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ABSTRACT In this study, we investigate the problem of cooperative kinematic control for multiple
redundant manipulators under partially known information using recurrent neural network (RNN). The
communication among manipulators is modeled as a graph topology network with the information
exchange that only occurs at the neighbouring robot nodes. Under partially known information, four
objectives are simultaneously achieved, i.e, global cooperation and synchronization among manipulators,
joint physical limits compliance, neighbor-to-neighbor communication among robots, and optimality of
cost function. We develop a velocity observer for each individual manipulator to help them to obtain the
desired motion velocity information. Moreover, a negative feedback term is introduced with a higher
tracking precision. Minimizing the joint velocity norm as cost function, the considered cooperative
kinematic control is built as a quadratic programming (QP) optimization problem integrating with both
joint angle and joint speed limitations, and is solved online by constructing a dynamic RNN. Moreover,
global convergence of the developed velocity observer, RNN controller and cooperative tracking error are
theoretically derived. Finally, under a fixed and variable communication topology, respectively, application
in using a group of iiwa R800 redundant manipulators to transport a payload and comparison with the
existing method are conducted, illustrating effectiveness and superiority of the designed controller.

INDEX TERMS Velocity observer, Multiple redundant manipulators, Recurrent neural network, Motion
planning, Zeroing neural network.

I. INTRODUCTION

The investigation on kinematic control of the redundant
robot manipulator has continued for decades. Redundant
manipulators refer to a class of serial manipulators whose
degree of freedom (DOF) is more than ones needed to
accomplish the desired task. Compared to the non-redundant
manipulators, the redundant one is possible to perform both
primary and secondary tasks simultaneously [1] because of
the existence of redundancy, with extra system flexibility,
reliability and versatility. Redundant manipulators are usu-
ally designed as a series of links connected by motor-driven

joints which extend from a fixed base to an end-effector
[2]. Until now, researches on redundant manipulators have
made great progress, including [3]–[15], and have achieved
the extension from single manipulator to a collection of
redundant manipulators such as [8]–[15], just name a few.

Benefit from the information interaction between mul-
tiple robots, multiple robot manipulators systems show a
powerful performance in complicated or dangerous tasks
such as the disaster relief and recovery task [16], [17],
welding automation [18], [19], etc, with performance eval-
uation metrics being the system reliability, flexibility, wider
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application, and the task total accomplish time or energy
consumption, etc, and having lower cost [20]. However,
extending single manipulator to multiple scene, on one hand,
the increased structure complexity and heavy computation
load impose more demands on real-time processing of robot
system. On the other hand, how to design an efficient
cooperative strategy for manipulators is also one of the
major challenges that have to be thought over.

With the further research of the researchers using neural
network to control the redundant manipulator, recurrent
neural network (RNN) has shown a compelling advantage
in real-time processing, and has been successfully imple-
mented to the cooperative control of multiple robots. In
[21], a RNN-based neural controller was developed for
avoiding the joint drift phenomenon, achieving synchronous
control of dual robot manipulators. Note that, the problem
was considered at joint-acceleration level. However, in this
paper, communication topology type between manipulators
was not explicitly mentioned. In [12], a special RNN called
the zeroing neural network was used to the cooperative
control of multiple robot arms only communicated with own
neighbors. In [8], a dual RNN with independent modules
was employed to the cooperative control of a group of
manipulators. The designed neural network consisted of
modules controlling a single manipulator separately. How-
ever, in this paper, centralized topology was considered, this
is to say, all robots need to access the command signal.
In [9], the control law proposed in [8] was redesigned,
hierarchical topology structure was considered. In [11], the
problem was investigated again from the perspective of
game-theory based on the RNN, alleviating the weakness
of these methods proposed in [8], [9], [21].

In this study, we consider the problem of cooperative
kinematic control of multiple redundant robot manipulators
under partially known information. A RNN-based neural
dynamic method is proposed. The communication among
manipulators is modeled as a graph topology network with
the information exchange that only occurs at the neigh-
bouring robot manipulator nodes. Only partial manipulators
have opportunity to access the command signal about the
desired motion velocity, therefor global topology informa-
tion is not known to all robots. We develop a velocity
observer for each individual manipulator to help it to obtain
the desired motion velocity relying on local information
obtained from itself and own neighboring manipulators.
Minimizing the joint velocity norm as the cost function,
from perspective of optimization, the considered cooperative
problem is built as a time-varying quadratic programming
(QP) problem integrating with both joint angle and joint
speed limitations. In pursuit of higher tracking precision,
a extra negative feedback term is introduced. To solve it,
then a RNN is designed with global stability. Based on
the designed controller, four objectives are simultaneously
achieved, i.e, global cooperation and synchronization among
manipulators, joint physical limits compliance, neighbor-to-
neighbor communication among robots, and optimality of

