claim.
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Before stating the following lemma, write Λ “ Zω1 ` Zω2, and let D be the funda-

mental parallelogram associated to tω1, ω2u which is centered at the origin. For each

z P C, there exists a unique choice az P D and ωz P Λ such that z “ az ` ωz. This

defines functions

az : CÑ D and ωz : CÑ Λ.

Accordingly, it makes sense to define

gpzq “ 3ηpωzqpaz ` ωz{2q p@z P Cq.

Lemma 4.1.2. There exists c1 ą 0 such that |gpzq| ď c1|z|
2 for all z P C.

Proof: Let z P C, and let r, R ą 0 be such that Bp0; rq Ă D Ă Bp0;Rq. Suppose

that |z| ď r, and so in particular z P D. Thus, az “ z and ωz “ 0, which implies that

|az|, |ωz| ď |z|.

Suppose now that |z| ą r, and note that |az| ď R, and that |ωz| ď |z|` |az| ď |z|`R.

Thus,

|az|, |ωz| ď c1|z| pc1 “ 1`R{rq.

Since c1 ě 1, the above equation holds for all z P C. A bound for ηpωzq can be

obtained as follows.

Since tω1, ω2u is a Z-basis for Λ, then ωz “ mzω1 ` nzω2 for a unique choice of

mz, nz P Z. This defines functions mz, nz : CÑ Z. In order to find estimates for mz

and nz, let P be the parallelogram in the complex plane whose vertices are located

at ω1, ω2,´ω1 and ´ω2. Since ω1 and ω2 are linearly independent over R, then

b1ω1 ` b2ω2 P P ñ |bi| ď 1 p@b1, b2 P Rq.

Let r0 ą 0 be such that Bp0; r0q Ă P , and so

mzω1 ` nzω2 P Bp0; |ωz|q Ă p|ωz|{r0qP.
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Thus, |mz|, |nz| ď |ωz|{r0 ď pc
1{r0q|z|. Since η is additive, then

|ηpωzq| ď |mz||ηpω1q| ` |nz||ηpω2q| ď pc
1
{r0qp|ηpω1q| ` |ηpω2q|q|z|.

Thus, letting c2 “ pc1{r0qp|ηpω1q| ` |ηpω2q|q yields that ηpωzq ď c2|z|.

Let c1 “ 6c1c2, and so

|gpzq| “ 3|ηpωzqpaz ` ωz{2q| ď c1|z|
2,

from which the conclusion follows.

Corollary 4.1.3. Let c1 ą 0 be as in the previous lemma, let i P t0, 1, 2u, and let

z P C. Then

|φipazq|e
´c1|z|2 ď |φipzq| ď |φipazq|e

c1|z|2 .

Proof: By Lemma 4.1.1, it follows that

|φipzq| “ eRepgpzqq
|φipazq|,

and Lemma 4.1.2 yields that

´c1|z|
2
ď Repgpzqq ď c1|z|

2,

from which the claim follows.

Corollary 4.1.4. Let i P t0, 1, 2u, and let R ě 1. There exists c2 ą 0 depending only

on Λ, such that

|φipzq| ď ec2R
2

p@|z| ď Rq.

Proof: By Corollary 4.1.3, there exists c1 ą 0 such that

|φipzq| ď |φipazq|e
c1R2

p@|z| ď Rq.
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Since φi is entire and D is bounded, there exists Mi ą 0 such that |φipzq| ď Mi for

all z P D. Let M “ maxiMi, let N “ log maxt1,Mu, and let c2 “ N ` c1. Thus

|φipzq| ďMec1R
2

ď eN`c1R
2

ď epN`c1qR
2

“ ec2R
2

for all |z| ď R, thus proving the claim.

In order to state the following theorem, define the smallest vector length

Ω – ΩpΛq “ min
ωPΛzt0u

|ω|,

and denote by C0 the set of all points which are closer to 1
2
ΛzΛ than to Λ, i.e.

C0 “ tz P C | there exists ω P
1

2
ΛzΛ such that |z ´ ω| ď |z ´ λ| for all λ P Λu.

Denote the complement of C0 by C2, i.e. C2 “ CzC0.

Theorem 4.1.5. There exists c3 ą 0 satisfying the following. Let R ě maxt1,Ω{4u,

let |z0| ď R, and let k P t0, 2u be such that z0 P Ck. Then,

e´c3R
2

ď |φkpzq|

for all z P Bpz0; Ω{4q.

Proof: From Corollary 4.1.3, there exists c1 ą 0 such that

|φkpazq|e
´c1|z|2 ď |φkpzq| p@z P Cq.

Let B be the closed set defined by

B “ tz P C |There exists c P Ck such that |z ´ c| ď Ω{4u.

Notice that each point in Ck is at least Ω{2 away from all zeros of φk. Thus, each

point in the set B is at least at a distance of Ω{4 from any zero of φk. Also note

that Ck is invariant under translation by elements of Λ, and so B is as well. Let
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A “ B ∩D, and so A is compact. Thus, since φk is entire and non-zero on A, there

exists M ą 0 such that M ď φkpzq for all z P A. Let z P Bpz0; Ω{4q, and so |z| ď 2R,

and z “ az ` ωz P B. Thus,

az P pB ´ ωzq ∩D “ B ∩D “ A,

and so M ď φkpazq. Let N “ log mint1,Mu, and let c3 “ |N | ` 4c1. Thus,

e´c3R
2

ď e´p|N |`4c1R2q
ďMe´c1p2Rq

2

ď |φkpzq|,

as required.

4.2 Cauchy’s Inequality

This section proves a generalization of Cauchy’s inequality. Throughout this section,

fix an integer n P N`. For a complex continuous function F : Cn Ñ C and a real

number r ě 0, define

|F |r “ supt|F pzq| ; z P Bp0, rqu.

Theorem 4.2.1 (Cauchy’s inequality). Let r P R`, let q P N`, and let a P Cq.

Suppose that F is a holomorphic function on Bpa; rq Ă Cq, and that it is continuous

on its closure. Then,

|F pσqpaq| ď
σ!

r|σ|
|F pa` zq|r p@σ P Nq

q.

Furthermore, if r ě 1, then

|F pσqpa` zq|r´1 ď σ!|F pa` zq|r p@σ P Nq
q.

Proof: Cauchy’s integral formula in several variables yields

B|σ|

Bzσ
F pzq

ˇ

ˇ

ˇ

ˇ

z“a

“
σ!

p2πiqq

ż

|z1|“r

¨ ¨ ¨

ż

|zq |“r

F pa` zq

zσ1`1
1 ¨ ¨ ¨ z

σq`q
q

dz1 ¨ ¨ ¨ dzq,
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and so

|F pσqpaq| ď
σ!

p2πqq
|F pa` zq|r
r|σ|`q

ż

|z1|“r

¨ ¨ ¨

ż

|zq |“r

dz1 ¨ ¨ ¨ dzq

“
σ!

p2πqq
|F pa` zq|r
r|σ|`q

p2πrqq,

thus proving the first inequality. For the second inequality, let z0 P Cq be such that

|z0| ď r ´ 1, and so F is holomorphic on Bpa ` z0; 1q and continuous on its closure.

Thus,

|F pσqpa` z0q| ď σ!|F pa` zq|r,

and so

|F pσqpa` zq|r´1 ď σ!|F pa` zq|r,

as required.

4.3 Auxiliary Function

In order to construct an auxiliary function, the following result which is due to Wald-

schmidt [7] will be used.

Lemma 4.3.1. Let M,n P N`, let S, U,R, r P R`, and let ϕ1, . . . , ϕM be continuous

functions on Bp0, Rq “ tz P Cn; |z| ď Ru, which are analytic inside. If

3 ď U, S ď U, e ď R{r ď eU ,
M
ÿ

λ“1

|ϕλ|R ď eU ,

and

p8Uqn`1
ďMS

ˆ

log
R

r

˙n

,

then, there exists p1, . . . , pM P Z with

0 ă max
1ďλďM

|pλ| ď eS,
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such that the function

F “
M
ÿ

λ“1

pλϕλ

satisfies

|F |r ď e´U .

In order to prove the following theorem, which is in essence a simplified construc-

tion of Philippon’s auxiliary function found in Lemma 4.1 of [8], define ρ : Cq Ñ Cqd

by

ρptq “ pt, tβ, . . . , tβd´1
q,

and define Ψ : Cqd Ñ pC3qqd by

Ψpzq “ pΦpz1q, . . . ,Φpzqdqq.

Also note the following notation and definition.

• fpLq ! gpLq signifies that there exists c ą 0 such that 0 ă fpLq ď cgpLq for

sufficiently large L.

• fpLq — gpLq signifies that fpLq ! gpLq and gpLq ! fpLq.

Definition. A polynomial P pz1, . . . , znq is said to be multihomogeneous of multidegree

pd1, . . . , dnq if it is homogeneous of degree di in zi for each i P t1, . . . , nu.

Theorem 4.3.2. Fix d P N`. Let ε P R` be arbitrarily small, and fix q P N such

that q ą p2 ` εq{pεp2d ´ 1qq. Then, for each sufficiently large L P N`, there exists a

non-zero multihomogeneous polynomial

P P ZrZ,X1, . . . ,Xqds

of degree L in Z “ pZ0, . . . , Zqq and of degree D “ tplogLqεu ` 1 in each Xi “

pXi,0, Xi,1, Xi,2q with degXi,2 P ď 1, and with hpP q ď L such that the function,

F ptq “ P p1, t,Ψ ˝ ρptqq,
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satisfies

max
|σ|ďL

|F pσq|logL ď expp´2LplogLq1`ε{2q.

The following commutative diagram illustrates the relation between F and P .

Cq

Cq`1 ˆ pC3qqd C

F
p1, idCq ,Ψ ˝ ρq

P

Proof: Note that q and d are fixed parameters, so any constant appearing in this

proof might implicitly depend on the choice of q and d. Let M “
`

L`q
q

˘

p2D ` 1qqd,

n “ q, S “ L, R “
?
L, r “ logpLq ` 1, U “ 3LplogLq1`ε{2, and let ϕ1, . . . , ϕM cover

the monomials

tjΦpt1q
e1 ¨ ¨ ¨Φptqβ

d´1
q
eqd

with |j| ď L, |ei| “ D and ei,2 ď 1. By Corollary 4.1.4, there exists c ą 0 such that

|ϕλ|R0 ď RL
0 exp pcR2

0p|e1| ` ¨ ¨ ¨ ` |eqd|qq

“ RL
0 exp pcR2

0qdDq

“ exp pL logR0 ` cR
2
0qdDq

for each λ P t1, . . . ,Mu and for each R0 ě 1. Then,

M
ÿ

λ“1

|ϕλ|R ďM exp pL logR ` cR2qdDq

“
`

L`q
q

˘

p2D ` 1qqd exp pL logR ` cR2qdDq

! 2L`q`qdplogLqεqd exp pL logL` c̃LplogLqεq

! exp pL` L logL` c̃LplogLqεq

This last expression is of order strictly less than exp p3LplogLq1`ε{2q, and so

M
ÿ

λ“1

|ϕλ|R ď exp p3LplogLq1`ε{2q “ expU
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for sufficiently large L. Further, for sufficiently large L, it follows that

er “ eplogpLq ` 1q ď
?
L “ R ď plogpLq ` 1q ¨ eU “ reU .

Since q ą p2` εq{pεp2d´ 1qq, then

1{q ă pdε´ ε{2q{p1` ε{2q

1{q ă p1` dεq{p1` ε{2q ´ 1

p1` qq{q ă p1` dεq{p1` ε{2q

p1` qqp1` ε{2q ă qp1` dεq.

Note that p8Uqq`1 — pLplogLq1`ε{2q1`q “ L1`qplogLqp1`qqp1`ε{2q, and that

L1`q
plogLqq`qdε “ LLqpplogLqεqqdplogLqq

— L
`

L`q
q

˘

p2pplogLqε ` 1q ` 1qqd
ˆ

log

ˆ

?
L

logpLq ` 1

˙˙q

“ SM

ˆ

log
R

r

˙q

.

Thus, since p1` qqp1` ε{2q ă q ` qdε, it follows that

p8Uqn`1
ďMSplogpR{rqqn

for sufficiently large L. It is also easy to see that S ď U and that U ě 3 for sufficiently

large L. Thus, for sufficiently large L, Lemma 4.3.1 provides integers p1, . . . , pM such

that

0 ă max
1ďλďM

|pλ| ď eS,

and such that

F “
M
ÿ

λ“1

pλϕλ

satisfies

|F p0q|logL ď |F |r ď e´U .
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This induces the polynomial in the statement of the lemma, namely

P pZ,X11, . . . ,Xqdq “

M
ÿ

λ“1

pλpZ,X11, . . . ,Xqdq
eλ pwhere eλ P Nq`1

ˆ pN3
q
qd
q,

with degZ P “ L, each degXij
“ D, and each degXij,2

ď 1. Furthermore,

hpP q ď hp1, . . . , teSuq ď S.

Finally, if 1 ď |σ| ď L, then Cauchy’s inequality yields

|F pσq|logL ď |σ|!|F |r

ď LL expp´Uq

“ exp pL logL´ 3LplogLq1`ε{2q

ď exp p´2LplogLq1`ε{2q,

which is the desired result.



Chapter 5

Heights

This chapter introduces the notion of the height of an algebraic number. The main

goal, however, is to find estimates for the simultaneous height of several algebraic

numbers, for instance the height of the set of coefficients of some polynomial. These

results are obtained independently, and will ultimately be used to bound the heights of

several families of polynomials so that Philippon’s criterion for algebraic independence

may be applied. Throughout this chapter, fix a number field K Ă C, let D “ rK : Qs,

and fix n P N`.

