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a b s t r a c t

For a graph G and a non-negative integer-valued function τ on its vertex set,
a dynamic monopoly is a set of vertices of G such that iteratively adding to
it vertices u of G that have at least τ(u) neighbors in it eventually yields the
vertex set of G. We study the problem of maximizing the minimum order of a
dynamic monopoly by increasing the threshold values of individual vertices subject
to vertex-dependent lower and upper bounds, and fixing the total increase. We
solve this problem efficiently for trees, which extends a result of Khoshkhah and
Zaker (2015).

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

As a simple model for an infection process within a network [1–3] one can consider a graph G in which each
vertex u is assigned a non-negative integral threshold value τ(u) quantifying how many infected neighbors
of u are required to spread the infection to u. In this setting, a dynamic monopoly of (G, τ) is a set D of
vertices such that an infection starting in D spreads to all of G, and the smallest order dyn(G, τ) of such a
dynamic monopoly measures the vulnerability of G for the given threshold values.

Khoshkhah and Zaker [4] consider the maximum of dyn(G, τ) over all choices for the function τ such that
the average threshold is at most some positive real τ̄ . They show that this maximum equals

max
{

k :
k∑

i=1
(dG(ui) + 1) ≤ n(G)τ̄

}
, (1)

where u1, . . . , un(G) is a linear ordering of the vertices of G with non-decreasing vertex degrees dG(u1) ≤
· · · ≤ dG(un(G)). To obtain this simple formula one has to allow dG(u)+1 as a threshold value for vertices u,
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a value that makes these vertices completely immune to the infection, and forces every dynamic monopoly
to contain them. Requiring τ(u) ≤ dG(u) for every vertex u of G leads to a harder problem; Khoshkhah and
Zaker [4] show hardness for planar graphs and describe an efficient algorithm for trees. In the present paper
we consider their problem with additional vertex-dependent lower and upper bounds on the threshold values.
As our main result, we describe an efficient algorithm for trees based on a completely different approach than
the one in [4].

In order to phrase the problem and our results exactly, and to discuss further related work, we introduce
some terminology. Let G be a finite, simple, and undirected graph. A threshold function for G is a function
from the vertex set V (G) of G to the set N0 of non-negative integers. Let τ ∈ NV (G)

0 be a threshold function
for G. For a set D of vertices of G, the hull H(G,τ)(D) of D in (G, τ) is the smallest set H of vertices of G

such that D ⊆ H, and u ∈ H for every vertex u of G with |H ∩ NG(u)| ≥ τ(u). Clearly, the set H(G,τ)(D) is
obtained by starting with D, and iteratively adding vertices u that have at least τ(u) neighbors in the current
set as long as possible. With this notation, the set D is a dynamic monopoly of (G, τ) if H(G,τ)(D) equals the
vertex set of G, and dyn(G, τ) is the minimum order of such a set. A dynamic monopoly of (G, τ) of order
dyn(G, τ) is minimum. The parameter dyn(G, τ) is computationally hard [5,6]; next to general bounds [7–9]
efficient algorithms are only known for essentially tree-structured instances [5,6,10–12].

We can now phrase the problem we consider: For a given graph G, two functions τ, ιmax ∈ NV (G)
0 , and a

non-negative integer budget b, let vacc(G, τ, ιmax, b) be defined as

max
{

dyn(G, τ + ι) : ι ∈ NV (G)
0 , ι ≤ ιmax, and ι(V (G)) = b

}
, (2)

where inequalities between functions are meant pointwise, and ι(V (G)) =
∑

u∈V (G) ι(u). The function ι is
the increment of the original threshold function τ . The final threshold function τ + ι must lie between τ and
τ +ιmax, which allows to incorporate vertex-dependent lower and upper bounds. Note that no such increment
ι exists if ιmax(V (G)) is strictly less than b, in which case vacc(G, τ, ιmax, b) equals max ∅ = −∞. Note that
we require ι(V (G)) = b in (2), which determines the average final threshold as (τ(V (G)) + b)/n(G). Since
dyn(G, ρ) ≤ dyn(G, ρ′) for every two threshold functions ρ and ρ′ for G with ρ ≤ ρ′, for ιmax(V (G)) ≥ b,
the value in (2) remains the same when replacing ‘ι(V (G)) = b’ with ‘ι(V (G)) ≤ b’ provided that
b ≤ ιmax(V (G)).

