
sensors

Article

Spatial Baseline Optimization for Spaceborne
Multistatic SAR Tomography Systems

Jiuchao Zhao, Anxi Yu, Yongsheng Zhang *, Xiaoxiang Zhu and Zhen Dong

College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073,
China; zhaojiuchao17@nudt.edu.cn (J.Z.); yu_anxi@nudt.edu.cn (A.Y.); xiaoxiang.z@yahoo.com (X.Z.);
dongzhen@nudt.edu.cn (Z.D.)
* Correspondence: zyscn@163.com; Tel.: +86-135-7483-8648

Received: 24 February 2019; Accepted: 1 May 2019; Published: 7 May 2019
����������
�������

Abstract: Spaceborne multistatic synthetic aperture radar (SAR) tomography (SMS-TomoSAR)
systems take full advantage of the flexible configuration of multistatic SAR in the space, time,
phase, and frequency dimensions, and simultaneously achieve high-precision height resolution and
low-deformation measurement of three-dimensional ground scenes. SMS-TomoSAR currently poses
a series of key issues to solve, such as baseline optimization, spatial transmission error estimation
and compensation, and the choice of imaging algorithm, which directly affects the performance of
height-dimensional imaging and surface deformation measurement. This paper explores the impact
of baseline distribution on height-dimensional imaging performance for the baseline optimization
issue, and proposes a feasible baseline optimization method. Firstly, the multi-base multi-pass
baselines of an SMS-TomoSAR system are considered equivalent to a group of multi-pass baselines
from monostatic SAR. Secondly, we establish the equivalent baselines as a symmetric-geometric
model to characterize the non-uniform characteristic of baseline distribution. Through experimental
simulation and model analysis, an approximately uniform baseline distribution is shown to have
better SMS-TomoSAR imaging performance in the height direction. Further, a baseline design method
under uniform-perturbation sampling with Gaussian distribution error is proposed. Finally, the
imaging performance of different levels of perturbation is compared, and the maximum baseline
perturbation allowed by the system is given.

Keywords: spaceborne multistatic SAR tomography (SMS-TomoSAR); spatial baseline optimization;
symmetric- geometric model; uniform perturbation

1. Introduction

Knaell proposed two azimuth-range two-dimensional synthetic aperture acquisition
techniques—curve SAR (CurviLinear SAR, CLSAR) [1] and SAR tomography (TomoSAR) [2]—in 1994
and 1995, respectively. Compared with interferometric SAR (InSAR) [3], CLSAR and TomoSAR truly
qualify as 3D imaging. In TomoSAR, the use of a stack of complex-valued images, by synthesizing apertures
along the height direction, makes it possible to separate different scatterers in one range-azimuth
resolution cell and achieves height resolution, so as to provide the full 3D scene reflectivity profile in
azimuth, range, height, and average velocity deformation [4].

Since the first practical demonstration of TomoSAR [5], it has been successfully applied in many
application contexts, such as forestry [6,7], 3D urban reconstruction [8,9], and glaciers [10]. TomoSAR
consists of resolving an inversion problem. To date, various spectral analysis methods have been
developed for TomoSAR [11] to perform tomography inversion. These methods can be divided into
three groups: (1) nonparametric spectral estimation [12–14], (2) parametric spectral estimation [15–17],
and (3) compressive sensing (CS) [18–21]. Each of the three groups of TomoSAR methods has its
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respective advantages and drawbacks. For instance, the nonparametric spectral estimators (e.g.,
beamforming [12,13] and Capon [13,14]) are robust to focusing artifacts but obtain a low height
resolution. The parametric spectral estimators, such as the multiple signal classification (MUSIC)
estimator [15], the maximum likelihood (ML) estimators [16], and the weighted subspace fitting (WSF)
estimators [16,17], can obtain a better height resolution than the nonparametric spectral estimators.