5.1 Preliminaries

Definition. An absolute value on an integral domain R, denoted | ¨ |v, is said to be

ultrametric if

|x` y|v ď maxt|x|v, |y|vu p@x, y P Rq.

Otherwise, it is said to be Archimedean.

By Ostrowski’s theorem, every non-trivial absolute value on K restricted to Q

is equivalent (i.e. they yield the same topology) either to the usual absolute value on

Q (in which case the absolute value is Archimedean), or to a p-adic absolute value

40
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(in which case the absolute value is ultrametric). Given an absolute value v, let v|8

denote that v is Archimedean, and let v|p if v extends the p-adic valuation of Q. For

each equivalence class v, choose the following representative, denoted | ¨ |v, and said

to be normalized by

$

’

&

’

%

|x|v “ x if x P Q, x ą 0, and v|8,

|p|v “
1
p

if v|p.

Denote the set of normalized absolute values by MK , and define the local degree of

K at v P MK to be Dv – rKv : Qvs, where Kv is the completion of K by v, and

where Qv is the completion of Q by v|Q. One fact that will be used frequently is that

1

D

ÿ

v|8

Dv “ 1.

For v ffl 8, the only fact concerning Dv that will be used in this thesis is that Dv P N`.

For a more detailed exposition on the absolute values which arise over a number field

K, see [5].

Definition. Let pα1, . . . , αnq P K
n. The height of pα1, . . . , αnq is defined to be

hpα1, . . . , αnq “
1

D

ÿ

vPMK

Dv log maxt1, |α1|v, . . . , |αn|vu.

Notice that for α P K, hpαq is equal to the Weil absolute logarithmic height [5].

Remark also that permuting the coordinates of the vector does not change the height,

and so it makes sense to extend the height to finite sets, i.e.

hppαiq1ďiďnq “ hpα1, . . . , αnq.

Thus, this height can further be extended to a height for polynomials

P “
ÿ

k

ckx
k
P Krx1, . . . , xns pwhere n P Nq
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by defining

hpP q “
1

D

ÿ

vPMK

Dv log maxt1, }P }vu,

where

}P }v “ max
k
|ck|v.

The following lemma relates the height of a polynomial to its coefficients.

Lemma 5.1.1. Let Q P Krx1, . . . , xns, and write

Qpxq “
ÿ

k

akx
k
pfor some ak P Kq.

Then

|ak|v ď eDhpQq
p@k P Nn; @v PMKq.

Proof: Let v P MK . Since the claim holds trivially for ai “ 0, assume without

loss of generality that ai ‰ 0. Thus, log |ai|v ď log maxit1, |ai|vu. Thus,

log max
i
t1, |ai|vu ď

ÿ

v1PMK

Dv1 log max
i
t1, |ai|v1u “ rK : QshpQq,

and so |ai|v ď erK:QshpQq.

Further still, for an m-tuplet of polynomials pP1, . . . , Pmq, each Pi with coefficients in

K, define the height of pP1, . . . , Pmq by

hpP1, . . . , Pmq “
1

D

ÿ

vPMK

Dv log max
1ďiďm

t1, }Pi}vu.

It follows trivially that

hpP1, . . . , Pmq ď hpP1q ` ¨ ¨ ¨ ` hpPmq.

However, something stronger will typically be required.
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5.2 Height inequalities for polynomials

The following two lemmas provide a foundation with which the estimation of the

height of a polynomial with unknown height can potentially be reduced to an ex-

pression which can be understood in terms of the heights of polynomials whose

heights are known. In order to state these lemmas, define for each v P MK the

map t¨uv : N` Ñ N` by

tmuv “

$

’

&

’

%

m v|8,

1 v ffl 8.

Notice that this map is multiplicative. Its use primarily arises in concisely capturing

the fact that

|a1 ` ¨ ¨ ¨ ` am|v ď tmuv max
i
|ai|v p@ai P K; @v PMKq.

The reader should note that the results in this chapter will ultimately be used to

estimate the heights of polynomials which represent morphisms between projective

algebraic varieties, and will thus focus on estimating the heights of homogeneous

polynomials.

Lemma 5.2.1. Let m P N; s P N`, and let x be a multivariable over Cm`1. Let

α1, . . . , αs P K, and let P1, . . . , Ps P Krxs be homogeneous of respective degrees

p1, . . . , ps. Then, for all v PMK,

}α1P1 ` ¨ ¨ ¨ ` αsPs}v ď tsuv max
i
|αi|v max

i
}Pi}v; (5.2.1)

}P1 ¨ ¨ ¨Ps}v ď
 `

p`m
p

˘(s´1

v
}P1}v ¨ ¨ ¨ }Ps}v, (5.2.2)

where p “ maxtp1, . . . , psu.

Proof: Write Pi “
ř

|k|ďp ai,kx
k. Thus,

}α1P1 ` ¨ ¨ ¨ ` αsPs}v “ max
k
|α1a1,k ` ¨ ¨ ¨ ` αsas,k|v
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ď max
k
ptsuv max

i
|αiai,k|vq

ď tsuv max
i
|αi|v max

i
}Pi}v,

which proves the first inequality. The second inequality is proven by induction, whose

base case s “ 1 holds trivially. Suppose the inequality holds for s P t1, . . . , r ´ 1u.

Let p “ maxtp1, . . . , pru and write

P1 ¨ ¨ ¨Pr´1 “
ÿ

|i|“p1`¨¨¨`pr´1

aix
i
pfor some ai P K; where i P Nm`1

q;

Pr “
ÿ

|j|“pr

bjx
j
pfor some bj P K; where j P Nm`1

q,

so that

P1 ¨ ¨ ¨Pr “
ÿ

|k|“p1`¨¨¨`pr

p
ÿ

i`j“k

aibjqx
k
pwhere k P Nm`1

q.

Since each sum
ř

aibj has at most
`

p`m
m

˘

terms, the induction hypothesis yields that

}P1 ¨ ¨ ¨Pr}v “ max
k

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i`j“k

aibj

ˇ

ˇ

ˇ

ˇ

ˇ

v

ď
 `

p`m
m

˘(

v
¨max

i
|ai|v ¨max

j
|bj|v

“
 `

p`m
m

˘(

v
}P1 ¨ ¨ ¨Pr´1}v}Pr}v

ď
 `

p`m
m

˘(

v

 `

p`m
m

˘(r´2

v
¨ }P1}v ¨ ¨ ¨ }Pr}v.

The second inequality follows by induction.

Lemma 5.2.2. Let P1, . . . , Ps be polynomials with coefficients in K, and, for each

j P t1, . . . , ru, let Qj,1, . . . , Qj,sj be polynomials with coefficients in K. Suppose for

each v PMK and for some integer N ě 1 that

max
1ďiďs

}Pi}v ď tNuv max
1ďkďs1

}Q1,k}v ¨ ¨ ¨ max
1ďkďsr

}Qr,k}v,
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Then

hppPiqiq ď logN `
r
ÿ

j“1

hppQj,kqkq.

Proof: Indeed, this follows immediately by

hppPiqiq “
1

D

ÿ

vPMK

Dv log max
1ďiďs

t1, }Pi}vu

ď
1

D

ÿ

vPMK

Dv logrtNuv

r
ź

j“1

max
1ďkďs1

t1, }Qj,k}vus

“ logN `
r
ÿ

j“1

hppQj,kqkq.

As trivial as the previous result may seem, its use lies in both guiding one to seek

such bounds, and primarily to compactify arguments. Throughout, note that a

multivariable over Cn is taken to signify an n-tuplet of indeterminates over C.

Lemma 5.2.3. Let z be a multivariable over Cn`1, and let z1 be a multivariable over

Cn1`1. Let Ψ1 : Cn1`1 Ñ Cn`1 and Ψ : Cn`1 Ñ Cn2`1 be such that

Ψ1
pz1q “ pΨ1

0pz
1
q, . . . ,Ψ1

npz
1
qq and Ψpzq “ pΨ0pzq, . . . ,Ψn2pzqq,

where each Ψ1
i P Krz

1s and each Ψi P Krzs are homogeneous polynomials. Let

d1 “ max
0ďiďn

degz1 Ψ
1
i and d “ max

0ďiďn2
degz Ψi.

Then

hpΨ ˝Ψ1
q ď log

`

d`n
n

˘

` pd´ 1q log
`

d1`n1

n1

˘

` hpΨq ` dhpΨ1
q.

Proof: Remark that each Ψj consists of at most
`

d`n
n

˘

monomials, and so by

applying Lemma 5.2.1, it follows for each v PMK that

max
1ďjďn2

}ΨjpΨ
1
0, . . . ,Ψ

1
nq}v ď

 `

d`n
n

˘(

v
max

1ďjďn2
}Ψj}v ¨max

|i|ďd
}pΨ1

0q
i1 ¨ ¨ ¨ pΨ1

nq
in}v
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ď
 `

d`n
n

˘(

v
max

1ďjďn2
}Ψj}v

 `

d1`n1

n1

˘(d´1

v
max
|i|ďd

}Ψ1
0}
i1
v ¨ ¨ ¨ }Ψ

1
n}
in
v

ď

!

`

d`n
n

˘`

d1`n1

n1

˘d´1
)

v
max

1ďjďn2
}Ψj}v ¨ max

0ďiďn
}Ψ1

i}
d
v.

Since pΨ ˝Ψ1qj “ ΨjpΨ
1
0, . . . ,Ψ

1
nq for 1 ď j ď n2, Lemma 5.2.2 yields the result.

In order to state the following proposition, define iteratively for a set S and a map

Ψ : S Ñ S,

Ψrms
“ Ψrm´1s

˝Ψ and Ψr0s
“ idS p@m P N`q.

Proposition 5.2.4. Let z be a multivariable over Cn`1. Let Ψ : Cn`1 Ñ Cn`1 be

such that

Ψpzq “ pΨ0pzq, . . . ,Ψnpzqq,

where each Ψi P Krzs is a homogeneous polynomial. Let d “ maxi degz Ψi. Then

hpΨrms
q ď rhpΨq ` log

`

d`n
n

˘

s

m´1
ÿ

i“0

di `mn log 2`m2n log d.

Proof: Let B : N` Ñ R be the function defined by

Bpiq “ log
`

di`n
n

˘

` pdi ´ 1q log
`

d`n
n

˘

` dihpΨq,

so that Lemma 5.2.3 yields

hpΨri`1s
q “ hpΨris

˝Ψq ď Bpiq ` hpΨris
q p@i P N`q.

Thus, for all m P N` with m ą 1, it follows that

hpΨrms
q ď hpΨq `

m´1
ÿ

i“1

Bpiq

“ hpΨq
m´1
ÿ

i“0

di ` log
`

d`n
n

˘

m´1
ÿ

i“1

pdi ´ 1q `
m´1
ÿ

i“1

log
`

di`n
n

˘

.

Notice that
`

d`n
n

˘

ď pd` 1qn, and so

log
`

di`n
n

˘

ď n logpdi ` 1q ď n logp2diq “ n log 2` ni log d.
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Thus, it follows that

hpΨrms
q ď hpΨq

m´1
ÿ

i“0

di ` log
`

d`n
n

˘

m´1
ÿ

i“1

pdi ´ 1q ` pm´ 1qn log 2`
`

m
2

˘

n log d

“ rhpΨq ` log
`

d`n
n

˘

s

m´1
ÿ

i“0

di ´m log
`

d`n
n

˘

` pm´ 1qn log 2`
`

m
2

˘

n log d

ď rhpΨq ` log
`

d`n
n

˘

s

m´1
ÿ

i“0

di `mn log 2`m2n log d,

as required.

The following proposition, which is a generalization of Lemma 5.2.3, is the main result

of this chapter, and will be used repeatedly throughout this thesis.

Proposition 5.2.5. Let pz11, . . . , z
1
ν1q be a ν 1-tuplet of multivariables over Cn1`1, and

let pz1, . . . , zνq be a ν-tuplet of multivariables over Cn`1. Let Ψ and Ψ1 be such that

Ψ1 : pCn1`1
q
ν1
Ñ pCn`1

q
ν and Ψ : pCn`1

q
ν
Ñ Cn2`1

with

Ψpz1, . . . , zνq “ pΨ0pz1, . . . , zνq, . . . ,Ψn2pz1, . . . , zνqq;

Ψ1
pz11, . . . , z

1
ν1q “ pΨ

1
1pz

1
1, . . . , z

1
ν1q, . . . ,Ψ

1
νpz

1
1, . . . , z

1
ν1qq;

Ψ1
jpz

1
1, . . . , z

1
ν1q “ pΨ

1
j,0pz

1
1, . . . , z

1
ν1q, . . . ,Ψ

1
j,npz

1
1, . . . , z

1
ν1qq,

where for 1 ď j ď ν, 0 ď i1 ď n and 0 ď i ď n2, the maps

Ψ1
j,i1 : Cn1`1

Ñ C and Ψi : Cn`1
Ñ C

are polynomials satisfying

• Ψ1
j,i1 is homogeneous of degree d1j p1 ď j ď ν; 0 ď i1 ď nq;

• Ψi is homogeneous of degree dj in zj p1 ď j ď ν; 0 ď i ď n2q.



5. Heights 48

Then,

hpΨ ˝Ψ1
q ď

ν
ÿ

i“1

log
`

di`n
n

˘

` pd´ 1q log
` d1`pn1`1qν´1

pn1`1qν´1

˘

` hpΨq `
ν
ÿ

i“1

dihpΨ
1
iq,

where d1 “ maxj |d
1
j|, and d “ d1 ` ¨ ¨ ¨ ` dν.