The results of Khoshkhah and Zaker [4] mentioned above can be phrased by saying

(i) that vacc(G, 0, dG + 1, n(G)τ̄) equals (1) whenever n(G)τ̄ is a non-negative integer at most∑
u∈V (G)(dG(u) + 1) = 2m(G) + n(G), where m(G) is the size of G, and

(ii) that vacc(T, 0, dT , b) can be determined efficiently whenever T is a tree.

Our main result is the following.

Theorem 1.1. For a given tuple (T, τ, ιmax, b), where T is a tree of order n, τ, ιmax ∈ NV (G)
0 , and b is a

non-negative integer with b ≤ ιmax(V (T )), the value vacc(T, τ, ιmax, b) as well as an increment ι ∈ NV (G)
0

with ι ≤ ιmax and ι(V (G)) = b such that vacc(T, τ, ιmax, b) = dyn (T, τ + ι) can be determined in time
O

(
n2

(
min{b, n2} + 1

)2
)

.

While our approach relies on dynamic programming, Khoshkhah and Zaker show (ii) using the following
result in combination with a minimum cost flow algorithm.

Theorem 1.2 (Khoshkhah and Zaker [4]). For a given tree T , and a given non-negative integer b with
b ≤ 2m(T ), there is a matching M of T such that vacc(T, 0, dT , b) = dyn(G, τM ) and τM (V (T )) ≤ b, where

τM : V (T ) → Z : u ↦→

{
dT (u) , u is incident with a vertex in M, and
0 , otherwise.
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We believe that the threshold function τM considered in Theorem 1.2 is a good choice in general, and
pose the following.

Conjecture 1.3. For a given graph G, and a given non-negative integer b with b ≤ 2m(G), there is
a matching M of G such that vacc(G, 0, dG, b) ≤ 2dyn(G, τM ) and τM (V (G)) ≤ b, where τM is as in
Theorem 1.2 (with T replaced by G).

As a second result we show Conjecture 1.3 for some regular graphs.

Theorem 1.4. Conjecture 1.3 holds if G is r-regular and b ≥ (2r − 1)(r + 1).

Before we proceed to the proofs of Theorems 1.1 and 1.4, we mention some further related work. Centeno
and Rautenbach [13] establish bounds for the problems considered in [4]. In [14], Ehard and Rautenbach
consider the following two variants of (2) for a given triple (G, τ, b), where G is a graph, τ is a threshold
function for G, and b is a non-negative integer:

max
{

dyn(G − X, τ) : X ∈
(

V (G)
b

)}
and max

{
dyn(G, τX) : X ∈

(
V (G)

b

)}
,

where

τX(u) =
{

dG(u) + 1 , if u ∈ X,
τ(u) , if u ∈ V (G) \ X,

and
(

V (G)
b

)
denotes the set of all b-element subsets of V (G). For both variants, they describe efficient

algorithms for trees. In [15] Bhawalkar et al. study so-called anchored k-cores. For a given graph G, and
a positive integer k, the k-core of G is the largest induced subgraph of G of minimum degree at least k. It is
easy to see that the vertex set of the k-core of G equals V (G) \ H(G,τ)(∅) for the special threshold function
τ = dG − k + 1. Now, the anchored k-core problem [15] is to determine

max
{⏐⏐⏐V (G) \ H(G,τX )(∅)

⏐⏐⏐ : X ∈
(

V (G)
b

)}
, (3)

for a given graph G and non-negative integer b. Bhawalkar et al. show that (3) is hard to approximate
in general, but can be determined efficiently for k = 2, and for graphs of bounded treewidth. Vaccination
problems in random settings were studied in [1,16,17].

