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Abstract

Ein Historiker der Technologie im Jahr 2100 könnte das Apple Iphone mit dem T-Model
Henry Ford’s vergleichen. Wie das T-Model vom letzten Jahrhundert, stellte das Iphone
dem Endbenutzer, eine Vielfalt von schon existierenden Technologien in einem benutzer-
freundlichen Paket zur Verfügung. Dadurch ermöglichte Apple, dass die Massen auf ihre
beliebten Internet-Diensten unabhängig von ihrer Mobilität und ihrem Aufenthaltsort
zugreifen könnten. Das war ein wichtiger Wendepunkt für die Telekom Operatoren, die
seit Anfang der 2000er Jahren in Kommunikationinfrastruktur investierten, die solche
Datendienste für ein großes Publikum anbieten sollten. Diese Investitionen wurden be-
gleitet durch Werbekampagnen, die ein großes Versprechen verkündeten: ”Always Best
Connected” - immer die beste Verbindung- oder ”Anytime, anywhere”- jederzeit und
überall- lauteten die Devisen. Jetzt wollen die Benutzer dieses Versprechen mit den
Nachbebenwellen der Iphone-Revolution, den sogenannten ”Smart Phones”, ausleben.

Für die Telekom Operatoren stellt diese Entwicklung sowohl Herausforderungen als
auch Geschäftschancen dar. Um Kapital aus der rasch zunehmenden Datenverkehrlast
schlagen zu können, müssen die Operatoren dafür sorgen, dass dieser Anstieg die Qualität
der Dienste nicht stört, die die Benutzer empfinden. Ein neuer Begriff namens ”Quality of
Experience (QoE) ” -Qualität des Diensterlebnis- bezeichnet die subjektive Beurteilung
der Benutzer, wie befriedigend die Ablieferung eines Datendienstes über ein bestimmtes
Operator-Netzwerk ist. Je mehr Benutzer es in einem Netzwerk gibt, desto schwieriger
wird es, die Bedürfnisse der Benutzer zu erfüllen. Der Grund dafür ist die Tatsache,
dass die Kapazität der verschiedenen Knoten der Operator-Netzwerke begrenzt ist. Für
die Übertragung der Datendienste braucht ein Operator eine drahtlose Funkschnitstelle,
verschiedene Router und Hochgeschwindigkeitsverbindungen zwischen diesen Elementen.
Alle diese Komponenten haben limitierte Ressourcen. Wenn die Anzahl der Benutzer,
die diese Elemente teilen, steigt, sink die Leistungsfähigkeit dieser Elementen. Dies
führt dazu, dass die Benutzer schlechtere Qualittsmerkmale empfinden, sowie größere
Verzögerungen oder ein Anstieg der Paketverluste. Letztendlich bedeuten diese niedrigen
Performanzmerkmale auch niedrige QoE Werte für alle Benutzer.

Die Operatoren haben drei strategische Möglichkeiten, dieses Problem anzugehen. Die
traditionelle Maßnahme gegen Kapazitätsengpässe ist mehr Investition in Infrastruktur.
Diese Option hat zwei Hindernisse: das erste ist die Lage der Weltwirtschaft. Sie erlaubt
es momentan kaum, Kapital in einer Industrie anzulegen, die vor ein paar Jahren eine
große Menge von Investitionen erhielt. Zweitens wird es immer schwieriger für Opera-
toren, neue Grundstücke für die Basisstationen zu finden. Lokale Behörden folgen den
Gesundheitsbedenken der Bevölkerung, und reduzieren den genehmigten Leistungspegel
der Basisstationen und limitieren die minimale Entfernung zwischen Basisstationen.

Die zweite Option strebt an, das Radiospektrum effizienter zu nutzen. Es gibt zwei
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Ansätze, um dieses Ziel zu erreichen. Der erste Ansatz bewahrt die jetzige Frequenz-
zuweisung unter den Operatoren, und setzt neue Methoden aus der Kommunikation-
stheorie um, um mehr Bits pro Spektrumeinheit tragen zu können. Die Reihenfolge
von Akronymen wie 2.5G, 3G, 3.5G, LTE (Long Term Evolution) sind nicht mehr
als Marketingnamen von Industriestandards, die neue Kommunikationsmethoden von
zunehmenden Komplexität beinhalten. Diese Option hat den Nachteil, dass es Jahren
dauert, bis die innovativen Kommunikationsmethoden standardisiert und serienmäßig
implementiert werden können.

Eine andere Möglichkeit, die Benutzung des Radiospektrums zu verbessern ist eine
Verfeinerung oder Erneuerung des jetzigen Frequenzzuweisungsschemas. Das aktuelle
Schema kontingentiert Blöcke des Radiospektrums zu den verschiedenen Operatoren.
Studien der Nutzung der unterschiedlichen Spektrumblöcken belegen, dass ein großer
Teil des Spektrum nicht ausgenutzt bleibt. Ansätze wie der dynamische Spektrumzu-
gang oder kognitives Radio lockern oder schaffen die heutige statische Frequenzzuweisung
ab. Sie schlagen Methoden und Protokolle vor, mit denen ein dynamischer Zugang zur
Spektrumeinheiten gewährleistet werden kann. Diese Ansätze brauchen etwas mehr Zeit
als konsekutive Erweiterungen der Standards. Der Grund dafür ist, dass sowohl regu-
latorische als auch technologische Änderungen in Basisstationen und Kundenterminals
gebraucht werden.

Die dritte und die letzte Option ist die Kombination der verschiedenen Radiozugang-
stechnologien. Ein sehr bekanntes Beispiel dafür ist die Integration von WirelessLAN
Hotspots, die Operatoren in dicht bevölkerten Orten einsetzen, mit den gewöhnlichen
Mobilfunknetzwerken. Wenn eins von dieser Netzwerke zu überlastet ist, kann ein Teil
des Datenverkehrs auf das andere Netzwerk umgeleitet werden. Darüber hinaus, erhöht
das Zusammenbringen von zwei heterogenen Netzwerken gleichzeitig die Kapazität und
gleicht die Lastvariationen in beiden Netzwerken aus. ”Common Radio Resource Man-
agement(CRRM)” -gemeinsames Management der Radioressourcen- ist das Konzept, in
dem ein Operator das Verwalten heterogener Netzwerke, die dem Operator gehören,
synchronisiert, um von den erwähnten Kapazitätsverbesserungen zu profitieren. Dieses
Thema erregte in den letzten fünf Jahren große Aufmerksamkeit in der Forschungsge-
meinde. Diese Interesse führte zu vielen wichtigen Forschungsergebnissen und ersten
kommerziellen Anwendungen.

Unsere elementare Beobachtung war, dass die Einschränkung des gemeinsamen Man-
agements der Radioressourcen auf Netzwerken, die alle zu einem einzigen Operator
gehören, nicht technisch oder theoretisch ist. Die in der Literatur zu findenden Algo-
rithmen machen es nötig, dass die zwei Netzwerke, die Ressourcen austauschen wollen,
auch Operationsdaten wie die aktuelle Last oder Benutzeranzahl austauschen. Diese
Anforderung stellt keine Hindernisse dar, wenn diese zwei Netzwerke einem Operator
gehören. Aber ein Operator wäre, vermutlich aus kompetetiven Gründen nicht bereit,
solche Daten einem anderen Operator zu übergeben. Aber, wenn es möglich wäre,
diese Informationen durch einen anderen neutralen Weg indirekt zu erfahren, wäre es
auch möglich, die Gewinne der CRRM zu den Szenarien zu erweitern, in denen die
kooperierenden Netzwerke verschiedenen Operatoren gehören.

Diese alternative Methode, durch die ein Operator die Datenverkehrlast in einem
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anderen Operator abschätzen kann, involviert das Zusammenspiel der Benutzer. Wir
postulieren, dass die Benutzer bereit sind, ihre Performanzmerkmale und Subjektive
QoE-Auswertungen in einer verteilten Datenbank zu speichern. Dieses Postulat setzt
voraus, dass das Speichern dieser Daten anonym und sicher durchgeführt werden kann.
Darüber hinaus, wir begründen später warum, dass es zugunsten von Operatoren und
Benutzer ist, dass die Operatoren Zugriff auf diese Datenbank haben. Wenn diese An-
nahmen erfüllt sind, können zwei oder mehrere Netzwerken diese Datenbank nutzen,
um abzuschätzen, wie belastet andere Netzwerke in der Gegend sind. Mit dieser Ab-
schätzung, können sie sich entscheiden, ob es sinnvoll ist, ein Teil ihres Datenverkehr auf
andere Netzwerke, die anderen Operatoren gehören, umzuleiten. Unser Vorschlag heißt
”User Facilitated Real-Time Inter-Operator Resource Sharing” -Benutzer ermöglichte
Echtzeit Inter-Operator Ressource Mitbenutzung. Der Ablauf von Interaktionen ist wie
folgt.

Jeder Operator hat einen Software Agent, der sich im zentralen Netzwerk Opera-
tion Zentrum (NOC) befindet. Dieser NOC-Agent hat eine Dauerverbindung zu allen
Radiozugansnetze (RAN) des Operators. Ein Radiozugangsnetz besteht von einem Ba-
sisstation oder einem drahtlosen Zugangspunkt und dem angeschlossenen Router, die
die Benutzer über die Funkschnittstelle zu dem Operator Kernnetzwerk verbindet. Auf
jeder Basisstation oder drahtlosen Zugangspunkt befinden sich weiter Software Agenten,
die RAN-Agenten.

NOC-Agent ist dafür zuständig, die mittelfristige Belastung in jedem RAN zu be-
trachten. Mittelfristig bedeutet für unseren Vorschlag Zeitintervalle im Stundenbereich.
Wenn der NOC-Agent feststellt, dass in einem RAN der Belastung so hoch wird, dass
die QoE der Benutzer gefährdet sind, initiiert es ein Negotiationsverfahren mit einem
anderen NOC-Agent von einem anderen Operator. Dieser Operator muss eine RAN
in der Nähe des überlasteteten RANs haben, damit eine Ressourcemitbenutzung stat-
tfinden kann. Wenn das Negotiationsverfahren erfolgreich abgelaufen ist, kalkuliert jeder
NOC-Agent einen Controller-Algorithmus für seinen RAN-Agent.

Diese Algorithmen werden basierend auf der aktuellen Datenverkehrlast der beiden
RANs berechnet. Die RAN-Agenten machen periodische Anfragen bei der von den Be-
nutzern ausgefüllten Datenbank, um die kurzfristige Belastung in dem anderen RAN
abzuschätzen. Da diese Abschätzung immer einen Fehleranteil hat, muss der RAN-
Agent eine Entscheidung mit unvollständigen Informationen treffen. Für dieses Zweck
benutzt der RAN-Agent den von NOC-Agent berechneten Algorithmus. RAN-Agent in
den überlastete RAN muss entscheiden, wann das Weiterleiten vom Datenverkehr abge-
brochen werden soll. Das weiterleiten muss eingestellt werden, wenn das andere RAN,
das extra Datentraffic akzeptiert, auch überlastet ist. Auf der anderen Seite muss der
RAN-Agent, der den datenverkehr akzeptiert, sicherstellen, dass der zuztzliche Daten-
verkehr nur dann angenommen wird, wenn das benachbarte RAN tatschlich überlastet
ist. Das akzeptieren von zuätzlichem Datentverkehr von einem nicht überlasteten RAN
wäre aus kompetitiven Gründen falsch.

In diesem Traktat wird eine vollständige Lösung für den obengenannten Ansatz präsentiert.
Im Kapitel 4 entwickeln wir ein gemeinsames Leistungsmodelle für heterogenen RANs
basierend auf dem ”Processor Sharing”(PS) Warteschlangemodell. Wie dieses Modell be-
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nutzt werden kann, um vergleichbare und kompatible Modelle für 3.5G HSDA und Wire-
lessLAN RANs zu entwickeln, zeigen wir hier. Im Kapitel 5 benutzen wir den mathema-
tische Formulierungsansatz ”Queueing Networks” um das Austausch vom Datenverkehr
zwischen RANs mathematisch zu beschreiben. Basierend auf dieser Beschreibung zeigen
wir, wie optimale Parameter für das Trafficaustausch berechnet werden können. Im
Kapitel 6 präsentieren wir zwei Negotiationmethoden, die von NOC-Agenten verwendet
werden können, um sich auf die optimale Parameter zu einigen. Im Kapitel 7 zeigen wir
wie der NOC-Agent einen annherend optimalen Algorithmus berechnen kann, und wie
dieser Algorithmus von dem RAN-Agent umgesetzt werden kann. Im Kapitel 8 testen
wir unseren Vorschlag unter realistischen Bedienungen.
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1. Introduction

1.1. Challenges in the Mobile Data Networks

A 22th century historian studying the technological developments of the last centuries
may compare Apple’s iPhone with the T-Model of Henry Ford. Similar to T-Model of
the last century, iPhone offered a single and user-friendly packet to the users, which was
a combination of a variety of existing technologies. With this Apple allowed the users to
access their internet services, irrespective of their locations and mobility status’. This
was an important turning point for the telecom operators, who had been investing in
wireless infrastructure since the beginning of 2000s, in order to bring the internet to
the mobile users. These investments were accompanied by marketing campaigns with
slogans like ”always best connected” or ”anytime anywhere”. Now the users have the
devices, the smartphones, to live out the promises of the operators.

This development poses at the same time opportunities and risks for the telecom
operators. To benefit from the quickly expanding data traffic volume, the operators
must make sure that the increase in traffic does not reduce the Quality of Service (QoS)
offered to the users. QoS is expressed in concrete and objective technical parameters
such as delay and loss rates. A newer concept, Quality of Experience (QoE) extends
QoS with the subjective valuation of the user, how satisfying the service consumption
over a certain network is.

As the number of users in a network grows, it gets harder to satisfy the requirements
of the users. This is due to the fundamental fact, that the different nodes in an operator
network have finite resources. A network operator brings together a wireless interface,
various routers and high speed connections to offer data services to the users. Since these
elements have finite resources, the increase in number of users sharing these elements
mean a decrease in their performance, leading to worse QoS metrics, such as longer
delays or higher packet loss rates. If severe enough, this decrease will result ultimately
in a decrease in the subjective evaluation of the network, i.e. QoE.

1.2. Strategic Options

The operators have three strategic options to deal with this problem. The traditional
remedy for performance bottlenecks in the telecommunications industry is to invest in
infrastructure, and engineer the network for the peak demand. However, there are
two drawbacks with this approach. The first is the situation in the world economy,
which makes it hard to gather investment to an industry, which has already received
substantial amount of funds in the last ten years. Secondly, even of the financing is
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found, the operators find it increasingly hard to find new properties on which to build
new base stations. The local civic and national regulation authorities are listening to the
perceived health concerns of base stations among the population and reduce the power
output or limit the maximum allowed density of base stations.

The second option aims to make the use of the currently allocated radio spectrum
more efficient. There are two approaches for this. The first approach keeps the current
frequency allocation methods, and incorporates innovative methods from the communi-
cations theory to be able to transmit more bits per unit spectrum. The series of acronyms
2.5G, 3G, 4G, LTE(Long Term Evolution) are simply given to industry standards, which
employ increasingly complex and innovative modulation and communication techniques.
The drawback of this approach is the fact that it takes decades from the inception of new
methods, until they can be standardized and implemented serially for mass production.

Another possibility to increase the efficiency of the use of radio spectrum is to refine
or the renew the way spectrum is allocated to users and operators. The current scheme
gives blocks of spectrum to operators for exclusive usage.However studies of the long
term usage of spectrum blocks show that large parts of the allocated spectrum remain
under-utilized. Approaches like Dynamic Spectrum Access(DSA) or cognitive radio relax
or abolish the current spectrum allocation scheme. They propose methods and protocols
that allow a dynamic and more efficient access to spectrum. This approach will take
even more time to be commercialized, compared to the consecutive extensions of stan-
dards we mentioned above, since both regulator and technological changes are required
simultaneously.

The third option is to combine different radio access technologies (RAT). A well-known
example is the combination of WLAN Hotspot networks deployed by the network op-
erators with the cellular networks. When one of these networks is congested, a part of
the traffic destined for this network can be transferred to the alternative network. In
addition to protecting against congestion, the equalization of load between two different
RATs also increases the total capacity, by making use of statistical multiplexing. Com-
mon Radio Resource Management (CRRM) denotes the concept of jointly managing
two different RATs in an operator network, to benefit from the aforementioned effects.
This approach has gathered much interest in the research community and resulted in
important research results and the first commercial applications.

1.3. Our Approach

Our primary observation that lead to this work was that the limitation that the in-
tegrated networks should belong to the same operator is not theoretical or technical.
The algorithms in the literature require exchange of operation information among the
different radio access networks (RAN) that are managed jointly. These information are
number of current users, or the congestion level in the network. This is possible if the
RANs belong to the same operator. However two operators would be unwilling to share
such information due to their competently status. And it is this situation that has lead
to CRRM to be applied to RANs belonging to the same operator.
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This information is needed to satisfy the fundamental requirements of the operators. A
donor operator wishes to donate resources to a congested operator only. Doing otherwise
would mean helping a competitor permanently. A borrower operator wishes to send its
users to a under-utilized operator, in which the QoE requirements of the transferred
users could be met. We propose a seamless transfer, in which the users are not aware
of the transfer. So if the QoE is not met in the destination RAN, the users would still
associate this with the original operator. For this reason, operators need to be able to
gauge the load level in RANs owned by other operators.

If it were possible for operators to obtain this information indirectly over a neutral
path, it would also be possible to extend the gains of CRRM to multi operator scenarios.
We propose an alternative method, in which an operator can estimate the load in the
RAN of another operator. This alternative method involves the cooperation of the end
users. We postulate, that the users are willing to share their subjective evaluations of
different networks they have access to in an open database. Naturally, we require that
the storage and access to this database is anonymous and secure. If there is such a
database, which stores how satisfied users are from a RAN for a specific service, we
demonstrate why it is to the benefit of the users, that the operators also can query this
database.

When the operators have access to such a database, they can also estimate the con-
gestion status in the foreign RANs that are co-located with their own RANs. With this
estimate, they can decide when it makes sense to transfer some part of their traffic to
foreign RANs in times of congestion. Our proposal is called therefore ”User Facilitated
Real-Time Inter-Operator Resource Sharing”. In the next section, we demonstrate the
sample workflow of our proposal.

1.3.1. User Facilitated Inter-Operator Resource Sharing Workflow

Before we present a overview of similar proposals in the literature and give the details
of our solution, it is beneficial to describe the workflow depicted in Figure 1.1. In this
workflow we have three different types of software agents.For each operator there is
a single NOC-Agent, which runs in the centrally located at the Network Operations
Control center. The NOC-Agent has connections to the RAN-Agents running on each
and every RAN belonging to the operator.

Finally, there is a SLA-Broker entity that is responsible for acting as a proxy between
the NOC-Agents of different operators when needed. This broker entity is not depicted
in the Figure Figure 1.1, since it is only SLA-Broker is employed for multi-class resource
sharing. We assume that all of these entities are able to query the open user QoE
database.

We assume, based on traffic measurements published in the open domain, that the
arrival rate into an operator varies in an hourly basis. The NOC agent tracks the arrival
rates and MOS levels in each of its RAN by querying the database and the RAN-Agents.
If in a particular area, a RAN goes into congestion, the NOC-Agent controlling the
congested RAN obtains the details from the RAN-Agent, and contacts another NOC-
Agent, belonging to another operator and having an under-utilized RAN in the vicinity
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Figure 1.1.: User Facilitated Real-time Resource Sharing workflow.
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of the congested RAN. In Step 1, the NOC-Agents execute a negotiation protocol to
agree on a percentage of the traffic that must be transferred from the congested RAN
to the normal RAN.

In Step 2, NOC-Agents compute a control policy for their RAN-Agents, using the
agreed transfer probability and information that they obtain about the peer RANs from
the open database. These policies, which are in the form of finite state controllers are
sent along with the transfer rates to the RAN-Agents in Step 3.

With the sharing parameters available RAN-Agents, these begin querying the QoE
database to track the congestion status on their peer operators in Step 4. We assume
the RAN Agents will execute these observations in time scales of minutes. Using the
control policies, the RAN-Agents decide on stopping or continuing the resource sharing,
depending on the observations they make on the QoE Database. Resource sharing is
stopped (i) when the overloaded operator becomes normal again, or (ii) the donating
operator suddenly becomes overload. These are steps 5 and 6 in the workflow.

It must also be clarified what we mean by donor and borrower operator. These are in
terms of radio resources. A borrower borrows additional resources, which is equivalent to
transferring extra traffic to another operator. Donor operator is similarly gives unused
radio resources to another operator. This is equivalent to accepting additional traffic.

1.4. Organization and Contributions

1.4.1. Organization

We organized our solution in terms of sub-problems. We first detail the discussions we
introduced at the beginning of this chapter, and motivate our solution in Chapter 2. We
then present a state of the art analysis, and demonstrate how our approach differs in
Chapter 3. We then proceed with the individual sub-problems and their solutions.

In this work we provide algorithms for all the agents we described in 1.3.1. In order to
achieve this we first present a common mathematical model based on Processor Sharing
(PS) queues that can be used to abstract the queueing properties of heterogenous access
networks such as WLAN and HSDPA. We term this the Modeling Problem , and present
our results in Chapter 4.

We then formulate yet another mathematical model in Chapter5 that employs the
developed queue models. This model describes the delay performance of single and
multi-class resource sharing, and therefore is named the Description Problem.

In Chapter 6, titled the Negotiation Problem, we present two different negotiation
mechanisms. The first method uses a peer-to-peer protocol between the NOC-Agents
of individual operators, without consulting the SLA-Broker. The second model, which
is developed for multi-class resource sharing relies on the existence of a trusted neutral
party that is the SLA-Broker.

The workflow we described requires automated control of sharing process by exploiting
the QoE database, that are computed by the NOC-Agents for the RAN-Agents. The
Control Problem involves the development of the automated controllers and handled in
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Chapter 7. We develop two such controllers, one for WLAN-WLAN sharing and one for
HSDPA-WLAN.

We present finally the results of our testbed testing of the controllers in the Chapter
8.

1.4.2. Contributions

We can summarize our primary contributions as follows:

• User Facilitated Real-Time Peer to Peer Resource Sharing Workflow:

The proposals in the literature for real-time resource sharing involve a neutral
third party. We present a novel workflow summarized in Section 1.3.1 and detailed
throughout this work that does not require a third party. This is made possible
by using the measurements of the users. We present a complete solution for each
step and component in the workflow.

• Processor Sharing Model for HSDPA and WLAN: Processor Sharing mod-
els have been proposed in the for both WLAN and HSDPA. We argue that these
models can be used to abstract the heterogenous properties of these networks, and
develop algorithms based on a common description for both technologies. We also
argue that the core abstraction behind using PS models is fundamental to wireless
access technologies, and therefore can be used for other future wireless air interface
technologies.

• Queueing Model for Real-time Resource Sharing: To the best of our knowl-
edge, there are no closed form analytical description of load balancing or resource
sharing for multi-operator scenarios. The algorithms are evaluated against sim-
ulations. We present a queueing network model that use the processor sharing
abstractions for heterogenous networks. We provide optimum transfer probability
that minimizes delay for the single-class traffic sharing case. We also analyze and
characterize multi-class sharing.

• Incentive Compatible Negotiation Mechanism: An incentive compatible
negotiation mechanism is a mechanism in which the participants gain nothing
by lying. Such mechanisms are needed for a peer to peer approach to resource
sharing to be successful. We provide such a mechanism, and prove that it is
incentive compatible. This mechanism can be used by two operators to agree on
the optimal transfer probability derived by the queueing model.

• Auction Mechanism for Centralized Negotiations: For multi-class resource
sharing, we were not able to provide an optimal solution for transfer probabilities.
Furthermore, our proposed method requires a central entity to mediate the resource
transfer. We provide an auction-base allocation mechanism to be employed by the
meditating entity to allocate resources from donor operators to borrower operators.
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• User Centric Load Measure: Calculating the real-time capacity of wireless
networks is not trivial. We present a new user-centric measure of load and capacity
calculated from delay values reported by the users.

• Intelligent Controllers for Real-time Resource Sharing: Partially Observ-
able Markov Decision Mechanisms (POMDP) are decision making formalizations
used in Artificial Intelligence (AI) domain. They are used to model decision mak-
ing agents under uncertainty. We apply this formalization in conjunction with the
incentive sensitive negotiation mechanism to solve the multi-agent decision prob-
lem of real-time resource sharing. We develop near-optimal heuristics for deciding
when to start and when to stop real-time resource sharing.

• Realistic Traffic Model for Heterogenous Networks: In order to test our
proposal, we need realistic models of traffic fluctuations in heterogenous networks.
We present a survey of spatio-temporal traffic variations in cellular and WLAN
networks. Based on this survey, we develop a traffic model that can be used to
generate realistic synthetic load variations for HSDPA and WLAN.

• Proof of Concept Implementation: Finally, we present a proof of concept
implementation of our proposal, used for automated load balancing between two
WLAN networks.

1.4.3. Publications

We presented a multi-agent implementation for the policy based control of handovers
between single operator heterogenous networks in [1].

We patented our proposal on how user experience reports can be used to calculate the
capacity of heterogenous wireless networks in [2].

We motivated the use of decision making entities based on AI techniques on individual
nodes to improve the efficiency of the networks in [3] and [4].

We participated in the EU FP7 Project, where we propose an open user experience
database, and presented the approach in [5].

We first described our proposal, ”User facilitated real-time resource sharing” in [6], as
a concrete application of AI inspired decision makers in wireless networks.

The solution to description model, the single class queueing model, was presented in
[7]. The multi-class extension and simulative evaluation was the topic of the Mr. Nadim
El Sayed’s Masters Thesis [8], for which the author of this dissertation served as the
advisor.

We presented the auction mechanism we proposed to be used by the meditating trusted
third party in [9].

We finally published our AI inspired controllers in [10].
The aforementioned publications are listed in the next section.
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2. Motivation

2.1. Challenges for Network Operators

Current business models of telecommunication operators are based on the concept of
the so called ”walled garden”: Service providers operate strictly closed infrastructures,
and base their revenue-generating models on their capacity to retain current customers,
acquire new ones, and effectively enact both technological and economical barriers to
prevent users from being able to utilize services and resources offered by other oper-
ators. The aforementioned network management practices are strongly rooted in the
monopolistic history of the telecom operator industry. The liberalization of the opera-
tors has only changed the landscape in a way that there were multiple closed operators
rather than one closed operator. This trend has had related implications on the network
operator and the user side.

This approach has led to the following problems:

• Lack of freedom and privacy for mobile users: users are tied by long-term contracts
and are not free to move seamlessly between different operators based on their
preferences when roaming. Furthermore, their privacy is compromised because
excessive amount of information is exchanged between multiple administrative do-
mains when handover is performed even though it is not required to accomplish
the procedure.

• High cost of service for mobile users: while the capacity to increase operators’
profits has levelled out, users can not expect significant decreases in the price of
mobile network services for the foreseeable future.

• Inability of new operators to come to the market: high entrance investment costs,
combined with difficulties in obtaining service level agreements (SLA) with existing
operators make it next to impossible for newcomers to become actual players in
this market.

• Difficulty in introducing new services over multiple administrative domains: the
deployment of complex services that require interaction of the user with multi-
ple operators becomes either impossible for technological reasons, or extremely
inefficient for economical ones .

• Inefficiencies in the use of telecommunication infrastructures for socially-oriented
purposes: the ”walled garden” model prevents optimal re-use of the operators’
under-utilized resources for non-profit or socially-oriented services, such as coverage
of schools, public libraries, emergency forces, etc.
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• Under-utilization of public resources and unsustainable investment models: lack
of an efficient collaborative service provisioning model hinders the network and
spectrum sharing efforts which aim economically and environmentally efficient net-
works.

The rise of Internet as the dominant driving force behind and the medium of social and
economical changes in the last 10 years has put the usually centrally managed telecom
operator networks which are poorly integrated with outside components, and strictly
isolated from external access. On the other hand the Internet was born out of the need
for integrating networks. The exposure of users to the prolific Internet services, which
make extensive use of the open integration, means that similar service models will have
to be provided by the next generation telecom networks. The clash between these two
opposite approaches poses important challenges for network operators. This is due to the
fundamental risk associated with their networks turning into mere bit-pipes. In order
for future telecom networks to be economically viable, they should provide a similar user
experience with Internet services, albeit in a more managed and reliable manner. Here
lies the challenge of the so-called Telco 2.0 operators. The operators have to offer even
more data intensive applications on their networks to make their operations profitable.

This comes in a time, when the increasing data traffic is starting to hurt user experi-
ence, and pose itself as the biggest risk facing the operators. The increase in traffic and
its negative impact on user experience and thus operator revenues can be observed in the
media, scientific literature and industry specialists reports. In [1], the CEO talks about
the danger of a ”capacity crunch”, and proposes the opening up of new spectrum, invest-
ment in new radio access technologies, and using existing technologies such as WLAN
as possible remedies. In the technical report published by 4G Market Research and
Analysis Firm Marvedis [2] designates the capacity shortfall as the primary concern of
the network operators. Finally Halepovic surveys the trends in the data traffic patterns
over the last 10 years in [3], and concludes that the demand for mixed data services over
WLAN and 3G networks will be growing steadily as more users connect to the Internet
using wireless technologies and as the current users increase the size and variety of their
data consumption.

2.2. Solution Strategies

In the face of the trends and the weaknesses we described above there are three strategies
that the network operators and broadband service providers can follow:

1. Competitive: Capacity expansion.

2. Heterogeneous Cooperative: Employing untapped networking resources, such
as community/cooperate Wireless LAN networks.

3. Homogeneous Cooperative: Establishing strategic partnerships with other op-
erators to share the existing spectrum.
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Capacity expansion Strategy

Most direct method of combating missing capacity is investing directly to infrastructure.
This has been the case for most of the operators who flag shipped the adoption of Apple’s
iPhone, such as AT&T in the United States. In a press release in March 2009 [4], the
company announced that its investment for the state of Illinois alone was 3.3 billion.
Industry analysts put the projected capital expenses of the company in the range of 18
billion and discern it as an industry-wide trend. Clearly, this is a brute-force solution
to the problem and can only be extended to the point when the investment costs drive
access prices beyond market prices. Even if one assumes that the market would adjust all
prices accordingly, the emergence of ”Greenfield operators” employing new technologies
such as WiMAX, or a possible decrease in revenues due to the falling data traffic mean
that this strategy is not sustainable.

Heterogeneous Cooperative

802.11 based WLAN are becoming ubiquitous in most urban areas, where they are mostly
deployed as hot-spots on densely populated areas. Most of the network operators offer
hotspot services to their data users. In the recent days the concept of traffic offloading
[5] is being used to transfer data traffic that is bound to the global Internet to WLAN
hot-spots operated by the wireless operators.

Operator owned WLAN hot-spots are not the only possible WLAN networks that can
be used to help the operators under capacity crunch. Community networks, built from
the access point of non commercial users are also possible candidates. The concept of
community communication networks goes bask to the mid 90’s [6]. The goal of com-
munity networks is reducing the investment costs for the most expensive part of the
end-to-end path in communication networks, the access part. Main idea is to combine
access points of end users into a single access network, which is then offered to other
foreign users in exchange of a fee, or to new members in exchange of access point. Early
incarnations of this idea used wired connections such as cable, fiber, and twisted copper
networks [7]. With the ubiquity of wireless access networks, realized by the popularity
of 802.11-based wireless LANs, idea has experienced a revival. Companies such as FON
[8] are already offering commercial community networks, and free communities are bur-
geoning in European (Berlin, Rome, Athens) and US (San Francisco) cities employing
the 802.11 technology. The 802.16-based solutions for lower population density rural
environments are also being proposed in the literature [9], which is yet to become a
reality.

The essential role of the community networks from the perspective of mobile fixed
convergence is the opening up of last mile wired connectivity to the wireless domain.
This new untapped wireless capacity can be used by the network operators to extend
their networking resource pool. In fact, the concept of operator assisted community
networks has been developed in the literature for the coexistence of community networks
with wireless network operators. It has been shown[10] recently that the co-existence
of a community network and a licensed operator is viable, under the condition that
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community network fees are below a threshold value. Such a scenario can be seen
as cooperation between the wired ISP that provides the back-haul connectivity to the
wireless operator via the proxy of community network.

Homogeneous Cooperative

The final strategy that the operators can follow is to establish strategic partnerships
with other operators in order to (i) reduce down the investment costs or (ii) make use
of trunking gains in the case of asymmetric service demand profiles. As we will discuss
in Chapter 3, such agreements between operators are already takin place. However
these agreements are mostly off-line in nature and can only be reached after long legal
and financial negotiations by the involved parties. Despite the difficulties associated
with cooperative solutions, they represent a far more long term and sustainable solution
compared to capacity extension.

2.3. User Facilitated Real-Time Inter-Operator Resource

Sharing

2.3.1. Aim

We believe that the dynamic resource sharing between two licensed or virtual operators
and cooperation between a licensed operator and a wireless community network are of
similar nature, and provide the best solution to the operators capacity scarcity problem.
We also are of the opinion that the time-scales with which the transfer of resources take
place can be improved. Currently, these durations are measured in terms of days. Our
aim is to enable dynamic resource exchange between heterogeneous operators within
the timescales of hours or minutes. We will demonstrate that according to the latest
measurements and traffic models developed for wireless networks, there are cooperation
opportunities to be exploited within these time scales.

2.3.2. User-Centricity and User-Facilitated Resource Sharing

An important obstacle before executing dynamic resource sharing in sub-daily timescales
is the way the ownership of digital identities of individual users are handled in the current
environment. Current practices tie the users to a single operator even though the number
of players in the market has long been growing. The users tend to manually combine
their subscriptions to multiple operators in order to take simultaneous advantage of their
different offers that are suited for a variety of services. User-centric networking is a new
approach to the relation to the ownership of identity in next generation networking. In
its most generic sense, the user-centric view in telecommunications considers that the
users are free from subscription to any one network operator and are the real owners
of their identities. This allows them to dynamically choose the most suitable transport
infrastructure from the available network providers for their terminal and application
requirements.
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Figure 2.1.: User centric approach in Perimeter project.

The PERIMETER project [11], funded by the European Union under the Framework
Program 7 (FP7), has been investigating such user-centric networking paradigm for
future telecommunication networks. The key innovation in PERIMETER project is the
introduction of a distributed database implemented on user terminals, which stores the
Quality of Experience (QoE) reports associated with a certain network generated by the
users as depicted in 2.1. These reports capture the objective QoS measurements, as well
as subjective grading of the suitability of a given application to a specific RAN. The
subjective scores that the users enter are called the Mean Opinion Score (MOS). The
users utilize the reports of current and past users of networks to decide which network
to choose. It is also possible for the network operators to host support nodes that store
the user reports. In exchange for hosting this service, they would be able to track the
subjective user performance metrics in their own networks as well as in the networks
which are co-located. Even if the contract-less dynamic access part of the user-centric
paradigm were not to be implemented, an open QoE database is still beneficial both to
the operators and users, and therefore can be realized on its own.

Another critical aspect of sub-daily dynamic inter-operator sharing is what we call the
information asymmetry. In the well researched intra-operator resource sharing problem
the internal congestion states of different Radio Access Networks (RAN) are available
to the controller, since both RANs belong to the same operator. In the case of inter-
operator sharing this is not the case, since competing operators would not be willing to
share mission-critical operation data with each other. In user-facilitated Inter-operator
Dynamic Resource Sharing, the user QoE database helps the operators to make indirect
observations about the congestion state of the peer operators. With these observations
they can take cooperation decisions. Furthermore, the fact that each operator knows

15



Figure 2.2.: Information Asymmetry solved by the user QoE database.

that its congestion state is indirectly available to the peer operator makes it possible
for us to design efficient interactions between peer operators, in which lying about the
operator internal conditions are are futile. This is depicted in 2.2.

2.4. How Realistic is a Cooperative Solution?

Our proposal requires cooperative behavior from the operators. In this section we discuss
under which conditions this might be possible.

Cooperation among the end users and network side elements enable a more efficient
utilization of the wireless spectrum, compared to a competitive use of the spectrum.
This simple fact has not translated into reality, even in the wake of a long history of
academic and industry research projects, and various commercialization attempts. Ad
hoc networking has been an active research field for at least 30 years, yet to produce
a civilian product that is profitable. Cognitive radios and software defined radios are
all providing and demonstrating through proof-of-concept projects and implementations
promising results that validate the fundamental fact about cooperation. Yet they are
finding it hard to make their impact on the business front. These facts make asking the
following question legitimate: ”Does the success factor behind cooperative methods in
4G networks lay beyond the technical considerations?”

Dohler et. al., who are associated with France Telecom, investigate the answers in
[12]. Before postulating success factors, they discern common reasons of failure that
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are associated with past proposals for cooperative communications. First aspect they
recognize, which does lay outside the technical realm indeed, is the short-term horizons
of human decision processes. Specifically, successful cooperation necessitates the accep-
tance of short term losses, as condition for long term benefits. The authors propose
that the instinct-driven minds of humans are not apt to make such a sacrifice. Thus
their claim is that a cooperative scheme that depends a priori on human decisions for
cooperation is doomed to fail. The second reason of failure is socio-technical in nature.
The authors postulate that the number of design degrees of freedom associated with the
cooperative communications proposals have made their commercialization impossible.
The reasoning is that cooperative systems require the system designers to come to a
consensus on the terms of cooperation beforehand. The larger the number of technical
parameters, the harder for the designers to achieve an agreement. Finally, the authors
note technical ground for the apparent commercial failure of cooperative systems. Suc-
cessful commercial communication networks build on the premise that end-users are
willing to make contracts with operators, in exchange for a reliable connection. The
cooperative proposals in the literature did not lend themselves to such business model,
and hence could not build a healthy ecosystem of companies needed for the success of a
communication technology.

Based on these observations the authors propose the following success criteria for
cooperative communication systems.

1. Cooperation decisions should be taken by decision engines with long term decision
horizons.

2. The benefits of cooperation should be explicit and trackable.

3. There has to be a clear answer to the Cui bono? question, that is for whom the
benefits are, should be demonstrated clearly.

4. Cooperation should provide reliable communication means.

5. Design degrees of freedom of the system should be kept at a minimum.

Let us analyze our proposal from these success criteria. The cooperation decisions are
to be taken by the NOC-Agents, which base their decisions on long term average average
rates. In an actual implementation the amount of traffic exchanged can be tracked
explicitly. Furthermore, by analyzing the QoE database, the user performance can be
tracked. This means the benefits such as higher revenue and increased user satisfaction
are explicitly trackable. In our proposal, cooperation makes the communication more
reliable, in the sense that service degradations due to congestions are less frequent. As
we describe in Chapter 5, there is a single dynamic parameter that the cooperating
parties must agree upon, namely the transfer probability.

It is worth discussing the Cui bono? question in a little more detail. The benefit
of the operator who is donating resources is obvious. In the short term, it is able to
increase its revenues by opening some of its under-utilized infrastructure. The benefits
of the borrowing operator on the other side are long term. It sacrifices some or all of
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the revenue from the transferred sessions, for the sake of increasing the QoE of the users
already associated with the operator. This is compensated in the long term, since a
sustained lower QoE levels leads to users leaving or not choosing the operator in the
future. This is termed churning in the literature. Avoiding churning in the highly
saturated telecommunications market of today is an important financial benefit.

It is tempting for an under-utilized operator to reject helping a congested operator,
with the hope that the churning users of the under-utilized operator would choose the
under-utilized operator in the future. This would be the case if the operators would stay
under-utilized and congested for long periods of time. However this is rarely the case,
and a under-utilized operator will become congested in the future. Similarly, a congested
operator could become under-utilized in the future. The load fluctuations are due to
random user population variations in the short term and service penetration variations
in the long term, both of which the operators cannot influence directly. It is highly
probable, that the cooperation agreements between operators would be based on this
fact, and be reciprocal. That means, an operator would be willing to accept additional
traffic from another operator, with the condition that the other operator would be willing
to do the same in the future if the conditions require this. From this perspective, going
into such a cooperation agreement, and loosing some short term revenue can be seen as
an insurance that protects from future congestions.

Dohler’s analysis is slightly more technical, compared to the analysis of Giupponi
et. al. [13] which includes micro-economical components. Giupponi proposes a meta-
operator, similar to the SLA-Broker we introduce in Chapter 6, that allows real-time
resource sharing among operators. Operators which need additional resources apply to
the meta-operator for additional resources. The meta-operator than chooses another
network with extra capacity. The authors propose a neural network controller to be
employed by the meta-operator, with a reinforcement learning mechanism to set the
prices for unit bandwidth transferred among operators. They investigate the benefits
of real-time resource sharing as a function of relative market shares and infrastructure
investments of two operators. Even though the control mechanism is different from our
proposal, the financial analysis is still relevant.

In the first scenario, when both operators have the same market shares and infrastruc-
ture deployment, real-time resource sharing increases operator revenues by 34% and the
number of total users served by 36%. In this scenario the roles of the operators change
from time to time, i.e. an operator has both donor an operator roles.

In the second scenario authors examine the effects of uneven market penetration.
When Operator 1 controls two thirds of the market, this translates to 85% of traffic
transfers taking place from Operator 1 to Operator 2. This means that the short term
financial benefits are inclined towards the operator with the less market penetration. Op-
erator 1’s benefits are long term, in terms of reduced churn rate, i.e. keeping customers.
In [14] authors quantify the churn rate as a function of market share and cooperation
options. For the market share of 66.6 %, cooperation reduces user churn rate from 0.99
to 0.0001. Therefore even an operator with a larger market share would be willing to go
in a cooperation agreement.

In the final scenario the authors concentrate on the effects of asymmetrical infrastruc-
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ture deployments. In a region where Operator 1 has invested more in infrastructure,
under high load conditions most of the traffic transfer occurs from Operator 2 to Opera-
tor 1. The cooperation agreement increases the revenue of the Operator 1, which allows
the costs of infrastructure to be covered. To sum up, Giupponi et. al. show that it is
beneficial for operators to go into cooperative agreements irrespective of the market and
infrastructure shares.
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Figure 3.1.: The Infrastructure sharing dimensions and variants.

3. State of the Art

In this Chapter we present the proposals and trends in the industry and the scientific
literature that are similar to our proposal. At the end of the Chapter, we compare our
proposals with those we cover in the Chapter.

3.1. Infrastructure Sharing

Infrastructure sharing is a fairly new industry trend in cellular networks, in which oper-
ators share varying portions of the access networks to leverage the initial investment and
reduce the operation costs of the most expensive part of their networks. Depending on
the level of network sharing, the resources shared between operators may involve radio
spectrum, back-haul links, and even some network layer links.

The portion of the network shared between the operators is not the only distinguishing
property of Infrastructure Sharing. Frisanco provides a three dimensional categorization
of Infrastructure sharing in [15], which we reproduce in Figure 3.1.

According to this view the dimensions are the technical dimension, which is related
to the proportion of the 3G network that is shared. Second dimension is the business
model, which defines the legal and financial roles of the the sharing operators. Final
dimension is the geographic dimension, which defines in which parts of the operators
networks the sharing will be effective.
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On the physical dimension, one can discern a fundamental trade-off. The higher in
the UMTS hierarchy the sharing goes, the higher are the savings in the investment
and operation costs. But this comes at the prize of losing autonomous control over a
larger part of the network for the operators. At the bottom of this hierarchy is the
passive sharing, in which the operators have no protocol interfaces. In this scenario base
station sites, or the links connecting the base stations to the base station controllers are
shared. Active sharing means on the other hand, that the operators share the software
protocol interfaces to individual nodes. Active sharing generally involves the sharing of
the complete RAN. The RAN can be partitioned into logically between operators, in
which the end users see a single base station ID, or physically in which the users see the
base station IDs of both operators.

On the business model dimension the operators can decide to form a joint venture, let
a third party handle the operations or to make separate offers to the users. Which one
of these options can be chosen depends also on the technical and geographic dimension.