On the other hand, in [22], the single-pass multi-baseline TomoSAR system has 3D resolution,
including height-resolving ability in a single-pass platform because there are multiple channels in the
cross-track direction. However, the Rayleigh resolution in the height direction is very limited due to
the limited baseline length in a single-pass platform. To obtain larger baseline length for better height
resolution, the concept of Multistatic SAR [23] was introduced to the TomoSAR research. Moreover,
multistatic SAR systems have great application potential in high-resolution wide-swath imaging,
moving target detection, interferometric altimetry, 3D/4D imaging, anti-interference, multi-level
imaging, etc. Therefore, the concept of a spaceborne multistatic TomoSAR (SMS-TomoSAR) system
was proposed. SMS-TomoSAR has multi-baseline, multi-temporal detection capabilities in spatial and
temporal dimensions, which can further realize spatial resolution in the height direction, and small
surface deformation measurement of the 3D ground scene (i.e., 3D/4D imaging). To date, very limited
research has been reported on this aspect of SMS-TomoSAR. Further, a series of key technical issues,
such as baseline optimization design, phase error compensation, and imaging processing, directly affect
the performance of high-precision resolution imaging in the height direction of SMS-TomoSAR systems.

In this paper, the multi-base multi-pass baselines of SMS-TomoSAR systems are considered
equivalent to a group of multi-pass baselines of monostatic SAR. Secondly, the equivalent baselines
are established as a symmetric-geometric model to characterize the non-uniform characteristics of
baseline distribution. The model is centered on the main image, and baselines on both sides satisfy
symmetric-geometric distribution. It is concluded that an approximately uniform baseline distribution
has better SMS-TomoSAR imaging performance in the height direction. Further, a baseline design
method under uniform-perturbation sampling with normal distribution error is proposed. The imaging
performance of different levels of perturbation is compared, and the maximum baseline perturbation
allowed by the system is given. Finally, our experimental simulation results verify the effectiveness of
the proposed baseline optimization method.

2. Baseline Equivalence Analysis of SMS-TomoSAR

SMS-TomoSAR systems employ several small satellites S1, S2, . . . , SN in a formation to observe and
measure the target area. In particular, SMS-TomoSAR could be considered to be monostatic SAR when
an SMS-TomoSAR system employs only one satellite. Compared with monostatic SAR, SMS-TomoSAR
obtains more spatial sampling in a single flight, which can reduce the number of revisits and increase
the number of samples. Figure 1 shows the spatial geometry model of an SMS-TomoSAR system.
The multi-base multi-pass tracks of an SMS-TomoSAR system is expressed as:

fm = {rmn|n = 1, 2, . . . , N } m = 1, 2, . . . , M, (1)

where n is the nth satellite in the satellite formation, m is the mth flight of the satellite formation, and
fm is the track group of the mth flight of the satellite formation.

TomoSAR uses beam-forming technology to obtain high-precision height resolution capability, but
tomographic processing requires a large number of spatial samples in different perspectives. Currently,
data acquisition systems mainly include single-antenna multi-pass SAR systems, multi-antenna
multi-pass In-SAR systems, and single-pass antenna array SAR systems. Essentially, an SMS-TomoSAR
system does not differ from other systems in data acquisition, so the multi-base multi-pass baselines of
an SMS-TomoSAR system can be considered equivalent to a group of multi-pass baselines of monostatic
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SAR. Selecting the image obtained by the track rmn|m = m0, n = n0 as the main image returns NM− 1
baselines from NM tracks.

{bmn|m , m0, n , n0 } (2)Sensors 2019, 19, x FOR PEER REVIEW  3 of 16 
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Figure 1. Spatial geometry model of a spaceborne multistatic synthetic aperture radar tomography  
(SMS-TomoSAR) system (normal-slant-range (nsr) direction). 

TomoSAR uses beam-forming technology to obtain high-precision height resolution capability, 
but tomographic processing requires a large number of spatial samples in different perspectives. 
Currently, data acquisition systems mainly include single-antenna multi-pass SAR systems, 
multi-antenna multi-pass In-SAR systems, and single-pass antenna array SAR systems. Essentially, 
an SMS-TomoSAR system does not differ from other systems in data acquisition, so the multi-base 
multi-pass baselines of an SMS-TomoSAR system can be considered equivalent to a group of 
multi-pass baselines of monostatic SAR. Selecting the image obtained by the track 0 0,mnr m m n n= =  
as the main image returns 1NM −  baselines from NM  tracks. 
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The baseline in a single flight of a satellite formation is referred to as a same-track baseline, 
and these same-track baselines of M  flights constitute a repeat-track baseline. Considering 
that there is no essential difference between the baselines of different institutional systems in 
terms of data acquisition, the repeat-track baseline of SMS-TomoSAR systems is equivalent to: 

