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Abstract

The objective of this work is to develop algorithms and provide a framework for an e�cient
coupling of free �ow and porous-medium �ow to simulate porous-medium-soil-water evaporation.
The implementation must particularly be capable of simulating laminar free �ows, be fast enough
for applied research, and cover simulations in two and three dimensions with complex geometries.

General We introduce a model for a compositional non-isothermal free �ow coupled with a
two-�uid-phase compositional non-isothermal porous-medium �ow. The free �ow is modeled
with the Navier-Stokes, component and energy transport equations. The porous-medium �ow
is modeled with compositional two-�uid-phase Darcy and energy transport equations. As the
pressure has di�erent orders in the free-�ow and porous-medium-�ow subdomains, the coupling
is not straightforward. Although the simulation of the coupled �ows is motivated by a laboratory
experiment to measure soil-water evaporation caused by wind blowing over a water-�lled porous
bed, we intend to also explore its use in other applications

Conceptual model The free �ow is considered to be incompressible and laminar. We also
assume that air and water follow nonlinear laws that describe their physical properties, and
binary di�usion. Within the porous medium only creeping �ows occur. Many quantities are
averaged and used in a macroscopic sense. We use a formulation of two-phase Darcy law using
the liquid saturation and the gas pressure as primary variables. The component mass fractions are
calculated by Henry’s law and the vapor pressure. The liquid phase may locally vanish leading
to a variable switch, where the vapor mass fraction is tracked instead of the liquid saturation.
We assume that a local thermodynamic equilibrium is valid everywhere within the domain, even
across the interface. We follow the coupling concept proposed by Mosthaf et al. [2011], including
the Beavers-Joseph-Sa�man approach which has a sharp interface between the two subdomains.

Discretization We use a cell-centered �nite volume method (FVM) on an axially parallel grid
to discretize the partial di�erential equations of the compositional two-phase Darcy’s law, the
heat equation in both subdomains, and the component transport in the free-�ow domain. For
the Navier-Stokes equation, we use the marker and cell (MAC) scheme which moves the degrees
of freedom for the velocities towards the edges of the grid elements, forming one secondary,
staggered grid per dimension. The MAC scheme is stable and can be interpreted as a FVM. The
coupling conditions are applied without additional variables along the coupling interface. They
are incorporated as Dirichlet, Neumann or Robin boundary conditions resulting in interface �uxes.

Implementation For the porous-medium �ow, we use the �nite-volume implementation pro-
vided by DuMux. The marker and cell scheme is implemented on top of Dune-PDELab utilizing
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the material laws from DuMux. The grid is split into two subdomains and the grid elements can be
graded. This is especially useful for developing smaller elements closer to the interface. We can use
complex geometries in two or three dimensions. The coupling is provided by a Dune-Multidomain
local coupling operator. The time integration is approximated with an implicit Euler scheme and
an adaptive time stepping. The system of nonlinear equations is linearized by a Newton method.
All contributions to the Jacobian are compiled in one system of linear equations.

Solving the linear system The resulting matrices are di�cult to solve. Although they are
sparse, with a blocked structure of bands of nonzero entries, the matrices contain a saddle point
problem and are nonsymmetric. We solve the matrices with direct methods. We also investigate
iterative methods to get around the computational complexity and memory consumption of the
direct methods: An Algebraic Multigrid (AMG) method, a Schur complement method, and a
Generalized Minimal Residual method (GMRES) preconditioned with the reordering algorithm
MC64 and an incomplete LU factorization with threshold and pivoting (ILUTP). We experience
problems with AMG’s error criteria leading to convergence problems. The Schur complement
method is slow, as the Schur complement, which is not explicitly calculated, lacks preconditioners.
GMRES with ILUTP shows similar results to a direct method, but reveals a restriction on the time
step size for larger problem sizes, �awing a possible speedup compared to the direct methods.

Numerical results We validate our implementation for proper operation with the simulation
of a laboratory experiment for soil-water evaporation. The laboratory experiment consists of a
water-�lled sand box with a horizontal pipe installed on top of the box and a propeller creating a
constant air �ow. We use the implementation to investigate the in�uence of the Reynolds number
on the evaporation rate. Further, we compare the two-dimensional simpli�cation to di�erent
three-dimensional geometries with regard to the e�ects on the evaporation. For low Reynolds
numbers, the geometry of the free-�ow subdomain has a signi�cant in�uence on the evaporation
rate.

Another application involves a geological repository for nuclear waste. We investigate the
water saturation in the concrete ceiling and the rock above a ventilation gallery. Our results
conclude that within the �rst 200 years, only part of the concrete will dry, and the rock will remain
una�ected. This con�rms the same result by another group, though they observe evaporation
rates up to the factor of ten higher.

Our third application is the water management within a polymer electrolyte membrane (PEM)
fuel cell. Neglecting electrochemistry, we simulate the �ow through the gas channels and the
porous layer covering the membrane, including the transport of vapor and liquid water, the
evaporation of water within the porous layer, and how energy and vapor are conveyed away.
In comparison to the above applications, the gas phase �ow is not horizontally parallel to the
porous bed, but is forced to completely enter the porous medium and leave it through a second
gas channel. We also brie�y compare two di�erent gas channel layouts.

Summary We introduce the discretization of the coupling concept and its implementation. We
conduct simulations of applications from di�erent areas. We show the versatility of our approach
and that it can be used as the basis for further research.
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German abstract

Kurzfassung

Ziel der vorliegenden Arbeit ist die Entwicklung von Algorithmen und das Bereitstellen eines Fra-
meworks für die e�ziente Kopplung zwischen einer freien Strömung und einer Strömung in einem
porösen Medium um Bodenwasserverdunstung zu simulieren. Insbesondere muss die Software in
der Lage sein laminare freie Strömung zu simulieren, e�zient genug sein für Anwendungen und
zwei- wie drei-dimensionale Simulationen mit komplexen Geometrien abdecken.

Überblick Wir stellen ein Kopplungsmodell für eine nichtisotherme freie Strömung und eine
nichtisotherme Zwei-Flüssigphasen-Strömung im porösen Medium, jeweils mit Komponenten-
transport, vor. Die freie Strömung ist mit der Navier-Stokes-, einer Komponenten- und einer
Energietransport-Gleichung modelliert, die Strömung im porösen Medium mit einer Darcy-
Gleichung für zwei Flüssigphasen und zwei Komponenten und einer Energietransport-Gleichung.
Die Kopplung wird erschwert durch den Druck, der in den Teilgebieten von unterschiedlicher
Ordnung ist. Die Simulation der gekoppelten Strömungen ist durch einen Laborversuch zu Boden-
wasserverdunstung motiviert, aber auch andere Anwendungen wollen wir untersuchen können.

Modellkonzept Die freie Strömung sei inkompressibel und laminar, die physikalischen Fluid-
Eigenschaften folgen nichtlinearen Gesetzen. Wir beschränken uns auf binäre Di�usion und im
porösen Medium gibt es nur schleichende Strömung. Viele Größen sind gemittelt und werden
makroskopisch verwendet. Die Zwei-Phasen-Darcy-Strömung hat die Primärvariablen Sättigung
der Flüssigphase und Gasphasen-Druck. Die Massenbrüche der Komponenten werden durch das
Henry-Gesetz und den Dampfdruck beschrieben. Stellenweise kann die Flüssigphase verschwinden,
dann wird die Primärvariable von der Wassersättigung zum Dampfmassenbruch verändert. Es
gelte ein lokales thermodynamisches Gleichgewicht, auch über das Kopplungsinterface hinweg.
Wir übernehmen das Kopplungskonzept von Mosthaf et al. [2011], das auf dem Beavers-Joseph-
Sa�man-Ansatz mit einem abrupten Interface zwischen den Teilgebieten beruht.

Diskretisierung Wir diskretisieren mit einer zell-zentrierten Finite-Volumen-Methode (FVM)
auf einem achsenparallelen Gitter alle partiellen Di�erentialgleichungen außer der Navier-Stokes-
Gleichung. Für letztere setzen wir die Marker-and-Cell-Methode (MAC) ein, welche die Geschwin-
digkeitsfreiheitsgrade auf die Elementkanten verschiebt und ein versetztes Sekundärgitter pro
Dimension bildet. Die MAC-Methode ist stabil und kann als FVM aufgefasst werden. Die Kopp-
lungsbedingungen werden ohne zusätzliche Variablen auf dem Interface als Dirichlet-, Neumann-
oder Robin-Randbedingungen angewandt, welche Flüsse über das Interface ergeben.

Implementierung Für die Strömung im porösen Medium kommt die FVM-Implementierung
von DuMux zum Einsatz. MAC wird mit Hilfe von Dune-PDELab und den Materialgesetzen von
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DuMux umgesetzt. Das Gitter wird in zwei Teilgebiete zerlegt, Gitterelemente können stufen-
weise verkleinert werden, was für kleinere Zellen in Richtung der Kopplung verwendet wird.
Außerdem können sowohl zwei- wie drei-dimensionale komplexe Geometrien umgesetzt werden.
Die Kopplung wird mit einem lokalen Operator auf Basis von Dune-Multidomain durchgeführt.
Die Zeitintegration wird mit einem impliziten Euler-Verfahren genähert. Wir linearisieren das
System nichtlinearer Gleichungen mit einem Newton-Verfahren. Alle Beiträge für die Jacobimatrix
werden in einem System linearer Gleichungen zusammengetragen.

Lösen des linearen Systems Die resultierenden Matrizen sind schwierig zu lösen. Sie sind
dünnbesetzt mit einer geblockten Bandstruktur der Nicht-Null-Einträge. Allerdings enthalten
sie ein Sattelpunktproblem und sind unsymmetrisch. Wir lösen sie mit direkten Verfahren, die
eine hohe Rechenzeit- und Speicherkomplexität aufweisen. Wir untersuchen alternativ iterative
Verfahren: ein algebraisches Mehrgitterverfahren (AMG), ein Schurkomplement-Verfahren und ein
GMRES-Verfahren (Generalized Minimal Residual), vorkonditioniert mit einer Umsortierung nach
dem MC64-Algorithmus und einer unvollständigen LU-Zerlegung mit Schwellwert und Pivotisie-
rung (ILUTP). Wir stellen Konvergenzprobleme durch Unstimmigkeiten beim Fehlerkriterium des
AMGs fest. Das Schurkomplement-Verfahren ist langsam, weil ein geeigneter Vorkonditionierer
für das nicht explizite Schurkomplement fehlt. GMRES mit ILUTP erzielt ähnliche Ergebnisse wie
die direkten Verfahren, zeigt aber eine Beschränkung der Zeitschrittweite für größere Probleme,
was mögliche Beschleunigungen zunichtemacht.

Numerische Ergebnisse Wir überprüfen unsere Implementierung mit der Simulation eines
Laborexperiments zur Bodenwasserverdunstung. Der Versuchsaufbau ist eine wassergefüllte
Sandbox mit einer horizontal darüber verlaufenden Röhre mit konstanter Luftströmung. Wir
untersuchen den Ein�uss der Reynolds-Zahl auf die Verdunstungsrate und vergleichen zweidi-
mensionale Vereinfachungen mit verschiedenen dreidimensionalen Geometrien. Für moderate
Reynolds-Zahlen hat die Geometrie des Gebiets der freien Strömung einen signi�kanten Ein�uss.

Eine andere Anwendung ist ein atomares Endlager in geologischen Formationen. Untersucht
wird die Wassersättigung in der Betondecke und dem darüber liegenden Deckgestein eines
Lüftungsschachts. Innerhalb der ersten 200 Jahre trocknet der Beton nur teilweise und das Gestein
bleibt unverändert. Dies stimmt mit dem Ergebnis einer anderen Forschergruppe überein, die
allerdings Verdunstungsraten erzielen, die von unseren bis zu einem Faktor zehn abweichen.

Unsere dritte Anwendung ist das Wassermanagement einer Polymer-Elektrolyt-Membran-
Brennsto�zelle (PEM). Unter Vernachlässigung der Elektrochemie simulieren wir die Strömung
durch die Gaskanäle und die poröse Schicht um die Membran unter Berücksichtigung des Trans-
ports von Dampf und �üssigem Wasser, der Verdunstung in der porösen Schicht und des Abtrans-
ports von Energie und Dampf. Die Strömung �ndet nicht nur horizontal über die poröse Schicht
statt, sondern muss vollständig ins poröse Medium eindringen, um einen zweiten Gaskanal zu
erreichen. Wir vergleichen auch zwei unterschiedliche Anordnungen der Gaskanäle.

