Partial immunization of trees

Mitre C. Dourado ${ }^{\text {a, } 1}$, Stefan Ehard ${ }^{\text {b }}$, Lucia D. Penso ${ }^{\text {b }}$, Dieter Rautenbach ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Instituto de Matemática, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
${ }^{\mathrm{b}}$ Institut für Optimierung und Operations Research, Universität Ulm, Ulm, Germany

A R T I C L E I N F O

Article history:

Received 18 April 2018
Received in revised form 26 November 2018
Accepted 27 January 2020
Available online xxxx

MSC:

05C69
05C05
Keywords:
Dynamic monopoly
Vaccination

Abstract

For a graph G and a non-negative integer-valued function τ on its vertex set, a dynamic monopoly is a set of vertices of G such that iteratively adding to it vertices u of G that have at least $\tau(u)$ neighbors in it eventually yields the vertex set of G. We study the problem of maximizing the minimum order of a dynamic monopoly by increasing the threshold values of individual vertices subject to vertex-dependent lower and upper bounds, and fixing the total increase. We solve this problem efficiently for trees, which extends a result of Khoshkhah and Zaker (2015).

(C) 2020 Elsevier B.V. All rights reserved.

1. Introduction

As a simple model for an infection process within a network [1-3] one can consider a graph G in which each vertex u is assigned a non-negative integral threshold value $\tau(u)$ quantifying how many infected neighbors of u are required to spread the infection to u. In this setting, a dynamic monopoly of (G, τ) is a set D of vertices such that an infection starting in D spreads to all of G, and the smallest order dyn (G, τ) of such a dynamic monopoly measures the vulnerability of G for the given threshold values.

Khoshkhah and Zaker [4] consider the maximum of $\operatorname{dyn}(G, \tau)$ over all choices for the function τ such that the average threshold is at most some positive real $\bar{\tau}$. They show that this maximum equals

$$
\begin{equation*}
\max \left\{k: \sum_{i=1}^{k}\left(d_{G}\left(u_{i}\right)+1\right) \leq n(G) \bar{\tau}\right\}, \tag{1}
\end{equation*}
$$

where $u_{1}, \ldots, u_{n(G)}$ is a linear ordering of the vertices of G with non-decreasing vertex degrees $d_{G}\left(u_{1}\right) \leq$ $\cdots \leq d_{G}\left(u_{n(G)}\right)$. To obtain this simple formula one has to allow $d_{G}(u)+1$ as a threshold value for vertices u,

[^0]a value that makes these vertices completely immune to the infection, and forces every dynamic monopoly to contain them. Requiring $\tau(u) \leq d_{G}(u)$ for every vertex u of G leads to a harder problem; Khoshkhah and Zaker [4] show hardness for planar graphs and describe an efficient algorithm for trees. In the present paper we consider their problem with additional vertex-dependent lower and upper bounds on the threshold values. As our main result, we describe an efficient algorithm for trees based on a completely different approach than the one in [4].

In order to phrase the problem and our results exactly, and to discuss further related work, we introduce some terminology. Let G be a finite, simple, and undirected graph. A threshold function for G is a function from the vertex set $V(G)$ of G to the set \mathbb{N}_{0} of non-negative integers. Let $\tau \in \mathbb{N}_{0}^{V(G)}$ be a threshold function for G. For a set D of vertices of G, the hull $H_{(G, \tau)}(D)$ of D in (G, τ) is the smallest set H of vertices of G such that $D \subseteq H$, and $u \in H$ for every vertex u of G with $\left|H \cap N_{G}(u)\right| \geq \tau(u)$. Clearly, the set $H_{(G, \tau)}(D)$ is obtained by starting with D, and iteratively adding vertices u that have at least $\tau(u)$ neighbors in the current set as long as possible. With this notation, the set D is a dynamic monopoly of (G, τ) if $H_{(G, \tau)}(D)$ equals the vertex set of G, and $\operatorname{dyn}(G, \tau)$ is the minimum order of such a set. A dynamic monopoly of (G, τ) of order $\operatorname{dyn}(G, \tau)$ is minimum. The parameter dyn (G, τ) is computationally hard [5,6]; next to general bounds [7-9] efficient algorithms are only known for essentially tree-structured instances [5,6,10-12].

We can now phrase the problem we consider: For a given graph G, two functions $\tau, \iota_{\max } \in \mathbb{N}_{0}^{V(G)}$, and a non-negative integer budget b, let $\operatorname{vacc}\left(G, \tau, \iota_{\max }, b\right)$ be defined as

$$
\begin{equation*}
\max \left\{\operatorname{dyn}(G, \tau+\iota): \iota \in \mathbb{N}_{0}^{V(G)}, \iota \leq \iota_{\max }, \text { and } \iota(V(G))=b\right\}, \tag{2}
\end{equation*}
$$

where inequalities between functions are meant pointwise, and $\iota(V(G))=\sum_{u \in V(G)} \iota(u)$. The function ι is the increment of the original threshold function τ. The final threshold function $\tau+\iota$ must lie between τ and $\tau+\iota_{\max }$, which allows to incorporate vertex-dependent lower and upper bounds. Note that no such increment ι exists if $\iota_{\max }(V(G))$ is strictly less than b, in which case $\operatorname{vacc}\left(G, \tau, \iota_{\max }, b\right)$ equals $\max \emptyset=-\infty$. Note that we require $\iota(V(G))=b$ in (2), which determines the average final threshold as $(\tau(V(G))+b) / n(G)$. Since $\operatorname{dyn}(G, \rho) \leq \operatorname{dyn}\left(G, \rho^{\prime}\right)$ for every two threshold functions ρ and ρ^{\prime} for G with $\rho \leq \rho^{\prime}$, for $\iota_{\max }(V(G)) \geq b$, the value in (2) remains the same when replacing ' $\iota(V(G))=b$ ' with ' $\iota(V(G)) \leq b$ ' provided that $b \leq \iota_{\max }(V(G))$.

The results of Khoshkhah and Zaker [4] mentioned above can be phrased by saying
(i) that $\operatorname{vacc}\left(G, 0, d_{G}+1, n(G) \bar{\tau}\right)$ equals (1) whenever $n(G) \bar{\tau}$ is a non-negative integer at most $\sum_{u \in V(G)}\left(d_{G}(u)+1\right)=2 m(G)+n(G)$, where $m(G)$ is the size of G, and
(ii) that $\operatorname{vacc}\left(T, 0, d_{T}, b\right)$ can be determined efficiently whenever T is a tree.