{ } { }0 0,  1,  ...,  1mn pb m m n n b p MN≠ ≠ = = − . (3) 

In addition, the proposed baseline equivalence analysis of an SMS-TomoSAR system is helpful to 
further explore and obtain the optimal baseline design method. Figure 2a shows the baseline 
equivalent diagram of an SMS-TomoSAR system. 

Figure 1. Spatial geometry model of a spaceborne multistatic synthetic aperture radar tomography
(SMS-TomoSAR) system (normal-slant-range (nsr) direction).

The baseline in a single flight of a satellite formation is referred to as a same-track baseline, and
these same-track baselines of M flights constitute a repeat-track baseline. Considering that there is no
essential difference between the baselines of different institutional systems in terms of data acquisition,
the repeat-track baseline of SMS-TomoSAR systems is equivalent to:

{bmn|m , m0, n , n0 } =
{
bp

∣∣∣p = 1, . . . , MN − 1
}
. (3)

In addition, the proposed baseline equivalence analysis of an SMS-TomoSAR system is helpful to
further explore and obtain the optimal baseline design method. Figure 2a shows the baseline equivalent
diagram of an SMS-TomoSAR system.Sensors 2019, 19, x FOR PEER REVIEW  4 of 16 
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Figure 2. (a) Baseline equivalent schematic diagram of an SMS-TomoSAR system; (b) Schematic 
diagram of the symmetric-geometric baseline model. 

3. Three-dimensional Imaging Analysis of an SMS-TomoSAR System 

As shown in Figure 2, an SMS-TomoSAR system observes the same target from different spatial 
positions, and obtains MN  SAR Single Light Complex (SLC) images after azimuth-range 
two-dimensional compression. The appropriate main image is selected based on factors such as 
image correlation. After pairing and de-ramping, the complex value of the thp  image at the same 
position [24] is expressed as: 
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reference point where the height is 0 at the time of capturing the main image; [ ]min max,s s  is the 
height span of the target; pξ  is the spatial frequency corresponding to the height s , and its 
relationship between the spatial angular frequency is 2sξ ω π= , pb⊥  for the vertical baseline. The 
specific derivation process is given in [24,25]. 

Overall, it can be seen from the above derivation process that the complex value of the 
same-name resolution unit ( ) ,  1,  2,  ...,  1g p p MN= −  is the discrete sampling in Pξ  of the 
spectrum of the electromagnetic scattering characteristic function ( )sγ  of the target in the height 
direction after de-ramping. Therefore, imaging along the height direction is essentially a problem of 
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directly affects system measurement results. Thus, this paper explores the baseline design issues by 
directly analyzing the vertical baseline, and all baselines discussed below refer to the vertical 
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3. Three-dimensional Imaging Analysis of an SMS-TomoSAR System

As shown in Figure 2, an SMS-TomoSAR system observes the same target from different
spatial positions, and obtains MN SAR Single Light Complex (SLC) images after azimuth-range
two-dimensional compression. The appropriate main image is selected based on factors such as image
correlation. After pairing and de-ramping, the complex value of the pth image at the same position [24]
is expressed as:

g(p) =
∫ smax

smin

γ(s) exp
(
j2πξps

)
ds ξp = 2b⊥p/λR, (4)

where λ is the radar wavelength; γ(s) is the electromagnetic scattering characteristic function of the
target in height domain; R is the distance from the phase center of the radar antenna to the reference
point where the height is 0 at the time of capturing the main image; [smin, smax] is the height span of
the target; ξp is the spatial frequency corresponding to the height s, and its relationship between the
spatial angular frequency is ξ = ωs/2π, b⊥p for the vertical baseline. The specific derivation process is
given in [24,25].

