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We report on new metastable y-FeNi nanoparticles produced by mechanical alloying of melt-spun
ribbon using a high energy ball mill followed by a solution annealing treatment in the y-phase
region and water quenching in of the face-centered cubic y-phase. In the Fe—Ni phase diagram there
is a strong compositional dependence of the Curie temperature, T,, on composition in the y-phase.
This work studies the stabilization of 7y-phase nanostructures and the compositional tuning of T, in
Fe—-Ni alloys which can have important ramifications on the self-regulated heating of magnetic
nanoparticles in temperature ranges of interest for applications in polymer curing and cancer
thermotherapies. To date we have achieved Curie temperatures as low as 120 °C by this method.
© 2010 American Institute of Physics. [doi:10.1063/1.3334198]

. INTRODUCTION phases. To stabilize the metastable y-FeNi phase, with a de-
sirable T, solution annealing in the y-phase region followed
by quenching is necessary. Figure 1 illustrates the Fe—Ni
binary phase diagram9 with information on the compositional
dependence of the Curie temperature, T.(Xy;). This To(Xy;)
behavior for the y-phase can be extrapolated to metastable
regions of the Fe—Ni phase diagram where desired T.’s near
100 °C are predicted to occur near the 27% Ni composition.
However, since the extrapolated T (Xy;) curve is steep in
this region of the phase diagram, a deviation in the stoichi-
ometry of only a few atomic percent can result in a large
change in the T, of the alloy.

High energy ball milling for 24 h was used to synthesize
nanopowders from (Fe;;Ni,;)gsZr7B,Cu; melt-spun ribbon.
Powder samples were removed after 12, 16, 20, and 24 h for
phase and particle size analysis. The heat generated from the
constant grinding of the steel balls (about 300 °C) against
the powder causes these powders crystallize and form a two-
phase mixture of 36.51% fcc FeNi; and 63.49% bce a-Fe, as
predicted from the Fe—Ni binary phase diagram.

To facilitate the transformation into the metastable

Suppression of phase transformations in metastable
nanostructures can be used to produce materials with prop-
erties that are not obtainable in equilibrium structures. Im-
portant recent examples of this can be found in the suppres-
sion of the nucleation of the stable y-phase in Co—Fe-based
nanocomposite systems produced from the primary nanoc-
rystallization of amorphous precursors at compositions
where the binary Fe—Co phase diagram would predict that
the a-phases and y-phases should coexist." In Fe-Ni-based
nanocomposite systems, a similar phenomenon is observed
in Fe-rich alloys4 where the nucleation of the equilibrium
a-phase is suppressed in favor of the metastable y-phase.
This can also have profound effects on technical magnetic
properties because on the Fe-rich side of the Fe-Ni phase
diagram there is a strong compositional dependence of the
Curie temperature, T., on composition in the )/—phase.5

In this work we describe the stabilization of ry-phase
nanostructures in magnetic alloys produced by primary crys-
tallization of amorphous precursors. We discuss the merits of
the synthesis route on the compositional tuning of T, which
can have important ramifications on the self-regulated heat-
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The method employed to synthesize a metastable y-FeNi
phase was mechanical alloying of (Fe;3Niyy)gsZr7B4Cu;
melt-spun ribbon using a high energy ball mill followed by a
solution annealing treatment in the y-phase region and water
quenching to stabilize the 7y-phase. Mechanically milled
(Fe73Niy;)gsZr,B,Cu; alloy ribbons are typically a meta-
stable mix of the equilibrium a-Fe (bcc) and FeNis (fce)
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FIG. 1. (Color online) Fe-Ni phase diagram with TO-composition curves
YElectronic mail: kelseym @andrew.cmu.edu. and vertical lines showing composition choice for a T of 100 °C.
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FIG. 2. (Color online) XRD pattern for Fe;;Ni,; nanoparticles after anneal-
ing and water quenching to obtain the fcc y-phase.

phase, the particles were encapsulated in a quartz glass tube
which was evacuated and refilled with Ar gas to prevent
oxidation of the Fe-Ni powder. The (Fe;3Niy;)gsZr;B4Cu,;
powder was then annealed to 700 °C, in the y-phase region,
for 2 h followed by water quenching to retain the metastable
fcc y-FeNi phase. This rapid cooling ensures that the par-
ticles do not have sufficient diffusion time required for phase
separation into the equilibrium phases.