The fact that infrastructure is gaining popularity among operators show that there
is the possibility that operators are willing to go into resource sharing contracts with
other operators. In contrast to our proposal, the sharing of resources, is at least for the
moment, is static.

3.2. Common Radio Resource Management (CRRM)

We discussed earlier that the operators have already deployed WLAN based hotspots.
Common Radio Resource Management is the concept that such multiple radio access
technologies can be combined in an operator network to diversify the service offer, as
well as for making use of trunking gains. In [16] Tolli quantifies the benefits of CRRM.
Fruskär provided the derivation of optimal allocation mix, which is the ratio of traffic
allocated to different RANs, as a function of the service mix, which is the ratio of arrival
rates of different service class sessions in [17]. The main result from this analysis is
the following. According to the slopes of the joint capacity regions, each service has
a particular RAT, for which it is optimal. For example data calls are served better
by WLAN networks, where as voice calls are better served by UMTS. The optimum
allocation strategy is to fill the WLAN with data sessions, and the UMTS with voice
calls as long as the capacity of those RANs are not exceeded. Only after the capacity is
exceeded should the voice calls be allocated to WLAN, or data calls to the WLAN RANs.
In [18] Perez-Romero provides architectural models with which CRRM can be executed.
And in [19] he shows how CRRM can be used to alleviate the effects of congestion.

3.3. Spectrum Sharing

In 2002 FCC, the regulator in USA, published the results of a large-scale spectrum
occupancy survey. This was a seminal document, since it showed the variability of
the occupancy of allocated spectrum varied between 15% and 85% both spatially and
temporally. This was clearly seen as a shortcoming of the current spectrum allocation
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Figure 3.2.: An overview of DSA proposals from [20].

policies. The traditional method of spectrum allocation is to allocate a band to a certain
technology, operator, and usage purpose. It is a natural result of this static allocation
strategy, that the occupancy varied this much. Two main of complementary research
directions were formed as an answer to this problem:

• Dynamic Spectrum Access (DSA)

• Cognitive and Reconfigurable Radio

3.3.1. Dynamic Spectrum Access

The aim of DSA is to replace the current static spectrum allocation regime with a more
dynamic one. There number of DSA proposals in the literature is very large. Buddhikot
proposes a detailed hierarchy in [20] in order to put these proposals in perspective. The
hierarchy is depicted in Figure 3.2.

The current spectrum access model falls under he category of long term exclusive use,
in which the owners of spectrum licenses have a long time and mostly non-transferable
right to transmit in the corresponding spectrum. Buddikhot explains the current sec-
ondary market rules in USA, which allows the exchange of data transmission rights for
a given spectrum rights between operators. Even the fastest mechanisms require a 15
day processing delay. The licences can be transferred for short periods of time in the
range of days.These are called the non real-time secondary markets.

The author proposes two methods how real-time secondary markets can be imple-
mented. In the first version, the operators exchange frequency carriers as an answer
to load fluctuations for shorter amounts of time such as 15 minutes. Buddikhot rejects
the applicability of this scenario in high density areas, and argues that this scenario is
more relevant for rural areas. We will show that this is not the case in Section 8.3.3.
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The author advocates an alternative approach, in which a dedicated frequency band
called Coordinated Access Band (CAB) is allocated only for such dynamic short term
allocation to operators which need them in the case of congestion. He proposes a trusted
Spectrum Broker to allocate the radio carriers to operators according to their bandwidth
requirements.

The next category in DSA hierarchy is the shared use of primary licensed spectrum.
The idea is to let users of a secondary RAT to use the spectrum that is already allocated
to a primary user. This can take place in two variants. In the spectrum underlay, the
secondary system operates below the noise/interference threshold of the primary system,
so that the secondary system appears as noise or negligible interference to the primary
users. Ultra-wideband Systems (UWB) are examples of such an approach. The approach
is related to configurable radios and cognitive radios we will discuss next.

3.3.2. Cognitive and Software-defined Radio

The approach in spectrum overlay is to let the the secondary users find spectrum holes in
frequency and in time and transmit opportunistically. This approach requires cognitive
approaches to find the spectrum holes, and transmit opportunistically during these holes.
Since the spectrum holes appear on different frequencies and require different power
levels, reconfigurable radios are needed. Software-defined radio is the approach, in which
the radio transmission properties of the user and base station network interfaces can be
controlled algorithmically. Akyildiz provides an excellent survey of the cognitive radio
challenges and research results in [21].

The commons model covers coordinated and uncoordinated access to a shared spec-
trum, without any exclusive spectrum allocation. In fact, WLANs which operate at the
licence-free ISM band is an example of such a commons model.

3.4. Proposals for Real-time Spectrum Sharing

In the literature, there are similar proposals to our solution.
Salami et. al. make a very similar proposal for dynamic spectrum sharing in the

UMTS bands. They make the assumption that the operators are involved in an active
sharing agreement, and thus share the same RNC and base stations. A central entity is
responsible for tracking the spectrum utilization of two operator simultaneously. In [22]
they let the RNC be controlled by this central entity to dynamically change the channel
and code assignments between the operators according to the different load levels. In
[23] they make a more similar proposal to our approach. Instead of adjusting the channel
codes according to the network load, they let the RNC issue ”re-connect” messages to
the end users, to transfer traffic between operators.

In [24] the authors propose the technique of Dynamic Spectrum Lease (DSL). In DSL
the owner of the primary spectrum, i.e. the access point, actively tries to lease some
part of the spectrum to secondary users, when the traffic is low. The authors formulate
the problem as a power control game. This approach takes the cooperation to a lower
layer compared to our proposal.
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Finally Guipponi et. al. propose an inter-operator Joint Radio Resource Management
(JRRM) mechanism in [13]. In this proposal the operators forward the user requests that
they cannot answer to a meta-operator. This meta operator is responsible for finding a
suitable operator as well as the bit rate for these requests. It is able to calculate these
values, since the operator internal JRRM entities constantly update the meta-operator
JRRM about the spare capacity in their RANs. The architecture resembles our SLA-
Broker based multi-class negotiation mechanism we present in Chapter 6. Instead of
using auctions to calculate these values, the authors use fuzzy logic. Another important
similarity to our approach is the processor sharing abstraction the authors employ for
WLAN RANs in their systems.

3.5. Comparison with State of the Art

Lets compare our proposal with the approaches we presented above.
When seen from the DSA hierarchy perspective given by Buddhikot [20], our proposal

is an example of DSA, within the Dynamic Exclusive Use category. It is a real-time
secondary market, which is implemented in the already existing cellular and WLAN
bands. Unlike the example given by the authors, our proposal does not involve actual
exchange of radio carriers, but exchange of user sessions between operators. This means
our approach does not require any changes to the base station hardware or controller
software.

From the perspective of the infrastructure sharing, our approach can be categorized as
a roaming based infrastructure sharing. The geographic scope of infrastructure sharing
is limited to the congested area. During the resource sharing period, all the nodes
in the donor operator is shared. To the best of our knowledge, there is no current
implementation or proposal to use real-time roaming to overcome congestion.

Our proposal can be seen as an extension of the CRRM approach to include foreign
operators. The framework architecture presented by Perez Romero shows the practical
applicability of our solution, since the same architecture used for CRRM can be used for
User-Facilitated Dynamic Inter-Operator Resource sharing by considering RANs from
foreign operators as possible traffic diversion destinations.

Finally, real-time spectrum sharing proposals we discussed in Section 3.4 share the
common characteristic of relying on a trusted third party to meditate and control re-
source sharing. Our primary improvement on the state of the art is the possibility share
resources directly between operators, without the third party. We believe it is an im-
portant improvement, since trust establishment between two operators is simpler than
building from meta operator from scratch.
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4. Modeling Problem

In the Modeling Problem we are interested in developing comparable and compatible
performance models for heterogenous radio access technologies such as HSDPA and
WLAN.

4.1. Introduction

Processor Sharing (PS) is a queueing service discipline first analyzed by Kleinrock in
[25] in 1967. It is an idealized version of the Round Robin (RR) service discipline, in
which the service quanta that each job in the queue receives is infinitesimal. In the limit
the server operates in a manner that each job receives a service rate equivalent to the
overall server capacity divided by the number of jobs in the queue.

We will use PS abstraction in order to abstract the performance of heterogeneous radio
access networks. In this Chapter we present a summary of the results in the literature
that have used PS abstraction for WLAN and 3GPP RANs. The intuition that the
wireless access network can be modeled as a service station that simultaneously serve
the active users can be traced back to the work of Telatar [26]. Furthermore, it has been
shown that the Weighted Fair Queueing service discipline, used widely in radio network
base stations, approximates processor sharing when the packet size is small compared
to the session size [27].

Another important feature of PS, which has lead us to consider it as an abstraction
model is the fact that combination of PS queueing stations have a separable joint proba-
bility distribution thanks to the BCMP theorem [28]. We will investigate this in Chapter
5.

In this Chapter we first provide a mathematical background on PS in Section 4.2.
In Section 4.3, we first present an overview of the 802.11 MAC and then argue that
WLAN MAC can be modeled with a PS queue, especially for TCP traffic. In Section
4.4, the issue of how 3GPP family of RATs handle different service classes is discussed.
We make a summary of the of the HSDPA technology, which is an example of evolution
of traditional UMTS based 3G networks that focuses on bursty traffic. We finally argue
that the data transmission performance of HSDPA can be modeled via a PS model
similar to the WLANs. We conclude therefore that the PS abstraction can be used as
an umbrella model for interacting heterogeneous RANs.
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4.2. Mathematical Background

4.2.1. Time Shared Systems

Time shared systems were the pioneering paradigm that heralded the arrival of the
current Internet and World Wide Web. They were conceptualized after the Second
World War, as a means of making the few high computation powered computers in the
United States accessible to the researchers across the country. The computers would be
shared between users over different time blocks. Round Robin (RR) discipline was the
first candidate for regulating the access to the computers.

In the RR service discipline the customer at the head of the queue receives Q seconds
of service on the server, then is returned to the tail of the queue. In the next service
interval, the new head of the queue customer also gets Q seconds of service and send to
the back of the queue after finishing its service quantum Q.. The process repeats. Thus
the customer would cycle the queue n times when his service demand equals nQ.

While investigating the delay characteristics of the RR disciplines used for time shared
systems, Kleinrock introduced PS is the limiting service discipline of RR, when one lets
Q→ 0. Practically, this happens when the size of the service quantum Q is infinitesimal
compared to the job sizes. Ideally, in this discipline each customer receives C/k service
rate when there are k users using the server of capacity C. From this perspective, the
PS is the ideal time shared discipline, treating the users fairly.

4.2.2. Derivation of PS Results

Let us assume that the job size in a RR queue is distributed geometrically with a
parameter σ. Geometric distribution is chosen, since it is the only memoryless discrete
distribution. Let sn donate the probability that the request size is of size n service
quanta:

sn = (1− σ)σn−1
n (4.1)

One has to be careful in taking the limit. Simply letting Q→ 0 would mean the service
time of a request nQ would also go to zero. Instead, one keeps the average service time
constant as the limit is taken. If the average size of the request is 1/µ operations or
resources, and the server capacity is C operations or resources per second, the average
service time is given by 1/(µ · C). From the RR discipline average service time is given
by E[sn] · Q. Since sn is Geometric r.v. , E[sn] = 1/(1 − σ). Equating both of the
expressions for average service time we get 4.2:

1

µC
=

Q

1− σ (4.2)

σ = 1−QµC (4.3)

So taking the limit Q→ 0 by keeping the average service time same necessitates σ → 1.
It is well known for the limit σ → 1 the geometric r.v. sn converges to a exponential r.v.
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with parameter µ. Under this conditions the PS server reduces to a M/M/1 server with
load dependent service rate, in whihc (i) jobs arrive according to a Poisson process, (ii)
jobs have an exponential size distribution, (iii) jobs see a service rate of C/n when there
are n other non-completed jobs.

Kleinrock formulated the expected sojourn time in a PS queue conditioned on the job
size x in [25], by letting Q→ 0 and σ → 1 in the formulations for RR queue. T (x), which
describes the average time spent in the system of a customer requiring x operations, is
given by (4.4):

T (x) =
x/C

1− ρ (4.4)

The importance of this result is two-folds. First of all, the sojourn or the total time a
x-sized job has to wait is linear with x. This means shorter jobs are not lengthened by
longer jobs, which makes the PS discipline fair in a narrow meaning of the word. Sec-
ondly, it was later shown that Equation (4.4) is valid for arbitrary job size distributions,
as long as ρ = λE[S], where E[S] is the first moment of the size distribution S. This is
the celebrated insensitivity result of PS, the conditional sojourn time is only linked to
the mean service size, not on its distribution.

The fact that there are abrupt changes in the service rates with the arrival and de-
parture of jobs makes the analysis of the number of the jobs in the system slightly more
complicated. The number of jobs in a system depends on the remaining service times of
all the jobs in the system at the time of the arrival of a new job. It was not until 1979,
that it was shown by Kitayev in [29] that the number of jobs in a M/M/1 PS queue has
the same distribution as a M/M/1 FCFS queue. The actual distribution, rather than
the mean as given in Equation (4.4), of the sojourn time was first given by Coffman
in [30]. Ott extended this result, and gave the distribution of sojourn time conditioned
on the number of jobs upon the arrival of a new job for an arbitrary job distribution
size in [31]. The queueing properties of PS abstraction and the application of it to real
world problems is an active research field. An excellent survey on this topic is given by
Yaskhov in [32].

4.3. Wireless Local Area Networks

4.3.1. Overview of 802.11 MAC

Wireless Local Area Networks (WLAN), based on the IEEE 802.11 family of standards,
have been experiencing rapid growth since the introduction of the standards. The stan-
dards have paved the way to a sustainable technological ecosystem, in which standard
conforming equipment are able to function together, and bring the forces of the economies
of scale in action. Through these forces the 802.11 based user and network equipment are
available to the general public for affordable prices. It may be argued that the success
of the 802.11 standard is a result of its simplicity, especially as seen from the network
side. It adopts the standard 802 logical layer protocol, and a best effort multiple access
(MAC) layer based on the well-known carrier sense multiple (CSMA) access with col-
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Transmission Operating Frequency Physical Layer Rate

802.11a OFDM 5 GHz 54 Mbps

802.11b DSSS 2.4 GHz 11 Mbps

802.11g OFDM 2.4 GHz 54 Mbps

Table 4.1.: Normal form representation of the first level game.

lision avoidance (CA) , while providing optimized physical layer techniques which are
completely transparent to the network and user side. However, the very fact that the
legacy 802.11, i.e. 802.11a, b and g, support a best effort MAC which led to its success
is also its main weakness. The lack of QoS support in the forms of service differenti-
ation or resource reservation prohibits the usage of WLAN’s for real-time and mission
critical applications, and necessitates changes or variations to the original standards and
investment on devices that support the improved standards. However there is a econom-
ical incentive for the network operators to undertake such investments, as QoS support
in WLANs allows segmenting market and allowing charging premium to real-time or
mission critical applications.

With legacy 802.11 we mean the family of standards 802.11a, 802.11b, 802.11g which
share identical MAC properties but differ in the physical layer. The different properties
of legacy WLAN standards are summarized in Table 4.1.

The mobile stations running 802.11 protocols can support two types of basic service
sets (BSS), the infrastructure and independent BSSs. In independent BSS, also known
as the ad-hoc mode, two or more 802.11 supporting mobile stations communicate with
each other directly. In infrastructure the mobile stations communicate with an access
point (AP), which then is connected to an infrastructure network. Furthermore more
then one AP can be connected to offer what is referred as extended BSS. Our survey
will concentrate on the infrastructure BSS.

There are two MAC protocols defined in legacy 802.11, the distributed coordination
function (DCF) and point coordination function (PCF). We will summarize these in
detail, as they are the fundamental mechanisms on which the extensions built up upon.
We summarize the important parameters used in 802.11 MAC before going in to detail.

DCF Interframe Space (DIFS) Duration that the medium should be free in DCF before
a MAC entity can start a random back-off.

Short Interframe Space (SIFS) Duration that the medium should be free before RTS,
CTS, Data, and ACK packets can be sent.

PCF Interframe Space (PIFS) Duration that the medium should be free in PCF before
a MAC entity can start a random back-off.

Contention Period Period defined in PCF during which mobile stations contend for
channel access.

Target Beacon Transmit Time Planned absolute time in terms of slots when the AP
transmits a new beacon.
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Figure 4.1.: 802.11 DCF timing.

Network Allocation Vector Time when a station cannot transmit when RTS/CTS is
used.

Distributed Coordination Function

The basic 802.11 MAC protocol DCF is a CSMA/CA type of MAC scheme. The stations
are able to determine if the medium is free or not. After listening the medium for a pre-
determined period of time (DIFS) and assuring it is free, each station initiates what is
called a random backoff procedure, which is choosing a random integer between 0 and
contention window (CW). The station can only start transmitting if the channel remains
idle for another CW times slot time, which is 9 microseconds in 802.11a and changes
from standard to standard. In the case when the channel is occupied by another mobile
station or the AP during the backoff period the backoff timer is saved. When the mobile
station starts the next backoff procedure, instead of generating a new random integer,
it uses this saved value.

The transmission of data can optionally be protected from the interference of exposed
or hidden nodes by using request to send (RTS) and clear to send (CTS) messages. The
sending station or AP transmits RTS indicating its wish to send data, to which the
receiving station replies with a CTS. Both of these messages contain information on how
long the data and corresponding acknowledgement frames will occupy the channel. The
stations in the range of the communicating parties set their network allocation timers,
according to the information contained in RTS/CTS frames, and retain from sending
any data or control frame during the specified time. The data can then be sent either in
fragmented form, or in complete form which are acknowledged by the receiving station.
After each successful data frame transmission the value is set to a global parameter
CWmin, which is broadcasted by the AP, and after each failure the value of CW is
doubled, up to a system-wide limit CWmax. RTS, CTS, data and acknowledgement
frames are separated by a SIFS, which is shorter than DIFS, which keeps other stations
from transmitting. Finally after the data transmission is completed, another backoff
procedure is initiated which is named the post-backoff. Post-backoff assures there is at
least one backoff procedure between transmissions. The procedure is demonstrated in
Figure 4.1.

The only parameter which would allow differentiation of channel allocation proba-
bilities in legacy 802.11 DCF is CWmin, the smaller its value, the more possible it is
for a mobile station to get the channel access, as on the average it would have to wait
(CWmin x Slot Time)/2 seconds to access the channel. In DCF all the mobile stations
use the same value of CWminand therefore cannot be separately treated. This is the
main reason why there is no QoS support in terms of service differentiation inlegacy
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WLAN MAC protocol. Furthermore due to the probabilistic nature of the MAC pro-
tocol, and there is no control on how long a mobile station can occupy -there is only a
maximum limit- guarantees cannot be given on QoS defining parameters such as jitter
and delay for real-time applications.

Point Coordination Function

Point coordination function (PCF) attempts to introduce prioritization to 802.11 MAC.
This is achieved by introducing a central component that coordinates the medium access
known as the point coordinator (PC), which usually is the AP. The resilience of DCF is
traded of for a central architecture, with a single point of failure, for the sake of providing
prioritized access.

In PCF, PC is responsible for transmitting beacon frames in regular intervals, in
which synchronization and other protocol specific information are carried. One such
information is TBTT, which is the time when the next beacon is scheduled. Note that
this is the target time, and the fact that it cannot be met under certain circumstances
is the main shortcoming of PCF, as we will see shortly. Each beacon starts a period
of two alternating MAC regimes, the contention period (CP) and the contention free
period (CFP). In CP, normal DCF is employed. The PC must schedule at least one CP.
In CFP, whose duration is set by the PC, the PC polls the individual stations. Data is
piggybacked to polling request and response frames. CFP ends with a special CF-End
Frame.

The main problem with PCF is tied to the fact that PCF has no control over the
amount of time the mobile stations can occupy the medium. This means that the last
polled station may occupy the channel beyond the previously scheduled TBTT, which
would mean that the next CFP is spoiled. Therefore it is not possible to give guarantees
on delay or bandwidth with PCF. Furthermore, it is highly unlikely that PCF can operate
without degrading the performance of mobile stations employing DCF only. Lastly, PCF
is suboptimal in terms of bandwidth utilization as the stations which possess data to send
must wait to be polled, during when stations without data might be being polled. Due to
this inadequacies PCF has not gained popularity in the research community, which has
gone in the direction of extending DCF with service differentiation, and admission control
and bandwidth reservation via Layer 3 protocols such as DiffServ[33] and IntServ[34].
An alternative approach has been providing a service differentiation in the MAC layer
which we discuss in the next section.

802.11e

The aforementioned weaknesses in 802.11 MAC lead to the standard makers to concen-
trate their efforts on modifying the 802.11 MAC, without fundamental changes to the
standard itself, which resulted in the 802.11e amendment.

The main improvements to the legacy MAC of the 802.11 MAC can be summarized
as:
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• The introduction of transmission opportunity (TXOP), which sets an upper bound
to the duration which a mobile station can occupy the medium.

• The stations are not allowed to start transmission if their TXOP runs beyond the
next TBTT, these two properties make it possible to give time based guarantees.

• The mobile stations in range can exchange data among each other, after executing
direct link protocol. This may be seen as an hybrid mode between infrastructure
and independent BSS’s.

802.11e defines the hybrid control function (HCF), which is a mixture of PCF and
DCF. Just like in the PCF a superframe between beacon frames is divided into a con-
tention based channel access period and, contention free, controlled channel access peri-
ods. Enhanced distributed channel access (EDCA) is an extension of DCF and is used
only during the contention based channel access. During both the controlled channel
access and contention based channel access period the HCF controlled channel access
(HCCA) can be employed. 802.11 also introduces the concept of a QOS supporting BSS
(QBSS) which is composed of a hybrid coordinator (HC), which is usually the AP, and
mobile stations running an implementation of 802.11e standard.

In the core of EDCA lies the introduction of 4 access categories (AC), namely voice,
video, best effort and background. Each of these AC’s is represented by 4 backoff entities
running on the same mobile station which contend with each other for a TXOP. These
backoff entities run a similar backoff algorithm as defined in the legacy 802.11, with
the only difference being the ability of HC to adjust certain parameters of the backoff
algorithm that the backoff entities of individual ACs are running. These parameters are:

• Arbitration interframe space (AIFS): This replaces DCF defined in legacy 802.11.
Smaller the value of AIFS, the higher the possibility of an individual AC gaining
a TXOP.

• CWmin, CWmax: By lowering the contention window maximum and minimum
sizes one can increase the probability of a certain backoff entity obtaining a channel
access. However this increases the possibility of frame errors, as collisions become
more often occurring.

• TXOPlimit: By changing the maximum duration a AC can hold the medium, one
can adjust the amount of capacity allocated to that AC.

It is worth mentioning that each back-off entity of a certain AC on every mobile station
of a QBSS has the exact same backoff algorithm parameters above. Also within an
mobile station if a collision occurs between different backoff entities of different AC’s the
access is priotorized according to the priority of voice, video, best effort and background.
During contention based channel access the backoff entities access the channel according
to EDCA.

HCCA allows the HC having the highest priority, when it comes to accessing the
shared medium. This is achieved by setting PCF, which is the amount of time the HC
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should observe the channel to be free, before it can transmit, to be smaller than AIFS.
With this condition it can obtain a TXOP to itself anytime it needs, both in contention
based channel access period, and controlled channel access period. It can use this TXOP
to deliver downlink data to a certain mobile station, or to directly poll a mobile station.

In contention based period the TXOP obtained by the HC can be delayed by max-
ACTXOPlimit at most. By contending for a TXOP maxACTXOPlimit earlier then
required, HC can poll and therefore give time guarantees to certain flows even in the
contention based period. In contolled channel access period, the backoff entities only
transmit as answer to polling HC, and there fore HC is in complete control over the time
aspects of channel accesses of different mobile stations.

As described above EDCA and HCCA combine the best aspects of PCF and DCF, and
allows service differentiation and time guarantees while not degrading the performance
of contention based channel access. However there are two main shortcomings of 802.11e
as described in [35]. First of all service differentiation does not scale well, and perform
badly under high network load. Secondly when two or QBSS working on the same
frequency channel interfere with each other, the performance degrades substantially.
However 802.11e has been commercially more successful than the previous PCF attempt.
Currently 802.11e compliant hardware is being sold under the WiFi-Multimedia label
given by the WiFi consortium industry alliance.

We conclude that 802.11 family of protocols lack a strict QoS capability. The best
approach to guaranteeing users quality is to keep the utilization of the access point low.
This can be done with pricing, Call Admission Control or load balancing.

4.3.2. Theoretical Analysis of 802.11 MAC

One of the pioneering works of the the formal theoretical analysis of 802.11 MAC layer
performance is due to Bianchi [36]. This influential work was simplified and generalized
by Kumar et. al. in [37].

This strand of analysis aims at finding the aggregated throughput of the 802.11 MAC
layer when there are n nodes using the layer. There can be data flow between any two
nodes in the system, thus the analysis is valid for both ad-hoc and infrastructure modes.
They make the saturation assumption, which means that the nodes always have a packet
to transmit when they get the chance to transmit. In a real life scenario the throughput
obtained with this assumption sets an upper bound to the traffic arrivals at each node.
If the traffic arrivals are less than the saturation throughput, the node queues remain
stable.

The analysis depends on the key observation that for the throughput performance
analysis, the modeling of the back-off process is sufficient. It is enough to compare the
event flows in the cases of a successful attempt and a collision given in Table 4.2.

What can be observed from the the events is the following. MAC protocol swing
between a deterministic and stochastic part. The time intervals in which transmissions
occur and the time intervals after collisions when no transmission occurs are determin-
istic. The time between attempts, which can be successful or result in a collision, is the
stochastic component. This component is completely described by the evolution of the
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Success Collision

A single node’s back-off timer
timeouts

More than one nodes’ back-off
timers timeout

Transmitter Send a RTS Wait for an amount of time
equal to RTS transmission

Non-transmitting nodes freeze
back-off timers

All nodes freeze back-off
timers

Recipient Sends CTS All nodes wait for a fixed
amount of time

Data Transmission All nodes resume their timers

ACK Transmission -

Transmitting node restarts
back-off timer, the others re-
sume their timers

-

Table 4.2.: Flow of MAC events.

back-off process in the individual nodes. Since the back-off counters are frozen during
the deterministic periods, it is sufficient to study the aggregated back-off process.

The value of the back-off counter is dependent on the number of retransmissions al-
ready suffered due to the exponential back-off employed in the MAC protocol. Therefore
the back-off process is not inherently Markovian. Bianchi introduces the decoupling ap-
proximation that transforms the process into a Markovian process, for which he develops
a DTMC. The decoupling approximation is defined as [36]:

[Decoupling approximation] is the assumption of constant and indepen-
dent collision probability of a packet transmitted by each station regardless
of the number of retransmissions already suffered.

The approximation results are more accurate when the contention window size is large.
The approximation has been shown to be accurate with the help of simulations. With the
further is assumption that the nodes have the same back-off parameters, the nodes time
out the back-off timers with the same rate, and thus attempt to access the channel with
an equal probability. This rate is termed the attempt rate β, and is the key parameter
in this strand of analytical performance evaluation.

The attempt probability is not equal to the probability of successfully accessing the
channel. This is because multiple nodes try to access the channel independently with the
rate β and experience collisions as a result. The collision probability γ is thus a function
of the attempt probability β. On the other hand, the attempt rate is also a function of
the collision probability, since the nodes make more attempts to transmit a packet when
there are more collisions. Fixed point analysis uses this exact dual relation between the
two rates to calculate the β and γ. Specifically, attempt rate is a β is a function of
collision probability γ, i.e. β = G(γ). Similarly the collision probability is dependent on
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Figure 4.2.: Back-off process from [37].

the rate which the nodes are attempting to transmit, i.e. γ = Γ(β). Composing these
two relations gives β = G(Γ(β)), which is a fixed point equation. By the well know
Brouwer’s fixed point theorem, the equation always have a solution. Using the attempt
rate one can calculate the aggregate throughput.

Whereas Bianchi solves a two dimensional DTMC modeling the back-off process and
uses the state probabilities, Kumar use the reward-renewal theorem [38] to calculate the
throughput without solving the DTMC in [37]. They work with the stochastic back-off
process is depicted in Figure 4.2 .Xk is the total back-off time for k-th packet, and the
Rk is the number of attempts required for the same packet. Bj

k is the length of j-th
attempt, and is characterized by the parameters in the 802.21 standard. Attempt rate
can be calculated by treating Xk as a renewal process, and Rk as the associated reward
process, β = E[R]/E[X]. Both the expected length of back-offs, E[X], and the expected
number of attempts E[R] are polynomials in γ and allows us to calculate G(γ):

β = G(γ) =
P (γ)

Q(γ)
(4.5)

Similarly the collision probability is equivalent to the probability that at least one of
(n − 1) stations attempt a transmission. With the help of the decoupling assumption,
the aggregated attempt process is Bernoulli with parameter γ. With this information
one can calculate γ as one minus the probability that (n − 1) nodes do not transmit
simultaneously:

γ = Γ(β) = 1− (1− β) (4.6)

Solving (4.5) and (4.6) together numerically, one can obtain β and γ values. This
is depicted graphically in Figure 4.3. The intersection of Γ(G(γ)) functions plotted for
increasing number of nodes with the line γ gives the collision rate achieved. One can
observe that collision rate increases with the number of nodes.

Once the attempt rate is calculated, the calculation of overall throughput is simpler.
The analysis relies on the fact that all the nodes have the same probability of winning
the allocation race, since they run the back-off process with the same parameters. To
calculate the system throughput, the same renewal process used to calculate attempt
and collision rates is expanded with the deterministic time intervals spent after collisions
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Figure 4.3.: Collision probabilities from [37].

and transmissions. These deterministic time intervals happen with probabilities that are
functions of the attempt and collision rates. The reward is taken as the number of bits
that are transmitted during a renewal interval, and is a function of the average packet
size. Average aggregated throughput is again calculated using the renewal-reward the-
orem, which is plotted against increasing number of users and compared to simulations
in Figure 4.4. It is important to note that the analysis is valid for UDP-like open loop
data exchanges. When the stations use the same back-off parameters, the total system
throughput is shared equally between the stations.

4.3.3. PS Models for WLAN

Both Kumar and Bianchi’s analysis are for situations in which the number of active
sessions are fixed. Making use of the results of these important papers authors have
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Figure 4.4.: Aggregated throughput from [37].

extended the analysis of 802.11 DCF to account for non-saturation situations, varying
number of active stations and TCP type of traffic. We shortly review the important
results.

Miorandi et. al. consider asymmetric HTTP traffic over an infrastructure 802.11 net-
work in [39]. They are interested in the interaction between the 802.11 MAC and the
TCP congestion control mechanism. The authors begin their analysis with a single per-
sistent TCP session. They calculate the collision probability with a fixed point analysis
similar to Kumar’s. This probability is used to calculate the average time spent in back-
off and collisions by this single session when it has back-logged packets. The packet size
divided by the total average time between two successive packet transmissions give the
average TCP throughput. In order to extend their analysis to n concurrent persistent
TCP sessions the authors make the assumption that the probability that an user station
has a backlogged packets to send is equal to the same probability for AP, which is 0.5.
This assumption is validated by comparing the analytical results to simulations. With
this assumption the authors calculate the probability distribution of number of end user
stations which have backlogged packets to send. This probability distribution is finally
used to calculate the expected aggregate throughput, which is a function of the number
of backlogged stations and the packet lengths.

The average aggregated TCP throughput is given in Figure 4.5. It is worth noting
that the aggregated throughput stays the within a narrow band around 2.4 Mbps . This
aggregate bandwidth is shared equally among the individual TCP connections if same
advertised TCP window size is used among all the connections in addition to the same
back-off parameters. The authors use this property to derive a queueing model for the
TCP traffic over 802.11 based WLANs. Specifically, they propose a processor sharing
model with state dependent service rates. When there are k connections in the system,
each connection is served with the rate µk = C(k)

k
where the state dependent capacity

C(k) is simply the aggregated TCP throughput given in Figure 4.5. Notice that if
one takes the average value of aggregated throughput to be constant over k this model
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Figure 4.5.: Aggregated TCP throughput vs. number of stations from [39].
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Figure 4.6.: Average Delay versus number of nodes for state independent and dependent
capacity models.

reduces to a traditional processor sharing queue.
Litjens was among the first researchers to take processor sharing modeling that Mio-

randi demonstrated for TCP traffic to shorter timescales. In other words, he demon-
strated that a state dependent capacity processor sharing models can be applied in MAC
layer packet timescales. He uses the aggregated MAC layer throughput as a function
of active stations calculated via Bianchi’s fixed point analysis as the state dependent
capacity in his thesis [40].

Medepalli et. al. expand Bianchi’s fixed point analysis to include non-saturated nodes
in [41]. Their analysis includes the average idle time that a non-saturated node spends
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Figure 4.7.: Average Delay versus number of nodes for state independent and dependent
capacity models.

when it doesn’t have a packets to send to the average regeneration time in the reward-
renewal analysis used to calculate the attempt rate β. This idle time is function of two
parameters. First is the the probability that a node has a packet send and it is equal to
ρs = λ/µs. In this expression λ represents the rate with which the packets are generated
and 1/µs is the average service time of the 802.11 MAC. This ratio is equivalent to the
time in which a central server of average service rate µs is busy with a single node. This
service rate itself is a function of the collision rate γ. The second variable is the average
delay a packet experiences, DT , which is again a function of the average service rate,
which is a function of the collision rate. Authors propose calculating this delay by using
a state dependent processor sharing model with average rate µs similar to Litjens. By
using the closed form expressions for the delay one is able to calculate attempt rate as a
function of the collision rate α = Γ(γ). Similar to Kumar, they use the relation between
the attempt rate and collision rate, i.e. γ = 1−(1−α)(N−1), to solve for γ and α via fixed
point analysis. The result of the analysis gives the aggregated throughput, again shared
equally among the nodes, depicted in Figure 4.6 . What we observe is that the overall
throughput increases slightly with the increasing number of users, only to stabilize at
the saturation value of 6.5 Mbps. The average delay values for increasing number of
users are plotted for two different processor sharing models in Figure 4.7. In one model
we used state dependent capacities calculated with the fixed point analysis, and in the
other one we use a fixes capacity equal to the saturation value. The approximate fixed
capacity model estimates the delay only slightly lower than the state dependent model
for the initial two values. For the rest the approximate delay values are more conservative
than the state dependent capacity model. This is due to the interesting phenomenon of
overlapping back-off processes across the nodes as the number of nodes increase. This
results on the performance being slightly better than a traditional processor sharing, in
which the degradation in service rate is strictly monotonic.

Another important research direction was opened by Bruno et. al. in [42]. In this
work the authors investigate the situation when N 802.11 stations are connected to
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a AP and are making bulk TCP downloads similar to Miorandi. Since 802.11 DCF
doesn’t distinguish between the AP and the stations, it is assumed that most of the data
packets are queued in the AP, while the stations always have a single ACK to send. The
authors use an alternative iterative approach to solve for system and node throughput
with a modified back-off mechanism called p-persistent back-off. In this alternative
MAC mechanism the back-off interval length is sampled from a geometric distribution
of parameter p. Kuriakose et. al. extended the same model to work with standard DCF
in [43] by making use of the attempt rates obtained via Bianchi’s fixed point analysis.
Their results are also identical to Miorandi’s, that is the system throughput stays almost
the same as the number of active stations increase and that this system throughput is
shared equally among the active stations.

Finally, Ferragut and Paganini extended the processor sharing approach to analytical
modeling of TCP over 802.11 DCF to the case when there are stations with different
data transfer rates in [44]. The 802.11 standard allows increasing data rates to be
applied with decreasing distance between nodes. Their analysis is split into two, in
which they investigate downlink and uplink traffic separately. This separation is not
to be understood from a physical perspective, since the 802.11 MAC layer does not
distinguish between packets from AP to the stations, i.e. the downlink packets, and the
packets from the stations to the AP, i.e. the uplink packets. Rather, the authors name
the scenario discussed by Miorandi and Bruno, where the majority of packets are from
the AP to the stations as the downlink scenario.

For the downlink scenario they derive the aggregated throughput assuming that the
collisions are negligible. In such an environment the delay a packet experiences is only
due to the AP choosing a random interval between zero and minimum collision window
size for back-off for each packet. The authors derive connection level rates for each
physical rate possible in 802.11 standard (there are seven of them ranging from 54 Mbps
to 6 Mbps). They also show that the connection level throughput achieved by each node
is equivalent to a Differential Processor Sharing queue (DPS) . Specifically, if the nodes
whose physical rate is Rj achieve a connection level rate of Cj, where j = 1, 2, ...7 and
there are nj nodes in each physical rate class the rate achieved by all of the individual
nodes is given by:

r(n1, ...n7) =
1

7∑

j=1

nj

Cj

(4.7)

Equation (4.7) reduces to a traditional processor sharing queue when there is a single
rate in the system. An important result of this analysis is the fact that the rate achieved
by the nodes is independent of their physical rates. The rate is determined by the slowest
node in the system. This means increasing the transmission rate above the slowest rate
in the system does not bring any performance improvements. This counter-intuitive
result can be explained easily by remembering that all the faster nodes should wait for
the slower node’s transmission to finish. This property makes application of multiple
rates within an infrastructure WLAN served by a single AP problematic, since increasing
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the rate does not bring any throughput benefits. It is much more sensible to employ a
single rate, in which the analysis of Ferragut and Paganini is equivalent to a traditional
processor sharing queue as noted earlier.

We can conclude that a load dependent capacity PS model is appropriate describing
the TCP performance over 802.11 MAC. However, the load dependency is not very dras-
tic. A constant capacity PS model will only result in a model that is more conservative
delay estimate, which is not necessarily a drawback.

4.4. 3Gpp Family

4.4.1. QoS Support in UMTS

It is the key goal of 2.5G and 3G systems to increase the data throughput capabilities for
both the individual user and the network. In 2.5G such as Universal Mobile Telecommu-
nications System (UMTS), which incorporates wideband CDMA for the radio interface
and GSM/GPRS for the network architecture, the goal of the increased capacity is to
efficiently provide wireless Internet services. In order to maintain an acceptable user ex-
perience without sacrificing network capacity, wireless network designers and operators
must incorporate the means to manage quality of service (QoS).

QoS provisioning in UMTS is achieved through the concept of bearers. A bearer is a
service providing a particular QoS level between two defined points invoking appropriate
schemes for either the creation of QoS guaranteed circuits or enforcement of special QoS
treatments for specific packets between two nodes on the end to end path. The radio
bearer is between the user equipment and the base station. The so called IuB bearer
is between the base station and the RNC controller in running on the backbone. Each
UMTS bearer is characterized by a number of quality and performance factors. One of
the most important factors is, bearer’s traffic class. Following four different classes have
been proposed in the scope of UMTS framework:

• Conversational (e.g. voice, video conferencing): Delay is much less than 1 second

• Interactive (e.g. web browsing, gaming): Delay can be around 1 second

• Streaming (e.g. video streaming): Delay is less than 10 seconds

• Background (e.g. background email download): Delay can be greater than 10
seconds.

In UMTS, in order to provide end to end QoS to the users, the network elements
on the path should set up the required bearers, providing the required QoS parameters
on the respective bearers. This means a connection establishment phase before the
actual communication is required. This connection setup involves the exchange of so
called UMTS attributes for individual calls. UMTS attributes serve to map the end-
to-end QoS requirements to appropriate requirements for each bearer service used by
a connection. The QoS parameters are transported from the terminal to the UMTS
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network in various PDP context messages. If the requested QoS by the user terminal
match the users subscription profiles, the nodes on the path are instructed to set up the
bearers with QoS properties matching the user request. At the wired part of the UMTS
network, QoS max be provisioned by overprovisioning, DiffServ, IntServ, or setting up
MPLS tunnels for the calls. On the radio access part, the base station controller sets up
an individual radio access bearer for the terminal, which is equivalent to allocating the
user a WCDMA code. After the code is established, the user has an end to end channel
that provides the required QoS for the duration of the session. configure the radio access
bearer. If the QoS is granted, the radio bearer is set up. If for some reason the radio
bearer cannot be set up due to the resource restriction in the cell, the user is notified
that the request is not granted. The user may then initiate a new session set up with
new QoS requirements.

There are two main shortcomings of the described approach. First of all, even thought
suited for a voice like services that demand a constant bit rate, the reservation scheme is
not efficient for bursty traffic that dominates the next generation applications. Secondly,
the service differentiation or prioritization applied do not consider fairness between dif-
ferent service classes. There is always the possibility of lower priority classes starving
out of bandwidth in case of congestion. These concerns have led the 3GPP to consider
a new MAC approach at least at the radio bearer, which has led to the development of
a new access technology called High Speed Packet Access (HSPA) which we summarize
in the next section.

4.4.2. QoS Support in HSDPA/HSPA

High Speed Packet Access can be considered as a 3.5G technology. Even though it makes
radical changes in the physical layer and the MAC layer, the changes do not go as far as
changing the multi access type, say for example like the change from TDMA to CDMA
in going from GSM to CDMA. The multiple access scheme is still CDMA. There is
an ongoing standardization effort for the next generation standards, which will replace
CDMA with OFDMA under the name Long Term Evolution (LTE). For technical and
financial reasons it is deployed in two steps. First the techniques we will summarize
below are employed on the downlink only, when HSPA is called High Speed Download
Packet Access (HSDPA).

The primary change in the physical layer is the adoption of Adaptive Modulation
and Coding (AMC). A cornerstone of W-CDMA based UMTS is the dynamic power
adaptation loop used to keep the received power levels from different users same at
the base station. In order to achieve this, a closed loop power control is implemented
between the user terminals and the base station to adjust the transmission power with
respect to the physical distance between the base station and the terminal. Radio
Frequency hardware that is able to adjust the power level dynamically are more expensive
and have a shorter lifetime compared to hardware optimized for a constant power level
transmission. Instead of increasing the power level for terminals which are either away
from or which are experiencing multi-path fading, the base station automatically adapts
the modulation type and coding strength to match the quality offered by the radio
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channel. To facilitate this, users send a quantized version of the signal ti interference
and noise ratio to the base station as Channel Quality Indicator (CQI) messages. The
base station chooses from a set of standard Transport Format Combinations (TFC) ,
which is a combination of modulation type, number of W-CDMA codes and the Coding
Rate. For the next transmission between base station and the user terminal the matching
Transfer Block Size (TBS) , which is the number of information bits corresponding to a
certain TFC, is used.

The most important conceptual change from the dedicated channels used for each
session in UMTS to HSDPA is the introduction of the HS-DSCH (High Speed Downlink
Shared Channel) to the base station. The operators are free to reserve some of their
allocated frequency to be used as a shared channel that the users and base station
access jointly. This also means that the the number of HS-DSCH is deployed along
legacy Dedicated Channels (DCH) used to transmit voice and other applications that
require dedicated channels. The number of channels and the power budget allocated
to HS-DSCH is a function of the capacity allocated to the legacy DCH channels. This
allocations can be static, or can vary according to the current voice traffic in the cell.

The notion of a shared channel is reminiscent of the 802.11. Instead of the distributed
CSMA-CA protocol that regulates the access to the shared medium in 802.11, the base
station is responsible for scheduling the transmission from and to each active user ter-
minal. In fact this can be seen as conceptually equivalent to the PCF described in 4.3.1.
Unlike PCF, in which there are both contention free and contention periods, in HSDPA
there are no contention periods. Base station scheduler is responsible for selecting the
user terminal that will have access to the shared channel in the next Transport Time
Interval (TTI) , according to the scheduling algorithm it implements. During the TTI,
the scheduled user sole access to the shared channel.

