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Abstract 
The proposed State Rural Leasehold Land Strategy (SRLLS) is a potential major driver for vegetation 
condition assessment across Queensland. Pastoral leases cover 85 million ha and within the next 5 
years, 60% of these will be up for renewal. Since three quarters of Queensland has a woody foliage 
cover of less than 20%, methods of monitoring the extent of groundcover (or conversely, bare ground) 
are required. Monitoring of groundcover is important since it is linked to indicators of soil loss, 
biodiversity, and pasture production. Ground cover is also an indicator target adopted by regional 
NRM and catchment management groups. 
 
Ground cover is variable due to both climate and management; both long term and short-term 
management affects are apparent with those land parcels showing long-term negative trends being of 
greatest concern. It appears possible to rank one land parcel relative to similar neighbours to identify 
grazing management related trends. It is possible to detect land parcels that are on a trajectory of 
increasing cover and others where there is a long-term trend to decreasing cover.  
 
By building on the world-class Statewide Landcover and Trees Study (SLATS) archive of more than 
1500 Landsat TM and ETM scenes covering the state with annual coverage or better from 1987, this 
project will deliver information on the condition and trend of groundcover over the past 20 years at 
better than paddock scale. By linking these results with climate and pasture growth models, the 
impacts and ramifications of management decisions on condition indicators can be assessed. This 
paper will discuss some of the challenges in deriving a robust product that is applicable across the 
range of cover types encountered in Queensland, and presents some preliminary condition and trend 
products. 
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1. Introduction 
Sustainable management of the extensive grazing 
lands across Queensland would be facilitated by 
easy access to objective information concerning 
rangeland condition and trend in condition over 
time. Queensland’s rangelands are subject to high 
climate variability on seasonal, annual, decadal 
and longer timescales making management for 
economic and environmental sustainability 
difficult. The impacts of climate and management 
interact to complicate interpretation of data on 
rangeland condition. 
 
Approximately sixty-five per cent of Queensland 
is covered by state rural leasehold land. Half of 
the current pastoral holdings (totalling over 40 
million hectares) will expire during the next 15 to 
20 years, and their renewal is a major 
consideration. As custodian of this state rural 
leasehold land, the government has initiated a 
review of its future management and use with the 
purpose of looking at the emerging issues and 
available options, defining mechanisms to 
reconcile any conflict between lessees and other 
stakeholders, and updating the conditions of 
leases in line with current natural resource 
management practices. The State Rural Leasehold 
Land Strategy (SRLLS) is being currently 
developed to provide a policy framework for 
achieving sustainable management and use of 
state rural leasehold land by protecting its 
environmental, social and economic values, and 
recognising the various interests held in it. The 
strategy is based on a stewardship philosophy of 
state land management, in which the roles and 
interests of stakeholders are recognised, as is their 
responsibility for implementing community 
aspirations and values in a partnership approach. 
The philosophy underlying the lease agreement is 
that lessees are the land managers dealing with 
the care of the land and associated environment 
on a daily basis. 
 
One of the proposed performance indicators to be 
used in the SRLLS is groundcover condition and 
trends. Ground cover is a critical attribute of the 
landscape affecting infiltration, runoff, water 
erosion and wind erosion, and as such is a key 
indicator of land condition (Aust et al., 2003; 
Booth and Tueller, 2003). However, a reduction 

is cover does not necessarily correspond to a 
decline in land condition (Pickup et al., 1998). 
Ground cover is driven largely by climate and 
management (Dube and Pickup, 2001). Remote 
sensing offers one of the few ways to measure 
groundcover over large spatial extents (Pickup et 
al., 1993). Frank (1984) completed early work on 
the change in texture and albedo in response to 
changes in vegetation cover. Extensive work by 
Pickup and co-authors (1998; 2000; 1988a; 
1988b; 1996; 1993) has pioneered the monitoring 
of groundcover by remote sensing in Australia. 
More recent work has focussed on using remotely 
sensed groundcover to inform landscape 
leakiness models to better understand the link 
between cover, patchiness and condition (Ludwig 
et al., 2006), and the identification of changes in 
vegetation over time (Wallace et al., 2006).  
 