Proof: Remark that Ψj consists of at most
śν

i“1

`

di`n
n

˘

monomials. Thus, for

each v PMK , it follows by Lemma 5.2.1 that

max
0ďjďn2

}ΨjpΨ
1
1, . . . ,Ψ

1
νq}v

ď

#

ν
ź

i“1

`

di`n
n

˘

+

v

max
0ďjďn2

}Ψj}v max
|ik|ďdk

}pΨ1
1q

i1 ¨ ¨ ¨ pΨ1
νq

iν}v

“

#

ν
ź

i“1

`

di`n
n

˘

+

v

max
0ďjďn2

}Ψj}v max
|ik|ďdk

}pΨ1
1,0q

i1,0 ¨ ¨ ¨ pΨ1
1,nq

i1,n ¨ ¨ ¨ pΨ1
ν,0q

iν,0 ¨ ¨ ¨ pΨ1
ν,nq

iν,n}v.

Note that the above product consists of d factors of the form Ψ1
j,i, and that each of

these is a polynomial in pn1 ` 1qν 1 variables with degree bounded by d1. Thus, it

follows by Lemma 5.2.1 that

max
0ďjďn2

}ΨjpΨ
1
1, . . . ,Ψ

1
νq}v

ď

#

ν
ź

i“1

`

di`n
n

˘

+

v

max
0ďjďn2

}Ψj}v

!

` d1`pn1`1qν1´1
pn1`1qν1´1

˘

)d´1

v
max
|ik|ďdk

ˆ n
ź

l“0

}Ψ1
1,l}

i1,l
v ¨ ¨ ¨

n
ź

l“0

}Ψ1
ν,l}

iν,l
v

˙

ď

#

ν
ź

i“1

`

di`n
n

˘

+

v

!

` d1`pn1`1qν1´1
pn1`1qν1´1

˘

)d´1

v
max

0ďjďn2
}Ψj}v max

0ďlďn
}Ψ1

1,l}
d1
v ¨ ¨ ¨ max

0ďlďn
}Ψ1

ν,l}
dν
v .

Since pΨ˝Ψ1qj “ ΨjpΨ
1
1, . . . ,Ψ

1
νq for 0 ď j ď n2, then Lemma 5.2.2 yields the result.



Chapter 6

Representations of maps

The goal of this chapter is to construct polynomial representations for morphisms

between products of elliptic curves. These polynomials are shown to have heights and

degrees controlled. Philippon’s original proof requires such representations, but the

constructions and estimates in this thesis are independent of his methods. Throughout

this chapter, fix a lattice Λ, fix K “ Qpg2, g3q, and fix E “ Zphq, where

hpx0, x1, x2q “ x0x
2
2 ´ 4x3

1 ` g2x
2
0x1 ` g3x

3
0.

Note that E is an elliptic curve which is in Weierstrass normal form. Denote by

σ2 : E ˆ E Ñ E, the map representing the group law on E, and let x “ px0, x1, x2q

and y “ py0, y1, y2q be triples of indeterminates over E Ď C3. By definition, the

multiplication-by-2 map satisfies

r2spx0 : x1 : x2q “ σ2ppx0 : x1 : x2q, px0 : x1 : x2qq.

6.1 Group law of bidegree p2, 2q for an elliptic curve

According to [6], the following three addition laws form a complete system for σ2

which is of bidegree p2, 2q. Lange and Ruppert denote

pz0 : z1 : z2q “ σ2ppx0 : x1 : x2q, py0 : y1 : y2qq,

49
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and use the abbreviations pij “ xiyj ` xjyi, and qij “ xiyj ´ xjyi. Further writing

abbreviations

pijkl “ xixjykyl ` xkxlyiyj and qijkl “ xixjykyl ´ xkxlyiyj,

allows the complete system of bidegree (2,2) to be written as

I z0 “ p20q20 ` p12x1y1 ´ g2x0y0qq01

z1 “ q2201 ` g2p01q01 ` p2x2y2 ` 3g3x0y0qq01

z2 “ x2y2q20 ` g2q1200 ` p2g2x0y0 ´ 12x1y1qq21 ` 3g3x0y0q20

II z0 “ 4q2201 ` 4g2p01q01 ` p12g3x0y0 ´ 8x2y2qq01

z1 “ 4p21q21 ` p4g2x1y1 ` g
2
2x0y0qq10 ` 12g3p10q10

z2 “ pg
2
2x0y0 ` 8g2x1y1qq02 ` p24g3x0y0 ´ 4x2y2qq12 ` 4g2q1102 ` 12g3q0012

III z0 “ p4x2y2 ´ 12g3x0y0qp02 ` p48x1y1 ´ 8g2x0y0qp12 ´ 4g2p1200

z1 “ p4x2y2 ` 24g3x0y0qp12 ` p8g2x1y1 ` g
2
2x0y0qp02 ` 12g3p1200 ` 4g2p0211

z2 “ 4x2
2y

2
2 ´ 48g2x

2
1y

2
1 ` pg

3
2 ´ 36g2

3qx
2
0y

2
0 ´ 4g2

2p
2
01 ´ 8g2

2x0x1y0y1

´ p144g3x1y1 ` 12g2g3x0y0qp01

Note that all q terms are antisymmetric in px,yq, and so are zero when x “ y. Thus,

laws I and II have z “ 0 whenever x “ y. Since the above system is complete, it

follows that law III represents σpx,yq whenever x “ y. Therefore, the isogeny r2s is

represented by a single triplet of homogeneous polynomials, induced by III. Moreover,

noting that z0 of law III can be written as

z0 “ 96x3
1x2 ` 8x0x

3
2 ´ 24g2x

2
0x1x2 ´ 24g3x

3
0x2 “ 24x2p4x

3
1 ´ g2x

2
0x1 ´ g3x

3
0q ` 8x0x

3
2,

then z0 “ 32x0x
3
2. Thus, r2s can be represented by

R2 “ pR2,0, R2,1, R2,2q P pKrxsq
3,

where

R2,0px0 : x1 : x2q “ 32x0x
3
2;
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R2,1px0 : x1 : x2q “ 8x1x
3
2 ` 24g2x0x

2
1x2 ` 72g3x

2
0x1x2 ` 2g2

2x
3
0x2;

R2,2px0 : x1 : x2q “ 4x4
2´48g2x

4
1´288g3x0x

3
1´24g2

2x
2
0x

2
1´24g2g3x

3
0x1`pg

3
2´36g2

3qx
4
0.

6.2 Multiplication by 2

The goal of this section is to prove that the isogeny r2s is represented by a single

triplet of polynomials of degree 4, independently of the result of Lange and Ruppert.

In order to do so, note that multiplication-by-2 on E can be reduced to the following

three cases.

r2sp1 : ℘pzq : ℘1pzqq “ p1 : ℘p2zq : ℘1p2zqq p@z R 1
2
Λq; (6.2.1)

r2sp1 : ℘pω{2q : 0q “ p0 : 0 : 1q p@ω P Λz2Λq; (6.2.2)

r2sp0 : 0 : 1q “ p0 : 0 : 1q. (6.2.3)

To show that R2 represents the first case, let z R 1
2
Λ, and write x “ ℘pzq and

y “ ℘1pzq. Thus,

℘p2zq “
p12x2 ´ g2q

2 ´ 32xy2

16y2
;

℘1p2zq “
p12x2 ´ g2qp48xy2 ´ p12x2 ´ g2q

2q ´ 32y4

32y3
,

and so (6.2.1) can be rewritten as

r2sp1 : x : yq “ pf0p1, x, yq : f1p1, x, yq : f2p1, x, yqq,

where

f0px0, x1, x2q “ 32x3
0x

3
2

f1px0, x1, x2q “ 2x0x2rp12x2
1 ´ g2x

2
0q

2
´ 32x0x1x

2
2s

f2px0, x1, x2q “ p12x2
1 ´ g2x

2
0qr48x0x1x

2
2 ´ p12x2

1 ´ g2x
2
0q

2
s ´ 32x2

0x
4
2.
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Recall throughout that

4x3
“ y2

` g2x` g3.

Thus,

p12x2
´ g2q

2
“ 36xpy2

` g2x` g3q ´ 24g2x
2
` g2

2

“ 12xp3y2
` g2x` 3g3q ` g

2
2,

and so

f1p1, x, yq “ 4xy3
` 24g2x

2y ` 72g3xy ` g
2
2y,

and

f2p1, x, yq “ p12x2
´ g2qr12xpy2

´ 3g3 ´ g2xq ´ g
2
2s ´ 32y4

“ 12p12x3
´ g2xqpy

2
´ 3g3 ´ g2xq ´ g

2
2p12x2

´ g2q ´ 32y4

“ 12p3y2
` 2g2x` 3g3qpy

2
´ g2x´ 3g3q ´ g

2
2p12x2

´ g2q ´ 32y4

“ 4y4
´ 36g2

2x
2
` pg3

2 ´ 108g2
3q ´ 12pg2xy

2
` 6g3y

2
` 9g2g3xq.

Alternatively, noting that

pg2x` 6g3qy
2
“ 4g2x

4
` 24g3x

3
´ g2

2x
2
´ 7g2g3x´ 6g2

3

yields

f2p1, x, yq “ 4y4
´ 36g2

2x
2
` pg3

2 ´ 108g2
3q ´ 12pg2xy

2
` 6g3y

2
` 9g2g3xq

“ 4y4
´ 24g2

2x
2
` pg3

2 ´ 36g2
3q ´ 48g2x

4
´ 288g3x

3
´ 24g2g3x.

Evaluating at px0, x1, x2q “ p1, x, yq immediately yields

R2p1, x, yq “ pf0p1, x, yq, f1p1, x, yq, f2p1, x, yqq,

thus showing that R2 indeed represents (6.2.1). Remark that

x2
0R2,2px0, x1, x2q ” f2px0, x1, x2q mod phq.
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To show that R2 represents the second case, let w P Λz2Λ, and write x “ ℘pω{2q.

Thus,

R2,0p1, x, 0q “ R2,1p1, x, 0q “ 0,

and so representation by R2 requires that R2,2p1, x, 0q ‰ 0. For the sake of attaining a

contradiction, suppose that R2,2p1, x, 0q “ 0. Thus, f2p1, x, 0q “ 0, and so 12x2 “ g2,

which in particular implies that

p2xq2 “ g2{3.

Since hp1, x, 0q “ 0, then

4x3
“ g2x` g3,

and so

12x2
“ g2 ñ 12x3

“ g2xñ 8x3
“ ´g3 ñ p2xq3 “ ´g3.

Thus,

pg2{3q
3
“ g2

3 ñ g3
2 ´ 27g2

3 “ 0,

and so ∆pΛq “ g3
2 ´ 27g2

3 “ 0, which is impossible. Thus, R2,2p1, x, 0q ‰ 0 and so

r2sp1 : ℘pω{2q : 0q “ p0 : 0 : 1q “ pR2,0p1, x, 0q : R2,1p1, x, 0q : R2,2p1, x, 0qq,

from which it follows that (6.2.2) is represented by R2. Finally, R2p0, 0, 1q “ p0, 0, 4q,

and so

r2sp0 : 0 : 1q “ p0 : 0 : R2,2p0, 0, 1qq “ pR2,0p0, 0, 1q : R2,1p0, 0, 1q : R2,2p0, 0, 1qq,

and so R2 represents (6.2.3). Thus, R2 is a complete system for the isogeny r2s, as

required.

6.3 Multiplication by τ P O

Throughout this section, suppose that O “ Zrαs where α is an imaginary quadratic

integer. In the previous section, a representation which forms a complete system
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for the multiplication-by-2 map has been fixed. In what follows, whenever a new

morphism is introduced, either a representation will be fixed in tandem, or a fixed

representation will be chosen to be induced by the new morphism’s relation to mor-

phisms whose representations have already been fixed. Notice that if a morphism has

already been given a representation, then re-identifying it via a new relation may, a

priori, lead to a conflict in the chosen representation. Thus, it will be important to

eliminate such cases when treating classes of morphisms which contain at least one

morphism whose representation has already been fixed.

The first step to acquiring representations for the isogenies rτ s with τ P O is to

note that it suffices to fix representations for the isogenies r0s, r1s, r2s, r´1s, and rαs,

so that a representation for rτ s can be inferred by iterating via the representation

for σ2 provided by Lange and Ruppert. The case m “ 2k can be treated as follows.

For each k ą 2, the multiplication-by-2k map is given by r2ks “ r2k´1s ˝ r2s, where

r21s “ r2s, is a morphism requiring a single law. Indeed, the map r2ks is represented

by the triplet of homogeneous polynomials, denoted

R2k “ pR2k,0, R2k,1, R2k,2q,

where each R2k,i “ R2k´1 ˝ R2,i “ pR
rks
2 qi P Krxs. Further, define r20s “ r1s “ idE,

with representation R1pxq “ x, and let

Rζ
σ2
“ pRζ

σ2,0
, Rζ

σ2,1
, Rζ

σ2,2
q

be the polynomials in px,yq such that Rζ
σ2,i

“ zi for law ζ P tI, II, IIIu of σ2. The

task of fixing a representation for rms with m P N and m ą 2 can be induced by

iterating via the representation for σ2 and representations for r2ks where k P N. Let

m P N`, with m not a power of 2. From the binary expansion of m, it follows that

m “ 2k`m1 with 0 ă m1 ă 2k for unique k,m1 P N`. Thus, iterating via the relation

rms “ σ2

`

r2ks, rm1
s
˘
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induces a family of triplets of homogeneous polynomials in Krxs which represent rms,

denoted

Rζ
m “ pR

ζ
m,0, R

ζ
m,1, R

ζ
m,2q,

for a finite set of indices ζ. Note also that the zero isogeny is represented by

R0pxq “ pR0,0pxq, R0,1pxq, R0,2pxqq “ p0, 0, 1q.