Similar to the 802.11 standard, 3GPP standards do not enforce a particular scheduling
algorithm to foster innovation. As a result, the choice of the scheduling algorithm has
important results on the system and user level performance. There are many scheduling
algorithms proposed in the literature. Scheduling algorithms can be channel blind,
meaning that they do not use the CQI reports from the users to make the decisions. A
very basic RR is an example of such an algorithm. The channel aware algorithms make
use of the channel quality reports to take decisions. The MaxTBS, which is also known
as the Greedy Algorithm, chooses the user with the best transmission quality. The
greedy algorithm brings with it the danger of users, which are close to the base station
and having a better channel quality draining all the resources of the base station. The
Proportional Fair Scheduler (PF) is a remedy for this problem. The algorithm keeps a
track of the average throughput achieved by the users within a certain time window. It
then chooses the user with the lowest average throughput to access the channel. This
increases the average throughput of that particular user until the next TTI decision,
which avoids this particular user draining the resources. As the name suggests, the PF
scheduler is more fair compared to RR and MaxTBS regimes. A more detailed analysis
of the HSDPA architecture is given by Mäder in [45], along with a comparasion of the
performances of different scheduling regimes in [46].
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4.4.3. PS Models for 3Gpp Family

Cite Litjens was the first author to apply processor sharing abstraction to 3GPP family
of radio access technologies [40]. He was concerned with the throughput characteristics
of data traffic running on GPRS networks.

In [47] Pederson et. al. obtained simulative results on the network layer average cell
throughput in a cell that simultaneously serves dedicated channels and HSDPA channels.
When five codes and a constant power level (7W) are allocated to the HSDPA channels,
the total throughput of the cell is 1320 KbpsKilobits per second, 900 Kbps of which is
transmitted over HSDPA channels. The authors use a web-browsing type of TCP traffic
model on the HSDPA channels with Poisson arrivals and lognormal request sizes. They
also report that a increase in the average number of users by a factor of three decreases
the per user throughput by a factor smaller than three. This is due to the multiuser
detection gains made possible by the HSDPA protocols.

Processor sharing abstraction was used for 3G family of wireless access technologies by
Borst in [48] for modeling the user level delay and system throughput in CDMA 1xEV-
DO system. CDMA 1xEV-DO is the set of standards developed by the North American
focused 3GPP2 consortium that is comparable to the HSDPA standards. Borst deals
with a set of users, whose data rates vary according to stationary and ergodic stochastic
processes {R1(t), ..., RM (t)}. This is a salient feature of all the evolutionary extensions of
3GPP and 3GPP2 family of standards, which employ adaptive modulation and coding to
modify the data rate to match the channel conditions. It is assumed that all of the rates
vary around their long term averages Ci = E[Ri(t)] according to identical distributions.
Borst examines the time average rate seen by users of a base station that employs a
weight based scheduling under identical distributions. In the weight based scheduling
scheme, at a given time slot t, the channel is assigned to the user with the maximum
αi ·Ri(t) value, where αi is the weight of the user i. It is shown, if the weights of the users
are chosen to be the inverse of their average rates, i.e. αi =

1
Ci
, the scheduler behaves as a

processor sharing system, in that the M users experience the time average rate of G(M)
M

.
Furthermore, it is argued that the Proportional Fair(PF) Scheduling implemented in
CDMA 1xEV-DO roughly behaves like a weighted scheduler. Under Poisson arrivals of
file transfer requests, the system behaves like a processor sharing queue. If the variance
of rates around their means are nor statistically identical, a discriminatory processor
sharing abstraction can be applied. However, this version of PS abstraction is yet mostly
intractable, and a detailed model is not possible. Wu presents a similar analysis in [49].

Another important and related result on the PS models for data networks is given
again by Borst in [50]. This paper is concerned with the sojourn time distributions of
two classes of data traffic running over a network that can be abstracted by a processor
sharing model. The important result is a variant of reduced load equivalence established
for other queueing systems in the literature. Assuming two classes have a normalized
average rate of ψ1 and ψ2, the sojourn time distribution of class 1 is equivalent to
a constant rate processor sharing queue with a capacity 1 − ψ2. The sojourn time
distribution of class 2 is similarly equivalent to a system with the capacity 1−ψ1. This
result is very important, since the performance of a certain class is affected only via
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Figure 4.8.: System and per users throughput in a HSDPA cell.

the average rate of the other class, but not with the actual distribution or the higher
moments. This relation can be used to model HSDPA with a processor sharing model,
even when the HS-DSCH is implemented along with DCH, and the capacity of the HS-
DSCH is adjusted dynamically according to the DCH load. Without the need to of the
actual distribution of the voice traffic, an equivalent HSDPA capacity can be calculated
by subtracting the average DCH load.

Fitzpatrick and Ivanovich apply this approach to a generalized beyond 3G network,
which includes LTE and WiMAX standards in [51].

The Engineering Services Group of Qualcomm presents the results of a simulative
analysis of HSDPA cell in [52]. The results of simulative per user and system throughput
is depicted in Figure 4.8. It can be seen in the Figure, that the simulative per user results
are very close to what a processor sharing model, such as the one proposed by Borst in
[48]. Furthermore, it can be observed that the average system throughput varies slightly
around 1.4 Mbps .

Van den Berg, Litjens and Laverman extend the processor sharing abstraction to SNR-
Based scheduling. In this scheme a greedy approach is applied, and at every transmission
interval, the channel is allocated to the user with the best channel condition, as it is
inferred from the CQI reported from the user devices. It is shown that PF and SNR-based
scheduling outperforms Round Robin (RR) in terms of delay and throughput metrics.
SNR-based performs slightly better than PF, with the disadvantage of being not fair to
users far away from the base station. Finally, Kouvastos has modeled the performance
analysis of hypothetical 4G base stations accommodating different services [53] and [54]
with the help of PS abstraction. A hypothetical 4G cell is modeled as a combination
of three service centers. Voice calls are handled by a classical Erlang loss system, the
data calls are handled by a PS (Processor Sharing) system and finally streaming calls
are handled by a FCFS (First Come First Serve) system. It must be noted that since
the proposed LTE standard employs a similar scheduler based shared channel for data
calls, a processor sharing model can be used to model it.
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4.5. Conclusion

We have demonstrated that the data traffic performance of both 802.11 based WLANs
and HSDPA based 3.5G cellular based networks can be modeled by a PS queue. We
will use this modeling approach in Chapter 5 to develop a BCMP queueing network
describing load exchange between heterogenous RANs belonging to different operators.
In Chapter 7 we use this description to develop automated software agents controlling
the resource exchange dynamically.
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5. Description Problem

In Description Problem, we present a separable analytical model that can be used to
analyze resource sharing between two different operators. The description framework
we lay is used in order to develop negotiation mechanisms in Chapter 6 as well as
automated control mechanisms for resource sharing in Chapter 7. We start the chapter
by introducing the requirements and motivations of the analytical model. We formulate
the problem formally in Section 5.2 and compare it to the state of the art in Section 5.4.
We propose the single class analytical model in Section 5.5 and apply it to a single class
resource sharing scenario in Section 5.5.3.We extend our single class model to handle
multiple service classes in Section 5.6. We finally verify the results of this chapter via
OPNET simulation we summarize in Appendix B.

5.1. Motivation and Requirements

The problem we are addressing is the minimization or avoidance of possible degradation
in user perceived quality of experience in an access network as the number of users
increases in an open user-centric network environment. The delay a session request
experiences is a common performance measure that can be used to handle a variety of
service types. Therefore, we choose the delay as the performance metric of dynamic
resource sharing mechanisms.

The method with which the avoidance or minimization is achieved is by borrowing
network layer resources from an access network that belong to another operator (com-
munity, virtual or real operator). In a user-centric environment, the operators have to
find additional resources, not to degrade the QoE, otherwise the users will be moving
away to alternative operators. What would be the incentives for the donor operator
to lend some of its resources to the borrower? A quick answer would be that if the
donor operator is under-utilized at that particular point of time, then it could increase
its utilization to a point where it still can serve its current users, thereby increasing its
revenues. However, the challenge of user centricity comes from the fact that users can
instantaneously decide on the operators they choose. The donor operator may choose to
ignore the borrowing operator, in an attempt to drive the QoE in the borrowing network
down, and gain more users. Therefore the dynamics of the resource sharing between two
operators become strategy dependent, and not trivial.

The aforementioned problem is not specific to the dynamic resource sharing in user-
centric networking. As Dohler discusses in [12], the problem is not only technological,
but also strategic. We adhere to Dohler’s approach, in which he proposes that the
success of any cooperative solution to any communications problem is more possible if
the cooperation decisions are taken by software agents, and the benefits of these decisions
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i operator index, iǫA,B.

Pi Probability that users prefer Operator i.

PR,i Blocking probability in Operator i.

PT,i Transfer probability in Operator i.

Dmax,i Maximum allowed average delay in Operator i.

1/λ External average inter-arrival time (secs).

1/µ Average request size(bits).

Table 5.1.: Model variables.

are clear to the owners of these agents. Therefore we derive a simple and intuitive formula
for the relation between the average delay and cooperation parameters.

Another important requirement to the model is the separability. Under separability
we mean the following. Generally, the state space describing two independent systems
interacting with each other is two dimensional. The solution of the probability distri-
bution of such a distribution requires the knowledge of the states of the independent
systems. This is not possible for two cooperating operators, since the operators will be
reluctant to share their operation information with each other. If the performance met-
rics can be calculated by openly available information, without requiring the knowledge
about the operative status of the other operators we call such a model separable.

Final requirement on the modeling approach is the capability to efficiently model
heterogenous wireless networks. It is foreseen that the 4G networks will be composed
of heterogenous wireless access technologies. Therefore the model should be able to
accommodate a variety of them.

5.2. Problem Formulation

In this section we define formally the abstraction level we employ in modeling the problem
of dynamic resource sharing in user-centric networking. We consider a location where
the users have two wireless operators to choose from, operator A and operator B. The
users generate requests with exponential inter arrival times of mean 1/λ, which have
sizes that are also exponentially distributed with mean 1/µ. Since these users are not in
contractual agreements with the operators, they can choose either one of the operators
with probabilities PA and PB . The operators utilize a call admission control (CAC)
mechanism that block incoming requests with probability PR, or transfer to the other
operator with a probability PT . The operators employ these techniques in order to
provide a maximum delay guarantee to the users given by Dmax. The variables of the
model are summarized in Table 5.1.

5.3. Mathematical Background

Considering the requirements we listed in Section 5.1, we have decided to use Queueing
Networks [55] as the modeling framework. Queueing networks are a generalization of
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Figure 5.1.: Relationship between M →M , LB and PF properties.

the classical queueing systems. They are concerned with the performance modeling of
systems that are composed of interconnected queueing stations. The main goal of the
queueing networks is the derivation of the joint probability distribution of the number
of jobs in each service station. One of the most important results of Queueing Net-
works is the Baskett, Chandy, Muntz and Palacios (BCMP) theorem, named after the
researchers who jointly developed the theorem in [28]. The theorem states that the joint
probability distribution of a queueing network can be written as the product of marginal
probability distributions of the individual service stations. Furthermore, each service
stations behaves like a traditional M/M/1 queue, with a modified input traffic rate, re-
flecting the network topology. This formulation satisfies the separability and simplicity
requirements.

The Continuous Time Markov Chain (CTMC) describing the BCMP type of networks
have the local balance property, which allows efficient solutions of the probabilities.The
global balance equations of the CTMC can be written as:

πi
∑

jǫS

qij =
∑

jǫS

πjqji (5.1)

These equations can be interpreted as the balancing of probability flows out of and into
each state in the CTMC description. Simultaneous numerical solution of these global
equations can be prohibitive, when the size of the state space grows. Furthermore,
analytical solutions are unattainable in most cases. The global balance equations can be
separated into sum of smaller local balance equations. Local balance equations equate the
probability flows going into and out from a state that are due to transitions associated
with an individual node in the queueing network. When added up, they result in the
original global balance equations.

For certain node types, these local balance equations have solutions, in which case the
node is said to have local balance property . If all the network nodes do have the local
balance property, than the whole network has a product form solution (PF) , in terms
of the product of the solutions to the individual local balance equations. A necessary
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and sufficient condition for a node to be locally balanced is for that node to posses
the Markov inputs, Markov outputs (M → M) property. As the name suggests nodes
with this property have Markovian outputs when the inputs are Markovian. Figure 5.1
depicts the relation between M →M , LB and PF properties.

BCMP Theorem for Single Class Networks

BCMP theorem is applicable to any Queueing Network that is composed of processing
centers that are of the following four types:

1. Type 1 : ·/M/m - FCFS .

2. Type 2 : ·/G/1 - PS .

3. Type 3 : ·/G/1 - IS .

4. Type 1 : ·/G/1 - LCFS .

The BCMP theorem states that given a Queueing Network, composed of N processing
centers, the steady state probabilities of the joint state vector S has a product form. S
is a vector of N dimensions, S = (k1, k2, ..., kN ), where ki denotes the number of jobs in
processing center i. The form is given by:

π(S) =
1

G(K)
d(S)

N∏

i=1

fi(ki). (5.2)

The first term 1
G(K) is a normalization constant which is a function of the population

vector K = (k1, k2, ..kN ). It is obtained from the total probability condition (5.3), which
says that the probability of all the states should sum up to unity:

∑

∀SǫS
π{S} = 1. (5.3)

The second term d(S) is able to accommodate state-dependent arrival rates. It is

given by d(S) =
∏K(S)−1

i=0 λ(i), where K(S) =
∑N

i=1 ki represents the total number of
jobs in the system.

The final term takes different forms according to the type of the service center under
consideration. Specifically:

fi(ki) =

(
ei
µi

)ki

Type 2 .

fi(ki) =
1

ki!
·
(
ei
µi

)ki

Type 3 .

(5.4)
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The term ei is an important parameter of queueing networks. They represent the visit
ratio or the relative arrival rate of jobs at node i. They are defined as the ratio of arrival
rate at node i to the external arrival rate, i.e. ei =

λi

λ
. The arrival rates λi can be found

by solving the traffic equations. For open networks they can be expressed as:

λi = λ · p0,i +
N∑

j=1

λj · pj,i, i = 1, ..., N. (5.5)

where λ is the external arrival rate, and pi,j represent the routing probability between
service stations i and j where the subscript 0 denotes the external environment.

5.4. State of The Art

Historically, queueing networks have provided very attractive models for a wide variety
of communication networks and applications running on these networks. Early applica-
tions include [56] Conway’s queueing model for the performance evaluation of Signalling
System 7 (SS7).

One of the most active application of queueing networks to the 4G networking has
been the work of Kouvastos et al. Kouvastos first employed a queueing network model
to analyze the performance of ATM Asynchronous Transfer Mode switches developed
for the ISDN Integrated Services Digital Networkss [57]. The challenge he addressed was
the development of an analytical performance model for the switches that can be used
during the design and development phase. The model regarded the switching matrix
at the core of the switch as a medium that had to be shared among flows of different
service types.

The author applied the same queueing model first to performance analysis of GSM/GPRS
base stations [58], and subsequently to the performance analysis of hypothetical 4G base
stations accommodating different services [53] and [54]. A hypothetical 4G cell is mod-
eled as a combination of three service centers. Voice calls are handled by a classical
Erlang loss system, the data calls are handled by a PS (Processor Sharing) system and
finally streaming calls are handled by a FCFS (First Come First Serve) system. These
service centers exchange resources among themselves according to the state of the cell,
which consists of n = (n1, n2, n3) where n1, n2, n3 are the number of calls in the respec-
tive service centers. The state space is three dimensional and therefore not analytically
tractable. The authors make use of the maximum entropy principle to find a product
form approximation that yields a closed form solution. Maximum entropy principle was
introduced by Jaynes in 1960s [59], and can be seen as an equivalence principle between
statistical and information theoretical entropy definitions. It states that given a con-
straint on the mean values of a family of probability distributions that may describe a
physical process, the distribution that maximizes the entropy is the least biased estimate
of the probability distribution. The constraints on the mean values under investigation
are:
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λi(1− pi) = µiUi, i = 1, 2, 3 (5.6)

where λi is the overall flow into a server center, pi is the blocking probability, µi is
the service rate and Ui is the utilization of the service center associated with the service
types described before. This equality is a reformulation of global balance conditions,
equating the flows into and out of a state. The goal is to find the probability distribu-
tion of n. Maximum entropy method involves solving the maximization problem with
the method of Lagrange multipliers. These Lagrange multipliers are then used to for-
mulate equivalent flows into the individual service centers, which can then be analyzed
independently. Similar to this work, we use PS service stations to model heterogeneous
access networks. Our model not only takes into account multiple access networks, but
also different operators. Furthermore, we use the BCMP method to provide exact so-
lution to the queueing model. Our solution is also computationally more efficient than
this, as it does not include any recursive solutions.

Fukushima et al. present an innovative application of queueing networks to the wire-
less communications domain in [60]. Specifically, they employ queueing networks to
model the interplay between user mobility and bursty nature of packet traffic in wire-
less systems. The mobility of the users between cells and their service requests evolve
with different timescales. The authors utilize queueing networks to model these two
aspects jointly. In their formulation each cell has two service centers. The first service
center, which is an infinite server (IS) center, models user mobility, where users move
from one infinite server to the other based on routing probabilities obtained from an
external mobility model. The second server is a PS center, which models the sharing of
base station transmission capacity among the service requests of users in the cell. The
service demand at the second service station is a function of the state of the first service
station. It can be said that the authors use a queueing network with state-dependent
routing. The state dependency expresses itself as non-linear traffic equations, which can
be solved using fixed point iterative methods. The authors use this model to analyze a
hierarchical WLAN-cellular integration, with static ”WLAN first”policy, similar to [61].

In [61]the authors provide an analysis of a hierarchically integrated WLAN and cellular
network by employing queueing networks. In a hierarchical integration architecture
[62], the WLAN cells are used as high-speed hot spots, and are carefully positioned as
an overlay on the cellular infrastructure. The natural question that arises in such an
architecture is when the overlay will be used. Assuming that the network operator has
the final say on this decision, the authors employ the ”WLAN first” resource allocation
policy. In this policy the calls are admitted to the WLAN cell as long as the capacity is
not reached. The calls are then admitted to the underlay cellular cell, once the capacity
is reached. The authors assume that the data calls can be modeled by discrete bandwidth
units they fill in different subsystems. With this assumption, they are able to model the
individual overlay and underlay cells as classical Erlang loss-systems. The availability of
a static allocation policy, the interaction between different cells are modeled by static and
additive traffic flows. The authors mention that the overall system is represented by a
multi-dimensional Markov chain, but do not propose a solution for the global equations.
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Figure 5.2.: The single class queueing network model.

Subsequently, no relation between the marginal probabilities and the global probabilities
are presented. Based on the marginal probabilities, the authors are able to derive closed-
form blocking probabilities. Both of these works consider a single operator owning the
heterogeneous access networks.

Early applications of BCMP theorem to data communication networks include the
analysis of general sliding window type flow control, such as the one used in TCP by
Reiser [63]. Recent application fields include the modeling of multi-tier Internet applica-
tions and the operational optimization of data centers hosting these services. A typical
Internet application is provisioned by a multi-tier arrangement of servers. In the front
end is the load balancer that routes the application requests to replicated first tier web
servers. The first tier web servers route the session requests to the second tier application
servers that host the applications are replicated. Finally, the application servers use the
third tier data base servers to compose the applications. In [64] Urgaonkar models this
architecture via a single class closed BCMP network and present analytic solutions for
the average delay. Data centers that host these applications on identical server clusters
can also be modeled as closed BCMP networks. In this case the server clusters become
the service centers, and the different applications represent the different applications.
The authors use such an analytical model to optimize the energy use and scaling of data
servers in [65]. To the best of our knowledge BCMP networks have not been applied in
modeling 4G networks.
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5.5. Single Class Resource Sharing

5.5.1. Single Service Class Queueing Network Model

In order to develop a tractable, closed form, and separable solution for the delay perfor-
mance metric we use the BCMP theorem on the queueing network depicted in Figure
5.2. Each wireless operator is modeled by a tandem of queues. The first stage IS queue,
represents the CAC decision making. The traffic exiting the first stage queue enters the
PS queue which jointly models the shared air interface and access router that connects
the base station to the backbone.

5.5.2. Closed Form Solution of BCMP Equations for Our Model

By making the relevant substitutions in (5.5) we obtain the expressions for the input
rates of the different service stations as:

λ1 = λ · p0,1.
λ2 = λ · p0,1 · p1,2 + λ · p0,3 · p3,2.

λ3 = λ · p0,3.
λ4 = λ · p0,3 · p3,4 + λ · p0,1 · p1,4.

(5.7)

The main challenge involved in finding the solution of the steady-state probabilities
is the computation of the normalization constant G(K). For single class open networks
a closed form solution is possible as we demonstrate below. We first apply the total
probability condition to our network:

4∑

i=1

∞∑

ki=0

π(k1, k2, k3, k4) = 1. (5.8)

If one replaces ei with
λi

λ
in (5.4), one gets the term λi

µi
/λ. This correspond to the

utilizations of individual servers, ρi, divided by the external arrival rate, λ, and we get
the following expressions fi:

fi(ki) = ρkii λ
−ki i = 2, 4.

fi(ki) =
1

ki!
ρkii λ

−ki i = 1, 3.

(5.9)

Since our model does not involve state-dependent arrival rates, hence d(S) simplifies
to:
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d(S) = λ(k1+k2+k3+k4). (5.10)

The λkii terms in d(S) and in fi(ki) cancel out each other. We obtain the following
form of (5.8):

1

G(K)
·

∞∑

k1=0

1

k1!
ρk11

∞∑

k2=0

ρk22

∞∑

k3=0

1

k3!
ρk33

∞∑

k4=0

ρk44 = 1. (5.11)

The summations involving factorials are the Maclaurin expansion of the exponential
function. Other terms can be simplified using the well known formula for the computa-
tion of geometric series [66]:

∞∑

i=0

ρkii
ki!

= e−ρi .

∞∑

i=0

ρkii =
1

1− ρi
.

(5.12)

Replacing these values in (5.11) we obtain the value of 1
G(K)

1

G(K)
= (1− ρ1) · e−ρ2 · (1− ρ3) · e−ρ4 . (5.13)

One can use the traffic equations (5.7) and the service rates of the individual server
stations to calculate the individual utilizations. Once these modified utilizations are
computed, the joint probability distribution can be written as:

π(k1, k2, k3, k4) =
∏

i=1,3

e−ρi
ρkii
ki!
·
∏

i=2,4

(1− ρi)ρkii . (5.14)

Let us substitute the routing probabilities of the BCMP model with the system pa-
rameters we defined in Section 5.2. The indices i = 1, 2 describe the operator A and
i = 3, 4 the operator B. p0,1 and p0,3 correspond to the users operator preferences, PA

and PB respectively. p3,2 and p1,4 are the transfer ratios of the operators, PT,A and
PT,B . The CAC mechanisms reject calls with probabilities PR,A and PR,B , hence we
have P1,0 = PR,A and P3,0 = PR,B . By using total probability principle we obtain
P1,2 = 1−PT,A−PR,A and P3,4 = 1−PT,B −PR,B . Let us analyze the utilization of the
PS part of the individual operators. Given that the users generate requests whose sizes
are distributed according to an exponential distribution of average µ bits and the opera-
tors access networks have a capacity of CA and CB bits per second, we have µ1 = µ ·CA

and µ2 = µ · CB. Thus we have:
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ρPS,A = (PA · (1− PT,A − PR,A) + PB · PT,B) · λ
µCA

.

ρPS,B = (PB · (1− PT,B − PR,B) + PA · PT,A) · λ
µCB

.

(5.15)

These equations show an intuitive and linear relationship between operator utiliza-
tions and transfer and blocking probabilities. Specifically, an operator may increase its
utilization by accepting additional traffic from the other operator, or may decrease its
utilization by transferring traffic to the other operator or by increasing the CAC level.
When increasing the utilization, the condition ρPS,A, ρPS,B < 1 should be considered to
guarantee stability. These utilizations can be used to find the expected delay conditioned
on the request size x given in bits at the PS side of the operators. These are given by:

DPS,A(x) =
x/CA

1− ρPS,A
.

DPS,B(x) =
x/CB

1− ρPS,B
.

(5.16)

5.5.3. Application of the Model to Single Class Resource Sharing

a In a single service class scenario, the sharing of resources to avoid overload situations
becomes mutually exclusive with the under-utilization situations. This means that the
borrowing operator will not donate resources, and the donor operator will not borrow
resources from each other. Let us arbitrarily assign operator A to be the donor oper-
ator, and operator B to be the borrowing operator. The borrower operator A borrows
resources and sends a given portion of traffic to the donor operator B, which accepts
additional traffic. Furthermore, let us assume the average service demand x is fixed.

In this case the delays become a function of the transfer probability PT and the
operator preferences of the users PA, PB . This means that the exchange of resources is
one way, i.e. PT,A = 0. We can simply use the transfer probability PT in the place of
PT,B . The problem of finding an optimal PT is then characterized the relative operator
preferences of the users PA, PB ; the delay thresholds Dmax,A,Dmax,B; and the CAC
probabilities PR,A and PR,B .

In a resource sharing scenario, the donor operator has to find the amount of traffic
it can accept, equivalently the amount of resources it can donate, without increasing
the expected delay of the already accepted users above a threshold Dmax,A, described
by (5.17). The donor operator finds the maximum PT value that satisfies this condition
described by which we term PT :

DA(PT ) = DPSA
(PT ) = Dmax,A (5.17)
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Figure 5.3.: The variation of average delay versus transfer probability for CA =
5000bps,DA,init = 0.6.

On the other side the borrowing operator has to calculate how much traffic it should
transfer, or equivalently how much resources it should borrow, in order to reduce the
expected delay in its access network to a threshold. However, it also has to consider
the increase in delay it induces on the donor operators. We are considering a seamless
scenario, in which the transferred users are not aware of the fact that their session request
is served by an alternative operator. The borrowing operator should not load the donor
operator excessively, since this excessive loading would increase the delays experienced
by the transferred users, who would associate this with the borrowing operator.

There are two approaches for considering this aspect. One can consider the maximum
of the delays in the two networks as in (5.18).

max {DPSA
(PT ),DPSB

(PT )} ≤ Dmax,B(x) (5.18)

An alternative is to consider the average delay as experienced by the users of the
borrowing operator, as in (5.19).

E {DB(PT )} = (1− PT ) ·DPSB
(PT ) + PT ·DPSA

(PT,R) ≤ Dmax,B(x) (5.19)

In both cases, the borrowing operator chooses the transfer probability value PT that
minimizes the delay. We choose the second option, as it is more fair to the users of
the borrowing operator. In order to calculate E {DB(PT )} operator B has to be able to
calculate the utilization of operator A, which requires the knowledge of PR,A. This is
an private information that is not available to operator B. However this can be solved
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by utilizing the open user experience database, proposed by PERIMETER. We assume
operator B is able to gather the initial average delay in operator A, DA,init, by exploiting
the database. From this value it can calculate initial value of the utilization via (5.16).
Employing (5.15) allows us to formulate the utilization of operator A after resource
sharing, by consulting only to the publicly available average delay. Using this value one
is able to write down the expression for E {DB(PT )}:

E {DB(PT )} =
x
CA
· PT

x
CADA,init

− PBλ
µCA
· PT

+

x
CB
· (1− PT )

1− PB(1− PR,B − PT )
λ

µCB

(5.20)

Equation 5.20 is plotted for varying borrowing operator capacities in Figure 5.3. It can
be observed that the amount of reduction in the average delay is directly proportional
with the capacity of the donor operator. For all cases the delay is a rational function
of transfer probability with global minimum. Of course a compromise should be found,
if the PT value that the donor can support does not match the optimum PT value that
minimizes borrower delay. The negotiation mechanisms for establishing jointly a agreed
PT are developed in Chapter 6. For the rest of this chapter we assume both donor and
borrower have agreed upon the optimal PT value.

In order to find the optimal PT we apply the standard calculus techniques. We consider
the expected delay for the users of operator B E{DB(PT )}, as a function of PT as in
Equation (5.20). For this function, we calculate the first derivative and set it to zero.
The solutions are the candidates for the minima. Afterwards, we calculate the second
derivative, and search for the negative second derivatives corresponding to the of the
minimum. In this way we define a closed form solution for the optimal sharing parameter
PT,B,opt.

In Appendix A, we show that the Equation 5.20 can be reshaped in Equation 5.21:

DB(PT,B) =
PT,B

m− k · PT,B
+

1− PT,B

n+ k · PT,B
(5.21)

where m = 1
DA,init

, n = 1
DB,init

, and k = CB

x(1−PR,B) ·ρB,init. Furthermore we prove that

we have a minimum and we give a closed form solution for PT,B,opt as:

PT,B,opt =
m

k
·

√
n+k
m
− n

m
√

n+k
m

+ 1
(5.22)

This is valid under the assumption that:

DA,init

DB,init
≤ n

n+ k
(5.23)

This condition can be interpreted as follows. An optimal sharing parameter exists,
in case the donor operator is advertising a lower initial delay then the borrower opera-
tor’s initial delay. This condition is satisfied when an overloaded operator is borrowing
resources from a normal operator.
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Figure 5.4.: The multi class queueing network model.

5.6. Multi-Class Resource Sharing

In this section we try to extend the description framework to the scenarios in which
multiple classes of services are running on the interacting operators.

5.6.1. Multi Service Class Queueing Network Model

We extend the single class model we developed in 5.5.1 to include multiple service classes
that represent either different service types such as video, audio, background or to rep-
resent different user classes such as premium and standard.

Different user classes arise out of service differentiation efforts of the operators. In
order to differentiate users who are willing to pay more for better quality of experience
from

5.6.2. BCMP Solution for Multi Class Networks

The BCMP theorem can be extended to multiple service classes. Given that there are
R different service classes, the traffic equation for the arrival of service class r jobs in
node i is given by:

λir = λ · p0,ir +
N∑

j=1

R∑

s=1

λjs · pjs,ir. (5.24)

where the term pjs,ir represent the probability of a class s finishing processing at
service station j and joining service station i as a class r job. In this case the state of
the service station i is given by the vector Si = (ki1, ..., kiR), where kir is the number of
class r users in service center i. The overall state of the network is given by the vector
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of vectors S = (S1, ...,SN). The product form which the state probabilities obey is then
given by:

π(S1, ...,SN) =
1

G(K)
d(S)

N∏

i=1

fi(Si). (5.25)

The forms of the constituent parts are given by the following formulas.

d(S) =

K(S)−1
∏

i=0

λi where K(S) =

N∑

i=1

R∑

r=1

kir. (5.26)

fi(Si) = ki!

R∏

r=1

1

kir!

(
eir
µir

)kir

Type 2 .

fi(Si) =
R∏

r=1

1

kir!

(
eir
µir

)kir

Type 3 .

(5.27)

eir is the relative visit ratio of class r jobs to node i and it is given by the expression
λir

λr
. λr is the external input rate of class r jobs. It can be calculated by the expression

λr =
∑

i=1Nλ · p0,ir. ki term represent the total number of jobs in node i, i.e.ki =
∑R

r=1 kir

5.6.3. Application of BCMP Solution Our Multi Class Model

Our model does not involve class switching. This means that once a job enters the system
as a service class r, it will never change its service class until it leaves the system. This
means that the only transition probabilities that are allowed to have non-zero values are
of the form pir,jr. As a result the traffic equations for our system have the following
form:

λir = λ · p0,ir +
4∑

j=1

λj · pjr,ir. (5.28)

Introducing the different transition probabilities, we obtain the following traffic equa-
tions:
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λ11 = λ · p0,11.
λ12 = λ · p0,12.

λ21 = λ · p0,11 · p11,21 + λ · p0,31 · p31,21.
λ22 = λ · p0,12 · p12,22 + λ · p0,32 · p32,22.

λ31 = λ · p0,31.
λ32 = λ · p0,32.

λ41 = λ · p0,31 · p31,41 + λ · p0,11 · p11,41.
λ42 = λ · p0,32 · p32,42 + λ · p0,12 · p12,42.

(5.29)

Similar to the single class solution, we proceed by formulating the total probability
condition:

4∑

i=1

2∑

r=1

∞∑

kir=0

π((k11, k12), ..., (k41 , k42)) = 1. (5.30)

Similar to the single class case, the form of d(S) simplifies, since the arrival rate is
state independent. In the multi-class case d(S) is given by:

d(S) = λ{
∑

4

i=1

∑
2

r=1
kir} (5.31)

Let us expand the expression for ei to simplify the form of fi(Si). In order to do this,
we have to calculate λr:

λr =

4∑

i=1

λ0,ir.

λr =

4∑

i=1

λ · p0,ir.

λr = λ

4∑

i=1

p0,ir.

λr = λ.

(5.32)

where we used in the last step the fact that the incoming traffic in any given traffic
class is distributed to one of the operators with probability one, i.e.

∑

i=1 4p0,ir = 1.
This leads the simplification of eir

µir
to ρir · λ−1. We have therefore the following form of

fi(Si):
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fi(Si) = ki!

2∏

r=1

1

kir!
ρkirir λ

−kir Type 2 .

fi(Si) =

2∏

r=1

1

kir!
ρkirir λ

−kir Type 3 .

(5.33)

Similar to the single class case, the four individual terms
∏2

r=1 λ
−kir multiplied with

each other equate to λ{−
∑

4

i=1

∑
2

r=1
kir} and cancel out the d(S) term (5.31). Finally,

after substituting ki with ki1 + ki2 We end up with the following simplification of the
total probability condition, which will be used to calculate the value of the normalization
constant:

1 =
1

G(K)

×
∞∑

k21=0

∞∑

k22=0

(k21 + k22)!
ρk1121

k21!

ρk2222

k22!

×
∞∑

k41=0

∞∑

k42=0

(k41 + k42)!
ρk4141

k41!

ρk4242

k42!

×
∞∑

k11=0

ρk1111

k11!

∞∑

k12=0

ρk1212

k12!

×
∞∑

k31=0

ρk3131

k31!

∞∑

k32=0

ρk3232

k32!
.

(5.34)

The first two double sums in (5.34) correspond to the PS service nodes, whereas the
last two correspond to the IS nodes. The IS node summations are Mclaurin expansions
of the natural exponential function and converge for all the values of ρir. However the
summations related to PS nodes do not lend themselves for closed form solution, since
the factorials terms (ki1 + ki2)!

1
ki1!ki2!

and do not cancel out each other. If they were
to cancel out, it would mean that the different traffic classes in a single PS node were
independent random variables. This is physically not possible, since different service
classes physically share the same server.

The authors approach this problem by aggregating the service classes in a node [28].
This means the aggregate state is given by S = (k1, . . . , k4). This has the consequence
that the utilizations are also combined, i.e. ρi = ρi1 + ρi2. With this aggregation, a
closed form solution for the state probabilities are possible:
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π(k1, k2, k3, k4) =
∏

i=2,4

(1− ρi)ρkii
∏

i=1,3

e−ρi
ρi
ki!

(5.35)

One question that remains open is how to account for the distribution of individual
service classes. It is theoretically possible, but computationally not feasible to compute
the distributions of individual service classes as we illustrate next.

The theoretic analysis uses the basic relation of conditional probability:

π(k11, k12, . . . , k41, k4,2) =

∞∑

K=0

π(k11, k12, . . . , k41, k4,2)|K) · π(K) (5.36)

where K represents the aggregated state, whose distribution can be calculated by
using (5.35). Then for all the possible combinations of K, one can hold ki values
constant, and solve the system as a closed queueing network, which would give the
π(k11, k12, . . . , k41, k4,2)|K) terms. There are efficient iterative algorithms based on con-
volution for calculating the normalization constants and the state probabilities such as
one given in [67]. Even when one limits the number of possible states in K, to include
only those states for which there is a significant probability of occurrence, the solutions
will not be closed form and not be in accordance with our motivations.

Even though the marginal distributions are not explicitly obtainable, one can use the
concept of utilization in a Multi-class Processor Sharing (MCPS) Queue is defined by
Kleinrock in [25] . This type of queue is also used as the multi-class extension of BCMP
networks in [55]. In a MCPS queue, the total utilization is defined as the sum over
all the per class utilizations. For the sake of simplicity we assume we have two service
classes. In this case we have

ρ = ρ1 + ρ2 (5.37)

with and ρi is given by:

ρi =
λi
µiC

(5.38)

where λi represents the arrival rate of class-i requests, and 1
µi

= xi is the average re-
quest length of class-i requests. C represents the total capacity of the queues. It must be
noted that no service differentiation is applied in this model. The extensions of PS queue
that allow service differentiation such as Kleinrock’s original Priority Processor Sharing
, Discriminatory Processor Sharing [68] or Generalized Processor Sharing [69] have yet
to be incorporated to the queueing network framework and therefore not applicable to
our approach. We can reformulate the equation (5.37) as:

ρ =
λ1x1
C

+
λ2x2
C

(5.39)

This shows that, given a certain overall utilization ρ the relationship between the
arrival rate of the two classes is linear, i.e. in order to keep the utilization same, one
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must counter the increasing arrival rate of users of one type by decreasing the arrival
rate of the other type. We assume that there is a ρmax that is required to be met, in
order to meet the performance metrics of both of the service classes. In this case we
have:

ρ1 + ρ2 ≤ ρmax

λ1x1
C

+
λ2x2
C
≤ ρmax (5.40)

In Section 7.4.3 we describe how one can obtain ρmax,i values for individual service
classes i = 1, 2 given their statistics, maximum delay values and the grade of service
values.

Sharing Options

Once the x1 and x2 values are set, say to the average request sizes of the individual
classes, the inequality (5.40) can be represented as a triangular region on the {λ1, λ2 }
axes, as shown in the Figure 5.5. The points on the figure are given by: P1 = ρmaxC

x1
,

P2 = ρmaxC
x2

. Note that the slope is independent of the server capacity C and is given
by α = −x2

x1
. Naturally, the server can serve more traffic coming from the service class

with a smaller average size.
We define the state of an operator i by the arrival rate in different service classes:

Si = (λi1, λi2). With this definition the linear boundary in Figure 5.5 defines a region
in the state space, in which the delay guarantees can be met. For states outside to the
right and above the boundary, these delay guarantees cannot be met. For states inside
to the lower and left side of the boundary the guarantees are met. A congested operator
has a state outside the boundary, and tries to come closer to the boundary by borrowing
resources from a normal operator which lies inside the boundary. An example is depicted
in Figure 5.6, in which the states of the operators are depicted by dots. Operator 1 tries
to move closer to the boundary in order to meet the delay guarantees. Operator 2 tries
to move towards its boundary in order to increase its utilization and revenues.

Table 5.2 shows all possible cases of sharing between two operators. We can see that
cases 1, 2, and 3 are analog to the cases 8, 7, and 6. In these cases we have one donor
operator and one borrower operator. In cases 4 and 5, different classes of shared traffic,
go in different directions. Thus each operator plays a dual role: donor respective to
class-i traffic and borrower for class-j traffic, where i 6= j and i, j ∈ {1, 2}.

The symmetry in the sharing cases, reduces our discussion to two scenarios:

1. Single-role scenario: where we have one pure donor operator and another pure
borrower operator irrespective of the traffic’s class.

2. Dual-role scenario: where each operator, who is involved in resource sharing
plays different roles (donor and borrower) in different traffic classes.
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Figure 5.5.: Arrival rate regions.

In the following sections, we will discuss those scenarios, and provide some equations,
that can be used for calculating each operator’s sharing needs and potentials (donate or
borrow) on one side, and facilitate the decision making (to share or not to share) of each
single operator on the other side.

An important aspect of resource sharing, is the information available at each operator.
Each operator knows its own capacity, and the type of traffic its is serving, thus it is
able to calculate his own boundary line. The operator cannot have the same information
about the peer operator due to the information asymmetry we discussed earlier. Similar
to the single class case we assume that the software agents controlling the sharing use
the user experience database.

Multi-Class BCMP Model

Considering a location, where users have two co-located wireless operators to choose
from: operator A (Op-A) and operator B (Op-B). Users of different types (or classes)
have a Poisson arrivals, with class respective arrival rates λ1 and λ2. The users of each
class can decide to choose Op-A with the probabilities PA,1 and PA,2, or Op-B with
the probabilities PB,1 and PB,2. Of course this products λ1PA,1 and λ2PA,2 yield the
actual arrivals at Op-A. Thus the following derivations are also suited for the traditional
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Figure 5.6.: Multi class resource sharing.

operation of wireless networks where user identities are owned by (and tied to) their
respective operator. The sizes of the requests have a general distribution with a mean
of 1

µ1
= x1 and 1

µ2
= x2 for the classes 1 and 2 respectively. The Grade of Service g,

guaranties that no more then g % of the class respective requests excesses the maximum
acceptable response times Dmax,1 and Dmax,2.

Using a call admission control (CAC) mechanism the operators can choose to block
a certain request with the probabilities PR,A,1, PR,A,2, PR,B,1, PR,B,2, or to transfer
the request to another operator with the probabilities PT,A,1, PT,A,2, PT,B,1, PT,B,2. As
discussed before when two operators Op-A and Op-B are involved in some resource shar-
ing, there will be only one direction for the traffic respective to its class. In this case
if PT,A,1 6= 0, thus we automatically have PT,B,1 = 0, and so on. The wireless opera-
tors,simultaneously serving many users are modeled as a multi class processor sharing
queue. Furthermore, different technologies implemented by the different operators, yield
different capacities CA and CB for the correspondent operator’s PS Queue. The CAC is
modeled by an IS server, similar to single class model. The BCMP network is depicted
in Figure 5.4.
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Sharing possibilities

Operator case
Class-1 traffic direction

Operator
Class-2 traffic direction

Op-B

case-1
→

Op-A

·
case-2

·
→

case-3
→
→

case-4
→
←

case-5
←
→

case-6
←
←

case-7
·
←

case-8
·
←

Table 5.2.: Sharing Possibilities

Parameter Description

g Grade of service

i Operator index i ∈ {A,B}
r Class index r ∈ {1, 2}
λr overall arrival rate of Class-r users
1
µr

= xr average demand size of Class-r requests

Pi,r probability that a Class-r user chooses Op-i

PR,i,r probability that Op-i blocks a Class-r request

PT,i,r probability that Op-i transfers a Class-r request

Dmax,r maximum acceptable response time for Class-r requests

Ci Capacity of Op-i

Table 5.3.: System’s parameters

5.6.4. Multi-Class Load Balancing Variants

Using the traffic equations 5.29, we can write down the individual utilizations as:
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ρA,1 =
λ1

µ1CA
·
(

PA,1(1− PB,A,1 − PT,A,1) + PB,1PT,B,1

)

ρA,2 =
λ2

µ2CA
·
(

PA,2(1− PB,A,2 − PT,A,2) + PB,2PT,B,2

)

ρB,1 =
λ1

µ1CB
·
(

PB,1(1− PB,B,1 − PT,B,1) + PA,1PT,A,1

)

ρB,2 =
λ2

µ2CB
·
(

PB,2(1− PB,B,2 − PT,B,2) + PA,2PT,A,2

)

(5.41)

These equations form the base of our derivations for the load balancing between the
operators. We are interested in defining the suitable transfer probabilities PT,A,1, PT,A,2,
PT,B,1 and PT,B,2. Let us assume for the sake of illustration that the blocking rate is
zero on both of the operators. In this case the utilizations after resource transfer can be
reformulated in terms of the initial utilizations as:

ρinit,A,1 =
λ1

µ1CA
PA,1

ρinit,A,2 =
λ2

µ2CA
PA,2

ρinit,B,1 =
λ1

µ1CB
PB,1

ρinit,B,2 =
λ2

µ2CB
PB,2 (5.42)

ρA,1 = ρinit,A,1(1− PT,A,1) +
CB

CA
ρinit,B,1PT,B,1

ρA,2 = ρinit,A,2(1− PT,A,2) +
CB

CA
ρinit,B,2PT,B,2

ρB,1 = ρinit,B,1(1− PT,B,1) +
CA

CB
ρinit,A,1PT,A,1

ρB,2 = ρinit,B,2(1− PT,B,2) +
CA

CB
ρinit,A,2PT,A,2 (5.43)

Let us further define the concept of surplus and debt of the donor and borrower
operator respectively. Surplus is a measure of resources that donor can donate, and debt
is a measure of the needed resources by the borrower.