Zusammenfassung Wir stellen die Diskretisierung des Kopplungskonzepts und dessen Umset-
zung vor. Wir simulieren Anwendungen aus unterschiedlichen Bereichen. Dabei zeigen wir die
Vielseitigkeit unseres Ansatzes und dass dieser für weitere Forschungen verwendet werden kann.

viii



Contents

1 Motivation 1
1.1 Classi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Fundamentals 9
2.1 Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Porous media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Occurring processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Modeling 25
3.1 Free �ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Porous-medium �ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Discretization 41
4.1 Spatial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Temporal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4 Solving the system of linear equations . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Numerical results 63
5.1 Soil water evaporation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Solving the system of linear equations . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3 Ventilation gallery for a nuclear waste repository . . . . . . . . . . . . . . . . . . 73
5.4 Fuel cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 Finale 83
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Nomenclature 90

Bibliography 93

ix



List of Figures

1.1 General problem of coupled Navier-Stokes/Darcy �ow . . . . . . . . . . . . . . . 2
1.2 Further applications for the setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Phases and their components as they occur in the two subdomains . . . . . . . . 4
1.4 Fuel cell with gas distributor and porous di�usion layer . . . . . . . . . . . . . . . 5
1.5 Alternative coupling approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Stress tensor and shear deformation . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Fluid properties of air and water . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Porous media with the same porosity but di�erent permeabilities . . . . . . . . . 15
2.4 Averaging over pore space to obtain porosity . . . . . . . . . . . . . . . . . . . . . 15
2.5 Interfacial tensions, contact angle and capillary pressure . . . . . . . . . . . . . . 16
2.6 Van Genuchten model with di�erent parameters . . . . . . . . . . . . . . . . . . . 18
2.7 Examples for laminar and turbulent �ow . . . . . . . . . . . . . . . . . . . . . . . 20
2.8 Flow alongside a wall results in boundary layers . . . . . . . . . . . . . . . . . . . 21
2.9 Meaning of evaporation stages for water content in pores . . . . . . . . . . . . . . 22
2.10 Qualitative evaporation rate graphs and characteristic stages of evaporation . . . 23

3.1 Inlet and outlet mass �ow through the x1 faces . . . . . . . . . . . . . . . . . . . . 28
3.2 Stresses on surface and surface forces in x1-direction . . . . . . . . . . . . . . . . 29
3.3 Idea of homogenization for arti�cial porous medium . . . . . . . . . . . . . . . . . 33
3.4 Coupling setup and continuity of normal stresses . . . . . . . . . . . . . . . . . . 37
3.5 Comparison of tangential momentum coupling conditions . . . . . . . . . . . . . 38

4.1 Cell-centered �nite volume �uxes . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Degrees of freedom in the MAC scheme . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Coupling of grid parts discretizing the free and porous-medium �ow . . . . . . . 45
4.4 Subdomain equations and how they are coupled by the coupling conditions . . . 46
4.5 Alternative coupling discretizations . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.6 Structure of exemplary matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.7 Advantageous splits of the linear system along its block structure . . . . . . . . . 54
4.8 Structure of exemplary matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.9 Software basis composed of di�erent Dune modules . . . . . . . . . . . . . . . . . 58
4.10 Logos of Dune and DuMux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.11 Software structure of our coupled free-�ow/porous-medium-�ow simulator . . . 59
4.12 Discretization with MAC scheme for momentum balance equation . . . . . . . . . 61

5.1 Setup of the experiments with a pipe above a sand-�lled and fully water-saturated
box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

x



5.2 Grid for evaporation pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3 Water saturation, vapor mass fraction and temperature over time . . . . . . . . . 65
5.4 Evaporation rate for pipe test case compared with re�ned discretization . . . . . . 65
5.5 Evaporation rate depending on the Reynolds number . . . . . . . . . . . . . . . . 66
5.6 Reynolds number a�ects velocity and vapor mass fraction in lower half of pipe . . 67
5.7 Evaporation pipe test cases in two and three dimensions . . . . . . . . . . . . . . 69
5.8 Comparison of vapor plume for channel and pipe . . . . . . . . . . . . . . . . . . 69
5.9 Evaporation rates for test cases in two and three dimensions . . . . . . . . . . . . 70
5.10 Number of unknowns and number of nonzero elements . . . . . . . . . . . . . . . 70
5.11 Simulation runtimes of various solvers for the linear system . . . . . . . . . . . . 71
5.12 Time step sizes for preconditioned GMRES for the three-dimensional test case . . 72
5.13 Memory usage for various solvers for the linear system . . . . . . . . . . . . . . . 72
5.14 Setup for the nuclear waste repository’s ventilation gallery . . . . . . . . . . . . . 73
5.15 Water saturation and temperature for the ventilation gallery . . . . . . . . . . . . 74
5.16 Evaporation rate for the ventilation gallery . . . . . . . . . . . . . . . . . . . . . . 74
5.17 Cumulative evaporation for the ventilation gallery . . . . . . . . . . . . . . . . . . 75
5.18 Setup for the fuel cell channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.19 Evaporation within the fuel cell’s porous medium . . . . . . . . . . . . . . . . . . 78
5.20 Water saturation within the fuel cell’s porous medium over time . . . . . . . . . . 78
5.21 Top view of the complex gas channel layouts . . . . . . . . . . . . . . . . . . . . . 80
5.22 Water saturation and vapor mass fraction for di�erent gas channel layouts . . . . 80
5.23 Temperature for di�erent gas channel layouts . . . . . . . . . . . . . . . . . . . . 81
5.24 Relative gas pressure in reaction layer for di�erent gas channel layouts . . . . . . 81

xi





Das Wasser ist ein freundliches Element für den, der damit

bekannt ist und es zu behandeln weiß.

Johann Wolfgang von Goethe, 18091 Motivation

Water is essential to life as mankind knows it [Ball, 2005]. We are surrounded by water; it
is part of all humans, animals and plants, as well as in the atmosphere and in the ground

below our feet. Only 35 percent to 40 percent of the world’s precipitation runs o� to rivers and
lakes or seeps into the soil, meaning that the remaining balance evaporates to the atmosphere. On
average, one meter of water evaporates every year. This has an impact on Earth’s energy budget;
more than half of the net solar radiation over the land surface is disposed towards evaporation. In
comparison, photosynthesis usually dissipates less than one percent of the net solar radiation,
with �ve percent dissipation at the maximum. [Brutsaert, 1982] Astonishingly, the knowledge
about this ubiquitous process is inadequate. Rind et al. [1997] report on the discrepancy between
measurements and several evaporation modeling approaches. In order to determine future water
availability, accurate estimates of the moisture transport are crucial.

The evaporation of a �uid inside a porous medium to the surrounding atmosphere is a more
general problem. We are going to investigate the �ow of dry air parallel to a sand-�lled box. This
porous medium has a sharp margin and can contain both gas and liquid. The liquid inside the
porous medium evaporates and di�uses into the free �ow. Outside the porous medium the liquid
only occurs vaporized in the gas as a component. Figure 1.1a provides a schematic diagram of such
a problem. The setup and our numerical examples are based on a lab experiment performed by
Mosthaf et al. [2014]. For a photograph of the setup see �gure 1.1b. This general setup has a wide
range of applications and is not limited to investigations of the evaporation of soil water.

There are several applications related to soil science: In arid regions with high evaporation
potential, irrigated �elds are susceptible to salinization which lowers or destroys their soil fer-
tility. Jambhekar et al. [2015] simulate the evaporation of soil water to analyze this evaporative
salinization. Another application is the underground storage of supercritical carbon dioxide,
as part of carbon dioxide capture and storage (CCS). Oldenburg and Unger [2004] investigated
the consequences of a leakage in the cap rock, leading to the release of carbon dioxide to the
atmosphere where it forms a plume, see �gure 1.2a. The authors found out that the CO2 concen-
tration would remain low enough to not endanger human life on the surface. Often, the solution
outside the porous medium is of no importance, just its e�ect inside the porous medium. So-called
top boundary conditions approximately account for the e�ect of the evaporation without its
computational costs. These boundary conditions are developed by examining the coupled problem
[Tang and Riley, 2013]. Besides storing carbon dioxide in the subsurface, engineers plan to build
underground end disposal facilities for their nuclear waste, too. Zhang [2015] and Masson et al.
[2016] try to predict the evaporation of water from the encircling rock to excavated ventilation
galleries. This helps to estimate the structural integrity of the rock and the galleries for at least a
hundred years. Humans have buried another legacy: 100 million landmines endanger the life of
civilians, especially children. Landmines alter soil moisture and temperature which makes them
detectable at the surface [Smits et al., 2013].
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Figure 1.1: General problem of coupled Navier-Stokes/Darcy �ow (a) schematic diagram with evap-
oration from the porous medium and evolved boundary layer (b) laboratory experiment
motivating our simulation, taken at ETH Zurich, group of Danny Or

The setup can also be applied to technical problems. The industrial drying of wood, brick, food
and similar materials is energy consuming. For several countries, the related energy consumption
accounts for 10% to 25% of total industrial energy consumption. Defraeye [2014] gives an overview
on published research in this �eld. Better simulations could reduce the energy consumption and
improve the quality of the dried goods. Closely related is refrigeration of food bulk [Verboven
et al., 2006]. In some cases, the amount of energy required for evaporation is not a negative quality,
it can be utilized as transpiration cooling of rocket engines to protect engine parts from too high
temperatures for increased reliability and fuel economy [Dahmen et al., 2014]. In fuel cells, based
on proton exchange membranes (PEM), the membranes are surrounded by a thin porous medium
where as little as possible liquid water should remain, see �gure 1.4. The liquid water blocks the
gases for the proton exchange and must be transported away in the gas channel [Baber et al.,
2012]. Cimolin and Discacciati [2013] model a ventilation channel inside a motorcycle helmet,
see �gure 1.2b. The channel transports fresh air to the comfort tissue for cooling and evacuation
of sweat. It prevents overheating of the driver’s head and fogging of the visor. Another group
of applications are biological problems, for example, the simulation of a pre-lens tear �lm on a
contact lens [Usha et al., 2013] or blood vessels surrounding organs and tissue [Discacciati and
Quarteroni, 2009].

1.1 Classification

As various applications exist, there are plenty of publications describing the simulation of the
coupled Navier-Stokes and Darcy �ow to explore these evaporation processes. We are going to
present the objectives of this work, related works using the Beavers-Joseph condition for the
coupling, and alternative coupling approaches.
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Figure 1.2: Further applications for the setup (a) carbon dioxide stored in a geological formation,
leakage leads to a CO2 plume in the atmosphere (b) motorcycle helmet with an included
channel for cooling next to the comfort tissue, after Cimolin and Discacciati [2013]

1.1.1 Objectives

We want to provide a numerical simulator to investigate evaporation of soil water under the
in�uence of wind streaming along the surface. The simulator incorporates all relevant processes
in the soil and atmosphere. The atmospheric processes are a Navier-Stokes �ow of air with vapor
transport. The processes included within the soil are a two-�uid-phase Darcy �ow of water and
air, the transport of one substance as a component of the other, and the evaporation of water.
Both parts involve an energy balance so as to track the temperature, see �gure 1.3.

The parts are coupled with a sharp interface using a Beavers-Joseph condition. We want to
discretize the system of partial di�erential equations with robust numerical, grid-based schemes,
and have chosen the �nite volume method (FVM) and the marker and cell (MAC) scheme in order
to do so. This enables simulations of realistic setups. The whole discretized system is linearized
with Newton’s method, resulting in a monolithic coupling without the need to iterate between
atmospheric and soil parts to solve the system. The system of linear equations is either solved by
a direct method, or uses an iterative method. The later performs a reordering of the matrix to
make it diagonally dominant, preconditions with an incomplete LU factorization, and solves the
system with an iterative Krylov subspace method. This is proposed by Du� and Koster [2001] and
is successfully tested for various problems in Benzi et al. [2000].

With this, we demonstrate the capability to e�ciently simulate lab experiments, a fuel cell, and
a part of a geological repository for nuclear waste. These simulations include complex geometries
and three-dimensional problems.

1.1.2 Related works

Several groups have performed experiments related to this coupled problem. Most experiments
are con�ned to single-phase and isothermal setups, for example, the �ow over a porous bed made
up of regular cylinders [Prinos et al., 2003], velocity measurements close to the interface of a
stack of spheres [Pokrajac and Manes, 2009], or particle image velocimetry (PIV) measurements
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to understand better turbulence over porous media [Suga, 2016]. Dahmen et al. [2014] measure the
temperature with an infrared camera. Davarzani et al. [2014] and Mosthaf et al. [2014] perform
experiments using a wind channel over a porous, water-�lled bed to measure data for simulations
of evaporation. These experiments motivate the simulation setup of this work. Shahraeeni et al.
[2012] identify several characteristics of the evaporation rate of such systems and explains possible
reasons. Defraeye et al. [2016] survey the water content of a drying apple slice with neutron
imaging.

From a mathematical point of view, the coupling of mass and momentum transfers with the
Beavers-Joseph condition is a challenging problem. Discacciati and Quarteroni [2009] give an
overview of more than a dozen analyses and further related experimental and applied works.
Examples of such articles include an asymptotic analytic solution for a coupled problem [Jäger
et al., 2001], a proof of existence and convergence of a weak scheme [Layton et al., 2002], and
a coupling scheme for various discontinuous Galerkin methods [Kanschat and Rivière, 2010].
All of these works are limited to single-phase isothermal problems. But there are exceptions. In
Çeşmelioğlu and Rivière [2012], the authors proof the existence of a weak solution of a coupled
Stokes/Darcy problem with a component transport. And Ervin et al. [2015] examine a quasi-
stationary Stokes/Darcy system again with a component transport. We are not aware of any paper
presenting mathematical proofs concerning coupling and energy transport or two-�uid-phase
Darcy �ow.