Finally, for each m P N`, the map r´ms is represented by

Rζ
´m “ pR

ζ
´m,0, R

ζ
´m,1, R

ζ
´m,2q “ pR

ζ
m,0, R

ζ
m,1,´R

ζ
m,2q,

thus fixing representations pRζ
mqζ for all maps rms with m P Z.

Since rαs is an isogeny, there exists a family of triplets of homogeneous polyno-

mials in Krxs which represents rαs, denoted

Rζ
α “ pR

ζ
α,0, R

ζ
α,1, R

ζ
α,2q,

for a finite set of indices ζ. Thus, for each τ “ m` nα P OzpZ ∪ tαuq, the relation

rτ s “ σ2prms, rαs ˝ rnsq

induces a family of triplets of homogeneous polynomials in Krxs which represent rτ s,

denoted

Rζ
τ “ pR

ζ
τ,0, R

ζ
τ,1, R

ζ
τ,2q

for a finite set of indices ζ.

In order to state the results which follow in this section, take note of the following

notation. Given a morphism Ψ and a fixed representation by a family of pn`1q-tuples

of homogeneous polynomials, denoted

Rζ
Ψ “ pR

ζ
Ψ,0, . . . , R

ζ
Ψ,nq,

for a finite set of indices ζ, define

degxpΨq “ max
ζ,i

degxpR
ζ
Ψ,iq;
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hpΨq “ max
ζ

hpRζ
Ψ,0, . . . , R

ζ
Ψ,nq.

Note that this definition is contingent on the choice of representation for Ψ, which is

why it is crucial that many of the morphisms which will arise in this thesis have fixed

representations.

Since the representation for r2ks is fixed by R2k “ pR2q
rks, then

degxr2
k
s “ pdegxr2sq

k
“ 4k “ p2kq2. (6.3.1)

Further, given that

y ď 2xô y2
ď 2xy ô x2

` 2y2
ď px` yq2 p@x, y ě 0q, (6.3.2)

then the following two lemmas can be shown.

Lemma 6.3.1. Let m P Z. Then, degxrms ď 2m2.

Proof: First note that degxr0s “ 0, which verifies the claim for m “ 0. Also, if

the claim holds for m ą 0, then the representation for r´ms shows that

degxr´ms “ degxrms ď 2m2
“ 2p´mq2,

and so assume without loss of generality that m ą 0. The proof is by induction, for

which the base case m “ 1 holds, since degxr1s “ 1. Suppose that degxrss ď 2s2 for

s “ 1, . . . ,m´ 1. Then,

m “ 2k `m1
pfor some k,m1

P N;m1
ă 2k ď mq.

If m1 “ 0, then m “ 2k, so degxrms “ m2 ď 2m2. If m1 ą 0, then rms “ σ2pr2
ks, rm1sq,

and so

degxrms “ 2 degxr2
k
s ` 2 degxrm

1
s,

since pRζ
σ2
qζ is of bidegree p2, 2q. By induction hypothesis and by (6.3.1),

degxrms ď 2 ¨ 4k ` 2 ¨ 2m12
“ 2pp2kq2 ` 2m12

q,
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and so by (6.3.2), it follows that degxrms ď 2m2. Induction yields the desired result.

In order to prove results concerning the heights of the maps rms, note the following.

Since R2k “ R
rks
2 , then Lemma 5.2.3 yields that

hpr2ksq ď rhpr2sq ` log 15s
4k ´ 1

3
` p2 log 2qk ` p2 log 4qk2

ď c2p2kq2 (6.3.3)

for some c2 P R`.

Lemma 6.3.2. There exists c1 P R` such that hprmsq ď c1m2 for all m P Zzt0u.

Proof: Given m P N`, it is clear from the representations that hpr´msq “ hprmsq,

and so it suffices to verify the claim for m ą 0. In this case, write m “ 2k ` m1

with m1 ă 2k, for some k,m1 P N. Let Ψ “ σ2 and let Ψ1 “ pr2ks, rm1sq, so that

rms “ Ψ ˝Ψ1. Let

d1 “ maxt4k, degxrm
1
su ď maxt4k, 2m12

u ď maxt4k, 2p2k ´ 1q2u,

and so d1` 1 ď 2 ¨ 4k. Since degx,y Ψ “ p2, 2q, then Proposition 5.2.5 and (6.3.3) yield

that

hprmsq ď 2 log 6` 3 log
`

d1`2
2

˘

` hpΨq ` 2hpr2ksq ` 2hprm1
sq

ď 2 log 6` 6 logpd1 ` 1q ` hpΨq ` 2c24k ` 2hprm1
sq

ď 2 log 6` 6p2k ` 1q log 2` hpΨq ` 2c24k ` 2hprm1
sq.

Define L : NÑ R by

Lpkq “ 2 log 6` 6p2k ` 1q log 2` hpΨq.

Choose c3 P R` such that Lpkq ď c34k. Then, let c1 “ c3 ` 2c2, and so

hprmsq ď c14k ` 2hprm1
sq.



6. Representations of maps 58

The rest of the proof is by induction. The base case m “ 1 holds, since hpr1sq ď

c2 ď c1. Suppose that hprssq ď c1s2 for s “ 1, . . . ,m ´ 1. Since m “ 2k ` m1 has

m1 ă 2k ď m, then the induction hypothesis and (6.3.2) yield that

hprmsq ď c14k ` 2c1m12
“ c1pp2kq2 ` 2m12

q ď c1m2.

The conclusion follows by induction.

In order to get estimates for the map rτ s for τ P O, define for each S P R the set

OS “ tm` nα |m,n P Z, |m|, |n| ď Su Ď EndpEq.

Proposition 6.3.3. There exists C1 P R` such that if τ “ m`nα P OS, with S ě 1,

then

degxrτ s ď C1S
2 and hprτ sq ď C1S

2.

Proof: From the representation for rτ s and σ2, it follows that

degxrτ s ď 2 degxrms ` 2 degxrαs degxrns

ď 4m2
` 4 degxrαsn

2

ď c1S
2,

where c1 “ 4p1 ` degxrαsq. Applying Proposition 5.2.5 with Ψ “ rαs and Ψ1 “ rns

yields

hprαs ˝ rnsq ď log
`

degxrαs`2
2

˘

` pdegxrαs ´ 1q log
`

degxrns`2
2

˘

` hprαsq ` degxrαshprnsq

ď c2 ` c3 logppc1S2
` 2qpc1S2

` 1q{2q ` degxrαsc
1S2

ď c4S
2,

for some c4 P R`. Using the same result for Ψ “ σ2 and Ψ1 “ prms, rαs ˝ rnsq, it

follows that

hprτ sq ď 2 log
`

4
2

˘

` 3 log
`

c1S2`2
2

˘

` hprσ2sq ` 2hprmsq ` 2hprαs ˝ rnsq
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ď c5 ` 3 logppc1S
2
` 2qpc1S

2
` 1q{2q ` 2c1S2

` 2c4S
2

ď c6S
2,

for some c6 P R`. Letting C1 “ maxtc1, c6u yields the desired result.

6.4 Multiplication by pτ1, . . . , τnq P On

In order to state the main result of this section, define the n-sum maps, denoted

σn : En Ñ E, by

σn “ σ2pidE, σn´1q p@n ą 2q.

This relation induces, iteratively, a fixed representation for σn by a family of triplets

of homogeneous polynomials in Kpx1, . . . ,xnq, denoted

Rζ
σn “ pR

ζ
σn,0, R

ζ
σn,1, R

ζ
σn,2q

for a finite set of indices ζ. Consider for n ě 2 the multiplication-by-τ map, denoted

rτ s, for vectors τ “ pτ1, . . . , τnq P On, i.e.

rτ spz1, . . . , znq “ σn ˝ prτ1s ˆ ¨ ¨ ¨ ˆ rτnsqpz1, . . . , znq “ σnprτ1spz1q, . . . , rτnspznqq.

This fixes a representation of rτ s by a family of triplets of multi-homogeneous poly-

nomials in Kpx1, . . . ,xnq, denoted

Rζ
τ “ pR

ζ
τ ,0, R

ζ
τ ,0, R

ζ
τ ,0q,

for a finite set of indices ζ.

Proposition 6.4.1. Let n P N`. There exists C2 P R` depending only on n such

that if τ P pOSqn, with S ě 1, then

degxi
rτ s ď C2S

2 and hprτ sq ď C2S
2
p1 ď i ď nq.
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Proof: Let pd11, . . . , d
1
nq be an upper bound for the multidegrees of pRζ

σnqζ . Then,

degxi
rτ s ď d1i degxrτis ď d1iC1S

2.

By Proposition 5.2.5, with Ψ “ σn and Ψ1 “ rτ1s ˆ ¨ ¨ ¨ ˆ rτns, it follows that

hprτ sq ď
n
ÿ

i“1

log
`

d1i`2
2

˘

` pd11 ` ¨ ¨ ¨ ` d
1
nq log

`

C1S2`3n´1
3n´1

˘

` hpσnq `
n
ÿ

i“1

d1ihprτisq

ď c7 ` c8p3n´ 1q logpC1S
2
` 1q ` npmax

i
d1iqC1S

2

ď c9S
2,

for some c9 P R` which depends only on n. Thus, let C2 “ maxtpmaxi d
1
iC1q, c9u.

For the sake of completion, define rpτijqs : En Ñ En by

rpτijqspz1, . . . , znq “ prτ 1spz1, . . . , znq, . . . , rτnspz1, . . . , znqq p@pτijq P MatnˆnpOqq,

where each τ i “ pτi,1, . . . , τi,dq. Then fix

Rζ
pτijq

“ pRζ
rτ1s
, . . . , Rζ

rτns
q,

for a finite set of indices ζ, as the representation of rpτijqs.

Proposition 6.4.2. Let n P N`. There exists c P R` such that if pτijq P MatnˆnpOSq,

with S ě 1, then

degxi
rpτijqs ď cS2 and hprpτijqsq ď cS2.

Proof: It is easy to see that

degxi
rpτijqs “ max

j
degxi

rτ js ď C2S
2;

hrpτijqs ď
n
ÿ

j“1

hprτ jsq ď nC2S
2.

Thus, by letting c “ nC2, the result follows.



Chapter 7

Estimates on the derivatives of the

auxiliary function

The main goal of this chapter is to provide estimates on the derivatives of the auxiliary

function. This is in line with Philippon’s original proof, but the work in this chapter

remains independent of his methods. Throughout this chapter and the remainder of

the thesis, fix a lattice Λ Ă C, and suppose that the induced elliptic curve E has

complex multiplication, and that E is defined over Q. Thus, there exists a quadratic

integer α such that O “ Zrαs “ Z‘Zα. Remark then that there exists a, b P Z such

that α2 “ aα` b. Further, fix β, an integral element over O, fix d “ rOrβs : Os, and

fix K “ Qpα, β, g2, g3q.

7.1 Preliminaries

Remark that t1, β, . . . , βd´1u is an O-basis for Orβs, and so, for each γ P Orβs, there

exists a unique matrix Bγ P MatdˆdpOq such that

γp1, β, . . . , βd´1
q
T
“ Bγp1, β, . . . , β

d´1
q
T .

61
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Define

Γ “ tτ1 ` τ2β ` ¨ ¨ ¨ ` τdβ
d´1
| τ1, . . . , τd P Ou “ Orβs,

and

ΓS “ tτ1 ` τ2β ` ¨ ¨ ¨ ` τdβ
d´1
| τ1, . . . , τd P OSu p@S P Nq.

Given an S ě 1, and γ P ΓS, it will be useful to have an estimate on the height of γ

as well as an estimate on the entries of Bγ, such as those provided in the upcoming

propositions.

Proposition 7.1.1. Let pγq “ pγ1, . . . , γqq P ΓqS. Then

hpγq ď logp2dSq ` hpαq ` pd´ 1qhpβq.

Proof: Write

γi “
d
ÿ

k“1

pmi,k ` ni,kαqβ
k´1

pfor some mi,k, ni,k P Zq

with each |mi,k|, |ni,k| ď S. Then, for each v PMK ,

max
1ďiďq

|γi|v “ max
1ďiďq

ˇ

ˇ

ˇ

ˇ

ˇ

d
ÿ

k“1

pmi,k ` ni,kαqβ
k´1

ˇ

ˇ

ˇ

ˇ

ˇ

v

ď max
1ďiďq

t2duv max
1ďkďd

t|mi,k|v , |ni,k|v |α|vu
ˇ

ˇβk´1
ˇ

ˇ

v

ď t2dSuv maxt1, |α|vumaxt1, |β|vu
d´1.

Remark that hp1, δq “ hpδq for each δ P K. Thus, by viewing elements of K as

constant polynomials, Lemma 5.2.2 yields the result.

To prove the second estimate, the following lemma will be used.

Lemma 7.1.2. There exists c P N` depending only on OpΛq such that for each

S, S 1 P N,

1. OS `OS1 Ď OS`S1

2. OSOS1 Ď OcSS1
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Proof: Let m1 `m2α P OS and let n1 ` n2α P OS1 . Then |mi ` ni| ď S ` S 1 for

i P t1, 2u. Thus,

pm1 `m2αq ` pn1 ` n2αq “ pm1 ` n1q ` pm2 ` n2qα P OS`S1 ,

which proves (1). To prove the second claim, let c “ maxt2 ` |a|, 1 ` |b|u. Then, it

follows that

|m1n1 `m2n2b| ď SS 1 ` |b|SS 1 “ p1` |b|qSS 1 ď cSS 1;

|m1n2 `m2n1 `m2n2a| ď 2SS 1 ` |a|SS 1 “ p2` |a|qSS 1 ď cSS 1.