Our main result is the following.
Theorem 1.1. For a given tuple $\left(T, \tau, \iota_{\max }, b\right)$, where T is a tree of order $n, \tau, \iota_{\max } \in \mathbb{N}_{0}^{V(G)}$, and b is a non-negative integer with $b \leq \iota_{\max }(V(T))$, the value $\operatorname{vacc}\left(T, \tau, \iota_{\max }, b\right)$ as well as an increment $\iota \in \mathbb{N}_{0}^{V(G)}$ with $\iota \leq \iota_{\max }$ and $\iota(V(G))=b$ such that $\operatorname{vacc}\left(T, \tau, \iota_{\max }, b\right)=\operatorname{dyn}(T, \tau+\iota)$ can be determined in time $O\left(n^{2}\left(\min \left\{b, n^{2}\right\}+1\right)^{2}\right)$.

While our approach relies on dynamic programming, Khoshkhah and Zaker show (ii) using the following result in combination with a minimum cost flow algorithm.

Theorem 1.2 (Khoshkhah and Zaker [4]). For a given tree T, and a given non-negative integer b with $b \leq 2 m(T)$, there is a matching M of T such that $\operatorname{vacc}\left(T, 0, d_{T}, b\right)=\operatorname{dyn}\left(G, \tau_{M}\right)$ and $\tau_{M}(V(T)) \leq b$, where

$$
\tau_{M}: V(T) \rightarrow \mathbb{Z}: u \mapsto \begin{cases}d_{T}(u) & , u \text { is incident with a vertex in } M, \text { and } \\ 0 & , \text { otherwise } .\end{cases}
$$

We believe that the threshold function τ_{M} considered in Theorem 1.2 is a good choice in general, and pose the following.

Conjecture 1.3. For a given graph G, and a given non-negative integer b with $b \leq 2 m(G)$, there is a matching M of G such that $\operatorname{vacc}\left(G, 0, d_{G}, b\right) \leq 2 \operatorname{dyn}\left(G, \tau_{M}\right)$ and $\tau_{M}(V(G)) \leq b$, where τ_{M} is as in Theorem 1.2 (with T replaced by G).

As a second result we show Conjecture 1.3 for some regular graphs.
Theorem 1.4. Conjecture 1.3 holds if G is r-regular and $b \geq(2 r-1)(r+1)$.
Before we proceed to the proofs of Theorems 1.1 and 1.4, we mention some further related work. Centeno and Rautenbach [13] establish bounds for the problems considered in [4]. In [14], Ehard and Rautenbach consider the following two variants of (2) for a given triple (G, τ, b), where G is a graph, τ is a threshold function for G, and b is a non-negative integer:

$$
\max \left\{\operatorname{dyn}(G-X, \tau): X \in\binom{V(G)}{b}\right\} \quad \text { and } \quad \max \left\{\operatorname{dyn}\left(G, \tau_{X}\right): X \in\binom{V(G)}{b}\right\}
$$

where

$$
\tau_{X}(u)= \begin{cases}d_{G}(u)+1 & , \text { if } u \in X \\ \tau(u) & , \text { if } u \in V(G) \backslash X\end{cases}
$$

and $\binom{V(G)}{b}$ denotes the set of all b-element subsets of $V(G)$. For both variants, they describe efficient algorithms for trees. In [15] Bhawalkar et al. study so-called anchored k-cores. For a given graph G, and a positive integer k, the k-core of G is the largest induced subgraph of G of minimum degree at least k. It is easy to see that the vertex set of the k-core of G equals $V(G) \backslash H_{(G, \tau)}(\emptyset)$ for the special threshold function $\tau=d_{G}-k+1$. Now, the anchored k-core problem [15] is to determine

$$
\begin{equation*}
\max \left\{\left|V(G) \backslash H_{\left(G, \tau_{X}\right)}(\emptyset)\right|: X \in\binom{V(G)}{b}\right\}, \tag{3}
\end{equation*}
$$

for a given graph G and non-negative integer b. Bhawalkar et al. show that (3) is hard to approximate in general, but can be determined efficiently for $k=2$, and for graphs of bounded treewidth. Vaccination problems in random settings were studied in [1,16,17].

2. Proofs of Theorems 1.1 and 1.4

Throughout this section, let T be a tree rooted in some vertex r, and let $\tau, \iota_{\max } \in \mathbb{N}_{0}^{V(T)}$ be two functions. For a vertex u of T, and a function $\rho \in \mathbb{N}_{0}^{V(T)}$, let V_{u} be the subset of $V(T)$ containing u and its descendants, let T_{u} be the subtree of T induced by V_{u}, and let $\rho^{\rightarrow u} \in \mathbb{N}_{0}^{V(T)}$ be the function with

$$
\rho^{\rightarrow u}(v)= \begin{cases}\rho(v) & , \text { if } v \in V(T) \backslash\{u\}, \text { and } \\ \max \{\rho(v)-1,0\} & , \text { if } v=u .\end{cases}
$$

Below we consider threshold functions of the form $\rho\left|V_{u}+\rho^{\prime}\right| V_{u}$ for the subtrees T_{u}, where ρ and ρ^{\prime} are defined on sets containing V_{u}. For notational simplicity, we omit the restriction to V_{u} and write ' $\rho+\rho^{\prime}$ ' instead of ${ }^{\prime} \rho\left|V_{u}+\rho^{\prime}\right| V_{u}$ ' in these cases. For an integer k and a non-negative integer b, let $[k]$ be the set of positive integers at most k, and let

$$
\mathcal{P}_{k}(b)=\left\{\left(b_{1}, \ldots, b_{k}\right) \in \mathbb{N}_{0}^{k}: b_{1}+\cdots+b_{k}=b\right\}
$$

be the set of ordered partitions of b into k non-negative integers.

