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Abstract

This work deals with the analysis of thermoacoustic pulsations occurring in gas turbine combustion
chambers and with the suppression of such pulsations by means of passive control techniques.

First, perturbation techniques employed to derive thermoacoustic governing equations are illustrated. In
a gas turbine combustion system generally the low Mach number hypothesis holds. As a result of our low
Mach number perturbation analysis, the single components of the combustion system may be adequately
described by different sets of governing equations. In hood and combustor the perturbation field may be
approximated by pure acoustic wave propagation (i.e. one can solve for the wave or Helmholtz equation).
On the contrary, suitable perturbation equations for burner and flame are the linearized incompressible
Navier-Stokes equations. Using the further assumption of negligible dissipative effects in the perturbed
burner flow, a thermoacoustic wave equation (including heat release fluctuations as a source term) is
derived for modeling the entire combustion system. As a result of the use of this thermoacoustic wave
equation in combination with heat release fluctuations dependent of the acoustic field, the Rayleigh
criterion is recovered as a necessary condition for combustion instability.

The split of the combustion system into hood, burner, flame and combustor components is the pre-
requisite for the development of an acoustic network capable to simulate the thermoacoustic behavior
of the gas turbine. In the low-frequency range, the perturbation field in burner and flame may be ap-
proximated as one-dimensional and then described by a two-port transfer matrix, which relates pressure
and velocity perturbations upstream and downstream of the element. The burner transfer matrix has
to account for wave propagation and dissipative effects, the latter being related to the transformation
of kinetic energy of the perturbation flow into vorticity released at burner walls. Using measurements
performed in an atmospheric impedance tube, we show that the transfer matrix of an industrial burner
may be modeled by analytical incompressible flow models only in the very low-frequency range, the
application of numerical methodologies been necessary for larger frequencies. Analytical flame transfer
matrices are also derived by including two physical mechanisms: fuel concentration oscillations gener-
ated by velocity fluctuations at the fuel injection location and oscillations of the flame area induced
by fluctuations of the flow velocity normal to the flame front. The flame analytical model is validated
by means of flame transfer matrices measured atmospherically in a combustion rig operated with both
natural gas and oil.

In order to dampen thermoacoustic pulsations, passive control techniques employing Helmholtz res-
onators and perforated screens are also illustrated. In particular, in this thesis we present an acoustic
theory providing the pressure suppression achieved by the application of Helmholtz resonators to a
combustion chamber. The theory predicts the maximization of the pressure suppression for a specific



value of the resonator impedance. This indicates that the acoustic response of the resonator must be
accurately predicted during the design phase. Thus, we also present a nonlinear acoustic model that
shows a very good agreement with measurements performed in an impedance tube on a wide range of
damper geometries and bias flow conditions.
Finally, the different acoustic models we have used to characterize hood, burners, flames, combustor
and dampers are combined together into an acoustic network applied to the simulation of heavy-duty
gas turbines. The network is capable to compute both system eigenvalues (stability map) and pulsation
spectra. The reported results show a very good agreement between simulations and pulsation spectra
measured in field engines. In particular, the network demonstrates a valid engineering tool to predict
the effect of the application of dampers to gas turbine combustors and to support the development of
new burners by identifying the design parameters able to perform the thermoacoustic combustor tuning
at engine level.
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Nomenclature

Notation

a radius
A area
B total enthalpy
c speed of sound
Cp specific heat at constant pressure
Cv specific heat at constant volume
D molecular diffusion coefficient
E total energy
f frequency
F downstream wave Riemann invariant
gj eigenmode amplitude
G Green function
G upstream wave Riemann invariant
H closed loop tranfer function
He Helmholtz number
i =

√−1 complex unity
I unit tensor
k wave number
k vector wave number
kj mode wave number
� end-correction
L geometric length
L′ effective length
M Mach number
n unit vector normal to surface
p pressure
P area ratio

3



4

Pr Prandtl number
q quality factor
q heat flux
Q heat release per unit volume and time
QA heat release per unit area and time
QM heat release per unit mass of reactants
r radial coordinate
rf reflection coefficient on damper flange
R acoustic resistance
R gas constant
Re Reynolds number
s = iω + υ Laplace variable (complex frequency) in est notation
sj poles of the system
S entropy
Sf flame speed
Sp acoustic pressure flame source
Su acoustic velocity flame source
Sd Stokes number
Sh shear number
St Strouhal number
Stac acoustic Strouhal number
t time
T temperature
T transfer function of acoustic element
Tij transfer function components of acoustic element
u flow velocity magnitude or component
u flow velocity vector
x axial coordinate
x space vector
X acoustic reactance
Uf flame surface velocity magnitude
Uf flame surface velocity vector
V volume
Y mass fraction
Z acoustic impedance
Z ′ acoustic impedance normalized by ρ c

Greek

α damping coefficient
β flame angle
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γ specific heat ratio
Γ one-dimensional propagation constant
δ Dirac’s delta function
δf flame thickness
ΔhF heat release per unit mass of reactants
ζ pressure loss coefficient
θ azimuthal coordinate
κ thermal conductivity
λ acoustic wave length
Λj mode normalization factor
μ viscosity coefficient
ν kinematic viscosity
ξj modal damping coefficient
π vector potential
ρ density
σ variance of time-lag distribution
τ characteristic time
τ stress tensor
υ damping factor or growth rate
υj modal damping factor or growth rate
φ scalar potential
Φ pressure losses
ϕ flow variable placeholder
ψj eigenmode
ω circular frequency in eiωt notation
ωj eigenfrequency
Ω vorticity

Subscripts

B fuel injection zone
E enclosure connected to damper
f flame front
fl damper flange
F fuel stream
i irrotational component
n resonator neck
r radial vector component
res resonance condition
R resonator
O oxidant stream
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V damper volume
x axial vector component
Ω rotational component
1 location upstream the acoustic element
2 location downstream the acoustic element
∞ reference quantity

Superscripts

(·) mean flow quantity
(·) ′ flow variable perturbation in time domain
(̂·) flow variable perturbation in frequency domain
(̃·) nondimensional quantity

Operators

D(·)/Dt mean flow Lagrangian derivative ∂/∂t+ u · ∇
(·)T transpose tensor
O(·) order of magnitude



Chapter 1

Introduction

1.1 Thermoacoustic Phenomena in Gas Turbine Combustors

Thermoacoustic pulsations are a cause for concern in many combustion applications as diverse as rocket
engines, gas turbines, boilers and furnaces. Thermoacoustic pulsations are generally defined as acoustic
fluctuations induced by an unsteady heat release process [1]. Hydrodynamic instabilities (turbulence
and flow instabilities) may generate “combustion noise”, being in this case the heat release fluctua-
tions independent of the acoustic field. Combustion noise is usually responsible for broadband sound
emission (“loudspeaker” behavior of the flame). When the excitation frequency matches one of the
eigenfrequencies of the combustion system, a pressure pulsation peak is generated in correspondence of
the eigenfrequency (“resonance”). Moreover, pressure and entropy waves produced by heat release fluc-
tuations are reflected back at combustor boundaries and may influence the hydrodynamic instabilities
as well as activate other mechanisms responsible for heat release fluctuations. When this happens, a
feedback cycle between fluctuations of velocity, pressure, entropy and heat release is found and very large
pressure pulsation amplitudes may occur (“combustion instability” related to the “amplifier” behavior
of the flame).
Thermoacoustic related problems are the increase of pollutant emissions (e.g. NOx and CO) and the
decrease of component lifetime (due to High Cycle Fatigue and overheating) that finally limit the opera-
tional range of the combustion system. [1]. In this work we focus on thermoacoustic pulsations generated
in low-emission heavy-duty gas turbines, which have a high susceptibility to thermoacoustic pulsations
because of the lean premixed combustion regime they operate with (e.g. laminar speed fluctuations
induced by assigned equivalence ratio oscillations are much larger in lean premixed conditions than in
stoichiometric conditions). Furthermore, in order to reduce NOx formation, the by-pass air entering
downstream of the primary combustion zone is minimized in premixed combustion systems, this air
having an acoustic damping effect in diffusion flame combustors.

1.2 Modeling of Thermoacoustic Systems

In principle, the reacting Navier-Stokes equations include nonlinear generation and propagation of sound,
i.e. they can be used to simulate both resonance and combustion instability. Therefore, the Direct
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Numerical Simulation (DNS) of the Navier-Stokes equations provides solutions including acoustic wave
propagation. However, the following difficulties arise when developing finite-volume, finite-differences
or finite-element numerical schemes for computing gas turbine combustor flows usually characterized by
low values of the average Mach number [2], [3].

(i) Very disparate length scales exist in the flow field: thickness of mixing layers, thickness of acoustic
and viscous boundary layers, turbulence scales and acoustic wave lengths. To capture all these
multi-scale effects, an adequate grid refinement must be used in the computational domain. As a
consequence, the computational cost becomes very large also for simple geometries. This is due
to the high number of grid points and to the time-step restriction on the finest zones of the mesh.
In particular, the simulation of the sound generation process due to vortical regions requires the
smallest scales of turbulence to be solved. This means that the number of grid points must be
≥ Re9/4 , being Re the Reynolds number of the flow [4].

(ii) In low Mach number unsteady flows the energy radiated as acoustic waves is usually a very small
fraction of the total energy of the flow and the magnitude of acoustic disturbances may be smaller
than the computational sound induced by the numerical scheme (this is usually the case when
applying Computational Fluid Dynamic (CFD) codes to acoustic problems). In order to minimize
both dissipation and dispersion errors occuring in the space discretization, high-order Essentially-
Non-Oscillatory (ENO) and Dispersion-Relation-Preserving (DRP) schemes are used [3]. For time-
integration, high-order Runge-Kutta techniques are usually employed and high-precision compu-
tation is also necessary.

(iii) Non-reflecting boundary conditions must be developed where the domain is truncated (inflow and
outflow). In general, the Method of Characteristics (MOC) is employed: in this case the non-
reflecting boundaries can be applied in flow regions where the small disturbance hypothesis holds.
On solid walls, accurate wall conditions allow not to deteriorate the order of accuracy of the spatial
discretization.

(iv) Long time solutions are necessary to obtain adequate spectral resolution.

These difficulties restrict the use of the direct computation to low Reynolds number simple flows (e.g.
mixing layers) or to inviscid computations.
Large Eddy Simulation (LES) represents a valid alternative to model turbulent effects by relaxing the
grid refinement constrain [5], [6]. When sound generation due to vortical motions has not to be computed,
the computational constraint is that the grid must have a sufficient number of grid points to account
for the shortest wave length propagating through the domain.
As an alternative to DNS and LES, perturbation techniques may be applied to the Navier-Stokes equa-
tions to derive governing equations for small disturbances of the steady mean flow solution [7], [8], [9].
Concerning the numerical difficulties above described, this approach permits the minimization of the
round-off error and gives the possibility to use most effective schemes for the steady mean flow (com-
puted by a CFD solver) and the perturbation flow (computed by a Computational Aeroacoustic (CAA)
solver). Moreover, in the perturbation equations vorticity, acoustic and entropy fluctuations may be sep-
arated [8]. In the linear case, far away from boundaries the three modes are decoupled. If second-order
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effects are considered, the interaction terms may be used for modeling the influence of fluctuations on
the mean flow and vice-versa [10].
The methodology we use in this work to predict the acoustic field generated in gas turbine combustors is
based on the coupling between three-dimensional acoustics, low-order analytical models, CFD and exper-
iments. The combustion system is lumped into several elements (e.g. hood, burners, flames, combustor,
cooling channels, etc.) that are combined in a thermoacoustic network [11], [12], [13], [14], [15]. This
approach has the advantage that different mathematical models may be used for the different network
elements. For instance, hoods and combustors with simple geometries may be represented by means of
analytical solutions of the wave equation. Multi-burner arrangements are simulated by modeling hood
and combustor as Multiple Input Multiple Output (MIMO) elements, described by a function linking
pressure and velocity fluctuations at burner locations. A more accurate prediction of single- and multi-
burner hood and combustor elements is obtained by using acoustic Finite Element Methods (FEM) to
compute the acoustic modes of the chambers, eventually combined with CFD providing the speed of
sound of the steady mean flow. Modeling issues related to this approach are the effect of mean flow
convection on wave propagation and the absorption of acoustic power at boundaries, the latter affecting
the damping and thus the stability of the system. When the geometrical extent of burners and flames
is small compared to acoustic wavelengths, only plane wave propagation may be considered (this “com-
pactness” assumption restricts the application of the network approach to the low-frequency regime).
Compact burners and compact flames are treated as two-ports elements, where pressure and velocity
fluctuations upstream and downstream of the element are coupled linearly via a four-element transfer

matrix. In particular, the flame transfer matrix describes the interaction process between periodic heat
release and acoustic field. Being the heat release process responsible for combustion instabilities, the
modeling of the flame transfer matrix is of crucial importance when simulating thermoacoustic phenom-
ena. Thus, flame transfer matrices directly obtained from experiments and implemented in the acoustic
network allow for an accurate representation of sound generation and scattering due to the flame. For
existing burners, the flame transfer matrix may be measured using loudspeakers for the acoustic forcing
and reconstructing the acoustic field by means of the Multi-Microphone Method [16]. Finally, the eigen-
frequencies of the acoustic network (written in the frequency domain) determine the linear stability of
the combustion system and permit to identify unstable modes. Pulsation spectra may be also obtained
in the time domain by introducing nonlinearities to limit the growth of pressure amplitude [14], [17]
To fit measured flame transfer matrices to low-order analytical models gives more physical insight into
the mechanism responsible for the combustion instability and thus it is a valid approach to identify
measures for pulsation control. Flame transfer matrix models may be obtained by integrating the
governing equations across the flame thickness for subsonic combustion [18] or under the hypothesis
of low Mach number mean flow [19]. The flame transfer matrix elements are given when the relation
between heat release oscillations and acoustic field in front of the flame is known (transfer function),
such a relation depending on the characteristics of the combustion process (premixed vs. diffusion
flame, bluff-body vs. free-vortex flame stabilization, gas vs. liquid fuel, etc.). Combustion instability
mechanisms are inherently complex since they are the result of interactions between different physical
phenomena (see Fig. 1.1), which at the end lead to a “time-lag” between heat release oscillations and
fluctuations of acoustic velocity and/or pressure in front of the flame [20]. For time-lag values within
a certain range of variation, the system becomes unstable. Several physical mechanisms responsible
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Figure 1.1: Thermoacoustic interactions in combustion systems.

for time-lag effects have been identified [21]. For lean premixed flames, the sensitivity of heat release
fluctuations to equivalence ratio oscillations may represent a strong feedback mechanism [16], [18], [22],
[23], [24], [25]. In this case, heat release fluctuations are induced by fuel concentration oscillations caused
by acoustic fluctuations at the fuel injector location. The time-lag occurring between heat release and
fuel concentration oscillations is the convective time that fuel concentration fluctuations need to travel
from the injector to the flame. Analytical models have been proposed to account for the flame shape
effect on the time-lag distribution in the frequency domain [24], [26]. As an alternative, steady CFD
computations may be performed on the combustor to determinate the time-lag distribution [25]. Flame
transfer function mechanisms related to flame speed fluctuations and flame area oscillations have been
also proposed [24], [26], [27], [28].

1.3 Passive Control of Thermoacoustic Pulsations

In classical acoustics, Helmholtz resonators are coupled to enclosures in order to reduce pressure pulsa-
tions. A Helmholtz resonator consists of a volume with a neck through which the fluid inside the resonator
communicates with an external medium [29]. In combustion applications, a cooling flow (bias flow) must
be maintained through the resonator in order to prevent overheating. When a Helmholtz resonator is
applied to an enclosure, in correspondence of the neck mouth a boundary with a frequency dependent
behavior is realized. The acoustic response of resonator is described by the impedance Zn = Rn + iXn,
i.e. the ratio in the frequency domain between acoustic pressure and acoustic velocity normal to the
resonator neck mouth. Helmholtz developed a theory to predict the neck mouth impedance of a cavity
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resonator with a cylindrical neck [30]. When the neck is short and narrow with respect to the wavelength
(low-frequency range), all the fluid particles in the neck are assumed to fluctuate with the same acoustic
speed and the “harmonic oscillator” mechanical analogy may be used. However, not only the fluid in
the neck but also part of the fluid in the communicating volumes (outside the damper and inside the
resonator cavity) participates in acoustic fluctuations. For long wavelengths, the air at the neck end
may be modeled as a zero-mass solid piston fluctuating and then radiating acoustic energy outside of the
neck. For a tube terminating in a half-space (infinite flange), when the neck Helmholtz number is small
the radiation reactance can be included by replacing the tube length with the “effective” length [29].
This “end-correction” may be applied at both ends of the neck when the infinite flange assumption
is used for the resonator cavity and the outside domain. More accurate resonator models have been
proposed, e.g. using an internal end-correction depending on the resonator geometry [31] or modeling
wave propagation inside the resonator volume [32].
An accurate prediction of visco-thermal acoustic damping and conversion of acoustic energy into shedding
of vortices generated at the rims of the neck (the vortices being convected downstream and dissipated into
heat by turbulence) is also important for the correct evaluation of the damper resistance Rn. Previous
investigations have been oriented to model independently the linear and nonlinear regimes of orifices in
the case of low Helmholtz numbers and low Mach numbers. In absence of bias flow, the vortex-shedding
dissipative process is nonlinear because it depends on the convection and dissipation of (acoustically
produced) vorticity by means of the acoustic field itself. Thus Rn depends on the acoustic pressure in
front of the neck, which is a function of the applied resonator impedance. The acoustic resistance may
be modeled starting from one-dimensional fluid dynamic models applied to the orifice flow [33], [34], [35],
[36], [37], [38]. For sufficiently high acoustic pressure amplitudes, the resistance Rn is found to increase
with the acoustic pressure. However, for acoustic Strouhal numbers � 1 the flow in the neck can be
considered quasi-steady and the resistance expressed by means of a constant discharge coefficient. When
a bias flow enters the neck, there is a linear contribution to Rn coming from the bias flow convection of
vorticity. The linear effect is assumed dominant over the nonlinear effect when the bias flow velocity is
sufficiently larger than the acoustic velocity. In this case Zn depends on frequency, orifice geometry and
bias flow velocity independently of acoustic pressure. Several quasi-steady one-dimensional models have
been applied to orifices with bias flow [39], [37], [38], [40].
The mechanism responsible for the damping is mathematically analyzed by replacing the enclosure
area where the damper is applied with the damper impedance Zn. To study the characteristics of the
neck mouth uncoupled from the enclosure, one can consider a plane wave of frequency ω incident on
a wall under anechoic conditions for the reflected wave (in anechoic conditions the acoustic energy of
a normally incident plane wave is fully absorbed) [29]. This analysis shows that for a given frequency
and pressure amplitude in front of the resonator, the maximum acoustic power absorption is achieved
for Xn = Im(Zn) ≈ 0, i.e. when the resonator resonance frequency ωres coincides with the pulsation
frequency. When the resonator is coupled to the enclosure, sound reflection from the enclosure boundary
must be considered. The effect of the damper on the resonance frequency ωN of the enclosure without
resonator has been studied by other authors [41], [42]. The analysis has been performed under the
following assumptions: acoustically compact (point-impedance) resonator; harmonic oscillator model
for the damper; ωN in the low frequency range where the average separation between eigenfrequencies
is much larger than the average modal bandwidth; sound generation by means of point sources located



12 CHAPTER 1. INTRODUCTION

inside the enclosure. The acoustic pressure field of the coupled system has been compared to that of the
enclosure without the resonator. At the frequency ωN , amplitude reduction may occur for ωres = ωN
because of the sound cancelation performed by the neck mouth (seen as a “pseudo-source”) on the
acoustic field produced by the sound sources inside the enclosure. When |Zn| � 1, the pressure on the
neck mouth is small and the pseudo-source velocity is tuned to cancel the pressure produced by the
sound sources. The analysis also shows that if the excitation is not confined to ωN , amplitude maxima
may occur for frequencies close to ωN . In the frequency range including the new maxima and for a
given damping coefficient of the enclosure, the sound reduction may be maximized by appropriately
tuning the resonator resistance. Note that the resonator damping which gives the maximum reduction
in pressure amplitude does not coincide with the damping providing the maximum power absorption
(in fact the acoustic power injected by the source into the enclosure is a function of the resonator
impedance). For combustion applications, dampers modeled as harmonic oscillators have been coupled
to the oscillator represented by the mass of fluid in a fuel/air mixing nozzle [43]. The air in the combustor
provided the compliance (equivalent spring in the mechanical analogy) for the oscillators. A negative
combustor damping accounted for the amplification behavior of the flame. The optimum damping of
eigenmodes was obtained with a resonance frequency of resonators aligned with the natural frequency
of the combustor-nozzle system without resonators.

1.4 Thesis Overview

In the second Chapter of this thesis, thermoacoustic governing equations are derived by applying a
perturbation technique to the fluid dynamic Navier-Stokes equations. Under certain assumptions, it is
possible to split the perturbed fluid dynamic field into vorticity, entropy and acoustic disturbances. In
particular, when the heat release process is unsteady thus heat release oscillations act as a source for
the only acoustic field. In a gas turbine combustion system generally the low Mach number hypothesis
holds. Using a low Mach number asymptotic expansion, the single components of the combustion system
are described by means of different sets of governing equations, i.e. acoustic wave equation for hood and
combustor chambers and linearized incompressible Navier-Stokes equations for burner and flame.
Using the further assumption of negligible dissipative effects in the perturbed burner flow, a thermoa-
coustic wave equation (including heat release fluctuations as a source term) is derived for modeling the
entire combustion system. As a result of the use of this thermoacoustic wave equation in combination
with heat release fluctuations dependent of the acoustic field, the Rayleigh criterion is recovered as a
necessary condition for combustion instability.
The third Chapter presents the transfer matrix approach employed to represent burners and flames in
the low-frequency range. The perturbation field is approximated as one-dimensional and then described
by a two-port transfer matrix. Transfer matrices of an industrial burner have been measured in an
atmospheric impedance tube and employed to validate burner transfer matrix models. For sufficiently
low frequencies, analytical models derived by the linearized incompressible flow equations may be used.
When frequency increases thus acoustic FEM must be used to represent wave propagation, the linearized
incompressible flow model being employed to include the burner acoustic dissipation.
The flame transfer matrix model is closed when an expression is given for the heat release contribution
depending of the acoustic field in front of the flame. In the fourth Chapter, analytical flame transfer
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functions are derived by considering the physical mechanisms of fuel concentration oscillations (generated
by velocity fluctuations at the fuel injection location) and oscillations of the flame area (induced by
fluctuations of the flow velocity normal to the flame front). The analytical model is compared to flame
transfer functions measured atmospherically in a combustion rig, where a lean premixed swirl burner
was operated in both gas and oil operation.
Passive control techniques employing Helmholtz dampers are illustrated in the fifth Chapter. First,
we show a nonlinear resonator model including bias flow effects. The model is calibrated by means
of experiments performed in an impedance tube on resonators with different geometries and bias flow
conditions. Then, we present an acoustic theory providing the pressure suppression achieved when
applying Helmholtz resonators to combustion chambers. The theory predicts a maximization of the
pressure suppression for a specific value of the resonator impedance.
Finally, in the sixth Chapter the ALSTOM acoustic network is presented. In the network, hood, burners
and combustor are represented by means of three-dimensional FEM modal expansion. The flame is mod-
eled as a gas dynamic discontinuity whose transfer function is measured atmospherically. The network
can also simulate the effect of Helmholtz dampers applied to the combustion system for suppressing
acoustic pulsations. All the network element models may be formulated in the frequency domain or in
the time domain (using a state-space representation). The network is capable to compute both system
eigenvalues (stability map) and pulsation spectra. The time domain solution is obtained by including
non-linear saturation of the heat release term. The reported results show a very good agreement between
simulations and pulsation spectra measured in an engine with and without resonators. Moreover, the
network demonstrates a valid engineering tool to support the development of new burners by identifying
the design parameters able to perform the thermoacoustic combustor tuning at engine level.





Chapter 2

Thermoacoustic Governing Equations

2.1 Flow Regions in Gas Turbine Combustion Systems

In the present work we focus on the gas turbine combustion system illustrated in Fig. 2.1, where different
flow regions may be identified.

(i) The hood is the volume located upstream of the burner where the combustion air is collected.

(ii) The burner manages the mixing process between combustion air and fuel. Moreover the burner
provides the aerodynamic stabilization of the flame, which is generally achieved by means of a
burner induced swirled flow characterized by high levels of turbulence intensity [44].

(iii) Within the flame the heat release process occurs and temperature increases.

(iv) The combustor includes the flow downstream of the flame.

In the following Sections, thermoacoustic governing equations are derived for the gas turbine combustion
system.

2.2 Navier-Stokes Equations

A reacting flow may be modeled as a continuum medium using the Navier-Stokes equations. The Navier-
Stokes continuity, momentum and energy equations are written in non-conservative form respectively

Figure 2.1: Schematic of gas turbine combustion system.

15
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as [45]

Dρ

Dt
+ ρ∇ · u = 0 (2.1)

ρ
Du
Dt

+ ∇p = ∇ · τ (2.2)

ρ T
DS

Dt
= τ : ∇u−∇ · q +Q (2.3)

where the Lagrangian derivative D/Dt = ∂/∂t+ u · ∇ expresses the change of the derivative argument
for a fluid element. The system of governing equations (2.1)-(2.3) is completed by the equation of state
of perfect gases

p = ρR T (2.4)

and the thermodynamic relation

S = Cv ln
(
p

ργ

)
+ const (2.5)

where Cv = const according to the hypothesis of calorically perfect gas and

γ = Cp/Cv (2.6)

with Cp = Cv + R (γ = 1.4 for perfect gases). The stress tensor τ and the heat flux q are defined as

τ = μ

[(∇u + ∇uT
)− 2

3
(∇ · u) I

]
(2.7)

q = −κ∇ T (2.8)

The bulk viscosity has been set equal to zero (this assumption is not valid in presence of non-equilibrium
phenomena, as when vibrational modes of molecules are excited [45], [46]). The heat flux has been
expressed by the Fourier law. The transport coefficients μ and κ are in general monotonic functions of
the temperature only, being the dependence from the pressure usually negligible for gases [46]. In the
following, both μ and κ are assumed to be constant. The heat release term Q depends on the chemical
reactions of the combustion process and is determined by solving for the continuity equations of the
chemical species [47]. The set of equations (2.1)-(2.5) is closed when appropriate initial and boundary
conditions are prescribed.
Eqs. (2.1)-(2.3) may be also written in conservative form using the total energy E and the the total
enthalpy B given by

E = Cv T +
u · u

2
, B = Cp T +

u · u
2

(2.9)

It yields [47]

∂ρ

∂t
+ ∇ · (ρu) = 0 (2.10)
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∂(ρu)
∂t

+ ∇ · (ρuu) + ∇p = ∇ · τ (2.11)

∂(ρE)
∂t

+ ∇ · (ρBu) = ∇ · (u · τ )−∇ · q +Q (2.12)

By using Eqs. (2.1), (2.4) and (2.5), the energy equation (2.3) may be expressed in terms of pressure as

Dp

Dt
+ γ p∇ · u = (γ − 1) [τ : ∇u−∇ · q +Q ] (2.13)

2.2.1 Helmholtz decomposition and flow vorticity

The Helmholtz decomposition applied to the differentiable vector field u writes as

u = u i + uΩ (2.14)

where the vector fields u i and uΩ are given by

u i = ∇ φ , uΩ = ∇× π (2.15)

being φ the scalar potential and π the vector potential [45], [48]. By definition u i is irrotational
(∇ × u = ∇ × uΩ ) and uΩ solenoidal (∇ · u = ∇ · u i ). The divergence and curl of Eq. (2.14) give
respectively1

∇2φ = ∇ · u , ∇2π = −Ω (2.16)

where the condition

∇ · π = 0 (2.17)

has been imposed and Ω is the flow vorticity defined as

Ω = ∇× u (2.18)

When uΩ has zero normal component on the boundary ∂V of the domain of interest V , then the
decomposition (2.14) is orthogonal (i.e.