cost function.
The ensuing part of this paper is arranged around fol-

lowing aspects: Model description of multi-robot system
and kinematic description of redundant manipulator are
introduced in Section II to lay a basis. The cooperative
payload transport task using multiple manipulators and
control objective are also described in this part. In next
chapter, a velocity observer is developed, the considered
cooperative task of multiple redundant manipulators is built
as a constrained QP problem, then a RNN is designed to
solve it. We theoretically derives the global convergence
of the velocity observer, the RNN controller in Section
IV. It is guaranteed that the tracking error can convergent
to zero. Simulative experiments are conducted in Section
V, under a fixed and variable communication topology,
respectively, application in using several manipulators to
transport a payload illustrates effectiveness of the designed
controller and correctness of theoretical analyses. Moreover,
the comparison with the method mentioned in [11] reveals
the superiority of our method. Finally, Section VI summa-
rize the research.

The main contributions of this paper are summarized as
follows:

1) Under partially known information, a RNN-based neu-
ral dynamic method is proposed for the cooperative
kinematic control problem of multiple redundant robot
manipulators. From the perspective of optimization,
this problem is built as a time-varying QP problem
integrating both joint angles and joint speed limitations.
Then, a dynamic RNN controller with global stability
is designed to solve it.

2) Different from the existing works, due to only partial
manipulator nodes can access the command signal,
a velocity observer is developed for each individual
manipulator to help robots to obtain the desired motion
velocity information.

3) The global convergence of the developed velocity
observer, RNN controller are theoretically derived. It
is guaranteed that the tracking error can convergent
to zero. Under a fixed and variable communication
topology, respectively, application in using several ma-
nipulators to transport a payload illustrates feasibility
of the designed controller and correctness of theoretical
analyses. Moreover, the comparison with the method
mentioned in [11] is also conducted, revealing the
superiority of our method.

II. PRELIMINARY
A. MODEL DESCRIPTION OF MULTI-ROBOT SYSTEM
Following [22]–[27], communications between N robots
manipulators is modeled as a graph topology G = (V,E,A)
where the nodes set V = {1, 2, · · · , i, · · · , N} denotes
a group of manipulators, and node i are the i-th robot
manipulator. Communication link between two manipulators
is denoted by an edge in the graph, E ⊆ V ×V . An edge in
G is denoted by an unordered pair (i, j), i, j ∈ {1, · · · , N}.
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If manipulator i can communicate with manipulator j, then
(i, j) ∈ E. A = [aij ] ∈ RN×N is an adjacency matrix
whose elements aij are nonnegative, with

aij =

{
1, (i, j) ∈ E,
0, otherwise.

(1)

The neighbor set of manipulator i, i.e., the manipulators that
can directly communicate with i, is defined as N (i) = {j ∈
V |(i, j) ∈ E}. The Laplacian matrix of a graph is defined
as L ∈ RN×N = D −A, with

Dij =

{
deg(i), i = j,

0, otherwise,
(2)

where deg(i) denotes the degree of node i, or say the
neighbor number of i.

Inspired by [22]–[25], the command signal is viewed as a
virtual manipulator node. To show the communication state
between the i-th manipulator with the command signal, a
diagonal matrix B = diag{b1, b2, · · · , bn} ∈ RN×N is
introduced, where bi = 1, i = 1, · · · , N if and only if
the manipulator i can receive the command signal infor-
mation, otherwise, bi = 0. For simplifier the subsequent
controller design and theoretical analyses, a assistant matrix
H ∈ RN×N , H = L+ B is defined.

B. KINEMATICS DESCRIPTION OF REDUNDANT
MANIPULATOR
As described in [7], [10], [12], [14], etc, the cartesian
coordinate of end-effector of a manipulator is only related
to its configuration in joint space. That is to say,

r(t) = f(θ(t)), (3)

where r(t) ∈ Rn and θ(t) ∈ Rm denote the coordinate
of the end-effector of a manipulator in Cartesian space
and joint space at time t, respectively, and m > n.
f(·) is a nonlinear function denoting the mapping relation
between cartesian space and joint space. Calculating the
time-derivative of both sides of Eq. (3), we can obtain the
kinematic mapping between ṙ(t) and θ̇(t) in velocity level:

ṙ(t) = J(θ(t))θ̇(t), (4)

where J(θ(t)) = ∂f(θ(t))/∂θ(t) ∈ Rm×n is Jacobian
matrix. ṙ(t) and θ̇(t) are velocity of the end-effector of a
manipulator in cartesian and joint space, respectively.