Our approach to show Theorem 1.1 is similar as in [14] and relies on recursive expressions for the following two quantities: For a vertex u of T and a non-negative integer b, let

- $x_{0}(u, b)$ be the maximum of $\operatorname{dyn}\left(T_{u}, \tau+\iota\right)$ over all $\iota \in \mathbb{N}_{0}^{V_{u}}$ with $\iota(v) \leq \iota_{\max }(v)$ for every $v \in V_{u}$, and $\iota\left(V_{u}\right)=b$, and
- $x_{1}(u, b)$ be the maximum of $\operatorname{dyn}\left(T_{u},(\tau+\iota)^{\rightarrow u}\right)$ over all $\iota \in \mathbb{N}_{0}^{V_{u}}$ with $\iota(v) \leq \iota_{\max }(v)$ for every $v \in V_{u}$, and $\iota\left(V_{u}\right)=b$.

The increment ι captures the local increases of the thresholds within V_{u}. The value $x_{1}(u, b)$ corresponds to a situation, where the infection reaches the parent of u before it reaches u, that is, the index 0 or 1 indicates the amount of help that u receives from outside of V_{u}. Note that going from $\tau+\iota$ to $(\tau+\iota) \rightarrow u$, the value at the vertex u is only reduced by 1 if $\tau(u)+\iota(u)$ is positive.

If $b>\iota_{\max }\left(V_{u}\right)$, then no function ι as in the definition of $x_{0}(u, b)$ and $x_{1}(u, b)$ exists, that is, these two values are $\max \emptyset=-\infty$. Conversely, if $b \leq \iota_{\max }\left(V_{u}\right)$, then there are feasible choices for ι, and $x_{0}(u, b)$ and $x_{1}(u, b)$ are both non-negative integers. In this case we fix optimal choices for the function ι. More precisely, if $b \leq \iota_{\max }\left(V_{u}\right)$, then let $\iota_{0}(u, b), \iota_{1}(u, b) \in \mathbb{N}_{0}^{V_{u}}$ with $\iota_{j}(u, b) \leq \iota_{\max }$, and $\iota_{j}(u, b)\left(V_{u}\right)=b$ for both $j \in\{0,1\}$, be such that

$$
\begin{aligned}
& x_{0}(u, b)=\operatorname{dyn}\left(T_{u}, \tau+\iota_{0}(u, b)\right) \text { and } \\
& x_{1}(u, b)=\operatorname{dyn}\left(T_{u},\left(\tau+\iota_{1}(u, b)\right)^{\rightarrow u}\right) .
\end{aligned}
$$

Whenever this is possible, we choose $\iota_{0}(u, b)$ equal to $\iota_{1}(u, b)$. As we show in Corollary 2.4, $\iota_{0}(u, b)$ always equals $\iota_{1}(u, b)$, which is rather surprising and a key fact for our approach.

Lemma 2.1. $x_{0}(u, b) \geq x_{1}(u, b)$, and if $x_{0}(u, b)=x_{1}(u, b)$, then $\iota_{0}(u, b)=\iota_{1}(u, b)$.
Proof. If $x_{1}(u, b)=-\infty$, then the statement is trivial. Hence, we may assume that $x_{1}(u, b)>-\infty$, which implies that the function $\iota_{1}(u, b)$ is defined. Let D be a minimum dynamic monopoly of ($\left.T_{u}, \tau+\iota_{1}(u, b)\right)$. By the definition of $x_{0}(u, b)$, we have $x_{0}(u, b) \geq|D|$. Since D is a dynamic monopoly of $\left(T_{u},\left(\tau+\iota_{1}(u, b)\right) \rightarrow u\right)$, we obtain $x_{0}(u, b) \geq|D| \geq \operatorname{dyn}\left(T_{u},\left(\tau+\iota_{1}(u, b)\right)^{\rightarrow u}\right)=x_{1}(u, b)$. Furthermore, if $x_{0}(u, b)=x_{1}(u, b)$, then $x_{0}(u, b)=|D|=\operatorname{dyn}\left(T_{u}, \tau+\iota_{1}(u, b)\right)$, which implies $\iota_{0}(u, b)=\iota_{1}(u, b)$.

Lemma 2.2. If u is a leaf of T, and b is a non-negative integer with $b \leq \iota_{\max }(u)$, then, for $j \in\{0,1\}$,

$$
\begin{aligned}
x_{j}(u, b) & = \begin{cases}0 & , \text { if } \tau(u)+b-j \leq 0, \\
1 & , \text { otherwise, and }\end{cases} \\
\iota_{j}(u, b)(u) & =b .
\end{aligned}
$$

Proof. These equalities follow immediately from the definitions.
The following rather technical lemma is the core statement for our dynamic programming approach (see Fig. 1).

Lemma 2.3. Let u be a vertex of T that is not a leaf, and let be a non-negative integer. If v_{1}, \ldots, v_{k} are the children of u, and $\iota_{0}\left(v_{i}, b_{i}\right)=\iota_{1}\left(v_{i}, b_{i}\right)$ for every $i \in[k]$ and every non-negative integer b_{i} with $b_{i} \leq \iota_{\max }\left(V_{v_{i}}\right)$, then, for $j \in\{0,1\}$,

$$
\begin{align*}
x_{j}(u, b) & =z_{j}(u, b), \text { and } \tag{4}\\
\iota_{0}(u, b) & =\iota_{1}(u, b), \text { if } b \leq \iota_{\max }\left(V_{u}\right), \tag{5}
\end{align*}
$$

Fig. 1. The situation considered in Lemma 2.3. The total budget of b available on T_{u} is distributed to u and to the subtrees of T_{u} rooted in the children of u. The vertex u may have a parent.
where $z_{j}(u, b)$ is defined as

$$
\max \left\{\delta_{j}\left(b_{u}, b_{1}, \ldots, b_{k}\right)+\sum_{i=1}^{k} x_{1}\left(v_{i}, b_{i}\right):\left(b_{u}, b_{1}, \ldots, b_{k}\right) \in \mathcal{P}_{k+1}(b) \text { with } b_{u} \leq \iota_{\max }(u)\right\}
$$

and, for $\left(b_{u}, b_{1}, \ldots, b_{k}\right) \in \mathcal{P}_{k+1}(b)$ with $b_{u} \leq \iota_{\max }(u)$,

$$
\delta_{j}\left(b_{u}, b_{1}, \ldots, b_{k}\right):= \begin{cases}0 & , \text { if }\left|\left\{i \in[k]: x_{0}\left(v_{i}, b_{i}\right)=x_{1}\left(v_{i}, b_{i}\right)\right\}\right| \geq \tau(u)+b_{u}-j, \text { and } \\ 1 & , \text { otherwise } .\end{cases}
$$

Proof. By symmetry, it suffices to consider the case $j=0$.
First, suppose that $b>\iota_{\max }\left(V_{u}\right)$. If $\left(b_{u}, b_{1}, \ldots, b_{k}\right) \in \mathcal{P}_{k+1}(b)$ with $b_{u} \leq \iota_{\max }(u)$, then $b_{i}>\iota_{\max }\left(V_{v_{i}}\right)$ for some $i \in[k]$, which implies $z_{0}(u, b)=-\infty=x_{0}(u, b)$.