∫
V u i · uΩ dV = 0) and unique [49]. A vorticity transport

equation may be obtained by making the curl of Eq. (2.2) with the viscous term on the right-hand side
expressed as2

∇ · τ = μ

[
4
3
∇(∇ · u) −∇× (∇× u)

]
(2.19)

By assuming that the kinematic viscosity

ν = μ/ρ (2.20)

is constant, one finds3

DΩ
Dt

= Ω · ∇u− Ω (∇ · u) +
1
ρ2

∇ρ×∇p+ ν∇2 Ω (2.21)

1∇× (∇× a) = ∇(∇ · a) −∇2a.
2∇·[∇u+∇uT−2/3 (∇·u) I] = ∇2u+∇(∇·u)−2/3∇(∇·u) = ∇2u+1/3∇(∇·u) = ∇(∇·u)−∇×(∇×u)+1/3∇(∇·u).
3∇× (u · ∇u) = ∇× [∇(u · u)/2 + (∇× u) × u ] = ∇× (Ω × u) = −Ω · ∇u + u · ∇Ω + Ω(∇ · u) and ∇× (∇p/ρ) =

1/ρ∇×∇p+ ∇(1/ρ) ×∇p = −1/ρ2∇ρ×∇p.
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where the four terms on the right-hand side represent, respectively, the effects of vortex stretching, fluid
dilatation, baroclinic vorticity generation and viscous diffusion [50]. It is possible to demonstrate that
an initially irrotational flow remains irrotational if the flow is barotropic (i.e. ρ = ρ(p)) and inviscid [45].
In an incompressible flow ∇ · u = 0, ρ = const and Eq. (2.21) reduces to

DΩ
Dt

= Ω · ∇u + ν∇2 Ω (2.22)

the pressure being given by the Poisson equation

∇2p = −ρ∇ · (u · ∇u) (2.23)

that is obtained by making the divergence of Eq. (2.2).

2.2.2 Bernoulli theorem and Crocco’s equation

Using Eq. (2.19) into the momentum equation (2.2), we have4

∂u
∂t

+
∇p
ρ

+ ∇
(u · u

2

)
= u× Ω + ν

[
4
3
∇(∇ · u)−∇×Ω

]
(2.24)

When the flow is barotropic, irrotational and inviscid, Eq. (2.24) gives the Bernoulli theorem

∂φ

∂t
+
∫
dp

ρ
+

u · u
2

= C(t) (2.25)

where C(t) is a function of time only. In an incompressible flow, the second term on the left-hand side of
Eq. (2.25) reads as

∫
dp/ρ = p/ρ. By combining Eqs. (2.4) and (2.5), one can derive the thermodynamic

expression

dp

ρ
=

γ

γ − 1
d

(
p

ρ

)
− T dS (2.26)

Thus in a homentropic flow (i.e. S = const), one has
∫
dp/ρ = CpT . Eqs. (2.24) and (2.26) may be

combined to give the Crocco’s equation

∂u
∂t

+ ∇B = T ∇S + u ×Ω + ν

[
4
3
∇(∇ · u) −∇×Ω

]
(2.27)

2.3 Classical Acoustics

In order to simplify the thermoacoustic modeling of the combustion system, linearized forms of the
Navier-Stokes equations may be derived by expressing the generic flow variable ϕ (being ϕ a placeholder
for p, ρ, T , S, u, Q) as

ϕ (x, t) = ϕ (x) + ϕ ′ (x, t) (2.28)

where the mean flow ϕ(x) is the steady solution of the steady Navier-Stokes equations and ϕ ′(x, t) is
the mean flow perturbation. In classical acoustics the mean flow is taken as a non-reacting uniform fluid

4a · ∇b + b · ∇a = ∇(a · b) + (∇× a) × b + (∇× b) × a
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at rest, i.e. u = Q = 0 and ϕ = const for ϕ = p , ρ , T , S . Next the flow variables p , ρ , T , S , u
are nondimensionalized using the constant mean flow values p , ρ , T , Cp , c respectively, where c is
the speed of sound defined as

c =
√
γR T =

√
γ p/ρ (2.29)

(in an unperturbed fluid at rest the speed of sound is the only characteristic velocity). In order to apply
the linearization process to the governing equations, all the nondimensional perturbations are supposed
to be O(�) with � small parameter � 1 characterizing the intensity of disturbances [51], [52]. When
substituting Eqs. (2.28) into the nondimensional form of Eqs. (2.1)-(2.5) and collecting terms of the
same order in � , at O(�0) and O(�) one obtains the mean flow and perturbation equations respectively.
In particular, the dimensional form of the perturbation equations reads as

∂ ρ ′

∂t
+ ρ ∇ · u ′ = 0 (2.30)

ρ
∂ u ′

∂t
+ ∇ p ′ = μ

[
4
3
∇ (∇ · u ′) −∇× (∇× u ′)

]
(2.31)

ρ T
∂ S ′

∂t
= κ∇2 T ′ (2.32)

p ′

p
=

ρ ′

ρ
+
T ′

T
(2.33)

S ′

Cp
=

p ′

γ p
− ρ ′

ρ
(2.34)

where Eq. (2.19) has been used to express the viscous term in the momentum equation.

2.3.1 Boundary layer problem

By making the divergence of Eq. (2.31), using Eq. (2.30) to express ∇· u ′ and eliminating ρ ′ by means
of Eq. (2.34) gives(

∂

∂t
− 4

3
ν∇2

)
∂

∂t

(
p ′

γ p
− S ′

Cp

)
− ∇2 p ′

ρ
= 0 (2.35)

When Eqs. (2.33) and (2.34) are employed into Eq. (2.32) to express T ′ as a function of p ′ and S ′, one
has

1
Cp

∂ S ′

∂t
=

ν

Pr
∇2

(
γ − 1
γ

p ′

p
+
S ′

Cp

)
(2.36)

where Pr is the Prandtl number defined as

Pr =
μCp
κ

(2.37)
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(Pr = 0.72 for air at ambient temperature). Eqs. (2.35) and (2.36) form a closed system in the variables
p ′ and S ′. Using Eq. (2.36) to express ∂ S ′/∂t into Eq. (2.35), one obtains

∂2 p ′

∂t2
− c 2∇2 p ′ = ν

[(
4
3

+
γ − 1
Pr

)
∂

∂t
∇2 p ′ +

γ p

Cp

(
1
Pr

− 4
3

)
∂

∂t
∇2 S ′

]
(2.38)

Eq. (2.38) shows that the propagation of pressure waves is decoupled from entropy fluctuations when
Pr = 3/4. To consider the general case Pr �= 3/4, first the momentum equation (2.31) is split into
two separate equations using the decomposition of u ′ into irrotational component u ′

i and rotational
component u ′

Ω [see Eq. (2.14)]. It yields

ρ
∂ u ′

i

∂t
= −∇

[
p ′ +

4
3
μ
∂

∂t

(
p ′

γ p
− S ′

Cp

)]
(2.39)

ρ
∂ u ′

Ω

∂t
= −μ∇× (∇× u ′

Ω) (2.40)

where ∇ · u ′
i has been eliminated using Eqs. (2.30), (2.33) and (2.34). Note that the curl of Eq. (2.39)

and the divergence of Eq. (2.40) give, respectively, ∂t/∂ (∇× u ′
i) = 0 and ∂t/∂ (∇ · u ′

Ω) = 0, i.e. an
initially irrotational field u ′

i remains irrotational and an initially solenoidal field u ′
Ω remains solenoidal.

To investigate the characteristics of the system (2.35), (2.36), (2.39) and (2.40), we consider the harmonic
solution [29]

ϕ ′ (x, t) = ϕ̆ exp ( s t− i k · x ) (2.41)

where k is the vector wave number and s the complex frequency. The solution (2.41) satisfies the
conditions

∇2 ϕ ′ = −|k|2 ϕ ′ ,
∂ ϕ ′

∂t
= s ϕ ′ (2.42)

The substitution of Eq. (2.41) into Eqs. (2.35)-(2.36) yields(
s+

4
3
ν |k|2

)
s

(
p ′

γ p
− S ′

Cp

)
+ |k|2 p

′

ρ
= 0 (2.43)

s
S ′

Cp
= − ν

Pr
|k|2

(
γ − 1
γ

p ′

p
+
S ′

Cp

)
(2.44)

The case k real and s complex corresponds to standing waves damped out in time by viscous and heat
conduction effects. We analyze the regime response case, where k is complex and s = iω with ω = 2πf
circular frequency. This corresponds to a sinusoidal driven motion in time with waves attenuated in
space. A non trivial solution may be searched by setting the determinant of the system (2.43)-(2.44) to
zero. This leads to the characteristic relation between |k|2 and ω

|k|2 = i
(ω
c

)2 Pr Sh2

2
Υ (2.45)

Υ =
−
[
1 +

i

Sh2

(
4
3

+
γ

Pr

)]
∓
√[

1 +
i

Sh2

(
4
3

+
γ

Pr

)]2

− 4 i
Pr Sh2

(
1 +

4
3
i
γ

Sh2

)
1 +

4
3
i
γ

Sh2
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where the shear number Sh is defined as

Sh =
c√
ν ω

(2.46)

The continuum model is valid for the acoustic field when the acoustic Knudsen number Kn is � 1, being
Kn = ς/λ with ς mean free path (i.e. distance between molecule collisions) and λ acoustic wavelength
given by [46], [51]

λ = c/ω (2.47)

Following the kinetic theory of gases, the kinematic viscosity may be written as ν ∼ c ς and thus the
condition Kn� 1 is equivalent to

Sh2 � 1 (2.48)

(for air at room temperature ν = 1.5 × 10−5m2/s and c = 340m/s, so that for a frequency of 1kHz
one gets Sh2 � 106). By using Eq. (2.48), the solution corresponding to the upper sign in Eq. (2.45) is
obtained with Υ � −2. It reads as

k2
d � −i

(ω
c

)2
Pr Sh2 ⇒ kd � ∓

(ω
c

) √Pr

2
Sh (1− i) (2.49)

The second of Eqs. (2.49) shows that perturbations are damped within propagation distances of the
order of the small diffusion length

δd = |kd|−1 =
√

2 ν/(ω Pr) (2.50)

where

δd � λ (2.51)

according to Eq. (2.48). Then, for the diffusion mode (2.49) the effect of boundary walls becomes
negligible outside of the thin thermal boundary layer of thickness δd (for air at room temperature and
a frequency > 7Hz one has δd < 1mm). The solution corresponding to the lower sign in Eq. (2.45) is
obtained by expanding Υ in series of 1/Sh2. At second order, it gives5

k2
p �

(ω
c

)2
[
1 − i

Sh2

(
4
3

+
γ − 1
Pr

)]
⇒ kp � ∓

(ω
c

)[
1 − i

2Sh2

(
4
3

+
γ − 1
Pr

)]
(2.52)

The mode related to the wave number kp is characterized by a small attenuation in space and is
called propagational mode. When k2

p is substituted into Eqs. (2.42) (written for pressure fluctuations),
Eq. (2.43) and the harmonic form of Eq. (2.39), one obtains at order 1/Sh2

∂2 p ′
p

∂t2
− c 2 ∇2 p ′

p � ν

(
4
3

+
γ − 1
Pr

)
∂

∂t
∇2 p ′

p (2.53)

S ′
p

Cp
� i

ρ T Pr Sh2
p ′
p (2.54)

u ′
p � − 1

i ω ρ

(
1 +

4
3

i

Sh2

)
∇ p ′

p (2.55)

5
√

1 − iθ = 1/
√

2(
√√

1 + θ2 + 1− i
√√

1 + θ2 − 1) where
√√

1 + θ2 + 1 � √
2 and

√√
1 + θ2 − 1 � θ/

√
2 when θ → 0.
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where Eq. (2.53) represents the wave equation of the propagational mode. By introducing the (real)
wave number

k = ω/ c (2.56)

and the damping coefficient αp = ω2 ν/{2 c3[4/3 + (γ − 1)/Pr]} we can rewrite Eqs. (2.52) as kp =
±k(1+ iαp/k), i.e. λ is the characteristic length scale and visco-thermal attenuation becomes important
only when waves propagate over distances of the order of magnitude of 1/αp (for air at room temperature
and a frequency of 1kHz one has 1/αp � 70km). Finally, when a harmonic solution (2.41) is searched
for u ′

Ω using Eq. (2.40), the characteristic equation gives the wave numbers ∓√ω/2 ν(1− i) that define
the viscous length scale

δv =
√

2 ν/ω (2.57)

Therefore, shear mode perturbations u ′
Ω generated at boundary walls become negligible outside of the

viscous boundary layer of thickness δv . In conclusion, being the attenuation of the propagational mode
very small and being the diffusion and shear modes damped within the thermal and viscous boundary
layers, the total solution may be represented by the inviscid form of Eqs. (2.53)-(2.55)

∂2 p ′
p

∂t2
− c 2 ∇2 p ′

p = 0 (2.58)

ρ
∂ u ′

p

∂t
+ ∇ p ′

p = 0 (2.59)

S ′
p = 0 (2.60)

where Eq. (2.58) is the wave equation of classical acoustics [51]. By transforming to the frequency
domain with ϕ ′(x, t) = ϕ̂(x) exp(iωt), Eqs. (2.58) and (2.59) become

∇2 p̂ p + k2 p̂ p = 0 (2.61)

û p = − 1
i ω ρ

∇ p̂ p (2.62)

Ŝp = 0 (2.63)

where Eq. (2.61) is the Helmholtz equation.
However, the diffusion, propagational and shear modes can not be separately solved when boundary
conditions introduce mode coupling (this happens when constrains on some flow variables can not
be formulated separately upon the individual mode [29]). In case of solid walls, zero fluctuations of
temperature and velocity are prescribed as boundary conditions. In general the propagational mode
may be computed when assigning its velocity component normal to the wall ( ûp · n)w, being n the
outward normal to the wall [such a condition is linked to a pressure gradient condition by means of
Eq. (2.55)]. To force to zero the global velocity component normal to the wall, one must impose
( ûp ·n)w = −[( ûd ·n)w+( ûΩ ·n)w] where ( ûd ·n)w and ( ûΩ ·n)w are the velocity components normal
to the wall induced by diffusion and shear mode respectively. ( ûd · n)w is associated to the diffusion
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mode solution obtained by forcing zero temperature fluctuations on the wall. ( ûΩ ·n)w originates when
the shear mode solution is adjusted to satisfy ( ûΩ · t)w = −( ûp · t)w, being ( ûp · t)w the velocity
component tangential to the wall induced by the propagational mode. As a result of this mode coupling,
the propagational mode equation (2.61) must be solved using the boundary condition

p̂ p
û p · n = Zw (ω , x) (2.64)

where Zw is the boundary impedance that depends on the solution of the diffusion and shear modes
inside the boundary layers (when neglecting boundary layer effects, the solid wall impedance becomes
Zw = ∞). For instance, for plane waves incident on a plane solid wall at angle of incidence θ with
respect to the normal to the plane, one finds [29]

Zw = ρ c
1 + i√

2
Sh

(
γ − 1√
Pr

+ sin2 θ

)−1

(2.65)

2.3.2 Capillary duct

When considering a duct where the thicknesses of thermal and viscous boundary layers are not small
with respect to the duct radius (“capillary duct”), the propagational mode alone can not approximate
the global solution. This is the case of the axial-symmetric perturbation of a fluid at rest in a cylindrical
tube of radius a, when a is much smaller than the acoustic wavelength λ [see Eq. (2.51)]. To study this
problem, the governing equations (2.30)-(2.32) are written in cylindrical coordinates as

∂ ρ ′

∂t
= − ρ

[
∂ u ′

x

∂x
+

1
r

∂r u ′
r

∂r

]
(2.66)

∂ u ′
x

∂t
= − 1

ρ

∂ p ′

∂x
+ ν

[
∂2 u ′

x

∂x2
+

1
r

∂

∂r

(
r
∂ u ′

x

∂r

)]
+

1
3
ν
∂

∂x

[
∂ u ′

x

∂x
+

1
r

∂r u ′
r

∂r

]
(2.67)

∂ u ′
r

∂t
= − 1

ρ

∂ p ′

∂r
+ ν

[
∂2 u ′

r

∂x2
+

1
r

∂

∂r

(
r
∂ u ′

r

∂r

)
− u ′

r

r2

]
+

1
3
ν
∂

∂r

[
∂ u ′

x

∂x
+

1
r

∂r u ′
r

∂r

]
(2.68)

ρCp
∂ T ′

∂t
=
∂ p ′

∂t
+ κ

[
∂2 T ′

∂x2
+

1
r

∂

∂r

(
r
∂ T ′

∂r

)]
(2.69)

where x is the axial coordinate and r the radial coordinate. The solution of Eqs. (2.66)-(2.69) is searched
in the harmonic form ϕ ′(x, t) = ϕ̂(x) exp (iωt) by introducing the dimensionless quantities

ρ̃ = ρ̂/ ρ , ũx = ûx/ c , ũr = ûr/ c , p̃ = p̂/ p , T̃ = T̂ / T (2.70)

and the dimensionless coordinates

ξ = k x , η =
r

a
(2.71)

It gives

i He ρ̃ = −
[
He

∂ ũx
∂ξ

+
1
η

∂η ũr
∂η

]
(2.72)
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i ũx = −1
γ

∂ p̃

∂ξ
+

1
Sd2

{[
He2

∂2 ũx
∂ξ2

+
1
η

∂

∂η

(
η
∂ ũx
∂η

)]
+

+
1
3
He

∂

∂ξ

[
He

∂ ũx
∂ξ

+
1
η

∂η ũr
∂η

]}
(2.73)

i He ũr = −1
γ

∂ p̃

∂η
+
He

Sd2

{[
He2

∂2 ũr
∂ξ2

+
1
η

∂

∂η

(
η
∂ ũr
∂η

)
− ũr
η2

]
+

+
1
3
∂

∂η

[
He

∂ ũx
∂ξ

+
1
η

∂η ũr
∂η

]}
(2.74)

i T̃ = i
γ − 1
γ

p̃+
1

Pr Sd2

[
He2

∂2 T̃

∂ξ2
+

1
η

∂

∂η

(
η
∂ T̃

∂η

)]
(2.75)

where the duct Helmholtz and Stokes numbers are given respectively by

He = k a , Sd = a
√
ω/ ν (2.76)

The related boundary conditions are ũx = ũr = T̃ = 0 at η = 1 and ũr = 0 at η = 0. Being the
duct radius much smaller than acoustic wavelengths, one has He� 1. Moreover, the radial component
of velocity is assumed to be much smaller than the axial component, i.e. ũr � ũx.6 Using these
assumptions, Eqs. (2.72)-(2.75) are reduced to

i He ρ̃ = −
[
He

∂ ũx
∂ξ

+
1
η

∂(η ũr)
∂η

]
(2.77)

i ũx = −1
γ

∂ p̃

∂ξ
+

1
Sd2

1
η

∂

∂η

(
η
∂ ũx
∂η

)
(2.78)

∂ p̃

∂η
= 0 (2.79)

i T̃ = i
γ − 1
γ

p̃+
1

Pr Sd2

1
η

∂

∂η

(
η
∂ T̃

∂η

)
(2.80)

The solution of Eqs. (2.77)-(2.80) is given by [53]

d2 p̂

dx2
− Γ2 k2 p̂ = 0 (2.81)

ûA =
1

i ω ρ

( γ

nΓ2

) d p̂
dx

(2.82)

T̂A

T
=
n− 1
n

p̂

p
(2.83)

6The analysis performed in Ref. [53] indicates that ũr � ũx is equivalent to Sh� 1.
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where ϕ̂A = 1/(πa2)
∫ a
0 ϕ̂ 2πrdr represents the cross-sectional average value and

n =

[
1 +

γ − 1
γ

J2(i3/2
√
Pr Sd)

J0(i3/2
√
Pr Sd)

]−1

, Γ =

√
γ J0(i3/2 Sd)
nJ2(i3/2 Sd)

(2.84)

with Jm Bessel function of first kind of order m. When Sd→ ∞, one has

lim
Sd→∞

Γ = i (2.85)

that reduces Eq. (2.81) to the one-dimensional Helmholtz equation having the plane wave solution

p̂

ρ c
= F exp (−i k x) + G exp (i k x) (2.86)

û = F exp (−i k x)− G exp (i k x) (2.87)

(the Riemann invariants F and G are determined by the boundary conditions in the x-direction). For
large values of Sd, Eqs. (2.84) give the Kirchhoff solution [51], [53]

n � γ , Γ � i+
1 + i√
2Sd

(
1 +

γ − 1√
Pr

)
(2.88)

Using Eqs. (2.88), the general solution of Eqs. (2.81)-(2.83) writes as

p̂

ρ c
= F exp (−Γ k x) + G exp (Γ k x) (2.89)

ûA =
i

Γ
[F exp (−Γ k x) − G exp (Γ k x)] (2.90)

T̂A

T
=
γ − 1
γ

p̂

p
(2.91)

where Eq. (2.91) represents the isentropic flow condition [see Eqs. (2.33)-(2.34)]. The damping coefficient
αd of the duct is defined by the expression

αd =
√
ω ν√
2 c a

(
1 +

γ − 1√
Pr

)
(2.92)

that usually satisfies the condition αd � k (e.g. αd/k � 10−4 for 1kHz waves in a duct of radius
a = 0.1m filled with air at room temperature). Using the approximation Γ � i + αd/k, Eq. (2.81) is
rewritten as

d2 p̂

dx2
+ k2 p̂− 2 i αd k p̂ = 0 (2.93)

that has the general solution

p̂

ρ c
= F exp (−i k x) exp (−αd x) + G exp (i k x) exp (αd x) (2.94)

Finally, for small values of Sd one has limSd→0 n = 1 that, according to Eq. (2.83), corresponds to the
isothermal condition. Moreover Γ = 2(1 + i)

√
γ/Sd and Eq. (2.82) gives uA = −a2/(8 μ)dp/dx, which

is the Poiseuille’s resistance for laminar flows in tubes.
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2.4 Mode Decomposition in Uniform Mean Flows

The approach illustrated in Section 2.3.1 may be extended to the case of uniform mean flow ( u = const)
by replacing Eq. (2.41) and the second of Eqs. (2.42) with ϕ ′ (x, t) = ϕ̆ exp [( s + k · u ) t− i k · x ] and
Dϕ ′/Dt = s ϕ ′ respectively, where

Dϕ ′

Dt
=
∂ ϕ ′

∂t
+ u · ∇ϕ ′ (2.95)

is the Lagrangian derivative with respect to the mean flow. Thus, in the domain outside of the thermal
and viscous boundary layers one can use the inviscid form of Eqs. (2.35), (2.36), (2.39) and (2.40) where
the time derivatives are replaced by D/Dt. Moreover, the perturbation flow may be decomposed into
acoustic, entropy and vorticity modes defined as follows [10].

Acoustic mode

D
2
p ′

Dt2
− c 2 ∇2 p ′ = 0 (2.96)

ρ
Du ′

i

Dt
+ ∇ p ′ = 0 (2.97)

∇× u ′
i = 0 (2.98)

Entropy mode

DS ′

Dt
= 0 (2.99)

Vorticity mode

D u ′
Ω

Dt
= 0 (2.100)

∇ · u ′
Ω = 0 (2.101)

Eq. (2.99) accounts for the convection of entropy waves that are generated at the domain inlet and
propagate in the region outside of the boundary layers. The perturbation flow field upstream of the
flame is usually assumed to be homentropic, i.e. S ′ = 0. On the contrary, downstream of the flame
the heat release process acts as a time-dependent entropy boundary. In this case Eq. (2.99) describes
the propagation of “hot spots” convected towards the combustor exit by the mean flow. The curl
of Eq. (2.100) yields DΩ ′/Dt = 0, which describes the convection of the first-order incompressible
vorticity Ω ′ = ∇ × u ′ possibly introduced in the domain by inlet boundary conditions (e.g. at the
downstream side of flame front). Note that the equation DΩ ′/Dt = 0 may be also obtained as first
order perturbation of the inviscid form of the incompressible vorticity equation (2.22).
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Higher order perturbation equations may be derived by replacing Eq. (2.28) with the expansion

ϕ (x, t) = ϕ (x) + ϕ(1) (x, t) + ϕ(2) (x, t) + ϕ(3) (x, t) + . . . (2.102)

where ϕ(m) = O(�m) with � � 1 [in Eq. (2.102) we have used the notation ϕ(1) ≡ ϕ ′]. At the generic
order m, Eqs. (2.96), (2.99) and (2.100) write as [10]

D
2
p(m)

Dt2
− c 2∇2p(m) = γ pF (m) (2.103)

1
Cp

DS(m)

Dt
= q(m) (2.104)

DΩ(m)

Dt
= ∇× f (m) (2.105)

The left-hand sides (homogeneous parts) of Eqs. (2.103)-(2.105) are the same for all values of m, whereas
the source terms on the right-hand sides depend on the orderm of the perturbation system. At first order
one has F (1) = q(1) = f (1) = 0 [see Eqs. (2.96), (2.99) and (2.100)]. At order m > 1, the source terms
are functions of the products of the j-solutions with j < m and mode coupling arises. In particular,
for m = 2 the second-order source terms F (2), q(2) and f (2) are expressed as the sum of 18 interaction
terms that are functions of first-order variables [10]. The second-order interaction terms are reported in
Tab. 2.1 and discussed in detail in the following.

Acoustic-acoustic interaction

The interaction of the first-order acoustic mode with itself gives a contribution to the second-order
acoustic mode only. When integrating the acoustic-acoustic interaction term on the entire domain and
zero acoustic velocity is assumed at boundaries, the contribution from the terms ∇ · ∇ · u ′

i u ′
i and

∇2 p ′ 2 is zero. That means that both the terms are just responsible for sound scattering by sound or
nonlinear distortion of sound waves. On the contrary, the volume integral of ∂2 p ′ 2/∂t2 is different from
zero and is responsible for a net sound generation.

Acoustic-vorticity interaction

When velocity fluctuations are zero at boundaries, the integration of the term ∇ · ∇ · u ′
Ω u ′

i on the
domain of interest vanishes. Thus, the vorticity-acoustic contribution to the acoustic source produces
just a scattering of sound by rotational inhomogeneity of velocity. The vorticity-acoustic contribution
to the generation of vorticity accounts for the production of vorticity by sound waves.

Acoustic-entropy interaction

The effects of the acoustic-entropy interaction are scattering of sound by temperature inhomogeneity,
transfer of heat by sound waves and generation of vorticity by the interaction of entropy and pressure.

Entropy-vorticity interaction

The vorticity-entropy interaction leads only to a transfer of heat by vorticity in the entropy mode.
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Acoustic source Entropy source Vorticity source
F (2) q(2) ∇× f (2)

∇ · ∇ · u ′
i u ′

i+
Acoustic-acoustic +∇2 p ′ 2/ ρ + 0 0

+(γ − 1)/(2γ p) ∂2 p ′ 2/∂t2

Acoustic-vorticity 2 ∇ · ∇ · u ′
Ω u ′

i 0 ∇× ( u ′
i × Ω ′)

Acoustic-entropy
1
Cp

∂

∂t
∇ · (S ′ u ′

i) − 1
Cp

u ′
i · ∇S ′ − 1

ρCp
∇S ′ ×∇ p ′

Entropy-entropy 0 0 0

Entropy-vorticity 0 − 1
Cp

u ′
Ω · ∇S ′ 0

Vorticity-vorticity ∇ · ∇ · u ′
Ω u ′

Ω 0 ∇× ( u ′
Ω × Ω ′)

Table 2.1: Second-oder source terms.