• Surplus Op-A: αA = ρA,max − ρinit,A
• Debt Op-A:αB = ρinit,B − ρB,max

Letting Op-B be the congested, thus the borrowing operator, and Op-A the normal
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and thus the donor operator. We have the following relations:

ρinit,B,1 + ρinit,B,2 = ρinit,B ≥ ρB,max

ρinit,A,1 + ρinit,A,2 = ρinit,A ≤ ρA,max (5.44)

After the resource exchange the utilization of Op-A will increase by the amount ∆ρA =
ρA−ρinit,A. Similarly the utilization of Op-B will decrease by the amount ∆ρB = ρinit,B−
ρB . The increase in the utilization should not exceed the surplus of the donor, and the
decrease in the borrower utilization should be more than the debt of the borrower. These
conditions can be summarized as:

∆ρA ≤ αA

∆ρB ≥ αB (5.45)

Observing the equation (5.43), the operators need to have access to ρinit values across
all the networks and service classes in order to built a model of the state space positions
of each other. By consulting to the delay values of the QoE database, the operators
are able to find out these values. However, in order to check the conditions given by
inequalities (5.45) they need to be able to guess the maximum utilizations that peer
operators are aiming for. Only this way they would be able to calculate each others
debt and surplus. However, it is not realistic, that operators would be exchanging such
a detailed internal operating parameter. This is why we believe that a peer to peer
negotiation mechanism we foresee for single class sharing is not suitable for the multi-
class sharing. Instead of this, we postulate the existence of a neutral third party, which
we term the SLA broker, that handles the setting of PT value. It would have access to
the debt an surplus of both of the operators. We present the design of such an entity in
Section 6.2.

As discussed previously, within a service class the resources will be transferred only in
one direction. This leads to the eight different combinations summarized in Table 5.2.
Due to the symmetry, we will investigate the Cases 1 through 4.

Single Role

Case 1: In this case class-1 traffic goes from Op-B to Op-A. Thus we have PT,A,1 =
PT,A,2 = PT,B,2 = 0, and only PT,B,1 6= 0. The equation 5.41 yields:

ρA,1 = ρinit,A,1 +
CB

CA
ρinit,B,1PT,B,1

ρA,2 = ρinit,A,2

ρB,1 = ρinit,B,1(1− PT,B,1)

ρB,2 = ρinit,B,2 (5.46)
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Using the definition of ∆ρA, ∆ρB and 5.45 we obtain:

∆ρB = ρinit,B,1PT,B,1 ≥ αB

∆ρA =
CB

CA
ρinit,B,1PT,B,1 ≤ αA (5.47)

Sharing is only possible if PT,B,1,max as dictated by donor is greater than or equal to
the minimum PT,B,1,min needed by the borrower. These values can be calculated with
the Equation (5.49). Expanding the values, one obtains the condition for a successful
transfer as αACA ≥ αBCB.

PT,B,1,min =
αB

ρinit,B,1
(5.48)

PT,B,1,max =
αA · CA

CB · ρinit,B,1
(5.49)

Case 2: is the same as Case 1 except for the shard traffic class.

Case 3: is a generalization of the previous two cases. In this case, the equation 5.41
yields:

ρA,1 = ρinit,A,1 +
CB

CA
ρinit,B,1PT,B,1

ρA,2 = ρinit,A,2 +
CB

CA
ρinit,B,2PT,B,2

ρB,1 = ρinit,B,1(1− PT,B,1)

ρB,2 = ρinit,B,2(1− PT,B,2) (5.50)

Using the definition of ∆ρA, ∆ρB and 5.45 we get:

∆ρB = ρinit,B,1PT,B,1 + ρinit,B,2PT,B,2 ≥ αB

∆ρA = ρinit,B,1PT,B,1 + ρinit,B,2PT,B,2 ≤
CA

CB
αA (5.51)

We reshape these inequalities according to PT,B,2 and we get two inequalities in the
{PT,B,1, PT,B,2}Plane as follows:
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Figure 5.7.: Case 3: Intersection region of sharing.

PT,B,2 ≥ −
ρinit,B,1

ρinit,B,2
· PT,B,1 +

αB

ρinit,B,2

PT,B,2 ≤ −
ρinit,B,1

ρinit,B,2
· PT,B,1 +

αACA

CBρinit,B,2
(5.52)

As we can see, each one of these inequations defines a region in the {PT,B,1, PT,B,2}
plane. Each one of these regions is bounded by a line. The two lines have the same
slope. The intersection of those regions would be a region of acceptable (PT,B,1, PT,B,2)-
pairs. This relationship is depicted in Figure 5.7. This shows that intersection (therefore
sharing) is possible if CAαA ≥ CBαB .

Dual Role

In this scenario each traffic class is transferred in another direction. Initially, we will
assume that that Op-A is in a normal congestion state whereas Op-B is overloaded, thus
we can say that Op-A has a surplus and Op-B is in debt. We will handle the the case
when both of the operators are overloaded at the end of this section.

Single Overloaded Operator In Case 4, Class-1 traffic is transferred form Op-B to Op-
A, and Class-2 traffic is transferred from Op-A to Op-B. This means we have PT,B,2 =
PT,A,1 = 0. Thus the equations 5.41 yield:
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ρA,1 = ρinit,A,1 +
CB

CA
ρinit,B,1PT,B,1

ρA,2 = ρinit,A,2(1− PT,A,2)

ρB,1 = ρinit,B,1(1− PT,B,1)

ρB,2 = ρinit,B,2 +
CA

CB
ρinit,A,2PT,A,2 (5.53)

Using the definition of ∆ρA, ∆ρB and 5.45 we get:

∆ρB = ρinit,B,1PT,B,1 −
CA

CB
ρinit,A,2PT,A,2 ≥ αB

∆ρA =
CB

CA
ρinit,B,1PT,B,1 − ρinit,A,2PT,A,2 ≤ αA (5.54)

We reshape the inequalities again to obtain a description in the {PT,A,2, PT,B,1} plane:

PT,B,1 ≥
CAρinit,A,2

CBρinit,B,1
PT,A,2 +

αB

ρinit,B,1

PT,B,1 ≤
CAρinit,A,2

CBρinit,B,1
PT,A,2 +

αACA

CBρinit,B,1
(5.55)

The inequalities in 5.55 define two regions in the {PT,A,2, PT,B,1} plane. Each one of

them is bounded with a line having the same slope
CAρinit,A,2

CBρinit,B,1
. Sharing is possible when

the two regions overlap. This is the case when the condition αACA ≥ αBCB is satisfied.
These relations are depicted in Figure 5.8.

Two Overloaded operators In case Op-A is overloaded αA, which represented his
surplus will become negative. The Figure 5.9 shows the impact of having tow overloaded
operators.

The two regions won’t have any intersection except for the case that αA = αB = 0.
This is the case that both operators are on their boundary lines.

In conclusion sharing is possible only when we have spare resources, that is when
some operator is underloaded. Moreover, sharing between an overloaded Op-B and an
underloaded Op-A is possible when the following condition holds

αACA ≥ αBCB

This condition was concluded for each one of the sharing cases, and is pretty intuitive:
sharing is possible when spare resources are larger then the resources, that the overload
needs.
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(a) Case 4: Dual Role sharing region

(b) Possible values for sharing

Figure 5.8.: Case 4: The intersection region.

5.6.5. Optimal Transfer Probabilities

In the single role sharing depicted in Figure 5.7, operators have a whole region of ac-
ceptable PT values. This section discusses the impact of costs of sharing on the choice
of the sharing parameter.

We Assume that each operator offers a Flat-Rate for the users. Thus there will be no
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(a) Op-A normal.

(b) Op-A congested.

Figure 5.9.: Impact of overload Op-A

difference in the utility in case users who choose him, produce Class-1 or Class-2 traffic.
On the other hand transferring different traffic types could be associated with different
costs. In total the overloaded operator (Op-B) wishes to minimizes the costs arising
from sharing.

From the region depicted in the Figure 5.7, it would intuitively want to go to the
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lower line, since more transfer will be automatically associated with higher costs. The
equation of this line is given by Equation (5.56). The goal is to find which point on this
line is associated with the lowest costs.

ρinit,B,1PT,B,1 + ρinit,B,2PT,B,2 = αB (5.56)

The transfer of a class-1 and class-2 session, will be associated with costs of c1 and
c2 respectively. Thus the total cost Op-B by transferring a mix of sessions from service
class 1 and 2 is given by:

K = n1 · c1 + n2 · c2 (5.57)

where n1 and n2 are the class respective numbers of transferred sessions. These can
be calculated over a specific sharing duration D by:

n1 = D · PT,B,1 · λinit,B,1 = D · PT,B,1 · ρinit,B,1 · CB

x1

n2 = D · PT,B,2 · λinit,B,2 = D · PT,B,2 · ρinit,B,2 · CB

x2
(5.58)

Using equation 5.58 in equation 5.57 yields:

f(PT,B,1, PT,B,2 =
K)

D · CB
=
c1
x1
· PT,B,1 · ρinit,B,1 +

c2
x2
· PT,B,2 · ρinit,B,2 (5.59)

which represents a function of (PT,B,1, PT,B,2) we want to minimize under the con-
straint in Equation 5.56.

Now we plug equation 5.56 in 5.59 and obtain:

f(PT,B,1) =
c2 · αB

x2
+ PT,B,1 · ρinit,B,1 ·

( c1
x1
− c2
x2

)

(5.60)

The minimum of this function depends on the relationship of c1
x1

and c2
x2
. If the two

fractions are equal, thus we would have a constant cost for sharing. In this case it does
not matter which point, on the line defined in equation 5.56 we choose.

In case the of c1
x1
≤ c2

x2
the minimum of equation 5.60 will be at:

PT,B,1 =
αB

ρinit,B,1

PT,B,2 = 0 (5.61)

In the last case, the term c1
x1
≥ c2

x2
, the minimum of equation 5.60 will be at:
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PT,B,1 = 0

PT,B,2 =
αB

ρinit,B,2
(5.62)

Thus we conclude that under the mentioned cost assumptions, it it not optimal to
transfer mixed traffic.

5.7. Conclusion

In this Chapter we presented a mathematical description for single and multi-class re-
source sharing between two operators. For the single-class case, we were able to present
a closed form expression for the delay variation as a function of transfer probability.
We also provide the derivation of optimal transfer probability. For multi-class sharing,
we established the conditions for resource sharing and characterized different sharing
options. We will use this model for the rest of the work as the fundamental mathemat-
ical description. In Chapter 6, we will demonstrate how transfer probabilities can be
negotiated between operators, by using the models developed in this Chapter.

75



6. Negotiation Problem

Negotiation Problem is concerned with the following question: ”How can two or more
operators agree on a transfer probability?”

In this Chapter we present two different solutions to the negotiation problem. The
borrowing and donating operators have to agree on the amount of traffic to be ex-
changed between them, which is the negotiation problem. We first present in Section 6.1
a bilateral negotiation mechanism, which is able to come up with the optimal transfer
probability that corresponds to the minimal borrower delay with out any central entity.
For this purpose we employ the principles of Mechanism Design . The bilateral mech-
anism is developed for the single class scenario. Multi-class scenario cannot be solved
using the same techniques. For the solution of the multi-class negotiation problem, we
use auction mechanisms involving a central and trusted third party, that acts as a me-
diator for resource sharing among two or more operators. We present these results in
Section 6.2.

6.1. An Incentive Compatible Negotiation Mechanism for

Single Class Resource Sharing

6.1.1. A Primer on Negotiation Mechanisms

Our primary reference for negotiation mechanism design in is Zlotkin and Rosenschein’s
book [70]. The authors focus on automated systems that are involved in resource al-
location related tasks, where it may to the designers interest if the automated systems
coordinate to share resources. In other cases automated systems are obliged to cooperate
in order to function properly, since their actions may be interfering with each other. So
there are decisions that are to be taken in accordance with other machines. The aim
is to enable development of protocols that allow flexible and constructive agreements
between machines, that represent the interest of their designers, that reach compromises
if it is for the benefit to the designer.

The focus of the book is distributed systems, consisting of components that are de-
signed by self-interested designers, with disparate interests. The approach can be seen
as the application of Game Theory to the area of multi-agent systems. The Game The-
ory is the mathematics of encounters of decision making entities, and is perhaps more
suitable to machine to machine encounters then the human encounters, for which it was
originally developed for. The multi-agent systems is on the other hand is a branch of
artificial intelligence, where the agents are:

• designed by self interested designers,
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• not benevolent to other agents by default,

• and the utility is defined at the agent level, not at the system level.

The authors approach can be summarized as applying the mathematical tools of game
theory in the engineering problem of designing multi agent systems. This effort can be
seen from a social engineering for a machine society perspective. This social engineering
is composed of designing of punitive mechanisms, incentive mechanisms and protocols.
The goal of these mechanisms and the protocol is to make it beneficiary for the self
interested designer of the agent to design his agent in a way that is parallel to the
desired system behavior. A protocol, from the perspective of negotiation mechanism
design, denotes the public rules to which agents should comply with, when they are
interacting with other agents. Related with each protocol is a strategy, which is the way
an agent behaves in an interaction, given the protocol.

Domains

Negotiation is the act of multiple agent searching for an agreement. The search process
involves a combination of exchange of information between agents, the relaxing of initial
agent goals, lies or threats. Negotiation processes are associated with domains. These
domains are:

• Task Oriented Domains (TOD)

• State Oriented Domains (SOD)

• Worth Oriented Domains (WOD)

Tasks are indivisible jobs that have to be executed by the agents. The TOD’s are char-
acterized by the agent activity is limited to a set of tasks that has to be completed.There
are no interference between the agents. All the agents have the necessary capabilities
and resources to complete the tasks. Cooperative opportunities arise from the fact that
a redistribution of tasks among the agents may lead to a more efficient solution. For
this reason TOD’s are inherently cooperative.

In the SOD’s the agents are interested to change the state of the world that the agents
reside. This facts complicates the analysis and design, compare to the TOD’s. The main
difference between SOD and TOD is that the elementary actions that one of the agents
execute may bring the environment to a state that is closer or further to the goal of
the other agent. Thus both have positive or negative interactions are possible between
agent actions. Therefore the SOD’s are not intrinsically cooperative. More than this,
there is also the possibility of goal conflicts, when there exists no environment state that
satisfies the goals of the involved agents.

WOD’s are generalizations of SDO’s. In WDO’s each state is associated with a worth
measure by each of the agents. The SOD’s than, can be seen as a subset of WOD, where
the worth function is binary one, i.e. a state is either desirable on not-desirable. Such
an extensions of the worth function allows more interesting cooperation opportunities
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between the agents, that may involve the relaxing of the worths that the agents associate
to different states.

Properties of Negotiation Mechanisms

There may be more than one suitable negotiation mechanism that is suitable for a given
domain. To be able to compare these mechanisms there have to be certain attributes of
the mechanisms that must be compared. These attributes include:

• Efficiency: The agreements reached after the negotiation should not waste any
agent resources. The efficiency can be seen from Pareto terms, or global terms.

• Stability: No agent should have an incentive to deviate from the agreed upon
strategies. Related with this property is the concept of self perpetuating behavior.
If in an open system it is to the benefit of the each agent to behave according to the
agreed upon rules, the social behavior will be stable even in the case of members
leaving or joining the society.

• Simplicity: The amount of resources devoted to the negotiation mechanism
should be smaller than the gain achieved by the negotiation.

• Distribution: Central decision makers should be avoided.

• Symmetry: The negotiation mechanism should not be biased against or for any
of the involved agents.

Assumptions

The authors make certain important assumptions in the book, which we list here.

• Agents will always try to maximize their expected utilities. This means they will
take risks if the outcome will bring a higher utility.

• The negotiations are isolated. Agents behavior in a certain negotiation does not
affect his behavior in his later negotiations.

• The agents can compare their utilities with each other, through common utility
units.

• The agents are symmetric, that is they all have the same capabilities.

• If an agent makes a commitment it is binding. This is possible if the commitments
are followable through public behavior.

• There is no way of transferring utility between agent through the use of a currency.
That is, an agent cannot convince another agent to give up his expected utility
maximizer property by giving him the currency.
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Deception-Free Protocols

There is a distinction between public and private behavior of the agent is necessary. The
adherence to the protocol is the public behavior, and the strategy used is the private
behavior associated with an agent. As the protocol and the offers are public, it will be
relatively easy to track the public behavior of the agents. This cannot be said for the
private decision making of the agents, as it is practically impossible to track the strategy
of the agents, even if their strategies are made public in terms of software. Thus it cannot
be taken for granted that the agents will be following a strategy that is agreed upon.
It is therefore desired that the strategies are self-enforced. Negotiation mechanism in
which certain strategies are enforced are called incentive compatible mechanisms.

Encounter Types

The aim of the negotiation mechanisms is to come up with a joint plan that will bring the
world to a state that will be a member of both agents goals. There are four possibilities
in SOD, depending on the goals of the different agents.

1. There exists no world state that satisfies the agent goals.

2. There exists a world state that satisfies the agent goals.

3. There exists a world state that satisfies the agent goals, but it is not reachable with
primitive agent operations.

4. There exists a world state that satisfies the agent goals, and is reachable though
primitive operations, but it is too expensive, so the agents choose not to proceed.

There are different types of non-cooperative encounters, which are summarized in
Figure 6.1 in which the Euclidian distance represents the cost of a plan. In 6.1a by
choosing a state in the intersection of the goal sets, they can beat any other one agent
plan in their goal sets. In 6.1b the agents have to do additional work by agreeing on a
state in the intersection, however the increase in the costs are symmetric. Note that these
increased costs should not exceed the worth of the individual agents. 6.1c is different
from the previous case, the agent with the horizontal goal set benefits from the joint
plan, whereas the one with the vertical set has to compromise. Finally 6.1d represents
the conflict situation.

6.1.2. A Mechanism Design for Bilateral Resource Negotiations

Our aim is to design an efficient, incentive compatible, decentralized negotiation mecha-
nism based on the QN description of the interaction between two operators developed in
Chapter 5. The interaction can be modeled as a SOD, in which the states of the world
are the congestion statuses of the individual operators. Each operator wants to avoid
congestion.

We provide a hierarchical solution to the mechanism design problem. In the first
part of the interaction, the players declare their congestion states. We formulate this
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(a) Cooperative (b) Symmetric Compro-
mise

(c) Asymmetric Compromise (d) Conflict

Figure 6.1.: Different encounter types taken from [70]

interaction in the presence of a user-generated QoE database as the First Level Game. By
providing the solution to this game, we show that it is futile to lie about the congestion
state. Once the congestion states are known to both operators, each operator knows its
role as a borrower or a donor.The second part of the interaction involves making an offer
and a counter offer on the acceptable and desired transfer probabilities. We solve the
second level game, to show that the mechanism we propose is incentive compatible, and
it is futile to lie about the transfer probability offer and the counter offer.

First Level Game

The first level game is defined by the n-tuple :

< N,A,Θ, u(·) > (6.1)

There are N = 2 players, labeled with i ∈ {1, 2}. Each player can choose between two
actions, constituting the action space A = {tell truth, lie}. Each player’s type θi can be
one of the two members of the type space Θ = {normal, congested}. Furthermore each
player has a belief about the type of the other player, given by bi(θ−i). This belief is
updated by making observations on the data available in the QoE database, which we
will discuss shortly.
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At the beginning of the interaction, the players declare their types, these declared
types are denoted by θdi Both players use the results of their observations in order to
decide on a assumed type of the peer player, denoted by θai . Each player compares the
assumed type about the peer player with the type that the peer player declares. If the
assumed type does not match the declared type, the second game is not played. Thus
the second game is played, and the interaction is continued only if the declared type and
the assumed type matches for both players. Since overall payoff depends on the second
game, we define the following unitary utilization function for the first game:

u(θi, θ−i) =

{

1 if θd−i = θai

0 otherwise.
(6.2)

We now elaborate how the user QoE database is exploited by the players to build
assumed types of their peers. The database is filled by the users, and contain subjective
MOS values which summarize users satisfaction with a certain application running on
a certain RAN. It also contains objective QoS values such as end to end delay, jitter
and average bandwidth. The operators are able to query these records according to the
RANs that the reports are describing. Each player queries the reports originating from
the other player. The results of the query constitutes an observation O, such as: ”the
probability that delay is larger than 1 seconds is 0.001” or ”95% percent of the users report
a MOS value of 3”. We assume that the players can calculate to a priori distributions
of the observations, i.e. P (O|θ−i = normal), P (O|θ−i = congested). The players also
can estimate P (θ−i = congested) P (θ−i = normal) by observing the delay values of
the peer player for a long period of time. The calculation of these probabilities depend
on the actual observation, the congestion condition, and the distribution of network
loads, and outside the scope of this section. We give a concrete example in Chapter 8.
With the observation O available to the player, it evaluates the Bayesian a posteriori
probabilities:

P (θ−i = congested|O) =
P (O|θ−i = normal) · P (θ−i = normal)

P (O)
(6.3)

P (θ−i = normal|O) =
P (O|θ−i = congested) · P (θ−i = congested)

P (O)
(6.4)

The assumed type is set to the type that maximizes the a posteriori probability, since
this is the best estimate given the evidence. This means comparing Equations (6.4) and
(6.4) :

θai = argmax
θ∈Θ

P (θ−i = θ|O) (6.5)

With the definition of the assumed type and the utilization function, we are ready
to present the first level game in its normal form in and its solution in Table 6.1. The
solution of this game is for both operators to tell the truth about their types. This is
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TRUE θd1 = θ1 LIE θd1 = θ1
TRUE θd2 = θ2 (1,1) ← (0,1)

LIE θd2 = θ2 ↑ (1,0) ←(0,0)

Table 6.1.: Normal form representation of the first level game.

Figure 6.2.: Negotiation Mechanism

made possible by the availability of the QoE database, which allows players to detect
the lies. After the declaring their true congestion types, the operators go ahead with the
second game, which involves an agreement on the PT value.

Second Level Game

We have shown through the first game, that it is rational for both operators to de-
clare their true types. After type declaration the congested operator is designated as
the borrower, and the normal operator is designated as the donor. The sequence of
interaction after this point is given in Figure 6.2. The borrower first sends a message
containing the minimum and maximum PT values that it needs, which constitute the
feasibility SB = [PTmin,B , PTmax,B]. The donor operator replies with its own feasibility
set SD = [PTmin,D, PTmax,D]. Obviously, the solution should lie in the intersection of the
two feasibility sets, i.e. P ∗

T ∈ SB
⋂
SD.

The type of the intersection set is a function of the relative traffic levels of the opera-
tors. We discern three different encounter types.
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Figure 6.3.: Case 1.

Encounter Type 1 In the first type of the encounter depicted in Figure 6.3, the in-
tersection set is given by [PTR,min, PTD,max]. The set is limited on the right with the
maximum PT that can be supported by the donor operator and the minimum PT that is
required by the borrower operator. The intersection does not include optimum minimum
delay, thus is not feasible in this encounter.

Encounter Type 2 In the next type of encounter depicted in the Figure 6.4, the donor
can tolerate delay larger than the optimal borrower delay value. The intersection set is
given by [PTR,min, PTR,max] . Since the joint feasibility set is bounded to the right by the
PT corresponding to optimal minimum delay, the optimum borrower delay is feasible.

Encounter Type 3 In the final encounter type, depicted in Figure 6.5, the feasibility set
is empty. The borrower operator should increase its blocking probability, and re-initiate
the negotiation. The amount with which blocking probability that should be increased
is given by PTR,min − PTD,max.
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Figure 6.4.: Case 2.

The Mechanism A mechanism M is defined by the outcome it assigns to the actions
of the donor and the borrower, denoted by σd and σb. In our case the output of the
mechanism is a p∗T value that has to be agreed upon:

P ∗
T =M (σi, σj∗) (6.6)

The actions of the operators are the values they assign to the maximum and minimum
PT values in their offers. Our aim is to design the mechanism, or the rule that chooses
the agreed P ∗

T value out of the joint feasibility set, in a manner that the operators are
obliged report the correct PT values in their offers.

The design of the mechanism is dependent on the utility functions of the individual
operators. Let us investigate costs an benefits of the individual operators in order to
define the utilities. The borrower gains from sacrificing some of its traffic, by offering
its customers a better QoE. On the other side, this involves a financial compensation
that constitute the cost of borrowing. In order to formulate an utility function for
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Figure 6.5.: Case 3.

the borrower, one must account for the financial benefit of the decrease in delay and
subsequent increase in user QoE. In [71] Lin et. al. present a relation between the
blocking probability and the churn rate, i.r. the rate with which users break their
contracts. This relation is given in Equation (6.7).

C(Pb) =
1

1 + eχ(β−Pb)
(6.7)

The authors choose blocking parameter as their QoE parameter in this relation. The
delay guarantees we employed in Chapter 7 can also be used in the place of the blocking
probabilities. This would mean that a higher probability with which the delay guarantees
are not met, i.e. a higher Pb in Equation (6.7), the higher the churn rate will be. The
relation is exponential. A higher churn rate means a loss of revenue for the congested
operator. Offering a lower delay, and increasing the QoE is beneficial, by reducing the
churn rate, and avoiding loss of revenue due to churning. We do not have access to

85



actual internal figures of the operators, but judging by the importance of keeping churn
rates low by the operators, we make the following assumption: The long term financial
benefits of offering a better QoE by offering a lower delay is comparably larger than the
instantaneous cost of transferring traffic to another operator, and sharing a part of the
revenue with the resource donating operator.

At the first glance, the donor operator might look like to be working without any
costs. As long as the PT does not exceed a critical value above which delay bound
cannot be made, an increasing PT means increasing financial benefit. However, one has
to take into account the opportunity cost associated of not accepting any traffic from
the other operators under any other circumstance. Due to the dynamic nature of the
user demand, operators will be in position to be donor and borrower on different time
instants. Lets assume there are two operators A and B. The operator A might refuse to
be the donor when Operator is in a borrower position, with the hope that the users of
operator B will churn to operator A as a result of low QoE during the congestion period.
However this decision would mean that the operator A will not be able to find a donor,
when congestion strikes it, since Operator B would be unwilling to help operator A. This
would mean Operator A would have to suffer a lower QoE during congestion periods,
leading to an increased churn rate and lost revenue according to Equation (6.7). In
the competitive market of the network operators, keeping users is more important than
gaining new users. This is the reason why we assume that the instantaneous benefit of
being a donor is comparably larger than the long term opportunity costs.

Under these conditions, we can define the utility function as an increasing function of
PT for both operators. This means both the donor an borrower operators are satisfied
more with a larger PT within their prospective feasibility regions. For the donor, the
form of the function is linear since more accepted additional traffic means more revenue.
For the sake of simplicity, we also choose a linear function for the borrower. Thus the
utility function of the operators is given by (6.8), where α is a positive constant:

u(PT ) = αPT + β (6.8)

We are now in a position to define the mechanism. Given that the operators report
their respective feasbility sets Sd and Sb, our mechanism chooses the P ∗

T as the right
bound of the joint feasibility set:

M (Sd, Sb) = maxPT ∈ Sd
⋂

Sb (6.9)

With the utility function defined in Equation (6.8), we claim that this mechanism is
strategy proof:

Lemma 6.1.1 Given the outcome of the first game, the mechanism forces a unique
solution. For any other sets Tb and Td we have: u(Tb, Td) < u(Sb, Sd)∀Tb 6= Sb and Td 6=
Sd

The donor has a single value to report. The lower boundary of the donor feasibility
set is always zero, since the donor can work without any transfer. We claim that the
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Figure 6.6.: A futile lie.

right boundary of the offer is PT (Dmax,D), where it represents the PT value corresponds
to the maximum donor delay value Dmax,D. Any PT value larger than PT (Dmax,D) is
outside of the feasible set, since delay is above Dmax,D. Any PT value smaller than PT

reduces the utility of the donor according to Equation (6.8). Therefore the strategy to
make the offer[0, PT (Dmax,D)] is dominant for the donor.

For the borrower, there are two non-zero values to report. For the right boundary, it
is always beneficial to report the PTR,opt. Any PT above this value is outside the feasible
region, since the same delay is achievable by a PT to the left of the PTR,opt, which is
inside the feasibility set. Reporting any value smaller than PTR,opt results in a smaller
utility according to Equation (6.8). So it is rational to use PTR,opt as the right boundary
of the offer.

The left boundary to be used in the offer is a little bit more complicated. Due to
the increasing utility with increasing PT , the borrower may be tempted to report a
value larger than PT (Dmax,B), the delay corresponding the delay bound it offers on its
network. This logic would result in the borrower making the offer [PTR,optPTR,opt] ,
due to the monotonic increasing utility. However, this strategy would risk an empty
joint feasibility set as in Encounter Type 3 described in Section 6.1.2, which results in
zero utility. This is depicted in Figure 6.6. If the borrower lies and makes the offer
[PTR,optPTR,opt] depicted in red, the joint feasibility set is empty. If it makes the offer
[PT (Dmax,B)PTR,opt], depicted in green, the joint set is bounded by the right by the
maximum delay that the donor can offer. Since the borrower is the first one that makes
the offer, and therefore does not have the access to PT (Dmax,D), this is not a risk worth
taking. Therefore it is rational for borrower to make the offer [PT (Dmax,B)PTR,opt]. This
proves our lemma.
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To summarize, the mechanism we propose in Equation (6.9), for the interaction de-
picted in Figure 6.2, forces the borrower to make the offer [PT (Dmax,B)PTR,opt] and the
donor to make the counter offer [0PT (Dmax,D)]. When the intersection of these sets
are non empty, the mechanism chooses the utility maximizing right boundary of the
intersection set. It is not beneficial for any operator to deviate from the rules of the
encounter, and thus the mechanism is strategy proof. Combined with the first step
game, the interaction provides a simple and trustable interaction mechanism between
two operators which are willing to share resources in times of congestion.

6.2. Centralized Solution for Multi-class Resource Sharing

6.2.1. Introduction

As we discussed in Section 5.6, the multi-class resource sharing requires a neutral third
party that both operators trust. The QoE database is not strong enough to overcome
the information asymmetry problem for multiple service classes. In this chapter we
present an integrated solution that involves a neutral third party we call the SLA broker.
With this entity, multiple operators who are in a resource sharing agreement are able
to exchange resources among each other to overcome congestion situations involving
multiple classes of service.We formulate the interaction in terms of two games, the intra-
operator and the inter-operator games. In the former, the RANs belonging to an operator
play a bargaining game to share the bandwidth of an incoming service request. If an
operator needs extra bandwidth to support the service request, it does so by playing
the second game with other operators, who share the bandwidth offered to the service
request.

6.2.2. State of the Art

As in many areas of the networking field, application of game theory concepts to CRRM
problem has been considered using both cooperative ([72, 73]) and non-cooperative /
competitive ([74, 75, 76]) game models to obtain efficient resource allocation schemes.
Badia et al. provided a comparison between non-cooperative and cooperative models in
resource allocation and demonstrated that collaborative strategies are able to improve
the overall system performance [77]. A bankruptcy game is used in [72] to model the
problem, but within a limiting scenario regarding the composition of available access
technologies. All these studies that apply game theory to CRRM are confined to a single
network operator scenario. Our approach differs from these work from the perspective
that the resource sharing takes place across operator boundaries.

6.2.3. Model and Assumptions

We consider a coverage region R covered by various radio access networks (RAN) owned
by different operators. The region R is divided into coverage areas a. An area is defined
to be the geographical region which is covered by element(s) from the set of RANs.
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Figure 6.7.: Different coverage cases in a multi-operator multi-technology scenario

An area may be covered by a single RAN, by multiple RANs belonging to a single
operator, or by multiple RANs belonging to multiple operators. We assume there are n
different radio access technologies (RAT) which are combined into RANs by the network
operators, and m different operators. This topology is depicted in Figure 6.7

A consequence of this hierarchy is the different definition of load and congestion for
the RAN and area that is covered by different RANs:

1. RAN congestion: A RAN is said to be in RAN congestion region if its available
bandwidth falls below some pre-defined threshold value.

2. Aggregated Congestion: An operator network is said to be in the aggregated con-
gestion region in an area a if the aggregated available bandwidth of the RANs
belonging to the operator in this area falls below some threshold value.

We assume that users have contractual agreements with a home operator and generate
application requests of different QoS classes. We further assume that applications are
divisible meaning thereby that an application can run on multiple interfaces of different
characteristics simultaneously. Upon initial access selection, which is not a part of this
work, a user connects to the home network using some RAN belonging to its home
operator first, and generates bandwidth requests for applications of different service
classes. The home operator first allocates this bandwidth request to different home RANs
in the area. We assume there is a functional CRRM entity that coordinates RANs of an
operator in the area. If the operator is experiencing aggregated congestion in the area
where the user is located, it will not allocate the bandwidth right away, but will request
additional bandwidth from foreign operators which have RANs in the area, and are
willing to share bandwidth. We assume that operators are in contractual agreements
with each other to share resources, in terms of service level agreements (SLA). The
interaction between operators is monitored by a SLA broker, which is an independent
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neutral entity. After the interaction, the requested bandwidth is distributed among those
operators who are willing to share bandwidth and their RANs are present in the area.
Each operator treats its share of the bandwidth as a new bandwidth request.

The first step in which the requested bandwidth is shared between the RANs of the
same operator is called the intra-operator resource allocation, and the second allocation
step is called the inter-operator resource distribution. In this paper we extend our previ-
ous work [78], in which we formulate the intra-operator step as an bankruptcy problem
and find the estate allocation to creditors using Kalai-Smorodinsky bargaining solution .
Application of bargaining solution to bankruptcy problem is natural in that bankruptcy
problems create the situation of conflict over distribution of estate and to resolve the
conflict the creditors (players) negotiate to get to the point of agreement. Such nego-
tiations are best framed using bargaining solutions. In this paper we also formulate
the inter-operator game on the same lines and find the suitable utility distribution rule
using KSBS. KSBS suits our problem formulation because of its individual monotonicity
axiom, which is further detailed in the later sections.

In Chapter 5, and especially in Section 5.6, the debt and surplus of the operators were
given in unit-less differences in utilization. However in our description in this Section
we are interested in bit rates. These two values are interchangeable via the capacity of
the individual RANs. A ∆ρ increase or decrease in a RAN with a capacity of C Kbps is
equivalent to a traffic exchange of C ·∆ρ. We continue the discussion with this exchange
factor in mind.

6.2.4. Game Theory Background

Let us start by reviewing several basic definitions and concepts related to the bankruptcy
problem and bargaining solution of cooperative games.

Bankruptcy Problem

Bankruptcy is a distribution problem, which involves the allocation of a given amount of
good among a group of agents, when this amount is insufficient to satisfy the demands
of all agents. The available quantity of the good to be divided is usually called estate
and the agents are called creditors. The question is: How to distribute estate amongst
creditors? A number of distribution rules have been proposed to deal with such prob-
lems. The solution to a bankruptcy problem can be interpreted as the application of an
allocation rule that gives sensible distribution of estates as a function of agents’ claims.
Formally bankruptcy is the pair (E,C), where E represents the estate to be distributed
among a set C of the claims of n creditors, such that

C = (c1, . . . , cn) ≥ 0 and 0 ≤ E ≤
n∑

i=1

ci. (6.10)

An allocation xi of the estate among creditors should satisfy
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n∑

i=1

xi = E given that 0 ≤ xi ≤ ci. (6.11)

In our case creditors correspond to the access networks belonging to a single or multiple
cooperating operators and estate correspond to the required bandwidth by applications.

Bargaining Solutions of Cooperative Games

Bargaining [79, 80] refers to the negotiation process (which is modeled using game theory
tools) to resolve the conflict that occurs when there are more than one course of actions
for all the players in a situation, where players involved in the games may try to resolve
the conflict by committing themselves voluntarily to a course of action that is beneficial
to all of them. Application of bargaining solution to bankruptcy problem is natural in
that bankruptcy problems create the situation of conflict over distribution of estate and
to resolve the conflict the creditors (players) negotiate to get to the point of agreement.
Such negotiations are best framed using bargaining solutions.

Kalai-Smorodinsky Bargaining Solution

Given a pair (S, d) that defines the general bargaining problem, with S denoting the set
of feasible utilities and d ∈ S representing the disagreement point, the unique Kalai-
Smorodinsky bargaining solution X∗ = F (S, d) fulfills the following axioms:

1. Individual Rationality: Xi ≥ di for all i

2. Feasibility: X∗ ∈ S

3. Pareto Optimality: X∗ should be Pareto optimal. A solution is Pareto optimal if
it is not possible to find another solution that leads to a strictly superior advantage
for all players simultaneously [81].

4. Translation Invariance: ∀(S, d),∀h ∈ R
n : F (S + h, d+ h) = F (S, d) + h

5. Individual Monotonicity: Consider two bargaining problems (S1, d) and (S2, d)
such that S1 ⊂ S2, and the range of attainable utility by any player j is same
in both (S1, d) and (S2, d). Then individual monotonicity implies that utility of
player i 6= j is higher in (S2, d). In other words, an expansion of the bargaining
set in a direction favorable to player i always benefits i.

KSBS suits our problem formulation because of its individual monotonicity axiom.This
can be illustrated in the Figure 6.8, which is plotted for two players. Keeping utility of
one player fixed and increasing the utility of second player results in two feasibility sets
S1 and S2 such that S1 ⊂ S2. In this case player 1 will attain the same utility in both
sets however player-2 will attain more utility in set S2 than in set S1, therefore as a
consequence of individual monotonicity axiom KSBS will always allocate more utility
to player 2.
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Figure 6.8.: Illustration of axiom of individual monotonicity

6.2.5. Cooperative Game Theoretic Resource Allocation

We use cooperative games to formulate the resource allocation management problem in
multi-operator heterogeneous wireless networks at two levels. At the intra-operator level
operator’s RANs in an area bargain over the requests coming from users that belong to
the operator. Executing intra-operator at this stage among the network technologies
belonging to an operator over any divisible bandwidth request enable the operator to
make optimal utilization of its bandwidth resource. The superiority of our intra-operator
game in the context of bandwidth utilization is witnessed in our previous contribution
[78]. The request is allocated to different RANs, and the utility function of different
RANs is set to be the amount of allocated bandwidth above a certain disagreement
point.

If a bandwidth request cannot be fulfilled by the RANs of a home operator, the inter-
operator game is played. The inter-operator resource distribution problem is formulated
such that each operator present in a coverage area bargain over the excess bandwidth
requests. The utility function is defined similar to the intra-operator case.

There are different sequences of these games being played according to the area in
which a particular user is located. Different sequences are elaborated in Fig. 6.7.

1. Area A: User is in his home network, and there is a single RAN. No games played.

2. Area B: User is in his home network, and there are multiple RANs belonging to
the home RAN. Intra-operator game is played only.

3. Area C: User is in his home network, and there are multiple RANs belonging
to multiple operators are available. Intra-operator game is played in the home
network, followed by the inter-operator game if necessary. Intra-operator game is

92



played once more in home and foreign networks with the new requests that result
after the distribution by the inter-operator game.

We model the allocation and distribution problems as bankruptcy problems and obtain
the utility distribution rules. These rules dictate the allocation of requested bandwidth
to RANs and the distribution of excess bandwidth to operators. We employ well known
game theoretic approach of bargaining and a well-known bargaining solution KSBS to
come up with the allocation and distribution rules. The distribution rule is enforced
by the SLA-broker, whereas the allocation rule is enforced by the CRRM manager.
We also present algorithms that calculate the offers that the players in different games
make, given the distribution rules. The choice of KSBS in our resource allocation and
distribution problem formulation is dictated by its individual monotonicity axiom. As
this enables any access network technology (in intra-operator game) or operator (in inter-
operator game) to attain more portion of requested bandwidth by increasing their offered
bandwidth. Hence providing operators with more control over utility maximization for
specific technologies.

Bargaining problem at the Intra-Operator Level

Let rao(q) be the requested bandwidth of service class q in area a coming from the users
belonging to operator o where oǫO = {1, ...,m}. Since the applications are partition-
able and application requests can be allocated to different available network technologies
within coverage area simulteneously, therefore playing intra-operator game the opera-
tor fairly allocates the application requests among their available network technologies.
Furthermore, the operator o may have to serve bandwidth requests from other opera-
tor(s) in that area, which are in their aggregated congestion regions. These requests are
denoted by ra

Õ
(q), where Õ represents the set of operators in their aggregated congestion

region. In such a case inter-operator game is played first, which results in distribution
of different portions of excess bandwidth requests to cooperating operators, this game
is then followed by intra-operator game among RANs of operators over the portion of
requested bandwidth won by operator in inter-operator game. Together these requests
form the vector Qa

o(q) = (rao (q), r
a
Õ
(q)), which represents the requests from a particular

service class q belonging to home and foreign operators respectively that will be allo-
cated to different RANs belonging to the home operator in this area. The RANs of that
operator in the area a are members of the set W a

o = {1, ..., n}.
Qa

o(q) is analogous to the estate of the bankruptcy game. The creditors of the game
in turn correspond to the members of W a

o . Each RAN wǫW a
o makes a bandwidth offer

bao,w, which form the vector Ba
o (q). Given Qa

o(q) and B
a
o (q) the bargaining game comes

up with allocation xao,w(q) of requested bandwidth to each RAN of the operator o, which
must be the member of the compact and convex intra-operator feasibility set as defined
below:

93



S(Qa
o(q), B

a
o (q)) = {xao,w(q) : xao,w(q) ∈ R

n
+,

∑

iǫW a
o

xao,i ≤
∑

iǫW a
o

bao,i(q),

∑

iǫW a
o

xao,i(q) ≤ rao(q) + (ra
Õ
(q))}

The set S above represents all possible allocation of bandwidths to the requests at
intra-operator level over which RANs bargain. The first condition is natural, as band-
widths are positive quantities. The last two conditions dictate that the total allocation
cannot exceed the total offered bandwidth or the total requested bandwidth. Further-
more in order for this problem to be formulated as an bankruptcy problem, the following
condition should be satisfied:

rao(q) + ra
Õ
(q) ≤

∑

iǫW a
o

bao,i(q) ≤
∑

iǫW a
o

Ca
o,i (6.12)

in which Ca
o,w represents the total capacity of RAN w. The total requested bandwidth

should be smaller then the total offered bandwidth, which should in turn be smaller than
the total capacity of the operator o in the area.

Furthermore we define d = (d1, . . . , dn) ∈ R
n as the given disagreement point. Set-

ting the value of d in our bargaining problem associated with bankruptcy problem
(S(Qa

o(q), B
a
o (q)), d) influences cooperation among the RANs. Since any of the RANs

can always guarantee its disagreement utility by refusing to negotiate, the disagreement
point defines the lower bound of the solution. The existence of a disagreement point is
natural, since it endows one with a reference point from where utility comparison can
be made. The problem with disagreement point is that there is no universally accepted
criterion to select it[82]. However in the case of the intra-operator game, since the
RANs belong to a single operator, all the available network technologies in the coverage
area should participate in a game. Therefore, we keep the disagreement point as zero
which means that all network technologies will have utility equal to zero if they do not
collaborate.

With these definitions, we are able to formulate the corresponding 0-associated bar-
gaining problem is S(Qa

o(q), B
a
o (q), 0). The recommendations made by KSBS, when

applied to 0-associated bargaining problems, coincides with the proportional allocation
rule[83]. Therefore, the total requested bandwidth will be distributed proportionally by
the CRRM entity amongst the RANs based on their offered bandwidths according to
the allocation rule:

xao,w =
bao,w
∑

iǫW

bao,i

(

rao(q) + ra
Õ
(q)
)

(6.13)

We illustrate this for two networks scenario in the Figure 6.9, where payoffs of RAN-1
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Figure 6.9.: KSBS solution in a 2 Network Scenario.

and RAN-2 are plotted along x − axis and y − axis respectively. Set S represent the
feasibility set bounded by offered bandwidths of both the RANs along x − axis and
y − axis. As utility of RANs is function of allocated requested bandwidth to them,
therefore in an attempt to increase utility network technology may increase the feasible
set in its direction by increasing its offered bandwidth. Since we are plotting it for intra-
operator scenario, therefore d = 0. Let the KSBS solution here be represented by X∗.
Ideally, the allocated bandwidth by both networks should be equal to their corresponding
offered bandwidth, which is depicted by the ideal point z(Qa

o(q), B
a
o (q), 0). But the ideal

point lies outside the feasible set. Hence the efficient point i.e. X∗ on the line joining
ideal point with disagreement point represents the KSBS bargaining solution.