Several works address the e�ciency of coupled Stokes/Darcy simulations. Chidyagwai and
Rivière [2011] propose the use of a two-grid method. Badea et al. [2010] compare di�erent
linearizations for the coupled problem and report the convergence of Newton’s method to be
inferior to the ones of a �x-point or a Richardson iteration. Iterative Dirichlet-Neumann coupling
schemes between the two subdomains are examined by Discacciati [2004], resulting in a harsh
limit concerning the time-step size. Numerical tests with our code base did not show an advantage
of the iterative single-phase coupling over a monolithic coupling with respect to the computational
e�ort, at least with a direct solver for the linear system [Ackermann, 2016]. A Robin-Robin coupling
yields a better iterative coupling scheme [Discacciati et al., 2007, Birgle et al., 2017]. As the Navier-
Stokes equation needs a �ner temporal resolution, the coupled system can be calculated with
coarse time steps and simulate the atmospheric part in-between more often with smaller time steps
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Figure 1.4: Fuel cell with gas distributor and porous di�usion layer (a) schematic diagram (b) left:
gas distributor with included gas channel used in laboratory experiment; top right:
porous di�usion layer, courtesy of University of Stuttgart, group of Gerhart Eigenberger

[Rybak and Magiera, 2014, Rybak et al., 2015]. Discacciati and Quarteroni [2004] introduce a Schur
complement preconditioner for the coupled problem. More general preconditioners for coupled
problems have been proposed, for example, in Howle et al. [2013]. There are publications using
ILU methods as preconditioner for saddle-point problems arising from the pure Navier-Stokes
equation without a coupling, but this solution strategy is known to have limitations [Zeng and
Wesseling, 1995, Konshin et al., 2015].

Without the burden of analyzing the complex system of partial di�erential equations, applied
scientists study coupled evaporation problems with numerical software. The review article from
Defraeye [2014] presents 20 di�erent implementations of Stokes/Darcy coupling to simulate drying,
but many use simplifying assumptions compared to our setup. An early work is Salinger et al.
[1994] simulating spontaneous ignition of coal stockpiles with a non-isothermal compositional
coupling. Defraeye et al. [2012] present a non-isothermal two-phase compositional Darcy �ow
coupled to a non-isothermal Stokes �ow. The main di�erence here comes from the coupling,
where the �ow in the porous medium is calculated �rst, the �uxes across the interface second,
and the free �ow third. Masson et al. [2016] have a similar setup, but pre-calculate the free �ow
and only solve the energy and the component transport coupled to the porous-medium �ow.
Compared to our setup, the work from Dahmen et al. [2014] does not include the vapor mass
fraction transport in the free �ow. Our work is the successor of another implementation based on
DuMux [Mosthaf et al., 2011, Baber et al., 2012, Mosthaf et al., 2014, Fetzer et al., 2016]. The main
di�erence is the used discretization scheme, namely a �nite volume scheme compared to their
equal-order scheme which tends to oscillations in the Stokes �ow.

1.1.3 Alternative approaches

There are alternative approaches that are used to simulate a free-�ow/porous-medium-�ow
coupling. We present a selection of approaches, see �g 1.5 for a schematic comparison.

The most straight forward method is a pore-scale simulation of the whole system without any
coupling condition. This can be done with a Navier-Stokes discretization as in Chandesris et al.
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Figure 1.5: Alternative coupling approaches (a) pore-scale simulation (b) Brinkman (c) interface
control domain decomposition (d) smoothed particle hydrodynamics

[2013] or by solving the discrete Boltzmann equation with a lattice Boltzmann method [Krafczyk
et al., 2014]. For both variants, the pore geometry must be resolved which requires a �ne grid and
leads to a high computational demand. The pore geometry must be either simple or obtained from
a computer tomography scan. These dependencies limit the domain size to small lab samples.
Two-phase �ow computations exacerbate the problem with the computational costs. Pore-scale
simulations are often used to evaluate coupling concepts [Fattahi et al., 2016] or to obtain e�ective
parameters for upscaled models [D’Hueppe, 2011].

The Brinkman equation [Brinkman, 1949] combines Darcy �ow and Stokes �ow. A parameter
blends the portions of both equations. This leads to a transition zone between the free and the
porous-medium �ow. In numerical simulations, the transition zone must maintain a certain
thickness. Krotkiewski et al. [2015] use the Brinkman equation to simulate a fractured porous
medium obtained from a computer tomography scan. A comparison between an implementation
using a Beavers-Joseph-type coupling and an implementation using a transition layer modeled by
a Brinkman domain shows good agreement when the transition layers are small and have low
permeabilities [Nield and Kuznetsov, 2009]. The Brinkman equation is easy to implement and
is used in commercial codes [Cimolin and Discacciati, 2013]. The application of the Brinkman
equation for larger domains is challenged by Nield [2009]. We are not aware of any work extending
the Brinkman model to two-phase �ows in the porous medium.

The interface control domain decomposition (ICDD) method uses overlapping subdomains. It is
a recent idea, presented by Discacciati et al. [2016], to get rid of the Beavers-Joseph condition. In the
overlapping region, the Stokes and the Darcy �ow are present. This is physically justi�ed, as the
free �ow enters the porous medium to some extent. The coupling is achieved by Dirichlet boundary
conditions for pressure and velocity at the ends of the overlapping domain. The gap between the
overlapping solutions is minimized. Compared to a Robin-Robin or Dirichlet-Neumann coupling,
we expect that the ICDD leads to a better converging domain decomposition method.
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A di�erent way to simulate �ow would use smoothed particle hydrodynamics (SPH) methods.
These methods are not based on a mesh but represent the �ow by a large number of small particles.
The particles move similar to the �uid and maintain some of the �uid’s properties, for example,
its density. Shao [2010] presents an interaction of water inside and outside of a porous medium.
Basser et al. [2016] use SPH to simulate a water tank with a porous bed where salt water displaces
the less dense fresh water.

1.2 Outline
This chapter explains the motivation behind this work and outlines the goals of the work at
hand. Chapter two introduces the basic physical concepts, for example, pressure, phases and
porous media, and important processes like di�usion and evaporation. The third chapter describes
the mathematical model, i. e., the relevant processes are modeled as mathematical equations.
Especially partial di�erential equations are an important tool. In chapter four the equations are
discretized to render a computational approximation possible, and the used schemes as well as
the implementation are presented. Chapter �ve contains numerical results to demonstrate the
capabilities of the implementation and its applications: We will simulate a laboratory experiment
concerning soil-water evaporation, a part of a nuclear waste repository in a geological formation,
and a section of a fuel cell. The �nal chapter concludes with the summary of results and an
outlook.
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מממה׃ מד אא ממה מנני־ פפפ מפכל־ מאאת־ ה  פשש הה פו ארץ  מה המן־ ה  אע מיי ד  קקקפו אקא ללל קאא

Genesis, 2:62 Fundamentals

Before we dive into the coupling of di�erent �ow regimes, we will sort out the involved
scales, introduce the basic terms and physical phenomena related to the physics of soil water

evaporation. The basis of this chapter, and the sources for further reading, are the books White
[1999], which gives more details about �uid mechanics, Bear [1972], which is a classic with respect
to �ow in porous media, and Helmig [1997], which describes multi-phase �ows in porous media.

2.0.1 Scales

To describe and model the physics of soil water evaporation, we need to discuss di�erent scales.
The molecular scale describes the molecules, i. e., the positions of all molecules and their

interaction. In general, applications contain too many molecules to simulate them directly, for
example, one mole of water weights approximately 18 grams but contains more than 1023 molecules.
Nevertheless, the properties and the behavior of the molecules determine �uid properties like
density, viscosity and wettability. The molecules are a discrete representation of the system.

The microscopic scale averages the molecules to create continuous quantities. The �uid phases,
their properties and the pore geometries are resolved in a discrete way. The motion of the �uids is
described by multiphase Navier-Stokes equations.

For the porous medium, we use in general the macroscopic scale, which integrates over numer-
ous pores. The size of the averaged volume must be large enough to avoid quantities with �uctu-
ating properties. It should be small enough to preserve in�uential features like low-permeability
lenses. Such a volume is called a representative elementary volume (REV). The porous matrix and
the phases are represented as porosity, saturations, pressures, and velocities which are averaged
quantities.

Usual time scales for free �ows are seconds or microseconds; for porous-medium �ows the
usual time scales span hours, days or even weeks. Given that each domain has an entirely di�erent
scale, coupling the domains is challenging, and results in an increase of computational e�ort.

2.1 Fluids
If a substance resists shear stress, it is a solid, otherwise in general a �uid. Fluids are further
classi�ed into liquids and gases, varying in the e�ect of cohesive forces. Liquids have strong
intermolecular bonds, a de�nite volume and no �xed shape; in a gravitation �eld, they form a free
surface. Gases have weak bonds resulting in small cohesive forces. They have no de�nite volume
but spread apart until they are held by a con�nement or they form a hydrostatic atmosphere. In
our applications, we will be investigating all three realms, with air and vapor as gasses, water as a
liquid, and the porous medium as a solid.
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2.1.1 Phases and components

Two �uids do not necessarily blend, for example, rain drops don’t mix with the surrounding air.
Immiscible �uids form phases with distinct �uid-�uid interfaces between them. Within a phase,
thermodynamical properties are locally homogenous with abrupt changes across the interfaces.
We denote general phases with α . Miscible �uids form one phase, called a solution. In other words,
a phase may consist of multiple components κ. Gases are miscible with other gases, just as the gas
phase air is made up of di�erent components. A system cannot have more than a single gaseous
phase.

For the mixing ratio of a phase α we use the mass fraction

Xκ
α :=

mκ
α

mα
(2.1)

with the mass of the componentmκ
α and the total mass of the phase mα . As already indicated by

the name, the mass fractions total one ∑
κ

Xκ
α = 1. (2.2)

Likewise, a phase can be partitioned by the component’s amount of substance nκmole,α . This is
called mole fraction and is de�ned as

xκmole,α :=
nκmole,α

nmole,α
(2.3)

with the phase’s total amount of substance nmole,α . The amount of substance describes the number
of molecules. It is measured in moles. The mass fraction and the mole fraction are convertible via

Xκ
α =

xκmole,αM
κ∑

ι x
ι
mole,αM

ι
(2.4)

with the component’s κ molar mass Mκ and ι iterating over all components of the phase α .
An example of the above concepts would be a glass of champagne. The glass is solid and inside

the glass are a liquid and a gaseous phase. The liquid phase champagne has the components
water, alcohol, dissolved carbon dioxide, and some more. The gaseous phase is found above the
champagne’s surface and within the gas bubbles which ascend toward the surface. The surface
forms a clearly visible interface between the liquid champagne, the gas bubbles, and the gaseous
phase above. Eventually the champagne goes stale, no more gas bubbles appear and the mass
fraction of carbon dioxide in the champagne has dropped.

Gibbs’ phase rule

number of unknowns = number of components − number of phases + 2 (2.5)

indicates the number of unknowns required for a mathematical description of a system consisting
of multiple phases and components.

10



σ1

σ1

σ2 σ2
τ12

τ12

τ21

τ21

(a)

φ φ

v = ∆v

v = 0

∆x2

∆v ∆t τ

τ

(b)

Figure 2.1: (a) Components of the stress tensor σ in two dimensions (b) Shear deformation in a
�uid, after [White, 1999]

2.1.2 Kinematics
The motion of a �uid is described by its velocity v , which is a vector �eld.

Inside a �uid the molecules exert forces on each other. On the averaged continuum scale, these
internal forces are called stress σ and are expressed as a tensor

σ =
*..
,

σ1 τ12 τ13
τ21 σ2 τ23
τ31 τ32 σ3

+//
-
. (2.6)

The diagonal entries are normal stresses which describe compression or tension. The compression
stress relates to pressure p := −1

3
∑

i σi which is scalar. Pressure di�erences and gradients drive
�uid �ows and are often more important than the absolute pressure level. The o�-diagonal stress
entries are called shear stresses τ and represent forces perpendicular to an in�nitesimal cross
section, for a two-dimensional example, reference �gure 2.1a.

2.1.3 Fluid properties
A sheared �uid moves at a strain rate proportional to µ−1. This property is called dynamic viscosity
µ and is a measure for the �uid’s resistance to deformation.

A �uid’s mass per volume is called its density ϱ. Closely related to density is compressibility. If
a �uid is compressed by a slightly increased pressure, the �uid’s density has a strong pressure
dependency and is called compressible. Incompressible �uids maintain their volume despite
pressure changes. Compressibility must be considered when high velocities occur. Velocities
below 30% of the speed of sound a are considered incompressible. Table 2.2 contains the values for
the speed of sound in air and water. The speed of sound in air grows moderate at a rate of roughly
0.6 m/s per Kelvin of increased temperature [Siekmann and Thamsen, 2008]. For the applications
we have in mind, we stay below 30% of these values by at least a factor of ten. In the following,
we will always assume incompressible �uids.