Owing to nonlinear and redundancy of f(·), it is not easy
to obtain θ(t) for the known r(t) → rd(t). In contrast, the
mapping from joint to Cartesian space at velocity level (4)
significantly simplifier the kinematic problem.

C. COOPERATIVE PAYLOAD TRANSPORT FOR
MULTIPLE ROBOTS
Consider such a problem same as [11] that a collection
of redundant manipulators are assigned to cooperatively
transport a payload along a desired trajectory. Assume that

the end effector of each manipulator uniformly holds a
different place on the payload. For solving, this task should
be considered from two aspects:

1) Center point of the payload is chosen as the reference
point, which is required to track the desired trajectory.

2) All end-effectors of manipulators should maintain the
original formulation in workspace. Due to the relative
movement between manipulators, the resulted stretch
and squeeze of the payload is required to avoid.

Therefore, to satisfy the above requirement, the movement
velocity of all manipulators should be set to be same as
that of the reference point. By assigning a same tracking
velocity, vd(t), along the desired trajectory, to the reference
point and all manipulators, we obtain the following equation

Ji(θi(t))θ̇i(t) = vd(t), i = 1, 2, · · · , N (5)

where vd(t) ∈ Rn denotes the desired velocity of the
reference point at time t. θi(t) ∈ Rm and θ̇i(t) ∈ Rm

are the coordinate and velocity of the i-th manipulator in
joint space, respectively. Ji(θi(t)) are the Jacobian matrix
corresponding to the i-th manipulator. To avoid confusion
and easy to read, Eq. (5) is abbreviated as:

Jiθ̇i = vd, i = 1, 2, · · · , N (6)

in which Ji, θi, θ̇i, and vd are short for Ji(θi(t)), θi(t),
θ̇i(t), vd(t), respectively.

D. CONTROL OBJECTIVE

In this study, we investigate the cooperative control for mul-
tiple redundant manipulators, where the desired movement
is only known to part of robots. The control objective can
be summarised as below:

Define the lower and upper bounds the joint angles θi
and velocities θ̇i of the i-th manipulator as θ−i , θ+

i , θ̇−i ,
θ̇+
i , respectively, and the displacement of each robot to

its initial time as ri(t) − ri(0), i = 1, ...N . The control
objective is to design joint velocity commands for robots
under partially known information, to complish the same
task together without relative displacement, that is to say, to
ensure r1(t)−r1(0) = · · · = rN (t)−rN (0) = rd(t)−rd(0),
and optimize specific performance to make full use of the
redundant DOFs.

III. MAIN STEPS
In this part, we will show the main steps of the proposed
control scheme. Firstly, in order to handle the high precision
tracking under limited information, a outer-loop controller
in cartesian space is built, in which an observer is introduced
based on local information. Secondly, a dynamic neural
network based solver is designed to obtain control command
in joint space, where the physical constraints as well as
performance optimization is ensured.
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A. VELOCITY OBSERVER DESIGN
As above mentioned, a distributed architecture among mul-
tiple manipulators is formed owing to the information ex-
change only occurs at the neighboring manipulators and
partial manipulators have opportunity to have accessible to
the desired reference velocity. This means that the commu-
nication range is limited for each manipulator, the state up-
dation of a manipulator relies on itself state and information
obtained from own neighbors. Therefore, a velocity observer
v̂i is designed for i-th manipulator to help it to obtain a
observation of the desired velocity vd by decoupling the
unified multiple manipulators cooperative kinematic control
problem as ones on individual robot manipulator in velocity
level, as follows:

˙̂vi(t) = −(k1 + 1)v̂i(t)−
∫ t

0

(k2

N∑
j=0

aij(v̂i(t)− v̂j(t))

+ k3sgn(
N∑
j=0

aij(v̂i(τ)− v̂j(τ)))dτ, (7)

where k1, k2, k3 > 0 are a tunable parameter, v̂i, v̂j , i, j =
1, · · · , N , stand for the observed value of the i-th ma-
nipulator and the j-th manipulator to the desired motion
velocity vd. Assume that the desired motion velocity and
its first-order, second-order derivation are derivable and
the derivations are bounded. Theoretically, the designed
observer is with global convergence, with the corresponding
proof that will be given in ensuing section.