Therefore,

pm1 `m2αqpn1 ` n2αq “ pm1n1 `m2n2bq ` pm1n2 `m2n1 `m2n2aqα P OcSS1 ,

which completes the proof of the lemma.

Proposition 7.1.3. There exists c1 P N` satisfying

γ P ΓS ñ Bγ P MatdˆdpOc1Sq p@S P Nq.

Proof: For each i P N, there exists ci P N` such that

βd`i “
d
ÿ

j“1

ai,jβ
d´j

pfor some ai,j P Ociq.

Let c2 “ maxtc0, . . . , cd´2u P N`, let c be as in Lemma 7.1.2, and let c1 “ dcc2. To

show that c1 has the desired property, let

γ “ τ1 ` τ2β ` ¨ ¨ ¨ ` τdβ
d´1

pfor some τi P OSq,

and write Bγ “ pτijq1ďi,jďd. For each i P t0, . . . , d´ 2u, write

τi1 ` ¨ ¨ ¨ ` τidβ
d´1

“ pτ1 ` ¨ ¨ ¨ ` τdβ
d´1
qβi´1
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“ τ1β
i´1
` ¨ ¨ ¨ ` τd`2´iβ

d
` ¨ ¨ ¨ ` τdβ

d`i´2

“ τ1β
i´1
` ¨ ¨ ¨ ` τd`2´i

ˆ d
ÿ

j“1

a0,jβ
d´j

˙

` ¨ ¨ ¨ ` τd

ˆ d
ÿ

j“1

ai´2,jβ
d´j

˙

.

Thus, it follows by Lemma 7.1.2 that

τij P OSOc2 ` ¨ ¨ ¨ `OSOc2 Ď Oc1S p1 ď i, j ď dq

where the sum consists of d copies of OSOc2 . Therefore, Bγ is in MatdˆdpOc1Sq, as

desired.

7.1.1 Length inequalities for polynomials

This subsection introduces the notion of the length of a polynomial, and provides a

few related estimates.

Definition. Let F P Crx1, . . . , xns. Thus,

F px1, . . . , xnq “
ÿ

iPNn
cix

i
pfor some ci P Cq,

for a unique choice of pciqiPNn . By definition, only finitely many of the coefficients ci

are not equal to zero. Thus, it makes sense to define the length of the polynomial F ,

denoted LpF q, by

LpF q “
ÿ

iPI

|ci|.

Proposition 7.1.4. Let F,G P Crx1, . . . , xns. Then, the following holds.

LpF `Gq ď LpF q ` LpGq (7.1.1)

LpBF {Bxjq ď degxjpF qLpF q (7.1.2)

LpFGq ď LpF qLpGq (7.1.3)
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Proof: Write

F px1, . . . , xnq “
ÿ

iPNn
cix

i
pfor some ci P Cq;

Gpx1, . . . , xnq “
ÿ

iPNn
dix

i
pfor some di P Cq.

Then, it follows that

LpF `Gq “
ÿ

iPNn
|ci ` di| ď

ÿ

iPNn
|ci| `

ÿ

iPNn
|di| “ LpF q ` LpGq;

LpBF {Bxjq “
ÿ

iPNn
|ijci| ď degxjpF q

ÿ

iPNn
|ci| “ degxjpF qLpF q;

LpFGq “
ÿ

kPNn

ˇ

ˇ

ˇ

ˇ

ÿ

i`j“k

cidj

ˇ

ˇ

ˇ

ˇ

ď
ÿ

kPNn

ÿ

i`j“k

|ci||dj| “
ÿ

iPNn

ÿ

jPNn
|ci||dj| “ LpF qLpGq,

thus completing the proof.

Proposition 7.1.5. Let k be a number field. Let pα1, . . . , αmq P km, let x be a

multivariable over Cm, and let F P Zrxs with degx F “ n. Then

|F pα1 . . . , αmq|v ď tLpF quv maxt1, |α1|v , . . . , |αm|vu
n
p@v PMkq,

recalling that

tmuv “ m if v|8 and tmuv “ 1 if v ffl 8 p@m P Zzt0uq.

Proof: Write

F pxq “
ÿ

iPNm
cix

i
pfor some ci P Zq,

from which it follows that

|F pα1, . . . , αmq|v “

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPNm
ciα

i1
1 ¨ ¨ ¨α

im
m

ˇ

ˇ

ˇ

ˇ

ˇ

v

ď tLpF quv max
|i|ďn

t
ˇ

ˇαi1
1 ¨ ¨ ¨α

im
m

ˇ

ˇ

v
u
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ď tLpF quv maxt1, |α1|v , . . . , |αm|vu
n,

as required.

Applying Lemma 5.2.2 to the above proposition immediately yields the following.

Corollary 7.1.6. Following the same notation as in Proposition 7.1.5, then

hpF pα1, . . . , αmqq ď log LpF q ` pdegx F qhpα1, . . . , αmq.

7.1.2 Holomorphic representation of Φ around 0

This subsection will provide a function that represents points on the elliptic curve

around its origin, which will be useful in finding the derivatives of the auxiliary

function. The core goal of this subsection is to establish estimates on this function.

Notice that there exists ε ą 0 such that the functions ℘{℘1 and 1{℘1 are holo-

morphic on Bp0; εq. Thus, the function

Φ0 : z P Bp0, εq ÞÑ

ˆ

1

℘1pzq
,
℘pzq

℘1pzq
, 1

˙

is a triplet of holomorphic functions. Notice that its equivalence class in projective

space is such that

rΦ0pzqs “ expEpzq “ rΦpzqs

for all z P Bp0; εq Ď C. The derivatives of the auxiliary function will involve the

derivatives of the coordinates of the function Φ0. Define functions f, h : Bp0; εq Ñ E

via

fpzq “
1

℘1pzq
“ ´

z3

2
` ¨ ¨ ¨ ;

hpzq “
℘pzq

℘1pzq
“ ´

z

2
` ¨ ¨ ¨ .

Recall that ℘12 “ 4℘3 ´ g2℘´ g3, and that ℘2 “ 6℘2 ´ g2{2. Thus, it follows that

f 1 “ ´
℘2

℘12
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“ ´6

ˆ

℘

℘1

˙2

`
g2

2℘12

“ ´6h2
` g2f

2
{2,

and that

h1 “
℘12 ´ ℘2℘

℘12

“ 1´ 6
℘3

℘12
`
g2℘

2℘12

“ 1´
3

2

ˆ

℘12 ` g2℘` g3

℘12

˙

`
g2℘

2℘12

“ ´
1

2
´ g2

℘

℘12
´

3g3

2℘12

“ ´1{2´ g2fh´ 3g3f
2
{2.

Thus, f pkq and hpkq are both polynomials in pg2, g3, f, hq for each k P N. In order

to see this, let x “ px1, x2q and y “ py1, y2q be multivariables over C2, and define

recursively

Fn`1px,yq “
BFn
By1

px,yq ¨ p´12y2
2`x1y

2
1q`

BFn
By2

px,yq ¨ p´1´2x1y1y2´3x2y
2
1q; (7.1.4)

Hn`1px,yq “
BHn

By1

px,yq¨p´12y2
2`x1y

2
1q`

BHn

By2

px,yq¨p´1´2x1y1y2´3x2y
2
1q; (7.1.5)

F0px,yq “ y1 and H0px,yq “ y2. (7.1.6)

Proposition 7.1.7. Let k P N. Then, it follows for each z P Bp0; εq that

2kf pkqpzq “ Fkpg2, g3, fpzq, hpzqq and 2khpkqpzq “ Hkpg2, g3, fpzq, hpzqq.

Proof: Equations (7.1.4) and (7.1.5) yield

Fn`1pg2, g3, f, hq “ 2pFnpg2, g3, f, hqq
1
“ 2n`1

pF0pg2, g3, f, hqq
pn`1q;

Hn`1pg2, g3, f, hq “ 2pHnpg2, g3, f, hqq
1
“ 2n`1

pH0pg2, g3, f, hqq
pn`1q.

Equation (7.1.6) yields that F0pg2, g3, f, hq “ f and that H0pg2, g3, f, hq “ h.
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Proposition 7.1.8. Let k P N. Then

Fk, Hk P Zrx,ys;

degx Fk, degxHk ď k;

degy Fk, degyHk ď k ` 1;

LpFkq,LpHkq ď k!19k.

Proof: The proof is by induction on k ě 0, whose base cases F0 “ y1 and H0 “ y2

clearly hold. Now, suppose that the claim holds for k “ 0, . . . , n. Since Zrx,ys is

closed under the operators B{By1 and B{By2, it follows by (7.1.4) and (7.1.5) that

Fn`1, Hn`1 P Zrx,ys. Thus, by induction, it follows for each k P N that Fk, Hk P

Zrx,ys. It also follows by induction hypothesis that

degx Fn`1 ď max
1ďiď2

degx

BFn
Byi

`maxtdegxp´12y2
2 ` x1y

2
1q, degxp´1´ 2x1y1y2 ´ 3x2y

2
1qu

ď n` 1,

and that

degy Fn`1 ď max
1ďiď2

degy

BFn
Byi

`maxtdegyp´12y2
2 ` x1y

2
1q, degyp´1´ 2x1y1y2 ´ 3x2y

2
1qu

ď ppn` 1q ´ 1q ` 2 “ n` 2.

Letting Fn`1, Fn in the above computations go to Hn`1, Hn, respectively, it follows

that

degxHn`1 ď n` 1;

degyHn`1 ď n` 2.

Thus, for each k P N, it follows that

degx Fk, degxHk ď k;

degy Fk, degyHk ď k ` 1.
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Finally, Proposition 7.1.4 yields that

LpFn`1q ď 19pn` 1qLpFnq ď 19n`1
pn` 1q!;

LpHn`1q ď 19pn` 1qLpHnq ď 19n`1
pn` 1q!,

from which induction yields the desired result.

Corollary 7.1.9. Let N P N. Then

hpf p0qp0q, hp0qp0q, . . . , f pNqp0q, hpNqp0qq ď N logN `N
`

hpg2, g3q ` log 38
˘

.

Proof: Write F̃npxq “ Fnpx,0q, and write H̃npxq “ Hnpx,0q. By noting that

fp0q “ hp0q “ 0, it follows that

f pnqp0q “ 2´nF̃npg2, g3q p0 ď n ď Nq;

hpnqp0q “ 2´nH̃npg2, g3q p0 ď n ď Nq.

Thus, for each v PMK ,

max
0ďnďN

t
ˇ

ˇf pnqp0q
ˇ

ˇ

v
,
ˇ

ˇhpnqp0q
ˇ

ˇ

v
u “ max

0ďnďN
t|2´nF̃npg2, g3q|v, |2

´nH̃npg2, g3q|vu

ď maxt1,
ˇ

ˇ2´1
ˇ

ˇ

v
u
N max

0ďnďN
t|F̃npg2, g3q|v, |H̃npg2, g3q|vu

By Proposition 7.1.5 and Proposition 7.1.8, it follows that

max
0ďnďN

t
ˇ

ˇf pnqp0q
ˇ

ˇ

v
,
ˇ

ˇhpnqp0q
ˇ

ˇ

v
u ď maxt1,

ˇ

ˇ2´1
ˇ

ˇ

v
u
N
 

NN19N
(

v
maxt1, |g2|v , |g3|vu

N .

Therefore, Lemma 5.2.2 yields that

hpf p0qp0q, hp0qp0q, . . . , f pNqp0q, hpNqp0qq ď N logN `N
`

hpg2, g3q ` hp2´1
q ` log 19

˘

,

as required.
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7.2 Estimates on the derivatives of the auxiliary

function

The aim of this section is to show that the derivatives of the auxiliary function are of

bounded degree and height, and are small at the point pu1, . . . , udq, where each uj is

defined by

uj “

$

’

&

’

%

p1, ℘pβj´1q, ℘1pβj´1qq if βj´1 R Λ;

p0, 0, 1q if βj´1 P Λ.

This will in turn allow the use of Philippon’s zero lemma and independence criterion,

from which the main theorem of this thesis will follow.

Let γ P Γ, and note that Bγ P MatdˆdpOq is such that

rBγsprΦptqs, rΦptβqs, . . . , rΦptβ
d´1
qsq “ prΦpγtqs, rΦpγtβqs, . . . , rΦpγtβd´1

qsq.

Define

bγ,j “ pbγ,j,1, . . . , bγ,j,dq “ “jth row vector of Bγ” p1 ď j ď dq.

Following an idea by Baker-Coates-Anderson [12], the following map helps to simplify

the task of estimating the derivatives of the auxiliary function at specific points.

Specifically, define the map qγ,j : Ed`1 Ñ E by

qγ,j “ σ2 ˝ prbγ,js ˆ idEq p1 ď j ď dq.

Then, use the representations for σ2, rbγ,js and idE to induce a family of triplets of

homogeneous polynomials in Kpx1, . . . ,xd,yq, denoted

Qζ
γ,j “ pQ

ζ
γ,j,0, Q

ζ
γ,j,1, Q

ζ
γ,j,2q,

where ζ P Zγ,j, and Zγ,j is a finite indexing set. Further denote

Zγ “ tpζijqij | ζij P Zγi,j for 1 ď i ď q; 1 ď j ď du p@γ “ pγ1, . . . , γqq P Γqq.
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Proposition 7.2.1. There exists C P R` such that if S ě 1 and γ P ΓS, then

degxk
qγ,j ď CS2 and hpqγ,jq ď CS2

p@k P t1, . . . , duq.

Furthermore, the representation for qγ,j satisfies degy qγ,j “ 2.