The ideal gas law
ϱ =

p

Rs,gT
(2.7)
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Table 2.2: Fluid properties of air and water at p = 105 Pa, after Siekmann and Thamsen [2008]
Dynamic viscosity Density Speed of sound

Air 18.0 · 10−6 kg/ms 1.188 kg/m3 347 m/s

Water 1.002 · 10−3 kg/ms 998.2 kg/m3 1 400 m/s

Remark T = 20◦C T = 20◦C T = 25◦C

relates pressure p and temperatureT with density ϱ. The speci�c gas constant Rs,g can be obtained
by Rs,g =

R
Mg

with the gas’ molar mass Mg and the ideal gas constant R = 8.314 J/mol K. Instead, the
constant can be measured as Rs,g = cp − cV using the gas’ speci�c heat for a constant pressure cp
and the gas’ speci�c heat for a constant volume cV.

In a mixture of gases, each component κ has a partial pressure pκg . This is the hypothetical
pressure of the component, if all other components were to be removed, while the volume and the
temperature were kept constant. According to Dalton’s law, the sum of partial pressures of all
components equals the total pressure of the gas mixture

pmole,g =
∑
κ

pκg, (2.8)

assuming ideal gases. For an ideal mixture of gases, the ratio of partial pressures is the same as
the ratio of the amount of substance

xκmole,g =
pκg

pg
. (2.9)

Further, according to Henry’s law, the partial pressure pκg of a gas is proportional to the molar
mass fraction of dissolved gas xκmole,g in a liquid

xκmole,g =
pκg

Hκ
. (2.10)

This law is limited to dilute solutions. The Henry coe�cient Hκ is speci�c to the two substances,
and depends on the temperature. It can be calculated for air and water as

H a
air,water(T ) =

1010

0.8942 + 1.47 exp (−0.04394 1/K · (T − 273.15 K))
. (2.11)

The formula results from a �tting to tabulated data [Finsterle, 1993].
For a liquid in contact with another substance, a free interfacial energy develops between them,

because each phase has di�erent inter-molecular attractions at the contact surface. A surface with
free energy tends to contract, leading to interfacial tension. E�ects of this include the surface
tension and the tendency of small amounts of water to form drops.

When a shear stress τ shears a �uid element, like in �gure 2.1b, common �uids like water and
air approximately ful�ll

τ = µ
d

dx2
v1. (2.12)

These �uids are called Newtonian �uids.

12



2.1.4 Internal energy and temperature
For all materials, its molecules have a random movement which sums up to zero. Besides moving,
molecules do also spin, vibrate, and move in other ways we will not further consider because they
are related to chemical reactions or radioactivity.

Relative to the material’s mass, this is subsumed as the material’s speci�c internal energy u.
According to the �rst law of thermodynamics, the speci�c internal energy for a closed system is
constant under any transformation. If we consider the work to change the volume of the material
as well, we get the speci�c enthalpy

h := u +
p

ϱ
. (2.13)

For multiple components, the speci�c phase enthalpy is approximately the component speci�c
enthalpies, weighted by the component mass fraction

hα =
∑
κ

hκαX
κ
α . (2.14)

This relation is solely used for the gaseous phase. For the liquid phase enthalpy, we use the one of
liquid water hl = h

w
l because only small portions of air can dissolve in water.

The state changes consume additional energy, called enthalpy of vaporization and enthalpy
of fusion. This share of the internal energy is referred to as latent heat. The remainder is the
sensible heat. The temperature T quanti�es the sensible heat. More sensible heat leads to higher
temperatures, while the latent heat does not a�ect the temperature. The speci�c heat capacity
c indicates how much the temperature is increased by added heat. Between two points with
di�erent temperatures a sensible heat �ux establishes from the hotter point to the cooler one until
the temperatures equalizes. A related material property is the thermal conductivity λ.

The speci�c enthalpy is described as a function of temperature and phase pressure. For liquid
water and vapor we use the thermodynamic formulation given by the IAPWS [2007]. For air we
use ha(T ) = 1005 J/kg K(T − 273.15 K) [Kays et al., 2005].

If a variable has the same value throughout the whole system, it is in equilibrium. When
the values change little in a small surrounding volume and a small slice in time, it is in local
equilibrium. If local mechanical, thermal and chemical equilibrium occur together, it is called
local thermodynamic equilibrium; with other words, pressure, temperature and component can be
considered locally constant. In the following, we assume local thermal thermodynamic equilibrium.
As a consequence, at a given point, all components, phases and the soil matrix have the same
temperature. All movements are slow enough to allow the temperature to equilibrate. This holds
across the coupling interface, too.

2.2 Porous media
A porous medium is a solid material that contains pores, which are connected to allow the �uid to
move through the pores. Examples for porous media are soil, rock, biological tissue like human
skin, food or wood, and manufactured materials like concrete or ceramics. When the pores contain
n �uid phases, it is a n+1-phase system. From now on, we refer to �uid phases just as phases and
explicitly name the solid phase.
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We assume the matrix to be neutral, without sorption, dissolution or similar processes. Further,
the matrix and the pores do not change, neither in their position nor their size. There are scenarios
where these assumptions are not valid, such as a drying tomato, a �exing muscle, or a clogging
�lter.

2.2.1 Properties
Porous-media properties are di�cult to obtain and are subject to high uncertainty. Measurements
are limited to either small samples which are examined in a lab or to larger areas treated with
pumping tests which cannot reveal heterogeneities. Computations on the microscale with a
fully resolved pore geometry are resource consuming. A common approach is to average the
quantities and solve the problem on the averaged macroscale. With the representative elementary
volume (REV) technique, we smooth the physical properties which oscillates strongly in space.
The averaging leads to a model with a predictive power that is easier to solve.

The porosity ϕ is characteristic for a porous medium. For a given volume V , it is the fraction
not occupied by the matrix. For a formal de�nition, we use a characteristic function

χpore(x ) :=



0 x ∈ solid matrix
1 x ∈ pore space

for all x ∈ V , indicating pore space in the microscale. Integrating χpore over the volume of interest
V de�nes the porosity

ϕ :=
1
|V |

∫
V

χpore(ξ ) dξ (2.15)

which is a macroscopic quantity. The �uids cannot �ow through isolated or dead-end pores; these
are excluded by the de�nition of the e�ective porosity. Here, we always mean e�ective porosity
when we use the term porosity.

The second characteristic and macroscopic value is the permeability k of the porous medium. It
describes the ease of a �uid �owing through the pores. It is possible to have di�erent permeabilities
in di�erent directions. Layered structures or the pore structure like in �gure 2.3 are reasons for
this. We will consider only isotropic permeabilities, which only depend on the location and are
otherwise immutable. The permeability is sometimes called intrinsic permeability to distinguish
it from the relative permeability introduced later.

2.2.2 Averaging
The crucial point in our de�nition of porosity (2.15) is the size of the volume V , the REV. If this
volume is chosen too small, the averaged property ϕ still oscillates. If it is chosen too large, the
averaging might smooth out relevant features. Usually a REV covers hundreds to thousands of
pores.

An arti�cial example is the porosity calculation for a porous medium composed of periodic,
same-sized circles, see �gure 2.4. Averaging by a rectangular REV with the edge length a reveals a
strong in�uence of the size a, that decreases for larger a. A good approximation of the theoretic
limit lima→∞(ϕ) = 1 − π/4 ≈ 0.22 is reached for modest sizes of a. Also notable are di�erences
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Figure 2.3: Porous media with the same porosity but di�erent permeabilities (a) same permeability
in x1 and x2 direction (b) interlaced grains, more permeable in x1 than x2 direction
(c) distorted grains increase the anisotropy further
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Figure 2.4: Averaging over the pore space yields the porosity, the dependency on the location
diminishes with the growing size of the REV, after Holzbecher [1996]

in the porosity depending on the location, which again diminishes for larger a. Both e�ects are
exaggerated by the regularity of this arti�cial porous medium, where real-world porous media
will behave less strikingly. For our simulations, the size of the REV is of minor importance. We
assume that the used values are measured in consideration of a suitable REV and that we can use
the resulting function as if they were continuous [Holzbecher, 1996].

2.2.3 Fluids within porous media

If the pores are �lled with immiscible �uids, the saturation Sα of a single �uid α describes the
fraction of the pore space, �lled with α . Similar to the de�nition of the porosity, we introduce a
characteristic function

χα (x ) :=



1 phase α present at x
0 else

for all x ∈ V . Again, we integrate χα over the volume of interest V to de�ne the saturation

Sα :=

∫
V
χα (ξ ) dξ∫

V
χpore(ξ ) dξ

. (2.16)
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Figure 2.5: Interfacial tensions and contact angle θ for a (a) wettable drop on a surface (b) with
interchanged wettabilities. (c) Partially water-�lled pore, resulting in a pressure
discontinuity.

Some fraction of a phase remains trapped in small pores or covering the grains as a thin �lm. This
remaining fraction of the phase is called the residual saturation Sα ,r of a phase α . As this fraction
does not a�ect the relevant processes, we treat it as part of the matrix and exclude it by using the
e�ective saturation

Sα ,e :=
Sα − Sα ,r
1 −

∑
ι Sι,r

(2.17)

instead of the saturations without further distinction.
It is evident, that the �uids �ll the complete pore space,∑

α

Sα = 1. (2.18)

We limit ourselves to porous-media systems containing two phases. Systems with more phases
are common in petroleum engineering [Natvig and Lie, 2008] or groundwater remediation [Class
and Helmig, 2002].

Within a porous medium, the interfacial tension between two immiscible �uids has additional
e�ects. In contact with a solid wall, the surface and the wall draw a speci�c contact angle θ , see
�gure 2.5a and 2.5b. Young’s equation for surface wetting

cos(θ ) =
γsg − γsl

γgl
(2.19)

describes cos(θ ) by the involved surface tensions γ . As a consequence, an equilibrium does not
exist for γsg − γsl > γgl. Instead, the liquid spreads inde�nitely over the solid wall. A �uid with an
acute contact angle θ < π is called a wetting �uid, a �uid with an obtuse contact angle θ > π is
a nonwetting one. The wettability depends on the both �uids and the solid, replacing one can
change the wettability. For example, given the two �uids water and air on a piece of cloth, usually
water is the wetting �uid. After the piece of cloth is treated with polytetra�uoroethylene (PTFE
or Te�on), air acts as the wetting phase and water drops roll o�. The piece of cloth becomes, to
some extent, water-proof.

When two immiscible �uids meet within a pore, the pressure has a discontinuity at the interface
between them, see �gure 2.5c. This pressure di�erence depends on the interface curvature inside
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the pore. It is called the capillary pressure pc and is de�ned as

pc := pn − pw (2.20)

with pn and pw being the pressure of the nonwetting and the wetting phase respectively. The
capillary pressure is always positive. In other words, the pressure on the convex side of an interface
is smaller.

Despite the fact that the capillary pressure is de�ned at the pore level, we will use an averaged
macroscopic capillary pressure henceforth. Similar to the properties of porous media presented
above, the capillary pressure is di�cult to measure, and only insu�cient theoretical descriptions
are known. A common approach is the capillary pressure–saturation relationship which expresses
the capillary pressure as a function of the wetting phase saturation. The functions are theoretically
derived and contain constants which have a physical meaning, but their value cannot be measured.
Instead, the functions are �tted to measurements in pumping tests. Well known capillary pressure–
saturation relationships are from Brooks and Corey [1964] and Van Genuchten [1980]. We will
use the latter in this work and will present it in more detail. The function is

pc (Sw) =
1
αVG

(
Sw
− 1
mVG − 1

) 1
nVG (2.21)

with αVG, mVG and nVG parameters to be determined. The inverse of αVG is called the entry
pressure and describes the minimum pressure di�erence needed to displace the wetting phase.
Taken from the Mualem theory, it is common to usemVG = 1− 1

nVG
. Usually nVG is chosen between

2 and 5, it relates to the pore-size distribution. Figure 2.6a exempli�es the e�ect of the parameters.
Having two immiscible �uids percolating through the same porous medium does not mean they

�ow together like a boat on a river. The �ow happens along paths of pores �lled or partially �lled
with the same phase. In partially �lled pores, the wetting phase coats the pores with a thin �lm,
the other phase �ows in the center of the pore. When the saturation drops, more and more paths
become disconnected, impeding the motion of the phase. The relative permeability kα reproduces
this e�ect on an averaged scale. There are several models, which are often related to capillary
pressure–saturation relationships. Again, the models introduced by Brooks and Corey [1964] and
Van Genuchten [1980] are most often used. We present and will use the latter, which comprises of
two scalar functions, one for each phase, dependent on the wetting phase saturation:

kw(Sw) =
√
Sw

(
1 −

(
1 − Sw

1
mVG

)mVG)2
(2.22)

kn(Sw) =
3
√

1 − Sw

(
1 − Sw

1
mVG

)2mVG
. (2.23)

The square and cubic roots in the formulas are common choices and can be adjusted as they
represent the connectivity of pores [Helmig, 1997]. Figure 2.6b illustrates the functions with
di�erent values for nVG.