This research reports on the development of a 
general cover index that is applicable to 
monitoring groundcover across Queensland, 
using both Landsat TM and ETM+ imagery that 
is available annually in the SLATS Landsat 
archive. SLATS has used both Landsat imagery 
to map tree cover and monitor changes in woody 
vegetation cover throughout the state of 
Queensland, Australia since 1988 (Goulevitch et 
al., 1999). Due to the high level of radiometric 
and geometric correction of the SLATS Landsat 
archive (De Vries et al., 2004), this imagery is 
highly suitable for time series analysis. 
 

2. Development of a bare ground 
index 

One of data sets used by SLATS in the process of 
monitoring annual woody vegetation change is 
the foliage projective cover (FPC) product 
derived from Landsat TM/ETM imagery. The 
FPC product is produced using multiple 
regression with an extensive set of over 2000 
field observations, providing an accurate 
estimation of woody FPC without the need for 
image stratification. This product is described in 
Danaher and Armston (2004) and Lucas et al  
(2006).  Multiple regression is a common 
technique for estimating sub-pixel cover fractions 
in satellite imagery; however its application is 
often limited by a lack of field data for calibration 
and radiometric, spatial and spectral uncertainties 



in remotely sensed imagery (Salvador and Pons, 
1998). In the presence of representative 
calibration data, multiple regression has been 
shown to perform as well as more complex non-
linear techniques such as regression trees and 
artificial neural networks (DeFries et al., 1997; 
Fernandes et al., 2004). Given the performance of 
multiple regression for modelling FPC, and the 
availability of a large number (~400) of field 
calibration sites for groundcover, it was decided 
to proceed with a multiple regression approach 
for developing a groundcover index. 
 
Using the same multiple regression approach as 
that used to develop the woody vegetation index, 
a generalised bare ground index that can be 
applied across large areas with different soil 
backgrounds has been developed. This index does 
not require the use of ancillary data for the 
purpose of stratification of areas into similar 
units. Another important aspect of this 
generalised index is that, when applied to 
multiple Landsat scenes, it does not require 
manual user intervention that could be a source of 
operator bias. A further advantage of this 
approach is that when new Landsat imagery 
becomes available these scenes can be processed 
in an automated environment, providing 
information in a timely manner. 

2.1 Field data acquisition 
At each field site (Figure 1) a range of 
measurements were taken. These can be separated 
into two components:  

• Collection of discrete point transect 
sampling data to determine ground cover 
and the Foliage Projective Cover (FPC) of 
the overstorey and midstorey woody 
vegetation;  

• Description of general site details, 
including characteristics such as soil and 
rock hue value and chroma, tree basal 
area, dominant species, and soil surface 
characteristics according to the method 
described by Tongway and Hindley 
(1995). 
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Figure 1 - Distribution of groundcover calibration 

sites across Queensland shown as yellow 
triangles. Overlay is areas of standard SLATS 

Landsat scenes 

2.2 Transect sampling  
All field data was collected using a modified 
discrete point sampling method. This transect 
based sampling approach involved laying out a 
100m measuring tape in a north/south orientation. 
At every metre interval a recording is made of the 
ground cover, midstorey and overstorey (Brady et 
al., 1995). It needs to be noted that there are 
many other field measurement techniques that 
could have been utilised to measure the amount 
of ground cover, or its mirror, bare ground. 
Examples of these include, visual estimates 
within various size quadrats and continuous 
measurement along a down slope transect. The 
discrete point sampling technique was employed 
because it provided the best compromise between 
repeatability between different operators without 
requiring estimation training and regular 
calibration, and the time taken to measure each 
site in the field. 
 