Using the proposed observer, all robot could get access
to the desired movement. This is very important to build a
high-precision position controller. One feasible method is to
use the output of Eq. (7) as the desired instruction directly
[7], [11], in the sense that

Jiθ̇i = v̂i, i = 1, 2, · · · , N. (8)

Nevertheless, if the output of the velocity observer Eq. (7)
is directly assigned as the velocity of the end effector of the
i-th robot manipulator, the drift to tracking error will occur,
which eventually results in the relative movement between
the end effectors of all manipulators. To this, a distributed
error ei corresponding to the manipulator i is defined

ei =
N∑
j=0

aij((ri − ri(0))− (rj − rj(0))), (9)

where ri(0) and rj(0) denote the Cartesian coordinate of
the i-th and the j-th manipulator at initial time, respectively.
To achieve the kinematic cooperative control between ma-
nipulators, the velocity of the end effector is improved as
ṙi = v̂i− kei by introducing a negative feedback parameter
k > 0. In this sense, based on the robot kinematic model,
we have

Jiθ̇i = v̂i − kei. (10)

We will show in ensuing section that it can achieve the
cooperative control of multiple robot manipulators system
if the velocity of end-effector of a manipulator is designed
as the ṙi.

B. QP TYPE PROBLEM DESCRIPTION AND RNN
DESIGN

Obviously, Eq. (10) describes the condition that the robot
joint angle velocity θ̇i needs to satisfy if the end effector
is expected to move at velocity ṙi, which is also the
sufficient and necessary condition for the system tracking
error to converge to zero. Given the ṙi and Ji, solving θ̇i
is called as the inverse kinematic problem of a manipulator
in robotics. Pseudo-inverse method that for example was
investigated in [28], [29], etc, is relatively simple for such
a problem. The corresponding joint angle velocity θ̇i =
J†i (v̂i − kei) + (I − J†i Ji)α can be obtained by solving the
pseudo-inverse of J†i , where α is joint velocity component
in null-space of Jacobian. However, such a scheme usually
not take the physical constraint such as joint angle or joint
velocity into account. For a practical robot manipulator, the
joint rotatable angle is usually limited. Moveover, all joints
of a manipulator are driven by a servo motor, resulting
that the limited joint velocity. Once the joint limitation is
violated, it will lead to larger tracking error and physical
damages to the manipulator [1]. Not only that, considering
the redundant property of robot system, rank of the matrix
Ji satisfies rank(Ji) ≤ m < n, θ̇i satisfying Eq. (10) is
not unique. This requires us to choose a best one from
numerous solutions based on some certain criterion such
as minimizing the joint velocity norm or infinity norm. In
this study, with aid of the constraint-optimization idea, the
kinematic motion control problem of multiple redundant
manipulators is described as a constraint QP problem by
abstracting the physics constraints on manipulators as a set
of inequality equation, where minimizing the joint velocity
norm is chosen as the cost function. Specifically, the kine-
matic control problem of multiple redundant manipulators
can be formulated as

min
N∑
i=1

θ̇Ti θ̇i/2, (11a)

s.t. Jiθ̇i = v̂i − kei, (11b)

θ−i ≤ θi ≤ θ
+
i , (11c)

θ̇−i ≤ θ̇i ≤ θ̇
+
i . (11d)

So far, the control objective design with constraints is
completed.

Obviously, the direct solving of the equation (11) is
with remarkable difficulty resulting from the reason that
the inequality constraint Eq. (11c) and other equations are
described in different level. Therefore, based on the escape
velocity method [30], Eq. (11c) and Eq. (11d) are incorpo-
rated into velocity level by introducing a negative feedback
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parameter α > 0. Consequently, Eq. (11) is reformulated as

min
N∑
i=1

θ̇Ti θ̇i/2, (12a)

s.t. Jiθ̇i = v̂i − kei, (12b)

θ̇∗−i ≤ θ̇i ≤ θ̇∗+i , (12c)

where θ̇∗−i = max{α(θ− − θ), θ̇−}, θ̇∗+i = min{α(θ+ −
θ), θ̇+}. For Eq. (12), define a lagrange function as

L(θ̇ ∈ Ωi, λ) =
N∑
i=1

θ̇Ti θ̇i/2 + λT (v̂i − kei − Jiθ̇i), (13)

where λ ∈ Rm is the Lagrange multiplier corresponding
to Eq. (12b). Based on the KKT conditions, the optimal
solution of Eq. (12) satisfies

− ∂L
∂θ̇i
∈ NΩi(θ̇i),

∂L

∂λ
= 0. (14)

Eq. (14) can be further rewritten as

θ̇i = PΩi
(θ̇i −

∂L

∂θ̇i
), (15a)

Jiθ̇i = v̂i − kei, (15b)

where PΩi is a projection operation to a set Ωi, with a
definition of PΩi

(x) = argminy∈Ωi
||y − x|| [10].