Sometimes the relative permeabilities are multiplied by the intrinsic permeability to get an
overall permeability. The expression kα

ν is called mobility.
For a porous medium, the capillary pressure–saturation and relative permeability curves are

ambiguous. The ones described above can only be obtained by a single drainage cycle, meaning,
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Figure 2.6: Van Genuchten model with di�erent parameters for (a) capillary pressure–saturation
relationship (b) relative permeabilites, black: for the wetting phase kw, gray: for the
nonwetting phase kn

a reduction in the wetting �uid saturation. For the inverse process, called imbibition, the curve
di�ers. The curve depends on past drainage and imbibition cycles. This hysteresis depends on
several pore-scale e�ects. We neglect hysteresis in our applications as multiple drainage and
imbibition cycles rarely occur.

The e�ective thermal conductivity of the porous medium �lled with two phases λpm is calculated
by a semi-empirical approach after Johansen [1975]. It interpolates between the e�ective thermal
conductivity of the porous medium completely saturated with the non-wetting �uid and the one
of the porous medium completely saturated with the wetting �uid. These two conductivities are
obtained from the geometric means of the soil conductivity and the according �uid conductivities.

2.3 Occurring processes

Several processes are involved in the evaporation of soil water. Only when the relevant ones are
captured, we will get the overall evaporation right.

2.3.1 Di�usion and advection

The processes of di�usion and advection in�uence the distribution of components. These two
phenomena are building blocks that describe the processes behind component distributions or
heat spreading. Further, they are so characteristic that di�erent numerical discretizations must be
applied.

Di�usion is a process driven by concentration di�erences of a component. The component
di�uses from areas with a higher concentration to areas with a lower concentration. On the
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molecular level, the Brownian motion causes molecular di�usion: Molecules move randomly
around and statistically, more molecules leave the area of high concentration than enter. The
exchange rate of the di�usive �uxes increases with a higher di�erence in concentration. The
resulting e�ect on the macroscopic scale is called di�usion, too. It is described by the Fickian law
j = −D grad(ω), which relates the di�usive �ux j with the gradient of a concentration ω, scaled
by a di�usion coe�cient D. The concentration ω can be a component within the phase or the
temperature.

We assume equimolar component di�usion in the binary system, i. e., the component di�usion
coe�cients of a phase is the same as the di�usion coe�cients of its components Dα = Da

α = Dw
α

and the gradients of the component molar mass fractions have the same absolute value while they
are directed opposite: grad

(
xa

mole,α

)
= − grad

(
xw

mole,α

)
.

Advection describes the transport of particles, components, or temperature by the motion of the
�uid. The term advection is often confused with—or not properly distinguished from—convection.
Convection is the combination of advection and molecular di�usion [Delleur, 2006].

The description of advection in the porous medium is blurred by the averaged velocity on the
pore scale. This e�ect is called mechanical dispersion and is not a physical transport process, but
an e�ect caused by the averaging. Dispersion depends on the �ow velocity, �uid properties and
the porous medium. As this process blurs areas of large concentration gradient, it can be described
similarly to the e�ects of di�usion.

On the macroscopic scale, we model di�usion and dispersion together with a macroscopic
porous medium di�usion coe�cient Dpm,α = ϕτpmSαDα with the pore tortuosity τpm [Helmig,
1997].

The binary di�usion coe�cient is a property of the phase, Dl = 2.01 · 10−9 m2/s · T
298.15 K and

Dg = 2.13 · 10−5 m2/s ·
pg

105 Pa ·
(

T
273.15 K

)1.8
.

2.3.2 Turbulence
The viscosity impacts the characteristics of a �uid �ow which can be described using the dimen-
sionless Reynolds number

Re :=
ϱ

µ
vl , (2.24)

a ratio of inertial forces to viscous forces. Along with the dynamic viscosity, the Reynolds number
is calculated using a characteristic velocity v and a characteristic length l . The characteristic
velocity and length are usually chosen at an important geometric feature. In a pipe �ow, the
velocity is the maximum velocity, and the length is the pipe diameter. In popular �ow applications,
one should employ common characteristic values to get comparable values. For example, the �ow
around an airfoil has the �ight speed as the characteristic speed and the chord line, the straight
line between the leading and the trailing edges, as the characteristic length.

Flows with small Reynolds numbers Re < 1 are �ows with dominant viscous e�ects and
are called creeping �ows. Flows with moderate Reynolds numbers are laminar and show mild
inerta e�ects, i. e., pressure and velocity vary locally without severe oscillations. Flows with high
Reynolds numbers are turbulent �ows. The critical Reynolds number indicating turbulent �ows
depends on the setup. For pipe �ows it is Recrit ≈ 2300. This value changes with pipe roughness
and wiggles in in�ow.
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(a) laminar, Re = 10 (b) turbulent, Re = 2 500

Figure 2.7: Examples for laminar and turbulent �ow, the backward-facing step creates shear stresses
on the �uid entering from the left. The white lines are stream lines, the background
color indicates the pressure.

In this work, we have to consider turbulent �ows as a back-of-the-envelope calculation shows:
Estimating the Reynolds number for our applications using the properties of air from table 2.2,
the characteristic values l = 0.25 cm, v = 0.1 m/s and a pipe �ow as a close enough model, we get
Re = 1.65 · 106, which is way bigger than Recrit.

Turbulence is the motion of �uids with eddies in a wide range of scales. A turbulent �ow shows
a strong sensitivity of the �uid �eld and wall geometry changes to the point of seemingly random
behavior. Originating from small waved disturbances that grow bigger, it is impossible to avoid
turbulence in a world bearing imperfections. Turbulent �ows manifest as unstable and �uctuating
in a random and high-frequent manner. Only the turbulent �ow in the example shown in �gure 2.7
contains pressure oscillations and a multitude of eddies. Turbulence leads to enhanced mixing
like for temperature or transported components. For more details concerning turbulent �ows we
refer to in the books of White [1999], Pope [2000] and Ferziger and Perić [2002].

The eddies form an energy cascade; large eddies decay into smaller and smaller ones and
eventually dissipate into thermal energy. The larger eddies contain and transport a great deal of
the kinetic energy, while smaller eddies have the e�ect of an additional viscosity. The dissipation
into thermal energy happens at the Kolmogorov microscale which de�nes a length scale, a time
scale and a velocity. We illustrate the diminutive size of the length scale using the example of
a �at-cylinder wake with a moderate Reynolds number of Re = 1 840. Near the cylinder, the
Kolmogorov length scale η lays between 0.47 mm and 0.8 mm [Aronson and Löfdahl, 1993]. A
thorough analysis of the Kolmogorov microscale is provided by Pope [2000]. The energy cascade
is disputed, as it was never directly observed [Liu et al., 2014].

We are especially interested in turbulent e�ects near a plate or a wall, because of their relevance
to our application. It is a classical experiment used by Ludwig Prandtl to develop the boundary
layer theory over 100 years ago. When a �uid �ows in parallel along a wall, like in �gure 2.8, the
shear stress in�uence the velocity pro�le perpendicular to the wall and a boundary layer forms of
slower, laminar �ow. The unavoidable wall roughness causes small wiggles which build up. At the
transition point, or more likely the transition zone surrounding the point, small disturbances lead
to turbulent behavior and the boundary layer breaks into two parts: The sublayer that remains
laminar, but has a reduced thickness, and the turbulent boundary sublayer, which grows further.
The turbulent boundary layer thickness δ is approximated as the wall distance where the velocity
reaches 99% of the outer �ow velocity v∞. Relative to the space above the turbulent boundary
layer, it remains tiny. In the example from above, it is in the sub-millimeter range.

Similar to the boundary layer formed by slower �uids near the wall, a thermal boundary layer
forms above a wall with a di�erent temperature, and a component boundary layer forms above a
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Figure 2.8: Flow alongside a wall results in boundary layers with a thickness δ , de�ned as the
location where the velocity reaches 99% of v∞.

wall giving o� the component’s substance. The thermal boundary layer is thinner compared to δ ,
and the component boundary layer is even thinner [Bird et al., 2007].

The boundary layers play a vital role in the process. Imagine water evaporates in the porous
medium, cooler vapor di�uses towards the interface and enters the free �ow. Once the boundary
layer is cooled and saturated with the component, further evaporation is retarded. The laminar
�ow limits the turbulent in�uence from above and it reduces the mixing of the boundary layer
�uid with the �uid above. Within the laminar �ow of the boundary layer no enhanced mixing
takes place.

2.3.3 Evaporation

Evaporation is the conversion from the liquid into the gaseous state. It occurs at the surface
between a liquid and a gaseous phase. Molecules of the evaporating substance are crossing the
interface in both directions. If the mass fraction of the evaporating substance is low enough in
the gaseous phase, more molecules will move from the liquid to the gas. Otherwise, the gas is
fully saturated. The evaporation becomes faster in a system with less saturated gas, because less
molecules return to the liquid, and in a system with higher temperatures, because molecules have
more kinetic energy to leave the liquid. In a closed system, the evaporation ends when the gas is
fully saturated with the evaporating substance. The pressure when the gas is fully saturated is
called vapor pressure pw

sat which can be described as a function of temperature [IAPWS, 2007]. In
nature, air in the atmosphere is not fully saturated most of the time.

A curved interface between the liquid and the gaseous phase changes the saturated vapor
pressure, which is described by the Kelvin equation. This e�ect occurs inside a porous medium
for high capillary pressures. The Kelvin equation can be formulated as

pw
sat, Kelvin = p

w
sat exp

(
−pc

ϱvaporRs,vaporT

)
. (2.25)

The e�ect of the curved interface remains small unless the capillary pressure becomes large. If
not stated otherwise, we neglect the e�ect.
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Figure 2.9: Meaning of evaporation stages for water content in pores next to the interface

Evaporation must not be confused with boiling. Boiling means that the liquid is heated to its
boiling point, where the liquid’s vapor pressure reaches the pressure imposed from outside the
liquid. Bubbles form within the liquid, as this processes happens within the whole liquid. The
term vaporization sums up evaporation and boiling.

When a liquid vaporizes, it consumes additional energy to overcome the binding to other
molecules. The bindings consist of van der Waals forces, electric dipole moments, et cetera. The
amount of energy is called enthalpy of vaporization. Thus, vaporization has a cooling e�ect.

The opposite process to evaporation is condensation. During condensation, the above process is
reversed. Condensation releases the enthalpy of condensation to the surroundings. This enthalpy
has the same magnitude as the enthalpy of evaporation, but the opposite direction.

Living plants take water up and cause evaporation of water through their stomata. This is called
transpiration. The combination of evaporation and plant transpiration is called evapotranspiration.
Drying is the process of reducing the water content in a porous medium. In technical applications,
drying is usually done by evaporation with the help of heat or dry air. The porous medium
deforms during the process, changing its properties. For example, a shriveled apple has a lower
porosity and a di�erent pore size distribution, which in�uences further drying. We do not consider
evapotranspiration or any deformation like shrinking or swelling.

2.3.4 Evaporation of soil water
The not fully saturated air over a water-�lled soil drives evaporation directly from the soil to the
atmosphere. Next to the soil, the air becomes more humid, retarding the evaporation. A vapor
pressure gradient establishes perpendicular to the interface, causing di�usion into the atmosphere.
If a wind blows over the soil, it takes the humid air away and the evaporation can materialize at a
higher rate.

Eventually, pores run dry, �rst the smaller ones, and later the larger pores. The envelope of all
water-�lled pores de�nes the drying front. Examples are shown in �gure 2.9. As mentioned earlier,
evaporation takes place at the interface between the phases. Thus, the evaporation happens along
the drying front. The cooling e�ect occurs there, too. With ongoing evaporation, the drying front
drops further and it detaches from the interface to the atmosphere. Then the water evaporates
completely inside the soil and the vapor is transported by di�usion towards the interface, where
the wind takes the vapor away.

The evaporation rate q is the area-related rate of vapor-�ow across the interface Γ between the
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Figure 2.10: Qualitative evaporation rate graphs and characteristic stages of evaporation, dashed:
high wind velocity with thin boundary layer, dotted: moderate wind velocity with
thicker boundary layer, after Mosthaf et al. [2014]

porous medium and the atmosphere

q :=
1
|Γ |

∫
Γ

(
Xw

g vg +
jw�
ϱg

)�

· n dx (2.26)

with the advective �ux Xw
g vg, the di�usive �ux jw�

ϱg
, the normal n with respect to Γ, and the area of

the interface |Γ |. The de�nition from equation (2.26) considers the interface’s free-�ow side. An
equivalent de�nition can be formulated from the porous-medium �ow side of the interface.

The evaporation rate is a key �gure to describe the e�ect of the occurring evaporation. Plotting
the evaporation rate against time results in characteristic graphs [Shahraeeni et al., 2012] similar
to the schematic ones in �gure 2.10. The velocity of the wind in the atmosphere has a major
in�uence on the evaporation rate in the �rst stage, because it a�ects the boundary layer thickness.
The graphs have features leading to a classi�cation of di�erent stages of evaporation. In stage 1,
water evaporates at a high rate, from water-�lled pores next to the interface into the atmosphere.
Once the water level has dropped in the last pore at the interface, the vapor di�usion inside the
pore towards the interface limits the amount of evaporating water. The evaporation rate falls,
stage 2 is reached. [Lehmann et al., 2008, Shahraeeni et al., 2012].