Overall, it can be seen from the above derivation process that the complex value of the same-name
resolution unit g(p), p = 1, 2, . . . , MN − 1 is the discrete sampling in ξP of the spectrum of the
electromagnetic scattering characteristic function γ(s) of the target in the height direction after
de-ramping. Therefore, imaging along the height direction is essentially a problem of reconstructing
the original signal using spectral discrete sampling, while the vertical baseline b⊥p directly affects
system measurement results. Thus, this paper explores the baseline design issues by directly analyzing
the vertical baseline, and all baselines discussed below refer to the vertical baseline.

4. Spatial Baseline Optimization Method for SMS-TomoSAR systems

4.1. Baseline Model Construction

Under the given experimental scenario parameters, especially the number of baseline and baseline
spans, the effect of the relative intensity of the vertical baseline on the imaging performance of
SMS-TomoSAR systems is explored. The vertical baseline

{
b⊥p

∣∣∣p = 1, . . . , MN − 1
}

was planned
according to Figure 3. The image centered by the relative position (considered for image correlation
and other factors) was selected as the main image, and the baselines on both sides of the main image
were assumed to be symmetrically distributed. Taking the (MN − 1)/2, . . . , MN − 1, MN images as
an example (herein referred to as the Positive Baseline Image Group), the baseline interval of the image
group satisfied the equivalent relationship:

an = a1qn−1 n = 1, . . . , (MN − 1)/2, (5)

Bspan

2
=

a1[1− q(MN−1)/2]

1− q
, (6)

where q is the baseline interval geometric coefficient, and Bspan is the baseline span. Since only the
positive baseline image group was analyzed here, the positive baseline span was Bspan/2. It can
be easily obtained from the above baseline analysis that when q > 1, a1 < a2 < · · · < a(MN−1)/2,
that is, the farther from the main image, the more dispersed the baseline distribution. When q < 1,
a1 > a2 > · · · > a(MN−1)/2, that is, the farther from the main image, the denser the baseline distribution.
Especially, when q = 1, a1 = a2 = · · · = a(MN−1)/2, that is, the baseline of the image satisfies the
uniform distribution. Similarly, the above analysis was satisfied for the 1, 2, . . . , (MN − 1)/2 image
(i.e., the Negative Baseline Image Group), and will not be discussed again. Figure 3 shows the baseline
distribution with varying q.
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Figure 3. The baseline distribution with changing q  (take MN = 21 as an example). 

By adjusting q  to change the baseline distribution within the fixed baseline span, image data 
with different non-uniform characteristics was simulated, and then the imaging and result analysis 
were performed to explore the influence of different non-uniform characteristics of the baseline on 
the imaging performance of an SMS-TomoSAR system. Finally, the experimental simulation results 
showed that an approximate uniform baseline distribution had better SMS-TomoSAR 
height-dimensional imaging performance. 

4.2. Maximum Perturbation Estimation Method 

To further explore the effect of baseline perturbation on the imaging performance, the 
experiment defined the ratio of the vertical baseline deviation of the actual track and the 
predetermined track to double baseline interval under uniform sampling as the baseline 
perturbation e , and assumed that e  was subject to Gaussian distribution, and satisfied 

Figure 3. The baseline distribution with changing q (take MN = 21 as an example).

By adjusting q to change the baseline distribution within the fixed baseline span, image data
with different non-uniform characteristics was simulated, and then the imaging and result analysis
were performed to explore the influence of different non-uniform characteristics of the baseline on the
imaging performance of an SMS-TomoSAR system. Finally, the experimental simulation results showed
that an approximate uniform baseline distribution had better SMS-TomoSAR height-dimensional
imaging performance.

4.2. Maximum Perturbation Estimation Method

To further explore the effect of baseline perturbation on the imaging performance, the experiment
defined the ratio of the vertical baseline deviation of the actual track and the predetermined track to
double baseline interval under uniform sampling as the baseline perturbation e, and assumed that e
was subject to Gaussian distribution, and satisfied

e =
∆b⊥

2Bspan/(MN − 1)
∼ N

(
0, (emax/2)2

)
, (7)

where ∆b⊥ is the vertical baseline deviation and emax is the maximum baseline perturbation, in which
the probability of the vertical baseline perturbation falling in (−emax, emax) is 99.45%. The actual
simulated baseline can be expressed as:{

b⊥1 + e1, . . . , b⊥p + ep, . . . , b⊥MN−1 + eMN−1
}
, p = 1, . . . , MN − 1, (8)

where
{
e1, . . . , ep, . . . , eMN−1

}
, p = 1, . . . , MN − 1 is a random sample of the baseline perturbation e.