Due to the nonlinear property of Eq. (15), the direct
solving of the equation (15) is very difficult. On one hand,
there is no general method that can directly solve Eq.
(15). On the other hand, the efficiency achieved by the
numerical algorithm is limited and lower, especially when
it is employed in a multiple robot system. Therefore, in this
part, a RNN controller is constructed to iteratively solve the
Eq. (15), as follows:

εθ̈i = −θ̇i + PΩi(−JT
i λi), (16a)

ελ̇i = v̂i − kei − Jiθ̇i, (16b)

where ε > 0 is a constant.

IV. THEORETICAL ANALYSES
In this part, convergence of the established dynamic neural
network, velocity observer and tracking error are given via
Lyapunov analysis.

A. GLOBAL CONVERGENCE OF VELOCITY OBSERVER
Before giving the corresponding proof, it is necessary to
give the following assumption and important properties:

Property 1 All of the non-zero eigenvalues of Laplace
matrix L are positive [31]. If the undirect graph G is
connected, then zero is a simple eigenvalue of L and its
eigenvector is 1n, where 1n = [1, · · · , 1] ∈ RN .

Property 2 If G is an undirect connected graph, then H is
a positive definite and symmetric matrix, i.e, λmin(H) > 0,

λmax(H) < N+1, where λmin(•) and λmax(•) is the mini-
mum and maximum eigenvalue of the matrix •, respectively
[27], [32].

Assumption 1 The desired motion velocity vd and its first-
order, second-order derivation v̇d, v̈d are derivable and the
derivations are bounded.

Theorem 1: For an undirected connected graph G , the
velocity observer (7) can achieve the exact observation about
the desired motion velocity vd, i.e, v̂i → vd when t→∞.

proof: Define an observation error:

v̄i =
N∑
j=0

aij(v̂i − v̂j). (17)

Let v̂ = [v̂T
1 , v̂

T
2 , · · · , v̂T

N ]T, v̄ = [v̄T
1 , v̄

T
2 , · · · , v̄T

N ]T,
Rewrite Eq. (7) and (17) as:

˙̂v = −(k1 + 1)v̂ −
∫ t

0

(k2v̄(τ) + k3sgn(v̄(τ)))dτ, (18)

v̄ = Hv̂ − Bvd. (19)

Combining Eq. (18) and (19), the time derivatives of v̄ is
reformulated as

˙̄v = −(k1 + 1)Hv̂−H
∫ t

0

(k2v̄(τ) + k3sgn(v̄(τ))dτ −Bv̇d.
(20)

Let Hs be an error function about v̄:

Hs = ˙̄v + v̄. (21)

In terms with Eq. (19) and (20), then the time derivatives
of Hs is

Hṡ =− (k1 + 1)H ˙̂v − k2Hv̄ − k3Hsgn(v̄)

+H ˙̂v − Bv̇d − Bv̈d
=− k1Hs− (k2H− k1)v̄ − k3Hsgn(v̄) +Hφd,

where φd = −H−1(Bv̈d + (k1 + 1)Bv̇d). Based on assump-
tion 1 and property 2, both φd and φ̇d are bounded. Let
c1, c2 > 0 be the maximum value of φd and φ̇d, we have
‖φd‖ < c1, ‖φ̇d‖ < c2.

Lemma 1: [23]. Given the parameter k2 > c1 + c2, the
polynomial p(t) defined below is non-negative:

p(t) =v̄T(0)k3sgn(v̄(0))− v̄T(0)φd(0)

−
∫ t

0

sTH(φd − k3sgn(v̄))dτ, (22)

Select a Lyapunov function candidate as

V = sTHs/2 + k2v̄
Tv̄/2 + p(t), (23)

Calculating the time derivatives of V yields

V̇ =sTHṡ+ k2v̄
T ˙̄v + ṗ(t)

=sT[−k1Hs− (k2H− k1)v̄ − k3Hsgn(v̄) +Hφd]

+ k2v̄
T(Hs− v̄)− sTH(φd − k3sgn(v̄))

=− k1s
THs+ k1s

Tv̄ − k2v̄
Tv̄ (24)
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Let ζ = [sT, v̄T]T, Eq. (25) can be reformulated as

V̇ = −ζTAζ, (25)

where A =

[
k1H −k1/2
−k1/2 k2

]
. Therefore, when k1k2H−

k1/4 > 0, i.e, k1 < 4k2λmin(H), it is guaranteed that
V̇ ≤ 0 such that s → 0 for t → ∞. Based on Property 2
and Eq. (21), we have v̄ → 0 when t→∞. In addition,

v̄ =Hv̂ − Bvd
=H(v̂ − vd) + Lvd. (26)

According to Property 1, Lvd = 0, therefore, v̄ = H(v̂ −
vd)→ 0 as t→∞. Due to H is positive-definite, therefore,
v̂−vd → 0. This means, v̂i → vd, i = 1, · · · , N , as t→∞.