Now, let $b \leq n\left(T_{u}\right)$, which implies $x_{0}(u, b)>-\infty$. The following two claims complete the proof of (4).
Claim 1. $x_{0}(u, b) \geq z_{0}(u, b)$.
Proof of Claim 1. It suffices to show that $x_{0}(u, b) \geq \delta_{0}\left(b_{u}, b_{1}, \ldots, b_{k}\right)+\sum_{i=1}^{k} x_{1}\left(v_{i}, b_{i}\right)$ for every choice of $\left(b_{u}, b_{1}, \ldots, b_{k}\right)$ in $\mathcal{P}_{k+1}(b)$ with $b_{u} \leq \iota_{\max }(u)$ and $b_{i} \leq \iota_{\max }\left(V_{v_{i}}\right)$ for every $i \in[k]$. Let $\left(b_{u}, b_{1}, \ldots, b_{k}\right)$ be one such an element. Let $\iota_{u} \in \mathbb{N}_{0}^{V_{u}}$ be defined as

$$
\iota_{u}(v)= \begin{cases}b_{u} & , \text { if } v=u, \text { and } \tag{6}\\ 0 & , \text { otherwise }\end{cases}
$$

and let $\iota=\iota_{u}+\sum_{i=1}^{k} \iota_{1}\left(v_{i}, b_{i}\right)$, where $\iota_{1}\left(v_{i}, b_{i}\right)(u)$ is set to 0 for every $i \in[k]$. Since $\iota\left(V_{u}\right)=b$ and $0 \leq \iota \leq \iota_{\text {max }}$, we have $x_{0}(u, b) \geq \operatorname{dyn}\left(T_{u}, \tau+\iota\right)$.

Let D be a minimum dynamic monopoly of $\left(T_{u}, \tau+\iota\right)$, that is, $|D| \leq x_{0}(u, b)$. For each $i \in[k]$, it follows that the set $D_{i}=D \cap V_{v_{i}}$ is a dynamic monopoly of $\left(T_{v_{i}},(\tau+\iota)^{\rightarrow v_{i}}\right)$. Since, restricted to $V_{v_{i}}$, the two functions $(\tau+\iota)^{\rightarrow v_{i}}$ and $\left(\tau+\iota_{1}\left(v_{i}, b_{i}\right)\right)^{\rightarrow v_{i}}$ coincide, we obtain

$$
\left|D_{i}\right| \geq \operatorname{dyn}\left(T_{v_{i}},\left(\tau+\iota_{1}\left(v_{i}, b_{i}\right)\right)^{\rightarrow v_{i}}\right) \geq x_{1}\left(v_{i}, b_{i}\right) .
$$

If $\delta_{0}\left(b_{u}, b_{1}, \ldots, b_{k}\right)=0$, then $|D| \geq \sum_{i=1}^{k}\left|D_{i}\right| \geq \delta_{0}\left(b_{u}, b_{1}, \ldots, b_{k}\right)+\sum_{i=1}^{k} x_{1}\left(v_{i}, b_{i}\right)$. Similarly, if $u \in D$, then $|D|=1+\sum_{i=1}^{k}\left|D_{i}\right| \geq \delta_{0}\left(b_{u}, b_{1}, \ldots, b_{k}\right)+\sum_{i=1}^{k} x_{1}\left(v_{i}, b_{i}\right)$. Therefore, we may assume that $\delta_{0}\left(b_{u}, b_{1}, \ldots, b_{k}\right)=$ 1 and that $u \notin D$. This implies that there is some $\ell \in[k]$ with $x_{0}\left(v_{\ell}, b_{\ell}\right)>x_{1}\left(v_{\ell}, b_{\ell}\right)$ such that $D_{\ell}=D \cap V_{v_{\ell}}$ is a dynamic monopoly of $\left(T_{v_{\ell}}, \tau+\iota\right)$. Since, by assumption, $\iota_{0}\left(v_{\ell}, b_{\ell}\right)=\iota_{1}\left(v_{\ell}, b_{\ell}\right)$, we obtain that, restricted
to $V_{v_{\ell}}$, the two functions $\tau+\iota$ and $\tau+\iota_{0}\left(v_{\ell}, b_{\ell}\right)$ coincide, which implies $\left|D_{\ell}\right| \geq \operatorname{dyn}\left(T_{v_{\ell}}, \tau+\iota_{0}\left(v_{\ell}, b_{\ell}\right)\right)=$ $x_{0}\left(v_{\ell}, b_{\ell}\right) \geq 1+x_{1}\left(v_{\ell}, b_{\ell}\right)$. Therefore, also in this case, $|D|=\left|D_{\ell}\right|+\sum_{i \in[k] \backslash \ell\}}\left|D_{i}\right| \geq \delta_{0}\left(b_{u}, b_{1}, \ldots, b_{k}\right)+$ $\sum_{i=1}^{k} x_{1}\left(v_{i}, b_{i}\right)$.

Claim 2. $x_{0}(u, b) \leq z_{0}(u, b)$.
Proof of Claim 2. Let $\iota=\iota_{0}(u, b)$, that is, $x_{0}(u, b)=\operatorname{dyn}\left(T_{u}, \tau+\iota\right)$. Let $b_{i}=\iota\left(V_{v_{i}}\right)$ for every $i \in[k]$, and let $b_{u}=b-\sum_{i=1}^{k} b_{i}$. Clearly, $\left(b_{u}, b_{1}, \ldots, b_{k}\right) \in \mathcal{P}_{k+1}(b)$ and $b_{u} \leq \iota_{\max }(u)$. Let D_{i} be a minimum dynamic monopoly of $\left(T_{v_{i}},(\tau+\iota)^{\rightarrow v_{i}}\right)$ for every $i \in[k]$. By the definition of $x_{1}\left(v_{i}, b_{i}\right)$, we obtain $\left|D_{i}\right| \leq x_{1}\left(v_{i}, b_{i}\right)$. Let $D=\{u\} \cup \bigcup_{i=1}^{k} D_{i}$. The set D is a dynamic monopoly of ($T_{u}, \tau+\iota$), which implies $x_{0}(u, b) \leq|D|$.