2. Proofs of Theorems 1.1 and 1.4

Throughout this section, let T be a tree rooted in some vertex r, and let τ, ιmax ∈ NV (T )
0 be two functions.

For a vertex u of T , and a function ρ ∈ NV (T )
0 , let Vu be the subset of V (T ) containing u and its descendants,

let Tu be the subtree of T induced by Vu, and let ρ→u ∈ NV (T )
0 be the function with

ρ→u(v) =
{

ρ(v) , if v ∈ V (T ) \ {u}, and
max

{
ρ(v) − 1, 0

}
, if v = u.

Below we consider threshold functions of the form ρ|Vu+ρ′|Vu for the subtrees Tu, where ρ and ρ′ are defined
on sets containing Vu. For notational simplicity, we omit the restriction to Vu and write ‘ρ + ρ′’ instead of
‘ρ|Vu + ρ′|Vu’ in these cases. For an integer k and a non-negative integer b, let [k] be the set of positive
integers at most k, and let

Pk(b) =
{

(b1, . . . , bk) ∈ Nk
0 : b1 + · · · + bk = b

}
be the set of ordered partitions of b into k non-negative integers.
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Our approach to show Theorem 1.1 is similar as in [14] and relies on recursive expressions for the following
two quantities: For a vertex u of T and a non-negative integer b, let

• x0(u, b) be the maximum of dyn(Tu, τ + ι) over all ι ∈ NVu
0 with ι(v) ≤ ιmax(v) for every v ∈ Vu, and

ι(Vu) = b, and
• x1(u, b) be the maximum of dyn (Tu, (τ + ι)→u) over all ι ∈ NVu

0 with ι(v) ≤ ιmax(v) for every v ∈ Vu,
and ι(Vu) = b.

The increment ι captures the local increases of the thresholds within Vu. The value x1(u, b) corresponds to
a situation, where the infection reaches the parent of u before it reaches u, that is, the index 0 or 1 indicates
the amount of help that u receives from outside of Vu. Note that going from τ + ι to (τ + ι)→u, the value at
the vertex u is only reduced by 1 if τ(u) + ι(u) is positive.

If b > ιmax(Vu), then no function ι as in the definition of x0(u, b) and x1(u, b) exists, that is, these two
values are max ∅ = −∞. Conversely, if b ≤ ιmax(Vu), then there are feasible choices for ι, and x0(u, b) and
x1(u, b) are both non-negative integers. In this case we fix optimal choices for the function ι. More precisely,
if b ≤ ιmax(Vu), then let ι0(u, b), ι1(u, b) ∈ NVu

0 with ιj(u, b) ≤ ιmax, and ιj(u, b)(Vu) = b for both j ∈ {0, 1},
be such that

x0(u, b) = dyn
(

Tu, τ + ι0(u, b)
)

and

x1(u, b) = dyn
(

Tu,
(

τ + ι1(u, b)
)→u)

.

Whenever this is possible, we choose ι0(u, b) equal to ι1(u, b). As we show in Corollary 2.4, ι0(u, b) always
equals ι1(u, b), which is rather surprising and a key fact for our approach.

Lemma 2.1. x0(u, b) ≥ x1(u, b), and if x0(u, b) = x1(u, b), then ι0(u, b) = ι1(u, b).

Proof. If x1(u, b) = −∞, then the statement is trivial. Hence, we may assume that x1(u, b) > −∞, which
implies that the function ι1(u, b) is defined. Let D be a minimum dynamic monopoly of (Tu, τ + ι1(u, b)). By
the definition of x0(u, b), we have x0(u, b) ≥ |D|. Since D is a dynamic monopoly of (Tu, (τ + ι1(u, b))→u),
we obtain x0(u, b) ≥ |D| ≥ dyn (Tu, (τ + ι1(u, b))→u) = x1(u, b). Furthermore, if x0(u, b) = x1(u, b), then
x0(u, b) = |D| = dyn (Tu, τ + ι1(u, b)), which implies ι0(u, b) = ι1(u, b). □

Lemma 2.2. If u is a leaf of T , and b is a non-negative integer with b ≤ ιmax(u), then, for j ∈ {0, 1},

xj(u, b) =
{

0 , if τ(u) + b − j ≤ 0,
1 , otherwise, and

ιj(u, b)(u) = b.