Vorticity-vorticity interaction

The vorticity-vorticity interaction generates the source term ∇ ·∇ · u ′
Ω u ′

Ω in the acoustic mode. This
term represents the Lighthill’s acoustic analogy, which is used to model the nonlinear generation of
sound due to an incompressible vorticity field [54], [55].7 When the other vorticity-vorticity interaction
term ∇ × ( u ′

Ω × Ω ′) is written as Ω ′ · ∇u ′
Ω − u ′

Ω · ∇Ω ′, then the vorticity equation (2.105) with
m = 2 corresponds to the nonlinear perturbation of the inviscid form of Eq. (2.22).

2.5 Linearized Navier-Stokes Equations

In this Section we consider the general case of a non-uniform mean flow. When the perturbation (2.28)
and the nondimensionalization approach described in Section 2.3 are used into Eqs. (2.1)-(2.3), at first
order one obtains

∂ ρ ′

∂t
+ ∇ · ( ρ u ′ + ρ ′u) = 0 (2.106)

7The Lighthill’s acoustic analogy neglects the feedback of the acoustic field on the incompressible flow field and is

employed when the source region is limited in space and the surrounding fluid is stagnant and unbounded (e.g. noise

produced by a turbulent jet discharging in a uniform steady atmosphere).
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∂ (ρu) ′

∂t
+ ∇ · [ρ (u u ′ + u ′ u

)
+ ρ ′u u

]
+ ∇ p ′ = ∇ · τ ′ (2.107)

ρ T
D S ′

Dt
+ (ρ T u) ′ · ∇S = (τ : ∇u) ′ + κ∇2 T ′ + Q ′ (2.108)

The system (2.106)-(2.108) is closed by the perturbations of Eqs. (2.4) and (2.5), that are given by
Eqs. (2.33) and (2.34) respectively. Note that Eqs. (2.106)-(2.108) are obtained by using reference
speed of sound and acoustic wavelength to nondimensionalize mean flow velocity and mean flow spacial
gradients respectively, i.e. we have assumed that the flow velocity is of the same order of magnitude as
the speed of sound. In alternative to Eq (2.108), the perturbation of Eq. (2.12) may be employed. It
reads as

∂ (ρE) ′

∂t
+ ∇ · [ρ u B ′ +

(
ρ u ′ + ρ ′ u

)
B
]

= ∇ · (u ′ · τ + u · τ ′)+ κ∇2 T ′ + Q ′ (2.109)

where the fluctuating total energy E ′ and the fluctuating total enthalpy B ′ are given by

E ′ = Cv T
′ + u · u ′ , B ′ = Cp T

′ + u · u ′ (2.110)

Using Eqs. (2.33)-(2.34) into Eqs. (2.106)-(2.107) and eliminating u · ∇u by means of the mean flow
momentum equation, one finds8

∂ p ′

∂t
+ c 2 ∇ ·

(
ρ u ′ +

u
c 2 p ′

)
= c 2 ρ

Cp

DS ′

Dt
(2.111)

∂ u ′

∂t
+ ∇

(
p ′

ρ
+ u · u ′

)
= T ′∇S − S ′ ∇ T − (Ω × u) ′ +

(∇ · τ
ρ

)′
(2.112)

[note that Eq. (2.112) represents the perturbation of the Crocco’s equation (2.27)]. When the decom-
position (2.14) is applied to both the velocity perturbation u ′ and the right-hand side of Eq. (2.112),
Eqs. (2.111)-(2.112) may be rewritten as

∂ p ′

∂t
+ c 2 ∇ ·

(
ρ u ′

i +
u
c 2

p ′
)

= F ′ (2.113)

∂ u ′
i

∂t
+ ∇

(
p ′

ρ
+ u · u ′

i

)
= ∇ φ ′ (2.114)

∂ u ′
Ω

∂t
= ∇× π ′ (2.115)

where

F ′ = c 2

(
ρ

Cp

DS ′

Dt
− u ′

Ω · ∇ ρ

)
(2.116)

∇2 φ ′ = ∇ · f ′ , ∇2 π ′ = −∇× f ′ , ∇ · π ′ = 0 (2.117)

8a · ∇b + b · ∇a = ∇(a · b) + (∇× a) × b + (∇× b) × a
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with

f ′ = T ′∇S − S ′ ∇ T − Ω × u ′
i − u · ∇u ′

Ω − u ′
Ω · ∇u +

(∇ · τ
ρ

)′
(2.118)

The curl of Eq. (2.114) and the divergence of Eq. (2.115) give, respectively, ∂t/∂ (∇ × u ′
i) = 0 and

∂t/∂ (∇ · u ′
Ω) = 0, i.e. an initially irrotational field u ′

i remains irrotational and an initially solenoidal
field u ′

Ω remains solenoidal. In Eqs. (2.113) and (2.114) the terms F ′ and ∇ φ ′ are the source terms
for the acoustic mode ( p ′, u ′

i ) propagating in the non-uniform mean flow u [8]. In particular, in gas
turbine combustors contributions to F ′ and ∇ φ ′ are given by

(i) solenoidal velocity perturbations related to turbulent fluctuations;

(ii) entropy fluctuations induced by unsteady combustion;

(iii) interaction between acoustic velocity and mean flow vorticity typical of swirl flows.

In general, it is not possible to reduce the system (2.113)-(2.114) to a wave equation. In the next Sections
an approximate wave equation is derived under the hypothesis of low Mach number mean flow.

2.6 Low Mach number Flows

In gas turbine combustion systems the Mach number is usually small and thus it is of particular interest
the case of low Mach number limit (the low Mach number assumption neglects Mach number effects
occurring in the area contraction possibly located at the combustor exit, which may be modeled by means
of a “compact nozzle” boundary condition when nozzle dimensions are small in comparison with acoustic
wavelengths [56]). To apply the low Mach number limit, first the flow variables are nondimensionalized
by using the reference pressure p∞, the reference temperature T∞, the reference burner flow velocity
u∞, the reference temperature jump across the flame ΔT∞ and the reference flame thickness δf∞. The
nondimensional variables are expressed as

p̃ =
p

p∞
, T̃ =

T

T∞
, ρ̃ =

ρ

ρ∞
, S̃ =

S

Cp
, ũ =

u
u∞

, Q̃ =
Q

Q∞
(2.119)

where ρ∞ = p∞/(RT∞) is the reference density and Q∞ = ρ∞u∞RΔT∞/δf∞ the reference heat release.
The nondimensional variables defined by Eqs. (2.119) remain O(1) for any low value of the reference
Mach number

M∞ =
u∞
c∞

(2.120)

where c∞ =
√
γ p∞/ρ∞ is the reference speed of sound.9 To avoid the dependence on γ, we define

ε =
√
γM∞ (2.121)

The time scale of flow oscillations is supposed to be dominated by the evolution of the flame front
and the reference time t∞ of heat release oscillations is taken as a burner characteristic convective time.

9If the flow velocity is nondimensionalized using the speed of sound thus |u|/c∞ → 0 when M∞ → 0, i.e. the low Mach

number limit is not applicable.
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Therefore we use t∞ = L∞/u∞, with L∞ burner length related to the physical mechanism responsible for
heat release unsteadiness (e.g. when heat release oscillations are induced by vortex shedding occurring at
burner exit, thus L∞ is approximately given by the burner diameter [57]). By introducing the wavelength
λ = c∞/ω with ω = 1/t∞, then the condition M∞ → 0 may be written as L∞ � λ that means our
analysis is restricted to a low-frequency range. The time scale L∞/u∞ and the length scale L∞ define
the time and length scale variables given respectively by

t̃ = t/(L∞/u∞) , x̃ = x/L∞ (2.122)

The nondimensional form of Eqs. (2.10), (2.11), (2.13) and (2.4) writes as

∂ ρ̃

∂ t̃
+ ∇̃ · ( ρ̃ ũ) = 0 (2.123)

∂( ρ̃ ũ)
∂ t̃

+ ∇̃ · ( ρ̃ ũ ũ) +
1
ε 2

∇̃ p̃ =
1

Re∞
∇̃ · τ̃ (2.124)

∂ p̃

∂ t̃
+ ũ · ∇̃ p̃+ γ p̃ ∇̃ · ũ = ε 2 γ − 1

Re∞
τ̃ : ∇̃ ũ +

γ

PrRe∞
∇̃2 T̃ + (γ − 1) Σ∞ Q̃ (2.125)

p̃ = ρ̃ T̃ (2.126)

where τ̃ = [( ∇̃ ũ+ ∇̃ ũT )− 2/3 ( ∇̃ · ũ) I ] . In Eqs. (2.124) and (2.125), the reference Reynolds number
Re∞, the Prandtl number Pr and the heat release number Σ∞ are defined as

Re∞ =
ρ∞ u∞ L∞

μ
, Pr =

μCp
κ

, Σ∞ =
ΔT∞/T∞
δf∞/L∞

(2.127)

2.6.1 Asymptotic analysis

When the low Mach number limit ε → 0 is applied to Eqs. (2.123)-(2.126), a singularity arises in
Eq. (2.124) because of the O(ε−2) pressure gradient term. By assuming that the low Mach number
asymptotic analysis is a regular perturbation problem, the singularity may be removed by expanding
the generic nondimensional variable ϕ̃ in asymptotic series of the form [58], [59], [60]

ϕ̃ = ϕ̃ 0 + ε ϕ̃1 + ε 2 ϕ̃2 + . . . (2.128)

In order to apply correctly the low Mach number asymptotic expansion, the order of magnitude of the
nondimensional numbers (2.127) must be specified with respect to ε.10 Even though in general 1/Re∞ �
ε, viscous and heat conduction terms are retained into the asymptotic expansion of Eqs. (2.124)-(2.125)
because they become O(1) inside the boundary layer, where the length scale of the diffusive effects is
of the order of L∞/Re∞ [45]. Furthermore, the heat release terms Q̃n may be included in the O(εn)
energy equations if we assume Σ∞ � ε, i.e.

δf∞ � λ
ΔT∞
T∞

(2.129)

10For a differential equation involving two singular small parameters ε and σ, the asymptotic behavior as ε, σ → 0

depends on the path to the origin in the (ε, σ) plane, i.e. on the “distinguished” limit that is imposed by the constraint

σ ∼ εm with m integer ≥ 1 [61].
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Being in heavy-duty gas turbines generally ΔT∞/T∞ < 2, Eq. (2.129) shows that the flame is supposed to
be thin with respect to acoustic wavelengths. The low Mach number asymptotic expansion is performed
by substituting Eqs. (2.128) into Eqs. (2.123)-(2.126) and collecting terms of the same order in ε.11 It
reads for the continuity equation as

O(ε 0) :
∂ ρ̃ 0

∂ t̃
+ ∇̃ · ( ρ̃ 0 ũ 0) = 0 (2.130)

O(ε 1) :
∂ ρ̃ 1

∂ t̃
+ ∇̃ · ( ρ̃ ũ ) 1 = 0 (2.131)

O(ε 2) :
∂ ρ̃ 2

∂ t̃
+ ∇̃ · ( ρ̃ ũ ) 2 = 0 (2.132)

where ( ρ̃ ũ ) 1 = ρ̃ 1 ũ 0 + ρ̃ 0 ũ 1 and ( ρ̃ ũ ) 2 = ρ̃ 2 ũ 0 + ρ̃ 1 ũ1 + ρ̃ 0 ũ 2. The momentum equation is
expanded as

O(ε−2) : ∇̃ p̃ 0 = 0 (2.133)

O(ε−1) : ∇̃ p̃ 1 = 0 (2.134)

O(ε 0) :
∂( ρ̃0 ũ 0)

∂ t̃
+ ∇̃ · ( ρ̃ 0 ũ 0 ũ 0) + ∇̃ p̃2 =

1
Re∞

∇̃ · τ̃ 0 (2.135)

O(ε 1) :
∂( ρ̃ ũ ) 1

∂ t̃
+ ∇̃ · ( ρ̃ ũ ũ ) 1 + ∇̃ p̃ 3 =

1
Re∞

∇̃ · τ̃ 1 (2.136)

where τ̃ j = [( ∇̃ ũ j+ ∇̃ ũT
j )−2/3 ( ∇̃· ũ j) I ] . Eqs. (2.133) and (2.134) give p̃ 0 = p̃0( t̃ ) and p̃ 1 = p̃ 1( t̃ )

respectively, so that the expanded energy equations read as

O(ε 0) :
d p̃0

d t̃
+ γ p̃ 0 ∇̃ · ũ 0 =

γ

Pr Re∞
∇̃2 T̃ 0 + (γ − 1) Σ∞ Q̃ 0 (2.137)

O(ε 1) :
d p̃1

d t̃
+ γ ( p̃ ∇̃ · ũ) 1 =

γ

Pr Re∞
∇̃2 T̃ 1 + (γ − 1) Σ∞ Q̃ 1 (2.138)

O(ε 2) :
∂ p̃ 2

∂ t̃
+ ũ0 · ∇̃ p̃ 2 + γ ( p̃ ∇̃ · ũ) 2 =

=
γ − 1
Re∞

τ̃ 0 : ∇̃ ũ 0 +
γ

Pr Re∞
∇̃2 T̃ 2 + (γ − 1) Σ∞ Q̃ 2 (2.139)

Finally, the expansion of the equation of state leads to

O(ε 0) : p̃ 0 = ρ̃ 0 T̃ 0 (2.140)

O(ε 1) : p̃ 1 = ρ̃ 1 T̃ 0 + ρ̃ 0 T̃ 1 (2.141)

O(ε 2) : p̃ 2 = ρ̃ 2 T̃ 0 + ρ̃ 1 T̃ 1 + ρ̃ 0 T̃ 2 (2.142)
11When the sequence terms Ln are independent of ε, the asymptotic statement

∑N
n=0 ε

nLn = o(εN), ε→ 0 holds if and

only if Ln = 0, n = 0, . . . , N [62] [we have used the notation v(x) = o(w(x)), x→ x0 ⇔ limx→x0 v(x)/w(x) = 0].
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The leading-order pressure p̃ 0 is a thermodynamic variable that may be obtained by integrating Eq. (2.137)
over the flow field volume V . It gives

d p̃0

d t̃
V + γ p̃ 0

∮
∂V

ũ 0 · n d∂V =
γ

Pr Re∞

∮
∂V

∇̃ T̃ 0 · n d∂V + (γ − 1) Σ∞
∫
V
Q̃ 0 dV (2.143)

where n is the outward normal to ∂V . Eq. (2.143) shows that the time evolution of p̃ 0 is related to
the balance between the heat released in the volume by the combustion process and the heat exchanged
throughout the boundaries by convection and conduction. By assuming p̃ 0 constant at the flow field
inlet, one gets p̃ 0 = const. The role of the pressure p̃2 is that of the “hydrodynamic” pressure balancing
inertial forces in order to satisfy the local continuity constraint [ p̃2 may be computed by means of a
Poisson-like equation obtained by making the divergence of Eq. (2.135)]. Noting that the O(ε 0) and
O(ε 1) equations have the same structure, we can replace ϕ̃ 0 (ϕ = p, ρ,u, T,Q) and p̃ 2 with ϕ̃ 0 + ε ϕ̃ 1

and p̃ 2+ε p̃ 3 respectively and avoid to consider separately the first-order quantities. Finally, the “quasi-
incompressible” fluid dynamic equations write as [60]

∂ ρ̃ 0

∂ t̃
+ ∇̃ · ( ρ̃0 ũ 0) = 0 (2.144)

∂( ρ̃0 ũ 0)
∂ t̃

+ ∇̃ · ( ρ̃ 0 ũ 0 ũ 0) + ∇̃ p̃ 2 =
1

Re∞
∇̃ · τ̃ 0 (2.145)

γ p̃ 0 ∇̃ · ũ 0 =
γ

Pr Re∞
∇̃2 T̃ 0 + (γ − 1) Σ∞ Q̃ 0 (2.146)

p̃ 0 = ρ̃ 0 T̃ 0 = const (2.147)

For a non-reacting flow, Eqs. (2.144), (2.146) and (2.147) may be combined to give

∂ T̃ 0

∂ t̃
+ ũ 0 · ∇̃ T̃ 0 =

1
Pr Re∞

(
T̃ 0

p̃ 0

)
∇̃2 T̃ 0 (2.148)

When boundaries are adiabatic and the inlet thermodynamic temperature is constant, Eqs. (2.144),
(2.145), (2.147) and (2.148) reduce to

∇̃ · ũ 0 = 0 (2.149)

ρ̃ 0

∂ ũ 0

∂ t̃
+ ρ̃ 0 ∇̃ · ( ũ0 ũ 0) + ∇̃ p̃ 2 =

1
Re∞

∇̃ · τ̃ 0 (2.150)

p̃ 0 = const , ρ̃ 0 = const , T̃ 0 = p̃ 0/ ρ̃ 0 (2.151)

that are the classical “incompressible” fluid dynamic equations [45]. For an incompressible flow, Eqs.
(2.132) and (2.139) may be combined to give

γ p̃ 0

D̃0 S̃ 2

D t̃
=
γ − 1
Re∞

τ̃ 0 : ∇̃ ũ 0 +
γ

Pr Re∞
∇̃2 T̃ 2 (2.152)
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where S̃ 2 = p̃ 2/γ p̃ 0 − ρ̃ 2/ ρ̃0 is the second-order flow entropy and D̃0/D t̃ = ∂/∂ t̃ + ũ 0 · ∇̃ the
nondimensional Lagrangian derivative with respect to the incompressible flow velocity. When neglecting
the visco-thermal terms on the right-hand side of Eq. (2.152), one has

ρ̃ 2

ρ̃ 0

=
p̃ 2

γ p̃ 0

+ const (2.153)

where the second-order quantity ρ̃ (2) represents the “pseudosound” density oscillations associated to the
incompressible flow [63]. The related second-order temperature is given by Eq. (2.142) and is expressed
as

T̃ 2

ρ̃ 0

=
γ − 1
γ

p̃2

p̃0

+ const (2.154)

2.6.2 Flow perturbation

Next we introduce the flow variable perturbation

p̃ = p̃ 0 + ε 2 p̃ 2 + ε 2 p̃ (2)

ũ = ũ 0 + ε ũ (1)

ρ̃ = ρ̃ 0 + ε 2 ρ̃ 2 + εa ρ̃ (a)

T̃ = T̃ 0 + ε 2 T̃ 2 + εa T̃
(a)

Q̃ = Q̃ 0 + ε Q̃
(1)

(2.155)

where the flow field ( ϕ̃0 , ϕ̃2 ) is the steady quasi-incompressible mean flow and ϕ̃ (j) represent the
unsteady perturbations [52]. In Eqs. (2.155) the linearized acoustics is introduced as a correction to the
incompressible flow equations that may contribute to pressure at the same order as the incompressible
hydrodynamic pressure, this choice retaining the boundeness of ∂ ũ/∂ t̃ at the initial instant of time [see
Eqs. (2.124)] and then preventing any infinite acceleration of fluid particles [59], [63], [64]. Moreover,
pressure oscillations of order ε 2 are consistent with the values usually measured in gas turbine combustors
far away from resonance or combustion instability conditions (e.g. with p∞ = 20bar and M∞ = 0.05,
the dimensional second-order perturbation pressure is ε 2 p̃ (2)p∞ � 70mbar). Heat release perturbations
of order ε may be induced by the first-order velocity perturbation ũ (1). Density and temperature
perturbations are O(εa), the cases a = 1 and a = 2 being considered in detail in the following.
When the dimensions of the flow field domain are sufficiently large to allow for acoustic wave propagation,
thus variable perturbations may also vary over the acoustic wavelength λ = c∞/ω that defines the length
scale variable

ξ = x
√
γ/λ = x̃ ε (2.156)

In the low Mach number limit ε → 0 the length scales L∞ and λ become widely separated. Then, the
generic perturbation ϕ̃ (j) and its spatial gradient may be written respectively as [62], [64], [65]

ϕ̃ (j) ( x̃ , t̃ ) = ϕ̃ (j) ( η , ξ , t̃ ) (2.157)
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and

∇̃ ϕ̃ (j) ( x̃ , t̃ ) = ∇̃η ϕ̃
(j) ( η , ξ , t̃ ) + ε ∇̃ξ ϕ̃

(j) ( η , ξ , t̃ ) (2.158)

where η ≡ x̃.
In the following, different sets of linear perturbation equations are separately derived for non-reacting
and reacting zones.

2.6.3 Non-reacting compact flow

By assuming overall dimensions of the flow field comparable to L∞, in the perturbation analysis the long
scale variable ξ becomes void (this situation is typical for the burner zone). Moreover we use a = 2 into
Eqs. (2.155), i.e. density and temperature perturbations are correlated to pressure perturbations and
thus thermal fluctuations only “modify” the departure from incompressibility [7], [59], [63], [64]. The
“single time scale - multiple length scale” perturbation is then obtained by substituting Eqs. (2.155)
into Eqs. (2.123)-(2.125) and using the steady form of Eqs. (2.149)-(2.151). It yields

ε
{
∇̃ · ũ (1)

}
+ O(ε 2) = 0 (2.159)

{
∇̃ p̃ (2)

}
+ ε ρ̃ 0

{
∂ ũ (1)

∂ t̃
+ ∇̃ · ( ũ0 ũ (1) + ũ (1) ũ 0) − 1

Re∞
∇̃ · τ̃ (1)

ρ̃ 0

}
+ O(ε 2) = 0 (2.160)

where τ̃ (1) = [( ∇̃ ũ (1)+ ∇̃ ũ (1)T )−2/3 ( ∇̃· ũ (1)) I ] . At O(ε), Eqs. (2.159)-(2.160) write in dimensional
form as

∇ · u ′ = 0 (2.161)

∂ u ′

∂t
+ ∇ · ( uu ′ + u ′u ) +

∇ p ′

ρ
=

∇ · τ ′

ρ
(2.162)

where u ′ = ε ũ (1) u∞, p ′ = ε 2 p̃ (2) p∞, ρ = ρ̃ 0 ρ∞ = const. The mean flow velocity u = ũ 0 u∞ is
given by the solution of the incompressible flow system

∇ · u = 0 , ∇ · ( u u ) + ∇ p∗/ ρ = 0 (2.163)

with p∗ = p̃ 2 p∞ being the dimensional hydrodynamic pressure. Note that Eq. (2.160) may be also
expressed in Crocco’s form as12

∂ u ′

∂t
+ ∇

(
u · u ′ +

p ′

ρ

)
= −Ω × u ′ − Ω ′ × u +

∇ · τ ′

ρ
(2.164)

12When ∇ · a = 0 and ∇ · b = 0, one has ∇ · (ba + ab) = a · ∇b + b · ∇a = ∇(a · b) + (∇× a) × b + (∇× b) × a
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2.6.4 Reacting compact flow

When the flame thickness is lower than L∞, in the flame zone we can use the single length scale asymp-
totic analysis and neglect visco-thermal effects (we have seen in Section 2.3 that visco-thermal effects
become important when fluctuation waves travel over distances that are much longer than fluctuation
wavelengths). Moreover we use a = 1 into Eqs. (2.155), i.e. we assume that thermal fluctuations “dom-
inate” the departure from incompressibility with density and temperature perturbations one order of
magnitude larger than pressure perturbations [64]. By substituting Eqs. (2.155) into Eqs. (2.123)-(2.126)
and using the steady form of Eqs. (2.144)-(2.147), the perturbation equations read as

ε

{
∂ ρ̃ (1)

∂ t̃
+ ∇̃ · ( ρ̃0 ũ (1) + ρ̃ (1) ũ 0)

}
+ O(ε 2) = 0 (2.165)

{
∇̃ p̃ (2)

}
+ ε

{
ρ̃ 0
∂ ũ (1)

∂ t̃
+ ũ 0

∂ ρ̃ (1)

∂ t̃
+ ∇̃ · [ ρ̃0 ( ũ0 ũ (1) + ũ (1) ũ 0 ρ̃

(1) ũ 0 ũ 0)]

}
+

+O(ε 2) = 0 (2.166)

ε
{
γ p̃0 ∇̃ · ũ (1) − (γ − 1) Σ∞ Q̃

(1)
}

+ O(ε 2) = 0 (2.167)

ε
{
ρ̃ (1) T̃ 0 + ρ̃ 0 T̃

(1)
}

+ O(ε 2) = 0 (2.168)

Eq. (2.168) shows that when using a = 1, then ρ̃ (1) and T̃
(1)

are anticorrelated at O(ε). The dimensional
form of Eqs. (2.166) and (2.167) writes at O(ε0) as

∇ p ′ = 0 (2.169)

∇ · u ′ =
γ − 1
γ p

Q ′ (2.170)

with

∇ · ( ρ u ) = 0 , ∇ · ( ρ u u ) + ∇ p ∗ = 0 , ∇ · u = (γ − 1) Q/γ p (2.171)

2.6.5 Non-reacting acoustic region

In hood and combustor elements we assume that the overall dimensions of the flow domain are ≥ L∞/ε,
i.e. long wave phenomena can appear on the scale ξ . To get more physical insights into the perturbed
equations, we introduce the operator

〈 g 〉 =
1

Ṽη

∫
Ṽη

g dη (2.172)

performing the average of the generic flow variable g(η , ξ , t̃ ) over the local η-scale structures. Taking
Ṽη as a volume of diameter O(1/ε) , one gets

〈 ∇̃η g 〉 =
1

Ṽη

∫
Ṽη

∇̃ηg dη =
1

Ṽη

∮
∂ Ṽη

g n d∂ Ṽη =
g(η ∈ ∂ Ṽη)
O(ε−3)

O(ε−2) = o (1) (2.173)
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where n is the outward normal to ∂ Ṽη and we have used the boundness of the quantity g over ∂ Ṽη .
Equation (2.173) represents the “sublinear growth condition” [62], [65]. The long scale perturbation
equations are obtained by substituting Eqs. (2.155) with a = 2 and Eqs. (2.158) into Eqs. (2.123)-
(2.126), subtracting the steady form of Eqs. (2.149)-(2.151) and performing the η-average using the
sublinear growth condition. It yields

∂〈 ρ̃ (2)〉
∂ t̃

+ ρ̃ 0 ∇̃ξ · 〈 ũ (1)〉 + O(ε) = 0 (2.174)

ρ̃ 0

∂〈 ũ (1)〉
∂ t̃

+ ∇̃ξ〈 p̃ (2)〉 + O(ε) = 0 (2.175)

∂〈 p̃ (2)〉
∂ t̃

+ γ p̃ 0 ∇̃ξ · 〈 ũ (1)〉 − γ − 1
Re∞

〈 τ̃ 0 : ∇̃η ũ 0〉+ O(ε) = 0 (2.176)

By combining Eqs. (2.174)-(2.176), one finds in dimensional form at O(ε 0)

∂2 p ′

∂t2
− c 2 ∇2

ξ p
′ = 0 (2.177)

ρ
∂ u ′

∂t
+ ∇ξ p

′ = 0 (2.178)

ρ T
∂ S ′

∂t
= 〈 τ : ∇u 〉 (2.179)

where c =
√
γ p/ ρ = const, u ′ = ε〈 ũ (1)〉 u∞ and p ′ = ε 2〈 p̃ (2)〉 p∞. Eq. (2.177) shows that the

second-order pressure p ′ has (over the long scale ξ) the role of the acoustic pressure influencing the flow
velocity at order ε. In Eqs. (2.177)-(2.178) the averaging process on the short scale together with the
sublinear growth condition have eliminated any visco-thermal effect, these effects remaining important
only within the viscous and thermal boundary layers [29]. On the contrary the entropy perturbation
equation (2.179) includes the dissipative term 〈 τ : ∇u 〉, which represents the production of heat by
viscous dissipation occurring in the mean flow.