Proof: Since pRζ
σ2
qζ is of bidegree p2, 2q, then

degxk
qγ,j “ 2 degxk

rbγ,js ` 2 degxk
idE “ 2 degxk

rbγ,js;

degy qγ,j “ 2 degyrbγ,js ` 2 degy idE “ 2 degy idE “ 2.

By Proposition 7.1.3, there exists c1 P R` such that bγ,j P pOc1Sqd. Thus, Proposition

6.4.1 yields

degxk
qγ,j ď 2C2pc1Sq

2.

By Proposition 5.2.5, with Ψ “ σ2 and Ψ1 “ rbγ,js ˆ idE, it follows that

hpqγ,jq ď 2 log
`

4
2

˘

` 3 log
`

2C2c21S
2`3d`2

3d`2

˘

` hpσ2q ` 2hprbγ,jsq ` 2hpidEq

ď c2 ` 3p3d` 2q logp2C2c
2
1S

2
` 1q ` 2C2pc1Sq

2

ď c3S
2,

for some c3 P R`. Thus, letting C “ maxt2C2c
2
1, c3u yields the desired result.

Write u “ pu1, . . . , udq, and recall that

uj “

$

’

&

’

%

p1, ℘pβj´1q, ℘1pβj´1qq if βj´1 R Λ;

p0, 0, 1q if βj´1 P Λ,

and so uj 9 Φpβj´1q for each j P t1, . . . , du. Adopt the following notation. Let

f ,g : Cn Ñ Cm be functions in a variable x. If there exists a function ρ : Cn Ñ C

such that

fpxq “ ρpxqgpxq,
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then write

fpxq 9x gpxq.

Remark that while this binary operator is not symmetric, it is in fact transitive, which

will be used in the proof of the following lemma.

Lemma 7.2.2. Let γ P Γ, and let w P C be a variable. Let 1 ď j ď d, and let

ζ P Zγ,j. Then

Qζ
γ,jpu,Φ0pwβ

j´1
qq 9w Φppγ ` wqβj´1

q

for |w| ă ε{cβ, where cβ “ maxt1, |β|d´1u.

Proof: Remark that

uj 9 Φpβj´1
q p1 ď j ď dq;

Φ0pwβ
j´1
q 9w Φpwβj´1

q p@w P Bp0; ε{cβqq.

Since Qγ,j is homogeneous in each xk and in y, then

Qζ
γ,jpu,Φ0pwβ

j´1
qq 9w Q

ζ
γ,jpΦp1q, . . . ,Φpβ

d´1
q,Φpwβj´1

qq

for |w| ă ε{cβ. Notice that p0, 0, 0q trivially satisfies

p0, 0, 0q 9w Φppγ ` wqβj´1
q.

Thus, assume without loss of generality that |w| ă ε{cβ is such that

Qζ
γ,jpu,Φ0pwβ

j´1
qq ‰ p0, 0, 0q.

Thus,

Qζ
γ,jpΦp1q, . . . ,Φpβ

d´1
q,Φpwβj´1

qq ‰ p0, 0, 0q,

and so by Proposition 1.2.1, it follows that

rQζ
γ,jpΦp1q, . . . ,Φpβ

d´1
q,Φpwβj´1

qqs “ qγ,jprΦp1qs, . . . , rΦpβ
d´1
qs, rΦpwβj´1

qsq
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“ rΦpbγ,j ¨ p1, . . . , β
d´1
q ` wβj´1

qs

“ rΦpγβj´1
` wβj´1

qs

“ rΦppγ ` wqβj´1
qs.

Therefore, Qζ
γ,jpΦp1q, . . . ,Φpβ

d´1q,Φpwβj´1qq 9w Φppγ `wqβj´1q, from which transi-

tivity yields that Qζ
γ,jpu,Φ0pwβ

j´1qq 9w Φppγ ` wqβj´1q.

In finding estimates on the proportionality function implied in the result of the above

lemma, define for each γ P Γ, for each j P t1, . . . , du, and for each ζ P Zγ,j, the

functions

δγ,jpwq “ φkppγ ` wqβ
j´1
q;

∆ζ
γ,jpwq “ Qζ

γ,j,kpu,Φ0pwβ
j´1
qq,

where k P t0, 2u is such that γβj´1 P Ck. Recall that Ω “ minωPΛzt0u |ω|, and let

cα “ 1` |α|.

Lemma 7.2.3. There exists c1 P R` such that if S ě 1 and γ P ΓS, then

|δγ,jpwq| ě e´c1S
2

p1 ď j ď dq

for |w| ď Ω{p4cβq.

Proof: Let γ P ΓS, and let j P t1, . . . , du. Then,

|γ| “

ˇ

ˇ

ˇ

ˇ

d
ÿ

k“1

τkβ
k´1

ˇ

ˇ

ˇ

ˇ

ď

d
ÿ

k“1

|τk||β|
k´1

pfor some τk P OSq.

Since |τk| ď cαS, and |β|k´1 ď cβ, then

|γ| ď dcαcβS,

and so |γβj´1| ď dcαc
2
βS. Note that

δγ,jpwq “ φkppγ ` wqβ
j´1
q “ φkpγβ

j´1
` wβj´1

q,
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where γβj´1 P Ck. If |w| ď Ω{p4cβq, then |wβj´1| ď Ω{4, and so by Theorem 4.1.5,

it follows that

|φkpγβ
j´1
` wβj´1

q| ě e´cR
2

,

for some c P R` which does not depend on R, and where R “ dcαc
2
βS. Let

c1 “ cpdcαc
2
βq

2 ą 0, so that

|δγ,jpwq| ě e´c1S
2
.

Lemma 7.2.4. There exists c2 P R` such that if S ě 1 and γ P ΓS, then

|Qζ
γ,j,kpu,Φ0pwβ

j´1
qq| ď exppc2S

2
q p1 ď j ď d; 0 ď k ď 2; @ζ P Zγ,jq,

for |w| ď ε{p2cβq. In particular,

|∆ζ
γ,jpwq| ď exppc2S

2
q p1 ď j ď d; @ζ P Zγ,jq.

Proof: Write

Qζ
γ,j,k “

ÿ

|el|“degxl
Qζγ,j,k

ae1,...,ed`1
xe1

1 ¨ ¨ ¨x
ed`1

d`1 .

Let ml “ maxrt|ul,r|u for 1 ď l ď d. The functions f, h, 1 are entire on Bp0; ε{2q

which is compact, and so let M be an upper bound for |f |, |h|, 1 on Bp0; ε{2q. Since

|wβj´1| ď ε{2, then Proposition 7.2.1 and Lemma 5.1.1 yield that

|Qζ
γ,j,kpu,Φ0pwβ

j´1
qq| ď

ÿ

|el|“degxl
Qζγ,j,k

|ae1,...,ed`1
|mCS2

1 ¨ ¨ ¨mCS2

d M2

ď
ÿ

|el|“degxl
Qζγ,j,k

erK:QsCS2

mCS2

1 ¨ ¨ ¨mCS2

d M2

ď ppCS2
` 2qpCS2

` 1q{2qd`1erK:QsCS2

mCS2

1 ¨ ¨ ¨mCS2

d M2,
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since Qζ
γ,j,k consists of at most ppCS2 ` 2qpCS2 ` 1q{2qd`1 monomials. Thus, there

exists constants c1, c2, c3 ą 0 such that

|Qζ
γ,j,kpu,Φ0pwβ

j´1
qq| ď ec

1S2`c2 logS`c3 .

Finally, there exists c2 ą 0 such that c1S2 ` c2 logS ` c3 ď c2S
2.

The following proposition and theorem justify the reasoning behind Lemma 7.2.2,

7.2.3 and 7.2.4, and illustrate the usefulness of the aforementioned idea by Baker-

Coates-Anderson. Recall that P denotes the polynomial for the auxiliary function F

constructed in Theorem 4.3.2.

Proposition 7.2.5. Let γ “ pγ1, . . . , γqq P Γq, and let ζ P Zγ. Then,

P p1, γ `w, . . . , Q
ζij
γi,j
pu,Φ0pwiβ

j´1
qq, . . . q “

ˆ

ź

i,j

∆
ζij
γi,j
pwiq

δγi,jpwiq

˙D

F pγ `wq,

for w P Bp0; ε{cβq.

Proof: Let i P t1, . . . , qu, and let j P t1, . . . , du. Then, Lemma 7.2.2 implies the

existence of a function ρ
ζij
γi,j

: CÑ C such that

Q
ζij
γi,j
pu,Φ0pwiβ

j´1
qq “ ρ

ζij
γi,j
pwiqΦppγi ` wiqβ

j´1
q p@wi P Bp0; ε{cβqq.

Since Theorem 4.1.5 implies that δγi,jpwiq ‰ 0, then

ρ
ζij
γi,j
pwiq “

∆
ζij
γi,j
pwiq

δγi,jpwiq
p@wi P Bp0; ε{cβqq.

Since P p1, z,x1,1, . . . ,xq,dq is homogeneous of degree D in each xi,j, then

ˆ

ź

i,j

∆
ζij
γi,j
pwiq

δγi,jpwiq

˙D

F pγ `wq “

ˆ

ź

i,j

ρ
ζij
γi,j
pwiq

˙D

P p1, γ `w, . . . ,Φppγi ` wiqβ
j´1
q, . . . q

“P p1, γ `w, . . . , ρ
ζij
γi,j
pwiqΦppγi ` wiqβ

j´1
q, . . . q
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“P p1, γ `w, . . . , Q
ζij
γi,j
pu,Φ0pwiβ

j´1
qq, . . . q,

as required.

For the sake of compactness, define the polynomial

pσγ,ζpxq “
B|σ|

Bwσ
P p1, γ `w, . . . , Q

ζij
γi,j
px,Φ0pwiβ

j´1
qq, . . . q

ˇ

ˇ

ˇ

ˇ

w“0

,

where x is a multivariable over pC3qd. Let η “ mintΩ{p4cβq, ε{p2cβq, 1u. Throughout

the remainder of this thesis, fix S – SpLq such that it satisfies

q1{2dcαcβS ` η “ plogLqς p@L P N`q,

where ς “ 1{p2d´ 1q ď 1.

Theorem 7.2.6. Let γ “ pγ1, . . . , γqq P ΓqS, and let ζ P Zγ. If L is sufficiently large,

then

|pσγ,ζpuq| ď e´LplogLq1`ε{2
p@|σ| ď Lq.

Proof: Since γ P ΓqS, then

|γ `w| ď |γ| ` η ď q1{2dcαcβS ` η ď logL p@|w| ď ηq.

Then, Theorem 4.3.2 yields

|F pγ `wq|η ď e´2LplogLq1`ε{2 .

Then, from Lemma 7.2.3 and Lemma 7.2.4, it follows that

ˇ

ˇ

ˇ

ˇ

ˆ

ź

i,j

∆
ζij
γi,j
pwiq

δγi,jpwiq

˙D

F pγ `wq

ˇ

ˇ

ˇ

ˇ

|w|ďη

ď epc1`c2qS
2qdD´2LplogLq1`ε{2 .

Remark that pδγi,jpwqq
´1 is holomorphic for |w| ď η. Thus, Cauchy’s inequality yields

ˇ

ˇ

ˇ

ˇ

B|σ|

Bwσ

ˆ

ź

i,j

∆
ζij
γi,j
pwiq

δγi,jpwiq

˙D

F pγ `wq

ˇ

ˇ

ˇ

ˇ

w“0

ď
|σ|!

η|σ|
epc1`c2qS

2qdD´2LplogLq1`ε{2
p@σ P Nq

q.
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Thus, if |σ| ď L, then

|σ|!

η|σ|
epc1`c2qS

2qdD´2LplogLq1`ε{2
ď eL logL´L log η`pc1`c2qS2qdD´2LplogLq1`ε{2

ď e´LplogLq1`ε{2 ,

for sufficiently large L. Proposition 7.2.5 yields the conclusion.

Theorem 7.2.7. Let γ “ pγ1, . . . , γqq P ΓqS, and let ζ P Zγ. Then, for all sufficiently

large L,

degx p
σ
γ,ζpxq ď d2CqDS2;

hppσγ,ζq ď 3LplogLqε p@|σ| ďMq,

where M “ L{ logL.

Proof: Let σ P Nq with |σ| ďM . Differentiating by w does not affect the degree

in x of

P p1, γ `w, . . . , Q
ζij
γi,j
px,Φ0pwiβ

j´1
qq, . . . q,

which has degree in x bounded by qd ¨D ¨ dCS2. Thus, it follows that

degx p
σ
γ,ζpxq ď d2CqDS2.

Define

Dσi
i “

Bσi

Bwiσi
,

and write D “ pD1, . . . ,Dqq so that Dσ “ Dσ1
1 ¨ ¨ ¨D

σq
q , and so

pσγ,ζpxq “ DσP p1, γ `w, . . . , Q
ζij
γi,j
px,Φ0pwiβ

j´1
qq, . . . q|w“0.

Define

Ai “ γi ` wi and Bijk “ Q
ζij
γi,j,k

px,Φ0pwiβ
j´1
qq,

and write

Bij “ pBij0, Bij1, Bij2q and Bi “ pBi1, . . . ,Bidq.
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By writing

P “
ÿ

|k|“L

ÿ

|eij |“D

ck,ez
k0
0

q
ź

i“1

pzkii

d
ź

j“1

x
eij
ij q pfor some ck,e P Zq,

then

P p1, γ `w, . . . , Q
ζij
γi,j
px,Φ0pwiβ

j´1
qq, . . . q “

ÿ

|k|“L

ÿ

|eij |“D

ck,e

q
ź

i“1

pAkii

d
ź

j“1

B
eij
ij q.