Proof. These equalities follow immediately from the definitions. □

The following rather technical lemma is the core statement for our dynamic programming approach (see
Fig. 1).

Lemma 2.3. Let u be a vertex of T that is not a leaf, and let b be a non-negative integer. If v1, . . . , vk are the
children of u, and ι0(vi, bi) = ι1(vi, bi) for every i ∈ [k] and every non-negative integer bi with bi ≤ ιmax(Vvi

),
then, for j ∈ {0, 1},

xj(u, b) = zj(u, b), and (4)
ι0(u, b) = ι1(u, b), if b ≤ ιmax(Vu), (5)
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Fig. 1. The situation considered in Lemma 2.3. The total budget of b available on Tu is distributed to u and to the subtrees of Tu

rooted in the children of u. The vertex u may have a parent.

where zj(u, b) is defined as

max
{

δj(bu, b1, . . . , bk) +
k∑

i=1
x1(vi, bi) : (bu, b1, . . . , bk) ∈ Pk+1(b) with bu ≤ ιmax(u)

}
,

and, for (bu, b1, . . . , bk) ∈ Pk+1(b) with bu ≤ ιmax(u),

δj(bu, b1, . . . , bk) :=
{

0 , if
⏐⏐⏐{i ∈ [k] : x0(vi, bi) = x1(vi, bi)

}⏐⏐⏐ ≥ τ(u) + bu − j, and
1 , otherwise.

Proof. By symmetry, it suffices to consider the case j = 0.
First, suppose that b > ιmax(Vu). If (bu, b1, . . . , bk) ∈ Pk+1(b) with bu ≤ ιmax(u), then bi > ιmax(Vvi

) for
some i ∈ [k], which implies z0(u, b) = −∞ = x0(u, b).

Now, let b ≤ n(Tu), which implies x0(u, b) > −∞. The following two claims complete the proof of (4).

Claim 1. x0(u, b) ≥ z0(u, b).

Proof of Claim 1. It suffices to show that x0(u, b) ≥ δ0(bu, b1, . . . , bk) +
∑k

i=1 x1(vi, bi) for every choice of
(bu, b1, . . . , bk) in Pk+1(b) with bu ≤ ιmax(u) and bi ≤ ιmax(Vvi

) for every i ∈ [k]. Let (bu, b1, . . . , bk) be one
such an element. Let ιu ∈ NVu

0 be defined as

ιu(v) =
{

bu , if v = u, and
0 , otherwise,

(6)

and let ι = ιu +
∑k

i=1 ι1(vi, bi), where ι1(vi, bi)(u) is set to 0 for every i ∈ [k]. Since ι(Vu) = b and
0 ≤ ι ≤ ιmax, we have x0(u, b) ≥ dyn(Tu, τ + ι).

Let D be a minimum dynamic monopoly of (Tu, τ + ι), that is, |D| ≤ x0(u, b). For each i ∈ [k], it follows
that the set Di = D ∩ Vvi

is a dynamic monopoly of
(
Tvi

, (τ + ι)→vi
)
. Since, restricted to Vvi

, the two
functions (τ + ι)→vi and (τ + ι1(vi, bi))→vi coincide, we obtain

|Di| ≥ dyn
(

Tvi
,
(

τ + ι1(vi, bi)
)→vi

)
≥ x1(vi, bi).