2.6.6 Zone matching

According to the perturbation analysis presented in the previous Sections, burner and flame may be mod-
eled by means of Eqs. (2.161)-(2.162) and Eqs. (2.169)-(2.170), respectively. These systems of equations
describe the perturbation flow in terms of second-oder pressure and first-order velocity disturbances. At
burner inlet and flame downstream side, the O(ε 2) pressure perturbation and O(ε) velocity perturbation
represent boundary conditions for the acoustic propagation in hood and combustor of the averages of
p̃ (2) and ũ (1) made over the short-scale structures.

2.7 Combustion System Stability Analysis

When mean flow and visco-thermal effects are neglected inside the burner, then Eqs. (2.161)-(2.162)
lead to ∇2 p ′ = 0. In the burner, the nondimensional form of Eq. (2.177) reads as ε 2∂2 p̃ (2)/∂t2 −
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c̃ 2
0 ∇̃2 p̃ (2) = 0. Then, both burner and hood/combustor zones may be modeled by means of the

system (2.177)-(2.178). By lumping the flame into a one-dimensional element concentrated at the burner
exit, Eqs. (2.169)-(2.170) give the jump relations [ p ′ ] = 0 (zero flame pressure drop) and [ u ′ ] =
(γ−1)/γ p

∫
Q ′ dx. Under such hypothesis, the combustion system formed by hood, burner, flame and

combustor may be described by the system13

∂2 p ′

∂t2
− c 2 ∇2 p ′ = (γ − 1)

∂ Q ′

∂t
(2.180)

ρ
∂ u ′

∂t
+ ∇ p ′ = 0 (2.181)

By transforming Eqs. (2.180) and (2.181) to the frequency domain, one has

∇2 p̂+
(ω
c

)2
p̂ = −i ω γ − 1

c 2
Q̂ (2.182)

û = − 1
i ω ρ

∇ p̂ (2.183)

with the boundary condition

p̂

û · n = Z (ω , x) on ∂V (2.184)

where n is the outward normal to ∂V . On solid walls the boundary impedance Z includes the damping
effects occurring in boundary layers [see Eq. (2.64)]. In Eq. (2.182), the heat release source term Q̂

may be in general decomposed into the two terms Q̂N and Q̂I. The contribution Q̂N represents heat
release oscillations independent of the acoustic field (“loudspeaker” behavior of the combustion acoustic
source). Vice versa, Q̂I is a function of the acoustic field and represents the “amplifier” behavior of
sources. The contributions Q̂N and Q̂I are responsible for combustion noise and combustion instability

respectively. In the next Sections, the mathematical treatment of combustion noise and combustion
instability is separately studied.

2.7.1 Combustion noise

To study combustion noise and combustion instability, it is more convenient to transform the governing
equations to the frequency domain by means of the Laplace transform, which accounts for solutions
possibly damped or amplified in time. The Laplace transform is defined as [66]

L[ϕ(s)] =
∫ ∞

0−
e−st ϕ(t) dt (2.185)

where

s = i ω + υ (2.186)

is the Laplace variable (complex frequency).
13The integration of Eq. (2.180) between the boundaries of the flame (treated as a gasdynamic interface) gives [47][
c 2 ∇ p ′ ] = −(γ − 1)

∫
∂ Q ′/∂t dx where according to Eq. (2.181)

[
c 2 ∇ p ′ ] = −γ p ∂/∂t [ u ′ ]
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For combustion noise, the Laplace transforms of Eqs. (2.182)-(2.182) read as

∇2 p̂−
( s
c

)2
p̂ = −s γ − 1

c 2
Q̂N(s , x) (2.187)

û = − 1
s ρ

∇ p̂ (2.188)

where ϕ̂ indicates the Laplace tranform of ϕ ′. First, we define a Green function G as the solution of
the following problem (Ref. [66] p. 804, Ref. [29] p. 321)

∇2
xG(s | x , x0) −

( s
c

)2
G(s | x , x0) = −δ(x − x0) (2.189)

∇xG · n = 0 on ∂V (2.190)

where n is the outward normal to ∂V . By subtracting Eq. (2.189) multiplied by p̂ from Eq. (2.187)
multiplied by G and making the volume integral gives

p̂ (s , x0) = s
γ − 1
c 2

∫
V
G(s | x , x0) Q̂N (s , x) dV (x) +

+
∫
V

[
G(s | x , x0)∇2 p̂ (s , x)− p̂ (s , x)∇2

xG(s | x , x0)
]
dV (x) (2.191)

The last term on the right-hand side of Eq. (2.191) may be tranformed using the Green’s theorem. It
reads as ∫

V
[G(s | x , x0)∇2 p̂ (s , x) − p̂ (s , x)∇2

xG(s | x , x0)] dV (x) =

=
∫
V
{∇x [G(s | x , x0)∇ p̂ (s , x)]−∇x [ p̂ (s , x)∇xG(s | x , x0)]} dV (x) =

=
∮
∂V

[G(s | x , x0)∇ p̂ (s , x) − p̂ (s , x)∇xG(s | x , x0)] · n d∂V (x) (2.192)

Using the symmetry property G(s | x , x0) = G∗(s | x0 , x) with G∗ complex conjugate of G, one has

p̂ (s , x) = s
γ − 1
c 2

∫
V
G∗(s | x0 , x) Q̂N (s , x0) dV (x0) +

+
∮
∂V
G∗(s | x0 , x)∇ p̂ (s , x0) · n d∂V (x0) (2.193)

The Green function may be determined using the eigenfunction approach (Ref. [66] p. 820, Ref. [29]
p. 554). The system eigenfunctions are defined as the non trivial solutions of the problem

∇2ψj + k2
j ψj = 0 (2.194)

ψj = Zψ (∇ψj · n) on ∂V (2.195)

The generic eigenmode ψj obtained in correspondence of the eigenfrequency ωj = kj c is characterized
by the following properties.
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(i) When the boundary impedance Zψ is a function of s, thus kj and ψj also depend on s.

(ii) The base formed by ψj is orthogonal, i.e.∫
V
ψj ψ

∗
m dV = V Λj δj,m with Λj =

1
V

∫
V
ψ2
j dV (2.196)

(iii) If Zψ is real, both eigenfunctions ψj and eigenfrequencies ωj are solutions of the real prob-
lem (2.194)-(2.195) and then are real functions.

In the following we assume eigenmodes related to solid wall boundaries, i.e. Zψ = ∞ and ∇ψj · n = 0
on ∂V . In this case both ωj and ψj are real and frequency independent. When the Green function
G(ω| x, x0) is expanded in an eigenmode series of the form

G(s | x , x0) =
∞∑
m=0

gm(s , x0)ψm(x) (2.197)

and Eq. (2.197) is substituted into Eq. (2.189) multiplied by ψj(x), one finds∫
V

{ ∞∑
m=0

[
gm(s, x0)∇2ψm(x)− s2

c 2
gm(s, x0)ψm(x)

]}
ψj(x)dV (x) = −ψj(x0) (2.198)

Using Eqs. (2.194) and (2.196) into Eq. (2.198) yields

gj(s, x0) =
c 2 ψj(x0)

V Λj (s2 + ω2
j )

(2.199)

and finally

G(s | x , x0) = c 2
∞∑
j=0

ψj(x0)ψj(x)
V Λj (s2 + ω2

j )
(2.200)

The substitution of the Green function expansion (2.200) into Eq. (2.193) leads to

p̂ (s , x) =
∞∑
j=0

η̂j(s)ψj(x) (2.201)

where the modal amplitude η̂j(s) is defined as

η̂j(s) =
s ρ c 2

(s2 + ω2
j ) V Λj

[
γ − 1
ρ c 2

∫
V
Q̂N(s, x)ψj(x) dV −

∮
∂V

p̂ (s, x)
Z(s, x)

ψj(x) d∂V
]

(2.202)

The surface integral on the right-hand side of Eq. (2.201) is zero both for open ( p̂ = 0) and closed
( û · n = 0) boundaries. In this case, Eq. (2.201) provides directly the solution of the acoustic field. In
general, the boundary impedance effect may be modeled by means of the complex coefficient

zj (s) = ξj (s) + i ςj (s) =
1

2 kj

∮
∂V

ψ2
j (x)/VΛj

Z(s, x)/ ρ c
d∂V (2.203)
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where ξj is the modal damping coefficient.14 For frequencies close to ωj one can neglect mode coupling
and use the approximation p̂ � η̂jψj into Eq. (2.202). It gives

η̂j(s) �
(

s

s2 + 2 zj ωj s + ω2
j

)
γ − 1
V Λj

∫
V
Q̂N (s, x)ψj(x) dV (2.204)

Being the heat release term related to a one-dimensional flame concentrated in a single plane located at
x0, we can write

∫
V Q̂N ψj dV = Q̂0(s)ψj(x0) and express the modal amplitude (2.204) as

η̂j(s) = Wj(s) Q̂0(s) =

[
(γ − 1)ψj(x0)

V Λj

(
s

s2 + 2 zj ωj s+ ω2
j

)]
Q̂0(s) (2.205)

where Wj(s) is the modal transfer function. When the heat release is a delta of Dirac at t = 0, then
Q̂0(s) = 1 and thus

Wj(s) =
(γ − 1)ψj(x0)

2 V Λj

(
1

s − sj
+

1
s − s∗j

)
(2.206)

The poles sj and s∗j of Wj(s) are obtained from the characteristic equation s2 + 2 zj ωj s+ ω2
j = 0 that

may be solved using the hypothesis of slightly damped system |zj| � const � 1. One finds

sj � −ξj ωj + i ωj , s∗j � −ξj ωj − i ωj (2.207)

By antitransforming Eq. (2.206) to the time domain gives the impulsive response

wij(t) =
(γ − 1)ψj(x0)

V Λj
e−υj t cos (ωj t) (2.208)

that is a sinusoidal oscillation with frequency ωj and amplitude decaying in time because of the damping
term −υj = −ξjωj.
A sinusoidal heat release oscillation of frequency Ω is expressed in time and frequency domain as Q0(t) =
|Q| sin(Ωt) and Q̂0(s) = |Q|Ω/(s2 + Ω2) respectively. In this case, the time domain antitransform of
Eq. (2.205) reads as [66]

ηj(t) = wtj(t) + |Wj(iΩ)| sin{Ω t+ arg [Wj(iΩ)]} (2.209)

In Eq. (2.209), wtj(t) is the transient response that is again a sinusoidal oscillation with frequency ωj
damped in time by the term e−υj t. The second term on the right-hand side of Eq. (2.209) represents the
harmonic response, which oscillates in time with the excitation frequency Ω. After a sufficiently long
time interval, only the harmonic response survives. The amplitude of the harmonic response writes as

|Wj(iΩ)| = (γ − 1)ψj(x0)
V Λj

∣∣∣∣∣∣ iΩ(
ω2
j − Ω2

)
+ 2 i zj ωj Ω

∣∣∣∣∣∣ (2.210)

Being |zj| � 1, when Ω is equal to one of the pole frequencies ωj then the amplitude of the harmonic
response is maximum, i.e. the system is in resonance. Hence, when combustion noise occurs at a
frequency matching one of the system eigenfrequencies, in correspondence of such a frequency a resonance
peak is generated in the pressure spectrum.

14As an alternative to ξj , a complex eigenfrequency ω̆j may be defined using the identity s2 +2 ξj ωj s+ω2
j = s2 + ω̆2

j that

gives ω̆j � ωj+ξj s. Moreover, Eq. (2.187) may be also written as ∇2 p̂+(s/cc)
2 p̂ = −s (γ−1) Q̂/ c 2 where cc = c+i Im(cc)

is the complex speed of sound with Im(cc) � ξjωj/ω.
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2.7.2 Combustion instability

In this Section we consider heat release sources dependent of the acoustic field, i.e. Eq. (2.187) writes as

∇2 p̂−
( s
c

)2
p̂ = −s (γ − 1)

c 2
( Q̂N + Q̂I) (2.211)

where Q̂I is in general a function of the acoustic velocity and acoustic pressure fields. The system
response may be studied by means of the Galerkin’s method. For the combustion instability case,
Eq. (2.204) writes as

η̂j(s) �
(

s

s2 + 2 zj ωj s + ω2
j

)
γ − 1
V Λj

∫
V
( Q̂N + Q̂I)ψj dV (2.212)

The heat release fluctuations of a zero thickness flame may be expressed as

Q ′
I =

[
Kp p

′(x , t− τp) +Ku u ′(x , t− τu) · n( xf )
] · δ(x − xf ) (2.213)

where Kp and Ku are positive real constants, xf is the average flame location and n( xf ) the normal
to the average flame location in the direction of combustion products. In Eq. (2.213), heat release
fluctuations depend of acoustic pressure and velocity at the time t− τp and t− τu respectively, being τp
and τu the time-lags. In the frequency domain, Eq. (2.213) writes as

Q̂I =
[
Kp p̂ (s , x) e−s τp +Ku û (s , x) · n( xf ) e−s τu

] · δ(x− xf) (2.214)

Moreover, Q̂I is supposed to be small in the sense that for frequencies close to ωj the acoustic field may
be still approximated by the acoustic mode ηjψj [67]. Hence, by using in Eq. (2.214) the approximations

p̂ � η̂j ψj , û � − η̂j∇ψj
ρ s

(2.215)

one can write

s
γ − 1
V Λj

∫
V

Q̂I ψj dV =
(
s e−s τp Cpj + e−s τu Cuj

)
η̂j (2.216)

where

Cpj =
γ − 1
V Λj

Kp

∫
V
ψj

2(x) δ(x− xf ) dV (2.217)

Cuj = − γ − 1
ρV Λj

Ku

∫
V
ψj(x)∇ψj(x) · n( xf ) δ(x− xf ) dV (2.218)

The right-hand side of Eq. (2.216) may be expanded in Taylor series at s = iωj using se−sτp �
e−iωjτp [s(1− iωjτp) − ω2

j τp] and e−sτu � e−iωjτp[−sτu + (1 + iωjτu)]. It gives

s
γ − 1
V Λj

∫
V
Q̂I ψj dV � (s F Ij + F 0

j

)
η̂j (2.219)

where

F Ij = Cpj (1− i ωj τp) e−i ωj τp −Cuj τu e
−i ωj τu (2.220)

F 0
j = −Cpj ω2

j τp e
−i ωj τp +Cuj (1 + i ωj τu) e−i ωj τu (2.221)
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[note that if Q̂I depends on s2 η̂j , Eq. (2.219) may be still employed by using the approximation
η̈j � −ω2

j ηj that in frequency domain writes as s2 η̂j � −ω2
j η̂j]. Eqs. (2.212) and (2.219) lead to the

equation

η̂j(s) �
[

s

s2 + (2 zj ωj − F Ij ) s+ (ω2
j − F 0

j )

]
γ − 1
V Λj

∫
V
Q̂N ψj dV (2.222)

Hence, the stability of the system is determined by the poles of the characteristic equation

s2 +
(
2 zj ωj − F Ij

)
s+

(
ω2
j − F 0

j

)
= 0 (2.223)

For a slightly damped or amplified system we can use the assumptions |zj| � const � 1, |F Ij | � ωj and
|F 0
j | � ω2

j . Therefore, Eq. (2.223) may be rewritten as

(s − sj)
(
s− s∗j

)
= 0 (2.224)

the poles sj and s∗j being given by

sj � υj + i ωj , s∗j � υj − i ωj (2.225)

where

υj = −ξj ωj +
Re(F Ij )

2
+
Im(F 0

j )
2ωj

(2.226)

is the growth rate. The impulse response of the modal amplitude has the general solution

ηj(t) = eυj t
[
Aj e

i ωj t +Bj e
−i ωj t] (2.227)

showing that when the growth rate υj is positive, thus the j-eigenmode becomes unstable. In this case
the heat release term Q̂I is responsible for a combustion instability, the response of the linear system
being amplified in time without any limit. Positive values of υj may be achieved for values of Re(F Ij ) and
Im(F 0

j ) positive and sufficiently larger than the physical damping ξjωj. The substitution of Eqs. (2.220)
and (2.221) into Eq. (2.226) yields

υj = −ξj ωj +
C
p
j

2
cos(ωj τp) −

Cuj
2ωj

sin(ωj τu) (2.228)

Equation (2.228) shows that when Q̂I depends only on acoustic pressure (i.e. Cuj = 0), a necessary
condition for instability is

−π/2 < ωj τp < π/2 (2.229)

(note that we have defined Cpj > 0). The instability condition (2.229) represents the Rayleigh crite-
rion [68] and shows that the most favorable condition for combustion instability is τp = 0. When Q̂I
depends only on acoustic velocity (i.e. Cpj = 0), then the necessary conditions for instability become

0 < ωj τu < π if Cuj < 0 (2.230)

π < ωj τu < 2 π if Cuj > 0 (2.231)
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In this case the system can become unstable only when there is a time delay between heat release
and velocity fluctuations and the most favorable condition for combustion instability is ωjτu = π/2.
Being the acoustic velocity π/2 phase-shifted with respect to the acoustic pressure [see Eqs. (2.215)],
the Rayleigh criterion is recovered for the case Cpj = 0 too. In general, the time-lags between Q̂I and
acoustic quantities are the physical mechanism responsible for making the system sensitive to combustion
instabilities, which are generated when the values of the time-lags belong to certain ranges of variation [1].



Chapter 3

Transfer Matrix Approach

3.1 Transfer Matrix Definition

When the acoustic fields upstream and downstream of an acoustic element are both one-dimensional, the
element may be acoustically described by the 2 × 2 transfer matrix T(ω) that linearly relates acoustic
pressure and acoustic velocity at the upstream side 1 and downstream side 2 of the element. The transfer
matrix is defined by the relation⎡⎢⎣ p̂2

ρ2 c2

û2

⎤⎥⎦ =

⎡⎣ T11 T12

T21 T22

⎤⎦
⎡⎢⎣ p̂1

ρ1 c1

û1

⎤⎥⎦ (3.1)

3.2 Duct Transfer Matrix

The transfer matrix approach may be employed to model acoustic elements for which it exists an ana-
lytical solution of the acoustic field. For a duct of length L, the Kirchhoff solution (2.89)-(2.90) yields

p̂2

ρ c
=

1
2

(
p̂1

ρ c
+

Γ û1

i

)
exp (−Γ k L) +

1
2

(
p̂1

ρ c
− Γ û1

i

)
exp (Γ k L) (3.2)

û2 =
i

Γ

[
1
2

(
p̂1

ρ c
+

Γ û1

i

)
exp (−Γ k L)− 1

2

(
p̂1

ρ c
− Γ û1

i

)
exp (Γ k L)

]
(3.3)

The upstream and downstream impedances of the duct are defined as Z1 = p̂1/ û1 and Z2 = p̂2/ û2

respectively. Thus, using Eqs. (3.2)-(3.3) one has

Z ′
2 =

Γ
i

[exp (−ΓkL) − exp (ΓkL)] + Z ′
1 [exp (−ΓkL) + exp (ΓkL)]

[exp (−ΓkL) + exp (ΓkL)] +
iZ ′

1

Γ
[exp (−ΓkL) − exp (ΓkL)]

(3.4)

where Z ′ = Z/ ρc is the normalized impedance. When Sd→ ∞, Eq. (2.85) may be used into Eq. (3.4).
It yields

Z ′
2 = −i sin (kL) − Z ′

1 cos (kL)
cos (kL) − i Z ′

1 sin (kL)
(3.5)

45
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The compactness condition for the duct is

k L� 1 (3.6)

being kL the Helmholtz number based on duct length. Using Eq. (3.6), the first order expansion of
Eqs. (3.2)-(3.3) in kL gives

p̂2 = p̂1

(
1 +

iΓ2

Z ′
1

kL

)
+ O[(kL)2] = p̂1 + iΓ2 ω ρL û1 + O[(kL)2] (3.7)

û2 = û1

(
1 − i Z ′

1 kL
)

+ O[(kL)2] = û1 − i
ω L

ρ c2
p̂1 + O[(kL)2] (3.8)

The condition |Z ′
1| � 1 is usually verified by an open end (i.e. p̂1 = 0) or a large expansion at the

boundary 1 [29]. In this case, Eqs. (3.7)-(3.8) lead to the model

p̂2 = p̂1 + iΓ2 ω ρL û1 (3.9)

û2 = û1 (3.10)

that corresponds to a linear incompressible duct flow with a pressure loss coefficient

ζD = −Im(Γ2)ωL (3.11)

On the contrary, when |Z ′
1| � 1 Eqs. (3.7)-(3.8) write as

p̂2 = p̂1 (3.12)

û2 = û1 − i
ω L

ρc2
p̂1 (3.13)

In case of closed end or strong contraction at the boundary 1 (i.e. Z ′
1 � ∞), Eqs. (3.12)-(3.13) give

Z ′
2 =

i

k L
(3.14)

that represents the “spring model” in the mechanical analogy ( p̂2 ∝ û2/(iω) = x̂2).

3.3 Burner Transfer Matrix

3.3.1 Analytical model

Figure 3.1 shows the schematic of a burner of radius aI =
√
AI/π connected upstream and downstream

to two ducts of radii aI and aII =
√
AII/π respectively (that means an area change occurs at the

element exit). When both aI and aII are < 1.84 c/ω, thus the acoustic field is one-dimensional upstream
of the cross-section I and downstream of the cross-section II (ω � 1.84 c/a is the “cut-off” frequency for
plane wave propagation in a duct of radius a [51]). The Mach number inside the element is assumed to
be low and thus the incompressible flow model is used. The integration of Eq. (2.161) over the volume
comprised between the sections I and II gives

u ′
II AII = u ′

I AI (3.15)
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Figure 3.1: Schematic of ducts connected by an acoustic element.

where u ′ is the axial component of the perturbation velocity. In industrial swirl burners, the flow field
downstream of the burner exit is usually characterized by two recirculation regions: an external one
generated by the vorticity released by the boundary layer separation occurring at the burner exit lip
and an internal recirculation bubble (vortex breakdown) that appears when the burner swirl number
is sufficiently high [44]. The two recirculation regions bound the streamtube Σ of Fig. 3.1. For high
Reynolds numbers, in the part of the streamtube Σ upstream of the vena contracta cross-section Avc
(minimum cross-sectional area) the flow may be approximated as inviscid [29], [45]. Under the further
assumption of mean and perturbation flow uniform over Avc, the integration of Eq. (2.164) along a
streamline leads to

p ′
I − p ′

vc = ρ
d

dt

∫ vc

I
u ′
s ds+ Φ ′ (3.16)

where s is the streamline coordinate, u ′
s the component of the perturbation velocity along s and

Φ ′ = ρ ( uvc · u ′
vc − uI u

′
I ) (3.17)

the pressure loss perturbation with u axial component of the mean flow velocity (note that both Ω× u ′

and Ω ′ × u are orthogonal to u). The pressure loss term Φ ′ is in general related to the dissipative
processes occurring inside the element, i.e. visco-thermal acoustic damping and conversion of acoustic
energy into shedding of vortices generated at solid boundaries, the vortices being convected downstream
and dissipated into heat by turbulence [69]. When p ′

vc is approximated with the value p ′
II at the

element downstream section [29], Eqs. (3.15) and (3.16) may be written in the frequency domain as

ûII AII = ûI AI (3.18)

p̂I − p̂II = i ω ρ Leff ûI + Φ̂ (3.19)

where the effective length Leff is defined as Leff =
∫ vc
I ûs/ ûI ds. The inviscid form of Eqs. (3.9)-(3.10)

may be used to recompute the transfer matrix (3.18)-(3.19) across the sections 1 and 2 that are defined,
respectively, as the upstream and downstream sides of the outflow section of the element (see Fig. 3.1).
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It yields

û2AII = û1AI (3.20)

p̂1 − p̂2 = i ω ρ � û1 + Φ̂ (3.21)

where the end-correction � is defined as

� = Leff − L1 − (AI/AII)L2 (3.22)

with L1 = x1 − xI and L2 = xII − x2. By using the continuity equations uvcAvc = uIAI and u ′
sAΣ =

u ′
IAI with AΣ(s) cross-sectional area of the streamtube Σ, the effective length and the pressure drop

may be expressed respectively as

� =
∫ vc

I

AI
AΣ(s)

ds− L1 − (AI/AII)L2 (3.23)

and

Φ̂ = ζ1 ρ u1 û1 (3.24)

where

ζ1 =
(
AI
Avc

)2

− 1 (3.25)

is the pressure drop coefficient [70], [71]. When time dependence is harmonic, the perturbation velocity
reverses its direction periodically. Therefore, a correct expression for the pressure loss in time domain
becomes

Φ ′ =
1
2
ζ ±
1 ρ

{ | u1 + u ′
1| ( u1 + u ′

1) − | u1| u1

}
(3.26)

where the pressure loss coefficients ζ +
1 and ζ −

1 account for pressure losses due to a flow in the x > 0
and x < 0 direction respectively. To transform the nonlinear term Φ ′ to the frequency domain, the
derivative is taken with respect to time. It gives

dΦ ′

dt
= ζ±1 ρ | u1 + u ′

1|
d u ′

1

dt
(3.27)

where ζ±1 have been assumed time-independent. Being Eq. (3.27) nonlinear, a sinusoidal velocity signal
does not lead to a sinusoidal derivative dΦ′/dt. In fact, when u′1 = | û1| sin(ωt) is substituted into
Eq. (3.27) and a Fourier series expansion is performed, one obtains

dΦ′

dt
= ω ρ g ( u1/| û1|) | û1|2 cos(ωt) +

∞∑
m=2

[Cm cos(mωt) +Dm sin(mωt)] (3.28)

where the function g(ϕ) is defined as

g(ϕ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ζ+
1 |ϕ| if ϕ > 1

ζ+
1 + ζ−1
π

[
ϕ arcsin(ϕ) +

√
1 − ϕ2

3
(
2 + ϕ2

)]
+
ζ+
1 − ζ−1

2
ϕ if |ϕ| ≤ 1

ζ−1 |ϕ| if ϕ < −1

(3.29)
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Figure 3.2: Pressure loss function.

By neglecting Fourier components of order higher than one in Eq. (3.28), one has

Φ′ = ρ g( u1/| û1|)| û1|2 sin(ωt) (3.30)

and finally

Φ̂ = ρ g (u1/| û1|) | û1| û1 (3.31)

Figure 3.2 shows the function g(ϕ) for the case ζ+
1 = ζ−1 . When | û1| > | u1| (e.g. in absence of a mean

flow or close to resonance), the vortex-shedding dissipation mechanism is nonlinear because the acoustic
field is responsible for the convection and dissipation of the acoustically produced vorticity (in this case
Φ̂ depends of the acoustic pressure). When a mean flow is maintained throughout the element, the
convection and dissipation of vorticity due to the mean flow gives a linear contribution to the pressure
loss term and for | û1| < | u1| Eq. (3.31) reduces to the “quasi-steady” linear expression

Φ̂lin = ζ1 ρ u1 û1 (3.32)

that leads to �− ζ model expressed as

û2AII = û1AI (3.33)

p̂1 − p̂2 = ( i ω ρ �+ ζ1 ρ u1 ) û1 (3.34)

In first approximation, the �− ζ pressure loss coefficient ζ1 may be approximated with the steady flow
value ζ1.
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Figure 3.3: Schematic of impedance tube test rig.