Stage 2 can be split into stage 2a and stage 2b. During stage 2a, the water level drops, but the
pores are still coated by water. Through the thin water �lm, water is transported towards the
interface, but to a lesser extent [Yiotis et al., 2007]. By the time all pores at the interface are dried
out, stage 2b begins, see �gure 2.9. In contrast to other models, like pore network simulations, REV
models cannot capture the e�ect of such water �lms [Prat, 2002]. We will not take the di�erences
between the stages 2a and 2b into account.

The distinction between the evaporation stages 1 and 2 is important, because di�erent processes
dominate the evaporation. In stage 1, the evaporation happens at the interface and the evaporation
is mainly a�ected by the free �ow, which carries o� the vapor in an advective transport process.
The porous medium has a minor in�uence on the evaporation. In stage 2, the water evaporates at
the water table inside the porous medium. Di�usive processes transport the vapor towards the
interface; they are limiting the evaporation. The free �ow plays a minor role in this stage.
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Evaporation rates from lab experiments di�er from the ideal one shown in �gure 2.10. Mosthaf
et al. [2014] discuss reasons for this discrepancy. Soil water evaporation is even more complicated
than sketched in this subsection. Shahraeeni et al. [2012] describes several further mechanisms. A
review of recent advances regarding this topic is given by Or et al. [2013].

24



Science is what we understand well enough to explain to a

computer. Art is everything else we do.

Donald E. Knuth, 19963 Modeling

Partial di�erential equations (PDE) are a powerful and commonly used tool for the mathe-
matical modeling of �ow, or more generally, the modeling of various physical phenomena.

First, we will give a brief introduction to PDEs. Second, we will outline the PDEs that describe the
motion of �uids, the component transport, the heat equation and how they are linked to each
other. Third, we will provide an overview of domain decomposition techniques which are used to
combine the di�erent types of �ows, and lastly, we will state the conditions we utilize to couple
the free �ow to the porous-medium �ow.

3.0.1 Partial di�erential equations

A partial di�erential equation is an equation containing an unknown function w and its partial
derivatives. The solution of the PDE is to determine w to ful�ll the equation. In general, PDEs can
be written as

f
(
Dkw (x ),Dk−1w (x ), . . . ,Dw (x ),w (x ),x

)
= 0 (3.1)

where Di is a di�erential operator of order i and k ≥ 1 is the order of the PDE. We have PDEs of
second order k = 2.

The function f is given as a sum of partial derivatives; some summands have a non-linear
factor with regard to w . As we have more than one PDE, f becomes a system of PDEs and w is
vector-valued. The unknown function w : U → �n with U ⊂ �m is the element of an appropriate
function spaceW 3 w , which is of in�nite dimension. UsuallyW is some Sobolev or bounded
variational space. Compared to the space of k times di�erentiable functions Ck , these spaces are
richer and contain weakly di�erentiable functions. This allows for weak solutions of equations
that otherwise have indi�erentiable kinks or discontinuities, and the weak solutions can be used
in the physical problems presented. Our system is transient, i. e., one of the dimensions of U is
the time t .

We are only interested in those solutions ful�lling (3.1) which additionally match some boundary
conditions on the boundary ∂U and a given initial solution at the initial time tinit. The problem of
a transient PDE is only completely described when all data like material laws, the boundary and
initial conditions are given. A problem is called well-posed, when (i) a solution exists, (ii) it has a
unique solution, and (iii) the solution depends continuously on the data. In theory, we don’t know
if such a solution exists, as according proofs of existence for our complicated systems do not exist
yet. On the other hand, in practice, numerical methods give approximated solutions which are
useful and provides insight to the applications.

Overall we are facing a non-linear system of PDEs of second order. Some types of second order
PDEs are so common that they are named: elliptic, parabolic and hyperbolic. We do not further
use this classi�cation, as our equations are not purely of these types. They are advection–di�usion
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equations, which are of the form

∂

∂t
ω − div(D grad(ω)) + div(vω) = 0 (3.2)

with the conserved quantity ω, like species concentration or temperature, di�usivity D, and the
velocity �eld of the �ow v . The term div(D grad(ω)) represents the di�usion, di�erent values of
ω lead to a �ow to balance the quantity. The term div(vω) represents the advection, driven by an
externally driven motion of the �uids carrying ω away.

The most common types of boundary condition are Dirichlet, Neumann and Robin boundary
conditions. The Dirichlet boundary condition restricts the solution to some given value ω = fD
on ∂U . The Neumann boundary condition de�nes the value of the partial derivative with respect
to the boundary normal n∂U to some given value ∂

∂n∂U
ω = fN. The Robin boundary condition is

a linear combination of the former two conditions. For given values a, b and fR, it restricts the
solution to aω + b ∂

∂n∂U
ω = fR on ∂U . At every point along the boundary, one boundary condition

must be postulated. It is also possible to have di�erent types of boundary conditions on disjoint
parts of the boundary; this is called a mixed boundary condition. The boundary conditions have
to ful�ll some regularity restrictions.

This subsection is based on Evans [2010] which is recommended for further reading related to
the theory of PDEs.

In the following sections, we describe the models for the free-�ow and the porous-medium-�ow
subdomains. We use the same models as the one presented in Mosthaf et al. [2011]. Vander-
borght et al. [2017] gives an overview of di�erent modeling concepts for evaporation from soil;
Fetzer et al. [2017b] numerically evaluates the consequences resulting from simpli�cations and
parametrizations.

3.1 Free flow
The general model for the motion of a �uid is the Navier-Stokes equation. In the eighteenth’s
century, ideal �uids were described by the Euler equation, neglecting viscous e�ects. In the �rst
half of the nineteenth’s century, several authors included the viscous term and formulated the
Navier-Stokes equation. The mathematical theory evolved and the incompressible, two-dimen-
sional case is well-covered by successful works. But for the incompressible, three-dimensional
Navier-Stokes equation, proofs of existence and smoothness are still lacking [Fe�erman, 2000].

The Navier-Stokes equation

∂

∂t

(
ϱgvg

)
+ div

(
ϱgvgv

ᵀ
g
)
− div

(
µg gradvg

)
+ gradpg + ϱgд = 0 (3.3)

conserves the momentum. The Navier-Stokes equation is vector-valued and can also be regarded
as a system of scalar partial di�erential equations, one for each dimension. The primary variables
of the Navier-Stokes equation are the velocities vg,i for the di�erent directions xi . Compared to
the other relevant forces, the gravitational force ϱgд is small, due to the low density of the gas.
For this reason, the gravitational force’s e�ect in the free �ow is neglected.

In the Navier-Stokes equation, the viscosity µg – or more precisely the reciprocal Reynolds
number 1/Re – can be interpreted as a weighting factor of the viscous term div

(
µg gradvg

)
relative
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to the inertia term div
(
ϱgvgv

ᵀ
g
)
. For low Reynolds numbers the inertia e�ects are dominated from

viscous e�ects and the term can be dropped. The Navier-Stokes equation without the inertia term
is called the Stokes equation.

Additionally, the mass conservation is ensured by the mass balance equation

∂

∂t
ϱg + div

(
ϱgvg

)
= 0. (3.4)

Here, the primary variable is the pressure pg. Note that the pressure does not occur in the
mass balance equation, because the density ϱg is incompressible. Neglecting temperature and
component, the mass balance equation can be simpli�ed to div(vg) = 0. In other words, the mass
balance equation ensures that the velocity has zero divergence, thus, the velocity is a solenoidal
vector �eld.

3.1.1 Derivation
Due to the importance of the Navier-Stokes equation for this work, we brie�y present its derivation.
This derivation, like the whole section about free �ow, is based on White [1999].

To obtain the Navier-Stokes equation, we apply conservation laws for mass and momentum to
an in�nitesimally small control volume V . This volume is a cuboid with su�ciently small edge
lengths ξi > 0 in the xi direction, see �gure 3.1.

Mass balance equation

We observe the �ow through the surface ∂V . With small ξi , we assume a one-dimensional and
orthogonal �ow for every face. The in�ow in the x1 direction is ϱgv1ξ2ξ3 and the out�ow is(
ϱgv1 +

∂
∂x1

(ϱgv1)ξ1
)
ξ2ξ3; analog for x2 and x3.

In the Reynolds transport theorem∫
V

∂

∂t
ϱg dx +

∫
∂V

ϱg(v · n) dx = 0 (3.5)

the second term describes in�ow and out�ow. Replacing these terms with the above �ow terms
leads to ∫

V

∂

∂t
ϱg dx +

3∑
i=1

(
ϱgvi +

∂

∂xi
(ϱgvi )ξi

)
ξ1ξ2ξ3

ξi
−

3∑
i=1

ϱgvi
ξ1ξ2ξ3

ξi
= 0, (3.6)

where the �rst sum is the out�ow, and the second sum is the in�ow. Because all ξi are small, we
can approximate ∫

V

∂

∂t
ϱg dx ≈

∂

∂t
ϱg ξ1ξ2ξ3 (3.7)

and simplify the equation to

∂

∂t
ϱg ξ1ξ2ξ3 +

3∑
i=1

∂

∂xi
(ϱgvi ) ξ1ξ2ξ3 = 0. (3.8)
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Figure 3.1: Control volume V with inlet and outlet mass �ow through the x1 faces

As all edge lengths ξi are positive, we can divide the whole formula by ξ1ξ2ξ3, resulting in the
equation of continuity

∂

∂t
ϱg +

3∑
i=1

∂

∂xi
(ϱgvi ) = 0 (3.9)

which is (3.4).

Navier-Stokes equation

We can handle the momentummv for the control volume V in a similar manner. The momentum
can be changed by a force F = ∂∂t (mv ). Newton’s second law states that the force F is the same as
the acceleration a of massm, the well-known formula F =ma =m ∂

∂tv =m
∂2

∂t2x .
Two types of forces act on the control volume, body forces and surface forces. External �elds

like gravitation, electric and magnetic �elds cause body forces, which act throughout V . Only the
e�ect of gravity is shown in this derivation,

Fgrav,j = ϱgдj ξ1ξ2ξ3 (3.10)

for the gravitational acceleration vector д = (0, 0,−9.81)ᵀ and all spatial directions j ∈ {1, 2, 3}.
The stresses at the surface are depicted in �gure 3.2a. A stress gradient causes a net force, the

surface force is the sum of forces in one direction j, cf. �gure 3.2b

Fsurf,j =
∂

∂xj
σjj ξ1ξ2ξ3 +

3∑
i=1
i,j

∂

∂xi
σji ξ1ξ2ξ3. (3.11)

The pressure p and viscous stress forces τ compose the stress σi = −p + τii which acts across
the surface of the control volume ∂V . This leads to

Fsurf,j = *
,
−
∂

∂xj
p +

3∑
i=1

∂

∂xi
τji+

-
ξ1ξ2ξ3. (3.12)
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Figure 3.2: (a) Stresses on surface ∂V (b) surface forces in x1-direction

The total of body and surface force is

Ftotal,j = Fsurf,j + Fgrav,j . (3.13)

We formulate the linear momentum relation for the control volume V similar to the equation of
continuity, using the Reynolds transport theorem

Ftotal,j =
∂

∂t

∫
V

vjϱg dx +
3∑

i=1

(
ϱgvivj +

∂

∂xi
(ϱgvivj )ξi

)
ξ1ξ2ξ3

ξi
−

3∑
i=1

ϱgvivj
ξ1ξ2ξ3

ξi
. (3.14)

The last term characterizes the momentum directed outwards, the term before the last one
characterizes the momentum directed inwards. We use again the approximation ∂

∂t

∫
V
vjϱg dx ≈

∂
∂t (vjϱg) ξ1ξ2ξ3 for small ξi and get

Ftotal,j = *
,

∂

∂t
(vjϱg) +

3∑
i=1

∂

∂xi
(ϱgvivj )+

-
ξ1ξ2ξ3. (3.15)

Using the product rule

Ftotal,j = *
,
vj *

,

∂

∂t
ϱg +

3∑
i=1

∂

∂xi
(ϱgvi )+

-
+ ϱg *

,

∂

∂t
vj +

3∑
i=1

vi
∂

∂xi
vj+

-
+
-
ξ1ξ2ξ3 (3.16)

reveals the �rst term on the right hand side as the equation of continuity (3.9). We know it to be
zero, thus:

Ftotal,j = ϱg *
,

∂

∂t
vj +

3∑
i=1

vi
∂

∂xi
vj+

-
ξ1ξ2ξ3. (3.17)

We substitute (3.10), (3.12) and (3.13) in the last equation, divide by ξ1ξ2ξ3 and gain the di�erential
momentum equation,

ϱgдj −
∂

∂xj
p +

3∑
i=1

∂

∂xi
τji = ϱg *

,

∂

∂t
vj +

3∑
i=1

vi
∂

∂xi
vj+

-
(3.18)
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for all spatial directions j ∈ {1, 2, 3}.
In the considered case of a Newtonian �uid, viscous stresses τ are proportional to the viscosity

µ and acceleration:

ϱgдj −
∂

∂xj
p + µ

3∑
i=1

∂

∂xi

(
∂

∂xi
vj +

∂

∂xj
vi

)
= ϱg *

,

∂

∂t
vj +

3∑
i=1

vi
∂

∂xi
vj+

-
. (3.19)

We shift around some partial derivatives on the left hand side

ϱgдj −
∂

∂xj
p + µ

*.....
,

3∑
i=1

∂2

∂x2
i

vj +
∂

∂xj

3∑
i=1

∂

∂xi
vi︸     ︷︷     ︸

=0

+/////
-

= ϱg *
,

∂

∂t
vj +

3∑
i=1

vi
∂

∂xi
vj+

-
, (3.20)

and we identify one sum as the equation of continuity for incompressible �uids. The resulting
equation is the same equation as (3.3).