Bargaining problem at the Inter-Operator Level

Let us formulate the inter-operator game on the same lines as before. Let r̄ao(q) represents
the excess bandwidth request for a service class q that an operator o cannot answer, and
would like to offer in the inter-operator game to other operators, and the vector Q̄a(q)
represents all these requests from different operators in the region who are in aggregated
congested regions.The operators play the game by making a bandwidth offer bao , which
can be grouped into the vector Ba

o (q). The bargaining comes up with allocation of
requested bandwidth to different operators, xao, which should be a member of the compact
and convex feasibility set:

S(Q̄a(q), Ba
o (q)) =

{

xao : xao ≤ bao,
∑

iǫO

xai ≤
∑

iǫO

Q̄a(q)

}

(6.14)

Let Co represents the aggregated capacity of operator o, that is calculated from the
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capacities of the RANs belonging to operator o in that area. Similarly the condition for
the bankruptcy formulation is:

∑

iǫO

r̄ai (q) ≤
∑

iǫO

bai ≤
∑

iǫO

Ci (6.15)

Contrary to the intra-operator game the disagreement pointD(q) = (d1(q), . . . , dn(q)) ∈
R
n is calculated from the bandwidth requests and offers of the operators. To depict

the realistic scenario we select the disagreement point as characteristic function in our
bankruptcy problem at inter-operator level. The characteristic function of a bargaining
problem is defined as the amount of utility conceded to a player by all other players.
What this implies is that an operator will cooperate with other foreign operators if and
only if the operator receives at least the amount of bandwidth not covered by the offers
of the other operators. That is, for an operator i and foreign operators ∀j 6= i the
disagreement bandwidth is given by:

di(q) = max{0;
∑

k∈O
r̄ak(q)−

∑

i 6=j

baj (q)} (6.16)

Let the solution obtained by applying KSBS to our inter-operator bargaining problem
be denoted by be denoted by Xa = (xa1, ..., x

a
m). Then

Xa = FKS(S(Q̄a(q), Ba(q)),D(q)) (6.17)

The bargaining problem above is D associated bargaining problem in this case. Thus
recommendations made by KSBS, when applied to D associated bargaining problem
coincides by adjusted proportional distribution rule [83]. In other words:

xao = do(q) +
(bao(q)− do(q))
∑

i∈O
(bai (q)− di(q))

· (
∑

i∈O
r̄ai (q)−

∑

i∈O
di(q)) (6.18)

This distribution rule is applied by the SLA broker.

Bandwidth Offer Algorithm at Intra-Operator Level

Here we present an algorithm for the individual RAN’s given the proportional allocation
rule. For each RAN, b̄ao,w(q) is the pre-defined bandwidth offer associated with service
class q, which is defined by the operators. If the current used bandwidth lao,w is larger
than the RAN capacity threshold, described as a percent of the total capacity Ca

o,w in a

RAN, then the pre-defined bandwidth is scaled with the load factor ψa
o,w = e

−lao,w
Ca
o,w , in

order to find the bandwidth offer for that RAN.
As a result of this scaling, some of the RANs belonging to the same operator offer

less bandwidth compared to the pre-defined values. Since they belong to the same
operator, this represents a lower utilization of the operator resources. To overcome this
problem, we allow the RANs that are not in the RAN congestion to share the aggregated
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difference between the pre-defined and actual offered bandwidths of the congested RANs
proportionally to their own pre-defined bandwidths. In other words, let W̄ a

o ⊂ W a
o be

the set of congested RANs, then the algorithm for calculating the bandwidth offer bao,w
is given by:

bao,w =

{
b̄ao,i(q) · ψa

o,i if i ∈ W̄ a
o

b̄ao,i(q) + b̃ao,i(q) if i ∈W a
o − W̄ a

o

(6.19)

where b̃aw,o(q) stands for the proportional additional bandwidth that the uncongested
RANs include in their offers, which is calculated by:

b̃ao,w(q) =
b̄ao,w(q)
∑

i∈W a
o −W̄ a

o

b̄ao,i(q)
·
∑

i∈W̄ a
o

b̄ao,i(q)(1 − ψa
o,i) (6.20)

Note that this algorithm requires exchange of information between individual RANs,
which may be implemented by direct connection of RANs, through a central CRRM or
a distributed CRRM as described in [76]. Since the RANs belong to the same operator,
this is a valid assumption.

Bandwidth offer Algorithm at the Inter-Operator Level

The algorithm for the operators turns out to be relatively simpler than the RANs, given
the most actual bandwidth offers that the RANs made for a specified service class contain
a considerable amount of information about the status of the operator network in an area.
Specifically, the operator sums the most up-to-date bandwidth offers from the RANs in
the area for the service class. Then this aggregated offer is scaled with the motivation
factor of the operator 0 ≤ µo ≤ 1. By setting this factor, the operator is able to adjust
the cooperative nature of its strategy. There is an incentive for cooperative behavior, as
operators can allocate unused bandwidth to increase revenue and utilization. Thus:

bao(q) = µo ·
∑

i∈W a
o

bao,i(q) (6.21)

6.2.6. Results and Analysis

In order to observe solely the effects of an allocation scheme in a given scenario, we
have developed our own Java-based discrete event simulator, which generates user de-
fined network operators, access technologies, and coverage areas with user defined RANs
belonging to different operators. We investigate the performance of our approach in ran-
domly generated coverage areas for multi-operator heterogeneous wireless networks. A
snapshot of the user interface for our simulator is shown in Fig. 6.10.

To investigate the gain of cooperative operators in terms of bandwidth utilization, we
select a coverage area within randomly generated scenario, which is covered by different
RANs of three different operators as follows:
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Figure 6.10.: The user interface for our discrete event simulator.

• Operator-1:WiMAX

• Operator-2: WiMAX, GSM

• Operator-3: WiMAX, WLAN, UMTS

We observe the gain of operator-2 for different levels of cooperation (for different
values of motivation factor in our approach) and write it as home operator hereafter.
The bandwidth requests of different quality classes are generated by users belonging to
home operator using Poisson process with the mean 20. Simulation run is kept as 30
events, where events effectively present time instance for arrival of bandwidth requests.
Simulation run for 30 events is justified here because of greater poisson process mean
value. We consider three different cases here, i) When home and foreign operators are
fully motivated to cooperate (µ = 1 for all operators). We name this case as fully
cooperative ii) When home operator and one foreign operator(Operator-1 in this case)
are motivated to cooperate only, we name this case selective cooperative and iii) When
no operators cooperate (µ = 0), this case is called non-cooperative case. Results for Fully
cooperative case can be seen in Fig. 6.11a, where the home operator offers bandwidth
to its users’ requests until it gets into congestion, as can be seen at event-4 and onwards
the excess load is shared by foreign operators. In this case no call drops are observed.
In Selective cooperative case 6.11b although home operator gets into congestion very
soon, but no call drops are observed unless cooperating foreing operator(operator-1 in
this case) is congested from event 13 and onwards. Foreign operator-3 in this case is not
motivated to bargain over the excess bandwidth requests by home operator. Coming to
Non-cooperative case 6.11c, where greater call drop is observed since no foreign operator
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(a) Fully Co-operative

(b) Selective Co-operative (OP-1 cooperates with OP-2)

(c) Non-Cooperative

Figure 6.11.: Network Technologies Bandwidth Utilization

take part in the inter-operator bargaining. These results motivate operators to cooperate
to achieve the objective function of satisfied and increased user pool cost effectively.
Setting the value of motivation factor a foreign operator can make good use of his
resources and increase revenue.
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Figure 6.12.: Simulation Scenario for comparison

Table 6.2.: Predefined offer bandwidth

QoS Class GSM WiMAX UMTS

Voice 500 240 400

Data 900 1000 800

Video 500 1600 500

6.2.7. Comparison with other approaches

To assess the performance of our proposed approach compared to other approaches,
we implement service-based and capacity-based allocation schemes as described in the
Introduction section. We consider the simulation scenario given in Fig. 6.12, where
simulations are run on area granularity (a1, . . . , a4) with service requests arriving for
different types of applications.

The arrival of requests is modeled by a Poisson process, and the service class is chosen
randomly among voice, data, and video uniformly. The sizes of the requests are assumed
to be static, and are 60 kbps, 150 kbps, and 500 kbps for voice, data, and video respec-
tively. After the allocation and distribution algorithms, the allocated bandwidths are
subtracted from the bandwidth pools of the RANs, assuming the users have an infinite
channel holding time. This allows us to simulate the overload conditions in the areas,
which results in inter and intra-operator games being played. We simulate a random
topology with GSM, UMTS, and WiMAX. A GSM RAN has a capacity of 4500 kbps,
UMTS 12000 kbps, and WiMAX 20000 kbps. The RAN overload thresholds are set to
10% for UMTS, GSM, and 3% for WiMAX. The operators share the same predefined
offered bandwidth values in kbps, which are given in Table 6.2.

We then compute the call blocking probability in all areas a1, a2, a3, and a4 as
a function of the simulation steps. We also plot the number of accepted requests as
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a function of traffic intensity in calls per minute, assuming a simulation time of 100
minutes. The results for these regions are given in Fig. 6.13 and 6.14. In area a1, a
single operator has RANs of all the possible RATs. In area a2 operator-1 has UMTS and
GSM, and the operator-3 has only GSM. In area a3 operator-1 has deployed WiMAX
and GSM, and operator-3 UMTS and in area a4 operator-1 has UMTS, operator-2 has
WiMAX and operator-3 has GSM.

These results are compared with the results obtained by the capacity-based and
service-based approaches discussed earlier. In the capacity based approach the play-
ers report their available bandwidths to the SLA broker and the CRRM. The service
request is then allocated to the RAN or the operator with the largest amount of free
bandwidth. In the service-based approach, service classes are associated with certain
RANs, and are allocated to other RANs only if the associated RANs are overloaded. In
this scheme voice is allocated to GSM, then to UMTS, and finally to WiMAX. Data is
associated to UMTS, and allocated to WiMAX in overload. For video the sequence is
UMTS and then WiMAX. In this scheme the intra-operator game is played by individual
RANs submitting the type of traffic they can support to the CRRM. CRRM chooses
the RANs that are willing to support the service class of the request, and divide the
requested bandwidth equally among these RANs. The inter-operator game follows the
same lines by operators submitting the traffic class they wish to support to the SLA
broker.

Our approach outperforms both the service-based and capacity-based solutions in all
coverage areas. In the area a1, where only the intra-operator game is played, we can
support 12% more calls, with the same call blocking probability as the service-based
approach. In area a2, where the operator-3 only has GSM, we allow operator-3 to make
use of operator-1’s UMTS and GSM, and are able to support 44% more calls, while
reducing the call blocking probability from 45% to 36% . Note that this higher rate of
call drop rate is due to the fact that operators have most GSM RANs, which has limited
support for video or data requests. In the area a3, where there is plenty of bandwidth to
be shared in the inter operator game we outperform the service-based approach by 28%
and the capacity-based by 11%. We almost halve the call drop probability compared to
capacity- based scheme in the area. In area a4 a somewhat similar behavior to the area
a1 is observed in terms of bandwidth utilization however we improve 50% in terms of call
blocking probability. It is also important to note that compared within each other the
capacity-based solution is able to support more calls, but has an inferior call blocking
rate.

In the light of the results, we can draw the conclusion that our solution outperforms
both of the compared approaches, and its virtue becomes more spoken when there is
abundant bandwidth to be shared for better utilization as in area a3, or when there is a
asymmetry between the capacities of operators as in the case of area a2.
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6.3. Conclusion

In this Chapter we provided two negotiation mechanisms to be used by NOC agents to
decide on the transfer probabilities. For multiple-class sharing we propose an auction
based central solution that relies on a trusted third party. For single class we propose
a peer to peer negotiation mechanism, which can be used without the trusted third
party. We show by using the descriptive queueing model we developed in Chapter 5,
that deviating from the conditions of the mechanism is not rational for RAN agents.
This is important for our development of the decision making algorithm in Chapter 7.
If there is no utility to be gained by lying, there is no utility in designing agent control
algorithms that take into account the possibility of the other agent lying. This allows
us to develop simpler agents.
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(a) Area a1

(b) Area a2

(c) Area a3

(d) Area a4

Figure 6.13.: Number of Active Calls vs. Traffic Intensity in calls per min.
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(a) Area a1

(b) Area a2

(c) Area a3

(d) Area a4

Figure 6.14.: Call Blocking Probability vs. Simulation Steps.
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7. Control Problem

Control Problem is involved in calculating policies that the RAN agents will base their
cooperate or not cooperate decisions. The NOC Agents calculate these policies and send
them to their RAN Agents.

7.1. Problem Description

We are concerned with the decision under uncertainty problem of a software agent that
runs in an operator RAN. The agent makes delay measurements in its own RAN. It
also queries the user QoE database to update its beliefs about the congestion states of
the RANs in its neighborhood. If the delay in its own RAN is not satisfactory for the
users, it chooses another RAN in the area, for which the agents belief that this RAN is
not congested is the maximum among all the RANs in the vicinity. The software agent
negotiates with its peer agent in the chosen peer RAN the proportion of traffic that
it will transfer by following the results of Chapters 6 and 5. After call admission, the
agreed proportion of users are forwarded to the peer RAN. During the cooperative phase
the agents query the QoE database to update their beliefs about the congestion states of
the peer RANs. The borrower RAN stops transferring traffic if its belief that the donor
RAN is congested is above a threshold. Similarly, the donor operator stops accepting
traffic when its belief that the borrower is normal again is larger than a threshold. The
optimum decision problem is the definition of these thresholds and de development of a
controller that automates this closed loop control problem.

Each agent abstracts the dynamics of its own RAN and peer RAN by using a Processor
Sharing(PS) model as described in the Chapter 4. PS service discipline was originally
studied by Kleinrock as an idealization of round-robin discipline. It can also be in-
terpreted as a variable service rate discipline, in which the total service rate is shared
equally by all the jobs in the system. It is latter interpretation that motivates using PS
as a model for wireless networks, which goes back to the early work by Telatar [26]. It
has recently been used to model 802.11g based wireless LANs [84] and GPRS [85] and
HSDPA [48]. It has been shown both analytically [86] and experimentally [87] that TCP
traffic over WLANs can be abstracted by a PS discipline.

Partially Observable Markov Decision Process (POMDP) is a generalization of the
classical Markov Decision Process (MDP) to problem domains in which agents can only
make stochastic observations about the states [88]. To their disposal are a priori ob-
servation probability functions O(a, Si, o), which gives the probability of making the
discrete observation o after taking the action a and arriving at state Si. Agent keeps a
set of beliefs over each state, b = {b(Si)}, which it updates after making observations in

105



a Bayesian manner. The beliefs are in fact conditional probabilities based on the obser-
vation function. The main difficulty of POMDP is the representation of policies, which
should assign optimal actions over the continues belief space. Owing to the piecewise
linear nature of rewards over the belief state, a finite representation of an optimum pol-
icy is possible. An optimum policy π in the case of POMDP consists of a set of vectors
{αi}. Each vector is associated with a certain action. The optimal policy is to take the
action associated with the vector that maximizes the dot product < αi · b >.

The chapter is organized as follows. First we give a conceptual description of the
mathematical formalisms that can be used to formulate the controlling problem in Sec-
tion 7.2. These are centralized and decentralized sequential decision problems. We then
analyze the various options according to the design criteria we introduce in Section 7.3.
We choose to employ independent POMDP controllers in both RANs, which interact
according to the strategy-proof negotiation mechanisms we developed in Chapter 6. We
present the derivation of the POMDP controllers in Section 7.4. We finally present the
solutions of the POMDP models for WLAN-WLAN load balancing in Section 7.5 and
WLAN-HSDPA load balancing in Section 7.7.

POMDP has been used in the context of 802.11 coordinated MAC designs [89] and
opportunistic spectrum access [90]. To the best of our knowledge they have not been
employed in 802.11 [91] or WLAN-HSDPA load balancing scenarios.

7.2. Overview of Sequential Decision Problems

7.2.1. Centralized Sequential Decision Problems

Traditionally decision theory is concerned with the design of agents, which can be hu-
mans or machines, that take one-time decisions. An decision-theoretic agent observes
its environment, compares it with its goals and decides on the action [92]. The approach
is to combine utility theory with probability theory, in order to maximize the utility of
an agent on an average sense.

Formally, an agent resides in an environment which can be described by a possibly
infinite, yet countable state space S. The agent makes an set of observations that can
be described by the vector O. The goal is to choose an action a based on the current
state and the observations in order to maximize a suitable reward function or minimize
a cost function. The cost and reward are functions of s and a, and are chosen to describe
the environment that the agent operates as accurately as possible. They describe the
desirability of states from agent’s perspective. Cost and reward functions can be used
alternatively, by a suitable transformation. For example minimizing a cost function
C(s, a) is equivalent to maximizing the reward R(s,a) which is equal to −C(s, a). For
the sake of clarity, we assume reward maximizing agents.

In sequential decision problems, the agent is required to take multiple decisions in
consecutively. The next state of the system is determined by the current state of the
action of the agent. The agent’s goal is to maximize the total reward over certain
number of stages. The number of stages may be known in advance, but it can also be
unknown. Also, the sequential decision problems can last after finite stages, or may
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continue forever. The agent must take into account that its current actions will affect
the future state of the system, which will ultimately define future reward. There is a
tradeoff between immediate rewards and total reward. A certain action may have large
instantaneous reward, but it may lead to a state trajectory that lowers the total reward.
Therefore the traditional decision theoretic tools such as decision networks or influence
diagrams are not sufficient for sequential decision problems.

Sequential decision problems can be modeled in a variety of ways, depending on the
the nature of the states, the timely relationship between observations, decisions and
actions. We are specifically interested in finite state space and discrete time models. We
can formally define these models with discrete time dynamic systems. Specifically we
are concerned with stationary discrete time dynamic systems, whose system properties
do not vary over time. Such systems can be described by the system equation:

sk+1 = f(sk, ak, wk) (7.1)

skǫS is the state, akǫU(xk) ⊆ A is a control action and wkǫD is a discrete random
variable and k and k + 1 represent consecutive stages or time steps. ak is chosen from
the possible actions at stage k, U(sk), which itself is a subset of all possible actions A.
wk represents the random nature of the problem, in the sense that it is chosen from a
probability distribution P (wk|sk, ak), that depend on sk and ak. Thus the next state can
only be described by a probability distribution, that is a function of current state and the
control action that is the result of the decision at that stage. It is important to note that
the states before the stage k do not influence the next state in the next interval k+1. Such
systems are said to have Markovian [38] property. This property allows us to develop
tractable solution methods for sequential decision problems. Markov Decision Processes
(MDP) are well established frameworks with which sequential decision problems can be
solved.

Markov Decision Problems

A MDP is defined as a mathematical object < S,A,R(s, a), T (s, a, s′) >, where:

• S = {si} i = 0, 1, 2... is a countable state space.

• A = {ai} i = 0, 1, ..., Na is a finite and countable set of actions.

• R : S ×A→ R− {∞,−∞} is the finite real reward function.

• T : S×A→ ∆(S) is the transition probability function, that gives the probability
of arriving at state s′ after executing action a in state s. It is calculated from the
system equation (7.1)

One solves a of a MDP is a in order to obtain an optimal policy. A policy πk(sk) is
simply a rule that the agent can employ to decide the action ak given the system state at
stage k, skǫS. The policies which are independent from k are called stationary policies.
In this case, the policy π is simply a mapping from states to actions. The goal in MDP
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is to find a policy that achieve optimal long term reward. The definition of the long
term reward depends on the duration of the MDP. Let us define the reward obtained at
stage k as Rk(sk, ak). Then for a finite-horizon MDP that lasts K stages the long term
reward is given by:

R = E

[
K−1∑

k=0

Rk(sk, ak)

]

(7.2)

If the horizon length is unknown or infinite, one can use the infinite-horizon discounted
long term reward given by:

R = lim
K→∞

E

[
K−1∑

k=0

γkRk(sk, ak)

]

(7.3)

The discount factor γ which is between zero and one has two interpretations. In one,
it models a sequential decision process, in which the decision process is terminated with
probability (1 − γ) after each decision stage. In the other interpretation, γ models the
relative importance of immediate and future rewards. Specifically, human agents or
machine agents that are designed for humans, tend to value immediate rewards more
than rewards in the future. Put in another words, the agents are more willing to take
more risks on events further in the future. When γ is close to zero, the rewards in the
future are insignificant. When γ is one all the rewards are equally important and the
optimality is equivalent to infinite-horizon additive model. If the number of stages of
a MDP is not known in advance, the discounted model with an appropriate discount
factor is used.

Optimal policies differ for infinite and finite horizon MDPs form their stationarity
properties. Generally, policies for finite horizon problems are not stationary, since the
optimum actions at the last stages differ from the actions at the beginning stages. Infinite
horizon MDPs on the other hand admit stationary optimal policies which are unique as
shown by Howard in 1970 [93]. This optimal stationary policy, which is composed of
state action pairs can be calculated using the classical Dynamic Programming (DP)
algorithm due to Bellman [94].

Dynamic Programming Solution to MDPs

In order to compute optimal policies, we have to define the value of a policy, which is
the long term reward obtained by applying the policy. For a given stationary policy π,
its value depends on the initial state s0 which we denote with Jπ(s0). Given the initial
state s0 the agent chooses the action dictated by the policy π(s0). The system leaves s0
and enters next state s1ǫs

i with probabilities given by T (s0, π(s0), s
i).

For infinite horizon problems the rewards that the agent collect after jumping to state
s1 and following policy π are the same as starting at initial state s1 and following the
policy π, owing to the Markov and stationary property of the policy. Thus we can drop
the stage dependency in Jπ(s0) and obtain:
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Jπ(s) = R(s, π(s)) + γ
∑

s′ǫS

T (s, a, s′)Jπ(s
′) ∀sǫS (7.4)

For a finite state MDP with a state space of size |S|, equations (7.4) constitute |S|
linear equations for |S| unknowns, which can be solved trivially. This allows one to
calculate the long term expected reward of any arbitrary policy. The next question to
ask is how to find the optimal policy among all the possible policies.

The Dynamic Programming solution to MDPs finds the optimal valued policy π∗ by
making use of the Principle of Optimality due to Bellman [94]:

PRINCIPLE OF OPTIMALITY : An optimal policy has the property that
whatever the initial state and initial decisions are, the remaining decisions
must constitute an optimal policy with regard to the state resulting from the
first decisions.

This means that the agent can attain the optimal long term reward by choosing the
action that maximizes the sum of one step reward plus the expected optimal long term
reward associated with next states. This gives us a set of non-linear equations, derived
from Equation (7.4), which is are called the Bellman Equations:

Jπ∗(s) = max
a

[

R(s, a) + γ
∑

s′ǫS

T (s, a, s′)Jπ∗(s)

]

∀sǫS (7.5)

Unlike calculating the value of a given policy, these set of equations are non-linear
and thus cannot be solved trivially. An iterative approach involving the repetitious
application of the one step DP update, i.e. the right-hand side of the Equation (7.5) can
be used to solve the equations. This approach is called Value Iteration in the literature.

Let us donate the vector of all state values with J. With this definition the Bellman
Equations (7.5) can be interpreted as a non-linear transformation on the value function
vector J, which we denote with T . We can rewrite the Bellman equations:

Jπ∗ = (T )Jπ∗ (7.6)

Thus the optimal value function Jπ∗ , i.e. the value attained by the optimal policy
π∗, is the fixed point of the non-linear transformation T . In fact, the transformation T
belongs to a class of transformations called contractions [92]. The important property
of contractions is that applied to a vector, the contraction will always transform the
input vector to another vector which is closer to the fixed point. Since the optimal value
function is the fixed point in MDP formulation, repetitive application of the one step
DP update to any arbitrary initial vector will approach to the optimal value function.
If we define

(T 2)J = (T )((T )J)

(TN )J = (T )((TN−1)J) (7.7)
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We have for any arbitrary initial J:

Jπ∗ = lim
N→∞

(TN )J (7.8)

By making use of (7.8) we can find the value attained by the optimal policy. However
the aim of MDP is not to find just what optimum long term reward is, but to find
a policy that achieves this value. The necessary and sufficient condition for a policy
to be the optimal policy is to obtain the minimum in the Bellman Equations (7.5) for
each state [95]. Thus, once the optimal value vector is found via value iteration using
Equation (7.8), the optimal policy is simply given by:

π∗(s) = argmax
aǫA

[

R(s, a) + γ
∑

s′ǫS

T (s, a, s′)Jπ∗(s)

]

∀sǫS (7.9)

Obviously, the value iteration will not be continued to infinity in practical world. The
following error bounds are useful in choosing the number of iterations and the discount
factor:

2γNRmax

1− γ ≤ ǫ

max
sǫS
|Jπ∗(s)− JN

π∗(s)| ≤ 2
ǫγ

1− γ (7.10)

The first error bound relates the error in the approximation of the optimal value
function to the discount factor γ, maximum reward Rmax and the number of iterations.
It is can be inferred that increasing γ to one will also increase the number of iterations
required to keep the error under the desired value. Second error bound is related to the
policy error. It represents the loss in the total reward when the agent employs a policy
making use of approximation of N iterations length. In other words, how much does the
long term reward deviates from the optimum when the agent uses the N − th iteration
JN
π∗ instead of Jπ∗ in Equation (7.9).
For the sake of completeness, it is worth noting that an alternative method called

policy iteration can be used to solve MDPs, and in some cases is more efficient than the
value iteration. In short, the policy iteration starts with randomly associating each state
with an action. The policy iteration consists of two sub-steps. In the policy evaluation
sub-steps the value of the current policy is evaluated by making use of the linear set
of equations given in (7.4). In the policy improvement sub-step the state-actions pairs
are updated by using the value of the policy calculated at the previous sub-step. To
illustrate this, let us assume that at iteration i the policy is πi(s) with a value Ji

π. The
policy at the next iteration is updated as follows:

πi+1(s) = argmax
aǫA

[

R(s, a) + γ
∑

s′ǫS

T (s, a, s′)J i
π(s)

]

∀sǫS (7.11)
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Figure 7.1.: The conceptual model for POMDPs.

Centralized Sequential Decision Problems with Partial Information

Centralized sequential problems which can be solved by MDPs are applicable for envi-
ronments, where the decision making agent is able to determine the state of the world
without any ambiguity. The class of problems, in which the agent makes observations
that reflect the world state with a certain level of uncertainty are called partially observ-
able problems.

MDP policies are not applicable to partially observable problems, since they directly
associate actions with states. In partially observable domains, an agent doesn’t have
access to the actual state, it can at the maximum a set of beliefs over the world states.
Beliefs are simply state estimations, and represent how likely it is, that the world is
at a given state based on the observations of the agent.The agent should consider the
relative likelihoods of current and future states in taking decisions. Figure 7.1, taken
from [96], depicts the model that we are referring to. A policy in partially observable
environments is a mapping from beliefs about the world states to the set of actions. The
belief is computed progressively using the current and previous observations and the
previous actions. The beliefs are in fact estimations of the states.

What are optimal policies in the model described above? The most straight forward
approach would be associate actions to observations. This naive approach is not optimal,
since different states may result in the same observations. Randomizing the actions
associated with observations leads to general memoryless policies [97], which perform
better than the naive approach, but yet are inferior to policies that make use of the
entire history of observations.

The next question is how to account for the previous observations. For finite-length
problems, one can depict policies depending on the entire history of observations via
policy trees, similar to the one given in Figure 7.2. Each circle in the tree defines the
action to be taken at a given stage, as a response to the previous path and the current
observation. At stage 1 the agent can only chose 1 action among |A| different possible
actions. Depending on the observations, the policy determines the next action. In the
figure there are two possible observations. The tree grows until the k-th stage. Different
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Figure 7.2.: An example policy tree with two observations.

actions associated each circular leaf determines different policies. In this sense each
policy is a distinct policy tree.

The question of finding optimal policies that take into account the entire history of
observations is complicated by the exponential manner the policies grow. A brute force
approach would compute the expected value of every possible policy and choose the
highest expected value. However, this problem is shown to be PSPACE-complete, which
is a complexity class that is thought to contain P and NP and therefore intractable [98].
Sondik tackled this problem of intractability by converting the original problem into an
equivalent MDP problem involving a continuous state space [99], [100]. This body of
research is termed Partially Observable Markov Decision Process (POMDP) . We will
discuss the complexity properties of POMDP and its decentralized versions in Section
7.3.1. First we introduce POMDP formalization in the next section.

Partially Observable Decision Processes

Formal definition of a POMDP extends the mathematical object that is used to define
MDPs described in Section 7.2.1. A POMDP is given by < S,A, T,R,Ω, O >. As in
MDPs S represents the countable state set, A represent the finite and countable set
of actions. T (s, a, s′) is the probability of reaching s′ and R(s, a) is the reward after
executing a in state s. On top of the MDP, POMDP formulation adds the following:

• Ω = {oi}, i = 1, 2, ..., No is a set of finite observations.

• O : S×A→ ∆(Ω) is the observation function. In other words, O(s′, a, o) gives the
probability of taking action a, landing in s′ and making the observation o.

POMDPs, which cannot be solved via a brute force method, can be solved using a
neat transformation step that allows the construction of an equivalent MDP. MDPs can
be solved using the DP algorithm, and optimal policies can be developed based on the
value functions obtained by the DP algorithm. This approach involves the notion of a
belief state. The reason behind the intractability of the brute force solution is the size
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of the policy trees that grow exponentially with time, owing to the number of different
observations possible at each stage as discussed earlier. A proper calculation of the belief
state, is a compact representation of the possibly infinite observation history.

Formally, belief state is a probability distribution over the world states. It represents
the relative likelihood of the world being in a particular state, given the observations up
to the current time step. It can be represented by the vector b =< b(s1), b(s2), ....) >,
where b(si) is the probability that the world is in state si. Total probability requires the
sum of individual beliefs to be equal to one.

The challenge is to be able to update the belief state recursively with the observations,
so as to make use of all the observations. In other words, we are looking for a function
f , such that:

bk+1 = f(ok,bk) (7.12)

Aström proved in [101], that a recursive Bayesian filtering is one such function. Fur-
thermore, it has the property of being a sufficient statistic. What this means is no
further information about past observations can be used to improve the probability dis-
tribution. The Bayesian update computes b′(s′) = P (s′|o, a, b) from the observation o
and the previous belief states b(s). The Bayesian update equation is given by [96]:

b′(s′) =
1

P (o|a,b) ·O(s′, a, o)
∑

sǫS

T (s, a, s′)b(s) (7.13)

The update works as follows. Once the observation o is made after taking action a and
landing in state s′, one step prediction of arriving at state s′ given the old belief states
b(s) is computed with the term

∑

sǫS

T (s, a, s′)b(s). This prediction is then updated with

the likelihood of the new observation, given by the O(s′, a, o) term. The term 1
P (o|a,b) is

a constat that satisfies the total probability condition.
It is crucial to note that the next belief state depends only on the current belief

state and the action. The transitions are random, and described by the stationary
probability distributions given by O and T . In fact the evolution of the belief state
can be represented in the canonical dynamical system representation given by Equation
(7.1). And since the next belief state depends only on the current belief state, one can
cast the POMDP as an equivalent belief MDP. The equivalent belief MDP is given by
< S,A, τ(b, a,b′), ρ(b, a) > . The transition probability τ(b, a,b′) is calculated from the
transition and observation functions of the original POMDP.

The belief state reward function ρ(b, a) deserves an attention. It is calculated by the
formula:

ρ(b, a) =
∑

sǫS

b(s)R(s, a) (7.14)

One might be tempted to think that assigning artificially large beliefs to the states
with higher rewards may increase the reward. However the agent is fixed to the Bayesian
update given by Equation (7.13) for the proper calculation of the beliefs and therefore
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(a) One step value vectors

(b) Two step value vectors

(c) Two step value function

Figure 7.3.: Value iteration steps.

cannot associate arbitrary beliefs to states.
The fact that there is an equivalent MDP process for every POMDP solves the in-

tractability problem. However this is achieved with the cost of having a continuous state
space which is multi-dimensional. Even though the DP algorithm can be extended to
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account for continuous state spaces, the effective representation of the state space has to
be tackled, in order to come up with solutions that are computationally feasible. Fortu-
nately, this is possible owing to the piecewise linear and continuous(PWLC) nature of
the value functions of the policy trees, which we discuss shortly.

At the heart of every application of DP lies the one step DP update, which calculates
the value of a k-step policy from a k − 1-step policy. We demonstrate the update for a
POMDP with two actions and two observations. One step value of a policy π is given
simply by:

V 1
π (s) = R(s, π(s)) (7.15)

However, the agent is not certain about the state s. Therefore the value of one step
policy is given as an expectation over the world states, calculated using the belief state:

V 1
π (b) =

∑

sǫS

b(s)V 1
π (s)

= b ·α1
π (7.16)

The second version of Equation (7.16) can be interpreted geometrically. The belief
state b = (b1, b2, ..., bN ) represent a vector in a N − 1 dimensional space. The reduction
in dimensionality is due to the total probability condition that allows one belief state
to be expressed in terms of all other belief states. The value of a policy is then the
dot product of the belief state vector with a coefficient vector α = (α1, α2, ..., αN ). To
compare policies for all possible belief values, an alternative geometric interpretation is
possible. The belief states are represented by the N − 1 axes of a coordinate system.
Then the value functions are linear planes defined for the hyper cube [0, 1]N−1. Figure
7.3a demonstrates this for a two state POMDP. In such a POMDP the x-axis represent
the belief state of state s1, since b(s2) is given by 1 − b(s1). The linear vectors are the
value functions of both actions as calculated by Equation (7.16).

The value functions of two step policies can be calculated using the vectors associated
with one step policies.

V 2
π (s) = R(s, π(s)) + γ

∑

s′ǫS

T (s, π(s), s′)
∑

oǫω

O(s′, π(s), o)V o,1
π (s′) (7.17)

In this calculation, V o,1
π (s′) represents the value of the action in the one step policy

that is associated with the observation o in the two step policy tree. The calculation
is an expectation over all the possible transitions and observations. Again, the state
dependent two step value functions are multiplied with the belief values to obtain the
value functions in the belief state space. This calculation transforms the value functions
of one step policies in Figure 7.3a into value functions of all the two step policy trees
given in Figure 7.3b. Five of the eight policy trees have value functions that are smaller
than the remaining three for all belief values. These policy trees are said to be dominated
and are eliminated. The remaining three policy trees dominate each other on different
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partitions of the belief space. Since we are dealing with reward maximizing problems,
the optimal policy is to calculate the belief state, and choose the policy tree that is
maximum at that particular belief value. This is depicted in Figure 7.3c, where belief
partitions in which a particular policy tree is dominant is given with an arrow of the
same color.

The one step value iteration for belief MDP is composed of two sub-steps. During
the generation step, k + 1-step policies are generated from the non-dominated k-step
policies. These are then pruned to remove the dominated policies. Effective pruning can
reduce the computational complexity of POMDP significantly. In the end of POMDP
DP algorithm, one is left with a set of vectors Aπ∗ = {αk}, similar to the set in Figure
7.3c. The value of the optimal policy can be given in a compact form by using the
expression:

Vπ∗(b) = max
αǫAπ∗

b · α (7.18)

Equation 7.18 suggests that the optimal value function at any given belief state can
be calculated by performing the inner product operation with the belief state with the
vectors in Aπ∗ and taking the maximum value. The output vectors of a POMDP DP
algorithm can than be used to calculate the optimum policy. Each vector is associated
with a certain policy tree, in a manner similar to Figure 7.3b.

For finite-step problems, the agents computes the belief state that it is in, performs
the inner product operation, and than follows the policy tree that is associated with the
vector with the maximum inner product result. This means that the agent can base its
subsequent decisions on the observations and not on the belief values.

The value functions of discounted infinite problems can also be represented by vectors,
and hence do have a PWLC form. However, theoretically the number of vectors that
define the infinite value function can be infinite. Optimal infinite stage policies are
approximated by sufficiently long finite policies. After a certain step of DP algorithm, the
vectors differ only within an acceptable error range, similar to the completely observable
case, i.e. Equation (7.10). The vectors are still associated with individual policy tress,
however these trees are very long. Thus the strategy of computing belief state initially,
and following the policy tree based on observations is not an efficient way. Sondik
proposed a more effective method in [99]. In this method, optimal policy π∗ is composed
of Np of vector-action pairs:

π∗ = {< α
1, a1 >, ..., < α

Np , aNp >} (7.19)

The agent computes belief state at each step according to the Bayesian belief update
given by Equation (7.13). Given the current belief vector bk, the inner products b · α1

to b · αNp are calculated. The controller chooses the the action that is associated with
the vector with the largest inner product at the current belief state.

Yet a more efficient representation of infinite step policies is possible, if the policy
has the finite transience property, as described first by Sondik and extended later by
Cassandra [102]. In such problems the all the belief states in a certain partition dictated
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by the vectors are mapped to the same partition after the belief update. This means there
is a structured optimal sequence of action-observation-actions for the POMDP, which
can be implemented as an Finite State Controller (FSC) . FSC is a simple controller
that takes the action in the current state, and jumps to another state according to the
next observation. Such an implementation makes the keeping the belief state update
unnecessary. Unfortunately not all the POMDPs have this property.

Both pruning and generation steps in the POMDP DP algorithm are linear program-
ming operations, for which efficient algorithms exist. Given a particular linear pro-
gramming algorithm, different POMDP algorithms have been proposed in the literature
such as the original enumerated elimination algorithm by Sondik, Incremental Prun-
ing by Cassandra [103] and Witness Algorithm by Littman [104]. These differ in their
computational complexities. Witness algorithm is able to compute optimal policies in
polynomial time, as long as the algorithm converges. There is however no guarantee
that this will be the case for all classes of problems. Approximations that are time-
bound, such as [105], use a grid approach. In these approaches the belief state is divided
into finite subsets, for which value functions are computed. It is also worth noting that
Hansen developed a policy-iteration solution in [106] [107].

7.2.2. Decentralized Sequential Decision Problems with Partial Information

Decentralized sequential decision problems are the generalization of the centralized prob-
lems, in which more than one agent inhibit the world. The agents have their own obser-
vation functions. Problems with more than one agent in which the observation functions
are shared can be casted as centralized problems with extended action sets. The agents
may or may not share the reward function, meaning that the problem may or may not
be cooperative or competitive.

The conceptual model is used for the cooperative problems is the following.The agents
act according to their local policies that are based on the local observations. The state
transition occurs as a result of their joint actions, which change the world state. The
agents make individual observations on the new state, and gather jointly the generated
global reward.

There are two main models in the literature developed for handling cooperative de-
centralized problems [108]. They differ from one another in the way they handle the
belief states. In addition to the beliefs about the state of the world in centralized prob-
lems, the decentralized problems must also include beliefs about the other agents. These
beliefs are handled either explicitly or implicitly. In implicit models the state space is
augmented with the policies of the other agents. In explicit formulations, agents posses
explicit models of the other agents, and have beliefs about the models of the other agents.

Implicit Belief Models

Decentralized POMDP (DEC-POMDP) [109] and Multi-agent Team Decision Problem
(MTDP) [110] formalisms are the two leading approaches to decentralized cooperative
POMDPs. In both of these approaches, actions and observations are in vector forms.
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MTDP conceptually allows a state estimator function, that should be capable of pro-
ducing a compact belief state, similar to the Bayesian update in centralized POMDPs.
Unfortunately, no such compact belief state for decentralized problem has been proposed
in the literature, and therefore MTDP state estimator uses the history of all the obser-
vations up to the current step. This means, without a compact belief representation,
MTDP and DEC-POMDP are equivalent. Both of these formalisms can be extended
to account for explicit message exchange between agents. This can be done easily by
introducing communicating states to the state space, augmenting the action sets with
communication actions and treating the messages themselves as observations. Seuken
showed in [108] that MTDP, DEC-POMDP and their communicative variants are compu-
tationally equivalent. For the sake of brevity, we will use DEC-POMDP in the following
discussions.

Without an compact belief representation like POMDP that allows the formulation
as a continuous MDP, the agents in DEC-POMDP have to keep the entire history of
observations. Thus the policy trees should cover all the possible observations. The size
of the policy tree grows extremely rapidly with the number of decision stages. Given
that there are t decision horizons, n agents |A| possible actions, |O| possible observations
the size of the policy tree is given by:

{

|A|
|O|t−1

|O|−1

}n

ǫ O
(

|A||O|t
)

(7.20)

The factor n is included, since the agent should choose its policy tree, by taking into
account the possible policies that can be used by other agents. This means that in
the worst-case, the optimal solution will use double exponential time. There are more
efficient algorithms than the brute search such as DP [111] or heuristic search [112] in the
literature, but their worst case time behavior is still doubly exponential. Furthermore,
the optimal DP solution that Hansen provided runs out of memory after four steps.
Therefore the optimal solutions are of theoretical importance and approximate methods
are used.

Among various approximation algorithms proposed in the literature Improved Mem-
ory Bounded Dynamic Programming (IMBDP) developed by Seuken ([113], [114]) and
Approximate Dynamic Programming (ADP) presented by Cogill et. al. in [115]. IMBDP
is a hybrid heuristic approach. First most possible belief states are calculated, identify-
ing the policy trees which are associated with these belief states. In the second step DP
algorithm is applied among these policy trees. IMBDP outperforms other approximation
algorithms in selected benchmark problems. ADP is relevant, since it can be applied
to discounted infinite step problems. The main idea in ADP is to separate the state
space into partitions, which are associated to individual agents. Each agent employs
the DP algorithm in their own partitions, ignoring the other agents. The value function
of these local policies approximate the optimal global value function. The error in the
approximation can be arbitrarily large depending on the structure of the state space
characteristics. There has to be a high correlation between the world states, so that
acting based on local observations can approximate acting on global observations.
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Explicit Belief Models

All the methods mentioned to now were developed for cooperative scenarios, in which
the agents try to maximize a global reward. Furthermore, the solution methods are off-
line in nature, where the policies are solved externally and communicated to the agents.
There are many problems in which the agents are self-interested, meaning that each
agent has its own reward function. Gmytrasiewicz and Doshi present their formalism
Interactive POMDP (I-POMDP) [116]. I-POMDP formalism can be used to model both
competitive and cooperative problems. It sacrifices optimality with expressiveness as we
describe shortly.

I-POMDPs differ from DEC-POMDP variants from the manner the behavior of other
agents are handled. DEC-POMDP these beliefs are implicit in the transition functions.
I-POMDP on the each agent has explicit beliefs about the behavior of the agents. This is
accomplished by defining models of other agents, mjǫMj and extending the state space
into the interactive state space IS = S ×Mj. The models of agents comes in different
forms, sub-intentional and intentional models. Sub-intentional models are mappings
from observations to a probability distribution over the actions. Intentional models
augment the sub-intentional models with belief states. In other words, agents ascribe
beliefs to to other agents. This extension comes with the problem of nested beliefs.
In an environment with two agents i, j, agent i’s model of agent j includes agent j’s
belief about agent i model, which includes again a belief about agent j model. The
nesting can be extrapolated to infinity. Since such an infinitely nested model would
not be computable, I-POMDP consults to limiting nesting to finite levels. Even for non-
intentional models, where infinite nesting is not an issue, there is the problem of handling
the infinite possibilities, in which observations can be mapped to actions for the other
agent. Thus an optimal solution to I-POMDP does not exist, and finite model, finite
nesting approximations are used. If there are |M | models in consideration and l nesting
levels, I-POMDP is equivalent to solving |M |l individual POMDPs. Again bounds for
approximation errors are not known.