3.3.2 Impedance tube experiments

The transfer matrix model presented in the previous Section has been applied to a gas turbine burner
and validated by means of transfer matrix measurements performed by installing the burner in the
atmospheric impedance tube shown in Figs. 3.3-3.4. The test rig consists of two hollow steel tubes
having a circular cross section. The tube diameters ensure that plane wave propagation occurs for
frequencies below the maximum frequency of interest (cut-off frequency). The burner is mounted on a
flange reproducing the combustor front panel and an air flow may be maintained through the burner
to simulate engine conditions. On the downstream end, an extension is bolted and filled with sound
absorbing material to reduce the acoustic reflection from the open end of the test rig. Four loudspeakers
emitting pure toned frequency signals at various frequency intervals are used for the acoustic forcing
upstream and downstream of the burner. The response to this excitation is measured using arrays of
microphones mounted along the top side of the tube. The minimum distance between microphones and
burner is set in order to avoid near field effects. To take into account the atmospheric test conditions
under which the tests are performed, the microphones are calibrated before every set of tests using a
Brüel & Kjaer Type 4231 Acoustic Calibrator inducing an acoustic signal directly into the microphone

Figure 3.4: Photo of impedance tube test rig.
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Figure 3.5: Data acquisition system.

probe at 94dB and 1000Hz. The data acquisition system is illustrated in Fig. 3.5. From the microphone
data, acoustic pressure and acoustic velocity can be calculated at the cross sections I and II of Fig 3.3
using the Multi-Microphone Method [16]. Fig 3.3 also defines the sections 1 and 2 as, respectively, the
upstream and downstream sides of the outflow section of the burner. The acoustic field in 1 and 2 may
be computed by using plane wave solution in I−1 and II−2 respectively, so that the burner is modeled
as an acoustic discontinuity located between 1 and 2. By assuming the acoustic fields in 1 and 2 linearly
related, one can write⎡⎢⎣ p̂2

ρ c

û2

⎤⎥⎦ =

⎡⎣ T11(ω) T12(ω)

T21(ω) T22(ω)

⎤⎦
⎡⎢⎣ p̂1

ρ c

û1

⎤⎥⎦+

⎡⎣ Sp(ω)

Su(ω)

⎤⎦ (3.35)

where T(ω) is the burner transfer matrix and [Sp, Su]T the pressure and velocity source terms responsible
for noise generation (note that these source terms are, by definition, linearly independent of the excitation
signal). To reconstruct transfer matrix elements and sources from [ p̂1, û1] and [ p̂2, û2] measurements,
first the four elements of the transfer matrix are extracted from acoustic pressure and velocity signals by
using the response to the loudspeaker excitation (in this case the source terms [Sp, Su]T vanish). Since
Eq. (3.35) provides two equations and four unknowns, at least two independent test states are required
in order to extract the transfer matrix elements. In general, independent test states can be obtained
by changing the acoustic boundary conditions or by consecutively forcing upstream and downstream of
the acoustic element with loudspeakers. In our measurements the upstream and downstream forcing
is employed. An important aspect is that the microphones do not only measure the response to the
loudspeakers, being considerable levels of stochastic contributions (background noise and turbulence)
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also present in the flow field. The stochastic contributions can be reduced to arbitrary small values by
using for the loudspeakers a pure tone forcing signal and measuring for a sufficiently long time (this
measurement technique is explained in detail in [16]). An additional independent state is required for
the determination of the source terms [Sp, Su]T . The third required test state is obtained by applying
no forcing to the loudspeakers.

3.3.3 ALSTOM EV burner

Transfer matrix measurements have been performed for the double-cone ALSTOM premix EV burner
shown in Fig. 3.6 [72]. As illustrated in Fig. 3.7, the EV burner consists of two half cone shells that are
displaced parallel to the axis, generating two tangential slots. The swirl strength of the flow entering
through the tangential slots increases in the axial direction and is adjusted such that a vortex breakdown
of the core flow occurs close to the burner exit. In the EV premix burner, no specific flame stabilizer
hardware exists that is exposed upstream to the ignitable mixture and downstream to the flame stabi-
lization zone. As a result, the EV burner has an inherent safety against autoignition and flame flashback
events. When the burner operates in “gas premix mode”, the gaseous fuel is injected through a row of
holes in cross flow direction into the air entering the tangential burner slots. Each gas injection jet has
to penetrate only a small portion of the air and has to be mixed only with its own small portion of the
incoming air. Since the air which enters the burner slots is equally distributed along the length of the
slot, the gas jets have to mix with the same portion of the air. This means that the mixing boundary
conditions are equal and therefore the gas to air mixing performance is equally distributed in the whole
flow field of the burner. The gas injection concept in the air slot stands for an inherent, equal distribu-
tion of the fuel into the incoming air, and is therefore the precondition for the high mixing effectiveness,
which leads to a homogeneous air to fuel mixture in spite of the extremely compact mixing section of the
EV burner. The relatively small volume in the cone is sufficient to generate a very homogeneous air-fuel
mixture, which is a precondition to achieve premix combustion with ultra-low dry NOx emissions. Note
that no or little dilution air is needed when using EV burners. It is also possible to operate the burner

Figure 3.6: EV burner.
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Figure 3.7: EV burner principle.

in “oil mode” by injecting liquid fuel throughout a “fuel lance” located in the cone head. The liquid jet
disintegrates into small droplets within the burner leading cone and the swirling air flow distributes the
droplets in the whole flow field, the flame stabilization occurring near to the burner outlet with the help
of the inner recirculation zone.

3.3.4 EV burner transfer matrices

The measured magnitudes and phases of the burner transfer matrix elements reported in Fig. 3.9 refer
to a case without burner mean flow. Vice versa, the experimental results presented in Fig. 3.10 have
been obtained using a burner mean flow velocity set to a value providing the same Mach number in the
impedance tube and in engine conditions. Figs. 3.9 and 3.10 also report the transfer matrices computed
using a Finite Element Method (FEM) to solve the Helmholtz equation [73]. The FEM transfer matrices
have been computed by simulating two independent test states obtained by applying an acoustic source
at the tube end and an anechoic condition (i.e. impedance equal to ρ c) at the other end. To simulate
the case with burner mean flow, the FEM result (containing no mean flow effect) has been modified by
adding a � − ζ element (3.33)-(3.34) at the burner exit with � = 0 and ζ1 obtained from steady flow
measurements of the burner pressure drop (in the range of variation of the burner velocity, no significant
variation of ζ1 was observed). The results show the good accuracy achieved by simulating the burner
matrix elements T11, T21 and T22 by means of FEM and � − ζ model. The use of a constant value of
ζ1 leads to a good accuracy of the T22 numerical results only in the low-frequency range. Moreover, for
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Figure 3.8: Schematic of orifice.

sufficiently low frequencies the only �− ζ transfer matrix

T(ω) =

⎡⎣ 1 i ω ρ �+ ζ1 ρ u1

0 1

⎤⎦ (3.36)

may be used to represent the burner, i.e. the acoustic behavior of the burner is the same of a compact
area change.

3.4 Area Jump and Orifice Flow

For simple area changes the �− ζ model (3.34) may be still employed. When ζ1 is expressed by means
of the steady flow value ζ1, for high Reynolds number one can use [70], [71]

ζ1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
AI
AII

)2

− 1 +
(

1 − AI
AII

)2

for area expansions

1 −
(
AI
AII

)2

+
1
2

(
1− AI

AII

)
for area contractions

(3.37)

where AI/AII is the area jump ratio.
For the orifice flow shown in Fig. 3.8, Eqs. (3.20)-(3.21) may be applied to the two area changes occurring
at the orifice extremities. It yields

û2A2 = û1 A1 (3.38)

p̂1 − p̂2 =
[
i ω ρ L′

n + ζneck ρ un + ( Φ̂1 + Φ̂2)/ ûn
]
ûn (3.39)

where Eqs. (3.9)-(3.10) with Re(Γ2) � 0 have been used to model the orifice pressure drop, L′
n =

�1 + Ln + �2 with Ln orifice length, �1 and �2 are the area change end-corrections, ζneck is the neck
pressure loss coefficient given by Eq. (3.11) and the pressure loss terms Φ̂1 and Φ̂2 refer to the orifice
cross section.
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Figure 3.9: EV burner transfer matrix elements: no burner mean flow.
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Figure 3.10: EV burner transfer matrix elements: burner mean flow case.



3.5 Flame Transfer Matrix

We consider in the following the one-dimensional flame shown in Fig. 3.11. The integration of the
inviscid one-dimensional form of Eqs. (2.10)-(2.12) between the upstream boundary 1 and downstream
boundary 2 of the flame front gives [47]

[m ]21 = − d

dt

∫ 2

1
ρ dx (3.40)

[mu+ p ]21 = − d

dt

∫ 2

1
ρu dx (3.41)

[
m

(
CpT +

u2

2

)]2

1

= − d

dt

∫ 2

1
ρ

(
CvT +

u2

2

)
dx+QA (3.42)

where m is the mass flux defined as

m = ρ (u− Uf ) (3.43)

with Uf velocity of the flame boundary and QA =
∫ 2
1 Qdx is the heat flux per unit area and time. Note

that the flame boundary velocity is related to the flame speed Sf by the relation

Sf = u− Uf (3.44)

For the steady mean flow ϕ(x), Eqs. (3.40)-(3.42) lead to

ρ1 u1 = ρ2 u2 = m (3.45)

m [ u ]21 + [ p ]21 = 0 (3.46)[
Cp T +

u2

2

]2

1

= QM (3.47)

where QM = QA/m is the heat release per unit mass of reactants. Note that in steady conditions
Uf1 = Uf 2 = 0, i.e. the flame boundaries have a fixed mean position. The equation of state (2.4) yields

p = ρ R T (3.48)

Figure 3.11: Sketch of the flame front.
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The mean flow quantities downstream of the combustion region may be expressed as a function of the
mean flow quantities upstream of the flame. For assigned values of T 2 and R2 (i.e. when the chemical
composition of combustion products is given), from Eqs. (3.45)-(3.46) and (3.48) one has

p2 − p1 = m2

(
1
ρ1

− R2 T 2

p2

)
(3.49)

Solving Eq. (3.49) for the mean pressure p2, yields

p2 =
m2 + p1 ρ1 +

√(
m2 + p1 ρ1

)2 − 4m2 R2 T 2 ρ1

2 ρ1
(3.50)

Using Eqs. (3.48) and (3.45), the density and velocity downstream of the flame are computed. Finally,
Eq. (3.47) may be employed to obtain the mean heat release QM .
For a “compact flame”, the perturbation flow equations may be obtained by linearizing Eqs. (3.40)-
(3.42) [this coincides with the integration of the inviscid one-dimensional form of Eqs. (2.106), (2.107) and
(2.109) across the flame] by neglecting the contributions from the right-hand side integrals. Therefore, in
a compact flame the jumps of acoustic pressure and velocity across the flame correspond to a concentrated
heat release input and the flame may be modeled as a gasdynamic discontinuity with respect to both
acoustic and entropy waves. A subsonic flame with any assigned space distribution of heat release
fluctuations Q ′

M(x) may be approximated as compact when [74]

ωδf
c1

� 1 and

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ωδf
c1

(
T 2

T 1

− 1
)2

� 1 with
ωδf
u1

� 1

M 1

(
T 2

T 1

− 1
)2

� 1 with
ωδf
u1

� 1

(3.51)

where δf is the flame thickness and M1 the upstream mean flow Mach number. In heavy-duty gas
turbines T 2/ T 1 < 3 and then the compact flame hypothesis holds when

δf � u1/ω (3.52)

or

M1 � 1 and δf � c1/ω (3.53)

Eqs. (3.52)-(3.53) state that a subsonic flame is compact when the flame thickness is much smaller than
the entropy length scale u1/ω, whereas for low Mach number flames the compactness condition reduces
to a flame thickness much smaller than acoustic wavelengths.

3.5.1 Subsonic compact flames

For a compact subsonic flame, Eqs. (3.40)-(3.42) give

ρ ′
1 u1 + ρ1( u

′
1 − U ′

f ) = ρ ′
2 u2 + ρ2( u

′
2 − U ′

f ) = m ′ (3.54)

m
[
u ′ ]2

1
+ m ′ [ u ]21 +

[
p ′ ]2

1
= 0 (3.55)

[
Cp T

′ + u u ′ ]2
1

= Q ′
M (3.56)
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where Uf1 = Uf 2 = Uf and fluctuations of Cp (and then of R and γ) have been neglected according to
the calorically perfect gas assumption. The linearized equation of state reads as

p ′

p
=

ρ ′

ρ
+
T ′

T
(3.57)

A perturbation energy equation alternative to Eq. (3.56) may be obtained by using Eqs. (3.40)-(3.41)
to write Eq. (3.42) in the form [75][

p

(γ − 1)ρ

]2

1

= −p1 + p2

2

[
1
ρ

]2

1

+QM (3.58)

Eq. (3.58) leads to the perturbation energy equation [18][
Ap p

′ −Aρ ρ
′ ]2

1
= Q ′

M (3.59)

where the coefficients Ap1,2 and Aρ1,2 are defined as

Ap1,2 =
(γ1,2 + 1)/ ρ1,2 − (γ1,2 − 1)/ ρ2,1

2(γ1,2 − 1)
(3.60)

Aρ1,2 =
(γ1,2 + 1) p1,2 + (γ1,2 − 1) p2,1

2 ρ21,2(γ1,2 − 1)
(3.61)

Eqs. (3.54)-(3.57) [or (3.54), (3.55), (3.57) and (3.59)] may be used to obtain p ′
2, ρ

′
2, T

′
2 and u ′

2 as
functions of p ′

1, ρ
′
1, T

′
1, u

′
1, Q

′
M and U ′

f . When the flow upstream of the flame is isentropic (i.e.
S ′

1 = 0), density fluctuations upstream and downstream of the flame are respectively expressed as [see
Eq. (2.34)]

ρ ′
1 =

p ′
1

c21
(3.62)

ρ ′
2 =

p ′
2

c22
− ρ2

Cp2
S ′

2 (3.63)

Using Eq. (3.63) to eliminate ρ ′
2 and providing the expressions Q ′

M ( p ′
1, u

′
1) and U ′

f ( p
′
1, u

′
1), the

system (3.54)-(3.57) [or (3.54), (3.55), (3.57) and (3.59)] may be written in the final form⎡⎢⎣ p ′
2

ρ2 c2

u ′
2

⎤⎥⎦ =

⎡⎣ T11(s) T12(s)

T21(s) T22(s)

⎤⎦
⎡⎢⎣ p ′

1

ρ1 c1

u ′
1

⎤⎥⎦+

⎡⎣ Sp(s)

Su(s)

⎤⎦ (3.64)

S ′
2 = S ′

2 ( p ′
1, u

′
1) (3.65)

where the transfer matrix elements Tij(s) include heat release fluctuations responsible for combustion in-
stabilities, whereas the source terms [Sp(s), Su(s)]T model heat release fluctuations related to combustion
noise.
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3.5.2 Low Mach number compact flames

When M1 � 1 and Eq. (2.129) is satisfied, Eqs. (2.169)-(2.170) may be integrated across the flame
front [note that Eq. (2.129) coincides with the second of conditions (3.53)]. As an example, for laminar
premixed flames burning natural gas one can use δf ≈ 0.01cm, c1 ≈ 500m/s, u1 ≈ 30cm/s and
T 2/ T 1 ≈ 2.5 so that the condition (2.129) yields f � 500Hz. Thus, for one-dimensional low Mach
number compact flames one has

p ′
2 − p ′

1 = 0 (3.66)

u ′
2 − u ′

1 = u1

(
T 2

T 1

− 1
)

Q ′
A

QA
(3.67)

where [see Eqs. (2.171)]

QA =
ρ1 c

2
1

γ − 1
u1

(
T 2

T 1

− 1
)

(3.68)

Eqs. (3.66)-(3.67) may be also obtained by using the following approach. From Eqs. (3.45)-(3.47) one
can derive ρ2 = m/u2, p2 = p1 + m( u1 − u2), T 2 = p2/ ρ2R2 and then

−γ1M
2
1

γ2 − 1

(
u2

u1

)2

+
(
1 + γ1M

2
1

) γ2

γ2 − 1

(
u2

u1

)
=

γ1

γ1 − 1
+
γ1 M

2
1

2
+
γ1QM
c21

(3.69)

Then, by assuming γ1 � γ2 and R1 � R2 one finds

p2

p1

= 1 − γ M
2
1

QM
Cp1 T 1

+ O(M4
1) (3.70)

u2

u1
= 1 +

QM
Cp1 T 1

+ O(M2
1) (3.71)

that can be used into equations (3.54)-(3.56) to get [19]

p ′
2

p1

− p ′
1

p1

= O(M2
1) (3.72)

u ′
2

u1
− u ′

1

u1
=
(
T 2

T 1

− 1
) (

Q ′
A

QA
− p ′

1

p1

)
+ O(M2

1) (3.73)

When using u ′
1/ u1 = O(M1) and p ′

1/ p1 = O(M2
1) (see Section 2.6.4), the O(M1) form of Eq. (3.73)

reduces to Eq. (3.67).
The model (3.66)-(3.67) is closed when an expression is given for heat release fluctuations according to
the characteristics of the combustion process. In general, the response of the heat release to acoustic per-
turbations depends on the several physical mechanisms affecting the combustion process (fuel injection,
mixing, convective and diffusive transport, flame stabilization, chemical kinetics. etc.). As we have seen
in the previous Chapter, heat release fluctuations may be expressed as Q ′

A = Q ′
A,N+Q ′

A,I where Q ′
A,N

and Q ′
A,I are the contributions related to combustion noise and combustion instability respectively. By
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expressing the combustion instability term as Q ′
A,I/QA = (Q ′

A,I/QA)p p ′
1/ p + (Q ′

A,I/QA)u u ′
1/ u1,

according to Eqs. (3.66)-(3.67) the flame is modeled as an active acoustic two-port in which the state
variables pressure and velocity are coupled in the frequency domain by the expression⎡⎢⎣ p̂2

ρ2 c2

û2

⎤⎥⎦ =

⎡⎣
√
T 2/ T 1 0

T21 T22

⎤⎦
⎡⎢⎣ p̂1

ρ1 c1

û1

⎤⎥⎦+

⎡⎣ 0

Su

⎤⎦ (3.74)

where

T21 = γ M1

(
T 2

T 1

− 1
) (

Q̂A,I

QA

)
p

T22 = 1 +
(
T 2

T 1

− 1
) (

Q̂A,I

QA

)
u

Su = u1

(
T 2

T 1

− 1
)

Q̂A,N

QA

In Eq. (3.74) the transfer matrix elements Tij model the amplifier behavior of the flame (responsible for
eventual combustion instabilities), whereas the source term Su depends only on frequency and represents
the combustion noise contribution.

3.6 Linear Stability

Using the transfer matrix approach, the thermoacoustic stability of the premixed combustion system
illustrated in Fig. 2.1 may be easily investigated. The analysis is performed in the frequency domain by
applying the Laplace transform with zero initial conditions. For sufficiently low frequencies, the acoustic
fields upstream and downstream of the flame (locations 1 and 2 respectively) may be assumed as one-
dimensional. Therefore, the acoustics of hood and combustor may be respectively represented by means
of the impedances Z1(s) and Z2(s), where Z(s) = p̂(s)/ û(s) is the ratio of the Laplace transforms of
acoustic pressure p ′(t) and acoustic velocity u ′(t). By neglecting mean flow effects, Z1 and Z2 depend
only on geometry, speed of sound and boundary impedances of hood and combustor. In case of low Mach
number compact flame with heat release fluctuations independent of pressure oscillations, Eq. (3.74) may
be used to express the acoustic velocity jump across the flame as

û2(s) = T22(s) û1(s) + Su(s) (3.75)

The acoustic-heat release coupling is thus represented by the block diagram reported in Fig. 3.12, which
is equivalent to the block diagram in Fig. 3.13 showing explicitely the feedback loop inherent to the
thermoacoustic process. The link between acoustic field and source term Su is given by

û2(s) = H(s)Su(s) (3.76)

where

H(s) =
1

1 − T22(s)Z2(s)/Z1(s)
(3.77)
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Figure 3.12: Thermoacoustic block diagram.

Figure 3.13: Feedback block diagram.

is the closed loop transfer function. Using the modal expansion (2.201), Z1(s) and Z2(s) may be
approximated by rational functions. Thermoacoustic effects are usually associated to time delay terms
e−sτ [see Eq. (2.213)] appearing in the flame transfer matrix element T22, which may be expressed as a
rational function by means of the Padé approximation of accuracy h [76]

e−sτ ≈
(−sτ + 2 h
sτ + 2 h

)h
h ∈ (1, 2, . . .) (3.78)

Using Eq. (3.78), the closed loop transfer function may be written as a ratio of rational functions also
for time-delayed systems, i.e.

H(s) =
b0 + b1 s+ b2 s

2 + . . .+ bm s
m

a0 + a1 s+ a2 s2 + . . .+ an sn
(3.79)

In the following analysis we assume that m < n (real systems almost always satisfy this condition) and
that the poles

sj = iΩj + υj (3.80)

(given by a0 +a1 s+a2 s
2 + . . .+an s

n = 0) are distinct, i.e. of multiplicity one. Under these hypothesis,
Eq. (3.79) may be written in the form

H(s) =
n∑
j=1

Kj

s− sj
(3.81)

The impulse response (i.e. the response to the input Su = L[δ(t)] = 1) is obtained by applying the
inverse Laplace transform to Eq. (3.81). It gives [66]

u ′
2(t) =

n∑
j=1

Kj e
υjt [cos(Ωj t) + i sin(Ωj t)] (3.82)
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The harmonic response is obtained by prescribing the sinusoidal input Su = L[sin(Ωt)] = Ω/(s2 + Ω2),
which leads to [66]

u ′
2(t) =

∑
j

K̃j e
sjt + |H(iΩ)| sin{Ω t+ arg [H(iΩ)]} (3.83)

where the constants K̃j are obtained from the limit K̃j = lims→sj (s−sj)H(s). According to Eqs. (3.82)
and (3.83), the stability of the system is related to the sign of the growth rate υj as follows.

(i) υj < 0: oscillations are damped in time (stable system);

(ii) υj = 0: oscillations are stable in time (system at stability border);

(iii) υj > 0: oscillations are amplified in time (unstable system).

When no combustion process takes place, then T22 = 1 the poles are given by

Z2(s) = Z1(s) (3.84)

The real and imaginary part of the impedance Z define the resistance R = Re(Z) and reactance X =
Im(Z) respectively. By assuming pure acoustic propagation in the volumes upstream and downstream
of the flame (i.e. no generation of acoustic power), thus at the locations 1 and 2 one has R1 ≤ 0 and
R2 ≥ 0 (i.e. acoustic power may be only absorbed). With no acoustic power absorption R1 = R2 = 0
and Eq. (3.84) reduces to X1(s) = X2(s), which is a real equation giving real poles (stability border).
When acoustic power is absorbed by the boundaries upstream and downstream of the flame (i.e. R1 < 0
and/or R2 > 0), then υj < 0 and the system is stable. When combustion takes place, the flame transfer
matrix may generate poles with υj > 0. Within the limit of the current linear theory, poles with υj > 0
lead to an impulse response amplitude growing unbounded in time (in real combustion systems the
unbounded amplitude growth is limited by nonlinear effects). In this case the amplifier behavior of the
flame leads to a combustion instability occurring at the frequency Ωj and the related pressure spectrum
is characterized by a high pulsation peak contained in a very narrow frequency band around Ωj.





Chapter 4

Heat Release Fluctuations in Gas

Turbine Flames

4.1 Quasi-Steady Premixed Flames

The low Mach number compact flame model (3.74) is closed when the heat release fluctuation Q̂A,I is
given as a function of ( p̂1, û1) and when the combustion noise term Su is expressed as a function of the
frequency. In general, Q̂A,I depends on the perturbation of the internal structure of the flame due to
acoustic oscillations in the upstream flow field. We focus here on a laminar one-dimensional premixed
flame whose chemistry is described by means of a one-step exothermic reaction. The governing equations
for such a flame are Eqs. (2.1)-(2.3) that may be written as

∂ρ

∂t
+
∂(ρ u)
∂x

= 0 (4.1)

ρ

(
∂u

∂t
+ u

∂u

∂x

)
+
∂p

∂x
=

4
3
∂

∂x

(
μ
∂u

∂x

)
(4.2)

ρ Cp

(
∂T

∂t
+ u

∂T

∂x

)
=
(
∂p

∂t
+ u

∂p

∂x

)
+

4
3
μ

(
∂u

∂x

)2

+
∂

∂x

(
κ
∂T

∂x

)
+Q (4.3)

The system (4.1)-(4.3) is completed by the equation of state (2.4) and the equation [47]

ρ

(
∂YF
∂t

+ u
∂YF
∂x

)
=

∂

∂x

(
ρDF

∂YF
∂x

)
− ẇF (4.4)

where YF = ρF/ρ is the fuel mass fraction with ρF fuel density, DF the fuel molecular diffusion coefficient
and ẇF the reaction rate expressed as

ẇF = C ρ YF exp(−E/R0T ) (4.5)

where C is a constant, E the activation energy of the one-step chemical reaction Fuel → Products and
R0 the universal gas constant (R0 = RW with W average molecular weight of the mixture). The
volumetric heat release Q is related to the fuel consumption by the relation

Q = ẇF ΔhF (4.6)

65
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where ΔhF is heat of reaction per unit mass of fresh mixture. When the Mach number is low, compress-
ibility effects related to pressure variations may be neglected in Eq. (4.3) [47]. Furthermore, a steady
solution may be searched for values of the activation energy E much larger than the thermal energy
R0Tb, where the suffix b refers to the burned mixture. This leads to the Zel’dovich & Frank-Kamenetskii
(ZFK) solution that is mathematically obtained by applying the asymptotic limit Ze → ∞, being Ze

the Zel’dovich number defined as

Ze =
E (Tb − Tu)
R0 T 2

b

(4.7)

where the suffix u refers to the fresh mixture. In the ZFK solution the flame structure is made of two
different regions: the upstream convective-diffusive zone and the downstream reactive-diffusive zone [47].
In the upstream convective-diffusive region the reaction rate is negligible and convection is in balance
with diffusion (the gas is preheated by heat diffusion coming from the reactive-diffusive zone). The
thickness of the convective-diffusive region is

δf ∼ ρb
ρu

√
DF b τt (4.8)

where τt is the transit time

τt ∼ δf
Sf

(4.9)

with Sf flame speed. In the thin reactive-diffusive zone of thickness δf/Ze, convection is negligible and
the reactant concentration is depleted by diffusion.
The response of the ZFK flame solution to acoustic perturbations of the mass burning rate m = ρu has
been studied in Ref. [77] for the system (4.1)-(4.4). The resulting flame transfer matrix corresponds to
Eq. (3.74) with

Q ′
A,I

QA
=

√
1 + 4 i ωτt− 1

2 i ωτt
m ′

m
(4.10)

Eq. (4.10) is plotted in Fig. 4.1. For a compact premixed flame, the integration of Eq. (4.4) across the
flame writes as

QA = mΔhF [YF ]12 (4.11)

(the term d/dt
∫ 2
1 ρYFdx has been neglected according to the compactness assumption). The perturba-

tion of Eq. (4.11) with constant mass fractions yields the “quasi-steady” behavior Q ′
A,I/QA = m ′/m,

which is equivalent to Eq. (4.10) when ωτt → 0 (see Fig. 4.1). Therefore, a large activation energy
premixed flame is quasi-steady in terms of heat release fluctuations when the acoustic time is much
smaller than the transit time.
Under the quasi-steady heat release hypothesis and by assuming complete combustion (i.e. zero fuel
mass fraction downstream of the flame), for a three-dimensional flame the heat release per unit of flame
area may be expressed as

QA =
1
AC

∮
Af

ρf YF,f Sf ΔhF dAf (4.12)
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Figure 4.1: Transfer function of ZFK solution.

where Af is the area of the flame front, AC the cross-sectional combustor area and for the generic flow
variable ϕ we have ϕf = ϕ(xf , t) where xf is the coordinate of the upstream flame front. By assuming
ρf , Sf and Y F,f uniform over the upstream flame front, the perturbation of Eq. (4.12) gives

Q ′
A,I

QA
=
(
Q ′

Q

)
Y

+
(
Q ′

Q

)
Sf

+
(
Q ′

Q

)
ξ

(4.13)

where (
Q ′

Q

)
Y

=
1
Af

∮
Af

Y ′
F,f

Y F,f
dAf (4.14)

(
Q ′

Q

)
Sf

=
1
Af

∮
Af

S ′
f

Sf
dAf (4.15)