A range of characteristics and measurements are 
recorded at each field site. These include: 
A general site description; 

• Soil Hue, Value and Chroma 
measurements. These data are collected 



for both wet and dry soil and for different 
soil surface conditions, e.g. soil crust, 
disturbed soil, windblown surface 
deposits (sand); 

• Rock Hue, Value and Chroma; 
• Tree basal area at 5 points using 

calibrated optical wedges; 
• Dominant species by biomass within the 

ground/midstorey/overstorey layers; 
• Soil surface characteristics, such as, 

erosion features, soil microtopography, 
surface nature, faunal activity; and 

• Evidence of recent site disturbance, e.g., 
fire, clearing, etc. 

 
And cover recordings: 

• Bare soil 
• Rock 
• Green attached leaf 
• Dead attached leaf 
• Litter (including all organic litter, 

tree/grass/dung etc) 
• Cryptogam (photosynthetic soil crust) 
• Midstorey (woody material 0-2m) 

recordings of green leaf, dead leaf or 
branch; and 

• Overstorey (woody material > 2m) 
recordings of green leaf, dead leaf or 
branch.  

 
After 100 points had been recorded, the 
measuring tape was laid out in an east/west 
orientation, with another 100 points recorded. All 
recording of “hits” was done utilising a palm top 
computer running Lotus 1-2-3. This program also 
ran a macro that calculated the running average of 
percentage bare ground after every 20 points. 
After an initial 200 points had been recorded, if 
the last five averages (0-120, 0-140, 0-160, 0-
180, 0-200) were within +/- 2 of the final bare 
ground percentage value, then sampling ceased. If 
after 200 points had been recorded the criteria 
had not been met, then the tape was laid out in a 
northeast/southwest orientation, with another 100 
points recorded. Figure 2 shows examples of this 
approach in two measured field sites.   
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Figure 2 - Example running mean estimates of 

bare ground.  Site 1 stabilised to within ±2% after 
measuring 200 points, while Site 2 did not 

adequately stabilise after measuring 200 points. 
Measurement of an additional 100 points resulted 

in the bare ground stabilising to an acceptable 
level 

 
The position of the field site centre was recorded 
using a backpack mounted differential global 
positioning system (DGPS). This enabled the 
accurate location of measured field sites on the 
Landsat imagery. This also enables accurate re-
location of established field sites for repeat 
sampling at future dates, negating the need for 
permanent site markings. 

2.3 Landsat processing 
The Landsat TM and ETM+ images used in this 
project have been corrected, both geometrically 
and radiometrically, using methods developed 
and implemented by the SLATS project 
(http://www.nrm.qld.gov.au/slats/). Geometric 
correction is the process used to accurately 
register satellite images to a ground coordinate 
system. For the SLATS Landsat archive this has 
been achieved using ground control points 
accurately measured by a differential global 
positioning system (Goulevitch et al., 1999).  
 
When investigating changes over time and across 
large areas utilising satellite imagery it is 
imperative that some form of radiometric 
correction is applied. These corrections account 
for the variation in sun angle between images and 
systematic atmospheric effects. All images in the 
SLATS Landsat archive used in this project have 
had an rigorous radiometric correction applied 
(De Vries et al., 2004). The application of this 
radiometric correction produces a consistent time 
series of images and wide area mosaics. This 
allows for the optimal utilisation of field site 
measurements, as field site spectral signatures 

http://www.nrm.qld.gov.au/slats/


collected on a single scene are then representative 
of areas on multiple scenes that contain similar 
landscapes in similar seasonal conditions. 

2.4 Index Development 
To facilitate the regression index development, 
the percentile bare data was initially transformed 
to a continuous variable using the hyperbolic 
function shown in Figure 3. Following the 
regression analysis, the inverse of this function 
was used to transform the output back to percent 
bare running from 0 to 100%. 
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Figure 3 - Hyperbolic function used to transform 

percent bare data into a continuous space 
 
Signatures for Landsat bands 1 to 7 were 
extracted for the 3 x 3 pixel mean surrounding the 
field site location. The 3 x 3 block average 
provided the best match to the spatial extent of 
field measurements and also allowed the 
calculation of the variance within the window. 
The reciprocal of the variance was used as a 
weighting in the regression as shown in Figure 4. 
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Figure 4 – Example of weighting to reflect the 
variance in the satellite imagery at the sample 

location. This is equal to the inverse of the 
variance of the band digital numbers within the 3 × 

3 pixel window. 
 