If δ0(bu, b1, . . . , bk) = 0, then |D| ≥
∑k

i=1 |Di| ≥ δ0(bu, b1, . . . , bk) +
∑k

i=1 x1(vi, bi). Similarly, if u ∈ D, then
|D| = 1+

∑k
i=1 |Di| ≥ δ0(bu, b1, . . . , bk)+

∑k
i=1 x1(vi, bi). Therefore, we may assume that δ0(bu, b1, . . . , bk) =

1 and that u ̸∈ D. This implies that there is some ℓ ∈ [k] with x0(vℓ, bℓ) > x1(vℓ, bℓ) such that Dℓ = D ∩ Vvℓ

is a dynamic monopoly of
(
Tvℓ

, τ + ι
)
. Since, by assumption, ι0(vℓ, bℓ) = ι1(vℓ, bℓ), we obtain that, restricted
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to Vvℓ
, the two functions τ + ι and τ + ι0(vℓ, bℓ) coincide, which implies |Dℓ| ≥ dyn

(
Tvℓ

, τ + ι0(vℓ, bℓ)
)

=
x0(vℓ, bℓ) ≥ 1 + x1(vℓ, bℓ). Therefore, also in this case, |D| = |Dℓ| +

∑
i∈[k]\{ℓ} |Di| ≥ δ0(bu, b1, . . . , bk) +∑k

i=1 x1(vi, bi). □

Claim 2. x0(u, b) ≤ z0(u, b).

Proof of Claim 2. Let ι = ι0(u, b), that is, x0(u, b) = dyn(Tu, τ + ι). Let bi = ι(Vvi
) for every i ∈ [k], and

let bu = b −
∑k

i=1 bi. Clearly, (bu, b1, . . . , bk) ∈ Pk+1(b) and bu ≤ ιmax(u). Let Di be a minimum dynamic
monopoly of

(
Tvi

, (τ + ι)→vi
)

for every i ∈ [k]. By the definition of x1(vi, bi), we obtain |Di| ≤ x1(vi, bi).
Let D = {u} ∪

⋃k
i=1 Di. The set D is a dynamic monopoly of (Tu, τ + ι), which implies x0(u, b) ≤ |D|.

If δ0(bu, b1, . . . , bk) = 1, then

x0(u, b) ≤ |D| = 1 +
k∑

i=1
|Di| ≤ δ0(bu, b1, . . . , bk) +

k∑
i=1

x1(vi, bi) ≤ z0(u, b).

Therefore, we may assume that δ0(bu, b1, . . . , bk) = 0. By symmetry, we may assume that x0(vi, bi) =
x1(vi, bi) for every i ∈ [τ(u) + bu]. Let D′

i be a minimum dynamic monopoly of
(
Tvi

, τ + ι
)

for every
i ∈ [τ(u) + bu]. By the definition of x0(vi, bi), we obtain |D′

i| ≤ x0(vi, bi) = x1(vi, bi). Let D′ =⋃
i∈[τ(u)+bu] D′

i ∪
⋃

i∈[k]\[τ(u)+bu] Di. The set D′ is a dynamic monopoly of (Tu, τ + ι). This implies

x0(u, b) ≤ |D′| =
∑

i∈[τ(u)+bu]

|D′
i| +

∑
i∈[k]\[τ(u)+bu]

|Di| ≤
∑
i∈[k]

x1(vi, bi) ≤ z0(u, b),

which completes the proof of the claim. □

It remains to show (5). If x0(u, b) = x1(u, b), then (5) follows from Lemma 2.1. Hence, we may assume
that x0(u, b) > x1(u, b). Since, by definition,

δ1(bu, b1, . . . , bk) ≤ δ0(bu, b1, . . . , bk) ≤ δ1(bu, b1, . . . , bk) + 1

for every (bu, b1, . . . , bk) ∈ Pk+1(b) with bu ≤ ιmax(u), we obtain z1(u, b) ≤ z0(u, b) ≤ z1(u, b) + 1. Together
with (4), the inequality x0(u, b) > x1(u, b) implies that

x0(u, b) = z0(u, b) > z1(u, b) = x1(u, b) and
z1(u, b) = z0(u, b) − 1.