The experiment simulated T groups of actual simulated baselines for every maximum vertical
baseline perturbation, performed height-dimensional imaging performance analysis, and then used
the root mean square error (RMSE) to reflect the impact of the maximum vertical baseline deviation on
Peak side lobe ratio (PSLR) and integrated side lobe ratio (ISLR). The RMSE expression on PSLR and
ISLR for maximum baseline perturbation e is given as follows:

RMSEPSLR_e =

√
T∑
i
(PSLRi−PSLR)

2

T

RMSEISLR_e =

√
T∑
i
(ISLRi−ISLR)

2

T

(9)
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where RMSEPSLR_e and RMSEISLR_e are the RMSE values of PSLR and ISLR for e; PSLRi and ISLRi are
the PSLR and ISLR values of the ith group of experiments; and PSLR and ISLR are the mean values of
T groups of experiments.

The experimental simulation analysis and summary showed that as the baseline perturbation
increased, the RMSE value of PSLR and ISLR exhibited a growing trend, that is, the system became
more unstable to image in the height direction.

We then define σe as the performance control factor (PCF),
σe_PSLR =

RMSEPSLR_emax−RMSEPSLR_min
RMSEPSLR_min

σe_ISLR =
RMSEISLR_emax−RMSEISLR_min

RMSEISLR_min

(10)

where σe_PSLR and σe_ISLR are the PSLR and ISLR performance control factors; RMSEPSLR_min and
RMSEPSLR_emax respectively represent the optimal value and the performance control threshold of
PSLR; and similarly, RMSEISLR_min and RMSEISLR_emax respectively represent the optimal value and
performance control threshold of ISLR.

We then use
emax = min(PSLR_emax, ISLR_emax) (11)

to obtain the maximum allowable baseline perturbation. The experimental simulation showed that the
SMS-TomoSAR system had better height-dimensional imaging performance when the baseline met the
maximum baseline perturbation.

5. Experimental Verification

In this experiment, the proposed baseline analysis model was used to simulate different
baseline-intensity images using Matlab software. The experiment was based on the simulation
parameters for SMS-TomoSAR systems given in Table 1. The length of the synthetic antenna was
500 m. From Table 1, we know that the experiment simulated 21 baselines. In Figure 1, we define
the same-track vertical baseline length Lsame as the length of vertical baseline interval of an adjacent
track in the satellite formation, and the repeat-track vertical baseline length Lrepeat as the vertical
baseline interval of an adjacent track of the same satellite. Compared with an SMS-TomoSAR system,
monostatic SAR does not demonstrate same-track vertical baseline length, which directly limits the
baseline span of monostatic SAR. In addition, as previously stated, we can consider SMS-TomoSAR
as monostatic SAR when an SMS-TomoSAR system employs only one satellite. However, when we
specify the number of flights as M = 7, the monostatic SAR has only six baselines, which is insufficient
to obtain high-precision height resolution images. In practice, we need to obtain enough data to
complete an urgent mission within a fixed time, so monostatic SAR is not adequate. Overall, we sought
to identify a baseline optimization method for SMS-TomoSAR instead of monostatic SAR, for optimal
height-dimensional resolution from one flight of a multi-satellite formation.

Table 1. Simulation parameters.

Parameter Value Parameter Value

Main image height (m) H = 600,000 Target height (m) S0 = 8
Number of formation

satellites N = 3 Target complex
scattering coefficient γ(s) = exp( jπ/4)

Number of flights M = 7 Target height span (m) [smin, smax] = [−180, 180]
Repeat-track vertical
baseline length (m) 50 ≤ Lrepeat ≤ 100 Same-track vertical

baseline length (m) 100 ≤ Lsame ≤ 200

Baseline span (m) Bspan = 500 Unambiguity height (m) Sunambiguity = 360
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In this paper, we consider the applicability of the optimal baseline design, discrete Fourier
transform (DFT), non-uniform discrete Fourier transform (NDFT) and compressive sensing (CS, here
in the BP algorithm) imaging algorithms. Further, we compared and analyzed the imaging results in
the height direction of those three imaging algorithms for SMS-TomoSAR.