If $\delta_{0}\left(b_{u}, b_{1}, \ldots, b_{k}\right)=1$, then

$$
x_{0}(u, b) \leq|D|=1+\sum_{i=1}^{k}\left|D_{i}\right| \leq \delta_{0}\left(b_{u}, b_{1}, \ldots, b_{k}\right)+\sum_{i=1}^{k} x_{1}\left(v_{i}, b_{i}\right) \leq z_{0}(u, b) .
$$

Therefore, we may assume that $\delta_{0}\left(b_{u}, b_{1}, \ldots, b_{k}\right)=0$. By symmetry, we may assume that $x_{0}\left(v_{i}, b_{i}\right)=$ $x_{1}\left(v_{i}, b_{i}\right)$ for every $i \in\left[\tau(u)+b_{u}\right]$. Let D_{i}^{\prime} be a minimum dynamic monopoly of ($\left.T_{v_{i}}, \tau+\iota\right)$ for every $i \in\left[\tau(u)+b_{u}\right]$. By the definition of $x_{0}\left(v_{i}, b_{i}\right)$, we obtain $\left|D_{i}^{\prime}\right| \leq x_{0}\left(v_{i}, b_{i}\right)=x_{1}\left(v_{i}, b_{i}\right)$. Let $D^{\prime}=$ $\bigcup_{i \in\left[\tau(u)+b_{u}\right]} D_{i}^{\prime} \cup \bigcup_{i \in[k] \backslash\left[\tau(u)+b_{u}\right]} D_{i}$. The set D^{\prime} is a dynamic monopoly of $\left(T_{u}, \tau+\iota\right)$. This implies

$$
x_{0}(u, b) \leq\left|D^{\prime}\right|=\sum_{i \in\left[\tau(u)+b_{u}\right]}\left|D_{i}^{\prime}\right|+\sum_{i \in[k] \backslash\left[\tau(u)+b_{u}\right]}\left|D_{i}\right| \leq \sum_{i \in[k]} x_{1}\left(v_{i}, b_{i}\right) \leq z_{0}(u, b),
$$

which completes the proof of the claim.
It remains to show (5). If $x_{0}(u, b)=x_{1}(u, b)$, then (5) follows from Lemma 2.1. Hence, we may assume that $x_{0}(u, b)>x_{1}(u, b)$. Since, by definition,

$$
\delta_{1}\left(b_{u}, b_{1}, \ldots, b_{k}\right) \leq \delta_{0}\left(b_{u}, b_{1}, \ldots, b_{k}\right) \leq \delta_{1}\left(b_{u}, b_{1}, \ldots, b_{k}\right)+1
$$

for every $\left(b_{u}, b_{1}, \ldots, b_{k}\right) \in \mathcal{P}_{k+1}(b)$ with $b_{u} \leq \iota_{\max }(u)$, we obtain $z_{1}(u, b) \leq z_{0}(u, b) \leq z_{1}(u, b)+1$. Together with (4), the inequality $x_{0}(u, b)>x_{1}(u, b)$ implies that

$$
\begin{aligned}
& x_{0}(u, b)=z_{0}(u, b)>z_{1}(u, b)=x_{1}(u, b) \text { and } \\
& z_{1}(u, b)=z_{0}(u, b)-1 .
\end{aligned}
$$

Let $\left(b_{u}, b_{1}, \ldots, b_{k}\right) \in \mathcal{P}_{k+1}(b)$ with $b_{u} \leq \iota_{\max }(u)$ be such that

$$
z_{0}(u, b)=\delta_{0}\left(b_{u}, b_{1}, \ldots, b_{k}\right)+\sum_{i=1}^{k} x_{1}\left(v_{i}, b_{i}\right) .
$$

We obtain

$$
\begin{aligned}
z_{1}(u, b) & \geq \delta_{1}\left(b_{u}, b_{1}, \ldots, b_{k}\right)+\sum_{i=1}^{k} x_{1}\left(v_{i}, b_{i}\right) \\
& \geq \delta_{0}\left(b_{u}, b_{1}, \ldots, b_{k}\right)-1+\sum_{i=1}^{k} x_{1}\left(v_{i}, b_{i}\right) \\
& =z_{0}(u, b)-1 \\
& =z_{1}(u, b),
\end{aligned}
$$

which implies $z_{1}(u, b)=\delta_{1}\left(b_{u}, b_{1}, \ldots, b_{k}\right)+\sum_{i=1}^{k} x_{1}\left(v_{i}, b_{i}\right)$, that is, the same choice of $\left(b_{u}, b_{1}, \ldots, b_{k}\right)$ in $\mathcal{P}_{k+1}(b)$ with $b_{u} \leq \iota_{\max }(u)$ maximizes the terms defining $z_{0}(u, b)$ and $z_{1}(u, b)$.

Since $z_{0}(u, b)>z_{1}(u, b)$, we obtain $\delta_{1}\left(b_{u}, b_{1}, \ldots, b_{k}\right)=0$ and $\delta_{0}\left(b_{u}, b_{1}, \ldots, b_{k}\right)=1$, which, by the definition of δ_{j}, implies that there are exactly $\tau(u)+b_{u}-1$ indices i in $[k]$ with $x_{0}\left(v_{i}, b_{i}\right)=x_{1}\left(v_{i}, b_{i}\right)$. By symmetry, we may assume that $x_{0}\left(v_{i}, b_{i}\right)=x_{1}\left(v_{i}, b_{i}\right)$ for $i \in\left[\tau(u)+b_{u}-1\right]$ and $x_{0}\left(v_{i}, b_{i}\right)>x_{1}\left(v_{i}, b_{i}\right)$ for $i \in[k] \backslash\left[\tau(u)+b_{u}-1\right]$.