Let (bu, b1, . . . , bk) ∈ Pk+1(b) with bu ≤ ιmax(u) be such that

z0(u, b) = δ0(bu, b1, . . . , bk) +
k∑

i=1
x1(vi, bi).

We obtain

z1(u, b) ≥ δ1(bu, b1, . . . , bk) +
k∑

i=1
x1(vi, bi)

≥ δ0(bu, b1, . . . , bk) − 1 +
k∑

i=1
x1(vi, bi)

= z0(u, b) − 1
= z1(u, b),
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which implies z1(u, b) = δ1(bu, b1, . . . , bk) +
∑k

i=1 x1(vi, bi), that is, the same choice of (bu, b1, . . . , bk) in
Pk+1(b) with bu ≤ ιmax(u) maximizes the terms defining z0(u, b) and z1(u, b).

Since z0(u, b) > z1(u, b), we obtain δ1(bu, b1, . . . , bk) = 0 and δ0(bu, b1, . . . , bk) = 1, which, by the
definition of δj , implies that there are exactly τ(u) + bu − 1 indices i in [k] with x0(vi, bi) = x1(vi, bi).
By symmetry, we may assume that x0(vi, bi) = x1(vi, bi) for i ∈ [τ(u) + bu − 1] and x0(vi, bi) > x1(vi, bi) for
i ∈ [k] \ [τ(u) + bu − 1].

Let ι = ιu +
∑k

i=1 ι0(vi, bi), where ι0(vi, bi)(u) is set to 0 for every i ∈ [k] and ιu is as in (6). Note that,
by assumption, we have ι = ιu +

∑k
i=1 ι1(vi, bi). Let D be a minimum dynamic monopoly of (Tu, τ + ι). By

the definition of x0(u, b), we have |D| ≤ x0(u, b). Let Di = D ∩ Vvi
for every i ∈ [k]. Since Di is a dynamic

monopoly of
(
Tvi

, (τ + ι)→vi
)

for every i ∈ [k], we obtain |Di| ≥ x1(vi, bi). Note that

• either u ∈ D,
• or u ̸∈ D and there is some index ℓ ∈ [k] \ [τ(u) + bu − 1] such that Dℓ = D ∩ Vvℓ

is a dynamic monopoly
of (Tvℓ

, τ + ι).

In the first case, we obtain

z0(u, b) = x0(u, b) ≥ |D| = 1 +
k∑

i=1
|Di| ≥ 1 +

k∑
i=1

x1(vi, bi) = z0(u, b),

and, in the second case, we obtain |Dℓ| ≥ x0(vℓ, bℓ) ≥ x1(vℓ, bℓ) + 1, and, hence,

z0(u, b) = x0(u, b) ≥ |D| = |Dℓ| +
∑

i∈[k]\{ℓ}

|Di| ≥ 1 +
k∑

i=1
x1(vi, bi) = z0(u, b).

In both cases we obtain |D| = x0(u, b), which implies that ι0(u, b) may be chosen equal to ι.
Now, let D− be a minimum dynamic monopoly of (Tu, (τ + ι)→u). By the definition of x1(u, b), we have

|D−| ≤ x1(u, b). Let D−
i = D− ∩ Vvi

for every i ∈ [k]. Since D−
i is a dynamic monopoly of

(
Tvi

, (τ + ι)→vi
)

for every i ∈ [k], we obtain |D−
i | ≥ x1(vi, bi). Now,

z1(u, b) = x1(u, b) ≥ |D−| ≥
k∑

i=1
x1(vi, bi) = z1(u, b),

which implies that |D−| = x1(u, b), and that ι1(u, b) may be chosen equal to ι. Altogether, the two functions
ι0(u, b) and ι1(u, b) may be chosen equal, which implies (5). □

Applying induction using Lemmas 2.2 and 2.3, we obtain the following.

Corollary 2.4. ι0(u, b) = ι1(u, b) for every vertex u of T , and every non-negative integer b with b ≤ ιmax(Vu).