(
Q ′

Q

)
ξ

=
A ′
f

Af
(4.16)

In Eq. (4.13) we have neglected heat release fluctuations induced by density fluctuations. In fact, if
the perturbation flow is approximated as isentropic upstream of the flame, Eq. (2.34) yields ρ ′

f/ ρf =

p ′
f/γ pf with p ′

f/ pf = O(M2
1) (see Section 2.6.4). The modeling of the contributions (4.14)-(4.16) is

discussed in the following Sections.
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4.2 Fuel Concentration Fluctuations

The three-dimensional form of Eq. (4.4) written upstream of the flame (where ẇF = 0) is expressed for
an inviscid flow as

∂YF
∂t

+ u · ∇YF = 0 (4.17)

By assuming Y F � const, the acoustic perturbation of Eq. (4.17) reads as

DY ′
F

Dt
= 0 (4.18)

that has the solution

Y ′
F,f = Y ′

F ( xf , t ) = Y ′
F (xin , t− τf ) (4.19)

where xin( xf ) is the injection point coordinate for the fuel element reaching the flame front at the mean
flame front location xf and

τf( xf ) =
∫ xf

xin

dχ

|u | (4.20)

the mean time that the fluid element needs to travel from the injector to the flame front along the
trajectory χ. In the frequency domain, Eq. (4.19) reads as

ŶF ( xf , ω ) = exp [−i ω τf ] ŶF (xin , ω ) (4.21)

When turbulent diffusion effects are taken into consideration, instead of a single-value time-lag one
has to consider a probability distribution of delays. According to Eq. (4.19), the time-domain impulse
response Y ′

F δ ( xf , t) writes as

Y ′
F δ ( xf , t ) = δ ( t− τf ) (4.22)

In case of particle diffusing in stationary and homogeneous turbulent fields, the probability distribution
of delays has a Gaussian form [78]. Hence Eq. (4.22) may be replaced by the expression

Y ′
F δ ( xf , t ) =

1√
2 πσf

exp

[
− ( t− τf )2

2 σ2
f

]
(4.23)

where σf( xf ) is the variance of the time-lag distribution. The Laplace transform of Eq. (4.23) yields
the impulsive response that leads to the frequency domain response

ŶF ( xf , ω ) = exp
(
−i ω τf − 1

2
ω2 σf

)
ŶF (xin , ω ) (4.24)

To close the model, the fuel concentration fluctuations ŶF,in = ŶF (xin, ω ) computed at the injector
location must be computed. Being mO and mF the mass flow rate of air (oxidant) and fuel respectively,
one can write

Y ′
F,in

Y F,in
=

[mF/(mO +mF )] ′

mF/(mO + mF )
=

m ′
F/mF − m ′

O/mO

1 + mf/mO
� m ′

F

mF
− m ′

O

mO
(4.25)
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where the lean combustion condition mO � mF has been used. The air density fluctuations in Eq. (4.25)
may be expressed as

m ′
O

mO
� u ′

in

uin
(4.26)

where uin is the flow velocity at the injector location and density fluctuations have been again neglected.
Fuel mass flow rate fluctuations may be expressed in the frequency domain as

m̂F

mF
� ûF,in

uF,in
=

p̂in
uF,in Zin

(4.27)

where p̂in is the pressure perturbation at the injector location and Zin the impedance of the fuel supply
system. Using Eqs. (4.24) and (4.27), the heat release fluctuation (4.14) may be expressed as(

Q̂

Q

)
Y

=
1
Af

∮
Af

exp
(
−i ω τf − 1

2
ω2 σ2

f

) (
p̂in

uF,in Zin
− ûin
uin

)
dAf (4.28)

The application of the mean value theorem to the integral on the right-hand side of Eq. (4.28) yields(
Q̂

Q

)
Y

= exp
(
−i ω τY − 1

2
ω2 σ2

Y

) (
p̂B

uF,B ZFDS
− ûB
uB

)
(4.29)

where τY and σY are computed for the mean value point of the flame front, the quantities (·)B are taken
as averaged values over the fuel injection zone and ZFDS represents the impedance of the fuel delivery
system (FDS).
Under the incompressibility hypothesis, the fuel mass flow rate through the injector is given by

mF =

√
2 ρF ΔpF,in

ζin
Ain (4.30)

where ρF is the fuel density, ΔpF,in the injector pressure drop, Ain the injector cross-sectional area and
ζin the injector pressure loss coefficient. The perturbation of Eq. (4.30) reads in the frequency domain
as

m̂F

mF
=

1
2

Δ p̂F,in
Δ pF,in

(4.31)

For stiff injectors Δ pF,in � |Δ p̂F,in| and thus fuel mass flow rate fluctuations may be neglected in
Eq. (4.25). When this approximation holds, Eq. (4.29) writes as(

Q̂

Q

)
Y

= − exp
(
−i ω τY − 1

2
ω2 σ2

Y

)
ûB
uB

(4.32)
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Figure 4.2: Axisymmetric flame front.

4.3 Flame Speed Fluctuations

In laminar flames, the flame speed of a specific fuel is a function of pressure, temperature and fuel
concentration. When the temperature dependency is eliminated using the isentropic condition (3.62),
one has

S ′
f

Sf
= ϑp

p ′
f

pf
+ ϑY

Y ′
F,f

Y F,f

(4.33)

For instance, for lean methane flames (i.e. equivalent ratio values greater than 0.5 ) ϑp falls in the
range 0.4 < ϑp < 0.5 and ϑY > 1 [79], [80]. At high Damköhler numbers (i.e. with a chemical
reaction time much larger than the turbulent time) the flame speed depends mainly on the turbulent
velocity [47]. When the turbulence field is weakly affected by acoustic fluctuations, thus S ′

f = 0 and
then (Q ′/Q)Sf = 0.

4.4 Flame Area Fluctuations

In this Section we focus on the axisymmetric flame shown in Fig. 4.2. A flame front may be in general
described by means of the function h(x, t) that is chosen such that h < 0 on the reactant side, h > 0
on the product side and h = 0 on the flame front that is supposed to move with the velocity Uf . If
the flame front is parameterized by xf (φ, ψ, t), then the trajectories of the material points defining the
flame front are determined by the equation

∂xf
∂t

(φ, ψ, t) = Uf (xf (φ, ψ, t) , t) (4.34)

Since h(xf(φ, ψ, t), t) = 0 for all (φ, ψ, t), on the flame front we have

dh(xf , t)
dt

≡ ∇h · ∂xf
∂t

+ ∂h/∂t = ∇h · Uf + ∂h/∂t = 0 (4.35)

The flame front velocity may be expressed by means of the following kinematic balance

Uf · nf = u · nf − Sf (4.36)
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where nf = ∇h/|∇h| is the unit normal to the flame surface in the direction of products, u the flow
velocity and Sf the burning velocity relative to the unburned gas. Using Eq. (4.36), Eq. (4.35) writes as

∂h

∂t
+ u · ∇h = Sf |∇h| (4.37)

that is known in combustion as G-equation [26], [81]. Note that Eq. (4.37) is valid only on the flame
interface x = xf .

4.4.1 V-flame model

The average position of the flame in Fig. 4.2 is approximated by the external (+) and internal (-) conical
flame fronts (V-flame shape) illustrated in Fig. 4.3 (both the mean and instantaneous flame fronts are
supposed to be axisymmetric). Therefore, in the cylindrical coordinate system (x, r, θ) of Fig. 4.4 the
flame position is given by the axial displacement ξ(r, t) (see Fig. 4.5) and the h function may be expressed
as h = ±[ξ(r, t)− x], where the signs + and − stand for external and internal flame front respectively.
The radius is taken as the independent variable because both external and internal flame fronts are
supposed to have the same maximum radius b that remains constant when the flame oscillates. By
expressing Eq. (4.37) as

∂ξ

∂t
− ux + ur

∂ξ

∂r
= ±Sf

√
1 +

(
∂ξ

∂r

)2

(4.38)

the mean flow and perturbation equations are expressed respectively as [27], [28]

V = ∓Sf (4.39)

∂ ξ ′

∂t
+ U sin β

∂ ξ ′

∂r
=

V ′ ± S ′
f

sin β
(4.40)

where U and V are, respectively, the velocity component tangential to the steady flame front in the
X-direction and the velocity component normal to the steady flame front in the Y -direction, being the
axis X and Y shown in Fig. 4.5 where the flame angle β is also defined. In the frequency domain
Eq. (4.40) reads as

d ξ̂

dr
+

i ω

U sinβ
ξ̂ =

V̂ ± Ŝf

U sin2 β
(4.41)

In the following, the steady flow velocity component U is supposed to be constant on the average flame
front. Being a the burner rim radius, Eq. (4.41) may be solved for the external flame front ξ̂+(r) and
internal flame front ξ̂−(r) using the boundary conditions ξ̂+(a) = 0 and ξ̂−(0) = ξ̂0 respectively. We
obtain

ξ̂+(r) =
τ+

(b− a) sinβ+

∫ r

a

[
V̂ +( r̃) + Ŝ+

f ( r̃)
]
e−i ω τ

+ (r− r̃)/(b−a) d r̃ (4.42)

ξ̂−(r) = e−i ω τ
− r/b ξ̂0 +

τ−

b sinβ−

∫ r

0

[
V̂ −( r̃) − Ŝ−

f ( r̃)
]
e−i ω τ

− (r− r̃)/b d r̃ (4.43)



72 CHAPTER 4. HEAT RELEASE FLUCTUATIONS IN GAS TURBINE FLAMES

where the characteristic time τ+ of the external flame front and the characteristic time τ− of the internal
flame front are defined as

τ+ =
(b− a)/ sinβ+

U
+ , τ− =

b/ sinβ−

U
− (4.44)

The times τ+ and τ− represent the time needed to transit along the external and internal flame fronts
with the tangential velocities U+ and U

− respectively.
Next, the flame area is expressed as1

Af = 2 π
∫ b

a

√
1 +

(
∂ξ+

∂r

)2

r dr+ 2 π
∫ b

0

√
1 +

(
∂ξ−

∂r

)2

r dr (4.45)

Eq. (4.45) shows that the perturbation of the area element is associated to the fluctuation of the flame
front slope. Using Eq. (4.45), the linear fluctuation of the flame front is expressed in the frequency
domain as

Âf = 2 π cosβ+

∫ b

a

∂ ξ̂+

∂r
r dr + 2 π cosβ−

∫ b

0

∂ ξ̂−

∂r
r dr =

= 2 π cos β+

[
b ξ̂(b)−

∫ b

a
ξ̂+ dr

]
+ 2 π cosβ−

[
b ξ̂(b)−

∫ b

0
ξ̂− dr

]
(4.46)

By using Eqs. (4.42) and (4.43) into Eq. (4.46) with V̂ +, V̂ − and Ŝf taken as constant on the flame
front, one obtains

Âf

A
= Θ+

V̂ ++ Ŝ+
f

U
+tanβ+

Fξ(a/b , ωτ+) + Θ−
[
V̂ −− Ŝ−

f

U
−tanβ−

− iωτ− sin(2β−) ξ̂0
2b

]
Fξ(0 , ωτ−) (4.47)

where

Fξ(ψ , ωτ) =
2

1 + ψ

(1− ψ + i ω τ) e−i ω τ − 1 + (1 − i ω τ) ψ
(ω τ)2

(4.48)

and

Θ+ =
[
1 +

(
sinβ+

sinβ−

)
b2

b2 − a2

]−1

, Θ− =
[
1 +

(
sin β−

sin β+

)
b2 − a2

b2

]−1

(4.49)

The magnitude and phase of Fξ(ψ , ωτ) are respectively plotted in Figs. 4.6 and 4.7 for ψ = 0 and
ψ = 0.5. In Eq. (4.47), we can define û0 = iω ξ̂0 as the velocity of the axial point of the flame front. By

1Being the standard parameterization of the flame surface given by x = ξ(φ,ψ), y = χ(φ, ψ), z = ζ(φ, ψ), one has

dAf =
√
EG− F 2 dφdψ

where E = ξ2φ + χ2
φ + ζ2

φ, G = ξ2ψ + χ2
ψ + ζ2

ψ and F = ξφξψ + χφχψ + ζφζψ. When x = ξ(r), y = r cos θ and z = r sin θ, it

gives

dAf = r
√

1 + ξ2r dr dθ
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using the approximation Θ+ � Θ− and the high Damköhler number condition Ŝf = 0 (i.e. flame area
fluctuations are supposed to be related only to the flame wrinkling associated to the oscillations of the
velocity normal to the flame front), one can write(

Q̂

Q

)
ξ

= nξ(ω)Fξ(0 , ωτξ)
ûB
uB

(4.50)

where the interaction index nξ(ω) is defined as

nξ(ω) = Θ−

(
V̂ − − û0 sin β−

)
/(U− tanβ−)

ûB/ uB
(4.51)

with uB burner velocity at the injection point location (see Fig. 4.2) and τξ ≡ τ−. Being ( Q̂/Q)Sf = 0,
thus one must have limω→0( Q̂/Q)ξ = ûB/ uB that leads to the condition

lim
ω→0

nξ(ω) = 1 (4.52)

Eqs. (4.32) and (4.50) may be combined to give

Q̂A,I

QA
=
[
nξ Fξ(0 , ωτξ) − exp

(
−i ω τY − 1

2
ω2 σ2

Y

)]
ûB
uB

(4.53)

Eqs. (4.52) and (4.53) yield limω→0 Q̂A,I/QA = 0, which is consistent with the hypothesis of no fluctu-
ations of injected fuel mass flow rate that has been employed to derive Eq. (4.32).

Figure 4.3: V-flame model of axisymmetric flame front.
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Figure 4.4: Cylindrical coordinate system.

Figure 4.5: Sketch of V-flame.
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Figure 4.6: Magnitude of characteristic function for heat release fluctuations induced by flame area
oscillations.

Figure 4.7: Phase ([deg]) of characteristic function for heat release fluctuations induced by flame area
oscillations.



4.5 Transfer Matrix Measurements

In combination with the low-order models presented in the previous Sections, flame transfer matrices
have been also measured under atmospheric conditions in the combustion facility shown in Fig. 4.8.
Both the plenum chamber upstream of the burner and the combustion chamber downstream of the
burner were circular tubes of diameter d. The plenum chamber contained perforated plates to reduce
the turbulence level of the flow. The combustion chamber consisted either of an air cooled double wall
metal liner or of an air cooled double wall quartz glass to provide full visual access to the flame. The
exhaust system was an air-cooled tube with the same cross-section as the combustion chamber to avoid
acoustic reflections at area discontinuities. The length of the exhaust tube was adjustable. The acoustic
boundary condition of the exhaust system could be adjusted from almost anechoic (reflection coefficient
< 0.15) to open end reflection using orifices of different diameters. Controlled excitation of the burner
flow was accomplished by circumferential arrays of loudspeakers equally spaced in polar angle. Two
sets of loudspeakers were placed in the plenum and combustion chamber at a distance of 4.2 d and 6.8 d
respectively upstream and downstream of the burner exit plane. Pressure fluctuations were measured
using Brüel & Kjær water-cooled microphones. The arrays of water-cooled 1/4” condenser microphones
(four in the plenum chamber and five in the combustion chamber) were flush-mounted along the walls
(using condenser microphones rather than piezoelectric pressure probes gave the advantage of highly
accurate phase and amplitude data that is necessary for acoustic measurements). The microphone
holders consisted of small orifices (diameter of 0.5 mm) open to the plenum and combustion chamber.
The microphone diaphragm was placed in a small cavity and was heat radiation protected. The resonance
frequency of the holder was larger than 20kHz. The frequency response of the microphones in probe

Figure 4.8: Combustion test facility for flame transfer function measurements.
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holders were compared against standard B&K microphones and showed good agreement. Following
the approach of Section 3.3.2, the Multi-Microphone Method applied to three independent test states
(upstream loudspeaker forcing, downstream loudspeaker forcing and no forcing) was used to reconstruct
the transfer matrix of the combined burner and flame element. In particular, by assuming plane wave
propagation from the upstream microphone location I to the upstream side 1 of the burner exit and
from the downstream microphone location II to the downstream side 2 of the burner exit (see Fig. 4.9),
the transfer matrix Tex

bf relating the cross-sections 1 and 2 was obtained. The measurement repeated in
absence of combustion provided the transfer matrix of the burner only Tex

b , so that the experimental
flame transfer matrix Tex

f could be obtained by using the relation [11]

Tex
f = Tex

bf ·Tex
b

−1 (4.54)

(the underlying assumption was that the transfer matrix Tex
b did not change because of the combustion

process).

4.6 Transfer Matrix Fits

In the present Section, analytical transfer matrix models are fit to transfer matrix measurements. By
using Eqs. (4.29) and (4.50) to express the heat release fluctuations into Eq. (3.67), one gets

û2 = û1 + u1

(
T 2

T 1

− 1
){

[Hξ(ω)−HY (ω)]
ûB
uB

+HY (ω)
p̂B

uF,B ZFDS

}
(4.55)

where

Hξ(ω) = nξ(ω)Fξ(0 , ωτξ) , HY (ω) = exp
(
−i ω τY − 1

2
ω2 σ2

Y

)
(the burner cross-section B is indicated in Fig. 4.9). Using the measured burner transfer matrix Tex

b ,
the acoustic fields in B and 1 may be related by means of the expressions

p̂B
ρ1 c1

� (T exb )−1
11

p̂1

ρ1 c1
+ (T exb )−1

12 û1 (4.56)

ûB
uB

� û1

u1
(4.57)

Figure 4.9: Schematic of burner in combustion test rig.
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Figure 4.10: Phase [deg] of normalized fuel delivery system impedance.

so that Eqs. (4.55) may be rewritten as

û2 = (T anf )21
p̂1

ρ1 c1
+ (T anf )22 û1 (4.58)

where the elements of the analytical flame transfer function Tan
f are given by

(T anf )21 =
(
T 2

T 1

− 1
)

u1 (T exb )−1
11

uF,B ZFDS/ ρ1 c1
HY (ω) (4.59)

(T anf )22 = 1 +
(
T 2

T 1

− 1
)

[Hξ(ω)−HY (ω)] +
(T exb )−1

12

(T exb )−1
11

(T anf )21 (4.60)

A transfer matrix Te may be defined where the effect of the fuel delivery system is removed. For
analytical and experimental transfer matrices, the elimination of the FDS effect from the 22−element
reads respectively as

(T ane )22 = 1 +
(
T 2

T 1

− 1
)

[Hξ(ω)−HY (ω)] (4.61)

(T exe )22 = (T exf )22 − (T exb )−1
12

(T exb )−1
11

(T exf )21 (4.62)

Fig. 4.10 shows an example of the phase of ZFDS obtained from Eq. (4.59) by imposing (T anf )21 = (T exf )21.
The FDS removal approach has been validated in Fig. 4.10 by also modeling the FDS by means of an
acoustic network composed by one-dimensional ducts [see Eq. (3.4)] connected by area changes (“1D
model” plot) and by means of an acoustic Finite Element Method (“FEM” plot) [73].
In the following, analytical flame transfer matrix elements (T ane )22 are fitted to experimental ones (T exe )22

obtained with different hardware and under different combustion operation conditions.

4.6.1 Pre-premix test cases

The flame transfer matrices have been measured for a modified version of the EV burner (see Sec-
tion 3.3.3). First, measurements were performed by operating the burner in “pre-premix” conditions,
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i.e. gas fuel was injected far upstream of the burner in order to suppress fuel concentration fluctuations
at the burner location (this is in contrast with the standard “premix” mode where the gas is injected
directly inside the burner). In Figs. 4.11-4.13, the magnitude and phase of the transfer matrix elements
(T exf )22 measured in pre-premix conditions for three different flame temperatures are compared to the
analytical results obtained by fitting Eq. (4.61) (with HY = 0) to the experimental plots [with no fuel
injection inside the burner we do not need to apply Eq. (4.62) and include the fuel concentration term
into the analytical model]. Both the parameter nξ and τξ have been taken as constant in the fitting
procedure. In spite of these and the other approximations employed to derive Eq. (4.50), the agreement
between measurements and analytical model is good specially in the low frequency range. The analytical
curves are characterized by values of the interaction index nξ comprises between 2 and 2.5, whereas the
time-lags τξ are consistent with the values obtained from steady CFD simulations. In particular, when
increasing the flame temperature an increase in nξ and a decrease in τξ is observed.

4.6.2 Premix test cases

Measurements have been also performed in premix conditions for different versions of the modified EV
burner. Even at full load, the comparison between (T exe )22 and (T exf )22 has demonstrated that the
pressure drop across the premix injectors is not sufficiently large to avoid fluctuations of fuel mass flow
rate, so that 22-elements given by Eqs. (4.61) and (4.62) have been compared. The results of Figs. 4.15
and 4.16 differ from those reported in Fig. 4.14 because of the use of a different fuel lance geometry and
fuel lance axial position respectively (see Section 3.3.3), whereas Fig. 4.17 presents the results related to
the use of a different swirler. Even if no liquid fuel is injected throughout the fuel lance, Figs. 4.14-4.16
show that a different lance geometry or lance position may modify the aerodynamic field and then the
flame dynamics in premix operation. The analytical fits reported in Figs. 4.14-4.17 have been obtained
by using Eq. (4.61). As a result of the fitting process, we have found |nξ| = 1−2 with nξ < 0 for the case
in Fig. 4.17. Note that a difference in the sign of nξ means that velocity perturbations normal to the
flame front respond in opposite way to a given perturbation of velocity in the burner, this effect being
probably related to a different response of the recirculation bubble (see Fig. 4.2) that is responsible for
flame stabilization. The fuel concentration time-lag values τY were in agreement with those provided
by steady CFD computations. The analytical fit of Fig. 4.15 has values of nξ and τξ similar to those of
the pre-premix cases and larger than those of the analytical fits in Figs. 4.14 and 4.16, whereas the case
in Fig. 4.17 is associated to the largest τξ (that means the flame is more elongated and/or with a large
tangential flow velocity).

4.6.3 Oil test cases

Finally, measurements have been performed using oil injection throughout the central fuel lance shown
in Figs. 3.6 and 3.7. Figs. 4.18-4.20 and Figs. 4.21-4.22 report oil measurements obtained by varying
flame temperature and air temperature respectively. In order to account for the acoustic influence of the
oil delivery system, the measurements have been post-processed by means of Eq. (4.62) and compared
with the analytical model (4.61), including both flame area and fuel concentration fluctuations. In the
analytical fits of Figs. 4.18-4.20, when the flame temperature increases thus nξ decreases from 2 to 1.5
whereas both τξ and τY increase. The results in Figs. 4.17 and 4.18 refer to the same burner operating at



the same conditions (air and flame temperature) with gas and oil respectively. With respect to the gas
transfer matrix fit reported in Fig. 4.17, the oil fit in Fig. 4.18 is characterized by a positive value of nξ
(indicating a different response of the aerodynamic field to perturbations of the axial burner velocity),
a smaller τξ and a larger τY .
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Figure 4.11: Magnitude (top) and phase (bottom) of (Tf)22 flame transfer function element. Pre-premix
test case with flame temperature (Tflame)ref .

Figure 4.12: Magnitude (top) and phase (bottom) of (Tf)22 flame transfer function element. Pre-premix
test case with flame temperature (Tflame)ref − 50K.
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Figure 4.13: Magnitude (top) and phase (bottom) of (Tf)22 flame transfer function element. Pre-premix
test case with flame temperature (Tflame)ref + 50K.

Figure 4.14: Magnitude (top) and phase (bottom) of (Te)22 flame transfer function element. Premix
test case with reference fuel lance and swirler.
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Figure 4.15: Magnitude (top) and phase (bottom) of (Te)22 flame transfer function element. Premix
test case with modified fuel lance geometry.

Figure 4.16: Magnitude (top) and phase (bottom) of (Te)22 flame transfer function element. Premix
test case with modified fuel lance axial position.
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Figure 4.17: Magnitude (top) and phase (bottom) of (Te)22 flame transfer function element. Premix
test case with modified swirler (same hardware than the hardware used in the oil tests reported in
Figs. 4.18-4.22).

Figure 4.18: Magnitude (top) and phase (bottom) of (Te)22 flame transfer function element. Oil test
case with air temperature (Ta)ref and flame temperature (Tflame)ref .
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Figure 4.19: Magnitude (top) and phase (bottom) of (Te)22 flame transfer function element. Oil test
case with air temperature (Tair)ref and flame temperature (Tflame)ref − 130K.

Figure 4.20: Magnitude (top) and phase (bottom) of (Te)22 flame transfer function element. Oil test
case with air temperature (Tair)ref and flame temperature (Tflame)ref + 100K.
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Figure 4.21: Magnitude (top) and phase (bottom) of (Te)22 flame transfer function element. Oil test
case with air temperature (Tair)ref − 60K and flame temperature (Tflame)ref .

Figure 4.22: Magnitude (top) and phase (bottom) of (Te)22 flame transfer function element. Oil test
case with air temperature (Tair)ref + 30K and flame temperature (Tflame)ref .



Chapter 5

Passive Control

5.1 Helmholtz Damper Impedance Model

In this Chapter we discuss the use of Helmholtz resonators to dampen thermoacoustic pulsations occur-
ring in gas turbine combustion chambers. First, a nonlinear model of the Helmholtz resonator impedance
is presented and validated by means of atmospheric experiments. Then, the physical mechanism behind
the sound attenuation achieved by the application of Helmholtz dampers to combustion chambers is
analyzed.
As shown in Fig. 5.1, a Helmholtz resonator consists of a volume with a neck through which the fluid
inside the resonator communicates with an external medium [29], [30], [51]. With respect to classical
acoustics, in combustion applications a cooling flow must be maintained through the resonator in order
to prevent overheating. When a Helmholtz resonator is applied to an enclosure, in correspondence of
the neck mouth a frequency dependent boundary is realized. The acoustic behavior of the resonator is
defined through the damper impedance Zn = Rn + iXn, i.e. the ratio in the frequency domain between
acoustic pressure and normal component of acoustic velocity computed on the neck mouth.

5.1.1 Harmonic oscillator model

When the neck is short and narrow with respect to acoustic wavelengths (low-frequency range), all the
fluid particles in the neck are assumed to fluctuate with the same acoustic speed. Thus the air in the
neck may be modeled as a zero-mass solid piston fluctuating and then radiating acoustic energy outside
of the neck. For a compact neck, in the linear regime Eqs. (3.38)-(3.39) give

Afl ûfl = An ûn = AV ûV (5.1)

p̂fl = p̂V +
[
i ω ρL′

n + ζneck ρ un + ( Φ̂1 + Φ̂2)/ ûn
]
ûn (5.2)

where the suffixes n, fl and V refer to resonator neck, flange and volume respectively (see Fig. 5.2).
Moreover,

L′
n = �V + Ln + �fl (5.3)

87
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Figure 5.1: Helmholtz resonator schematic.

with �V and �fl end-corrections at the neck-volume and neck-flange interface respectively. Eq. (3.14)
may be used to express the pressure p̂V (i.e. the damper volume is acoustically compact) if

LV ≤ λ/16 (5.4)

where LV is the length of the resonator volume and λ = 2π c/ω the acoustic wavelength [32]. When the
assumption (5.4) holds, Eqs. (5.2)-(5.1) yield

Zfl =
p̂fl
ûfl

= Rfl + i Xfl =
Afl
An

[
ζneck ρ un + ( Φ̂1 + Φ̂2)/ ûn + i

(
ω ρL′

n −
ρ c2An
ω VR

)]
(5.5)

where VR = AV LV is the resonator volume. The resonance frequency of the damper (i.e. the frequency
for which Xfl = 0) is given by

ωres = c

√
An

VR L′
n

(5.6)

As we will see in the following, a Helmholtz resonator is able to dampen pulsations occurring at the
damper resonance frequency. Thus the slope of the reactance curve at resonance

∂Xfl

∂ω

∣∣∣∣
ωres

=
Afl
An

(
2 ρL′

n

)
(5.7)

Figure 5.2: Helmholtz resonator characteristic quantities.
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Figure 5.3: Harmonic oscillator.

indicates how fast the damper behavior deviates from the resonance condition when the frequency moves
away from ωres.
Helmholtz developed originally Eq. (5.5) by using the “harmonic oscillator” analogy, where the fluid
in the neck is seen as an equivalent mass fluctuating under the effect of a spring force related to the
compressibility of the fluid in the volume and a dissipative force related to viscous and thermal conduction
losses [30] (see Fig. 5.3).