I-POMDPs can be regarded from a Game Theoretic perspective as best response con-
trollers. This means that the agents build beliefs about the actions of other agents based
on the observations and choose the best actions accordingly. On the other hand Game
Theory is traditionally interested in finding equilibrium points, from which the agents
would not deviate. Partially Observable Stochastic Games (POSG) [111] is an approach
coming from this strand of Game Theory, which can be used to model both cooperative
and competitive problems like I-POMDP. As a matter of fact, the DP algorithm used to
solve POSG is the same algorithm to solve optimal DEC-POMDP problems. The DP
algorithm used for solving POSGs employ in conjunction the pruning methods used for
POMDP and iterative elimination of dominated strategies used in solving normal-form
games. In normal form games, beliefs are about the strategies of the agents. Hansen
introduces the generalized belief state, which is similar to the interactive belief state
in I-POMDPs. Generalized belief state is defined as the belief over the cross product
of world states and the strategy of the other agents. In solving DP for POSG, agents
eliminate strategies one by one, by assuming the other agent is following that particular
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Figure 7.4.: A hierarchy of the algorithms discussed in this section.

strategy. This elimination is continued in an alternating fashion until none of the agents
can eliminate any more strategies. This process leaves in the end a number of strategies
which are value-equivalent. The question of which strategies are Nash equilibria, i.e. the
equilibrium selection problem is still an open question. In [117] Kumar et. al. use the
concepts developed for IMBDP to improve the scalability of the original Hansen algo-
rithm, which runs out of memory after four steps. Their algorithm can solve problems
up to forty stages.

In Figure 7.4, we present a hierarchy of the algorithms discussed in this section for
summary purpose.

7.3. Design Decisions

We essentially have a decentralized problem in controlling the resource sharing among
two operators. The software agents running on the RANs are interacting sequentially in
a resource-sharing problem. Since they represent different operators, they are unwilling
to share information about their internal states. The agents use the distributed user
QoE to make imperfect observations about the internal congestion state of the other
operators RAN. Based on their beliefs about the conditions on the peer RAN each take
a cooperation decision. Decision to cooperate or not to cooperate change the internal
states of both operators.

The questions we would like to answer in this section are:

• Which of the formulations we described in Section 7.2 is appropriate for our prob-
lem formulation and domain?

• What modifications are necessary to the proposed formalizations are required for
a practical control algorithm for inter-operator resource sharing?

Two important criteria we take into account in answering these questions are the
complexity of the solution and how realistically the formalization can represent the ac-
tual sequence of interactions. In this section we first cover the complexity properties
of centralized and decentralized sequential decision making approaches. We begin this
subsection with a short primer on Computational Complexity. We will show that apply-
ing the newly developed approaches for decentralized sequential making formalizations
have serious complexity requirements. We will present an hybrid approach that tries
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Figure 7.5.: A hierarchy of the complexity classes.

to minimize the time-complexity by formulating the problem as a single agent decision
making problem and making sure that this simplification is realistic by using the negoti-
ation mechanisms we present in Chapter 6. We then discuss the selection of the horizon
length and the approximation types used in the design.

7.3.1. Complexity

A Primer on Computational Complexity Theory

Computational Complexity [118] is a branch of theoretical computer science that ex-
plores the theoretical performance limits of classes of computational problems. A class
of problems is the set of all computational problems that can be solved with similar
performance using hypothetical models of computation, such as Turing Machines or
Random Access Machines. These hypothetical machines are able to simulate the logic
of any algorithm. The performance measures that is of interest are worst case running
times and memory needs as a function of input sizes.

Complexity theory problems are decision problems, which are formal ”yes/no” ques-
tions. The sequential decision making problems, both centralized and decentralized
versions, are on the other hand optimization problems. In an optimization problem the
goal is to find a policy that maximizes the expected reward. In order to apply the rich
results of complexity theory, the optimization problems should be converted into decision
problems. This is done by formulating the optimization problem as a threshold problem
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and asking the question ”is there a joint policy whose reward exceeds the threshold.”
The actual determination of the optimal policy cannot be easier than this problem, so in
this sense one obtains a limit on the complexity of the optimization problem. Reduction
is an important concept in complexity theory. A problem A is reducible to problem B,
if the answer to problem A is yes if and only if the answer to problem B is yes. Com-
plexity theorists show complexity of particular algorithms by reducing them to known
algorithms that belong well-known and well-defined complexity classes.

Figure 7.5 depicts the major complexity classes. Complexity class Polynomial Time
(P) describes all the problems that whose worst case computation takes an amount of
time that is polynomial in the number of inputs. According to Cobham-Edmonds Thesis
[119] these are the problems that are computable with realistic models of computations,
that can be implemented by real life components. Next complexity class in the hierarchy
is the class Non-Deterministic Polynomial Time (NP) , which is the set of decision
problems that can be computed in a polynomial time by a non-deterministic Turing
machine. A non-deterministic Turing machine (NTM) is an theoretical extension of
the deterministic Turing machine (DTM) , which can take multiple computation paths
simultaneously. Obviously, this is not possible in reality. NTMs can be simulated in
real-life by DTMs in exponential time. It is proven, that the complexity class P is a
subset of NP, however the question, if it is a proper subset, i.e. P ⊂ NP , is one of the
biggest open problems in theoretical computer science. Many theorists believe this is
the case. This is represented by the dashes in the NP class in the figure.

Polynomial Space (PSPACE ) complexity class covers the problems that require mem-
ory space, which is polynomial with the size of the input. PSPACE covers both NP and
P, since problems that can be solved in polynomial time with the inputs will require
polynomial storage space. If a problem takes exponential time in the worst case when
it is computed on a deterministic Turing machine, it belongs to the complexity class
Exponential Time (EXP) . Since PSPACE is a superset of NP, which can be computed
in exponential time, PSPACE problems form a subset of EXP. Thus the instances of
PSPACE require exponential time in the worst case.

In a fashion similar to the relation between P and NP, the class of problems which
take exponential time when computed by a NTM is a superset of EXP and belong to
the class Non-Deterministic Exponential (NEXP) . Owing to the fact that NTMs can
be simulated in exponential times with DTMs, problems in this class require doubly
exponential running times. Again, it is conjured, yet not proven that EXP is a proper
subset of NEXP. The largest set for which an answer can be given to the decision
problem is the class Exponential Space (EXPSPACE ) . The problems in this class require
exponential amount of memory to run.

A given problem A is said to be C-HARD in a complexity class C, if any problem in
class C can be reduced to problem A. These are the hardest problems in the class C in the
sense that providing an efficient solution to problem A would mean providing a solution
to all the problems in class C. A further description in Computational Complexity is the
concept of C-COMPLETENESS. A problem A is C-COMPLETE if it is C-HARD and
contained in the class C.
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Complexity of Centralized Decision Problems

The first complexity results for sequential decision problems is due to Papadimitrou and
Tsitsiklis. They established that all forms of MDPs, that is finite or infinite horizon and
irrespective of the cost function definitions, are P-COMPLETE in [120]. Furthermore,
they showed that the MDP problems belong to a complexity class NC, which is a subset
of the class P. Such problems can be computed even more efficiently using parallel
processors. Their results for POMDP were less encouraging. Specifically, they showed
that even for short horizons, i.e. the time horizons shorter than the number of states,
POMDP problems are PSPACE-COMPLETE. This means the POMDP algorithms will
take exponential times in the worst-case. Even if one accepts exponential time and settles
for an off-line algorithm that computes an optimal policy finite-horizon policy, there are
problems with the applicability of the computed policy as an online controller. The
authors show that it is not possible to represent such a finite horizon policy in a string
that is exponential with the input size. The results of Papadimitrou and Tsitsiklis were
extended more recently by Madani et. al. [121] and Mundhenk et. al. [122]. Madani et.
al. show that the infinite horizon POMDP problems are undecidable. This disheartening
result for infinite horizon problems are relieved by Mundhenk et. al.. They show that
long term horizon POMDPs belong to the class PSPACE. The problems in PSPACE
are computable, as opposed to undecidable problems. They have exponential worst case
running times, and reasonable heuristics are possible.

In the face of their complexity properties we summarized, there are three questions to
be asked regarding the practical applicability of POMDP solution algorithms described
in Section 7.2.1. These are:

• How likely is the occurrence of worst-case exponential running times?

• How do approximations perform?

• How do heuristics perform?

The answer to the first question depends on the actual POMDP model under use.
Unfortunately, a general theoretic answer to this question has not been given in the
literature. The question can be answered experimentally, by using different POMDP
models. This is the approach that Cassandra took in his thesis [102]. Unfortunately,
the number of POMDP models that are accepted as benchmarks is not large in the
literature. This is why Cassandra worked with randomized POMDP models. The results
for Witness algorithm is depicted in Figure 7.6. It can be said that for small state spaces
and observations less than five algorithms are suitable for at least off-line solutions.

Finding approximation algorithms that achieve to the optimal policy with a given
error bound is an approach taken for certain complexity classes. However this is not the
case for POMDP algorithms. Condon et. al. [123] show that finding a policy that gives
an expected reward within a vanishing error bound for PSPACE is also PSPACE.

Thus heuristics is the only viable option. Cassandra’s thesis [102] analyzes a wide
variety of heuristics. Since the optimal POMDP policy is unknown, he compares the
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Figure 7.6.: Average running time of Witness algorithm for POMDPs, taken from [102].

expected rewards of the heuristics with that of an omniscient policy. Omniscient policy
is a fictitious non-realizable policy that is able to see the system states at all times.
The heuristics considered in the thesis include the most likely state (MLS), action voting
(AV), Q-MDP and weighted entropy control and finally Approximate Value Iteration. In
MLS, the idea is to update the belief state with observations, solve the problem as if
it were completely observable MDP, and take the action associated with the state that
has the highest probability. MLS completely ignores states except the most likely state,
which is improved by Action Voting. AC chooses the action that maximizes the expected
reward over the belief state over a single step. Both MLS and AV are myopic control
policies, which do not consider the results of the actions in terms of the resulting path of
future states. Q-MDP takes into account the future states, by choosing the action that
maximizes the expected value functions over the belief states. The value functions of
individual states are calculated as if the system is completely observable using Equation
(7.4). Weighted entropy control is a method from the control theory, in which actions
are chosen to minimize the entropy associated with belief states and maximize reward
simultaneously.

Approximate Value Iteration control policy involves solving the Value Iteration Algo-
rithms with efficient approximate algorithms such as Witness or Incremental Pruning
we mentioned in Section 7.2.1 until they converge, and use it as the true optimal value
function. Across a wide range of POMDP problems, Cassandra shows that the heuristic
control policy Approximate Value Iteration performs consistently not worse, and in some
cases considerably better than all the other heuristics.
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Complexity of Decentralized Decision Problems

The complexity characteristics of the decentralized problem is even more troublesome
than its centralized counterpart. It was again Papadimitrou and Tsitsiklis who provided
the first results on the complexity of decentralized sequential decision problems. In 1986
[98] they showed that the decentralized control of MDPs is at least NP-Hard, but did not
provide any upper bounds on the complexity. The next important result was provided
by Bernstein et. al. in 2000 ([124], [109]), when they showed that the decentralized
control of a two agent MDP is NEXP-complete. As discussed in Section 7.3.1 it is
proven that P⊂NEXP, which means that optimal control of decentralized MDPs and
POMDPs are infeasible according to Cobham-Edmonds Thesis. Furthermore since it
is widely believed, but not yet proven, that EXP 6= NEXP, decentralized control of
MDPs and POMDPs will require doubly exponential time in the worst case. This is
inline with the complexity analysis results given in Equation (7.20). As discussed in
Section 7.2.2, the jump in complexity going from single agent to two agents stems from
the impossibility to represent the multi-agent beliefs in a compact manner. This leads
to the necessity to store and process observations, that grow doubly exponentially over
time.

Similar to the central decision problem, reduction in complexity is not possible using
approximations that guarantee a maximum error compared to the optimal policy. Ra-
binovich et. al. proves in [125] that obtaining so called ǫ-approximate solutions that
guarantee the approximation error to be smaller than the value ǫ for DEC-POMDPs is
also NEXP-hard. The only reduction in complexity the authors could report was in the
case of free communication, in which case the agents can exchange information about
their observation histories without incurring a cost. In this case the complexity class was
PSPACE, same as a centralized POMDP. This is not surprising, since with free commu-
nications the problem can be transformed into a centralized problem. Pyandah provided
similar results for MTDP in [126], which is consistent with Seuken and Zilberstein’s
results, showing the equivalence between MTDP and DEC-POMDP formalizations.

I-POMDP attacks the complexity problem by extending the state space with models
of the interacting agents. As discussed in Section 7.2.2, this leads to the problem of the
need for infinitely nested belief states. Such a formulation is undecidable. The authors
of I-POMDP [116] can only provide complexity results for models with finite models and
finite strategy levels. For fixed strategy level l, which is also the level of belief nesting,
and M models for the other agents I-POMDP is equivalent to solving M l individual
POMDPs. This means that I-POMDP has the same complexity properties as POMDP,
i.e. PSPACE-complete. However as soon as the strategy level is made a variable value,
the complexity increases substantially, even though there is no formal reduction proof is
provided yet.

Our Approach

Let us review the presented formalizations in the light of the design criteria we presented
in Section 7.3.
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DEC-POMDP DEC-POMDP formalization is the one that has received most interest.
It is conceptually equivalent to MTDP. However the main shortcoming of DEC-POMDP,
which makes it not suitable for our problem, is its common reward structure. This reward
structure only allows cooperative problems to be formulated. One of the main features
of our problem formulation is the fact that two competing operators will be sharing
resources only if it benefits both of them at the same time. This means that there might
be instances when one of the operator is willing to cooperate, while the other one does
not. Such a situation cannot be modeled with DEC-POMDP.

Furthermore, the workflow by which the problem is solved and the policies are executed
in DEC-POMDP is not compatible with the dynamic resource sharing workflow. DEC-
POMDP assumes that there is a central entity which can solve for the policies. The
policies would then be executed in an decentralized manner. This contradicts the two
interacting operators scenario that we propose.

POSG The first formalization that accommodates non-common reward structure and
therefore can model cooperative encounters is the POSG formalization. There are two
drawbacks that are associated with POSG, that makes it unsuitable for our purposes.

First of all solution of POSG gives us not single policy, but a set of Bayes-Nash optimal
policies. A proper solution to the decentralized sequential decision making on the other
hand would involve a single strategy set for the involved agents. There are coordination
protocols in the literature that allow a single policy to be chosen, however they add to
the complexity of the solution. Secondly, the POSG workflow is similar to the DEC-
POMDP workflow, in the sense that the solution that gives the set of policies is given
by a centralized entity.

I-POMDP Similar to POSG I-POMDP is able to model cooperative encounters. Fur-
thermore, unlike POSG and DEC-POMDP the decision workflow is comparable to the
dynamic resource sharing since the solution for policies are taken by the agents inde-
pendently. These properties make I-POMDP a good candidate formalism for dynamic
resource sharing.

Unlike POSG or an DEC-POMDP, an optimal solution for I-POMDP is not available.
This is due to the problem of infinite nesting of beliefs and the infinite cardinality of
the model space that describe the peer agents. Only computationally viable solution
I-POMDPs are possible when a finite strategy level is chosen and the number of models
is taken to be finite. The question here is than, how one can choose an appropriate
value for the model order and the strategy level. Before answering this question, it is
important to note that any agent designed with an arbitrary but finite strategy level or
model order will be outperformed by an competing agent, whose strategy level or model
order is larger. This property makes the answering of the aforementioned question futile.
No matter how optimally we were to set the strategy level and the model order, another
designer who is willing to add one more level or order would benefit from this.

In the face of this apparent deadlock, we answer the question by not answering it.
To be more precise, we are proposing enforcing a strategy level of 0, i.e. 0-level I-
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POMDP. This approach is equivalent to folding the behavior of the other agent as
noise in the system. Such a solution is of course sub-optimal to an agent even with a
single level of strategy, i.e. a model which models the beliefs of the peer agent about
the agent itself. We are proposing using strategy-proof mechanisms to be used in the
inter-agent interactions to make this undertaking irrational. Specifically, strategy-proof
mechanisms are negotiation mechanisms in which lying is irrational for the participating
agents. When such a mechanism is in place, agents behave according to the rules of the
negotiation mechanism, and there is no need for second guessing what the peer agents
beliefs. We present two such mechanisms in Chapter 6. For the rest of this chapter,
we assume that there is a strategy-proof negotiation protocol implemented between the
agents of the operators.

7.3.2. Horizon Length

After we finalize the formalization, we are left with two important design decisions. First
one is to decide on the length of the horizon. Based on the this one should also opt for
the type of approximation will be used to solve for the policies.

Let us recapitulate dynamic resource sharing scenario, in order to find a suitable hori-
zon length. In a certain location a RAN belonging to one operator becomes overloaded.
The operator begins a negotiation with a peer operator who owns a RAN in the vicin-
ity, in order to transfer some of its traffic. If the peer operator has enough capacity to
support the additional traffic, the operators agree on a transfer probability, which can
also be denoted by an equivalent transfer throughput. Once this step is completed, both
operators submit periodical queries to the QoE database to make observations about the
load situation in the peer operator’s RAN. The transfer of resources continue until (i)
the donor operator RAN becomes overloaded or (ii) the congestion in borrower operator
subsides. Neither of the RAN agents are able to foresee how many observation steps
will it take, before one of the aforementioned conditions will take place in which one of
the operators will take a do not cooperate decision. It this were possible, both of the
operators would be able to agree on a static time period in which the resource exchange
would take place, and the whole discussion in this chapter would be unnecessary.

In the literature, uncertainty in the time steps after which the interaction finishes is
handled with infinite horizon models with exponential discounts. This approach allows
interactions of varying lengths to be represented. As we discussed in Section 7.2.1 an
infinite horizon model with a discount factor γ is equivalent to a sequential decision
process, in which the decision process is terminated with probability (1 − γ) after each
decision stage. Such a formulation has two other advantages compared to a finite horizon
length formulation.

First of all, this formulation is in line with the practice used in economics to model the
investors behavior, which correspond in our case to the operator. In this interpretation
the modeler is able to represent the risk-avoidance preferences of the investor. This is
possible because γ is a measure of relative importance of future rewards compared to
the current reward. A smaller γ represents a risk-averse investor, for whom the current
reward is the most important reward. On the other hand, a larger and a closer to one γ
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represents a risk-taking operator, who is willing to exchange future rewards with current
rewards.

Secondly, as we again discussed in Section 7.2.1, the optimal policies differ for finite
and infinite horizon formulations. In finite horizon problems the optimal policy is not
stationary, since knowing that the end of the interaction is approaching changes the
optimum action during the final stages. Having finite state non stationary policies is
problematic, since the size of the non-stationary policy can be arbitrarily large for it to
be represented efficiently. This is not the case for infinite horizon models, which can be
represented with a finite set of vectors or as a FSC . For the aforementioned reasons we
have decided to use an infinite horizon model with a properly set discount factor.

7.3.3. Approximation Type

Once we have decided for the infinite horizon formulation, the exact solution of both
centralized and decentralized sequential decision making problems is not possible any-
more, since these solutions are shown to be undecidable [120]. We therefore should use
approximate methods.

Approximation has different semantics in the fields of Theoretic Computer Science
and Artificial Intelligence [108]. The Theoretic Computer Science community uses the
term approximation in the same manner as the ǫ-approximation we discussed, i.e. an
approximation algorithm is able to provide a solution which is within an ǫ error bound
of the optimal solution. There is only a single such solution in the literature for infinite
horizon cases presented by Poupart and Boutilier for centralized problems [127] and
Bernstein et. al. for decentralized problems [128]. Both of these approaches are based
on policy iteration and are distinguished by their reliance on what is called a correlation
device. A correlation device is an stochastic finite state machine with at least two
states. It is assumed that both agents are able to simultaneously observe the state of
the correlation device perfectly. The agents policy uses this observation in addition to
the proper observations about the world in deciding the actions. It must be noted that
correlation device is used strictly to synchronize the randomness in both agents, and is
not used for communication. Even though the correlation device can be implemented
implicitly with an pre-shared sequence of pseudo-noise sequence, without any direct
communication, we do not use this approach. The reason for this is the increase in
complexity. It must be noted that this line of research is an efficient approach that may
be used in the future work.

We use the term approximate algorithms less strictly, as they understood in the Arti-
ficial Intelligence (AI) community. When theoretic optimal solutions are available, but
computationally not feasible, AI approximations use computationally feasible heuristics
based on the optimal solutions. These approximations do not provide guarantees on the
quality of the solution, and their performance are compared to (i) each other or (ii)
to an optimal solution to a superset problem which is computationally feasible. In our
case this superset problem is the completely observable counterpart of dynamic resource
sharing, and the optimal solution to the superset problem is the omniscient policy we
discuss in 7.3.1.
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There are two motivating factors for our decision to use approximate solutions to
POMDPs. First of all, being heuristics, the quality of algorithms can only be gauged
relative to each others. This is done in the literature, by using benchmark problems
that is accepted by the community. Establishment of the benchmark problems is a
time consuming process, and in the end there are limited number of such problems.
As a result of their relative age, the number of benchmark problems for centralized
sequential decision making is larger than decentralized case. This means that the results
in centralized decision making is more established.

Secondly, relative complexity of POMDP compared to CO-POMDP is less. To be
more precise, the worst case time complexity of POMDP is exponential, where are CO-
POMDP is doubly exponential in the input size. It is true that exponential worst case
time complexity is not a particularly nice feature, but it has been shown for a large
set of benchmark problems that POMDPs rarely exhibit the worst case time. Secondly,
since CO-POMDP belong to the complexity class NEXP, which is a proper superset of
PSPACE, the solution policies are problematic to represent in an efficient manner.

7.4. Solution

7.4.1. Overview of Derivation

After choosing the formalization and choosing the horizon length and the solution
method, we are in a position to present the derivation of the control algorithm which
will be used by the RAN agents. Before we present the details, it is beneficial to present
an overview of the derivation.

In the following sections we will first describe the equality between Discrete Time
Markov Chains (DTMC) and Continuous Time Markov Chains (CTMC) and the method
of uniformization that allows us to transform CTMCs into DTMCs, and vice versa. We
will first generate a CTMC description of the the queueing network description of the
dynamic resource sharing. Then we will use uniformization is needed for us to formulate
a MDP out of the model, which is a CTMC. We will see that level of granularity of
the obtained DTMC will be too detailed for the application of POMDP control to the
problem. For this purpose we will present a method of state lumping, that allows us
to build larger macro states, which lend themselves to POMDP control algorithms. We
present the whole process on a load balancing scenario between two WLAN RANs. We
finally present the solutions, i.e. the controllers, for load balancing between tho WLAN
RANs and a between WLAN and HSDPA.

7.4.2. Uniformization & Construction of a DTMC

Uniformization

Let us start with reviewing CTMCs, DTMCs and the link between them. Our discussion
follows [55] and [129]. DTMCs are used to model systems, in which the transition
between states occur on periodic intervals. The periodicity maybe due to the natural
characteristics of the system, such as in clocked digital systems, or due to a sampling
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process that is used to capture a continuous process. In both cases, a homogenous
DTMC is described by a transition probability matrix P = [pij]. The element pij gives
the probability of the system making a transition from state si to state sj. Due to
the total probability condition the rows should add to one, i.e.

∑

j pij = 1 ∀i. If the
sampling period or clock period is given by τ , the probability that the system spends
nτ seconds in a particular state si, or equivalently state holding time V (i) being equal
to nτ is distributed geometrically with parameter pii:

Pr(V (i) = nτ) = (1− pii)pn−1
ii (7.21)

If we let π = [Pr(s1)Pr(s2)...P r(sn)] denote the vector of steady state probabilities
of the states, the solution of a stationary and homogenous DTMC can be obtained by
simultaneously solving the following set of linear equations:

π = πP

π1T = 1 (7.22)

The first equation is derived from the fact that transition probabilities cannot change
the state probabilities once the steady state is reached. Second linear equation is just
the total probability condition.

CTMCs in contrast are used to model systems in which the state transitions can occur
at any given time instant. Instead of actual probabilities of transitions, we are interested
in transition rates:

qij = lim
∆t→0

pij(t, t+∆t)

∆t
(7.23)

qij represent the instantaneous rate with which transitions occur between states si and
sj. For Markovian processes with Poisson arrivals, this is equivalent to the Poisson rate
λij of the process that causes the transition. Differentiating the total probability con-
dition results in the condition −qii =

∑

jǫS qij, which means that the term qii represent
the total rate with which the process leaves the state si.

Similar to DTMCs, CTMCs can be solved for the steady state probabilities π =
[Pr(s1)...P r(sn)] by using the following set of linear equations:

0 = πQ

π1T = 1 (7.24)

In these equations, Q is a the transition matrix, whose elements are qij and 0 is a
row vector of all zeros. The intuition behind the first equation is that at steady state
the the transition between states should be balanced, and the thus transition rates
between states should add up to zero. This is the the global balance condition. One can
calculate the state holding times using the term qii. Unsurprisingly the state holding time
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Figure 7.7.: Uniformization example.

V (i) is distributed exponentially, which is the continuous time counterpart of Geometric
distribution in Equation (7.21):

Pr(V (i) = τ) = 1− eλii (7.25)

This relation between the channel holding times is key to the process of uniformization,
which allows us to build an equivalent DTMC model out of a given CTMC model. Let
us assume that we have a CTMC described by its transition rate matrix Q = [qij].
As we described earlier, the terms −qii ∀i represent the total transition rates out of
the states. Let us denote this transition rate out of state si with Λ(i) = −qii. One
chooses an uniform rate ν such that ν ≥ Λ(i) ∀i. One can than use this uniform rate
as the ”sampling” rate that is associated with an equivalent DTMC. This is equivalent
to assuming system changes with a rate ν, where the changes include ”real” transitions
between states, and fictitious transitions from states unto themselves. In fact, these
fictitious self-transitions have a rate of ν−Λ(i). With this uniform rate, the probability
of transitioning from state si to sj is then simply the ratio of transition rate qij to
the total transitions associated with the state si which is given by ν. This process is
demonstrated by Figure 7.7, and by the following equations:

pij =

{ qij
ν

j 6= j
ν+qii

ν
i = j

(7.26)

The need to use uniformization stems from the fact that we have chosen to apply
0-level I-POMDP approach on a system described by a queueing network. I-POMDP
formulation is based on a DTMC , and the BCMP solution to the queueing network is
based on a CTMC model. It is standard practice in the area of controlled Markov Chains
to reduce CTMC descriptions of real world systems to DTMCs via uniformization, and
this is the path we follow. When reducing a CTMC description of a system to a DTMC
with an uniformization rate ν, the discount factor and reward per stage have to be
adjusted.

Formally, let us define the expected reward with a discount factor β associated with
a CTMC under the control of a policy π with:
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Eπ





∞∫

t=0

eβtR(s(t), a(t))



 (7.27)

Our goal is to obtain the equivalent reward of the uniformized DTMC under the same
policy. The derivation in Section 7.3.2 in [129] makes use of the relation between channel
holding times of the CTMC and DTMC. Cassandras uses the following facts: (i) the
reward stays the same between transitions, (ii) the transitions -including the fictitious
transitions- occur with a combined uniformized rate rate of ν and therefore the state
holding times are exponential with ν, to derive the following equality:

Eπ





∞∫

t=0

e−βtR(s(t), a(t))



 =
1

β + ν
Eπ

[ ∞∑

k=0

(
ν

β + ν

)k

R(sk, ak)

]

(7.28)

With this relation, the uniformization process is complete. When we are given a
CTMC model with its transition rate matrix Q, reward structure R(s, a) and discount
rate β, we can construct an equivalent DTMC by:

• Constructing transition probability matrix P by making use of the Equation (7.26),

• Using modified rewards: RDTMC(s, a) = RCTMC(s, a)/(β + ν),

• Using a modified discount factor α = ν/(β + ν).

Construction of an DTMC

Unfortunately, we do not have access to the CTMC directly. This is because the BCMP
solution bypasses the generation of the CTMC in providing the separable solution. How-
ever, since BCMP makes use of a special structure in the CTMC, it is not hard to obtain
a a CTMC. It is worth noting that this is not trivial either, since this it is essentially a
reverse problem: we are interested in the CTMC formulation, given the solution to it.

We give a short summary of the BCMP model from Chapter 5, which is depicted
in Figure7.8. Each operator is modeled by a tandem of an infinite server (IS) and a
processor sharing (PS) queue. For each operator the IS node models the call admission
process (CAC), whereas the PS node represents the actual contention among the users
for resources within an RAN. We concentrate on PS delay as the system delay, since it
is larger. User requests arrive according to a Poison process described by λ. The users
choose one of the operators for their session requests with probabilities PA and PB . Each
RAN employs a CAC mechanism that rejects session requests with a probability P(R,i),
for operator i. Given the capacities of the RANs and the current tendencies of the users
to choose an operator, RAN A is a borrower of resources and transfers some of its users
to donor RAN B with probability PT . It may seem like the RAN A has an incentive
to give as much traffic as possible; however, this is not the case since the transferred
traffic increases the delay in RAN B, which would also affect the users who chose RAN
A initially but were transferred. Therefore RAN A tries to minimize the expected delay
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Figure 7.8.: Queueing network model for dynamic resource sharing between two opera-
tors A and B.

Figure 7.9.: Simplified queueing model

among all the users who chose RAN A. This formulation makes the average delay of
RAN A concave and us to derive an optimal PT value. After the traffic equations are
written, BCMP formulation gives us a product form solution which we exploit in order
to come up with the POMDP state transition probabilities.

For the purpose od POMDP derivations we concentrate on the processor sharing
queues of the RANs, that model the actual air interface. For this purpose we use the
simplified queueing model given in Figure 7.9. In this model the external traffic is
shared as a function of the transfer probability PT , which itself is a function of the
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(a) Atomic transition diagram. (b) Two job extension.

Figure 7.10.: Construction of CTMC from atomic transition diagram.

utilizations of the individual RANs. We represent the joint probability of N1 jobs in the
first operator and N2 jobs in the second operator with πN1N2

. Since we are using PS
node models for which M→M property holds, the joint probability can be described as
a product form solution of the marginal probabilities, i.e. πN1N2

= 1
C
π1(N1) ∗ π2(N2).

Lazar presented a geometrical construction method for the construction of CTMC from
the physical description of the queueing system in [130]. This method uses a atomic
queueing network with two queues with post processing job sharing to build arbitrary
queueing networks. The atomic CTMC is depicted in Figure 7.10a. This atomic CTMC
is replicated by connecting at the edges to increase the number of users in the system.
Different rates can be assigned for different replicas, which makes the description of
state-dependent routing possible.

For our scenario, we do not have post processing job sharing, this is why we have
r23 = r32 = 0. Since we have an open network, the size of the CTMC is infinite in both
sides. We obtain the CTMC depicted in Figure 7.11 following the procedure proposed
by Lazar. To show the validity of the CTMC, one has to compute the consistency
graph. The consistency graph is a directed graph equivalent to the CTMC, whose nodes
represent the probabilities of the corresponding states. The multiplication of the node
value and the value on the directed edge to a neighbor node gives the value on the
neighbor state. A consistently constructed CTMC should have all the closed paths in
the consistency graph equivalent to 1. In order to show the consistency of the CTMC,
we should show that the local balance equations have solutions.

For this purpose we first write down the global balance equation for node (0, 0):

π00λ1
︸ ︷︷ ︸

departures due to 1

+ π00λ2
︸ ︷︷ ︸

departures due to 2

= π10µ1
︸ ︷︷ ︸

arrivals due to 1

+ π01µ2
︸ ︷︷ ︸

arrivals due to 2

(7.29)

Equating the transitions associated with both nodes, and writing the state probabili-
ties in terms of the marginal probabilities we obtain:
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Figure 7.11.: Proposed CTMC model.

π1(1) = ρ1π1(0)

π2(1) = ρ3π2(0)

(7.30)

We similarly we write the global balance equation for node (1, 0):

π10λ1 + π10µ1
︸ ︷︷ ︸

departures due to 1

+ π10λ2
︸ ︷︷ ︸

departures due to 2

= π00λ1 + π20µ1
︸ ︷︷ ︸

arrivals due to 1

+ π11µ2
︸ ︷︷ ︸

arrivals due to 2

(7.31)

We again equate local flows, substitute (7.30) in the local balance equations and write
the node probabilities in terms of the marginal probabilities to obtain the following
results:

π1(2) = ρ1π1(1) = ρ21π1(0)

π2(1) = ρ2π2(0)

(7.32)

Similar steps gives us the following local balance equations for the state (01):
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Figure 7.12.: Consistency graph.

π2(2) = ρ2π2(1) = ρ22π2(0)

π1(1) = ρ1π1(0)

(7.33)

Thus moving in the horizontal axis gives the relation π1(k + 1) = ρπ1(k) and moving
in the horizontal axis gives us π2(k + 1) = ρ2π(k). With these information we are
able to construct the consistency graph, given in Figure 7.12. Any closed loop that is
constructed from this atomic diagram will have product of 1, so the proposed CTMC
is a proper CTMC. The corresponding solution is just the part of the original BCMP
solution that include PS nodes:

πN1N2
=

1

(1− ρ1)(1 − ρ2)
ρN1

1 ρN2

2 (7.34)

Finally, we are in a position to construct the DTMC. We have to choose an uniformiza-
tion rate that is guaranteed to be larger than all the transition rates in the CTMC. We
choose the uniformization rate ν = λ1 + λ2 + µ1 + µ2, which is guaranteed to be larger
than all the rates in the CTMC.With this choice, the DTMC is constructed, which is
given in Figure 7.13.

7.4.3. State Aggregation and Capacity Boundaries

State Aggregation

Due to the complexity results we discussed it is of prime importance to keep the number
of states in the POMDP as small as possible. However the DTMC description we
obtained has infinite number of states. Obviously, there is a need for reduction in the
number of states. In classical problems in which interacting servers are modeled as CO-
MDPs , infinite number of states is handled by finding boundaries between groups of
states. These groups include those states, for which a common action satisfies the DP
inequality for all of the states. The policy can then be implemented by finding which
group of states the current state belongs to, and executing the action for that group.
We will employ an approach that is influenced by this method.
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Figure 7.13.: Final DTMC.

Figure 7.14.: Macro state transition diagram.

We will distinguish between micro and macro states. The individual DTMC states
represents the highly dynamical micro behavior of the system. The micro states repre-
sent the number of active sessions in each system, and they change proportional to the
combined external arrival rate. It is not the responsibility of the RAN agent running the
POMDP to take decisions on a user session request by request basis, this is the respon-
sibility of CAC . The RAN agents should take decisions in the case of severe changes
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Figure 7.15.: DTMC state transition diagram and calculation of capacities.

in the overall load of the RANs. Thus, the macro states capture the conditions in the
individual RANs as to whether or not they are able to deliver the QoS guarantees. A
RAN is said to be in a normal state, when it is able to meet a QoE guarantee given in
terms of a delay or throughput requirement. Since we have two RANs under considera-
tion we have four macro states in which are depicted in 7.14. In state A both RANs are
operating normally, as opposed to state D, in which both RANs are in congestion. In
state B the RAN for which POMDP solution is applied is in congestion, while the peer
operator is in normal operation mode. State C is the opposite. What we have done is
to simply to lump micro-states into macro-states according to their congestion status’.
Our aim is to formulate the macro transition probabilities, Figure 7.14, from the micro
transition probabilities, Figure 7.13.

What we are looking for is a correspondence between the performance metrics associ-
ated with macro states and the micro states. The macro states A through D divides the
state space S of the micro states into four partitions, such that S = SA ∪ SB ∪ SC ∪ SD
and Si ∩ Sj = ∅ where i 6= j and i, jǫ{A,B,C,D}. These partitions are rectangular, as
depicted in Figure7.15. The intuition behind such an rectangular state aggregation of
micro states is the PS abstraction. Service rate is inversely proportional to the the user
number in a RAN. This means that there will be a limit on the number of users in each
operator, N1 and N2, above which QoS requirements cannot be met. For example in all
all micro states for which n1 ≥ N1 and n2 ≥ N2 holds, the QoS guarantees will not be
met. Therefore all such micro states belong to the the macro state D. We propose dif-
ferent methods for drawing these capacity boundaries in the next section, Section 7.4.3.
Until then, we assume that the capacity boundaries (N1, N2) has been found according
to one of the methods we propose in the next section. We are primarily involved with
calculating macro transition probabilities from micro transition probabilities.

Once the N1 and N2 values that define the region boundaries are found, the transition
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Transition (K1,L1) (K2,L2) γij
pAB (N1 − 1, N1 − 1) (0, N2 − 1) λ1
pBA (N1, N1) (0, N2 − 1) µ1
pAC (0, N1 − 1) (N2 − 1, N2 − 1) λ2
pCA (0, N1 − 1) (N2, N2) µ2
pCD (N1 − 1, N1 − 1) (N2 − 1,∞) λ1
pDC (N1, N1) (N2 − 1,∞) µ1
pBD (N1,∞) (N2 − 1, N2 − 1) λ2
pDB (N1,∞) (N2, N2) µ2

Table 7.1.: The summation limits used for calculating macro transition probabilities.

probabilities can be obtained utilizing the micro DTMC state and transition probabili-
ties. The transition probability between aggregate state i and j, i, jǫ{A,B,C,D}, can
be computed by using the following relation given in [95]:

pij =
∑

sǫSi

π(s)
∑

tǫSj

pst

This formula can be interpreted as follows. The for each micro state s in the originating
partition Si related with macro state i, we sum the probabilities of ending up in a micro
state t which is in the destination partition Sj associated with macro state j and multiply
the total probability with the probability of being in the micro state s. We finally sum
these values for all micro states in the originating partition to come up with the transition
probability between macro states. Owing to the birth-death nature of our system and the
rectangular boundaries we set, transition between aggregate states occur only between
boundary micro states and there is a single path between these micro states. Inserting
the BCMP solution for the micro state probabilities, we obtain the following general
formula for macro state transitions:

pij =

L1∑

n1=K1

L2∑

n2=K2

γij(1− ρ1)(1− ρ2)ρn1

1 ρ
n2

2

The limits of the sums are functions of N1 and N2, and the depend on the boundaries
that separate the states Si and Sj. Similarly the parameter γij takes values from the
set {µ1/ν, λ1/ν, µ2/ν, λ2/ν} depending on the direction of the transition as depicted in
Figure7.15. For example for the computation of the transition probability pAB these
parameters takes the values K1 = L1 = N1 − 1; K2 = 0,L2 = N2 − 1 and γAB = λ1/ν.
For the probability pDB they are given by K1 = N1,L1 = ∞; K2 = L2 = N2 and
γDB = µ2/ν. The summations are over geometric sequences involving utilizations and
therefore converge. We give the summation limits in the Table 7.1 and results of the
summations in Equation (7.35).
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pAB =
λ1
ν
(1− ρ1)ρN1−1

1 (1− ρN2

2 )

pBA =
µ1
ν
(1− ρ1)ρN1

1 (1− ρN2

2 )

pAC =
λ2
ν
(1− ρ2)ρN2−1

2 (1− ρN1

1 )

pCA =
µ2
ν
(1− ρ2)ρN2

2 (1− ρN1

1 )

pCD =
λ1
ν
(1− ρ1)ρN1−1

1 (ρN2

2 )

pDC =
µ1
ν
(1− ρ1)ρN1

1 (ρN2

2 )

pBD =
λ2
ν
(1− ρ2)ρN2−1

2 ρN1

1

pDB =
µ2
ν
(1− ρ2)ρN2

2 ρN1

1 (7.35)

The probabilities of transitions from macro states onto themselves can be calculated
by exploiting the total probability condition, pii = 1−∑j 6=i pij:

pAA = 1− pAB − pAC

pBB = 1− pBA − pBD

pCC = 1− pCA − pCD

pDD = 1− pDB − pDC (7.36)

The open question is of course if this state aggregation is valid. The condition for
legitimate aggregate sets of underlying Markovian states is the protection of the Marko-
vian property. That means, the macro states should have the Markovian property. This
is the case for our macro states. This is because the transition probabilities of the macro
states are computed directly from the micro state probabilities. If macro states were not
Markovian, this would mean that the micro states were not Markovian. But the micro
states are states of a DTMC and Markovian. So the macro states being non-Markovian
leads to a contradiction, which proves that this state aggregation is legitimate by con-
tradiction.

It can be seen from Equations (7.35), that transition probabilities are functions of
λ1, λ2 and ρ1, ρ2. All four of these variables are in turn functions of the transfer prob-
ability PT . To borrow resources, to donate resources or not to get involved in the
cooperation are actions that change these probabilities, and thus effect the state space
trajectory. The POMDP formulation will be constructed in order to choose the best
actions according to the Approximate Value Iteration heuristic. Before we formulate the
POMDP, we discuss how we define the state aggregation boundaries.

140



Capacity Limits

In the previous section we assumed linear capacity boundaries divided the state space
into four rectangular regions. In this section elaborate how we derive the capacity limits.

Capacity limits for different RANs depend on two factors. First one is the raw data
transfer capacity of the individual RAN, which is reflected by the service rate µ. Second
one is the QoS requirements of different application types. Modeling the QoS require-
ments of applications is a multi stage process. Firstly a source model should be devel-
oped, to model the physical process behind the application. An example for a source
model is the ON-OFF model used for voice sources. The source model is than used
to build up the traffic model, that model the actual data traffic seen by the network.
Associating different Poisson rates for the ON and OFF states would be an example of
the traffic model. The number of traffic models are very large for the network operators
to handle them individually. This is why most of the data networks have defined service
classes that gather together similar traffic models. We will be deriving capacity limits
assuming the operators are trying to fulfil the requirements defined for different service
classes.

We are considering three types of service classes:

• Delay bounded,

• Throughput bounded,

• Interference bounded.

For all of classes our strategy is to formulate the QoS guarantee associated with the
service class as an decreasing function of the number of active sessions, and find the
maximum value of number of sessions for which the QoS guarantee is met.

Delay Bounded Applications For delay bounded applications, the QoS guarantee that
the operator is aiming at is the minimization of processing delay d exceeding a threshold
Dmax:

Pr(d > Dmax) << 1 (7.37)

The calculation of this probability would require the probability distribution of the
delay as a function of number of active sessions n in a PS system. The the probability
distribution is given by Yashkov for the unconditional case in [32], specifically Equation
2.45, as complex integral involving exponential functions of trigonometric functions of
the utilization, which could only be solved numerically. A conditional distribution for
the delay in a PS system given an arbitrary job size distribution is not known in the
literature.

However we can make use of Cantenelli’s Inequality, single sided version of the Tcheby-
chev inequality. Cantenelli’s Inequality gives an upper bound to the probability in Equa-
tion (7.37), for any type of probability distribution, as long as the mean and variance
are given for the random variable under investigation. This is indeed the case for the
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conditional mean and variance for PS servers serving exponentially distributed packet
size, and in Appendix C we derive results for deterministic packet sizes. Cantenelli’s
inequality is given by:

Pr(d ≥ En[d] + k ·
√

V arn(d)) ≤
1

1 + k2
(7.38)

We set the value of k to 10, which guarantees a probability less than 10−2. Note
that Tchebychev is a very loose bound, and actual probabilities will be less than this
bound. Setting the value of k establishes an upper bound on the delay value for which a
guarantee can be made, which is given by the expression En[d]+k ·

√

V arn(d). Equating
this expression to the QoS goals of the operators, i.e. the delay boundDmax, we obtain
a boundary on the number of active sessions in a RAN.This is possible by making use
of the expressions for mean and variance conditioned on the number of sessions in a
M/M/1-PS system given by Coffman [30]:

En(d) =
τ

1− ρ + {n(1− ρ)− ρ} 1− e
−(1−ρ)µτ

µ(1− ρ)2 (7.39)

σ2n(d) =
2ρτ

µ(1− ρ)3
{
1 + (1 + ρ)e−aτ

}
− ρ2

µ2(1− ρ)4
{
1− e−2aτ

}

− 4ρ

µ2(1− ρ)4
{
1− e−at

}
+

n(1 + ρ)

µ2(1− ρ)3
{
(1− e−2aτ )− 2(1 − ρ)µτe−aτ

}
(7.40)

a = µ(1− ρ)

Due to the non-linear nature of these equations, we resort to numeric a simple numer-
ical solution of increasing n sequentially, until Dmax is exceeded. Non-critical WWW
traffic or interactive traffic can be modeled using this approach. It is also possible to
model mission critical real-time applications.