Let $\iota=\iota_{u}+\sum_{i=1}^{k} \iota_{0}\left(v_{i}, b_{i}\right)$, where $\iota_{0}\left(v_{i}, b_{i}\right)(u)$ is set to 0 for every $i \in[k]$ and ι_{u} is as in (6). Note that, by assumption, we have $\iota=\iota_{u}+\sum_{i=1}^{k} \iota_{1}\left(v_{i}, b_{i}\right)$. Let D be a minimum dynamic monopoly of $\left(T_{u}, \tau+\iota\right)$. By the definition of $x_{0}(u, b)$, we have $|D| \leq x_{0}(u, b)$. Let $D_{i}=D \cap V_{v_{i}}$ for every $i \in[k]$. Since D_{i} is a dynamic monopoly of $\left(T_{v_{i}},(\tau+\iota)^{\rightarrow v_{i}}\right)$ for every $i \in[k]$, we obtain $\left|D_{i}\right| \geq x_{1}\left(v_{i}, b_{i}\right)$. Note that

- either $u \in D$,
- or $u \notin D$ and there is some index $\ell \in[k] \backslash\left[\tau(u)+b_{u}-1\right]$ such that $D_{\ell}=D \cap V_{v_{\ell}}$ is a dynamic monopoly of $\left(T_{v_{\ell}}, \tau+\iota\right)$.

In the first case, we obtain

$$
z_{0}(u, b)=x_{0}(u, b) \geq|D|=1+\sum_{i=1}^{k}\left|D_{i}\right| \geq 1+\sum_{i=1}^{k} x_{1}\left(v_{i}, b_{i}\right)=z_{0}(u, b),
$$

and, in the second case, we obtain $\left|D_{\ell}\right| \geq x_{0}\left(v_{\ell}, b_{\ell}\right) \geq x_{1}\left(v_{\ell}, b_{\ell}\right)+1$, and, hence,

$$
z_{0}(u, b)=x_{0}(u, b) \geq|D|=\left|D_{\ell}\right|+\sum_{i \in[k] \backslash\{\ell\}}\left|D_{i}\right| \geq 1+\sum_{i=1}^{k} x_{1}\left(v_{i}, b_{i}\right)=z_{0}(u, b) .
$$

In both cases we obtain $|D|=x_{0}(u, b)$, which implies that $\iota_{0}(u, b)$ may be chosen equal to ι.
Now, let D^{-}be a minimum dynamic monopoly of $\left(T_{u},(\tau+\iota)^{\rightarrow u}\right)$. By the definition of $x_{1}(u, b)$, we have $\left|D^{-}\right| \leq x_{1}(u, b)$. Let $D_{i}^{-}=D^{-} \cap V_{v_{i}}$ for every $i \in[k]$. Since D_{i}^{-}is a dynamic monopoly of $\left(T_{v_{i}},(\tau+\iota)^{\rightarrow v_{i}}\right)$ for every $i \in[k]$, we obtain $\left|D_{i}^{-}\right| \geq x_{1}\left(v_{i}, b_{i}\right)$. Now,

$$
z_{1}(u, b)=x_{1}(u, b) \geq\left|D^{-}\right| \geq \sum_{i=1}^{k} x_{1}\left(v_{i}, b_{i}\right)=z_{1}(u, b),
$$

which implies that $\left|D^{-}\right|=x_{1}(u, b)$, and that $\iota_{1}(u, b)$ may be chosen equal to ι. Altogether, the two functions $\iota_{0}(u, b)$ and $\iota_{1}(u, b)$ may be chosen equal, which implies (5).

Applying induction using Lemmas 2.2 and 2.3, we obtain the following.
Corollary 2.4. $\iota_{0}(u, b)=\iota_{1}(u, b)$ for every vertex u of T, and every non-negative integer b with $b \leq \iota_{\max }\left(V_{u}\right)$.
Apart from the specific values of $x_{0}(u, b)$ and $x_{1}(u, b)$, the arguments in the proof of Lemma 2.3 also yield feasible recursive choices for $\iota_{0}(u, b)$. In fact, if

$$
x_{0}(u, b)=\delta_{0}\left(b_{u}, b_{1}, \ldots, b_{k}\right)+\sum_{i=1}^{k} x_{1}\left(v_{i}, b_{i}\right)>-\infty
$$

for $\left(b_{u}, b_{1}, \ldots, b_{k}\right) \in \mathcal{P}_{k+1}(b)$ with $b_{u} \leq \iota_{\max }(u)$, and ι_{u} is as in (6), then $\iota_{u}+\sum_{i=1}^{k} \iota_{0}\left(v_{i}, b_{i}\right)$ is a feasible choice for $\iota_{0}(u, b)$.

Our next lemma explains how to efficiently compute the expressions in Lemma 2.3.

Lemma 2.5. Let u be a vertex of T that is not a leaf, let b be a non-negative integer with $b \leq \iota_{\max }\left(V_{u}\right)$, and let v_{1}, \ldots, v_{k} be the children of u. If the values $x_{1}\left(v_{i}, b_{i}\right)$ are given for every $i \in[k]$ and every non-negative integer b_{i} with $b_{i} \leq \iota_{\max }\left(V_{v_{i}}\right)$, then $x_{0}(u, b)$ and $x_{1}(u, b)$ can be computed in time $O\left(k^{2}(b+1)^{2}\right)$.

Proof. By symmetry, it suffices to explain how to compute $z_{0}(u, b)$.
For $p \in\{0\} \cup[k]$, an integer $p_{=}$, an integer $b^{\prime} \in\{0\} \cup[b]$, and $b_{u} \in\{0\} \cup\left[\min \left\{\iota_{\max }(u), b^{\prime}\right\}\right]$, let $M\left(p, p_{=}, b^{\prime}, b_{u}\right)$ be defined as the maximum of the expression $\sum_{i=1}^{p} x_{1}\left(v_{i}, b_{i}\right)$ over all $\left(b_{1}, \ldots, b_{p}\right) \in \mathcal{P}_{p}\left(b^{\prime}-b_{u}\right)$ such that $p_{=}$equals $\left|\left\{i \in[p]: x_{0}\left(v_{i}, b_{i}\right)=x_{1}\left(v_{i}, b_{i}\right)\right\}\right|$. Clearly, $M\left(p, p_{=}, b^{\prime}, b_{u}\right)=-\infty$ if $p<p_{=}$or $p_{=}<0$ or $b^{\prime}-b_{u}>\sum_{i=1}^{p} \iota_{\max }\left(V_{v_{i}}\right)$, and

$$
M\left(0,0, b^{\prime}, b_{u}\right)= \begin{cases}0 & , \text { if } b^{\prime}=b_{u}, \text { and } \\ -\infty & , \text { otherwise }\end{cases}
$$