Signatures were extracted from any image in the 
database where there was less then 60 days 
between the groundcover measurement and the 
image acquisition. The number of day between 
field and image data was used as a weighting in 
the regression (Figure 5). The signatures were 
filtered to remove those affected by cloud or 
clearing in any image date.  
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Figure 5 - Weighting to capture the increasing 

uncertainty of the satellite data to match the field 
data as the time between capture and sampling 
increases. This is modelled as an exponential 

falloff. 
 
A regression index based on truncated singular 
value decomposition was developed. This method 
was chosen since it offers greater numerical 
stability when working with near collinear data 
and it gives similar results to the often used 
partial least squares method (Kalivas, 1999).  A 
number of transforms of the Landsat band digital 
numbers were tested including log, exponential 
and power functions. To select the optimal 
number of eigenvalues to retain in each case, a 
cross-validation approach was used (Figure 6).  
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Figure 6 - Example cross-validation plot showing 

the best prediction accuracy is achieved when 
retaining nine eigenvalues 

 
This process randomly selected 25% of the data 
to train the regression. The remaining 75% of the 



data was used to validate the output. The root 
mean square error between the actual and 
predicted bare ground was calculated for each of 
1000 trials for successive eigenvalues.  
In developing a multiple regression based index, 
it is important that the solution delivers an 
accurate prediction whilst being relatively 
insensitive to noise in the inputs. This was 
achieved by optimising the index to use bands 
and transforms that: 
 

1. Minimised the RMSE between predictions 
and measured 

2. Minimised the sensitivity of the model to 
extreme values by calculating the mean 
and maximum of the partial derivatives of 
each band with respect to the training 
data. 

3. Minimised the effect of quantization 
“noise” on the prediction. This was 
calculated using interval analysis by 
mapping the quantization uncertainty in 
the Landsat sensor to intervals in the 
solution. 

4. Maximised the reduction in error variance 
per term added. This requires the product 
of the response variable with the right 
hand eigenvectors of the solution to be 
correlated with the eigenvalues, so the 
addition of an additional term in the 
regression will improve the result (Elden, 
2004). As an example, the cross validation 
plot in Figure 6 shows the addition of the 
third term increasing the error, so this step 
tries to reduce the occurrence of this, 
without resorting to partial least squares 
approaches which have been shown to not 
be stable in problems with large over-
determined data matrices (Elden, 2004; 
Phatak and De Hoog, 2002).  

 
An exhaustive test of input bands and 
transformations was conducted systematically 
leading to the final candidate model This used 
Landsat bands 3, 5 and 7 only and has an R 2 of 
0.93. A plot of the observed verses the predicted 
transformed bare ground is shown in Figure 7.  
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Figure 7 - Plot of measured verses observed 

hyperbolically transformed bare ground for the 
best performing model. Dot areas are proportional 

to the weighting given to each point. Red line is 
the regression line with confidence in the mean 

shown as yellow. Purple lines indicate single 
prediction intervals. 

 
When transformed back into percentage terms the 
regression has a RMS prediction error of 12.9% 
and has the form shown in Figure 8. 
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Figure 8 - Plot of observed verses predicted bare 
ground for the best performing model. Dot areas 
are proportional to the weighting given to each 

point. Red line is the regression line with 
confidence in the mean shown as yellow. Purple 

lines indicate single prediction intervals. 
 
The sensitivity of the best performing index was 
evaluated by calculating the partial derivatives of 
the equation with respect to each band, and then 



calculating the mean and maximum values from 
the extracted Landsat data. These are shown in 
Table 1. 
 