B. GLOBAL CONVERGENCE OF THE RNN BASED
CONTROLLER
Before giving the corresponding proof, it is necessary to
give the following definition and lemma:

Definition 1 For a continuously differentiable function
F(•), if ∇F +∇FT is positive semi-definite, then F(•) is
monotone, where ∇F stands for the gradient of F(•).

Lemma 2 [5], [10], [33] A dynamic neural network is
said to converge to an equilibrium that is equivalent to the
optimal solution of the considered problem if and only if it
satisfies

κẋ = −x + PS(x− %F(x)), (27)

where κ > 0 and % > 0 are constant parameters, and PS =
argminy∈S ||y−x|| is a projection operator to closed set S.

Theorem 2: The constructed RNN controller Eq.(16) will
global converge to an equilibrium that is equivalent to the
optimal solution of the problem Eq.(12) with time.

proof: Rewrite the dynamics of the designed RNN
Eq.(16) as

ε

[
θ̈

λ̇i

]
=

[
−θ̇ + PΩ(θ̇ − JT

i λi − θ̇)
−λi + (λi + v̂i − kei − Jiθ̇i)

]
, (28)

Let ξ = [θ̇T, λT
1]T, Eq. (28) is reformulated as

εξ = −ξ + PΩ̄(ξ − F (ξ)), (29)

where F(ξ) = [−JT
i λi + θ̇;−v̂i + kei + Jiθ̇i]. Then,

∇F = ∂F/∂ξ =

[
I −JT

i

Ji 0

]
. (30)

Following Definition 1, ∇F(ξ) + ∇FT(ξ) =

[
2I 0
0 0

]
is

positive semi-definite, then F(ξ) is a monotone function. It
is remarkable that Eq. (30) satisfies the dynamics mentioned
in Lemma 2, where κ = ε and % = 1. and PΩ̄i

= [PΩi ;PR],
in which PR is a special projection operator of λi to Rm,
with its bounds being ±∞, respectively. By using Lemma
2, one conclusion can be obtained that the established neural
networks would converge to the equilibriums globally.

C. GLOBAL CONVERGENCE OF TRACKING ERROR
Theorem 3: Based on the velocity observer Eq.(7) and RNN
controller Eq.(16), the tracking error will global converge
to zero, i.e, ri(t)− ri(0)→ rd(t)− rd(0) with time t, i =
1, · · · , N .

proof: For the sake of convenience in writing, let
di = ri(t) − ri(0), d0 = rd(t) − rd(0), and define e =
[e1; · · · ; eN ], d = [d1, · · · , dN ] and d0 = [d0; · · · ; d0] ∈
Rn×N .

Similarly, Ld0 = 0. Then Eq. (9) can be rewritten as

e = Hd− Bd0 = H(d− d0). (31)

In the last part, we have proved the convergence of the
RNN controller, i.e., the output θ̇i converges to the optimal
solution of Eq. (12), then the equality constraint Eq. (12b)
will hold. It is noteworthy that ḋ0 = ṙd and ḋi = ṙi = Jiθ̇i.
Besides, we have already shown the convergence of both the
observer in outer-loop and the dynamic neural networks in
the inner-loop. We have obtained the conclusion that when
the desired movement is partially known to only part of
robots, v̂i can replace ṙd equivalently as t→∞. Therefore,
rewrite Eq. (12b) as

Jθ̇ = ṙd − kH(d− d0). (32)

where J is a block diagonal matrix composed of
J1, · · · , JN , θ = [θ1; ...θN ].

Define Lyapunov function

V2 = eTe/2. (33)

Calculate its time derivative of V2:

V̇2 = eT(ė)

= eTH(ḋ− ḋ0)

= eTH(Jθ̇ − ṙd)

= −kHeTe ≤ 0. (34)

Then we have, e → 0 as t → ∞. Based on the property
that Lṙd = 0, we have Hd− Bd0 = H(d− d0)→ 0). Pre-
multiplying H−1 yields d − d0 → 0, which means ri(t) −
ri(0)→ rd(t)− rd(0), i = 1, · · · , N .

TABLE 1: The D-H parameter of the redundant manipulator
iiwa R800 used in the circle trajectory tracking experiment.