3.1.2 Vapor mass fraction and energy
The vapor in the air is modeled as a component κ = w. The transport of vapor mass fraction Xw

g
is expressed by the vapor mass fraction balance equation

∂

∂t

(
ϱgX

w
g
)
+ div

(
ϱgX

w
g vg

)
+ div jw� = 0 (3.21)

with the primary variable Xw
g . The di�usive component �uxes are jκ� = −Dgϱmole,gM

κ gradxκmole,g.
As we assume binary di�usion, the choice to have vapor as the transported component κ = w
over air as the transported component κ = a is arbitrary.

Non-isothermal processes like heat �uxes are incorporated by the energy transport equation

∂

∂t

(
ϱgug

)
+ div

(
ϱghgvg

)
+

∑
κ∈{a,w}

div
(
hκgj

κ
�

)
− div

(
λg gradT

)
= 0 (3.22)

with temperature T as the primary variable. Note that u and h are functions of the temperature.
We do not include the e�ect of viscous dissipation in (3.22), meaning that we do not consider the
�uid’s kinetic energy that is transformed to thermal energy by internal friction. This e�ect can be
neglected for the involved velocities around 1 m/s and air, as can be revealed in the following short
calculation. Assuming that an air mass m, with a velocity of v = 1 m/s, dissipates its complete
kinetic energy E = 1/2mv2 = 1/2 m2/s2m to thermal energy, using a speci�c heat capacity for air
ca = 1005 m2/K s2, the resulting temperature increase is ∆T = E/mca ≈ 0.0005 K, which is negligibly
small in comparison to other e�ects.

3.1.3 Boundary conditions
The commonly used boundary conditions for the Navier-Stokes equation deviate from Dirichlet and
Neumann boundary conditions. Instead, they represent physical situations and are accordingly
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named: In�ow, out�ow, wall and symmetry boundary conditions. If a symmetry boundary
condition is set, but the �ow has no symmetric characteristic, the result becomes unphysical;
similar for the out�ow boundary condition. Even with the right choice of boundary conditions,
they alter the solution in their proximity. As a consequence, the domains do not tightly enclose
the region of interest: a startup and a runout section is often included in order to let the �ow
develop without in�uence of the in�ow boundary condition, and to reduce artifacts from the
out�ow boundary condition, respectively.

Besides the Dirichlet and the Neumann boundary conditions, we use zero-gradient boundary
conditions that demands a zero gradient of the primary variable in the direction normal to the
boundary. The zero-gradient boundary condition is routinely used in applied sciences [Versteeg
and Malalasekera, 2007] but is seldom mentioned [Chen, 2005, Freund and Stenberg, 1995] or
analyzed [Heywood et al., 1996] in mathematical literature. This condition is also called out�ow
boundary condition.

The boundary conditions representing physical situations are combinations of Dirichlet, Neu-
mann and zero-gradient boundary conditions [Versteeg and Malalasekera, 2007].

For the mass balance equation only two types of boundary equations are needed: In�ow and �ux
evaluation. The in�ow is a Dirichlet boundary condition for the pressure. It is only set together
with an out�ow boundary condition in the Navier-Stokes equation or for simulations without
out�ow at one arbitrary spot to �x the pressure. The combination with the former is often called
constant pressure boundary condition. The �ux evaluation is set everywhere else and is de�ned
by equation (3.4).

Dirichlet and Neumann boundary conditions would su�ce to describe all problems for the vapor
mass fraction and energy transport, too. For convenience, the boundary condition types from the
Navier-Stokes equation are adopted and the boundary conditions are implemented according to
their physical meaning. These conditions are only named di�erently, making the setup of free-�ow
problems more convenient with the right boundary conditions available. Here, we assume an
adiabatic boundary condition for the wall. Other choices are a constant wall temperature or a
heat �ux through the wall, which would alter the boundary condition.

3.1.4 Turbulence
The direct numerical simulation (DNS) of the Navier-Stokes equation requires small time steps
and a �ne grid. In many cases, this is not computationally feasible, and the e�ect of turbulence is
approximated on a coarser level.

The shear stress close to a wall leads to boundary layers and in�uences the perpendicular
velocity pro�le, see �gure 2.8. It is computationally expensive to resolve the thin boundary layer
with a grid that is re�ned towards the wall. Near a wall, the general shape of the velocity pro�le is
known to be �rst linear and then logarithmic. The no-slip condition at the wall is replaced with a
known solution one element away from the wall. This is called a wall function for turbulent �ow.

To simulate every tiny eddy is disproportionate when only quantitative conclusions should
be drawn. In the case of a statistically steady �ow, a variable ω can be split into a time-average
mean value ω and its �uctuations ω′ as ω = ω + ω′. Applying the splitting to the Navier-Stokes
equation results in the so-called Reynolds-averaged Navier-Stokes (RANS) equation. This equation
remains similar to the Navier-Stokes equation, but most terms now contain averaged quantities.
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As ω′ = 0, many mixed terms cancel out or can be neglected. The remaining additional mixed
term is the Reynolds stress −ϱдv′1v

′
2 which accounts for the �uctuating velocity �eld. As we want

to drop the small-scale variables, the Reynolds stress becomes an additional variable and we have
to provide a closing condition for the under-determined system. A way to close the system is to
use turbulence models that describe the Reynolds stress. Eddy-viscosity models take the e�ect of
the small-scale turbulence into account by introducing an additional turbulent viscosity µt to the
averaged Navier-Stokes equation. Algebraic models describe the turbulent viscosity as a function
of the wall distance. More sophisticated models like the k-ε or the k-ω models use additional
equations to include the kinetic energy k and related variables to describe the generation and the
decay of turbulence.

A compromise between the detailed direct numerical simulation and the blurred Reynolds-
averaging methods are the large eddy simulations (LES). Smaller eddies and their dissipation
are treated in an averaged manner. Larger eddies are simulated directly because they are more
energetic and transport more e�ectively.

More in-depth knowledge concerning wall functions and turbulence models can be found in
Ferziger and Perić [2002], Pope [2000] and Wilcox [1998]. The origins, structure and modeling
of turbulence remains an active �eld of research with vivid discussions [Liu et al., 2014, Spalart,
2015, Argyropoulos and Markatos, 2015]. We will not further deal with turbulence models, as
Fetzer et al. [2016] already examine the use of di�erent wall functions and turbulence models in a
Navier-Stokes/Darcy coupling. Birgle et al. [2017] use a RANS model for the free �ow, too.

3.2 Porous-medium flow
When the French hydraulic engineer Henry Darcy planned an improved water supply for his
home town Dijon, he experimentally found the linear relationship between the speci�c discharge
and the hydraulic gradient within a sand column [Darcy, 1856], called Darcy’s law. Later, his
one-dimensional law was generalized to more dimensions, extended to multiple immiscible and
miscible �ows, and expanded to include energy transport.

In the modern form we want to use, Darcy’s law is

vα := −
kα
µα

k (gradpα − ϱαд) . (3.23)

The speci�c discharge vα is the �ux per intersection, but for historical reasons, it is called Darcy
velocity, or short, velocity. According to Darcy’s law, it is proportional to the pressure gradient.
The primary condition of Darcy’s law is that the �ow through the porous media must be creeping,
Re < 1. After dividing the Darcy velocity by the porosity, we obtain the seepage velocity ṽα := vα

ϕ ,
which describes the average �uid velocity within the pore space. The continuity equation for
hydrodynamics ϕ ∂∂t ϱα + div (ϱαvα ) = 0 can be combined with Darcy’s law (3.23) to form

ϕ
∂

∂t
ϱα − div

(
ϱα

kα
µα

k (gradpα − ϱαд)
)
= 0. (3.24)

This is the groundwater equation and describes a single-phase Darcy �ow in a porous medium.
Here, the velocity term is replaced, and the �ow is only driven by pressure di�erences.
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Figure 3.3: The idea of homogenization for an arti�cial porous medium, after Hornung [2012]

3.2.1 Derivation

For a long time, the theoretical reasoning of Darcy’s law was based on averaging with the repre-
sentative elementary volume (REV) technique. For example, the derivation of a non-isothermal
multiphase �ow system in a porous medium can be found in Hassanizadeh and Gray [1990].

Homogenization is an alternative approach to averaging. It was developed by mathematicians
in the 1980s. One early example can be found in Keller [1980]. Similar to the averaging technique,
homogenization can be used to obtain upscaled di�erential equations from small-scaled ones.
Additionally, it can be used for rigorous mathematical proofs. Homogenization requires a scale
separation which is not valid in many real-world porous media.

Let wε be a family of functions with the parameter ε > 0, which represents a length scale
on the micro scale. For a porous medium, the parameter relates to the typical pore size, in the
example given in �gure 3.3, it describes the diameter of the soil matrix circles. Instead of using a
single function, the limit w := limε→0 (w

ε ) is determined and used as the macroscopic di�erential
function. With other words, we let the microscale tend to zero. The di�culties arise from �nding
the limit w . Nevertheless, many equations can be derived with the help of homogenization, like
Darcy’s law, the groundwater equation, its extension to two-phase �ow, and thermal �ow in
porous media. Their derivation is too long and technical for this work, but can be found in
Hornung [2012].

3.2.2 Two phases, two components and energy

In this application, we need to model a system with two immiscible phases where each phase has
a component consisting of dissolved or evaporated substance from the other �uid. In this case,
the groundwater equation lacks descriptive power, and we have to expand it. We begin with a
system of two mass balance equations for the components κ ∈ {a, w}

∑
α∈{g,l}

(
ϕ
∂

∂t

(
ϱαSαX

κ
α

)
− div

(
ϱαX

κ
α

kα
µα

k (gradpα − ϱαд)
)
− div

(
Dpm,αϱmole,αM

κ gradxκmole,α

))
= 0.

(3.25)
The second term contains Darcy’s law, and the third term includes the di�usion aroused by molar
mass fraction di�erences, augmented by e�ects related to the porous medium.

Adding the two equations (3.25) for κ = a and κ = w, together with (2.2) X a
α + X

w
α = 1 and the
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assumption of binary di�usion, we get the total mass balance equation∑
α∈{g,l}

(
ϕ
∂

∂t
(ϱαSα ) − div

(
ϱα

kα
µα

k (gradpα − ϱαд)
))
= 0. (3.26)

Now, we have several options for describing the two-phase Darcy �ow. Any two of the three
equations (3.25) for κ ∈ {a, w} and (3.26) su�ce as a complete description. We choose the total
mass balance and the component balance equation for the vapor component κ = w as it reduces
the non-linearity compared to other choices and is convenient for the subsequent coupling.

Our system of equations has the unknowns Sl, Sg, pl, pg, and the mass fractions Xw
α . We can

express two out of the four unknowns for pressures and saturations with equation (2.18) Sl+Sg = 1,
and the de�nition of the capillary pressure (2.20) pc := pn−pw together with the capillary pressure–
saturation relationship determined by Van Genuchten’s formula (2.21). All pairs of these variables
lead to valid formulations. We use the pg–Sl formulation, as it is bene�cial when the porous
medium dries out and the water �uid phase vanishes. See Helmig [1997] for other formulations
and their use cases.

The remaining unknown component mass fractions Xw
l and Xw

g can be expressed by primary
variables. The mass fraction of dissolved air in water X a

l can be expressed with Henry’s law (2.10)
xa

mole,g =
pa

g
H a , where the Henry coe�cient is computed with (2.11), the conversation from mole

fraction (2.4), and the sum of mass fractions (2.2). We calculate the mass fraction of water vapor
in air Xw

g with equation (2.9) xw
mole,g =

pw
g
pg

. If the liquid phase is present, a consequence from the
local thermodynamical equilibrium is that the vapor in the air will be fully saturated. From this,
we conclude that the partial pressure of the vapor component equals the vapor pressure pw

g = p
w
sat,

where the latter can be calculated as a function of temperature.
When the porous medium dries out, the liquid phase locally vanishes. This phase change

simpli�es the system, but invalidates the way we calculate Xw
g because the vapor component in

air might be no longer fully saturated. We change the primary variable from Sl, which is known
to be zero, to Xw

g [Class et al., 2002]. The variables are switched back once the partial pressure of
vapor exceeds the vapor pressure pw

g > pw
sat. As this is done locally, di�erent formulations can be

used at the same time at di�erent regions of the porous medium.
Similar to the free �ow, we introduce an additional partial di�erential equation for the energy

transport. It describes the heat transfer in the porous medium and the embedded �uids. Because
the �ow velocities and the soil grains are small, we can assume local thermal equilibrium, i. e., all
�uid phases and the solid have locally the same temperature. Thus, we get a single energy balance
equation∑

α∈{g,l}
ϕ
∂

∂t
(ϱαSαuα ) + (1 − ϕ)

∂

∂t
(ϱscsT ) +

∑
α∈{g,l}

div (ϱαhαvα ) − div
(
λpm gradT

)
= 0 (3.27)

with the temperature T as the primary variable. The secondary variables uα and hα are functions
of the temperature. The �rst two terms describe the temperature change over time in the �uid
phases, and in the soil, respectively. The third term considers the advective energy transport of
both phases, it includes the velocity according to Darcy’s law. The forth term accounts for the
heat conduction within the �uid phases and the porous medium.
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3.3 Coupling
The sets of partial di�erential equations in the two subdomains are still isolated, despite the fact that
they are adjoined at the interface. Proper coupling conditions establish the required connection
between the properties of both subdomains. For example, the energy transport equations balance
temperature di�erences within the domains; the same must happen across the interface to allow
for a similar balancing.