Landsat Band Mean Sensitivity Maximum Sensitivity 

Band 3 1.1 13.2 
Band 5 1.1 7.5 
Band 7 1.9 3.9 

Table 1 - Mean and maximum partial derivatives of 
the best preforming model calculated using the 

training data set. 
 
The best performing model was then applied to 
the SLATS data archive resulting in almost 2000 
groundcover images across Queensland from1986 
to the present. An example of this imagery is 
shown in Figure 9. 
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Figure 9 - Bare ground image for the 19 August 

2002 Charters Towers scene (top) and associated 
Landsat image (bottom). 

 

3. Validation 
Validation of any remote sensing project is 
critical so as to be confident in the quality of 
outputs. The bare ground index has performed 
well when compared to independently collected, 
multi-temporal (measured through time) and 
single date data. This has been the case not only 
in areas that have had calibration data collected to 
refine the bare ground index, and areas that have 
not had calibration data collected.  Three 
validation exercises will be described. 

3.1 Cover measurements 
Comparisons with independently measured 
GRASS Check (Queensland. Dept. of Primary et 
al., 1997) sites across three different woodland 
land systems (four different land units) within the 
Desert Uplands bioregion have shown very 
positive results. The GRASS Check methodology 
employs a visual estimation, on a per quadrat 
basis, for a large number of quadrats (100) 
following a triangular pattern(Queensland. Dept. 
of Primary, National Landcare et al. 1997). In a 
study by  Booth (2006) it has been shown that 
visual estimation underestimates ground cover, 
compared to more objective methods, such as the 
point intercept technique. Four sites were 
assessed over three time periods and showed an 
overall R2 of 0.91. It needs to be emphasized that 
calibration data have not been included to refine 
the bare ground index for this area. These results 
also demonstrate that, although the model could 
potentially be “over-fitted” (too many 
explanatory variables included in the developed 
model), it is in fact behaving in a stable fashion 
and producing sensible results for the direction 
and magnitude of change in ground cover over 
time. As outlined earlier, the field measurement 
technique used in the course of calibrating the 
Landsat data uses a discrete point sampling 
technique. Other independent comparisons 
between the bare ground index derived ground 
cover and ground cover measured at QGraze sites 
across the Desert Uplands have shown results 
similar to those achieved for the GRASS Check 
sites above.   
 



3.2 Mobile observations 
Another form of validation of the bare ground 
index is achieved by comparing mobile visual 
recordings of pasture utilisation and biomass. 
These are routinely collected across different 
areas of Queensland by the CINRS group in the 
course of calibrating and validating the Aussie 
GRASS pasture production model (Hassett et al., 
2002) and assessing land condition. Comparison 
with these data provides the opportunity to 
validate bare ground index derived ground cover 
for corresponding dates in a relative sense. Figure 
10 shows good agreement for areas of lower 
ground cover (lighter shades of brown) and very 
low biomass (red crosses). Conversely, there is 
also strong agreement between areas of high 
ground cover (darker shades of brown) and 
higher biomass (green crosses). 
 

 
Figure 10 - Comparison of bare ground index 

derived ground cover for August 2002 and pasture 
condition observations (dry biomass) collected in 

July 2002. 
 

Figure 11 shows similar good agreement between 
remotely sensed ground cover and mobile 
observations of pasture utilisation, as found for 
biomass data. This is especially evident across the 
distinct fence line contrast in the centre of the 
image. This fence line contrast has been 
discriminated with the pasture utilisation data. On 
the low ground cover side (west) the utilisation 
recordings are in the 40% to 80% range, whereas 
on the high ground cover side (east) the 

utilisation recordings are in the 20% to 60% 
range. 

 
Figure 11 - Comparison of bare ground index 

derived ground cover for August 2002 and pasture 
condition observations (pasture utilisation) 

collected in July 2002. Note: no green biomass 
was recorded in this area at the time of survey. 