Link a(m) α(rad) d(m)

1 0 π/2 0.34
2 0 π/2 0
3 0 π/2 0.4
4 0 π/2 0
5 0 π/2 0.4
6 0 π/2 0
7 0 0 0.126

6 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2974248, IEEE Access

Xiaoxiao Li et al.: Cooperative Control For Multiple Redundant Manipulators Under Partially Known Information Using RNN

FIGURE 1: Robot system consisting of ten 7-DOF iiwa
R800 manipulators which are randomly located in the
workspace. Left: schematic of an iiwa R800 manipulator;
Right: the communication topology corresponding to the
robot system. The red dots, five-pointer star, green solid
lines, and green dashed lines stand for manipulators, com-
mand signal about the desired motion trajectory, network
topology, the connection to the command signal, respec-
tively.

V. SIMULATION EXPERIMENTS
In this section, we will consider using a robot system
consisting of a group of iiwa R800 manipulators with 7
DOF to verify the feasibility of the proposed coordinated
control scheme. The left side of Fig. 1 shows the schematic
of an 7-DOF iiwa R800 robot manipulator considered in the
paper. Assume that the end-effector of every manipulator has
ability to reach any position at a given orientation within its
workspace. The robot system is assigned to cooperatively
transport a payload, where every manipulator is held in a
different position on the load so that the load can keep
balance. Note that in the following simulative experiments,
we only consider the position control in 3D space, therefore
the used 7-DOF iiwa R800 manipulator is redundant for
such a particular problem. Two simulative experiments
tracking a circle desired trajectory and rhodonea trajectory
are conducted, respectively.

A. CIRCLE TRAJECTORY
In this experiment, the number of robot is set to be ten,
and the corresponding communication topology is as shown
in the right side of Fig. 1. Among Fig. 1, only the nodes
3, 5, 8, and 10 has opportunity to access to the command
signal about the desired motion trajectory. All manipulators
exchange information based on the communication topology
as shown in Fig. 1. Table 1 shows the D-H parameter of the
redundant manipulator iiwa R800 used in this simulative ex-
periment. The desired motion trajectory is to track a circular
path with the radius being 0.1. As for the neural network
parameters, we choose that ε1 = ε2 = · · · = ε10 = 5×10−5,
the upper and low bound of both the joint angles and the
joint speed are set to be θ−i = −θ+

i = −1.5, θ̇−i =
−θ̇+

i = −0.7, respectively, i = 1, 2, · · · , 10. The parameters
k1, k2, k3 are chosen as 5, 20 and 20, respectively.

Simulative results achieved by the proposed RNN con-
troller when the multi-robot manipulators system is assigned

to track a circle trajectory are illustrated in Fig. 2. The
simulation duration time is 10s. We only give the motion
trajectory corresponding to the 1-th robot manipulator, as
shown in Fig. 2(a), due to orientation of all manipulators are
almost identical originating from the initial joint angle is set
to be 0.1 ∗ randn(70, 1) + 1, where randn(·) is a MATLAB
function. The corresponding profile for the joint angle θ,
joint speed θ̇, costate variable λ captured by the RNN
controller are shown in Fig. 2(b)-(d), respectively. From Fig.
2(b)-(c), we can observe that the given θ and θ̇ are compliant
with constraints (11b) and (11c), respectively. When some
subelements of θ and θ̇ exceed the upper or lower bound,
they will be saturated, ensuring the joint physical limits
compliance. Fig. 2(e) shows the observer error achieved
by the developed velocity observer (7) by subtracting the
desired motion velocity. We can easily observed that the
error value of every dimension of all manipulators gradu-
ally converges to zero after several seconds, showing the
effectiveness of the developed velocity observer. Fig. 2(f)
shows the position error profile of every manipulator in 3-D
workspace, and the error accuracy reaches to 10−4 level.
The error profile corresponding to the equality constraint
Jiθ̇i− v̂i +kei is shown in Fig. 2(g). Fig. 2(h)-(j) shows the
position error profile of ri(t) − ri(0) in x-, y- and z-axis,
respectively. The parameter ri(0) denotes the initial position
of the i-th robot manipulator at 0 instant, i = 1, 2, · · · , 10.
It is obvious that ri(t)− ri(0) of every manipulator quickly
tend to be coincident, further showing the effectiveness of
the proposed RNN controller.

B. COMPARISON

To further evaluate the control accuracy, by normalizing the
position error of all robot in x-, y- and z-axis, respectively,
comparisons on position error between our method and the
method proposed in [11] are conducted, the corresponding
simulative results are shown in Fig. 3. We can observe that
our method is better than [11] in terms of convergence
quality.

C. RHODONEA TRAJECTORY

In this subsection, we use a robot system consisting of
six iiwa R800 manipulators to track a rhodonea trajectory.
We conduct the simulative experiment in virtual robot
experimentation platform (Vrep) [34]. The upper and low
bound of the joint angles are set to be θ−i = −θ+

i = −2,
i = 1, 2, · · · , 6. Parameters used in the designed velocity
observer k1, k2, k3 are chosen as 7, 20 and 10, respectively.