5.1.2 Nonlinear model

When a Helmholtz resonator is applied to a combustion chamber, the accurate prediction of the resonator
impedance is fundamental for the correct resonator design. In the model we present in this Section, the
neck is modeled by means of Eq. (3.4) (one-dimensional wave propagation) including the Kirchhoff
visco-thermal acoustic damping (2.88). For the damper volume we use Eq. (3.5) (one-dimensional wave
propagation without damping), the assumption Sd → ∞ being justified by a sufficiently large radius
of the damper volume. Eq. (5.2) shows that the damper reactance depends of the end-corrections �V
and �fl , which represent the inertia of the fluid induced to fluctuate into combustor and resonator
volume by the acoustic fluctuations occurring into the neck. The presence of a mean flow (maintained
for cooling reasons) also affects the end-correction. Various models have been proposed for modeling
the end-correction of an area change in absence of mean flow [29], [31], [82], [83]. The end-correction
�∞ of a tube without mean flow terminating in a half-space (infinite flange) may be computed as the
reactance of a piston of radius a =

√
An/π set on an infinite boundary plane. By introducing the duct

Helmholtz number He = ωa/ c, in the limit He→ 0 one obtains [29]

lim
He→0

�∞ =
8

3 π
a (5.8)

The effect of a finite value of He is considered in the expression [82]

�∞ = 0.8216 a
[
1 +

(0.77He)2

1 + 0.77He

]−1

(5.9)
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In case of finite area jump (flanged end) it is possible to use � = �∞χ(P ), where P is the area ratio
(defined as less than one) and [83]

χ(P ) = 1 − 1.47P 0.5 + 0.47P 1.5 (5.10)

Finally, for the end correction of a piston of radius a communicating with an infinite space (unflanged
end) one has [82]

�unfl = 0.6133 a
1 + 0.044He2

1 + 0.19He2
(5.11)

As reported in several experimental investigations, in the presence of a mean flow � decreases when
increasing the mean flow velocity until a limit values is reached [84], [85], [86]. In our model the area
changes at neck ends are modeled by means of the semi-empirical relation

� = �∞(He) χ(P ) ψ(St) (5.12)

where �∞(He) and χ(P ) are given by Eqs. (5.9) and (5.10) respectively, whereas the factor ψ(St)
accounts for the decrease in � when | un| → ∞ with

St = ωa/| un| (5.13)

mean flow Strouhal number [85]. An expression fitting well our experiments is

ψ(St) =
�lim (β/St2) + 1
β/St2 + 1

(5.14)

where �lim and β are constants. At high cooling flow velocities, Eq. (5.14) gives an end-correction that
is �lim times the end-correction value at | un| = 0.
Next, the theory derived in Section 3.3.1 is used to express the nonlinear behavior of the resonator
resistance Rfl. In particular, Eq. (3.31) may be used to model Φ̂n = Φ̂1 + Φ̂2 into Eq. (5.5) with the
simplification ζ+

n � ζ−n = ζn applied into Eq. (3.29). When an expression for the pressure loss coefficient
ζn is provided, Eq. (3.31) models the transition from the linear to the nonlinear regime occurring when
the mean flow velocity in the damper neck becomes smaller than the neck acoustic velocity. Previous
investigations have been oriented to model separately the linear and nonlinear regimes in the case of
low Mach number and low-Helmholtz-number flows using one-dimensional fluid dynamic models [33],
[34], [35], [36], [37], [38]. With or without mean flow, the “quasi-steady” assumption ζn = const holds if
Stac � 1 or St� 1 respectively, being the mean flow Strouhal number St defined in Eq. (5.13) and the
acoustic Strouhal number Stac given by

Stac = ωa/| ûn| (5.15)

Under the quasi-steady assumption, the acoustic characteristic displacement | ûn|/ω or the fluid dynamic
characteristic displacement | un|/ω are supposed to be much larger than the neck radius a. Quasi-
steady models without mean flow have been proposed for orifices using a constant “discharge coefficient”
CD = 1/

√
ζn [33], [34], [37] [see for instance Eqs. (3.37)]. Without mean flow and for large values of Stac,

the pressure loss term may be obtained by modeling the acoustic power transformed into shedding of



5.1. HELMHOLTZ DAMPER IMPEDANCE MODEL 91

�lim β ζ0 C0 D0 ζu Cu Du

0.3 6 2 0.36 1.05 1 0.20 1.10

Table 5.1: Parameters for end-correction and pressure loss coefficient fits.

vorticity by means of a vortex-sheet model [36]. By assuming that the only viscous effect is the release
of a vortex sheet from the area change lip in order to fulfill the Kutta condition, one can use

ζn = 0.6
3π
4
St1/3ac (5.16)

that gives good agreement with experiments performed on ducts connected to an infinite space [36]. In
linear regimes with large St, the pressure loss coefficient has been found to be a function of St only [69],
[84].
According to the above considerations, in the present work we model the pressure loss coefficient ζn as
follow. Without mean flow we use

ζnonlin = max(ζ0 , C0 · StD0
ac ) (5.17)

where ζ0 represents the quasi-steady value and for large Stac an expression similar to Eq. (5.16) is used
with C0 and D0 constants. In the linear regime we use

ζlin = max(ζu , Cu · StDu) (5.18)

where again Cu and Du are two constants. In the intermediated regime 0 < | un| < | ûn| we use the
linear interpolation

ζn =
ζnonlin (1 − gnonlin) + ζlin (gnonlin − 4/3π)

1 − 4/3π
(5.19)

where the function gnonlin is given by [see Eq. (3.29)]

gnonlin(ϕ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
|ϕ| if |ϕ| > 1

2
π

[
ϕ arcsin(ϕ) +

√
1− ϕ2

3
(
2 + ϕ2

)]
if |ϕ| ≤ 1

(5.20)

The values of the parameters used in Eqs. (5.14), (5.17) and (5.18) have been obtained by fitting the
damper experiments reported in the following Sections and are presented in Tab. 5.1.
Finally, Eq. (5.5) provides the equation√

R2
fl(| ûfl|) +X2

fl(| ûfl|) · | ûfl| − | p̂fl| = 0 (5.21)

that is nonlinear because both end-corrections and pressure losses are functions of | ûfl|. Eq. (5.21)
is solved for | ûfl| by applying a Newton-Raphson method where the acoustic pressure on the damper
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Figure 5.4: Two-volume resonator.

flange | p̂fl| is an input parameter (e.g. obtained from experiments). In alternative to the resonator
impedance Zfl, the damper max be characterized in terms of the reflection coefficient rf given by

rf =
Z ′
fl + 1

Z ′
fl − 1

. (5.22)

The reflection coefficient rf defines the acoustic absorption 1−|rf |2 that corresponds to the ratio between
the reflected and incoming acoustic power of a normally incident plane wave [51].

5.1.3 Two-volume resonator

The nonlinear model presented in the previous Section may be easily extended to multi-volume res-
onators. In particular, the two-volume resonator illustrated in Fig. 5.4 has the advantage to have two
resonance frequencies and then it has the possibility to dampen two pulsation peaks simultaneously. In
order to simplify the analysis, we consider linear pressure losses. According to Fig. 5.4, the following
area ratios can be defined

Pfl =
An1

Afl
, P12 =

An1

AV 1
, P21 =

An2

AV 1
, P22 =

An2

AV 2
(5.23)

Eq. (5.5) is then used to determine the pressure p̂21 at the upstream end of the volume 1. It gives

p̂21 =
[
i

(
ω ρL′

n2 −
ρ c2 P22

ωLV 2

)
+ ζ2 ρ un2

]
ûn2 (5.24)

Next, using Eqs. (3.12)-(3.13) (the volume 1 is assumed to be compact and with small area ratio P21)
we obtain

p̂21 = p̂12 = −i ρ c2 P12 ûn1 − P21 ûn2

ωLV 1
(5.25)

Using again Eqs. (3.12)-(3.13) for the first neck, the acoustic pressure at the resonator flange p̂fl is given
by

p̂fl =
(
i ω ρL′

n1 + ζ1 ρ un1

)
ûn1 + p̂12 (5.26)
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The two-volume resonator may be considered as made by the combination of two single-volume resonators
with resonance frequencies

ω1 = c

√
P12

L′
n1 LV 1

, ω2 = c

√
P22

L′
n2 LV 2

(5.27)

Using Eqs. (5.24), (5.25) and (5.27), the relationship between the acoustic velocities in the resonator
necks writes as

ûn2 =
ω2

1 L
′
n1/L

′
n2

ω2
2 (1 + θ) − ω2 + i ω ζ2 un2/Ln2

ûn1 (5.28)

where θ is the volume ratio defined as

θ =
VR2

VR1
(5.29)

Finally, Eqs. (5.25), (5.26) and (5.28) can be combined to give the damper impedance

Zfl =
1
Pfl

(
i ω ρL′

n1 + ζ1 ρ un1 +
p̂12

ûn1

)
=

=
1
Pfl

{
iω ρL′

n1

(
1 − ω2

1

ω2

)
+ ζ1 ρ un1 +

i ω ρL′
n1 ω

2
1 ω

2
2 θ

ω2
[
ω2

2 (1 + θ) − ω2 + iωζ2 un2/L
′
n2

]} (5.30)

from which one obtains

Xfl = Im(Zfl) =
1
Pfl

ω ρL′
n1

{(
1 − ω2

1

ω2

)
+

ω2
1 ω

2
2 θ
[
ω2

2 (1 + θ) − ω2
]
/ω2[

ω2
2 (1 + θ) − ω2

]2 + (ω ζ2 un2/L
′
n2)

2

}
(5.31)

The condition Xfl = 0 gives the resonance frequencies ωres1,2 of the two-volume resonator. In order to
have resonance frequencies independent of the mean flow, in the following we assume un2 = 0 (i.e. no
mean flow through the second neck). In this case Eq. (5.31) gives

ωres1,2 =
{

1
2

[
ω2

1 + ω2
2 (1 + θ) ±

√
ω4

1 + ω4
2 (1 + θ)2 − 2ω2

1ω
2
2 (1 − θ)

]}1/2

(5.32)

The two resonance frequencies given by Eq. (5.32) satisfy the conditions ωres2 < min(ω1, ω2) and ωres1 >
max(ω1, ω2). The slope of the reactance curve at resonance is

∂Xfl

∂ω

∣∣∣∣
ωres12

=
1
Pfl

(
2 ρL′

n1

) ω2
res1,2 − ω2

res2,1

ω2
res1,2 − ω2

2 (1 + θ)
(5.33)

For a single-volume resonator one has ω2 = 0 and Eq. (5.32) gives ωres1,1 ≡ ω1.
Finally, we consider the “two-throat resonator” shown in Fig. 5.5 that is realized by replacing the
second volume of a two-volume resonator with an open end. Note that in this case one has zero acoustic
pressure at the second neck inlet and thus the end-correction contribution �0(He, P ) in Eq. (5.12) must
be computed according to Eq. (5.11). For the two-throat resonator ω2

2 → 0 (VR2 � VR1) whereas ω2
2θ

remains finite. In this case Eqs. (5.32)-(5.33) give

ωres = c

√
1
VR

(
An1

L′
n1

+
An2

L′
n2

)
(5.34)
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Figure 5.5: Two-throat resonator.

and

∂Xfl

∂ω

∣∣∣∣
ωres

=
1
Pfl

(
2 ρL′

n1

) ω2
res

ω2
1

(5.35)

5.2 Resonator Experiments for Impedance Model Validation

Experiments for validating the nonlinear resonator model have been conducted in the atmospheric
impedance tube test rig already described in Section 3.3.2. Figs. 5.6 and Fig. 5.7 show the rig set-
up for measuring damper impedances, the resonators being mounted on the resonator flange located on
one end of the tube. Using the Multi-Microphone-Method (see Section 3.3.2), both the acoustic pressure
on the resonator flange | p̂fl| and the reflection coefficient rf were obtained over the range of frequencies
of interest.

5.2.1 Cylindrical resonator

The nonlinear resonator model has been first validated with experiments performed on the cylindrical
resonator illustrated in Fig.5.8. The resonator volume was composed of a cylinder whose length could
be varied by means of a movable piston in order to obtain different resonance frequencies. As shown in
Fig. 5.7, an inlet tube (second neck) exited the resonator volume on the piston surface in order to inject
air inside the resonator volume.
Initially the inlet tube was closed on the resonator piston side. Tab. 5.2 reports the test conditions
in terms of nondimensional volume length L̃V and related nondimensional resonance frequency f̃res,
being L̃V and f̃res normalized using the maximum volume length achievable moving the piston and
the minumum frequency measured in the impedance tube. Figs. 5.9-5.10 show the comparison between
simulations and measurements in terms of magnitude and phase of the reflection coefficient measured
on the resonator flange. The resonance frequencies are characterized by a minimum of the reflection
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Figure 5.6: Impedance tube test rig.

coefficient magnitude and a phase equal to ±180o. The agreement between experiments and simulations
is very good for the entire frequency range. The decrease in resonance frequency when increasing L̃V
[see Eq. (5.6)] is well captured. For the longest resonator volume L̃V = 0.69, the second resonance
frequency at f̃res = 7.80 (zero phase point) is also predicted.
By opening the inlet tube, a two-throat resonator was realized (see Fig. 5.5). This design is suitable
for gas turbine applications, where the resonator must be cooled to prevent overheating. In gas turbine

Figure 5.7: Schematic of impedance tube test rig.



96 CHAPTER 5. PASSIVE CONTROL

Figure 5.8: Cylindrical resonator.

applications the neck mouth communicates directly with the combustion chamber and the cooling air is
supplied from the hood, the cooling mass flow rate being fixed by the pressure drop realized by the inlet
tube. The nondimensional inlet tube lenght was L̃n2 = 1.53. As illustrated in Fig. 5.7, the upstream
end of the inlet tube was connected to an inflow volume that realized a zero acoustic pressure boundary
(open end) in order to simulate the gas turbine hood chamber. The inflow volume was connected to
the rotameter, manometer and thermometer set-up shown in Fig. 5.11. This measurement apparatus
was then connected to an air supply valve, which produced airflow at various pressures. By allowing air
to flow through the measurement apparatus, pressure, temperature and the height of the float within
the rotameter were used to determine the mass flow within the air line and thus within the neck of the
Helmholtz resonator. The test conditions are reported in Tab. 5.3, where ũn1 represents the cooling
flow velocity in the damper neck normalized by means of the maximum velocity used in experiments.
Figs. 5.12-5.13 show the results for the case without cooling flow. As for the closed inlet tube case,
with L̃V = 0.69 a secondary resonance frequency is generated at f̃res = 7.80. Moreover, for small
volumes two other resonance frequencies at f̃res = 3.30 and f̃res = 6.80 appear in addition to the main
minima of |rf |. These resonance frequencies do not change with L̃V , depend on the inlet tube geometry

L̃V f̃res

0.05 5.44
0.08 4.54
0.23 2.80
0.46 1.96
0.69 1.58

Table 5.2: Cylindrical Helmholtz resonator with closed inlet tube. Measurement summary.
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Figure 5.9: Cylindrical Helmholtz resonator with closed inlet tube. Volume length variation.

Figure 5.10: Cylindrical Helmholtz resonator with closed inlet tube. Volume length variation.
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Figure 5.11: Flow measurement set-up.

and the related minima in |rf | disappear when L̃V increases. The cooling flow cases are illustrated in
Figs. 5.14-5.17. For a certain volume, the main resonance frequency showed a very small dependency on
the cooling flow (see also Tab. 5.3), the cooling flow influencing meanly the resonator resistance. When
increasing the cooling flow velocity, the |rf | curves became wider. Furthermore, with cooling flow the
|rf | minima due to inlet tube resonance ( f̃res = 3.30 and f̃res = 6.80) were suppressed because of the
damping provided by the cooling flow.

ũn1 L̃V f̃res

0.0 0.05 5.36
0.0 0.08 4.62
0.0 0.23 2.76
0.0 0.46 1.96
0.0 0.69 1.58

0.5 0.05 5.36
0.5 0.08 4.60
0.5 0.23 2.78
0.5 0.46 1.96
0.5 0.69 1.58

1.0 0.05 5.38
1.0 0.08 4.58
1.0 0.23 2.80
1.0 0.46 2.00
1.0 0.69 1.60

Table 5.3: Cylindrical Helmholtz resonator with open inlet tube. Measurement summary.
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Figure 5.12: Cylindrical Helmholtz resonator, ũn1 = 0. Volume length variation.

Figure 5.13: Cylindrical Helmholtz resonator, ũn1 = 0. Volume length variation.
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Figure 5.14: Cylindrical Helmholtz resonator, ũn1 = 0.5. Volume length variation.

Figure 5.15: Cylindrical Helmholtz resonator, ũn1 = 0.5. Volume length variation.
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Figure 5.16: Cylindrical Helmholtz resonator, ũn1 = 1. Volume length variation.

Figure 5.17: Cylindrical Helmholtz resonator, ũn1 = 1. Volume length variation.



5.2.2 Conical resonator

Fig. 5.18 shows the conical resonator that was obtained from the cylindrical one by replacing the volume-
neck area jump with a cone. The end-correction modeling of the nonlinear model reported in Section 5.1.2
has been developed for area discontinuities at neck ends. Thus, the end-correction �V at the conical
connection joining neck and resonator volume was computed by replacing the length of the volume
(including the cone) L̃V with a corrected length ( L̃V )cone. The corrected length was calculated as a
function of L̃V in order to have good agreement with experimental results. Such function was found to
be the linear expression

( L̃V )cone = L̃V − b (5.36)

with b = const. The conical resonator was also tested with the inlet tube lengths L̃n2 = 1.53 and
L̃n2 = 0.68. Tab. 5.4 reports the test conditions related to the results presented in Figs. 5.19-5.26,
proving that Eq. (5.36) is capable to predict the damper resonance frequency for all flow conditions and
geometries.
The extended neck shown in Fig. 5.27 was also tested. The neck extension inside the resonator volume
led to a shorter resonator volume and to a different end-correction. In particular, on the volume side
the neck had an unflanged end and then the end-correction �V was expressed by means of Eq. (5.11).
Moreover, the following corrected volume length (LV )unfl was employed

( L̃V )unfl = L̃V + bunfl (5.37)

where bunfl = const and L̃V is the distance between neck end and volume end. The results in Figs. 5.28-
5.29 refer to the measurement points of Tab. 5.5.

Figure 5.18: Conical resonator.
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L̃n2 ũn1 L̃V f̃res

1.53 0.0 0.16 3.80
1.53 0.0 0.69 1.62

1.53 0.5 0.16 3.74
1.53 0.5 0.23 2.98
1.53 0.5 0.35 2.40
1.53 0.5 0.46 2.04
1.53 0.5 0.58 1.80
1.53 0.5 0.69 1.62

1.53 1.0 0.16 3.78
1.53 1.0 0.23 3.06

0.68 0.0 1.0 1.32
0.68 0.5 1.0 1.32
0.68 1.0 1.0 1.32

Table 5.4: Conical Helmholtz resonator. Measurement summary.

The conical resonator was finally tested by closing the inlet tube and removing the piston seal. In
previous tests, the resonator piston had a seal thickness equal to 6.7 · 10−3DP with DP piston diameter.
The piston-cylinder clearance was of 6.7 · 10−4DP and it was neglected in the acoustic simulations,
where the only inlet tube opening was considered. By closing the inlet tube and removing the seal, a
clearance of 7.4 · 10−3 DP was obtained. In this case the resonator was modeled as a nonlinear two-
volume resonator, where the clearance represented the equivalent (in cross section and length) second
neck and the closed volume upstream of the piston was the second resonator volume. Figs. 5.30-5.31
report the results related to the test conditions illustrated in Tab. 5.6. Figs. 5.30-5.31 show the good
accuracy obtained using the equivalent duct approximation for the clearance.
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Figure 5.19: Conical Helmholtz resonator, L̃n2 = 1.53 and ũn1 = 0. Volume length variation.

Figure 5.20: Conical Helmholtz resonator, L̃n2 = 1.53 and ũn1 = 0. Volume length variation.
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Figure 5.21: Conical Helmholtz resonator, L̃n2 = 1.53 and ũn1 = 0.5. Volume length variation.

Figure 5.22: Conical Helmholtz resonator, L̃n2 = 1.53 and ũn1 = 0.5. Volume length variation.
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Figure 5.23: Conical Helmholtz resonator, L̃n2 = 1.53 and ũn1 = 1. Volume length variation.

Figure 5.24: Conical Helmholtz resonator, L̃n2 = 1.53 and ũn1 = 1. Volume length variation.
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Figure 5.25: Conical Helmholtz resonator, L̃n2 = 0.68 and L̃V = 1. Cooling flow velocity variation.

Figure 5.26: Conical Helmholtz resonator, L̃n2 = 0.68 and L̃V = 1. Cooling flow velocity variation.
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Figure 5.27: Conical resonator with extended neck.

L̃n2 ũn1 L̃V f̃res

1.53 1 0.08 3.6
1.53 1 0.15 2.8
1.53 1 0.27 2.28
1.53 1 0.38 1.92
1.53 1 1 1.18

Table 5.5: Conical Helmholtz resonator with extended neck. Measurement summary.

L̃n2 ũn1 L̃V f̃res

0.68 0.0 1 1.16
0.68 0.5 1 1.16
0.68 1.0 1 1.16

Table 5.6: Conical Helmholtz resonator without seal. Measurement summary.
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Figure 5.28: Conical Helmholtz resonator with extended neck, L̃n2 = 1.53 and ũn1 = 1. Volume length
variation.

Figure 5.29: Conical Helmholtz resonator with extended neck, L̃n2 = 1.53 and ũn1 = 1. Volume length
variation.
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Figure 5.30: Conical Helmholtz resonator, no seal, L̃n2 = 0.68 and L̃V = 1. Cooling flow velocity
variation.

Figure 5.31: Conical Helmholtz resonator, no seal, L̃n2 = 0.68 and L̃V = 1. Cooling flow velocity
variation.
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5.3 Resonators Coupled to Combustion Chambers

In room acoustics, Helmholtz resonators are coupled to enclosures in order to suppress acoustic modes
excited by sound sources [29]. The mechanism responsible for the damping may be analyzed by replacing
the solid wall boundary An of the enclosure with the resonator impedance Zn [41], [42]. In our analysis
we concentrate on the suppression of the acoustic mode ψj(x) associated to the resonance frequency
ωj belonging to the low frequency range, where the average separation between eigenfrequencies is
much larger than the average modal bandwidth. The enclosure we consider is equipped with NR equal
resonators that are acoustically “compact”, i.e. both the mode value ψj and the resonator impedance Zn
are constant on the k-resonator mouth of area An located at xk (low frequency hypothesis). Thus, for
frequencies close to ωj we neglect the modal coupling so that Eqs. (2.201), (2.202), (2.203) and (2.224)
lead to the relation

p̂ (s, x) �
[
C1(s) − C2(s)

NR∑
k=1

ψj(xk) p̂ (s, xk)

]
ψj(x) (5.38)

where

C1(s) =

(
s

s2 − 2 υj s + ω2
j

)
γE − 1
VE Λj

∫
VE

Q̂N (s, x)ψj(x) dV

C2(s) =

(
s

s2 − 2 υj s + ω2
j

)
ρE c

2
E An

VE Λj Zn(s)

the suffix E being related to enclosure conditions and VE being the volume of the enclosure. Moreover,
the growth rate υj defined in Eq. (2.226) has been supposed to be

|υj| � ωj (5.39)

where υj < 0 in stable systems and υj > 0 when a combustion instability occurs. Eq. (5.38) written on
resonator mouths lead to the linear system

p̂ (s, xm) =

[
C1(s)− C2(s)

NR∑
k=1

ψj(xk) p̂ (s, xk)

]
ψj(xm) (m = 1, . . . , NR) (5.40)

By multiplying each equation of the system (5.40) by ψj(xm) and making the sum yields

NR∑
m=1

ψj(xm) p̂ (s, xm) =
C1(s)

∑NR
m=1 ψ

2
j (xm)

1 +C2(s)
∑NR

m=1 ψ
2
j (xm)

(5.41)

The substitution of Eq. (5.41) into Eq. (5.38) gives finally

p̂ (s, x) � −2 υj s p̂0(s, x)

(s2 − 2 υj s+ ω2
j ) +

s ρE c
2
E An

∑NR
m=1 ψ

2
j (xm)

VE Λj Zn(s)

(5.42)
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where

p̂0(s, x) = − 1
2 υj

ψj(x)
γE − 1
VE Λj

∫
VE

Q̂N (s, x)ψj(x) dV (5.43)

In the following we assume Q̂N as frequency independent (“white noise” case), i.e. p̂0 = p̂0(x).
To express the resonator impedance Zn, we write Eq. (5.5) in the form

Zn (s) =
ρR c 2

RAn
s ω2

res VR

(
s2 +

ωres
qR

s+ ω2
res

)
(5.44)

where the suffix R refers to resonator conditions, VR is the resonator volume and qR the resonator
quality-factor defined as

qR = ωres ρRL
′
n/Rn = ρR c

2
RAn/ωresVRRn (5.45)

with Rn supposed to be independent of frequency.
Next, we introduce the quality-factor of the enclosure without resonators qE = ωj/Δωj where Δωj is
defined so that at ωj ± Δωj/2 the pressure amplitude in case of stable system (υj < 0) is 1/

√
2 times

the peak amplitude at ωj . Eq. (5.38) written for Zn = ∞ reads as∣∣∣∣∣ 2 i υj (ωj ± Δωj/2)
(ωj ± Δωj/2)2 + 2 i υj (ωj ± Δωj/2)− ω2

j

∣∣∣∣∣ = 1√
2

(5.46)

that may be solved for Δωj using Eq. (5.39). It yields Δωj � −2 υj and thus

qE � − ωj
2 υj

(5.47)

where qE > 0 for stable systems and qE < 0 for unstable systems. In the following we assume that the
modal damping coefficient ξj of the enclosure with dampers may be approximated by the value of ξj
computed without dampers.
By using Eqs. (5.44), (5.45) and (5.47) into Eq. (5.42) and noting that

ρE c2E = γE pE ≈ ρR c2R = γR pR (5.48)

one obtains finally
p̂

p̂0
(s) � s ωj/qE

(s2 + s ωj/qE + ω2
j ) +

s2 ε2 ω2
res

s2 + s ωres/qR + ω2
res

(5.49)

where we have introduced the nondimensional parameter

ε =

√
VR
∑NR

m=1 ψ
2
j (xm)

VE Λj
(5.50)

In an initially stable systems qE > 0 and p̂0(x) represents the pressure at s = iω = iωj in the enclosure
without resonators. In this case Eq. (5.49) writes at ω = ωj as[

p̂

p̂0

]
ω=ωj

=

[
1 − i ε2

(ω2
j/ω

2
res − 1)/qE − iωj/(ωres qE qR)

]−1

(5.51)

Eq. (5.51) shows that the neck mouths may act as “pseudo-sources” performing sound cancelation on
the acoustic field produced by sound sources inside the enclosure. When 1/qR → 0 (slightly damped
resonator) thus | p̂/ p̂0|ω=ωj is minimized provided that ωres = ωj (“well tuned” resonators).
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Figure 5.32: Stability plot for ωres = ωj .