5.1. Analysis of Imaging Intensity Results

The experiment set the step size ∆q = 0.05, and then simulated the satellite image data in
q = 0.05 : 2.0, thereby focusing the image through three imaging algorithms: DFT, NDFT, and
CS. Given the main image height and baseline span, the Rayleigh resolution of the three imaging
algorithms satisfies

rous_DFT = rous_NDFT = rous_CS = 15.9 m. (12)

Table 2 shows the actual imaging height and phase of three imaging algorithms under nine
different q values. The experiment set the target height S0 = 8 and the target phase ϕ0 = 45◦. It can
be seen from Table 2 that all three imaging algorithms could accurately obtain the target height and
phase information.

Table 2. Actual imaging height error and phase. CS: compressive sensing; DFT: discrete Fourier
transform; NDFT: non-uniform discrete Fourier transform.

DFT NDFT CS

q = 0.2 0.42 m/45.0◦ 0.42 m/45.0◦

q = 0.4 0.42 m/45.0◦ 0.33 m/45.0◦

q = 0.6 0.42 m/45.0◦ 0.29 m/45.0◦

q = 0.8 0.42 m/45.0◦ 0.42 m/45.0◦

q = 1.0 0.42 m/45.0◦ 0.42 m/45.0◦ 0.42 m/45.0◦

q = 1.2 0.42 m/45.0◦ 0.42 m/45.0◦

q = 1.4 0.42 m/45.0◦ 0.42 m/45.0◦

q = 1.6 0.42 m/45.0◦ 0.11 m/45.0◦

q = 1.8 0.42 m/45.0◦ 0.42 m/45.0◦

Figure 4 shows the PSLR, ISLR, and broadening coefficient (actual imaging resolution/Rayleigh
resolution) of DFT, NDFT, and CS imaging algorithms under different intensity data. It can be seen
from the above results that both the NDFT imaging algorithm and the CS imaging algorithm could
achieve and exceed the imaging performance along the height direction of the DFT imaging algorithm
when q = 1. For the NDFT imaging algorithm, the values of PSLR and ISLR at q = 0.86 ∼ 1.16 were
close to the imaging results of the DFT imaging algorithm, where the actual imaging resolution became
gradually worse as q increased. The PSLR and ISLR of the CS imaging algorithm at q = 1 ∼ 1.22 also
achieved and exceeded the imaging results of the DFT imaging algorithm, but with increasing q, the
actual imaging resolution gradually became worse.

And as
∣∣∣q− 1

∣∣∣ increased (i.e., the baseline position gradually moved away from or close to the track
of the main image), PSLR and ISLR generally increased gradually. In order to ensure a weak target is
not obscured by an adjacent strong target, the system requires that the PSLR must be less than 13 dB.
It can be seen from Figures 4 and 5 that the imaging algorithm had better imaging performance when
the baseline distribution had

∣∣∣q− 1
∣∣∣ close to 0 (i.e., the baseline tended to be uniformly distributed).
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Figure 4. Imaging performance in the height direction: PSLR, ISLR, broadening coefficient. The blue 
dotted line in the figure only represents the imaging result when the baseline is uniformly 
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Figure 5. The imaging results of NDFT and CS at q = 0.2, 0.6, 1.0, 1.4, and 1.8.

In order to further verify the above conclusion, the experiment evaluated the imaging results
where PSLR < −10 dB, i.e., q = 0.86 ∼ 1.16, and took the step size ∆q = 0.01. The experimental results
are shown in Figure 6.