Different from the first experiment, we consider this
problem in a variable topology environment. Specifically,
in the first five seconds of the motion-task duration, all
robots exchange information with the communication topol-
ogy shown in Fig. 4(a), and in the ensuing time, use the
communication topology shown in Fig. 4(b). The motion-
task duration is set to be 10s. We can easily observe that for
Fig. 4(a), robots 01 and 03 have accessible to the command
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FIGURE 2: Simulative results achieved the proposed RNN controller when the multi-robot manipulator system is assigned
to track a circle trajectory. (a) Motion trajectory for the 1-th manipulator. Time history profile for (b) the joint angle θ(t),
(c) joint speed θ̇(t) and (d) costate variable λ, respectively. (e) Observer error. (f) Position error. (g) Error profile for the
equality constraint Jiθ̇i − v̂i + kei. (h)-(j): Position error profile of ri(t) − ri(0) in x-, y- and z-axis, respectively, ri(0)
denotes the initial position of the i-th robot manipulator at 0 instant, i = 1, 2, · · · , 10.
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FIGURE 3: Position error comparison between our method
and the method proposed in [11] in x-, y- and z-axis,
respectively.

(a) (b)

FIGURE 4: Communication topology considered in
rhodonea trajectory tracking experiment. Variable commu-
nication environment is considered, in first five seconds of
the motion-task duration, the communication topology as
shown in Fig. 4(a) is considered. The ensuing time employs
the communication topology as shown in Fig. 4(b).

signal on the desired motion velocity. For Fig. 4(b), robots
02 and 06 can access to the command signal.

The obtained simulative results are illustrated in Fig. 5-
Fig. 8. Following the snapshots illustrated in Fig. 5, all
robots achieve synchronous control, and achieve an accu-

rate desired rhodonea trajectory tracking despite of setting
different initial joint angles for every robot. Besides this,
one important point is that both the payload and the robot
system are also synchronized for the rhodonea trajectory
tracking by assigning a same movement velocity to them,
which reveals the correctness of above mentioned in Section
II-C. The corresponding time history profile of joint angles
θi, joint velocities θ̇i and costate variable λi for every
manipulator i are showed in Fig. 6. As demonstrated in Fig.
7(a), the velocity observer error for every manipulator in 3D
workspace approach to zero with time, again showing the
effectiveness of the designed observer (7). Fig. 7(b) and Fig.
7(c) show position error profile and equality constraint error
profile, respectively. They all reach a better convergence
accuracy. In addition, it is obvious that when topology
switches, i.e, t = 5s, their convergence are not affected,
further revealing effectiveness and robustness of our RNN
controller. Position error profile of ri(t)−ri(0) in x-, y- and
z-axis are illustrated in Fig. 8, respectively, i = 1, 2, · · · , 6.
Following them, we can say that the constructed RNN
controller and velocity observer (7) is effective.

(a) (b) (c)

FIGURE 5: Snapshots when the robot group is required to
track a rhodonea trajectory.
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FIGURE 6: Time history profile of joint angle θ(t), joint
speed θ̇(t) and costate variable λ for the rhodonea trajectory
tracking: (a) θ(t), (b) θ̇(t) and (c) λ.
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FIGURE 7: Error profile for the rhodonea trajectory track-
ing: (a) Observer error. (b) Position error. (c) Equality
constraint error Jiθ̇i − v̂i + kei.

VI. CONCLUSION
A RNN-based neural dynamic scheme have been have been
put forward for the problem of cooperative control of multi-
ple redundant manipulators under partially known informa-
tion in this paper. Four objectives have been simultaneously
achieved, i.e, global cooperation and synchronization among
manipulators, joint physical limits compliance, neighbor-to-
neighbor communication among robots, and optimality of
the cost function. A velocity observer have been developed
for each individual manipulator to help them to obtain
the desired motion velocity information. Minimizing the
joint velocity norm as the cost function, the cooperative
kinematic control problem has been built as a constrained
QP problem, then we have designed a RNN to solve it.
Global convergence of the developed velocity observer,
RNN controller and cooperative tracking error have been
theoretically derived. Finally, under a fixed and variable
communication topology, respectively, application in using
a group of iiwa R800 manipulators to transport a payload
illustrated effectiveness of the proposed scheme and theo-
retical analyses. Moreover, comparison between our method
with the existing method have also been conducted, our
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FIGURE 8: Position error profile of ri(t) − ri(0) in x-, y-
and z-axis, respectively, i = 1, 2, · · · , 6.

method achieved the better convergence quality.
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