5.3.1 Unstable systems

In unstable systems, the main goal of the dampers is to suppress the instability. Well tuned resonators
may make the system stable if the poles of the characteristic equation

(s2 + s ωj/qE + ω2
j ) (s2 + s ωj/qR + ω2

j ) + s2 ε2 ω2
j = 0 (5.52)

have a negative real part. By substituting s = iω into Eq. (5.52) and setting to zero both the real
and imaginary part, one obtains the (necessary) stability border conditions 1/(εqR) = −1/(εqE) and
1/(εqR) = −[1/(εqE)]−1. When computing the stability plot (see Fig. 5.32), one finds that the stability
condition is given by

− 1
ε qE

<
1
ε qR

< − 1
1/(ε qE)

(qE < 0) (5.53)

5.3.2 Pressure amplitude minimization

For a stable system (qE > 0) or for an unstable system verifying Eq. (5.53), Eq. (5.51) writes as[
p̂

p̂0

]
ω=ωres=ωj

=
1

1 + ε2 qR qE
(5.54)

Eq. (5.54) shows that the maximum pressure reduction at ω = ωj is obtained by maximizing ε and
qR, i.e. by locating large volume lightly damped resonators close to mode antinodes. Note that at
ωj the condition of maximum pressure amplitude reduction does not correspond to that of maximum
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absorption of acoustic power ε2 qRqE = 1, the application of the resonators to the enclosure having the
effect of retuning the acoustic power injected by the sources into the domain [41].
When considering frequencies close to ωj , Eq. (5.49) may be written as[

p̂

p̂0

]
ωres=ωj

=
i/εqE

( ω̃ − i/εqR)−1 − ( ω̃ − i/εqE)
(5.55)

where we have used s = iω and

ω̃ =
ω2 − ω2

j

ω ωj ε
(5.56)

Eq. (5.55) indicates that the pressure reduction is a function of the three nondimensional numbers ω̃,
1/(ε qR) and 1/(ε qE). Figs. 5.33-5.34 report respectively the H∞ and H2 norms of the pressure ratio
[ p̂/ p̂0]ωres=ωj as a function of 1/(εqR) and 1/(εqE).1 Figs. 5.33-5.34 indicate that the pressure reduction
is larger when 1/(εqE) is lower, that means the parameter ε should be always maximized. Fig. 5.35
presents the curves 1/(εqR)∞ and 1/(εqR)2 where the minimum values of the H∞ and H2 norms are
respectively achieved. In Fig. 5.35, the minimum values of the H∞ and H2 norms are also plotted as a
function of 1/(εqE). The 1/(εqR)∞ and 1/(εqR)2 curves are well interpolated by the linear fits

1/(εqR)∞ = 0.1967/(ε qE) + 1.235 (5.57)

1/(εqR)2 = 1 (5.58)

Eqs. (5.57)-(5.58) suggest that when maximizing the pressure reduction with white noise excitation,
besides ωj other frequencies may be excited. These additional frequencies are obtained by means of the
following theoretical analysis. For a stable system we can set to zero Eq. (5.52) where damping terms
are neglected. It yields

ω̃2 = 1 ⇐⇒ (ω2 − ω2
j )

2 = ω2 ω2
j ε

2 (5.59)

that has the real solutions

ω± = ωj

(√
ε2

4
+ 1± ε

2

)
(5.60)

In general one has 0 < ψ2
j/Λj < 1, VE = O(λj) and from model assumptions VR � λj with λj = 2π c/ωj .

Therefore ε� 1 and Eq. (5.60) may be approximated by

ω± � ωj

(
1 ± ε

2

)
(5.61)

The resonance frequencies ω± replace the resonance frequency ωj of the enclosure without resonators,
ω± being symmetrically located with respect to ωj (when considering the acoustic damping thus the
frequencies of maximum modal response are slightly shifted with respect to ω±). The pressure reduction
at ω+ and ω− computed using Eqs. (5.55) and (5.59) is given by∣∣∣∣ p̂p̂0

∣∣∣∣2ωres=ωj
ω=ω±

=
∣∣∣∣ 1 ± i ε qR
1 ± i ε (qR + qE)

∣∣∣∣2 =
1 + ε2 q2R

1 + ε2(qR + qE)2
(5.62)

1|| p̂/ p̂0||∞ = max{|( p̂/ p̂0)|} for ω̃ ∈ [−∞,∞] and || p̂/ p̂0||2 =
√

1/2π
∫∞
−∞ |( p̂/ p̂0)|2d ω̃.
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Figure 5.33: H∞-norm of pressure ratio [ p̂/ p̂0]ωres=ωj .

Figure 5.34: H2-norm of pressure ratio [ p̂/ p̂0]ωres=ωj .
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Figure 5.35: Points in the plane 1/(εqE) − 1/(εqR) where the H∞ and H2 norms of [ p̂/ p̂0]ωres=ωj are
minimum. H∞ and H2 minima given as a function of 1/(εqE).

Eq. (5.62) shows that the maximum pressure reduction is achieved at ω+ and ω− when

ε qR =

√(ε qE
2

)2
+ 1 − ε qE

2
(5.63)

In Ref. [41] a resonator design criterion was obtained by imposing the same value of | p̂/ p̂0| at ωj , ω+

and ω−. Using Eqs. (5.54) and (5.62), it reads as

ε qE =
2 (ε qR)30

1 − (ε qR)20 − (ε qR)40
(5.64)

The curve 1/(εqR)0 is also reported in Fig. 5.35. Fig. 5.36 illustrates typical frequency responses for
a fixed value of (εqE) when varying (εqR). Fig. 5.36 shows that when (εqR) > (εqR)0 two pulsation
peaks appear, whereas when (εqR) < (εqR)0 the pressure spectrum has a maximum at ω = ωj. The
maximum pressure reduction is achieved with (εqR)∞. However, a similar sound reduction is obtained
with (εqR)2 and (εqR)0. For instance, when imposing the minimization of the H2-norm (5.58) together
to the stability condition (5.53), one obtains qR = 1/ε with ε as large as possible and however > −1/qE
if qE < 0.
It is important to remark that the present theory is suitable for gas turbine combustion chambers where
the temperature inside the damper (related to the cooling flow purging the resonator) differs from the
combustion chamber temperature [see Eq. (5.48)]. In agreement with the classical resonator design rules,
the theory predicts that the maximum pressure reduction is obtained by tuning the resonator resonance
frequency to the pulsation peak frequency and by locating large volume lightly damped resonators
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Figure 5.36: Pressure ratio for 1/(εqE) = 0.2. Effect of (εqR) variation.

close to mode antinodes. For an excitation not confined to ωj, the theory shows that the maximum
suppression of acoustic amplitude is achieved when a specific value is assigned to the damper resistance.
This demonstrates the importance of predicting the damper impedance with the maximum possible
accuracy.

5.3.3 Theory validation

The validation of the acoustic theory for pressure reduction maximization has been performed on the
cylindrical resonator with inlet tube illustrated in Section 5.2.1. In order to increase the range of
variation of the neck flow velocity, the neck diameter was reduced of a factor two. Pressure spectra
were measured on the resonator flange of the impedance tube, which represented the enclosure in which
acoustic pulsations had to be suppressed. The impedance tube end on the other side of the resonator
flange was an open end. By acting on the movable piston, the resonator volume was varied in order to
tune the resonator resonance frequency to the frequency of the first axial mode of the impedance tube [87].
Furthermore, air was injected inside the resonator volume in order to tune the resonator resistance. The
quality factor of the enclosure was determined by using the impedance tube spectrum measured without
resonator. Fig. 5.37 reports pressure spectra without and with the cylindrical resonator. In the latter
case, the neck velocity was varied from 0m/s to 19m/s. In the experiments, un = 13m/s was found to
give the maximum damping || p̂/ p̂0||∞ = 0.27. According to Eq. (5.57) (H∞-norm minimization), the
minimum achievable pressure ratio was || p̂/ p̂0||∞ = 0.26 in correspondence of a neck velocity (extracted
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from the impedance model presented in Section 5.1.2) un = 11m/s. Pulsation amplitudes computed
with Eq. (5.55) for un = 11m/s have been also reported in Fig. 5.37, showing good agreement with
experiments.

Figure 5.37: Pressure spectra of impedance tube with and without dampers. Neck velocity variation.



Chapter 6

Thermoacoustic Network Approach

6.1 Network Description

In this Section we describe the ALSTOM Thermo-Acoustic 3-dimensional (TA3) network used for simu-
lating the thermoacoustic response of a heavy-duty gas turbines. In the TA3 approach, the combustion
system is lumped into several elements (e.g. air supply, burner, flame, combustor, cooling channels,
etc.). The use of the thermoacoustic network modeling has the advantage that the different network
elements may be described by different acoustic models singularly validated.
In TA3, hood and combustor are modeled by means of Finite Element Method (FEM) modal analysis
that is applied to the chamber geometries by taking as only openings on the boundary surface those
corresponding to burners and (eventually) acoustic dampers (see Fig. 6.1). Therefore both hood air
supply channels and combustor exit are assumed acoustic closed boundaries, this simplification being
motivated by the large area jump between air supply channels and hood and by the large flow Mach
number at the combustor exit. The FEM description of hood and combustor accounts for the geometrical
complexity of the two elements, the physics being described by the wave equation without mean flow
effects. By assuming acoustic wavelengths much larger than burner and damper dimensions, the acoustic
pressure p̂j and normal acoustic velocity ûj are assumed uniform over the opening area Aj centered at
the average opening location xj . The acoustic unknowns p̂j and ûj are expressed by making use of
Green functions and modal expansion according to Eq. (2.201). It reads as

p̂j = i ω ρ c2
K∑
k=0

G( xj , xk)Ak ûk , j = 1 , . . . , K (6.1)

where the Green function G(xj, xk) of the Multiple Input-Multiple Output (MIMO) system is defined
as

G( xj , xk) =
N∑
n=0

ψn(xj)ψn(xk)
V Λn (ω2 − 2 i ξnωn ω − ω2

n)
(6.2)

(note that in our notation, the acoustic velocity is defined as positive when its direction points outside
the volume). Eqs. (6.1) relate the K velocities to the K pressures at volume openings without including
mean flow effects, being such effects considered negligible because of the small flow Mach number. The

119
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Figure 6.1: Thermoacoustic network elements.

eigenfunctions ψn and eigenfrequencies ωn are the solutions of the problem (2.194)-(2.195) and are
obtained numerically by applying FEM [73] (as a solution of a real problem, both eigenfunctions and
eigenfrequencies are real functions). An example of FEM model is shown in Fig. 6.2 for an ALSTOM
GT11N2 combustion system. Fig. 6.2 also reports a computed acoustic mode corresponding to an engine
pulsation peak (see next Section). Eq. (6.1) yields the exact solution for N = ∞. However, a limited
number of modes (depending on the frequency range of interest) is generally sufficient to represent the
network element.

Under the assumption of geometrical extent small compared to acoustic wavelengths, plane wave propa-
gation is usually considered in burners, flames and resonators (this “compactness” assumption restricts
the application of the network approach to the low-frequency regime). Compact burners, flames and
dampers are treated as two-ports elements, where acoustic pressure and acoustic velocity upstream and
downstream the element are coupled linearly via a four-element transfer matrix. In particular, burners
are acoustically modeled by including them within the hood FEM geometry (see Fig. 6.2). Moreover,
following the analysis performed in Section 3.3, the end-correction effect and the losses due to the mean
flow are also modeled by applying the L − ζ model (3.33)-(3.34) between hood openings and flames.
In Eq. (3.34), the pressure loss coefficient obtained by fitting impedance tube measurements (see Sec-
tion 3.3) is also employed in engine simulations (in general, in the range of variation of the burner
velocity no significant ζ variations are observed). On the contrary, the end-correction � is a function of
the combustor geometry and thus the value measured in the impedance tube can not directly employed
in engine simulations. To obtain the burner end-correction for the engine geometry, a method based on
the FEM analysis of the “cold” (i.e. without flame) combustion system is proposed. In our approach,
FEM and TA3 simulations of the cold combustion system model including hood, burners and combustor
are performed. Then, the burner end-correction of the TA3 model is tuned to obtain the same eigen-
frequencies of the FEM model. An example of this end-correction calibration is illustrated in Fig. 6.3.
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Figure 6.2: FEM model (left) and example of acoustic mode (right) of the combustion system.

The end-correction calibration does not account for flow effects, in agreement with the small sensitivity
shown by impedance tube measurements with respect to burner speed.
The amplifier behavior of the flame makes it an “active” acoustic two-port. We have seen that the flame
dynamics depends on the several physical mechanisms affecting the heat release process (fuel injection,
mixing, convective and diffusive transport, flame stabilization, chemical kinetics). All these effects
may be implicitly included when modeling the flame as a gas dynamic discontinuity by means of its
transfer function, which represents the crucial element to perform accurate thermoacoustic simulations.
Therefore, in our network approach we employ flame transfer functions and source terms measured in
the atmospheric combustion test rig described in Section 4.5.
The thermoacoustic network is also able to model Helmholtz dampers eventually applied to the com-
bustion chamber. In this case, the damper impedance (5.5) is used to express the link between p̂j and
ûj at the combustor openings connected to resonators.
In the TA3 network, all the network element models are formulated in the frequency domain and
assembled together in the MATLAB environment [88]. In the frequency domain formulation, the stability
analysis of the combustion system is performed by computing the eigenvalues of the resulting linear
system [76]. The real part of eigenvalues gives the frequency of pulsation peaks. The growth rate (i.e.
the eigenvalue imaginary part) determines the stability of the system. A the time domain solution may
be also obtained from TA3 when nonlinearities are included in order to limit the amplitude growth when
the system is unstable. Then, pulsation spectra may be computed by post-processing the time domain
solution. For instance, the time domain representation of Eq. (6.1) corresponds to K second order
differential equations relating 2K unknowns. Noting that a differential equation of any order can be
represented as a system of first order differential equations and that all the terms of the Green function
(6.2) have the same poles ωn, Eq. (6.1) can be expressed in the time domain by a state-space formulation
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Figure 6.3: Comparison of combustion system eigenfrequencies: FEM vs. network results.

consisting of 2N +K first order differential equations in 2N + 2K unknowns. It reads as [76]

∂y
∂t

= Ay + Bu′ , (6.3)

p′ = Cy + Du′ , (6.4)

where

y = [y1 , . . . , y2N ]T , p′ =
[
p′1 , . . . , p

′
K

]T
, u′ =

[
u′1 , . . . , u

′
K

]T
, (6.5)

and

A =

⎡⎢⎢⎢⎢⎢⎢⎣
0 −ωn
ωn −2ξnωn

. . .
0 −ωn
ωn −2ξnωn

⎤⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎣
0 . . . 0

−ψ1(x1)A1 . . . −ψ1(xK)AK
...

0 . . . 0
−ψN (x1)A1 . . . −ψN(xK)AK

⎤⎥⎥⎥⎥⎥⎥⎦
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C =
ρc2

V

⎡⎢⎢⎢⎢⎣
0

ψ1(x1)
Λ1

0
ψN(x1)

ΛN
...

... · · · ...
...

0
ψ1(xK)

Λ1
0

ψN (xK)
ΛN

⎤⎥⎥⎥⎥⎦
D = 0

The state-space representation is also used to model burners, flames and resonators. In particular, the
flame model contains a time delay term and is of infinite order in time domain. In order to avoid systems
of infinite order, the time delay is approximated by means of the Padé approximation (3.78). The entire
system can now be modeled by interconnecting all the outputs of the subsystems to the inputs of their
“neighbors” (see Fig. 6.1). Special care is taken to ensure that the system is causal and stable. The
source terms in the flame module provides the external excitation. Unbounded amplitude growth in
time is avoided by non-linear fuel saturation, that is introduced by applying the saturation function H
to the velocity fluctuation u ′

1 occurring at the upstream flame front side [see Eq. (3.74)]. The function
H is defined as [14], [17]

H { u ′
1(t) } =

⎧⎨⎩ u ′
1(t) if | u ′

1(t)| < u ′
lim

sign[ u ′
1(t)] u

′
lim if | u ′

1(t)| > u ′
lim

(6.6)

where the saturation parameter u ′
lim is fitted to engine spectra. The computational time for a single

spectrum simulation is in MATLAB of the order of minutes.

6.2 ALSTOM GT11N2 Gas Turbine Simulation

In this Section we present the application of the TA3 network to the thermoacoustic simulation of an
ALSTOM GT11N2 heavy-duty gas turbine (see Fig. 6.4). The combustion chamber is a silo combustor
(see also Fig. 6.2), on the top of which both EV burners (see Section 3.3.3) and Helmholtz resonators
are mounted. A hood and a combustor mode of the engine are shown in Fig. 6.5. The TA3 GT11N2
model has been used to simulate baseload conditions. Both engine and TA3 spectra reported in Fig. 6.6
were obtained without employing any resonator tuned at the pulsation peak frequency. The atmospheric
flame transfer function was employed without any pressure scaling, assuming the natural gas chemical
kinetics independent of pressure. After having calibrated the model, different engine operating conditions
could be successfully simulated without any variation of the calibration parameters. This shows as the
experimental-numerical combined process behind the TA3 network is able to provide very fast and
accurate engine spectrum computation.
Fig. 6.7 presents TA3 and engine spectra for an engine configuration with seven resonators tuned to the
pulsation peak frequency. Fig. 6.7 demonstrates the correct prediction of the effects of acoustic dampers
applied to gas turbine combustors. The pulsation amplitude reduction with resonators is about 50%,
showing the effectiveness of using Helmholtz resonators for gas turbine acoustic damping.
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Figure 6.4: GT11N2 ALSTOM gas turbine.

Figure 6.5: Example of combustor mode (left) and hood mode (right).
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Figure 6.6: GT11N2 spectrum without resonators at peak frequency: engine vs. TA3 network.

Figure 6.7: GT11N2 spectrum with resonators at peak frequency: engine vs. TA3 network.



6.3 ALSTOM LEV Burner Design

The thermoacoustic approach based on a combination of numerical analysis (CFD and three-dimensional
acoustics), acoustic network models and dedicated measurements of acoustic flame response is well
accepted across the industry. However, its application to specific combustor upgrade or development
programs in “prediction mode” as opposed to “analysis mode” remains a challenge. This is mainly due
to the large sensitivity of the complex methodology to key inputs, such as flame transfer functions, which
can be only predicted in the burner design phase. In the present Section we discuss an example where
an effort was made to apply the thermoacoustic approach in predictive mode. The example refers to
the retrofit upgrade of a first generation diffusion burner with a partially premix burner to achieve low
emissions. A particular challenge of this development program was that no test rig was available.

In the ALSTOM Single Diffusion Burner (SDB) shown in Fig. 6.8, reactions start in a zone of stoichio-
metric air fuel mixture thus ensuring good flame stability. The mixing achieved by injecting dilution
air after the reaction zone reduces the temperature to the turbine inlet limit. However, the high tem-
peratures in the reaction zone give NOx dry emissions close to 200vppm in gas operation (reduced to
25 − 42vppm with H2O-injection). In order to reduce burner emissions, a single burner retrofit project
was launched in ALSTOM. The approach was to transfer the EV burner concept (see Section 3.3.3)
into a single burner configuration with moderate changes of combustor hardware. The goal of the single
burner retrofit project was to develop a premix flame diffusion stabilized burner (LEV Single Burner)
able to achieve NOx dry emissions lower than 80vppm (25− 42vppm with reduced H2O-injection with
respect to SDB). Neither water tunnel nor combustion rig experiments were performed because of the
large burner size. On the contrary, Computational Fluid Dynamic (CFD) tools were extensively used to
optimize the burner flow, combustor flow and gas hole pattern (including backflow margin of premix gas).
The CFD simulations were performed with the commercial software Fluent using finite rate and eddy

Figure 6.8: Single Diffusion Burner.
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dissipation model with parameters optimized by means of genetic algorithms [89]. The resulting LEV
burner is illustrated in Fig. 6.9. An EV-like conical swirl generator replaced the original outer swirler.
The gas fuel was premixed with the combustion air along eight air inlet slots. The SDB gas injection
lance was kept to generate a pilot diffusion flame used to stabilize the premix flame (see Fig. 6.10).
Concerning the fuel distribution system, the existing gas pipe single branch was replaced by two split
pipe branches (pilot and premix) equipped with control valves.
In parallel with the CFD study, the thermoacoustic analysis of a real silo combustion chamber type of
engine in the field equipped with LEV burner was performed using the TA3 network shown in Fig. 6.11.
Since burner tests were not available, the thermoacoustic analysis was performed by modeling the acous-
tic flame response by means of pulsation data of engines equipped with the existing diffusion burner,
CFD and data from thermoacoustic modeling of other engines. The SDB and LEV hood models used for
the FEM modal analysis are presented in Fig. 6.12. The three-dimensional speed of sound distribution
obtained from CFD was used in computing hood and combustor acoustic modes. Two modes obtained
from the FEM models of SDB and LEV combustors are shown in Fig. 6.13. In Fig. 6.13, the modal
frequencies are normalized with the reference frequency corresponding to the LEV pulsation peak (see
next Section). The burner pressure loss coefficient of the L − ζ model was obtained from steady CFD
simulations.
In order to validate the thermoacoustic model, TA3 simulations of an existing engine equipped with
SDB burner were performed. The analysis of the SDB pulsation data showed a resonance behavior, i.e.
pulsation peaks mainly excited by combustion noise. Therefore, in the thermoacoustic analysis of the
SDB combustor, no flame transfer matrix was applied (i.e. Q̂A,I/QA = 0). The combustion noise source
term was approximated with the source term measured in an EV burner under conditions close to the
SDB operating point. Fig. 6.14 shows the capability of the model to predict the resonance peaks of the
engine in the low-frequency region of interest. Note that the TA3 spectra were computed immediately
downstream of the flame front, whereas the engine pulsation probe was located in the middle of the
combustion chamber. For higher frequencies this could have been a cause of disagreement between
computed and measured pulsation amplitudes, because acoustic modes become less uniform in space
with increasing frequency.
EV flame transfer matrix measurements have been successfully approximated by using the only fuel
concentration contribution (4.32) to heat release fluctuations [90]. Therefore, in the thermoacoustic LEV
model we used Eq. (4.32) to represent the total heat release fluctuation term [i.e. Q̂A,I/QA � ( Q̂/Q)Y ].
In particular, the time-lag average value τY and its variance σY were computed from steady CFD results
using the approach described in Ref. [91]. Pulsation spectra were calculated by varying the fuel saturation
parameter u ′

lim of Eq. (6.6) between a minimum and maximum value. The choice of the minimum and
maximum values of u ′

lim was made according the experience acquired from thermoacoustic simulations
of EV burners installed on different ALSTOM heavy-duty engines.
Fig. 6.15 presents pulsation spectra predicted in the LEV combustor using both the minimum and
maximum saturation values. In the first LEV analysis, the pilot lance axial position L (see Fig. 6.10)
was kept equal to the fuel lance position L1 of the SDB. For the case L = L1, Fig. 6.15 shows that the
pulsation peak was largely affected by the saturation value (lower pulsation amplitudes were obtained
when further limiting the magnitude of heat release fluctuations using a smaller saturation). This
indicates that such a pulsation peak was generated by a combustion instability that was then identified as



128 CHAPTER 6. THERMOACOUSTIC NETWORK APPROACH

Figure 6.9: LEV single burner.

Figure 6.10: LEV burner concept.
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Figure 6.11: Thermoacoustic network.

a limiting factor for combustor operation. In order to suppress pulsation amplitudes, the thermoacoustic
effect related to a different axial position of the fuel lance was investigated. In fact, an axial shift of the
lance modifies the burner flow and then the position of the vortex breakdown, the flame front location
and finally the time-lag. Therefore, a CFD steady analysis was performed using a lance position L2 > L1.
The analysis gave a lower time-lag, in agreement with a more flat flame front (this effect being stronger
than the time-lag increase related to the downstream displacement of the vortex breakdown bubble).
The thermoacoustic simulation corresponding to the axial lance position L2 is also reported in Fig. 6.15,
showing the suppression of the pulsation peak of the case L1 and the excitation of a pulsation peak
at a larger frequency. Thus, simulations were performed for lance positions between L1 and L2 by
interpolating linearly both time-lag average and variance. An optimum lance position Lopt was found
corresponding to minimum pressure amplitudes. The spectrum for the case Lopt is also reported in

Figure 6.12: FEM models of engine hood with SDB and LEV burner.
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Figure 6.13: Acoustic modes of SDB and LEV combustor.

Fig. 6.15 (note that for this lance position the saturation value does not affect the amplitude, i.e. the
system is stable). Hence, based on the input from the thermoacoustic analysis, the first LEV burner was
designed with the capability of shifting the lance position between L1 and Lopt. Moreover, a pulsation
probe in the LEV combustor was located close to flame front, where the thermoacoustic analysis predicted
a maximum of the acoustic modes excited in the pulsation spectra.

Fig. 6.16 shows two spectra measured in a silo combustion chamber of a field engine equipped with a
LEV burner. First, tests with the L1 lance position were performed. These tests confirmed the pulsation

Figure 6.14: Pressure pulsations in SDB combustor: engine measurements vs. TA3 network simulations.



problem predicted by TA3 for the case L1. However, as predicted by our thermoacoustic analysis, when
the lance was shifted to the Lopt position then thermoacoustic pulsations were no longer a limiting factor
for combustor operation. For the two cases L = L1 and L = Lopt, emissions at baseload without water
injection were very similar and fulfilled the project target (see Fig. 6.17).
The engine spectrum for the case L1 of Fig. 6.16 was also used to calibrate the value of the heat release
saturation. The TA3 results obtained with the calibrated saturation value for the cases L1 and Lopt are
reported in Fig. 6.18. Fig. 6.18 shows that the prediction of the low-frequency peak is very accurate,
whereas the simulated amplitude of the second peak is overestimated for the L1 case and underestimated
for the Lopt case. However, simulations show that the first peak is unstable (the amplitude being mainly
determined by the flame transfer function) whereas the second peak is stable, i.e. its amplitude is mainly
related to the combustion noise term that generates resonance at that frequency. Therefore, the use of
the same EV combustion noise source term for all the LEV simulations is probably responsible for the
inaccurate pulsation trend of the second peak.
The above results show that the presented burner design engineering methodology has been able to
provide good coincidence between predictions and actual field behavior. The predicted combustion
instability represented a real limiting factor for combustor operation and engine tests fully confirmed the
validity of the suggested pulsation mitigation strategy based on the thermoacoustic combustor tuning,
that was achieved by varying the axial position of the pilot fuel lance.
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Figure 6.15: Pressure pulsations in LEV combustor: TA3 network simulations with minimum and
maximum heat release saturation for the three axial lance positions L1, L2 and Lopt (L1 < Lopt < L2).
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Figure 6.16: Pressure pulsations in LEV combustor: engine tests for axial lance positions L1 and Lopt.

Figure 6.17: NOx emissions from engine tests (no water injection): SDB vs. LEV with axial lance
position Lopt.
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Figure 6.18: Pressure pulsations in LEV combustor: TA3 network simulations for axial lance positions
L1 and Lopt.
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[89] Polifke, W., Geng, W., and Döbbeling, K., “Optimization of Rate Coefficients for Simplified Reac-
tion Mechanisms with Genetic Algorithms,” Combustion and Flame, Vol. 113, 1998, pp. 119–134.

[90] Bellucci, V., Schuermans, B., Paschereit, C. O., and Flohr, P., “Thermoacoustic Simulation of Lean
Premixed Flames Using an Enhanced Time-Lag Model,” 31st AIAA Fluid Dynamics Conference
and Exhibit , No. AIAA 2001-2794, Anaheim, CA, Jun 11-14 2001.

[91] Flohr, P., Paschereit, C. O., and Bellucci, V., “Steady CFD Analysis for Gas Turbine Burner
Transfer Functions,” 41st Aerospace Sciences Meeting and Exhibit , No. AIAA 2003-1346, Reno,
NV, Jan 6-9 2003.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