For $p \in[k]$, the value of $M\left(p, p_{=}, b^{\prime}, b_{u}\right)$ is the maximum of the following two values:

- The maximum of $M\left(p-1, p_{=}-1, b_{\leq p-1}, b_{u}\right)+x_{1}\left(v_{p}, b_{p}\right)$ over all $\left(b_{\leq p-1}, b_{p}\right) \in \mathcal{P}_{2}\left(b^{\prime}-b_{u}\right)$ with $x_{0}\left(v_{p}, b_{p}\right)=x_{1}\left(v_{p}, b_{p}\right)$, and
- the maximum of $M\left(p-1, p_{=}, b_{\leq p-1}, b_{u}\right)+x_{1}\left(v_{p}, b_{p}\right)$ over all $\left(b_{\leq p-1}, b_{p}\right) \in \mathcal{P}_{2}\left(b^{\prime}-b_{u}\right)$ with $x_{0}\left(v_{p}, b_{p}\right)>$ $x_{1}\left(v_{p}, b_{p}\right)$,
which implies that $M\left(p, p_{=}, b^{\prime}, b_{u}\right)$ can be determined in $O\left(b^{\prime}+1\right)$ time given the values

$$
M\left(p-1, p_{=}, b_{\leq p-1}, b_{u}\right), M\left(p-1, p_{=}-1, b_{\leq p-1}, b_{u}\right), x_{0}\left(v_{p}, b_{p}\right), \text { and } x_{1}\left(v_{p}, b_{p}\right)
$$

Altogether, the values $M\left(k, p_{=}, b, b_{u}\right)$ for all $p_{=} \in\{0\} \cup[k]$ can be determined in time $O\left(k^{2}(b+1)\right)$.
For $b_{u} \in\{0\} \cup\left[\min \left\{\iota_{\max }(u), b\right\}\right]$, let $m\left(b_{u}\right)$ be the maximum of the two expressions

$$
1+\max \left\{M\left(k, p_{=}, b, b_{u}\right): p_{=} \in\{0\} \cup\left[\tau(u)-b_{u}-1\right]\right\}
$$

and

$$
\max \left\{M\left(k, p_{=}, b, b_{u}\right): p_{=} \in[k] \backslash\left[\tau(u)-b_{u}-1\right]\right\} .
$$

Now, by the definition of $\delta_{0}\left(b_{u}, b_{1}, \ldots, b_{k}\right)$, the value of $z_{0}(u, b)$ equals $\max \left\{m\left(b_{u}\right): b_{u} \in\{0\} \cup\right.$ $\left.\left[\min \left\{\iota_{\max }(u), b\right\}\right]\right\}$. Hence, $z_{0}(u, b)$ can be computed in time $O\left(k^{2}(b+1)^{2}\right)$.

We proceed to the proof of our first theorem.

Proof of Theorem 1.1. Let $\left(T, \tau, \iota_{\max }, b\right)$ be given as in the statement. Let

$$
b^{*}=\sum_{u \in V(T)} \min \left\{\iota_{\max }(u), \max \left\{d_{T}(u)+1-\tau(u), 0\right\}\right\} .
$$

Since $d_{T}(u)+1 \leq n$ and $\tau(u) \geq 0$ for every vertex u of T, we have $b^{*} \leq n^{2}$.
We consider two cases.
Case $1 b \geq b^{*}$.
Let $\iota^{*} \in \mathbb{N}_{0}^{V(T)}$ be such that

$$
\iota^{*}(u)=\min \left\{\iota_{\max }(u), \max \left\{d_{T}(u)+1-\tau(u), 0\right\}\right\}
$$

for every vertex u of T. Since $b \leq \iota_{\max }(V(T))$, there is a function $\iota \in \mathbb{N}_{0}^{V(T)}$ with $\iota^{*} \leq \iota$ and $\iota(V(T))=b$. We claim that

$$
\begin{equation*}
\operatorname{vacc}\left(T, \tau, \iota_{\max }, b\right)=\operatorname{dyn}\left(T, \tau+\iota^{*}\right)=\operatorname{dyn}(T, \tau+\iota), \tag{7}
\end{equation*}
$$

that is, the function ι that can be computed in linear time optimally solves the problem, and $\operatorname{vacc}\left(T, \tau, \iota_{\max }, b\right)$ can be computed in linear time using the linear time algorithms for dyn $\left(T, \tau+\iota^{*}\right)$ given in $[5,6]$.

In order to show (7), let u be a vertex of T. If $\iota_{\max }(u) \leq \max \left\{d_{T}(u)+1-\tau(u), 0\right\}$, then $\iota(u)=\iota^{*}(u)=$ $\iota_{\max }(u)$, which is the largest possible choice for $\iota(u)$ permitted by $\iota_{\max }$. If $\iota_{\max }(u)>\max \left\{d_{T}(u)+1-\tau(u), 0\right\}$, then $\tau(u)+\iota(u) \geq d_{T}(u)+1$. Since every threshold value for u that is at least $d_{T}(u)+1$ is equivalent for the infection process captured by the considered model, it follows that $\iota(u)$ is either equal to the upper bound $\iota_{\max }(u)$ or such that larger values would not affect the optimal size of the dynamic monopolies. Altogether, we obtain (7), which completes the proof in this case.
Case $2 b<b^{*}$.
Lemmas 2.2-2.5 imply that the values of $x_{0}\left(u, b^{\prime}\right)$ and of $x_{1}\left(u, b^{\prime}\right)$ for all $u \in V(T)$ and all $b^{\prime} \in\{0\} \cup[b]$ can be determined in time

$$
O\left(\sum_{u \in V(T)} d_{T}(u)^{2}(b+1)^{2}\right)
$$

It is a simple folklore exercise that $\sum_{u \in V(T)} d_{T}(u)^{2} \leq n^{2}-n$ for every tree T of order n, which implies that the overall running time is $O\left(n^{2}(b+1)^{2}\right)$. Since $\operatorname{vacc}\left(T, \tau, \iota_{\max }, b\right)=x_{0}(r, b)$, the statement about the value of $\operatorname{vacc}\left(T, \tau, \iota_{\max }, b\right)$ follows. The statement about the increment ι follows easily from the remark after Corollary 2.4 concerning the function $\iota_{0}(u, b)$, and the proof of Lemma 2.5, where, next to the values $M\left(p, p_{=}, b^{\prime}, b_{u}\right)$, one may also memorize suitable increments. This completes the proof in this case.