The imaging performance in the height direction of the NDFT and CS imaging algorithms
changed gradually. The PSLR of the NDFT imaging algorithm increased at q < 0.86, and the imaging
performance along the height direction declined sharply when the PSLR of the CS imaging algorithm
was greater than −11 dB at q < 0.86. Notably, the actual imaging accuracy decreased significantly at
q > 1.16. At q = 0.86 ∼ 1.16, the baseline distribution tended to be uniformly distributed, and the
broadening coefficient of those three imaging algorithms only varied within ±0.1, as shown in Figure 6.
Therefore, summarizing the above analysis results leads to the following conclusion: the system
has stable and good imaging performance along the height direction when the baseline satisfies the
weak-deviation uniform distribution. We could then use the above conclusion to design the baseline.
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5.2. Baseline Perturbation Analysis

According to the experimental analysis above, when the baseline satisfied uniform sampling
within a certain baseline perturbation, the system could achieve optimal imaging performance along
the height direction with the aforementioned baseline model. Considering the actual situation of the
baseline deviation, 0 ≤ ∆b⊥ ≤ Bspan/(MN − 1) was selected and ∆b⊥ = 1 m is the iteration step size,
then T = 100 and Bspan = 500, 1000, 2000 m were set. The actual baseline was simulated to explore the
effect of the maximum baseline deviation on the RMSE value of PSLR and ISLR. The results are shown
in Figures 7–9.

It can be seen from the experimental results that the height-dimensional imaging performance
of the system was basically stable within a certain baseline perturbation, and as baseline deviation
increased, the height-dimensional imaging performance was reduced, which can be seen from the
mean and variance of PSLR and ISLR.
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Figure 8. The imaging performance with 1000 mspanB = : (a) PSLR; (b) ISLR. 

Figure 7. The imaging performance with Bspan = 500 m: (a) PSLR; (b) ISLR.
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Figure 10. Imaging performance results when max 10%,  20%,  40% e = . 

Figure 9. The imaging performance with Bspan = 2000 m: (a) PSLR; (b) ISLR.

In order to ensure adequate imaging performance within the baseline deviation, the experiment
selected σe_PSLR = 0.004 and σe_PSLR = 0.04 to obtain the result of the maximum baseline deviation
with Bspan = 500 m, 1000 m, 2000 m, as shown in Table 3.

Table 3. The relationship of baseline span and critical deviation about the performance stability.

Parameter Bspan = 500 m Bspan = 1000 m Bspan = 2000 m

NDFT : PSLR_emax 18.0% 17.0% 15.0%
NDFT : ISLR_emax 14.0% 14.0% 12.5%

NDFT : emax 14.0% 14.0% 12.5%
CS : PSLR_emax 20.0% 20.0% 21.5%
CS : ISLR_emax 22.0% 23.0% 22.5%

CS : emax 20.0% 20.0% 21.5%

It can be seen from the above results that as the baseline span increased, the maximum baseline
perturbation of the imaging performance increased linearly.

The results of generating 100 sets of baseline with Bspan = 500 m and emax = 10%, 20%, 40%, and
subsequent height-dimensional imaging performances are shown in Figure 10.
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Figure 10. Imaging performance results when max 10%,  20%,  40% e = . 

Figure 10. Imaging performance results when emax = 10%, 20%, 40%.

It can be seen from the above experimental results that the imaging performance was more
unstable as the maximum baseline perturbation emax increased (i.e., the farther the baseline deviated
from the predetermined uniform baseline).

5.3. Baseline Optimization Method Verification

As mentioned above, we can consider SMS-TomoSAR to be monostatic SAR, when N = 1.
However, monostatic SAR does not exhibit the same-track vertical baseline length, which directly
limits the baseline span of monostatic SAR. However, when given the number of flights M = 7,
monostatic SAR has only six baselines, which is insufficient to image for high-precision height
resolution. In Figure 11 and Table 4, based on the parameters in Table 1 and q = 1.0, e = 20%, the
performance results of SMS-TomoSAR and monostatic SAR are given. The experiment showed only
the results of monostatic SAR under Sspan = 500 m due to the limited baseline span for the same-track
vertical baseline length.
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Table 4. The imaging performance results of SMS-TomoSAR and monostatic SAR for the NDFT and
CS algorithms.