The photo illustrates the distinct fence line 
contrast between high cover/ low utilisation (east, 
right hand side) and low cover/ high utilisation on 

the western (left) side of the fence. (Photo: R. 
Hassett July 2002). 

 
The above two comparisons have been taken 
from Landsat scenes that have not had calibration 
data collected across them to refine the bare 
ground index. This again demonstrates the 
stability of the derived relationship when it is 
extrapolated into these areas.   
 

3.3 AussieGRASS modelling 
The AussieGRASS model (Carter et al., 2000) 
estimates ground cover from simulated pasture 
biomass on a daily basis at a resolution of 0.05 
degrees. Data from the Landsat bare ground 
product was up-scaled to the 0.05 degree grid 
used by removing pixels with significant tree 
coverage or were on scene edges enabling 
comparison of identical areas on the date of 
satellite image acquisition. 
 
There had been little direct calibration of ground 
cover in AussieGRASS and a subset of the data 



(1991-2002) was used to recalibrate a single 
parameter for about 1/3 of the pasture 
communities in Queensland to the satellite 
derived mean cover for the 1991-2002 period.  
 
In a final analysis satellite data for the period 
1988- 2005 was used to establish annual means 
for the entire non-wooded areas covered by 
Landsat scenes (including most of Queensland 
and small areas of NT, SA and NSW). Figure 12 
shows that the satellite estimate and the model 
estimated cover time series estimates are similar 
in magnitude and highly correlated (r2 = 0.98). 
The year 1991 was the largest outlier for 
unknown reasons and the range of values 
observed reflects the influence of climate 
variability and grazing pressure at a very large 
scales. 
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Figure 12 - Temporal plots of Landsat derived and 

AussieGRASS modelled groundcover for all of 
Queensland 

 

4. Conclusions 
The work presented in this report has resulted in 
the development of a Landsat image index, the 
bare ground index, which can be used to derive 
estimates of ground cover over Queensland 
across different soil backgrounds and land 
systems. The bare ground index, at its current 
stage of development, can be used to quantify the 
magnitude and direction of ground cover changes 
over time. The objective and up-to-date ground 
cover information can be used by producers to 
support more sustainable management for 
improved productivity and reduced risk of long-
term degradation. The ground cover monitoring 
system outlined in this research provides a tool 
that can be used not only to assess condition of a 

property relative to its neighbours but, at the 
property level to assess past management 
decisions and aid future decisions. This tool can 
be used to objectively assess similar (same land 
system/unit, etc) areas across a property that are 
under higher grazing pressure. Assessment of 
existing property infrastructure (fence lines and 
water points) and its resultant effect on land 
condition can be readily undertaken using the 
ground cover information.  
 
Further research and calibration is ongoing to 
improve confidence in estimates of absolute 
ground cover, and to further develop tools to 
decouple the effects of climate from the trends in 
the data. Since any given pixel has a bare ground 
time series that is related to the climate history, 
the response of the land type to that climate and 
to the management history, techniques are 
required to separate these influences. We are 
currently developing an eigendecomposition of 
the image based time series to recover and 
decouple the responses on a scene and statewide 
scale (e.g. Bretherton et al., 1992; Cherry, 1996) 
and this work will be reported in a forthcoming 
publication. 
 
Outputs produced from this project provide 
information that can be used to: 
• Discriminate areas under higher grazing 
intensities than surrounding areas 
• Distinguish climate and grazing 
management impacts 
• Provide spatially continuous, objective 
information relating to land condition 
• Provides a baseline against which future 
changes can be compared 
 
A critical aspect in the ongoing development of 
remote sensing techniques for improved 
management is evaluation and feedback from 
land managers. The contribution of on-ground 
knowledge and experience from graziers and 
extension workers will aid in interpretation of 
remotely sensed information, refinement of 
products and improved applicability and value of 
the tools described in this paper. The availability 
of timely and spatially explicit information on 
land condition, will contribute to the capacity of 
the Queensland Government to enhance the 



sustainable management of land and water 
resources across the entire state. 
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