Since each wi only appears in the Ai and Bij terms, it follows that

DσP p1, γ `w, . . . , Q
ζij
γi,j
px,Φ0pwiβ

j´1
qq, . . . q “

ÿ

|k|“L

ÿ

|eij |“D

ck,e

q
ź

i“1

Dσi
i pA

ki
i Bei

i q.

Define

Tike – Dσi
i pA

ki
i Bei

i q|w“0. (7.2.1)

Since the sum above has at most M1 “
`

L`q
L

˘

p2D`1qqd terms, and degx Tike ďM2 “

d2DCS2, then Lemma 5.2.1 yields that

›

›

›
pσγ,ζ

›

›

›

v
ď

!

M1

`

M2`3d´1
M2

˘q´1
)

v
}P }v max

ike
}Tike}

q
v p@v PMKq. (7.2.2)

Note that if i P t1, . . . , qu, then

Dσi
i pA

ki
i Bei

i q “

mintσi,kiu
ÿ

l“0

`

σi
l

˘ ki!

pki ´ lq!
Aki´li Dσi´l

i pBei
i q.

Define

Uile – Dσi´l
i pBei

i q|w“0, (7.2.3)

and so

Tike “

mintσi,kiu
ÿ

l“0

`

σi
l

˘ ki!

pki ´ lq!
γki´li Uile.

Since l, σi ďM , and ki ď L, then Lemma 5.2.1 yields that

max
ike

}Tike}v ď
 

M ¨ 2M ¨ LM
(

v
max
i
t1, |γi|vu

L max
ile
}Uile}v p@v PMKq. (7.2.4)
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Note that if i P t1, . . . , qu, then

Dσi´l
i pBei

i q “
ÿ

ř

j,k sijk“σi´l

`

σi´l
si11¨¨¨sid3

˘

ź

j,k

D
sijk
i B

eijk
ijk .

Define

V s,e
ijk – Ds

iB
e
ijk|w“0, (7.2.5)

and so

Uile “
ÿ

ř

j,k sijk“σi´l

`

σi´l
si11¨¨¨sid3

˘

ź

j,k

V
sijk,eijk
ijk .

The sum above has at most M3 “
`

M`3d´1
M

˘

terms, degx V
sijk,eijk
ijk ď M4 “ dDCS2,

and
`

σi´l
si11¨¨¨sid3

˘

ď p3dqM . Thus, Lemma 5.2.1 yields for each v PMK that

max
ile
}Uile}v ď

!

M3p3dq
M
`

M4`3d´1
M4

˘3d´1
)

v
max
ijk

max
sďM

max
eďD

›

›V s,e
ijk

›

›

3d

v
. (7.2.6)

Note that if i P t1, . . . , qu, then

Ds
iB

e
ijk “ Ds

i pQ
ζij
γi,j,k

px,Φ0pwiβ
j´1
qqq

e
“

ÿ

s1`¨¨¨`se“s

`

s
s1¨¨¨se

˘

e
ź

l“0

Dsl
i Q

ζij
γi,j,k

px,Φ0pwiβ
j´1
qq.

By writing

Q
ζij
γi,j,k

px,yq “
ÿ

δ

ÿ

|ε|“2

bi,j,kδ,ε x δy ε
pfor some bi,j,kδ,ε P Kq,

then

Ds
iB

e
ijk “

ÿ

s1`¨¨¨`se“s

`

s
s1¨¨¨se

˘

e
ź

l“1

ÿ

δ

ˆ

ÿ

|ε|“2

bi,j,kδ,ε Dsl
i pΦ0pwiβ

j´1
qq
ε

˙

x δ.

Since Φ0 “ pf, h, 1q, then it is possible to write for each |ε| “ 2 that

Φ0pwiβ
j´1
q
ε
“ χ1,εpwiβ

j´1
qχ2,εpwiβ

j´1
q p1 ď i ď q; 1 ď j ď dq,

for some χ1,ε, χ2,ε P tf, h, 1u. Notice then that

Dn
i pχλ,εpwiβ

j´1
qq|w“0 “ χ

pnq
λ,ε p0qβ

npj´1q
p@λ P t1, 2u; @n P Nq,

and so

Dsl
i pΦ0pwiβ

j´1
qq
ε
|w“0 “

sl
ÿ

λ“0

`

sl
λ

˘

βslpj´1qχ
pλq
1,ε p0qχ

psl´λq
2,ε p0q. (7.2.7)
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Thus, it follows

V s,e
ijk “

ÿ

s1`¨¨¨`se“s

`

s
s1¨¨¨se

˘

e
ź

l“1

ˆ

ÿ

δ

ˆ

ÿ

|ε|“2

bi,j,kδ,ε

sl
ÿ

λ“0

`

sl
λ

˘

βslpj´1qχ
pλq
1,ε p0qχ

psl´λq
2,ε p0q

˙

x δ

˙

“
ÿ

s1`¨¨¨`se“s

`

s
s1¨¨¨se

˘

βspj´1q
e
ź

l“1

ˆ

ÿ

δ

ˆ

ÿ

|ε|“2

bi,j,kδ,ε

sl
ÿ

λ“0

`

sl
λ

˘

χ
pλq
1,ε p0qχ

psl´λq
2,ε p0q

˙

x δ

˙

.

Since s ďM , e ď D, and δ “ pδ1, . . . , δdq has each |δ l| ď CS2, then
ř
`

s
s1¨¨¨se

˘

ď DM ,

and each polynomial in the product of polynomials has degree in x bounded by

M5 “ dCS2. Then, Lemma 5.2.1 yields for each v PMK that

max
ijkse

›

›V se
ijk

›

›

v

ď tDuMv maxt1, |β|pd´1qM
v u

 `

M5`3d´1
M5

˘(D´1

v
max
ijklδ

ˇ

ˇ

ˇ

ˇ

ÿ

|ε|“2

bi,j,kδ,ε

sl
ÿ

λ“0

`

sl
λ

˘

χ
pλq
1,ε p0qχ

psl´λq
2,ε p0q

ˇ

ˇ

ˇ

ˇ

D

v

ď tDuMv maxt1, |β|dMv u

ˆ

 

M3d
5 ¨ 6 ¨ 2M

(

v
max
ijklλε

›

›

›
Q
ζij
γi,j,k

›

›

›

v

ˇ

ˇ

ˇ
χ
pλq
1,ε p0qχ

psl´λq
2,ε p0q

ˇ

ˇ

ˇ

v

˙D

.

By letting M6 “ DMpM3d
5 ¨ 6 ¨ 2MqD, it follows for each v PMK that

max
ijkse

›

›V se
ijk

›

›

v

ď tM6uv max
ijk

›

›

›
Q
ζij
γi,j,k

›

›

›

D

v
maxt1, |β|dMv u max

0ďλďM
t1,

ˇ

ˇf pλqp0q
ˇ

ˇ

v
,
ˇ

ˇhpλqp0q
ˇ

ˇ

v
u

2D.
(7.2.8)

Let

M7 “M1

`

M2`3d´1
M2

˘q´1
´

Mp6dLqMM3

`

M4`3d´1
M4

˘3d´1
¯q

M3qd
6 ,

and note that Proposition 7.2.1 yields that

hppQ
ζij
γi,j,k

qijkq ď qdCS2.

Thus, Lemma 5.2.2 and equations (7.2.2), (7.2.4), (7.2.6), and (7.2.8) yield that

hppσγ,ζq ď logM7 ` hpP q ` qLhpγq ` 3qdDCS2

` 3qd2Mhpβq ` 6qdDhppf pnqp0q, hpnqp0qq0ďnďMq.
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By Theorem 4.3.2, Proposition 7.1.1, and Corollary 7.1.9, this last expression, with

the logM7 term omitted, is thus bounded by

L` qLplogp2dSq ` hpαq ` dhpβqq

` 3qdpDCS2
` dMhpβq ` 2DMplogM ` hpg2, g3q ` log 38qq

ď 2DM logL “ 2DL,

for sufficiently large L. Since all of the logMi terms for i P t1, . . . , 6u have order less

than M logL, it follows that

logM7 ď c̃M logL “ c̃L,

for some c̃ P R`, and sufficiently large L. Therefore,

hppσγ,ζq ď 2DL` c̃L ď 2pplogLqε ` 1qL` c̃L ď 3LplogLqε,

for sufficiently large L, as required.



Chapter 8

Zero Estimate

The main result of this chapter will use Philippon’s zero lemma, stated as Theorem

8.2.1, and whose proof is in [9]. Before doing so, some notation and terminology will

be established.

8.1 Preliminaries

Let G “ Cn ˆ Em, and note that it is an algebraic group. The exponential map on

G, denoted expG : Cn ˆ Cm Ñ G is defined by

expGpt, z1, . . . , zmq “ pt, expEpz1q, . . . , expEpzmqq.

The following notion will be quite relevant as well.

Definition. An algebraic subgroup is an algebraic set which is a subgroup of an

algebraic group.

Let H ď G be a connected algebraic subgroup. The tangent space of H, denoted

THpCq, is defined as the connected component of the preimage of expG at H which

contains 0 P Cn`m. In fact, there exists a subspace U Ď Cn and a subspace V Ď Cm

defined over Qpαq such that

THpCq “ U ˆ V.
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In particular, letting k “ dimCpUq and l “ dimCpV q, it follows that H – Ck ˆ El.

Let Θ : Cn Ñ CnˆCm be a C-linear map, and let W “ ImpΘq be its image. Let

Z “ pZ0, . . . , Znq and Xi “ pXi,0, Xi,1, Xi,2q p1 ď i ď mq

be indeterminates over C, and let P pZ,X1, . . . ,Xmq be multihomogeneous with

degZpP q “ L and degXi
pP q “ D p1 ď i ď mq. (8.1.1)

Let T P N. The polynomial P is said to vanish at a point expGpuq P G at an order

ą T along W if

0 “
B|σ|

Bwσ
P p1, expGpu`Θpwqqq|w“0 p@|σ| ď T q.

Finally, define, for a finite set Σ Ď G and an integer N ě 1, the set

ΣpNq “ tx1 ` ¨ ¨ ¨ ` xN | each xi P Σu.

8.2 Zero Estimate

The following theorem is due to Philippon, and specialized to the above context.

Theorem 8.2.1 (Philippon, 1986). Let Σ be a finite subset of G “ Cn ˆ Em which

contains the origin. Suppose that P satisfies (8.1.1) and vanishes at each point of

Σpn`mq at an order ą T along W . Then, there exists a connected algebraic subgroup

H ď G, H – Ck
ˆ El,

such that H is contained in a translate of G ∩ ZpP q, and such that

ˇ

ˇ

ˇ

ˇ

Σ`H

H

ˇ

ˇ

ˇ

ˇ

¨ T dimCpW {pW∩THqq ! Ln´kDm´l.

This theorem plays a crucial role in the proof of the following proposition.
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Proposition 8.2.2. Let the notation be as in Theorem 7.2.7, and let K “ Qpα, βq.

Recall that d “ rK : Qpαqs, ς “ 1{p2d ´ 1q, S — plogLqς , ε ą 0 is a real parameter

that can be chosen to be arbitrarily small, and that q P N` is a parameter satisfying

q ą p2` εq{pεp2d´ 1qq. Let T “ L{ logL. Then, the polynomials in

FL – tpσγ,ζ |σ P Nq, with |σ| ď T ; γ “ pγ1, . . . , γqq P ΓqS; ζ P Zγu

have no common zeros in Ed Ď C3d for all sufficiently large L.

Proof: Take n “ q and m “ qd, so that G “ Cq ˆEqd. Recall that P denotes the

polynomial constructed in Theorem 4.3.2 which satisfies (8.1.1) withD “ tlogpLq`1uε.

Suppose that a P Ed Ď C3d is a common zero for the polynomials in FL. Then, there

exists z P Cd such that a “ expEdpzq. Thus, since

pσγ,ζpaq “ 0 p@|σ| ď T ; @γ P ΓqS, @ζ P Zγq,

it follows that

0 “
B|σ|

Bwσ
P p1, expGpγ `w, . . . , Bγipzq

T
` wiβ

T , . . . qq|w“0 (8.2.1)

for all |σ| ď T , and for all γ P ΓqS. For what follows, identify Cqd with CqbCd, and let

ei b ej P Cq bCd identify with the vector in Cqd whose entries are all zero except for

a 1 in the jth position of the ith bloc which consists of d coordinates. Let te1, . . . , equ

be the canonical basis for Cq, and write β “ p1, β, . . . , βd´1q. Define

ωi “ pei, ei b βq P Cq
ˆ pCq

b Cd
q p1 ď i ď qq,

and let Θ : Cq Ñ Cq ˆ pCq b Cdq be the C-linear map for which

Θpeiq “ ωi p1 ď i ď qq.

Define W “ ΘpCqq “ xω1, . . . , ωqyC. Let

vij “ pβ
j´1ei, ei b pBβj´1pzqT qq P Cq

ˆ pCq
b Cd

q p1 ď i ď q; 1 ď j ď dq.
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Let c “ q ` qd, and let N “ tS{cu. Define

ZN “

" q
ÿ

i“1

d
ÿ

j“1

τijvij

ˇ

ˇ

ˇ

ˇ

τij P ON
*

p@N P Nq;

ΣN “ expGpZNq p@N P Nq.

Notice that since cN ď S, then for each point u P ZcN , there exists γ P ΓqS such that

u “ pγ, . . . , Bγipzq
T , . . . q.