Parameter (NDFT/CS) Monostatic SAR
(N = 1 Bspan = 500 m)

SMS-TomoSAR
(N = 3 Bspan = 500 m)

SMS-TomoSAR
(N = 3 Bspan = 1000 m)

Target height span (m) [−54.3, 54.3]/[−53.2, 53.2] [−184.7, 184.7]/[−179.4, 179.4] [−89.5, 89.5]/[−89.4, 89.4]
Rayleigh resolution (m) 16.02 m/15.71 m 16.36 m/15.90 m 7.93 m/7.92 m

Imaging height error
and phase

(0.13 m/45.0◦)
/(0.08 m/45.0◦)

(0.49 m/45.0◦)
/(0.24 m/45.0◦)

(0.23 m/45.0◦)
/(0.21 m/45.0◦)

Unambiguity height (m) 108.5 m/106.4 m 369.4 m/358.8 m 179.0 m/178.7 m
PSLR (dB) −0.000317/ − 0.000282 −12.62468/ − 12.31986 −13.60256/ − 13.40242
ISLR (dB) −0.031460/ − 0.032658 −6.506870/ − 8.981114 −8.034666/ − 10.06845

From the results above, compared with SMS-TomoSAR, it is obvious that monostatic SAR had
smaller height span and fewer baselines. This directly resulted in lower unambiguity height and worse
PSLR and ISLR. For an urgent mission within a fixed time, monostatic SAR is not suitable. The proposed
method could be used if monostatic SAR obtains the same number of baselines as SMS-TomoSAR by
more flights. However, SMS-TomoSAR and monostatic SAR have different influences on some issues,
such as spatial transmission error estimation and compensation, as well as deformation measurement.
Consequently, in this paper, we focus mainly on the effect of the proposed method for SMS-TomoSAR.

To further verify the validity, we used simulated data to provide tomographic images of scatterers
located in the same cross-slant-range line, and obtained the image by inverting the model using the
described techniques. Firstly, three isolated and coherent targets A, B, and C were simulated, and
then an A and C simulated coherent targets located on the bottom and on the top, respectively, gave a
distributed target B with a certain extension, but separated from the coherent target located on the
bottom. The simulated target information is seen in Table 5 and Figure 12.

Table 5. Target information.

Target Complex Scattering Coefficient Target nsr Height (m)

Target A γA(s) = exp( jπ/4) S0 = −100
Target B γB(s) = exp( jπ/4) ∗ sin c(s) S0 = 0

Target C complex scattering coefficient γ(s) = exp( jπ/4) S0 = 100
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According to the conclusion above, we selected q = 0.8, 1.0, 1.2 and emax = 10%, 20%, 40% based
on Table 1. The simulation results are seen in Figures 13 and 14.
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Figure 13. Results of the NDFT algorithm. 
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We can conclude from the results shown in Figures 13 and 14 that the NDFT and CS algorithms
were better able to distinguish those three simulated targets when q = 1.0, emax = 10%. This
verifies the system had stable and good imaging performance in the height direction when the
baseline satisfied a weak-deviation uniform distribution. Furthermore, the system had superior
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height-orientation performance when the baseline of an SMS-TomoSAR system met the allowable
maximum baseline perturbation. In other words, the allowable maximum baseline perturbation can
provide a reference satellite baseline control deviation for the design or spatial position control of
SMS-TomoSAR systems. For example, when the experiment set Sspan = 500 m, MN = 7 with the
NDFT imaging algorithm, a maximum baseline perturbation provided optimal height-orientation
performance for SMS-TomoSAR systems.

6. Conclusions

In this paper, we established a symmetric-geometric baseline analysis model to explore the effect
of baseline intensity on the height-dimensional imaging performance within a fixed baseline span, and
proposed a maximum baseline deviation estimation method to explore the maximum vertical baseline
deviation that ensures adequate height-dimensional imaging performance. From the experimental
results above, it can be concluded that the system had superior height-orientation performance when
the baseline of an SMS-TomoSAR system met the allowable maximum baseline perturbation, which has
practical significance for the actual system baseline design. In other words, the allowable maximum
baseline perturbation can provide a reference satellite baseline control deviation for the design or
spatial position control of an SMS-TomoSAR system. Finally, we will continue to investigate other
issues of SMS-TomoSAR systems, in order to contribute further to the existing body of research in
the future.
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