Since in Case 1, we have a linear running time, and in Case 2, we have running time $O\left(n^{2}(b+1)^{2}\right)$ and $b<b^{*} \leq n^{2}$, the overall running time is $O\left(n^{2}\left(\min \left\{b, n^{2}\right\}+1\right)^{2}\right)$.

We conclude with the proof of our second theorem.
Proof of Theorem 1.4. Let G be an r-regular graph of order n, and let b be an integer with $(2 r-1)(r+1) \leq$ $b \leq r n=2 m(G)$.

Let $\iota \in \mathbb{N}_{0}^{V(G)}$ with $\iota \leq d_{G}$ and $\iota(V(G))=b$ be such that $\operatorname{vacc}\left(G, 0, d_{G}, b\right)=\operatorname{dyn}(G, \iota)$. By a result of Ackerman et al. [7],

$$
\operatorname{vacc}\left(G, 0, d_{G}, b\right)=\operatorname{dyn}(G, \iota) \leq \sum_{u \in V(G)} \frac{\iota(u)}{d_{G}(u)+1}=\frac{\iota(V(G))}{r+1}=\frac{b}{r+1}
$$

First, suppose that the matching number ν of G satisfies $2 r \nu>b$. In this case, G has a matching M with $\tau_{M}(V(G))=2 r|M| \leq b$ and $2 r(|M|+1) \geq b+1$, where τ_{M} is as in the statement. We obtain $2 \operatorname{dyn}\left(G, \tau_{M}\right) \geq 2|M| \geq 2\left(\frac{b+1}{2 r}-1\right) \geq \frac{b}{r+1} \geq \operatorname{vacc}\left(G, 0, d_{G}, b\right)$. Next, suppose that $2 r \nu \leq b$. If M is a maximum matching and D is a minimum vertex cover, then $|D| \leq 2|M|$. Since D is a dynamic monopoly of $\left(G, d_{G}\right)$, we obtain $2 \operatorname{dyn}\left(G, \tau_{M}\right) \geq 2|M| \geq|D| \geq \operatorname{dyn}\left(G, d_{G}\right) \geq \operatorname{vacc}\left(G, 0, d_{G}, b\right)$, that is, $2 \operatorname{dyn}\left(G, \tau_{M}\right) \geq \operatorname{vacc}\left(G, 0, d_{G}, b\right)$ holds in both cases.

References

[1] D. Kempe, J. Kleinberg, E. Tardos, Maximizing the spread of influence through a social network, Theory Comput. 11 (2015) 105-147.
[2] P.A. Dreyer Jr., F.S. Roberts, Irreversible k-threshold processes: Graph-theoretical threshold models of the spread of disease and of opinion, Discrete Appl. Math. 157 (2009) 1615-1627.
[3] P. Domingos, M. Richardson, Mining the network value of customers, in: Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2001, pp. 57-66.
[4] K. Khoshkhah, M. Zaker, On the largest dynamic monopolies of graphs with a given average threshold, Canad. Math. Bull. 58 (2015) 306-316.
[5] N. Chen, On the approximability of influence in social networks, SIAM J. Discrete Math. 23 (2009) 1400-1415.
[6] C.C. Centeno, M.C. Dourado, L.D. Penso, D. Rautenbach, J.L. Szwarcfiter, Irreversible conversion of graphs, Theoret. Comput. Sci. 412 (2011) 3693-3700.
[7] E. Ackerman, O. Ben-Zwi, G. Wolfovitz, Combinatorial model and bounds for target set selection, Theoret. Comput. Sci. 411 (2010) 4017-4022.
[8] M. Gentner, D. Rautenbach, Dynamic monopolies for degree proportional thresholds in connected graphs of girth at least five and trees, Theoret. Comput. Sci. 667 (2017) 93-100.
[9] C.-L. Chang, Y.-D. Lyuu, Triggering cascades on strongly connected directed graphs, Theoret. Comput. Sci. 593 (2015) 62-69.
[10] F. Cicalese, G. Cordasco, L. Gargano, M. Milanič, J. Peters, U. Vaccaro, Spread of influence in weighted networks under time and budget constraints, Theoret. Comput. Sci. 586 (2015) 40-58.
[11] C.-Y. Chiang, L.-H. Huang, B.-J. Li, J. Wu, H.-G. Yeh, Some results on the target set selection problem, J. Comb. Optim. 25 (2013) 702-715.
[12] O. Ben-Zwi, D. Hermelin, D. Lokshtanov, I. Newman, Treewidth governs the complexity of target set selection, Discrete Optim. 8 (2011) 87-96.
[13] C.C. Centeno, D. Rautenbach, Remarks on dynamic monopolies with given average thresholds, Discuss. Math. Graph Theory 35 (2015) 133-140.
[14] S. Ehard, D. Rautenbach, Vaccinate your trees!, Theoret. Comput. Sci. 772 (2019) 46-57, http://dx.doi.org/10.1016/j. tcs.2018.11.018.
[15] K. Bhawalkar, J. Kleinberg, K. Lewi, T. Roughgarden, A. Sharma, Preventing unraveling in social networks: the anchored k-core problem, SIAM J. Discrete Math. 29 (2015) 1452-1475.
[16] T. Britton, S. Janson, A. Martin-Löf, Graphs with specified degree distributions, simple epidemics, and local vaccination strategies, Adv. Appl. Probab. 39 (2007) 922-948.
[17] M. Deijfen, Epidemics and vaccination on weighted graphs, Math. Biosci. 232 (2011) 57-65.

[^0]: * Corresponding author.

 E-mail addresses: mitre@dcc.ufrj.br (M.C. Dourado), stefan.ehard@uni-ulm.de (S. Ehard), lucia.penso@uni-ulm.de (L.D. Penso), dieter.rautenbach@uni-ulm.de (D. Rautenbach).
 ${ }_{1}$ Partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil, Grant number 303546/2016-6.