Thus, by remarking that ΣcN “ ΣNpcq, we get by (8.2.1) that P vanishes at each

point of ΣNpcq at an order ą T along W . Thus, by Theorem 8.2.1, there exists a

connected algebraic subgroup

H ď G, H – Ck
ˆ El,

such that H is contained in a translate of G ∩ ZpP q, and such that
ˇ

ˇ

ˇ

ˇ

ΣN `H

H

ˇ

ˇ

ˇ

ˇ

¨ pL{ logLqdimCpW {pW∩THqq ! Lq´kDqd´l. (8.2.2)

The next step is to show that (8.2.2) is impossible. Note that

1 ď |pΣN `Hq{H| ,

and so by comparing powers of L in (8.2.2), it follows that

dimCpW {pW ∩ THqqq ` k ď q

q ´ dimCpW ∩ THq ď q ´ k

k ď dimCpW ∩ THq. (8.2.3)

Define the projections

π1 : Cq
ˆ pCq

b Cd
q Ñ Cq and π2 : Cq

ˆ pCq
b Cd

q Ñ pCq
b Cd

q

by

π1px, tq “ x and π2px, tq “ t p@x P Cq; @t P Cq
b Cd

q.
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In order to obtain an upper bound for dimCpW ∩ THq, write

TH “ π1pTHq ˆ π2pTHq “ U ˆ V,

for some subspace U Ď Cq and some subspace V Ď Cq b Cd defined over Qpαq,

satisfying

dimCpUq “ k and dimCpV q “ l.

Then, since π1|W : W Ñ Cq is a bijection, it follows that

dimCpW ∩ THq “ dimC π1pW ∩ THq ď dimC π1pTHq “ dimCpUq ď k,

and so, recalling (8.2.3),

dimCpW ∩ THq “ k.

Thus, (8.2.2) yields

ˇ

ˇ

ˇ

ˇ

ΣN `H

H

ˇ

ˇ

ˇ

ˇ

! Dqd´l logpLqq´k — logpLqq´k`εpqd´lq. (8.2.4)

Further, a lower bound for l “ dimCpV q can be deduced. Since

dimC π1pW ∩ THq “ dimC π1pTHq and π1pW ∩ THq Ď π1pTHq,

then π1pW ∩ THq “ π1pTHq. Thus, remarking that

pπ1|W q
´1
pzq “ Θpzq p@z P Cq

q,

yields that

U “ π1pTHq “ π1pW ∩ THq “ pπ1|W qpW ∩ THq

ΘpUq “ W ∩ TH Ď TH

π2pΘpUqq Ď π2pTHq “ V.

By letting

κ “ dimKpK
q ∩ Uq ď k,
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it is claimed that l ě κd. Remark that the smallest subspace defined over Qpαq which

contains π2pΘpUqq is RK1 where

R1 “

#

ÿ

aijei b ej P Qpαqq bQpαqd
ˇ

ˇ

ˇ
x
ÿ

ij

aijei b ej,xb βy “ 0 for all x P U

+

,

using the scalar product

x
ÿ

ij

aijei b ej,
ÿ

ij

bijei b ejy “
ÿ

ij

aijbij.

Note that,

dimCpV q “ dimQpαqpV ∩Qpαqq bQpαqdq ě dimQpαqpR
K
1 q “ qd´ dimQpαqpR1q.

Now, define

R2 “

#

pb1, . . . , bqq P K
q
ˇ

ˇ

ˇ

q
ÿ

i“1

bixi “ 0 for all x “ px1, . . . , xqq P U

+

,

and notice that R2 “ Kq ∩UK Ď pKq ∩UqK. Then, since t1, β, . . . , βd´1u are linearly

independent over Qpαq, the following is a bijection.

R1 – R2

Σijaijei b ej ÞÑ pΣd
j“1a1jβ

j´1, . . . ,Σd
j“1aqjβ

j´1
q,

which is a Qpαq-linear map. Thus,

dimQpαqpR1q “ d dimKpR2q ď dpq ´ dimKpK
q ∩ Uqq “ dpq ´ κq,

and so

dimCpV q ě qd´ dimQpαqpR1q ě dκ,

which proves the claim. Notice then that

´k ď ´κ and ´ l ď ´dκ,
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and so

q ´ k ` εpqd´ lq ď pq ´ κqp1` εdq.

Thus, it follows by (8.2.4) that

ˇ

ˇ

ˇ

ˇ

ΣN `H

H

ˇ

ˇ

ˇ

ˇ

! logpLqpq´κqp1`εdq. (8.2.5)

In order to find the desired contradiction, a lower bound for the cardinality of the set

ˇ

ˇ

ˇ

ˇ

ΣN `H

H

ˇ

ˇ

ˇ

ˇ

will be required. Since kerpexpGq “ t0u
q ˆ Λqd and expGpTHq “ H, the following is a

bijection:

TG{pt0u
q
ˆ Λqd

` THq – G{H

px` t0uq ˆ Λqd
q ` TH ÞÑ expGpxq `H.

Thus, it follows that

ˇ

ˇ

ˇ

ˇ

ΣN `H

H

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ZN ` TH ` t0u
q ˆ Λqd

TH ` t0uq ˆ Λqd

ˇ

ˇ

ˇ

ˇ

.

Since π1pZNq “ ΓqN , π1pTHq “ U and π1pt0u
q ˆ Λqdq “ t0uq, then the following is a

surjection:

ZN ` TH ` t0u
q ˆ Λqd

TH ` t0uq ˆ Λqd
Ñ

ΓqN ` U

U

x` TH ` t0u
q
ˆ Λqd

ÞÑ π1pxq ` U,

and so
ˇ

ˇ

ˇ

ˇ

ZN ` TH ` t0u
q ˆ Λqd

TH ` t0uq ˆ Λqd

ˇ

ˇ

ˇ

ˇ

ě

ˇ

ˇ

ˇ

ˇ

ΓqN ` U

U

ˇ

ˇ

ˇ

ˇ

.

Since ΓqN Ă Kq, it follows that

ˇ

ˇ

ˇ

ˇ

ΓqN ` U

U

ˇ

ˇ

ˇ

ˇ

ě |ΓN |
q´dimKpK

q∩Uq .
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Since tαiβj | 0 ď i ă 2, 0 ď j ă du is a Z-basis for Γ, then |ΓN | “ p2N ` 1q2d, and so

p2N ` 1q2dpq´κq ď

ˇ

ˇ

ˇ

ˇ

ΣN `H

H

ˇ

ˇ

ˇ

ˇ

.

Therefore, it follows from (8.2.5) that plogLqς¨2dpq´κq ! logpLqpq´κqp1`εdq, and so

ς ¨ 2dpq ´ κq ď pq ´ κqp1` εdq. (8.2.6)

Suppose that q ‰ κ, then q ´ κ ą 0. Thus, since ς “ 1{p2d´ 1q, it follows that

2d{p2d´ 1q ď 1` εd

1` 1{p2d´ 1q ď 1` εd

pdp2d´ 1qq´1
ď ε,

which is a contradiction, if ε is chosen small enough, and so q “ κ. Note that this

could not have been deduced if E did not have complex multiplication. Specifically,

if E did not have complex multiplication, then |ΓN | “ p2N ` 1qd, so that the above

inequalities would yield d{p2d´ 1q ď 1` εd which does not yield a contradiction for

any choice of ε and d. Since q “ κ, it follows that qd ě l ě κd, and so l “ qd.

Therefore, it follows that TH “ U ˆV “ CqˆpCqbCdq, and so H “ G. Since G “ H

is contained in a translate of G ∩ ZpP q, then G “ ZpP q, and so

P p1, z,x11, . . . ,x1d, . . . ,xq1, . . . ,xqdq “ 0 p@z P Cq; @xij P E Ă C3
q.

In particular, by letting x “ px11, . . . ,x1d, . . . ,xq1, . . . ,xqdq, and by defining

hijpxq “ xij,0x
2
ij,2 ´ 4x3

ij,1 ` g2x
2
ij,0xij,1 ` g3x

3
ij,0,

it follows that

P P phijpxq, . . . , hqdpxqq.

Since P ‰ 0, and since each distinct generating polynomial in the above ideal has

distinct indeterminates, it follows for some i P t1, . . . , qu and some j P t1, . . . , du that

degxij,2
P ě 2.
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However, Theorem 4.3.2 guarantees that degxij,2
P ď 1, yielding a contradiction.

Thus, the family FL has no common zeros in Ed Ď C3d, as required.



Chapter 9

Independence Criterion

In order to prove the main theorem, Philippon’s criterion for algebraic independence

from [10] will be given, specialized to the case where the families of polynomials have

no common zeros.

Theorem 9.0.3 (Philippon, 1984). Let k P N and let θ “ pθ1, . . . , θdq P pCn`1qd. Let

N0 P N, and let δ, τ , and V be increasing functions on tN0, N0`1, . . . u Ñ r1,8q such

that δpNq ď τpNq for all N ě N0, and such that

lim
NÑ8

τpNq “ 8, lim
NÑ8

τpN ` 1q

τpNq
“ lim

NÑ8

δpN ` 1q

δpNq
“ 1 and lim

NÑ8
V pNq “ 8.

Suppose for each N sufficiently large that there exists a family of polynomials F which

has no common zeros in pPnqd, and is such that

hppq ď τpNq, degxppq ď δpNq p@p P Fq;

max
pPF

|ppθq| ď expp´V pNqτpNqδpNqkq.

Then

tr.degQpQpθ1, . . . , θdqq ą k.

By taking the family of polynomials from Proposition 8.2.2, and by applying the

estimates from Theorem 7.2.6 and Theorem 7.2.7, an application of Theorem 9.0.3

can be used to deduce the following theorem.
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Theorem 9.0.4. Let Λ Ă C be a lattice such that the corresponding elliptic curve has

complex multiplication, and such that g2pΛq, g3pΛq P Q. Let β be a non-zero algebraic

integer with d “ rQpα, βq : Qpαqs. Then, by defining

uj “

$

’

&

’

%

p1, ℘pβj´1q, ℘1pβj´1qq if βj´1 R Λ;

p0, 0, 1q if βj´1 P Λ,

it follows that tr.degQpQpu1, . . . , udqq “ d. In particular, t1, β, . . . , βd´1u ∩ Λ “ ∅.

Proof: Following the notation in Theorem 9.0.3, let k “ d ´ 1, N “ L, and

θ “ pu1, . . . , udq. Further, define the functions

τpLq “ 3LplogLqε, δpLq “ d2CqDS2 and V pLq “ LplogLq1`ε{2{pτpLqδpLqkq,

where D “ tlogpLq ` 1uε and S — plogLqς with ς “ 1{p2d´ 1q. Notice that

V pLq — plogLq1`ε{2{
`

plogLqεplogpLqε logpLq2ςqk
˘

“ plogLq1´ε{2´kε´2kς .

Since 1´ 2kς “ 1´ 2pd´ 1q{p2d´ 1q “ 1{p2d´ 1q “ ς, then

V — plogLqς´p1`2kqε{2.

By choosing ε ą 0 such that ς ą p1` 2kqε{2, then

lim
LÑ8

V pLq Ñ 8.

Define

hipxq “ xi,0x
2
i,2 ´ 4x3

i,1 ` g2x
2
i,0xi,1 ` g3x

3
i,0 p1 ď i ď dq,

and define for each L the family of polynomials

F̃L “ FL ∪ th1, . . . , hdu.
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Since Zph1, . . . , hdq “ Ed Ď pP2qd, Proposition 8.2.2 yields for sufficiently large L that

F̃L has no common zeros in pP2qd. Note that

hipθq “ 0 p1 ď i ď q; 1 ď j ď dq,

and so Theorem 7.2.6 yields for sufficiently large L that

max
pPF̃L

|ppθq| ď expp´V pNqτpNqδpNqkq.

Further, since each hi is of bounded height and degree, Theorem 7.2.7 yields

hppq ď τpLq, degxppq ď δpLq p@p P F̃Lq

for sufficiently large L. Thus, Theorem 9.0.3 yields

tr.degQpQpu1, . . . , udqq ě d.

Since g2, g3 are algebraic over Q, then ℘1pzq is algebraic over Kp℘pzqq. Thus,

tr.degQpQpu1, . . . , udqq ď d,

and so

tr.degQpQpu1, . . . , udqq “ d.

In particular, t1, β, . . . , βd´1u ∩ Λ “ ∅, or else tr.degQpQpu1, . . . , udqq ă d.

Corollary 9.0.5. Let Λ Ă C be a lattice such that the corresponding elliptic curve

has complex multiplication, and such that g2pΛq, g3pΛq P Q. Then,

Q ∩ Λ “ t0u.

Proof: Let β be an algebraic integer not in Z. Thus, Theorem 9.0.4 gives that

β R Λ. Furthermore, it gives that 1 R Λ. Now, suppose that n P Λ for some
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n P Zzt1, 0u. Then, it follows that 1 P n´1Λ. To show that this is impossible, note

that ℘pz;n´1Λq has invariants

g2pn
´1Λq “ n4g2 P Q and g3pn

´1Λq “ n6g3 P Q.

Since O ¨ n´1Λ Ď n´1Λ, then the associated elliptic curve must have complex multi-

plication. Thus, by Theorem 9.0.4, it follows that 1 R n´1Λ, which is a contradiction.

Thus, every non-zero algebraic integer is not in Λ. Finally, letting q P Qˆ, there exists

D P N` such that Dq is a non-zero algebraic integer. Thus, qD R Λ which implies

that q R D´1Λ Ě Λ. Thus, q R Λ.

The main result thus follows immediately from Theorem 9.0.4 and Theorem 3.2.4.

Theorem 9.0.6. Let k “ Qpαq, and let β1, . . . , βs P Q be linearly independent over

k. Then ℘pβ1q, . . . , ℘pβsq are algebraically independent over Q.
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