Throughput Bounded Applications There are applications such as FTP-like down-
loads and video streaming applications that have throughput requirements, i.e. there
exists a minimum Tmin. We are able to model these applications by resorting to the
PS abstraction. Explicitly, the PS abstraction suggests that the maximum capacity of
the RAN is shared equally between the number of sessions in the system. Therefore
N(Tmin) for a given minimum throughput Tmin is the largest integer N satisfying the
condition C

N
> Tmin.

Interference bounded Finally, there are applications such as VoIP or teleconferencing
for which detailed capacity planning investigations have been made. In these cases these
capacity bounds can be used naturally as the boundaries in the POMDP model.
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Normal Congested

GOOD 0.7 0.1

OK 0.2 0.2

BAD 0.1 0.7

Table 7.2.: Observation probability distributions.

7.4.4. POMDP Model

We are in a position to define the POMDP model that will be used by the donating and
borrowing RAN agents. A POMDP is defined by the n-tuple < S, T,A,R,Ω, O >. In
our POMDP formulation, the states S are the macro states depicted in Figure 7.14. We
have shown how the transition probabilities can be calculated in the previous section.
We will define the remaining elements in this section.

Actions

We define our set actions to be borrow(BOR) , donate(DON ) or no interaction(NOP) .
As we discussed earlier, the transition probabilities between the macro states depend on
the micro state transition probabilities and the action. For example, the probability of
going from a normal state to an congested state will increase for the donor operator, if
it accepts additional traffic as compared to not cooperating. Similarly, the probability
of making a transition form a congested state to a normal state will increase for the
borrower operator, as opposed to not cooperating.

Observations

The next component in the POMDP definition is the description of the observations.
The observations model the inaccurate nature of queries that the RAN agent makes to
the user QoE database to gauge the condition in the peer RAN. The user delay reports
can be grouped into three groups: good (GOOD), satisfactory (OK ), bad (BAD). The
RAN agent has the a priori distribution of these observations, i.e. it knows how possible
an observation is, given the condition of the peer operator. We present a methodology
for obtaining these probabilities in Chapter 8. These values can be entered manually,
and than can be updated via a learning mechanism which is outside the scope of our
work. We use the values given in Table 7.2. These probabilities are same for all the
actions. The basic intuition is that it is more likely to get a BAD observation when the
peer operator is congested.

Rewards

Finally, we define the rewards associated with each state-action pair. In order to account
for the trade-off between increase in utilization that is for the benefit of the operators
and increase in delay which is not beneficial, we propose two types of rewards. The
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Figure 7.16.: Borrower Reward Assignments.

delay reward Rd(a) and utilization reward Ru(a). We combine these two reward defini-
tions differently and allocate them to different aggregate states for donor and borrower
formulations.

The delay reward is the ratio of the average initial delay to the average delay after a
particular action,i.e. RD(a) = D̄init/D̄(a). With this reward we represent the relative
benefit of an action in decreasing the delay. The larger an action is able to reduce the
delay, larger the associated delay reward will be. Its a positive real number larger than
1 for borrowing, and smaller than one for donating resources. By using the formula for
the average delay for a PS queue we obtain the following expression for RD(a):

RD(a) =
1− ρ(a)
1− ρinit

(7.41)

The utilization reward is defined to be the ratio of the utilization after a particular
action to the original utilization. Its a positive real number larger than 1 for donating,
and smaller than one for borrowing resources. The utilization reward is given by the
following expression:

RD(a) =
ρ(a)

rhoinit
(7.42)

Borrower Rewards Borrower wants to avoid borrowing resources from an congested
peer operator. This is reflected in the Figure 7.16, in which the states for which the peer
operator is congested is denoted with red. For states C and D the donating operator is
congested, and they have to be avoided. So we punish borrowing with value −Rd(BOR),
and assign 0 for NOP. State B is the state where borrowing is compulsory. Therefore
we reward borrowing by Rd(BOR), and punish no operation is −Rd(BOR). State A is
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Figure 7.17.: Donor Reward Assignments.

ambiguous: from the perspective of the borrowing operator, it can decrease the delay,
albeit with the drawback of decreasing it’s utilization. In order to balance these factors,
we associate the reward Rd(BOR) − 1/RuBOR. Ru(·) is nominally smaller than 1 for
borrowing resources. In order to make it comparable with the decrease in delay, which
is larger than one, we use the inverse of Ru(BOR). Not cooperating in this state brings
a reward of 0.

Donor Rewards The donor on the other hand, has two goals to satisfy. Firstly, it
wishes to avoid congestion in its own network. This means that states B and D should
be avoided. For these states we punish donating with −Ru(DON) and not cooperating
with 0. Secondly, it only wishes to help a borrower, if it is sure that the borrower
is in a congested state. The donor operator can increase its utilization by donating
to a borrower in normal state, but in the expense of increasing its own average delay.
But we assume that the operators do not want to help a competitor, when there is no
congestion in the competitor network. This means the strategic agreement between the
operators is of a tit-for-tat type. From this perspective the state C is the most suitable
state for the donor operator to donate, since it is normal and the borrower is congested.
For this state donating brings a reward Ru(DON), and not donating is punished by
a reward of −Ru(DON). Finally, we punish donating to normal peer operator by the
value −1/Rd(DON).

7.5. Application of Inter-Operator Real-time Resource Sharing

We demonstrate our dynamic resource sharing approach via a load balancing problem in
a 801.11g based Wireless LAN setting. In this scenario, two access points (AP) belonging
to two different administrative domains are situated in a close proximity. These APs
are optimized for plain World Wide Web browsing. It is well known that users tend to
accumulate in certain APs which become hot spots and that the utilization of individual
APs vary in the time scale of hours [131]. We assume that there exists a user QoE
database available to the users of the two APs. Furthermore there are RAN agents are
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Figure 7.18.: Tchebychev bounds used for negotiation.

running on the APs or any gateway server in the RAN and these agents can communicate
with each other. We focus on the decision taking but not on the execution. The actual
sharing of resources, which consist of forwarding users from borrower operator to donor
operator, can be implemented via any network-initiated layer 2 or layer 3 handover
mechanism [132].

We represent the traffic generated by users with an exponential distribution, of mean
130 KBytes, since this value is the most accurate estimate of the average web-page size
we could obtain in the public domain [133]. The shortcomings of exponential distribution
in representing self-similar data traffic is well known. We postulate that a leaky bucket
type traffic shaper is available to the users. An alternative is to use Pareto model, and fit
hyper-exponential distribution, from which mean and variance of delay can be calculated
using symbolic mathematics packages as proposed by Xu in [134].

7.5.1. Definition of Donor and Borrower Roles

Two important aspects of a load balancing algorithm is the definition of the concepts
of load an overload conditions. In our model chose delay as the performance criterium
which the operators of the APs optimize their systems and define these concepts using
delay. PS abstraction allows us to calculate utilization, or equivalently the load of an
each AP, based on the average delay the completed jobs experience. An AP can measure
the average delay d(u) for a given request size u in among the users its serving. It can
also query the user QoE database for the average delay in the other AP. Using this value,
the utilization or equivalently the load can be found using the following relation:

ρi = 1− u/
(
Ci · d(u)

)
(7.43)

In (7.43) Ci represents the MAC layer capacity of AP i. We use the value 31.9Mbps
for both 802.11g APs. Each operator provides delay limits to the users. We choose this
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Figure 7.19.: Tchebychev bounds used for POMDP boundaries.

delay limit as 1 second for a request of size 130KByte. Industry benchmarks [135] show
that only the top 20 web-sites have a delay smaller than 1 second. An AP is said to be
overloaded when it is not able to meet this delay guarantee with a high probability. The
probability, that the delay experienced by a 130KByte request is larger than 1 second
can be bounded by Tchebychev’s inequality, using the formulas linking utilization to the
mean and the variance of the delay conditioned on the request size [32]. For the scenario
we described, the one sided Tchebychev bound on P (d(130kb) > 1) is given in Figure
7.18 as a function of the utilization ρ. We believe a probability limit of 10−2 will be
satisfactory, considering the how loose the Tchebychev bound is. This choice means that
an AP is overloaded if its utilization is larger than 0.7. Each AP tracks its utilization
and initiates a negotiation with the peer AP if the utilization is above 0.7. The result
of the negotiation is a transfer probability value PT .

7.5.2. Macro States and POMDP Models

As we discussed in Section 7.4.3, the solution of the decision problem via POMDP
requires the transition probabilities between macro states. These probabilities depend on
the limits on the number of simultaneous sessions. These limits are found similarly using
bounds on P (d(130kb) > 1), this computed using delay mean and variance conditioned
on the number of simultaneous sessions, using the relations given in [30]. They are given
for varying utilizations in Figure 7.19. Under the given conditions an AP can support
7, 9, 12 simultaneous sessions with respective utilizations of 0.9, 0.7, 0.5

In the scenario the initial borrower and donor utilizations are 0.9 and 0.5 respectively.
They agree on a transfer probability of PT = 0.3, which reduces the borrower utilization
to 0.630 and increases the donor utilization to 0.597, both below the congestion limit. We
plot the Tchebychev bounds versus the number of active sessions for before and after
resource sharing. Borrower is able to accommodate seven simultaneous users before
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Figure 7.20.: Tchebychev bounds used for POMDP boundaries.

resource sharing, which increases to ten as depicted in Figure 7.20a. On the other
hand donor is able to accommodate twelve users before accepting additional traffic from
the borrower. After sharing, it is able to serve eleven users simultaneously as depicted
in Figure 7.20b. In total, the operators are able to serve 21 sessions simultaneously
compared to 19 users. This is the trunking gain associated with the dynamic resource
sharing.

Borrower POMDP Model

The transition probabilities obtained from Equations (7.35) for the described borrower
model is given in Table 7.3.

Both donor and borrower POMDP models use the observation probabilities described
in the Table 7.4.
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Action Start State End State Probability

no-op A B 0.01481710646952658

no-op A C 0.00003947675210489538

no-op A A 0.9851434167783685

no-op B A 0.01481710646952658

no-op B D 0.00003619224833787636

no-op B B 0.9851467012821356

no-op C D 0.000007238449667575271

no-op C A 0.00003947675210489538

no-op C C 0.9999532847982275

no-op D B 0.00003619224833787636

no-op D C 0.000007238449667575271

no-op D D 0.9999565693019946

borrow A B 0.001123063383474185

borrow A C 0.0007054789386521665

borrow A A 0.9981714576778736

borrow B A 0.001123063383474185

borrow B D 0.000007017594180476163

borrow B B 0.9988699190223453

borrow C D 0.000006433829708825937

borrow C A 0.0007054789386521665

borrow C C 0.9992880872316391

borrow D B 0.000007017594180476163

borrow D C 0.000006433829708825937

borrow D D 0.9999865485761108

Table 7.3.: Borrower Transition Probabilities.
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State Observation Probability

A MOS1 0.1

A MOS2 0.2

A MOS3 0.7

B MOS1 0.1

B MOS2 0.2

B MOS3 0.7

C MOS1 0.7

C MOS2 0.2

C MOS3 0.1

D MOS1 0.7

D MOS2 0.2

D MOS3 0.1

Table 7.4.: Donor and Borrower Model Observations.

Action State Reward

no-op A 0.0

borrow A -1.4286

no-op B -3.700

borrow B 3.700

no-op C 0.0

borrow C -3.700

no-op D 0.0

borrow D -3.700

Table 7.5.: Borrower Model Rewards.

For the borrower model, the reward assignments are described in Table 7.5.

Donor POMDP Model

Similarly, the donor transition probabilities for each action is given in Table 7.6.
Donor operator rewards are listed in Table 7.7.

7.6. WLAN Load Balancing Models

We present the solution of the individual POMDP models for the borrower and donor
in this section. For solving the POMDP models we presented in Section 7.5.2 we used
the POMDP-Solve software developed by Cassandra [136]. We first briefly discuss how
we will present the results.
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Action Start State End State Probability

no-op A B 0.00003947675210489538

no-op A C 0.014817106469527

no-op A A 0.985143416778368

no-op B A 0.00003947675210489538

no-op B D 0.000007238449667575271

no-op B B 0.999953284798228

no-op C D 0.00003619224833787635

no-op C A 0.014817106469527

no-op C C 0.985146701282135

no-op D B 0.000007238449667575271

no-op D C 0.00003619224833787636

no-op D D 0.999956569301995

donate A B 0.0007054789386521665

donate A C 0.001123063383474

donate A A 0.998171457677874

donate B A 0.0007054789386521665

donate B D 0.000006433829708825937

donate B B 0.999288087231639

donate C D 0.000007017594180476163

donate C A 0.001123063383474

donate C C 0.998869919022346

donate D B 0.000006433829708825937

donate D C 0.000007017594180476162

donate D D 0.999986548576111

Table 7.6.: Donor Transition Probabilities.

Action State Reward

no-op A 0.0

donate A -1.24

no-op B 0.0

donate B -1.193

no-op C -1.193

donate C 1.193

no-op D 0.0

donate D -1.193

Table 7.7.: Donor Model Rewards.
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Figure 7.21.: Value functions.
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Figure 7.22.: Sample Action Mappings.

POMDP-Solve program gives two outputs. The first output is a list of vectors and
their associated actions. This output correspond to the vectors defined in the Equation
(7.19), which are used to calculate the optimal value function given in Equation (7.18).
In our problem, there are four states, and thus the vectors are four dimensional. However
the states are not independent in our scenario, but are cross products of two random
variables. We denote the belief that the RAN for which the POMDP is solved, is in a
normal condition with q. This means that the belief that this RAN is in a congested
state is 1−q. Similarly we note the belief that the peer operator is in a normal condition
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with p, and its complementary belief with 1 − p. With these definitions, the beliefs in
states A, B, C, D are given by b(A) = q · p, b(B) = (1 − q) · p, b(C) = q · (1 − p) and
b(D) = (1−q) ·(1−p). This we are able to represent the optimal value function with two
variables. For each value of (p, q) we take the value of the maximum vector in order to
plot the optimal value function. At the same time, we note the action that is associated
with the maximizing vector for each (p, q) value. One sample optimal value function is
given in Figure 7.21. We also plot the optimal action as a function of beliefs, in what
we term the action mappings, such as the one given in Figure 7.22. In these figures the
z-axis value of 0 represents the NOP action, and 1 DON or BOR actions. For better
visualization we present the contour of the action mappings on a two dimensional (q, p)
graph.

In the coming sections we investigate the different parameters of the approximate
value iteration algorithms we use for solving the donor and borrower models. We then
present the finite state controller implementations of the policies.

7.6.1. Precision

The quality of the solutions obtained by the POMDP-Solve depend on the quality of the
linear programming solver used for each iteration. Cassandra uses a publicly available
linear program solver for Linux. However it is mentioned that the quality of the solutions
are increased if a proprietary commercial solver is used. The main problem with the
linear programming solution quality is mainly numerical. The optimal value function
tends to include many vectors that differ in their slopes with a very small difference.
This leads to very narrow regions of the belief space to be partitioned by vectors which
are associated with the same action. Another result of this is the fact that these vectors
cannot be eliminated during the iterations, even though they are dominated by other
vectors in almost all the belief space.

A remedy for this problem is decreasing the precision used in the linear programming
solution. Decreasing the precision also brings with it the danger that the solution of the
POMDP is not precise. In order to gauge the effects of using different precision in the
solution, we present the borrower action mapping contours with two different precision
degrees in Figure 7.23. The contour map divides the (q, p) space into two regions. On
the top-left region the action BOR is optimal, on the rest action NOP is optimal. It can
be seen that the difference between the contours are negligible. Therefore we use the
highest precision that allows the shortest solution time possible in our solutions.

7.6.2. Methods

Cassandra implements an comprehensive list of POMDP solution algorithms. This list
includes the original Enumeration and Two Pass algorithms by Sondik [137], the Linear
Support algorithm by Cheng [138], the Incremental Pruning algorithm by Zhang and
Lui [103], the Witness algorithm by Littman and Cassandra [104] and finally an im-
plementation of the Grid Based Value Iteration. We have found out that the Witness,
the Incremental Pruning and the Grid algorithms are the algorithms that give the most
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Figure 7.23.: Action mapping contours for two different precisions.
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Figure 7.24.: Action Mapping Contours for different methods.

stable results. It was observed in the older algorithms that the vector set grew in size,
instead of converging into a stable number of vectors.

We compare the three algorithms that converge into a finite set of vectors in Figure
7.24. As it can be seen the Action Mapping contours are very similar. For the same
model, the performance of different methods is summarized in Table 7.8. As it can be
seen the grid algorithm is superior to the others in terms of the number of vectors and
the running time. It is important to remember that the smaller the number of vectors,
the smaller will the finite state controller will be. Thus we will use grid to solve the
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Algorithm Number of Vectors Solution Time

Incremental Prune 32 38 sec.

Witness 31 45 sec.

Grid 5 1 sec.

Table 7.8.: Performances of different methods.
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Figure 7.25.: Action Mapping Contours for different discount rates.

POMDP problems.

7.6.3. Discount Factor

Discount rate is a measure of the risk-taking behavior of the operators. A smaller
discount factor α means that the future rewards have less value compared to the current
reward. Therefore a smaller discount factor represent a more risk averse operator. This
can be observed in Figure 7.25. The model is solved for a borrower. In the case of
congestion, the belief of the operator that the RAN is normal will be close to zero. For
a risk averse operator, let us assume that the α is set to 0.9. If the operator is certain,
that its RAN in a congested state, i.e. q = 0, the minimum belief in the normal donor
state for which borrowing is optimal is 0.32. The same value for an operator with an
α = 0.999 is 0.12.

The α value has also a physical interpretation in terms of the time spent between
decisions. The discount factor α weighs the rewards in a sequential decision problem.
The important question is the calculation of the equivalent weighing in continuous time.
For this one has to refer back to Equation (7.28), which defines α = ν/(β + ν), where
β is the rate with which rewards are exponentially weighted in continuous time, i.e.
R(a, t) = R(a) · e−βt, and ν is the uniformization rate. The uniformization rate is set by
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the arrival rates and the capacities of the individual rates. Then, we can solve for β in
terms of α and ν:

β = ν(
1

α
− 1) (7.44)

1/β is the time-constant of the reward scaling exponential function. This is the time
when the reward is scaled with a value of 1/e. For the alpha values 0.9, 0.99, and 0.999
the corresponding time-constants are 0.06, 0.7 and 7 seconds. We present results for
0.99 and 0.999, since these give us more realistic time-constants.

7.6.4. Borrower Model

We have already presented the optimal value function, Figure 7.21 and the action map-
pings, Figure 7.22 and the action mapping contours for the borrower in Figure 7.25.

Let us explore the action mapping contours a little more in detail. The value q
represents the belief of the borrower that its own RAN is congested. The value p is the
belief of the borrower that the donor is in normal condition. For a congested borrower
the q value will be close to 0. If the borrower is certain that it is in a congested state, it
requires a minimal belief of 0.22 that the donor is in normal condition. As the borrowers
uncertainty about its own congestion state decreases, i.e. as q increases, the borrower
requires more evidence that the donor is not congested. If the borrowers belief, that its
own RAN is not congested is above the value 0.68, borrowing becomes non-optimal.

Luckily, our model is finitely transient, which means that the optimal policy can
be implemented as a finite state controller. We present the finite state controllers for α
values 0.99 and 0.999 in Figures 7.26 and Figure 7.27 respectively. A congested borrower
starts with the leftmost borrow state. For the operator which is more risk averse, and
set the α to 0.99, it takes four consecutive poor MOS readings, i.e. MOS1, to stop
borrowing. For a less risk-averse operator, whose α is set to 0.999 this value is five.

7.6.5. Donor Model

We finally present the donor model. The optimal value function for the donor model
is given in Figure 7.28, which is distinguished from the borrower value function by the
large plateau. Notice that we plot the value function on a (q, (1 − p)) plane. This is
because the donor is willing to donate when the borrower is in a congested state. This
means that it is interested not in the probability that the borrower is in a normal state,
i.e. p, but in the probability that the borrower is in a congested state, i.e. (1− p). The
corresponding action mapping is given in Figure 7.29.

The characteristics of the decision problem can be explored more easily in the contours
of the action maps, which are given in Figure 7.30. The donor operator will be willing
to donate, when the belief that its own RAN is normal is close to one. If the RAN is
certain that is normal, i.e. q = 1, it requires a minimum belief value of 0.4 that the
borrower is congested. As the certainty of the donor in its normal status decreases, it
requires more evidence for the congestion state of the borrower. When the donor belief
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Figure 7.26.: The borrower finite state controller for discount rate α = 0.99

q drops below 0.28, donating is not optimal anymore.
Similar to borrower we are able to formulate a finite state controller for the optimal

policy. This is given in Figure 7.31. A normal donor starts with the action DON on
the top left corner of the finite state controller. It takes three good MOS observations,
i.e. MOS3, for the donor to decide that the borrower is not congested anymore, and to
stop donating.

7.7. HSDPA-WLAN Load Balancing Models

We also applied the POMDP formulation to a load sharing scenario between a HSDPA
RAN and a 802.11g RAN. We use the PS model for HSDPA networks that we introduced
in Section 4.4.3. According to this model, a cellular data RAN employing HSDPA on
five channeling codes and using 7 Watts, can be modeled as a PS server with capacity
1.4 Mbps. As depicted in Figure 7.32 the delay guarantee of 10−2 is to optimistic for
the limited capacity of HSDPA. We therefore choose a grade of service of 10−1, which
allows the HSDPA to be occupied up to ρ = 0.5. In the scenario a congested HSDPA
RAN borrows resources from the normal WLAN RAN.

Borrower value function and action mappings do not differ from the WLAN Balancing
versions. They are depicted in Figures 7.33 and 7.34.
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Figure 7.27.: The borrower finite state controller for discount rate α = 0.999
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Figure 7.28.: Donor Value Function.

Since the action mappings are the same, the borrower finite state controller is similar
to the WLAN balancing case. This finite state controller for HSDPA borrower is given
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Figure 7.29.: Donor Action Map.
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Figure 7.30.: Donor Action Mapping Contours.

in Figure 7.35.
Donor value function and action mapping differ from their WLAN only counterparts.

They are given in Figures 7.36 and 7.37.
The difference of the action mapping and the value function reflects itself in the

structure of the finite state controller for the donor. The FSC depicted in Figure 7.38
is more complex than the ones we presented so far. However, the overall structure
remains, in which negative observations move the agent from donating states closer to
non cooperative states, and positive observations moving the agent closer to donating
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Figure 7.31.: Donor Finite State Controller.
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Figure 7.32.: HSDPA Tchebychev bound.

states. For example starting at the stable donating state, the second donating stage on
the left, it takes three MOS3 observations for the agent to decide that the borrower is
not congested anymore, and go to a non cooperative state. Similarly, after the agent
stabilizes at the stable non cooperative state, i.e. the left most non-cooperative state, it
takes three MOS1 observations to switch to a donating state.
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Figure 7.33.: HSDPA Borrower Value Function.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.2

0.4

0.6

0.8

1

qp

Figure 7.34.: HSDPA Borrower Action Mapping.

7.8. Conclusion

In this Chapter we motivated how single agent decision making solution POMDPs can
be used for the multi-agent problem we have. This necessitates the condition that the
POMDP controllers be used in conjunction with the negotiation mechanisms given in
Chapter 6. In the next Chapter we present the results of the tests of the controllers
under realistic traffic conditions.
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Figure 7.35.: HSDPA Borrower Policy Graph.

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1
−100

−80

−60

−40

−20

0

20

40

60

80

q
1−p

Figure 7.36.: HSDPA Donor Value Function.
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Figure 7.38.: HSDPA Donor Finite State Controller.
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8. Results

In this chapter we put the developed controller models to a test against realistic traffic
conditions. To achieve this we developed a small-scale WLAN testbed and traffic gener-
ation set-up to simulate arrival of a large number of user traffic. We then conducted a
survey of the traffic measurements in the cellular and WLAN networks, and developed a
stochastic model to generate realistic synthetic arrival processes. We than used sample
traffic arrival rates generated by this model as input to the traffic generators in the
testbed. POMDP controllers were tested against these arrival processes.

8.1. Test Scenarios

We will use the following scenarios to test the implementation of user-centric WLAN
load sharing based on POMDP controllers.

• No Sharing: This is the baseline scenario, in which two APs belonging to two
different operators do not share traffic in the case of congestion.

• Agnostic Sharing: In this scenario APs transfer traffic to their peers without
consulting to the QoE database to query the congestion status at the peer AP.

• Omniscient Controller: In this scenario a centralized controller with a priori
knowledge of the traffic fluctuations in both APs balance traffic between the APs.

• POMDP Controller: Both APs run the POMDP controller, and consult the
QoE database to query the congestion status at the peer AP.

We use the No Sharing scenario as the reference scenario against which the benefits of
sharing will be demonstrated. The Agnostic Sharing scenario demonstrates the danger
of load balancing in the absence of congestion information of the peer RAN. Omni-
scient Controller is a hypothetical reference scenario used in performance comparison
of POMDP heuristics, which has access to changes in the system load instantaneously.
Since the optimal solution is not computationally feasible, the omniscient controller is
used as a best case benchmark.

8.2. Test Setup

In order to evaluate the processor sharing modeling and the performance of the POMDP
controllers, a testbed was set up. The network diagram of the testbed is illustrated in
the Figure 8.1. The testbed consists of six Linux laptops that emulate the actual users,
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Figure 8.1.: Testbed diagram.

two WLAN APs running embedded Linux serving these users, a central router linking
these APs to two servers. One of the servers is the source of the FTP traffic, and the
other one is used as the central QoE database. Server-grade Linux operating systems
are running on the servers and the router.

Since it is not possible to emulate congestion in the current high capacity WLAN
access points with the actual user populations that we have to our disposal, we opted
to use a traffic generator based approach. We chose the Distributed Internet Traffic
Generator (DITG) software developed by the Universita degli Studi di Napoli [139], due
to its flexibility and modularity. DITG is based on the well-known TCP performance
measurement tool Iperf [140]. On top of the TCP/UDP traffic generation capabilities of
Iperf, DITG gives the possibility to generate generalized IP traffic with tunable packet
interarrival times, packet sizes and protocols. It can run on different machines, as it
comes with a internal distributed protocol that synchronizes DITG instants running on
different network nodes. A DITG Sender can send packets to a DITG Receiver, running
on different ”flows” allocated to different ports. After the packet generation and packet
reception, timing information is sent to a DITG Log entity, which then computes the
detailed delay, jitter, and bandwidth measurements for all the flows. Finally, a DITG
Manager entity is able to trigger and control another DITG Sender remotely, using the
internal protocol.

In our set-up, a DITG Sender runs on the FTP traffic generator. It is controlled
by the two independent DITG Manager instances running on the individual APs. The
FTP traffic is sent on flows that are received by the DITG Receiver instances running
on the laptops. On each flow, we generate TCP packets corresponding to a request
size that is exponentially distributed with a mean 150 Kbytes, with interarrival times
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also exponential with average 1 second. Each flow can be thought of as 10 users with
exponential page request rate of 0.1 packets per seconds. We increase the number of
flows to increase the offered load to the system. We run tests for 5 minute intervals, and
at the end of these intervals timing information is sent to the DITG Logging component
running on the QoE Database. DITG Logging software calculates the delay and jitter of
each individual packet. We then use the GNU matrix calculation package Octave [141] to
calculate the probability that the delay values exceed 1 seconds for each AP. These values
are written to a file, that can be accessed by the WLAN APs, and therefore constitute
the observations in the POMDP model. We assign the probabilities to MOS values as
follows: If the expected delay is smaller than 10−2, this corresponds to excellent QoE,
and given a MOS of 3. If the expected delay is in the range of 10−2, this is acceptable,
but not excellent. Therefore we assign a MOS of 2. Otherwise, we assign a MOS of 1,
corresponding to an unacceptable QoE.

The APs run the POMDP controller developed in the Chapter 7. At the beginning of
each hour each AP makes an observation on their own RANs to determine their roles,
i.e. if they need to be borrowers, or they can be donors. After their roles are set,
they query the QoE Database for the MOS values in the peer networks at five minute
intervals. The POMDP controllers are implemented as FSCs . Depending on the action
taken, they determine the aggregate traffic that will be accommodated during the next
five minutes. With this value, they use DITG Manager to configure the DITG Sender
on the FTP server to send traffic with the calculated traffic intensity. The value of the
traffic intensity depends on the actions, as well as the inherent traffic intensity within
the RANs that vary over time.We define the used hourly traffic profiles that determine
the incoming traffic intensity in individual RANs in the next section

Finally, we use off-line Octave scripts to gather delay and bandwidth measurements
for each five minute interval.

8.3. Traffic Profiles

8.3.1. Cellular Systems

There are two possible approaches that can be followed to characterize the spatio-
temporal behavior of the traffic in cellular networks. The first option is to track the
RF channel occupancy in different locations via spectrum analyzers. The other option
is to analyze the AAA records in order to extract the aggregate user behavior associated
with a certain base station.

RF Spectrum Measurement Based Surveys

Wideband RF spectrum measurements were undertaken first by regulators to analyze
the spectrum utilization. It was the result of these measurements that led DARPA
to lead the efforts on dynamic spectrum access, summarized well in [21]. One of the
most recent spectrum occupancy surveys was undertaken in two separate locations in
Germany and Netherlands by Wellens et. al. [142], which also contains an exhaustive
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list of previous measurement studies. In their setup, they scan the frequencies from
20 MHz to 3 GHz with an advanced spectrum analyzer for 47 days. They concentrate
purely on the received RF signal power, and perform no demodulation to analyze the
actual contents of the transmissions at different frequency ranges. Since their aim is
to characterize the spectrum holes and their evolution in time and frequency, an actual
demodulation is not necessary. In the following paper [143], the authors use the results
to develop empirical stochastic models that can be used to generate synthetic spectrum
usage data. The main result from this paper that is relevant for our purposes is the model
of the burst intervals. A burst is a series of spectrum measurements, during which the
spectral energy in a given frequency bin is consistently larger than a given threshold. A
burst is the exact opposite of a spectrum hole, and therefore represent the intervals for
during which opportunistic secondary users are nor allowed to transmit. They show by
statistical methods, that the burst periods can be modeled by lognormal or exponential
distributions depending on the load.

A similar energy-detection-only measurement campaign was undertaken by Holland
et. al. during the 2006 Football World Cup in Germany [144]. Their spectrum scans
include a wide range of frequencies: GSM900 (915 MHz - 995MHZ) , DCS1800 (1805
MHz - 1885 MHz), UMTS (2110 MHz -2170 MHz) and Wi-Fi (2.4 GHz). The authors
make spectrum scans in the mentioned frequency ranges before, during, and after World
Cup matches in two different cities. In their paper they present the results only for
the 1800 MHz band. The RF activity stays relatively stable before and decrease during
the matches. Half times cause 15 minute long peaks, with similar peaks occurring right
after the games. The authors also demonstrate that the rate of change in the activity is
smaller for high load periods. Another interesting result is the spatial variation between
two venues, which the authors attribute to the social context. One of the games was a
high emotion game involving the host nation Germany, where as the other one was a
relatively less exciting match. What this shows is that the level of activity is related to
social factors that are completely out of control of the operators, such as the end result
of a football game.

Energy-detection-only studies account for the total emission in a given spectrum, that
includes the signal, the interference and the noise. In order to extract the signal out of
the total emission a demodulation process is necessary. The drawback of this approach
is the increased sampling time, due to the demodulation. The widest study we could
find in the literature is by Kamakaris et. al. [145]. The authors scan the spectrum and
decode the signals for six different operators, three of them using CDMA and three of
them GSM for 27 hours in two different locations in New Jersey, one being a rural city,
the other urban neighborhood with a sampling interval of seven minutes. The main goal
of the authors was to quantify the amount of spectrum being under-utilized due to the
overprovisioning prevalent in the cellular network planning practice. They show that on
the average a CDMA operator overbooks 3 codes out of the maximum 32 codes, and a
GSM operator overbooks 10 channels out of 25 channels to 74 channels at its disposal.
Furthermore the authors characterize the cross-correlation between the load of different
operators during different time frames. The results indicate that 2 hour correlations
vary from 0.4 to 1 and half day correlations between 0.8 and 1. Apart from the different
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Figure 8.2.: Relative arrival rate versus hour of day from [146]

in the peak loads, the other results are similar for urban and low-density test locations.

AAA Records Based Surveys

The second method of profiling the load variations in the cellular networks is to analyze
the call records that the operators hold for AAA purposes. These records are very large
in size, and the operators are not willing to share these confidential records. However,
these records contain direct information about the call durations, call arrivals and partial
information about user mobility. This is in contrast to spectrum measurements, which
allows researchers to deduce the overall utilization indirectly.

One of the most recent and most extensive studies of this sort is by Willkomm et. al.
[146]. This work was also initiated to determine the behavior of cellular users. Whereas
the focus of Kamakaris et. al. is to share the overbooked spectrum among bidding
operators, Willkomm et. al. are interested in allowing secondary users to transmit during
the periods of low utilization. The authors analyze three weeks worth of call records
from a major US operator, Sprint, coming from hundreds of base stations stationed in
urban North California. The call records indicate the call start times, end times as
well as the start end base stations. The granularity of the records are in the order of
milliseconds. Authors first analyze the aggregated call records, which contain records
from all the base stations, and thus are statistically more informative.

The calls are modeled by the interarrival random process T and call duration random
process D. This is a classical stationary queuing theory type of model. The stationarity
interval for the models is shown to be an hour, which means the distributions of these
two random processes are stable in hourly intervals. The arrival process is shown to
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Figure 8.3.: Distribution of call arrival rates from [147].

be Poisson with a rate that changes with the hour of the day. The arrival rate shows
a bimodal or diurnal characteristic, with low relative low activity during the day and
high activity during the night, depicted in Figure 8.2. A similar diurnal pattern of
channel activity is also noted in the work of Kamakaris described earlier [145]. The
call duration times are not exponential like the interarrival times, mainly due to the
abundance of short calls to the mail boxes of the clients who did not answer the calls.
The call duration process is described with two separate lognormal processes for the
night and day, similar to the burst interval in the work of Wellens et. al [143]. It is also
noted that there are short peaks in both arrival rates and call durations that pertain to
the social context, such as a popular TV quiz show. The authors than verify that the
models developed using the aggregate data are able to describe the individual cells, by
the virtue of goodness-of-fit tests. The system model with variable rate Poisson arrivals
and two lognormal call length passes the %95 confidence level tests. The final temporal
characteristic that the authors investigate is the level of variation of load within the one
hour of stationarity. They show that the standard variation of minute long arrival rate
is relatively stable around 0.2 relative to the hourly arrival rate. The ratio of maximum
and minimum minute long arrival rate varies between 0.2 and 0.8 relative to the hourly
arrival rate. Finally the authors show that there is a considerable spatial variation in
usage by calculating the variogram of the one minute arrival rate in non adjacent cells.
The variogram varies between 0.1 and 0.7. The variogram value γ is defined as the
expected mean square difference between the arrival rate in a neighbor location A(x́, ý)
and at a reference location A(x, y)

γ =
1

2
E
[

A(x́, ý)−A(x, y)2
]

(8.1)
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Another long call record analysis is due to Hampel et. al. from Bell-Lucent labo-
ratories [147]. Their motivation for visiting call-records is to estimate the capacity of
cellular base stations for growth planing by taking into consideration the fluctuations in
the traffic seen by the base stations. In this effort they model the load on an base station
as the sum of two components, one representing the mean traffic and one representing
the stochastic variations around this mean. They investigate 49 day long call records to
match the call arrival rates to lognormal distribution depicted in Figure 8.3. Their main
result is that the arrival process is Poisson, whose mean is time variant. Hourly arrival
rate is distributed lognormally around a mean dependent on the time of the day. The
variance of the lognormal distribution is proportional to the time-dependent mean.

In [148] Williamson et. al. used yet more fine grained data than the individual
call records, namely the base station traces of low-level events such as registration of
mobile nodes. They provide a sample 24 hour data-set from a larger data-set spanning
several weeks. They concentrate on the data services, as compared to voice services that
Hampel [147] and Willkomm [146]. They are able to reproduce time-varying Poisson
arrival process similar to the aforementioned works. However they spot a difference in
the peaks that occur in the arrival rate process compared to wired data networks and
cellular voice networks. The authors attribute this difference to the pricing schemes used
for data services.

Other call record based studies of importance are the 2007 study of call duration
distributions from a large GSM network in China by Gui et. al. [149], results from
the analysis of a pioneering data service from 2003 by Tang and Baker [150] and finally
the work of Hollick [151], [152]. Gui shows that the call duration can be modeled by a
lognormal process. Tang and Baker use the wireless modem association data to model the
spatial and temporal characteristics of a pioneering wireless network based on Ricochet
packet radio infrastructure that was deployed in the United States during the early 2000
and late 90s. Bimodal pattern in changing arrival rate was also a feature of this early
radio network. In his work Hollick divided the German city Darmstadt of population
145.000 into zones such as residential, academic, shopping, leisure. He than defines user
types such as students, workers, consumers. By analyzing statistical data obtained from
off-line databases he than defines the notion of attraction of a zone for different user
types, which varies with the time of the day. He finally associates different session rates
and session lengths for different user types. This hybrid model allows simulation of the
spatio-temporal variation of the traffic across the city.

8.3.2. Wireless LAN

One of the first of these measurement studies was carried out by Afanasyev et. al. on the
Google WLAN network deployed in Mountain View, California [131] [153]. The Google
network is composed of 500 wireless lan APs that are part of a mesh network. The access
to the network is unrestricted and free, but Google imposes a 1 Mbps speed limit to the
connections. The authentication uses the Radius protocol. The authors collect Radius
association and de-association messages for 28 days. Furthermore, in order to correlate
the WLAN network usage with Internet usage they collect 5 days of header information
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Figure 8.4.: Distribution of call arrival rates from [153].

from the gateway server that connects the Google WLAN node to the global Internet.
In collecting the Radius reports, the authors chose the value of 15 minutes as the polling
interval. The authors claim that this interval is the period during which the arrival rates
are stationary.

The authors discern three different types of end devices, by observing the MAC address
hardware manufacturer components. There are users that access Google network by
a fixed modem, which acts as a DSL replacement. There are users that prefer their
smartphones, and finally users that treat the mesh network like a traditional hotspot,
and connecting with their laptops. The maximum number of instantaneous devices
is around 2500. For modem-like users the traffic profile is constant, where as diurnal
variations are present in the hotspot and smartphone users, as well as in the aggregate
traffic depicted in the Figure 8.4. There is a pronounced asymmetry in the download and
upload traffic, 3.15 times more download traffic than upload in the aggregate. This ratio
is as much as 7 in smartphones. The dominating protocol in use is TCP. The authors also
quantify the spatial characteristics of the usage. The most busy AP supports 15 clients
on the average, and 95% of the APs serve at least one user on the average. This spatial
variation should be put in context by comparing it to the next recent and important
measurement study we describe.

In [154] Brik et. al. present the results of an intensive measurement study of a com-
mercial WLAN mesh network operational in Madison Wisconsin. In contrast to Google,
which provisions the network access without any contractual bounds, the MadMesh net-
work under study is available on a subscription basis. The network is composed of 250
MAPs (Mash Access Points) which connect to each other on 5 GHz using 802.11 proto-
cols, and act as APs in the 2.4 GHz. The authors undertake three forms of measurement
over a period of months. First of all they collect SNMP logs from all the MAPs with
three minute intervals. Secondly they use sniffing software to track the network usage
passively. Finally they also use active measurements to gauge the end user throughput.
The results indicate a diurnal pattern similar to cellular networks and the Google net-
work. However the peaks occur very late in the night, reflecting the young user base of
the network who tend to use the network after coming home. The spatial distribution
is not uniform, as opposed to Google Mesh: 40% of users connect to the 20 % of the
installed mesh networks. Another key result of this study is the observation of traffic
sharing among users of TCP protocol, i.e. the more users sharing a link, the less TCP
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Figure 8.5.: Distribution of call arrival rates from [160].

throughput they obtain. Finally the authors find many coverage holes, even though the
network has been engineered to provide full coverage in downtown Madison. They relate
the cause of this to the low power setting used by the end user devices: the MAPs can
send packets to the end users, but the end users cannot reply back since their power is
not enough for reaching the MAP.

Before these wide-area measurement studies came out, the WLAN traffic character-
istics were investigated extensively in different settings. Blinn et. al. investigate the
traffic conditions in a network of hot-spots operated by a major US operator in New
York [155]. Kotz, one of the co-authors of the aforementioned study, and Essien present
the analysis of a campus-wide WLAN network in Darmouth college, where the owner-
ship of a laptop is mandatory, in [156]. Sevtsuk et. al. demonstrate a real-time system
that tracks and demonstrates the network load in MIT WLAN network in [157]. Castro
and Balazinska measure the traffic in three buildings of the IBM campus in [158]. In
all these works the diurnal characteristic of the traffic demand is visible. In [159] Jar-
dosh et. al. attempt to analyze the development of congestion in 802.11b WLANs, by
tracking the WLAN usage via passive sniffing during a two day long IETF event. The
set-up for the meeting included 38 WLAN APs. Three sniffers are placed in strategic
locations to track the overall activity in three WLAN channels. This approach is similar
to the energy-detection only measurements done for the cellular networks. The results
indicate that the different channels occupied by different APs experience utilizations
between 20% and 99%. Furthermore, the authors define utilization thresholds based on
the overall throughput: an AP is under-utilized if the utilization is less than 30%, and
it is congested if the utilization is above 84%.

Finally, Hernandez-Campos et. al. develop an empirical model for the spatio-temporal
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Figure 8.6.: Baseline arrival rate.

characteristics of campus WLANs in [160]. Their model is the result of their previous
measurements undertaken in the University of North Caroline Campus [161]. After com-
paring the empirical results of spatio-temporal measurements to the Darmouth College
study and showing that diurnal temporal nature of the traffic as well as the log-normal
spatial distribution are valid irrespective of the location, the authors develop a stochastic
model to describe wireless traffic in campus WLANs. Their model is two leveled. In
the bottom level they describe the session arrival, which correspond to the arrival of
new users, with a time varying Poisson process similar to what has been proposed for
cellular traffic temporal variations. The users than generate a number of flows, whose
inter arrival times are described by a Lognormal process. The size of the individual
flows are described by a BiPareto distribution. The synthetic arrival process produced
by this model is able to replicate the diurnal characteristic of WLAN traffic as depicted
in Figure 8.5.

8.3.3. Hybrid Traffic Model

For generating synthetic arrival processes that are used as inputs to the simulations, we
use various aspects of the WLAN and cellular traffic models.

It is well established that the hourly arrival process follows a time-varying Poisson
process, whose parameter follows a diurnal pattern. In the simulations we use two vari-
ants of the baseline average hourly arrival rate. The profile depicted in Figure 8.6 is used
by two co-located independent access networks, which serve a similar user population.

Another set of baseline average hourly arrival rates is depicted in Figure 8.7. These
arrival rates belong to co-located access networks, which serve different user populations.
It has been observed in campus-wide studies summarized in Section 8.3.2, that the
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Figure 8.7.: Differential arrival rates.

residential and academic WLAN networks experience a second peak into the late hours
of the night, compared to the relative lack of activity in commercial WLAN networks.
This trend is replicated in the differential arrival rate averages in the aforementioned
figure.