Apart from the specific values of x0(u, b) and x1(u, b), the arguments in the proof of Lemma 2.3 also yield
feasible recursive choices for ι0(u, b). In fact, if

x0(u, b) = δ0(bu, b1, . . . , bk) +
k∑

i=1
x1(vi, bi) > −∞

for (bu, b1, . . . , bk) ∈ Pk+1(b) with bu ≤ ιmax(u), and ιu is as in (6), then ιu +
∑k

i=1 ι0(vi, bi) is a feasible
choice for ι0(u, b).

Our next lemma explains how to efficiently compute the expressions in Lemma 2.3.
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Lemma 2.5. Let u be a vertex of T that is not a leaf, let b be a non-negative integer with b ≤ ιmax(Vu), and
let v1, . . . , vk be the children of u. If the values x1(vi, bi) are given for every i ∈ [k] and every non-negative
integer bi with bi ≤ ιmax(Vvi

), then x0(u, b) and x1(u, b) can be computed in time O
(
k2(b + 1)2)

.

Proof. By symmetry, it suffices to explain how to compute z0(u, b).
For p ∈ {0} ∪ [k], an integer p=, an integer b′ ∈ {0} ∪ [b], and bu ∈ {0} ∪ [min{ιmax(u), b′}], let

M(p, p=, b′, bu) be defined as the maximum of the expression
∑p

i=1 x1(vi, bi) over all (b1, . . . , bp) ∈ Pp(b′−bu)
such that p= equals

⏐⏐⏐{i ∈ [p] : x0(vi, bi) = x1(vi, bi)
}⏐⏐⏐. Clearly, M(p, p=, b′, bu) = −∞ if p < p= or p= < 0

or b′ − bu >
∑p

i=1 ιmax(Vvi
), and

M(0, 0, b′, bu) =
{

0 , if b′ = bu, and
−∞ , otherwise.

For p ∈ [k], the value of M(p, p=, b′, bu) is the maximum of the following two values:

• The maximum of M(p − 1, p= − 1, b≤p−1, bu) + x1(vp, bp) over all (b≤p−1, bp) ∈ P2(b′ − bu) with
x0(vp, bp) = x1(vp, bp), and

• the maximum of M(p − 1, p=, b≤p−1, bu) + x1(vp, bp) over all (b≤p−1, bp) ∈ P2(b′ − bu) with x0(vp, bp) >

x1(vp, bp),

which implies that M(p, p=, b′, bu) can be determined in O(b′ + 1) time given the values

M(p − 1, p=, b≤p−1, bu), M(p − 1, p= − 1, b≤p−1, bu), x0(vp, bp), and x1(vp, bp).

Altogether, the values M(k, p=, b, bu) for all p= ∈ {0} ∪ [k] can be determined in time O
(
k2(b + 1)

)
.

For bu ∈ {0} ∪ [min{ιmax(u), b}], let m(bu) be the maximum of the two expressions

1 + max
{

M(k, p=, b, bu) : p= ∈ {0} ∪ [τ(u) − bu − 1]
}

and
max

{
M(k, p=, b, bu) : p= ∈ [k] \ [τ(u) − bu − 1]

}
.

Now, by the definition of δ0(bu, b1, . . . , bk), the value of z0(u, b) equals max
{

m(bu) : bu ∈ {0} ∪

[min{ιmax(u), b}]
}

. Hence, z0(u, b) can be computed in time O
(
k2(b + 1)2)

. □

We proceed to the proof of our first theorem.

Proof of Theorem 1.1. Let (T, τ, ιmax, b) be given as in the statement. Let

b∗ =
∑

u∈V (T )

min
{

ιmax(u), max
{

dT (u) + 1 − τ(u), 0
}}

.

Since dT (u) + 1 ≤ n and τ(u) ≥ 0 for every vertex u of T , we have b∗ ≤ n2.
We consider two cases.