High-temperature vibrating-sample magnetometry was
used to measure Curie temperatures on heating the meta-
stable 7y-Fe;3Niy; nanopowders from room temperature to
600 °C. An average heating rate of 5 °C/min in the tem-
perature range of interest was employed.

lll. RESULTS AND DISCUSSION

X-ray diffraction (XRD) shows that after annealing and
quenching the Fe;;Ni,; nanoparticles, the mixture of bcc
a-Fe and fcc FeNiy phases were transformed into solely fcc
v-phase; indicated by the presence of only fcc peaks (Fig. 2).
This shows that a nearly single y-phase Fe,;s3Ni,; nanopar-
ticles are present. The additional small peaks matched to
known XRD patterns for a spinel ferrite oxide (NiFe,O,)
present on the sample after the high energy mechanical mill-
ing process. A Scherrer’s analysislo of line broadening in
XRD patterns estimated a mean particle size of ~10 nm.

Transmission electron microscopy (TEM) was carried
out on a JEOL 2000EX microscope with operating voltage of
200 keV. Nanoparticles were dispersed in absolute ethanol
and deposited on a carbon-coated copper grid. TEM was
used to examine the morphology of the nanoparticles and
selected area electron diffraction (SAED) was used to iden-
tify present crystalline phases. Mean particle size was deter-
mined to be 20 nm from a sampling of approximately 100
nanoparticles [Fig. 3(a)]. The SAED pattern confirms the
presence of the fcc y-phase [Fig. 3(b)], where the position
and relative intensities of diffracted rings match well with
theoretical values for fcc Fe-Ni alloys.

Figure 4 shows magnetization versus temperature, M
versus T, plots where the Curie temperatures, T, were esti-
mated by squaring the reduced magnetization and extrapolat-
ing to m=M/Ms=0. A Curie temperature of 120 °C for the
y-phase Fe;;Ni,; nanoparticles is observed upon heating of
the alloy from room temperature to 200 °C. Figure 4 also
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FIG. 3. (a) TEM bright field image of mechanically milled FeNi nanopar-
ticles and (b) SAED pattern.

shows the transformation of the metastable fcc y-phase back
into the higher Curie temperature bcc a-Fe phase upon heat-
ing to 600 °C. The bcc a-Fe phase is shown to have a Curie
temperature around 550 °C. We note the good agreement of
the experimentally estimated values of T, with the values
predicted from the T, g i dotted lines in Fig. 1 for the
Fe;3Ni,; composition used.

The compositional tuning of T, in these magnetic nano-
particles have important application in the radio frequency
(rf) magnetic heating to cure diglycidyl ether of bisphenol-A
based epoxy resins at 120 °C for use in high-performance
protective coatings, structural adhesives, and low-stress inte-
grated circuit encapsulants.11 In addition, further reduction in
T, may be of use to target other applications such as cancer
thermotherapies (T,~42 °C) and magnetocaloric refrigera-
tion (T,~25 °C).

IV. CONCLUSION

It has been shown here that the stabilization of y-phase
Fe;;Ni,; nanopowder is possible through solution annealing
in the y-phase region followed by immediate water quench-
ing. This fcc y-phase is shown to have a lower Curie tem-
perature (T,=120 °C) than the equilibrium bcc a-Fe phase
(T,=550 °C) for the Fes3Niy; composition. Once in the
y-phase, the T, of the particles can be tailored by varying the
Ni concentration in the alloy for use in applications such as
polymer curing and cancer thermotherapies.
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FIG. 4. (Color online) Reduced moment (m) vs temperature curve measured
for metastable y-phase Fe,;Ni,; nanopowder illustrating the transformation
back into the higher Curie temperature bcc a-Fe phase upon heating to
600 °C.
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