If these patterns were deterministic, there would be very few periods, during which
dynamic resource sharing would make sense. However, this is not the case. The hourly
arrival rates fluctuate around the mean given in the diurnal baseline. Hernandez-Campos
et. al. provide the minimum, maximum, average and median hourly arrival rates in [161],
but do not propose a distribution with which the hourly arrival rates vary. Hampel
provides such a distribution for cellular networks in [147]. According to this model, the
hourly arrival rates follow a log-normal distribution around the baseline hourly averages
with a standard deviation of 20% of the hourly average. We extend Hernandez-Campus
model with Hampel’s model, and write the hourly arrival rate λik of operator i at hour
k as:

λik = dik + vik (8.2)

The deterministic component dik is taken from the baseline hourly average arrival
profiles. To this the stochastic component vik is added, which is a zero mean lognormal
random variable with a standard deviation one fifth of the hourly average dik.

Another important property that needs to be taken into account is the amount of
correlation between different access networks. To the best of our knowledge, Salami
et. al. are the only authors who have provided correlation values for traffic on cellular
networks. In [162] they use correlation coefficient values between 0.5 and 1.

We use the following procedure to generate synthetic yet realistic traffic profile. First
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we use the baseline hourly average rates. We use the standard deviations which are
scaled versions of the hourly average rates and the correlation coefficient generate a
covariance matrix. By using this covariance matrix, we generate two correlated normal
variables. We then use the exponential function to obtain the correlated lognormal
random variables. We employ the necessary numerical transformations to assure that
the resulting processes have the desired standard deviations and means. Figure 8.8
presents a scatter plot of two arrival processes with mean 15 and correlation coefficient
0.6 and ten thousand samples. It is worthwhile to not that the arrival rates can grow as
large as 29 and shrink as low as 8.

We present two sample daily traffic profiles in Figure 8.9 and Figure 8.10. Figure
8.9 uses the differential baseline hourly arrival rate averages given in Figure 8.7. Figure
8.10 uses the arrival profile given in 8.7. What one can infer from these sets of figures
are the following. First of all, dynamic resource sharing opportunities occur not during
low utilization hours, but during peak hours. Secondly, as expected, these opportunities
are ample when there is a differential between the baseline hourly arrival rate averages,
such as the case for residential/academic vs. commercial networks. Finally, even if two
operators share the same baseline hourly arrival rate averages, their hourly average rates
may differ substantially to make room for dynamic resource sharing. Furthermore, the
networks change their donor/borrower roles. This is evident for example the hours 12
and 15 in Figure 8.10.
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Figure 8.9.: Synthetic arrival rates for uneven demands.
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Figure 8.10.: Synthetic arrival rates for even demands.

8.4. Test Results

8.4.1. Processor Sharing Modeling

We first verified the validity of PS model for 802.11g RAN. In order to do this, we gather
the delay values experienced by sessions for a period of ten minutes. We then calculate
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Figure 8.11.: Complementary Cumulative Distribution Function

the Complementary Cumulative Distribution Function (cCDF) of the delay values. For
a given x, CCDF (x) gives the probability that the delay values are larger than this
value x. We plot this function in Figure 8.11.

In our model our performance goal was set to strictly less than 0.01. However we
observe that the delay values are in the order of 0.01, and not below. There are two
reasons for not meeting the tighter bound. First of all there is a slight over estimation of
the total capacity of the 802.11 RAN in our model. We used a theoretically computed
capacity of 31 Mbps, as proposed in the literature. The practical RAN capacity is smaller
than this value. However, there is also the important factor about the packet sizes. In
our derivations in Section 7.5.1, we set bounds on delay for demands with a constant size
of 130 kbps. In other words, the tighter limit is for conditional delay. The measurements
on the other hand are for the delay average for all the demand sizes, where the demand
size is distributed exponentially. We assume that the larger delays associated with larger
packets is a contributing factor to increased delay limit. Nevertheless, we are able to meet
a looser delay bound with the original model. The well-known saturation phenomena
is also visible in the plots. After a utilization of 0.7, the delay distributions remain the
same for increasing utilizations.

We can deduce that the PS model we developed for WLAN RANs and TCP traffic in
Section 7.5 can be used for practical purposes. If one concentrates on the value of the
cCDF at x = 1, the values grow to unacceptable levels i.e. P (delay > 1) > 0.1 after
utilization exceeds 0.7. A tighter bound P (delay > 1) > 0.1 is possible for utilizations
smaller than 0.4.
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Figure 8.12.: cCDF of delay for different arrival rates.
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8.4.2. Calculating A Priori Probabilities

In Section 7.4.4, we used intuitive values for the a priori probabilities of the observations.
In this subsection we discuss how these values could be determined from our test results.

To calculate the a priori observation probabilities, one needs to calculate the distribu-
tion of delay values for a given arrival rate. Complementary CDFs calculated for three
different values of arrival rates, λ = 8, 17, 24, is given in Figure 8.12. It can be seen that
there is a one to one correspondence between the traffic arrival rates and the probability
that the delay exceeds 1 seconds. The empirical delay exceedance probability is respec-
tively 0, 6× 10−3, 3.6× 10−1 for increasing arrival rates. These exceedance probabilities
are also used as observations in our model. If this probability is between 0 and 10−2,
the observation is MOS3. If the exceedance probability is in the order of 10−2, then
observation is MOS2. MOS1 corresponds to larger exceedance probabilities.

To calculate the a priori probability of an observation, one has to find the correspon-
dence between arrival rate and the empirical exceedance probabilities. This correspon-
dence can be obtained by gradually increasing the arrival rate, collecting delay values,
and calculating the empirical exceedance probabilities. Once such a correspondence is
established, the a priori probabilities of the observations can be expressed as probability
that the arrival rate is between certain threshold values. In our experiments, we found
that arrival rates less than 13 Erlangs result in exceedance probability less than 10−2.
Arrival rates between 13 and 20 result in exceedance probabilities in the order of 10−2.
Larger arrival rates result in higher exceedance probabilities. Therefore, the a priori
probability of MOS3 is equivalent to the probability that the arrival rate is less than 13
Erlangs. The a priori probability of MOS2 is equivalent to probability that the arrival
rate is between 13 and 20. Thus, an operator with access to long term arrival rates can
easily calculate the observation probabilities. Without access to these measurements,
we opted to use intuitive values.

8.4.3. Performance of POMDP Controllers

We tested our implementation over a 70 minute period by using the traffic profiles
depicted in Figure 8.13. In this scenario the donor has a stable arrival rate of 16 Erlangs.
Borrower on the other hand is facing 22 Erlangs, and cannot meet the QoE requirements.
In the next hour, borrowers traffic demand decreases to 14 Erlangs. The POMDP
controller in the donor is able to deduce this change after three observations, amounting
to 15 minutes. The required time to sense the change in the peer network is a function
of the structure of the POMDP controller given in Figure 7.31 and the length of the
observation periods which is 5 minutes in our implementation.

We present the QoE and the throughput measurements at the donor operator in
Figure 8.14. What we observe is that the donor operator is able to increase its average
throughput 9%, while at the same time keeping the unsatisfied request less than %8.

On the borrower side, it can be observed that borrower is able to reduce the number
of unsatisfied requests from 40% to less than 12%.

Since we varied the arrival rates on hourly basis, there were no sudden spikes in the
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Figure 8.13.: Donor and Borrower Arrival Rates.

traffic profiles. This meant that comparing the performance of the POMDP with the
agnostic controller was not possible. However it is well demonstrated that the traffic
arrival rates can vary, and cause a sudden increase in the arrival rate. If the changes
in the arrival rates in two different operators are not simultaneous, which is the case in
our set-up but more are more realistic, an agnostic controller will not be able to deduce
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Figure 8.14.: Donor Performance Metrics.

this, whereas POMDP controller would be able to.
We can conclude that our POMDP modeling has the limitation that results in a less

tight delay limit to be guaranteed. If one accepts this larger limit, POMDP controllers
are able to increase the throughput of the donor operator, and decrease the probability
that delay guarantees are not met in the borrower operator. An alternative approach
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Figure 8.15.: Borrower Performance Metrics.

to the non-matching limit problem would be to include a safety vector in the model
development process in Chapter 7. Instead of choosing the utilization corresponding to
0.01 in Figure 7.18, one can choose a lower utilization corresponding to 0.1. However,
this would mean that it would be harder for operators to be considered as donors.
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9. Conclusions

At the beginning of this work we set out to demonstrate that real-time resource shar-
ing between operators can be realized by introducing an open database to which users
anonymously report their experiences with different radio access networks owned by
these operators. We believe such a dynamic exchange of resources is necessary, espe-
cially in the face of increasing demand for wireless data access and the long time frames
with which new technologies such as cognitive radio or LTE are accepted on mass scales.
We tried to motivate this by examples in Chapter 2.

It is a point shared by many in the telecommunications industry, that the future of the
wireless landscape is a heterogenous one. Therefore the operators for which we develop
the real-time dynamic resource sharing will be owning radio access networks of different
technologies. At this point, it is crucial to have an modeling approach that can be used
to abstract these different technologies. In Chapter 4, we argued that Processor Sharing
Queue Model is one option for this. One of the shortcomings of the models we developed
in this Chapter is their fixed capacity property. In reality the overall capacity of a radio
access network changes with the number of users associated with it. We have assumed
that this capacity is constant. We have chosen a capacity value, that corresponds to the
saturation capacity, meaning that our model is more conservative to the reality, which
is not necessarily a bad design decision. Nevertheless, one of our future work points is
to introduce load dependence in our models for WLAN and HSDPA.

When two operators must take decisions on how much resources they will exchange,
they must have a framework with which they can combine the processor sharing models
of their radio access networks. We have used Queueing Networks as this framework in
Chapter 5. There are room for improvements in the queueing networks we developed
in this Chapter. Specifically, we have used fixed probabilities for user preferences of
network operators. In real life, and especially in a user-centric environment, the prefer-
ence of the users for network operators is dependant on the relative loads of the radio
access networks. This can be incorporated as load dependent routing probabilities in
the queueing network. Such queueing networks with load dependant routing probabili-
ties can be used to investigate the feedback effects user congestion. Furthermore, single
operator common radio resource management techniques can also be modeled by this
extensions.

When it comes to negotiating the parameter of resource sharing, our aim was to
provide a peer to peer mechanism. The other option is to have a trusted third party
acting as an intermediary. This option requires establishing trust between multiple large
corporations, and can be expected to take years. Peer to peer agreements are easier to
establish, and becoming more common in the industry. We were able to provide such a
negotiation mechanism for single class resource sharing in Section 6.1. For multi-class
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sharing we provided an auctioning mechanism, that can be used by a trusted third
party solution, in Section 6.2. We will work on providing a peer to peer mechanism for
multi-class sharing in the future.

We handled the real-time control problem of resource sharing, after the negotiation
phase in Chapter 7. We provided finite state controllers for borrower and donor radio
access networks, for the single class scenario. We used POMDP framework to develop
these finite state controllers. The individual decision makers considered the actions of
their peers as an environment variable. This means, they did not model the intelligence
of their peers in their decision making. This was not necessary, when the incentive
compatible negotiation mechanism developed in Chapter 6 is used, since cheating is
futile with this mechanism. However for multi-class control, for which no incentive
compatible mechanism was developed, agents should take into account the possibility
that the peer agents might be cheating. To this end we will use i-POMDP abstraction
from multi-agent modeling in our future work.

Finally, we plan to develop an OPNET simulation to validate the performance of the
single class controllers we developed for resource sharing between HSDPA and WLAN
RANs.

184



Bibliography

[1] AT&T Wireless CEO Calls For Action To Avert Capacity Crunch. [Online] Avail-
able: http://blogs.wsj.com/digits/2010/03/23/att-wireless-ceo-calls-for-action-to-
avert-capacity-crunch/.

[2] R. Marvedis. (2009, July) Mobile Operators Threatened More by Capacity
Shortfalls than Growth of WiMAX. [Online]. Available: http://maravedis-bwa.
com/Issues/5.6/Syputa\ readmore.html

[3] E. Halepovic, C. Williamson, and M. Ghaderi, “Wireless Data Traffic: A Decade
of Change,” IEEE Network, vol. 23, no. 2, pp. 20–26, 2009.

[4] [9]. (2009) AT&T Investment in 2009 Will Add More Than 40 New Cell
Sites throughout Illinois. [Online]. Available: http://www.att.com/gen/press-
room?pid=4800&cdvn=news&newsarticleid=26690.

[5] (2010) KINETO SMART Wi-Fi OFFLOAD SOLUTION ADDRESSES NET-
WORK CHALLENGES CREATED BY SMARTPHONES. [Online]. Available:
http://www.kineto.com/pdf/press\ releases/kineto\ Smart\ WiFi\ Solution.pdf

[6] T. Miki, “Community networks as next generation local network planning con-
cept,” in Communication Technology Proceedings, 1998. ICCT’98. 1998 Interna-
tional Conference on. IEEE, 2002, pp. 8–12.

[7] The Milan Civic Network experience and its roots in the town, August 2002.
[Online]. Available: http://dx.doi.org/10.1109/CN.1995.509584

[8] FON Corporate Homepage. [Online] Available: http://www.fon.com/.

[9] Building Wireless Community Networks with 802.16 Standard, December 2008.
[Online]. Available: http://dx.doi.org/10.1109/BROADCOM.2008.55

[10] M. H. Manshaei, P. Marbach, and J. P. Hubaux, “Evolution and market share
of wireless community networks,” June 2009, pp. 508–514. [Online]. Available:
http://dx.doi.org/10.1109/GAMENETS.2009.5137439

[11] A. C. Toker, F. Cleary, M. Fiedler, L. Ridel, and B. Yavuz, “PERIMETER:
Privacy-Preserving Contract-less, User Centric, Seamless Roaming for Always Best
Connected Future Internet,” in Proceedings of 22th World Wireless Research Fo-
rum, 2009.

185



[12] M. Dohler, D. E. Meddour, S. M. Senouci, and A. Saadani, “Cooperation in 4G -
Hype or Ripe?” Technology and Society Magazine, IEEE, vol. 27, no. 1, pp. 13–17,
March 2008. [Online]. Available: http://dx.doi.org/10.1109/MTS.2008.918035
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A. Derivation of Optimal Sharing
Parameter

Operator A is the donor operator, and Operator B is the borrowing one. Furthermore we
assume that PT,A = 0, i.e. the donor does not transfer traffic, Operator B (the borrowing
one) knows the advertised initial delay of the donor operator A termed DA,init, and The
average service demand x is fixed.

We now define the problem, that is to find a suitable PT,B, which satisfies the following
inequalities:

DA(PT,B) ≤ DA,max

DB(PT,B) ≤ DB,max

where DA and DB represent the average delays experienced by the users that choose
operator A or operator B respectively.

The borrowing operator B he would have to take into account that PT,B of his users
will experience the delay at the donor operator A DPS,A and 1 − PT,B of his users is
going to experience the delay of his own DPS,B . Thus we can write

DB = PT,B ·DPS,A + (1− PT,B) ·DPS,B ≤ Dmax,B

Theoretically, for operator B to be able calculate DPS,A, it needs to know Pr,A, which is
not directly available. However, since operator B can query DA,init, it can also calculate
DPS,A without Pr,A by:

DPS,A(PT,B) =

x
CA

1− ρPS,A

DPS,A(PT,B) =

x
CA

1− ρA,init − λ
µCA
· PB · PT,B

DPS,A(PT,B) =

x
CA

x
CA·DA,init

− λ
µCA
· PB · PT,B

and since we assumed that PT,A = 0 we obtain:

ρPS,B = (PB · (1− PT,B − Pr,B)) ·
λ

µCB

Hence we can write:

DPS,B(PT,B) =
x
CB

1− ρPS,B
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DPS,B(PT,B) =

x
CB

1− (PB · (1− PT,B − Pr,B)) · λ
µCB

These can be further simplified to:

DPS,A(PT,B) =
x

x
DA,init

− λPB

µ
· PT,B

DPS,A(PT,B) =
1

1
DA,init

− λPB

µx
· PT,B

Finally by substituting 1
DA,init

we obtain:

DPS,B(PT,B) =
1

CB

x
− λPB

µx
+ Pr,B

λPB

µx
+ λPB

µx
· PT,B

Let’s set k = λPB

µx
:

DPS,A(PT,B) =
1

1
DA,init

− k · PT,B

DPS,B(PT,B) =
1

CB

x
− k + kPr,B + k · PT,B

Furthermore we set m = 1
DA,init

and n = CB

x
− k + kPr,B and obtain:

DPS,A(PT,B) =
1

m− k · PT,B

DPS,B(PT,B) =
1

n+ k · PT,B

We can now write as:

DB(PT,B) =
PT,B

m− k · PT,B
+

1− PT,B

n+ k · PT,B

We substitute PT,B with y and get:

DB(y) =
y

m− k · y +
1− y

n+ k · y

DB(y) =
ny + ky2 + (m− ky)(1− y)

(m− ky)(n + ky)

DB(y) =
ny + 2ky2 +m− ky −my

(m− ky)(n + ky)
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DB(y) =
2ky2 + (n− k −m)y +m

(m− ky)(n + ky)

⇒ DB(y) =
2ky2 + (n− k −m)y +m

−k2y2 + k(m− n)y +mn

Meaning of the Parameters

Let’s try to make a sense of the parameters n,m, k:
For k we have:

k =
λPB

µx

k =
CB

x(1− Pr,B)
· λPB(1− Pr,B)

µCB

k =
CB

x(1− Pr,B)
· ρr,init

For m we have:

m =
1

DA,init

which is the inverse of the initial delay of the donor operator. And finally for n:

n =
CB

x
− k + kPr,B

n =
CB

x
− λPB

µx
+
λPBPr,B

µx

n =
CB

x
(1− λPB

µCB
(1− Pr,B))

n =
CB

x
(1− ρB,init)

n =
1

DB,init

To summarize we have n = 1
DB,init

,m = 1
DA,init

, k =
CBρB,init

x(1−Pr,B) .

Now let’s consider the term k
n
:

k

n
=

CB ·ρB,init

x(1−Pr,B)

1
Dr,init

k

n
=
DB,init · CB

x
· ρB,init

1− Pr,B
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k

n
=

1

1− ρB,init
· ρB,init

1− Pr,B

Let b = k
n
= 1

1−ρB,init
· ρB,init

1−Pr,B
Thus we have k = b · n.

Domain and Constraints

From the precious section we recall that:

DB(y) =
y

m− k · y +
1− y

n+ k · y
and:

m =
1

DA,init
, n =

1

DB,init
, k = n · b

b =
k

n
=

1

1− ρB,init
· ρB,init

1− Pb,B

Range

First the two following conditions must hold. We derive these in the next subsection.

ρA,PS < 1⇒ y <
m

k

ρB,PS < 1⇒ y >
−n
k

Thus:

y ∈]−n
k
,
m

k
[

Since y represents a probability we have y ∈ [0, 1]. This leads to the domain of y:

y ∈ [0, 1]∩]−n
k
,
m

k
[

Using the fact that n = 1
DB,init

> 0 we get:

y ∈ [0, 1], m
k
> 1

y ∈ [0, m
k
[, m

k
≤ 1

Derivations of Range Conditions

For the first condition:

ρA,PS < 1

0 < 1− ρA,PS
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ρA,PS = (PA(1− Pb,A) + PB · PT,R)
λ

µ · CA

ρA,PS = ρA,init +
PBPT,Rλ

µCA

0 < 1− ρA,init −
PBPT,Rλ

µCA

0 <
x/CA

DA,init
− PBPT,Rλ

µCA

0 <
1

DA,init
− PBPT,Rλ

µx

0 < m− kPT,R

Since PT,R = y we get

y <
m

k

For the second condition:
ρB,PS < 1

0 < 1− ρB,PS

0 < 1− (PB(1− Pb,B − PT,R))
λ

µCB

0 < (1− ρB,init) + PBPT,R
λ

µCB

0 <
CB (1− ρB,init)

x
+ PBPT,R

λ

µx

0 <
1

DB,init
+ y

λPB

µx

0 < n+ ky

Thus we get:

y >
−n
k

Derivatives

From:

DB(y) =
y

m− k · y +
1− y

n+ k · y
we get:
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D
′

B(y) =
m

(m− ky)2 −
n+ k

(n+ ky)2

and

D
′′

B(y) =
2m

(ky −m)3
+

2(n + k)

(n+ ky)3

Extrema

Now we set D
′

B(y) to 0 and we get:

y1 =
m

k
·

√
n+k
m
− n

m
√

n+k
m

+ 1

y2 =
m

k
·

√
n+k
m

+ n
m

√
n+k
m
− 1

Simplifications

For the recipient operator to be able to calculate the transfer probability PT,R, it acquires
the value DA,init from the QoE database.

Knowing its initial delay DB,init it will calculate the ratio
DA,init

DB,init
. which intuitively

should be less than 1. We note that this ratio equals n
m
, which again appears frequently

in our derivations. For this reason we will use the following simplification :

r2 =
n

m

Finally with r2 and k = n · b we have:

y1 =
m

k
·

√
n+k
m
− n

m
√

n+k
m

+ 1
=
m

k
· r
√
1 + b− r2

r
√
1 + b+ 1

y2 =
m

k
·

√
n+k
m

+ n
m

√
n+k
m
− 1

=
m

k
· r
√
1 + b+ r2

r
√
1 + b− 1

D
′′

B(y) =
2m

(ky −m)3
+

2(n + k)

(n+ ky)3
=

2

m2

[

1
(

k
m
y − 1

)3 +
r2(1 + b)
(

r2 + k
m
y
)3

]
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Discussion

In this section we show that y1 is the only candidate for the minimum. We achieve this
by showing that y2 lies outside the domain of the function. Recall that we defined the
domain:

y ∈ [0, 1], m
k
> 1

y ∈ [0, m
k
[, m

k
≤ 1

and we have:

y1 =
m

k
· r
√
1 + b− r2

r
√
1 + b+ 1

y2 =
m

k
· r
√
1 + b+ r2

r
√
1 + b− 1

It is obvious that y2 lies outside the domain of the function for all values of r2 as

r2 <
1

1 + b
⇒ y2 < 0

r2 ≥ 1

1 + b
⇒ y2 >

m

k

As for y1 and since we assume that r2 < 1, we have:

r > r2 ∧
√
1 + b > 1⇒ r

√
1 + b > r2 ⇒ y1 > 0

r
√
1 + b

r
√
1 + b+ 1

< 1 ∧ −r2
r
√
1 + b+ 1

< 0⇒ r
√
1 + b− r2

r
√
1 + b+ 1

< 1⇒ y1 <
m

k

Now we know that y1 <
m
k
, but since it is possible that m

k
≥ 1 we need to know for

what values of r2 we have that y1 > 1. In order to find out we note that m
k
= 1

r2b
Thus

we need to solve this inequality:

y1 < 1⇒ 1

br2
· r
√
1 + b− r2

r
√
1 + b+ 1

< 1

⇒
√
1 + b− r < br2

√
1 + b+ br

⇒ 0 < b
√
1 + br2 + (1 + b)r −

√
1 + b

⇒ 0 < br2 +
√
1 + br − 1

⇒ r >
−
√
1 + b+

√
1 + b+ 4b

2b
⇒ r >

−
√
1 + b+

√
1 + 5b

2b

⇒ r2 >
(1 + b) + (1 + 5b)− 2

√
1 + b

√
1 + 5b

4b2

⇒ r2 >
1 + 3b−

√
5b2 + 6b+ 1

2b2
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Minimum

Recall:

y1 =
m

k
· r
√
1 + b− r2

r
√
1 + b+ 1

In order to prove that y1 is the actually a minimum we need to make sure that
D

′′

B(y1) > 0

D
′′

B(y1) =
2

m2

[

1
(

k
m
y1 − 1

)3 +
r2(1 + b)

(

r2 + k
m
y1

)3

]

> 0

⇒
[

1
(
r
√
1+b−r2

r
√
1+b+1

− 1
)3 +

r2(1 + b)
(

r2 + r
√
1+b−r2

r
√
1+b+1

)3

]

> 0

⇒
[

1
(

−(r2+1)

r
√
1+b+1

)3 +
r2(1 + b)

(
r
√
1+b(r2+1)

r
√
1+b+1

)3

]

> 0

⇒
(

r
√
1 + b+ 1

r2 + 1

)3

·
(

1

r
√
1 + b

− 1

)

> 0

⇒ r2 <
1

1 + b

Summary

Thus we have shown that the minimum occurs at minimum at y1:

y1 =
m

k
·

√
n+k
m
− n

m
√

n+k
m

+ 1

under the assumption that:

1 + 3b−
√
5b2 + 6b+ 1

2b2
< r2 <

1

1 + b
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B. OPNET Simulation

B.1. Simulation Scenario

In Section 5.6 we provided a mathematical model for multi-class sharing between multiple
operators with possibly different technologies. In this section, we verify this model and
its associated derivations, by a Discrete Event Simulation, using OPNET [163]. For this
we consider two co-located wireless networks, with different technologies. OP-A is an
802.11g based WLAN-AP with capacity is CA = 31.9 Mbps. Called Op-B, is another
WLAN-AP using 802.11b, which we also model as a Processor Sharing Queuing Station,
with a capacity CB = 5.5 Mbps. In the simulation scenario, Op-A is under utilized and
Op-B is congested. We consider a single role resource sharing, in which OP-A is the
donor and the OP-B is the borrower. Two classes of services are considered. Class-1
stands for HTTP-session requests, and Class-2 stands for YouTube Session requests.
These requests, handled, in a user centric environment, where user can decide which
operator to choose for what type of traffic. The details of the OPNET model can be
found in [164].

The Tchebychev boundaries are calculated using the following parameters:

• Dmax,1 = 4 seconds for HTTP sessions

• Dmax,2 = 1120 seconds, for YouTube sessions

• g = 1% = 10−2 as Grade of Service

The rationale behind choosing the Youtube delay limit is the following. Accord-
ing to most recent measurement studies [165] and [165] the average Youtube session
is 1120 seconds. We assume a relatively constant throughput is available to the user,
and that the video will be interrupted if the download time is above the session du-
ration. Same authors measured the average session size to be 27 MBps, which means
that our delay guarantee is equivalent to an minimum average throughput guarantee of
27× 8× 106/1120 = 192.8Kbps.

The initial states of the operators are depicted in Figure B.1 and Table B.1. Using
those values, we can calculate the debt of Op-B and the surplus of Op-A in terms of
utilization. The results are retained in Table B.2.

We run the simulation with these parameters for a ten hours period. We measure the
actual response time for each session request. In this way we are able to determine if
the grade of service is met or not for each traffic type.
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(a) Overloaded 802.11b based WLAN AP (b) Underloaded 802.11g based WLAN AP

Figure B.1.: State Spaces and boundary lines.

Operator C λ1 λ2 ρmax

Op-B 5.5 Mbps 2.5 12 · 10−3 0.607

Op-A 31.9 Mbps 7.5 38 · 10−3 0.915

Table B.1.: Initial state of the operators.

Operator ρinit,i,1 ρinit,i,2 surplus / debt

Op-B 4727 · 10−4 4712 · 10−4 αB = 3369 · 10−4

Op-A 2445 · 10−4 2573 · 10−4 αA = 4132 · 10−4

Table B.2.: Initial utilizations, debt/surplus

B.2. Simulation Results for the Initial State

The simulation results, for the initial case where we have the overloaded Op-B, and
the under-loaded Op-A are depicted in the Figure B.2. It shows the response time
probability distribution over the response times, for each class and each Operator.

The results show that Op-B is clearly overloaded with, Response times for Class-1
traffic up to 15 seconds. The dashed red line show our chosen Grade of Service boundary
for each class. For class-1 (HTTP) 31.21% of the sessions response times is above the
acceptable threshold of 4 seconds. As for Class-2 traffic (YouTube), we get response
times up to 2311 seconds. 26.42% of the Class-2 sessions response times is above the
acceptable threshold 1120 seconds. On the other side, Op-A is under-loaded with fast
response times below 0.45 seconds for Class-1, and below 50 seconds for Class-2 sessions.
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(a) Op-A Class 1 (b) Op-A Class 2

(c) Op-B Class 1 (d) Op-B Class 2

Figure B.2.: Initial Simulation results

B.3. Sharing

In order to overcome the excess of load, Op-B has, he chooses to use a sharing mechanism
with Op-A, which would improve the his Quality of Service on one side, and elevate the
Op-A’s utilization on the other side. Since the condition CAαA ≥ CBαB holds, we know,
that the two operators are able to enter a sharing agreement, so that they both profit.

Two operators have many options for selecting the suited sharing parameters, depen-
dent on the sharing case they decide to follow. A summary of all possible sharing cases
is depicted in Table 5.2. We choose to single role sharing case as discussed in section
5.6.4, where we derive the constraints on the sharing parameters. The main goal of these
simulations is to verify the theoretical results, derived in the sections 5.6.4 and 5.6.5.
For this reason we choose the following four cases of sharing parameters as depicted in
the Figure B.3.

Figures B.3a and B.3b represent cases where the Op-B shares only Class-1 or Class-2
traffic respectively. We show that, In terms of performance, there is no big difference
what type of traffic to share. The decision here is strategic, and depends on the Service
Layer Agreements (SLA) between the two operators. We compare the number of trans-
fered sessions which corresponds to borrowed resources for each case, and compare these
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(a) sharing 1 (b) sharing 2

(c) sharing 3 (d) sharing 4

Figure B.3.: Different sharing simulations
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Case PT,B,1 PT,B,1

1 0.713 0

2 0 0.715

3 0.5 0.5

4 0.1 0.1

Table B.3.: Different sharing parameters

numbers with the derivations of section 5.6.5. These two cases are referred to as One

Dimensional Sharing cases.
Next the figures B.3c and B.3d represent cases where the Op-B shares both Class-1

and Class-2 traffic. These cases are referred to as Two Dimensional Sharing We show
that, it is necessary for the overloaded Operator to reach a sate below the boundary line,
to guarantee the desired QoS. For this we compare the two final states, both applying
Class-1 and Class-2 sharing. The first (Figure B.3c) has the final state of Op-B below
his boundary line, and the second (Figure B.3d) has the final state Op-B still above his
boundary line.

B.3.1. One Dimensional Sharing Simulation results

The first two sharing cases, represent two options, that Op-B can follow, to overcome the
overload situation. Each one of these option brings Op-B back to exactly his boundary
line, by sharing only one type of traffic. In the following discussion we show when it is
profitable for Op-B to choose which option.

Class-1 Sharing

This is the case depicted in the Figure B.3a. As described in Table B.3, we use PT,B,1 =
0.713 and PT,B,2 = 0. The resulting response times probability distributions are depicted
in Figure B.4.

Figure B.4 shows that with these parameters, an good result in terms of load balancing
is achieved. All the session response times are below their respective thresholds. It also
shows that for Op-A the response times start to get longer. For example, the YouTube
session response is now up to 55 seconds, which is bigger that the 50 seconds we had in
the initial state as shown in Figure B.2b. Nonetheless the response times are still below
the maximum allowed 1120 seconds. On the other side Op-B response times for class-1
and class-2 traffic became much less, compared with the initial case shown in the Figures
B.2c and B.2d.

We Note that, during the ten hours of simulation, Op-B has transfered 64878 HTTP-
sessions to Op-A.
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(a) Op-A Class 1 (b) Op-A Class 2

(c) Op-B Class 1 (d) Op-B Class 2

Figure B.4.: Sharing 1 Simulation results

Class-2 Sharing

This is the case depicted in the Figure B.3b. Only the Class-2 arrival is affected here.
As described in Table B.3, we use PT,B,1 = 0 and PT,B,2 = 0.715. The resulting response
times probability distributions are depicted in Figure B.5.

The results we get here are pretty comparable with the results we get from sharing only
class-1 traffic. Figures B.5 and B.4 show same impact on the response time performance
for the two one dimensional sharing cases. During the same simulation duration of ten
hours, Op-B has transferred 302 YouTube (Class-2) sessions to Op-A. Furthermore we
can see that Op-B is relaxed without hurting the performance of Op-A. All class-1 session
responses are below the 4 seconds threshold., and all class-2 session responses are below
the 1120 seconds threshold.

Discussion

The first what can be concluded, is that the model provide a valid framework for cal-
culating the sharing parameters, that guarantee the profit of both sharing parties. This
profit can be achieved by several. The equation 5.60 gives one possible solution, to help
decide which way to design the sharing, by associating different costs to different session
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(a) Op-A Class 1 (b) Op-A Class 2

(c) Op-B Class 1 (d) Op-B Class 2

Figure B.5.: Sharing 2 Simulation results

request class transfers. This depends on the following term:

c1
x1
− c2
x2

(B.1)

where c1, and c2 are the, per session class respective transfer cost, what the transferring
operator pays for the Donor Operator, x1 and x2 are the respective average session
lengths.

We have shown that in case
c1
c2

=
x1
x2

(B.2)

it will make no difference which sharing case to prefer by the borrower operator.The
Simulation shows that Op-B has to either transfer 64878 HTTP sessions or 302 YouTube
sessions.

These two options would yield the same cost in case:

64878 · c1 = 302 · c2 (B.3)

This verifies the previous derivations since 302
64878 ≈ x1

x2
. This means in case:
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• c1
c2
≤ x1

x2
Op-B would prefer sharing 1.

• c1
c2
≥ x1

x2
Op-B would prefer sharing 2.

• c1
c2

= x1

x2
it would make no difference for Op-B

B.3.2. Two Dimensional Sharing

Now we examine the results of the Two Dimensional sharing, which corresponds to the
Figures B.3c and B.3d. The difference between these two cases, is that, in the first one,
Op-B has the final state below its boundary line, whereas for the second one, Op-B has
its final state above its boundary line.

Two Dimensional Sharing with the Final State Below the Boundary Line

This is the case depicted in the Figure B.3c. For the simulation, we use PT,B,1 = PT,B,2 =
0.5 as described in Table B.3. In this case the final state of Op-B is below its boundary
line. The results are depicted in the Figure B.6. This shows a more clear impact on
Op-A than the cases in Figures B.4 and B.5, where the response times for class-2 traffic
goes up to 60 seconds for Op-A compared with 55 seconds in Figures B.4 and B.5.

(a) Op-A Class 1 (b) Op-A Class 2

(c) Op-B Class 1 (d) Op-B Class 2

Figure B.6.: Sharing 3 Simulation results
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During the ten hours simulation time, Op-B transfers 45651 HTTP sessions, and 214
YouTube sessions to Op-A. Even with balanced costs at the end Op-B will still have
higher cost, compared with the costs it would have to pay in case it have chosen the
transfer parameter that bring it back to his boundary line, and not below. However,
comparing Figure B.4c and B.5c with the Figure B.6c, we can see that the response
times for HTTP-sessions became much shorter, from up to 3 - 3.5 seconds, to up to
almost 2 seconds. Thus transferring more traffic, would grant the Borrower even better
QoS. On the other hand it should not have a final state above his boundary line, as it is
shown in the next simulation case.

Two Dimensional Sharing with the final state above the boundary line

This is the case depicted in the Figure B.3d. For the simulation, we use PT,B,1 =
PT,B,2 = 0.1 as described in Table B.3. In this case the final state of Op-B is still above
its boundary line. The results are depicted in the Figure B.7.

(a) Op-A Class 1 (b) Op-A Class 2

(c) Op-B Class 1 (d) Op-B Class 2

Figure B.7.: Sharing 4 Simulation results

As we can see, even all the YouTube session have a response time below the required
threshold, more then 4% of the HTTP sessions take longer then the required 4 seconds
threshold. This is shown in Figure B.7c, where we still have some occurrence on of
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the right side of the dashed red line. For Youtube sessions of Op-B (Figure B.7d), it
is shown that their response time is terse above the required threshold, since all the
probabilities, in the probability distribution function, occurs on the left side of the
dashed red line, which represents our required threshold of 1120 seconds. The difference
in the performance between the two classes at Op-B can be explained by the different
vulnerability of the different classes. As we set the maximum allowed utilization for
the Op-B, as represented in Table B.1, we choose the maximum allowed utilization
corresponding to HTTP traffic since it was the lower one. Thus YouTube traffic would
tolerate a slightly higher utilization. This is why all of the YouTube sessions, have their
response times below the correspondent threshold, even though HTTP traffic is suffering
a service degradation.
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C. Derivation of Conditional Delay
Distribution

C.1. Introduction

Processor Sharing (PS) service discipline was introduced by Kleinrock as the limit of
round-robin discipline with infinitesimal service time quanta. It can also be interpreted
as a variable rate service discipline, in which the service capacity is shared equally
between the number of customers in the system. This interpretation has gained interest
among researchers in the telecommunications field, where PS models are used to model
shared communication mediums. M/D/1-PS models, where the service sizes are known
and deterministic are relevant for many types of communications applications. In scaling
shared mediums among customers, it is of interest to calculate the expected delay as a
function of number of customers in the system. This requires a closed form expression
of the sojourn time in a M/D/1-PS system as a function of number of customers in the
system. We derive such an expression in this paper.

Yashov [166] and Shalmon [167] provide closed form solutions for the variance of so-
journ time in M/D/1-PS systems, which are not conditioned on the number of customers
in the system. To the best of our knowledge the closest result in the literature is given
by Coffman [30], who calculated the expected sojourn time conditioned on the number
of customers in the system for M/M/1-PS queues.

C.2. Outline of the Derivation

We are considered with a M/D/1-PS system in which customers arrive according to a
Poisson distribution of intensity λ and have a fixed service time of y seconds. Let us
further denote the number of users that a tagged customer finds in the system with N .
Let TN be the sojourn time of a customer who finds N customers upon arrival. The
probability density function sojourn time conditioned on number of customers in the

system is TN (t), where P (S < t|n = N) =
t∫

u=0

TN (u)du. We are interested in finding

a closed form expression for the expected sojourn time conditioned on the number of
customers upon arrival, i.e. E [TN ].
N is a discrete where as TN is a continuous random variable. Their joint distribu-

tion can be described by the generating function of wN (t, s), which is the the Laplace
transform of TN (t):
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E
[
e−sT · zN

]
=

∞∑

N=0

zN
∞∫

t=0

e−stTN (t)dt

=

∞∑

n=0

zNwN (t, s) (C.1)

Ott gives the expression for E
[
e−sT · zN

]
in [31]. It is well known that the derivative

of wN (t, s) with respect to s evaluated at s = 0 gives −E [TN ]:

∂

∂s|s=0
E
[
e−sT · zN

]
=

∞∑

n=0

zN
∞∫

t=0

∂

∂s|s=0
wN (t, s)

=

∞∑

n=0

zN (−E [TN ]) (C.2)

(C.2) is the Z-transform of the expected sojourn time conditioned on the number of
customers in the system upon arrival times minus one. Our approach is to calculate the
derivative with respect to s at s = 0 and evaluate the inverse Z-transform to obtain the
expression for E [TN ]. This approach is similar to Coffman’s for obtaining the expected
sojourn time conditioned on N in M/M/1-PS queues [30].

C.3. Obtaining the Z-transform
The expression for E

[
e−sT · zN

]
is given by:

E
[
e−sT · zN

]
=

(1− ρ)(λ+ s)2e−y(λ+s)

s (s+ λ(1− z)) + {s(1 + z(1− ρ)) + λ(1− ρz)}λe−y(λ+s)
(C.3)

where ρ = yλ is the utilization. Let us define intermediate variables A and B to make
the derivative tractable:

∂

∂s
E
[
e−sT · z−N

]
=

∂

∂s

A

B

=
B · ∂

∂s
A−A · ∂

∂s
B

B2
(C.4)

We evaluate the terms one by one:
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B2 =
{

s4 + 2s3λ(1− z) + s2λ2(1− z)2
}

+ 2
{

s3 [1 + (1− ρ)z] + s2λ(1− ρz) + s2λ(1− z) [1 + (1− ρ)z] . . .

+ sλ2(1− z)(1 − ρz)
}

λe−y(λ+s)

+
{

s2 [1 + (1− ρ)z]2 + 2s [1 + (1− ρ)z]λ(1− ρz−1) + λ2(1− ρz)2
}

λ2e2y(λ+s)

(C.5)

The derivative terms of A and B are given by:

∂

∂s
A = (λ+ s)(1− ρ) [2− y(λ+ s)] e−y(λ+s)

∂

∂s
B = 2s + λ(1− z) + λ(1− ys) [1 + (1− p)z] e−y(λ+s)

− λρ(1− ρz)e−y(λ+s) (C.6)

Only the terms without a s term contribute when s = 0, therefore we get the following
shorter expressions:

B2|s=0 = λ4e−2ρ(1− ρz)2

A|s=0 = λ2e−ρ(1− ρ)
∂

∂s
A|s=0 = λe−ρ(1− ρ)(2 − ρ)

B|s=0 = λ2e−ρ(1− ρz)
∂

∂s
B = λ

{[
1 + e−ρ(1− ρ)

]
+
[
e−ρ(ρ2 − ρ+ 1)− 1

]
z
}

(C.7)

We obtain the following rational function when we insert (C.7) in (C.4):

Z {−E [TN ]} = λ2e−ρ(1− ρz) · λe−ρ(1− ρ)(2− ρ)
λ4e−2ρ(1− ρz)2

− λ2e−ρ(1− ρ) · λ
{
[1 + e−ρ(1− ρ)] +

[
e−ρ(ρ2 − ρ+ 1)− 1

]
z
}

λ4e−2ρ(1− ρz)2 (C.8)

Using the linearity of Z-transform and grouping together the constant terms and the
terms with z we obtain:
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Z {E [TN ]} = λ−1(1− ρ)(eρ − 1)

(1− ρz)2 +
λ−1(1− ρ)(1 + ρ− eρ)z

(1− ρz)2 (C.9)

C.4. Inverting the Z-Transform
When we define K = λ−1(1− ρ)(eρ − 1) and L = λ−1(1− ρ)(1 + ρ− eρ), we have:

Z {TN} =
K

(1− ρz)2 +
Lz

(1− ρz)2 (C.10)

Which correspond to the Z-transform of two sequences of the form nρn. Lets re-write
the terms to obtain familiar Z-transforms:

Z {TN} =
√
K

(1− ρz) ·
√
K

(1− ρz) +
L

ρ

ρz

(1− ρz)2 (C.11)

Note that the Ott uses the definition of Z-transform with the positive powers of z. It
is usually given by the negative powers of z. Nevertheless, the forms are equivalent with
only a change of the region of convergence. The sequence ρNu(N), where u(N) is the
unit step function has the following Z-transform:

Z
{
ρNu(N)

}
=

1

1− ρz |z| < 1/ρ (C.12)

The region of convergence, |z| < 1/ρ includes the unit circle for a stable queue, i.e.
ρ < 1.

Multiplication of two Z-transforms correspond to the convolution of the corresponding
sequences in N . Thus, the first term correspond to the convolution of the sequence
x(N) = ρNu(n) with itself:

x(N)⊗ x(N) =
∞∑

k=−∞

√
Kρku(k) ·

√
KρN−ku(N − k)

= K · ρN
N∑

k=0

1

= K · (N + 1)ρN (C.13)

The second term can be obtained using the differentiation property of Z-transform:
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Z {N · x(N)} = z · d
dz
X(z)

Z
{
N · ρNu(N)

}
=

ρz

(1− ρz)2 (C.14)

We obtain the final expression for E [TN (t)] after we insert (C.14) and (C.13) into
(C.10) and expand K and L:

E [TN ] = λ−1(1− ρ)ρN
{
N
[
(1− eρ) + ρ−1(eρ − ρ− 1)

]
+ (1− eρ)

}
(C.15)

C.5. Discussion

The expression can be interpreted as an application of Little’s theorem, E[TN ] · λ =
E[Number of users who leave behind N users]. Therefore the expression:

(1− ρ)ρN
{
N
[
(1− eρ) + ρ−1(eρ − ρ− 1)

]
+ (1− eρ)

}
(C.16)

gives the average number of customers which leave N users behind.
Another interesting fact is the limiting behavior of the conditional expected sojourn

time, lim
N→∞

E [TN ] = 0. On the one hand one expects the expected service time to be

infinity as the number of jobs increase. On the other hand the actual probability that
there are arbitrarily large numbers of users in the system is practically zero.
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