Case 1 b ≥ b∗.
Let ι∗ ∈ NV (T )

0 be such that

ι∗(u) = min
{

ιmax(u), max
{

dT (u) + 1 − τ(u), 0
}}

for every vertex u of T . Since b ≤ ιmax(V (T )), there is a function ι ∈ NV (T )
0 with ι∗ ≤ ι and ι(V (T )) = b.

We claim that
vacc(T, τ, ιmax, b) = dyn(T, τ + ι∗) = dyn(T, τ + ι), (7)
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that is, the function ι that can be computed in linear time optimally solves the problem, and
vacc(T, τ, ιmax, b) can be computed in linear time using the linear time algorithms for dyn(T, τ + ι∗) given
in [5,6].

In order to show (7), let u be a vertex of T . If ιmax(u) ≤ max
{

dT (u) + 1 − τ(u), 0
}

, then ι(u) = ι∗(u) =

ιmax(u), which is the largest possible choice for ι(u) permitted by ιmax. If ιmax(u) > max
{

dT (u)+1−τ(u), 0
}

,
then τ(u)+ ι(u) ≥ dT (u)+1. Since every threshold value for u that is at least dT (u)+1 is equivalent for the
infection process captured by the considered model, it follows that ι(u) is either equal to the upper bound
ιmax(u) or such that larger values would not affect the optimal size of the dynamic monopolies. Altogether,
we obtain (7), which completes the proof in this case.

Case 2 b < b∗.
Lemmas 2.2–2.5 imply that the values of x0(u, b′) and of x1(u, b′) for all u ∈ V (T ) and all b′ ∈ {0} ∪ [b]

can be determined in time

O

⎛⎝ ∑
u∈V (T )

dT (u)2(b + 1)2

⎞⎠ .

It is a simple folklore exercise that
∑

u∈V (T ) dT (u)2 ≤ n2 − n for every tree T of order n, which implies
that the overall running time is O

(
n2(b + 1)2)

. Since vacc(T, τ, ιmax, b) = x0(r, b), the statement about
the value of vacc(T, τ, ιmax, b) follows. The statement about the increment ι follows easily from the remark
after Corollary 2.4 concerning the function ι0(u, b), and the proof of Lemma 2.5, where, next to the values
M(p, p=, b′, bu), one may also memorize suitable increments. This completes the proof in this case.

Since in Case 1, we have a linear running time, and in Case 2, we have running time O
(
n2(b + 1)2)

and

b < b∗ ≤ n2, the overall running time is O

(
n2

(
min{b, n2} + 1

)2
)

. □

We conclude with the proof of our second theorem.

Proof of Theorem 1.4. Let G be an r-regular graph of order n, and let b be an integer with (2r−1)(r+1) ≤
b ≤ rn = 2m(G).

Let ι ∈ NV (G)
0 with ι ≤ dG and ι(V (G)) = b be such that vacc(G, 0, dG, b) = dyn(G, ι). By a result of

Ackerman et al. [7],

vacc(G, 0, dG, b) = dyn(G, ι) ≤
∑

u∈V (G)

ι(u)
dG(u) + 1 = ι(V (G))

r + 1 = b

r + 1 .

First, suppose that the matching number ν of G satisfies 2rν > b. In this case, G has a matching M

with τM (V (G)) = 2r|M | ≤ b and 2r(|M | + 1) ≥ b + 1, where τM is as in the statement. We obtain
2dyn(G, τM ) ≥ 2|M | ≥ 2

(
b+1
2r − 1

)
≥ b

r+1 ≥ vacc(G, 0, dG, b). Next, suppose that 2rν ≤ b. If M

is a maximum matching and D is a minimum vertex cover, then |D| ≤ 2|M |. Since D is a dynamic
monopoly of (G, dG), we obtain 2dyn(G, τM ) ≥ 2|M | ≥ |D| ≥ dyn(G, dG) ≥ vacc(G, 0, dG, b), that is,
2dyn(G, τM ) ≥ vacc(G, 0, dG, b) holds in both cases. □
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