The theory of coupling subdomains arose from the domain decomposition methods which
originated nearly 150 years ago [Schwarz, 1870]. Domain decomposition is a technique to ana-
lytically solve partial di�erential equations on domains, which are too complicated to be solved
directly. Therefore, the domain is decomposed into several simpler subdomains where solutions
can be obtained and combined to get a solution for the whole domain. This approach remains
relevant in today’s computer-calculated approximations: The solution can be reused for recurring
subdomains, meaning that subdomains can be solved more e�ciently [Wheeler and Yotov, 1998]
or in parallel, and �ll-in from direct solvers can be reduced. The domain decomposition methods
di�er considerably, the most relevant distinctions are iterative and overlapping methods. Iterative
methods solve the problem for the subdomain, communicate the result to adjacent subdomains
and solve the problem again, until they converge. Some methods require a non-empty overlap
between neighboring subdomains, cf. �gure 1.5c, which often improves the convergence rate.
Many domain decomposition methods can be identi�ed with preconditioners for the linear systems
of the discretized and linearized problems [Smith et al., 1996, Toselli and Widlund, 2004, Dolean
et al., 2015].

Quarteroni et al. [1992] coined the term heterogeneous domain decomposition for applying
domain decomposition methods to coupled problems with di�erent kind of partial di�erential
equations in the subdomains. This is in contrast to the domain decomposition theory above, which
has the same partial di�erential equation on each subdomain. With the heterogeneous domain
decomposition, some theoretical considerations and established algorithms can be utilized for
coupled problems. One example is the deeper understanding of the coupling conditions. The
coupling can be regarded as a Dirichlet-Neumann method, where a Dirichlet and a Neumann
boundary problem is solved on the two subdomains adjacent to the coupling interface. The
solution of the Neumann boundary problem is the boundary condition of the Dirichlet boundary
problem and vice versa. The coupling conditions can be formulated accordingly. It is known that
the Dirichlet-Neumann method converges slowly for some problems. The Neumann-Neumann
method or the Robin-Robin method show better convergence. One can use this knowledge,
formulate the coupling conditions accordingly, and use the faster method [Discacciati et al., 2007].
Heterogeneous domain decomposition highlights two types of applications: One can couple
subdomains with inherently di�erent physics like our Navier-Stokes/Darcy coupling, or one can
use di�erent models with di�erent degrees of simpli�cations for the same physics. An example
for the latter is Faigle et al. [2015] – they call it model adaptivity – where the surrounding of a
subsurface CO2 injection is modeled with a complex model and the far �eld with a simpler one.
More general, Braack and Ern [2003] present a posteriori control of modeling and discretization
errors using model adaptivity. Overlapping methods are also covered by the heterogeneous
domain decomposition, e. g., in Discacciati et al. [2016]. In this work, we are only interested in the
non-overlapping coupling of di�erent physics.
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3.3.1 Coupling conditions
The coupling de�nes the interplay of related quantities. We have four partial di�erential equations
in the free-�ow domain with the primary variables velocities vg = (v1,v2, . . . )

ᵀ, pressure pg,
vapor mass fraction Xw

g and temperature T , and three partial di�erential equations in the porous-
medium-�ow domain with the primary variables gas pressure pg, a switch variable – in this case
either water saturation Sl or vapor mass fraction in the gaseous phase Xw

g – and temperature
T . The number of equations and their associated primary variables di�er. The counterpart of a
variable in the other domain is not obvious. Further di�culties arise from the pressure being of
�rst order in the Navier-Stokes equation, while being of second order in the total mass balance
equation in the porous medium.

Coupling conditions can be derived by REV averaging, e. g., Hassanizadeh and Gray [1989a]
presents a framework to derive macroscopic coupling conditions from basic principles which is
applied to a Stokes/Darcy coupling [Hassanizadeh and Gray, 1989b]. Based on the results from
Beavers and Joseph [1967], Sa�man [1971], Jäger and Mikelić [2000], and others, Layton et al.
[2002] present a set of coupling conditions for single-phase mass and momentum. Mosthaf et al.
[2011] extend the coupling conditions to include two-phase compositional Darcy �ow and also
include interfacial vapor and energy exchange. Fetzer et al. [2016] re�nes the energy exchange by
accounting for di�usive component �uxes.

For the description of the coupling conditions at the interface Γ, we de�ne the normal of the
porous medium subdomain with respect to the interface n and the interface tangentials ti , see
�gure 3.4a.

The coupling is based on the assumption of local thermodynamic equilibrium and the continuity
of �uxes. From these we derive the mechanical, compositional and thermal coupling conditions.
They are used as boundary conditions for the respective equations in the subdomains which form
the coupling, see the following chapter describing the discretization, especially �gure 4.4. An
additional boundary condition is necessary for the tangential momentum of the free �ow which
is provided by the Beavers-Joseph-Sa�man condition. The following subsections clarify these
coupling conditions.

Mechanical equilibrium

The mechanical coupling is formed by the continuity of total mass �uxes(
ϱgvg

)�
· n =

(
ϱgvg + ϱlvl

)pm
· n on Γ (3.28)

and the continuity of normal stresses

n ·
(
ϱgvgv

ᵀ
g − µg gradvg

)�
n + p�

g = p
pm
g on Γ. (3.29)

The continuity of total mass �uxes (3.28) is another name for mass conservation across the
interfaces, as it states that the mass leaving one subdomain must entirely enter the other subdomain.
The porous medium contains two phases and the liquid phase passing the interface must be
considered. We assume that the liquid water does not vanish, but instead, it instantly vaporizes
when it reaches the free-�ow region.
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Figure 3.4: (a) Coupling setup with interface Γ, normal n and tangentials ti (b) Interface condition
in the normal direction: the continuity of normal stresses is only the porous gas
pressure ppm

g on the porous-medium side of the interface due to the capillary pressure
in liquid-�lled pores

At �rst sight, the continuity of normal stresses (3.29) surprises with a jump in gas-pressure at
the interface between the subdomains. This is a result of the di�erent models in the subdomains.
Instead, we balance the normal stresses or, equivalently, normal forces. The free �ow normal
stress is n ·

(
ϱgvgv

ᵀ
g − µg gradvg

)�
n + p�

g . In the porous-medium �ow the viscous stresses are
implicitly treated by Darcy’s law. This leaves only the two phase pressures ppm

g and p
pm
l to act on

the interface. The capillary e�ect must be considered for liquid-�lled pores and the actual pressure
acting on the interface is ppm

l + pc. Depending on the phase presence, only one of the pressures
acts at a position x ∈

{
ξ ∈ Γ |χpore(ξ ) = 1

}
on the interface, χg(x )p

pm
g +

(
1 − χg(x )

) (
p

pm
l + pc

)
,

see also �gure 3.4b. With (2.20) and the de�nition of χg, the expression is just ppm
g .

Beavers-Joseph-Sa�man condition

A boundary condition for the tangential momenta in the Navier-Stokes equation is necessary. In
the early 1960s, it was common to assume no-slip conditions. In their seminal work, Beavers and
Joseph [1967] present measurements and conclude to use the Robin boundary condition(

αBJ
(
v�

g − ṽ
pm
g

)
−
√
k gradv�

g n
)
· ti = 0 on Γ (3.30)

including the tangential seepage velocity ṽpm
g · ti from the porous medium and a slip parameter

αBJ. The Beavers-Joseph slip condition leads to a non-zero free-�ow velocity tangential to the
interface. The use of Robin boundary conditions for the Navier-Stokes equation is not uncommon,
as it is also proposed as a way to describe wall functions [Utyuzhnikov, 2008].

In a theoretical analysis, Sa�man [1971] simpli�es the Beavers-Joseph condition to(
αBJv

�
g −
√
k gradv�

g n
)
· ti = 0 on Γ, (3.31)

arguing that the seepage velocity, in comparison to the free-�ow velocity, is small and can be
neglected. This is the Beavers-Joseph-Sa�man condition and will be used in this work. As a
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Figure 3.5: Comparison of tangential momentum coupling conditions, the pro�les of the tangential
velocities are plotted (a) no slip (b) the Beavers-Joseph condition, after Bear [1972]
(c) with the Sa�man simpli�cation.

consequence of dropping the term ṽ
pm
g · ti , this coupling condition is independent of the �ow

in the porous medium. This makes it a boundary condition with the only remaining link to the
porous medium maintained by

√
k/αBJ.

There exist other simpli�cations of (3.30) in lieu of the one proposed by Sa�man. For example,
Jones [1973] suggests extending the simple shear velocity ∂

∂nv
� to the shear stress ∂∂nv

� + ∂
∂ti
v�.

Jones’ simpli�cation lacks experimental and theoretical backing [Das et al., 2002, Nield, 2009],
but is in use.

To compare the di�erent boundary conditions, the e�ects of the no slip, the Beavers-Joseph
condition, and the Beavers-Joseph-Sa�man condition are sketched in �gure 3.5. The seepage
velocity is only altered by the Beavers-Joseph condition, but the e�ect is exaggerated in the �gure
for the sake of clarity. For low permeabilities and low porosities, the seepage velocity has a more
pronounced kink towards the interface and the free �ow in�uence reaches only a couple of pores
deep into the porous medium. For higher permeabilities and higher porosities, when the free �ow
penetrates the porous medium and causes such high seepage velocities that the �ow is no longer
creeping, the Beavers-Joseph condition is no longer valid. This can be modeled with Forchheimer
�ows as shown in De Lemos [2009]. In general, the Beavers-Joseph condition was derived for
tangential �ow only. A historical overview regarding the Beavers-Joseph condition is given by
Nield [2009]. Reviews of alternative coupling approaches without the Beavers-Joseph condition
can be found in Alazmi and Vafai [2001] and Furman [2008].

The Beavers-Joseph slip parameter αBJ depends on the porous medium and must be determined
experimentally. Beavers and Joseph [1967] report αBJ to be in the range of 0.1 and 4 for their
experiments. Some authors rank the in�uence of the parameter low, but Fetzer et al. [2016]
compare αBJ ∈ {0.01, 1, 100} and notice di�erent slip velocities in the order of αBJ. As this a�ects
the boundary layer, it alters the evaporation rate, too. For the setup we have in mind, we lack the
data for αBJ and hence stick to αBJ = 1.0.

The Beavers-Joseph condition covers only single-phase �ows. The case of multiple phases in
the porous medium have not been investigated as far as we know. We follow Mosthaf et al. [2011]
and assume no slip for water-�lled pores, as the viscosity of water exceeds the one of air by two
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orders of magnitude. Technically, this introduces a dependency of the water saturation Sl for αBJ,
which we are going to ignore for this work because it has little e�ect on the evaporation rate
[Fritsch, 2016].

Jäger and Mikelić [2000] prove that the Sa�man condition is mathematically justi�ed, i. e., the
Stokes/Darcy coupling with the Beavers-Joseph-Sa�man condition leads to a well-posed problem
for the free �ow. The proof is based on homogenization and only considers a steady state. Cao
et al. [2010] show the same for the Beavers-Joseph condition without the Sa�man simpli�cation
and also for time-dependent problems.

Compositional equilibrium

Usually the thermodynamic equilibrium contains the chemical equilibrium, which states a locally
continuous chemical potential. The chemical equilibrium is de�ned for a locally constant pressure
which is violated by the pressure jump in (3.29). To solve this, we need instead a continuous mass
fraction across the interface.

The compositional coupling persists of the continuity of mass fractions

Xw,�
g = X

w,pm
g on Γ (3.32)

and the continuity of component �uxes(
ϱgX

w
g vg + j

w
�

)�
· n =

∑
α∈{g,l}

(
ϱαX

w
α vα − Dpm,αϱmole,αM

w gradxw
mole,α

)pm
· n on Γ. (3.33)

As for equation (3.21), the determination to use the vapor mass fraction κ = w is arbitrary, and the
di�usive component �ux is jw� = −Dgϱmole,gM

w gradxw
mole,g.

Thermal equilibrium

The thermal coupling is simpli�ed by the assumption of local thermal equilibrium within the
subdomains. The coupling consists of the continuity of temperature

T � = T pm on Γ (3.34)

and the continuity of heat �uxes(
ϱghgvg + h

w
g j

w
� + h

a
gj

a
� − λg gradT

)�
· n =

(
ϱghgvg + ϱlhlvl − λpm gradT

)pm
· n on Γ. (3.35)

Alternative thermal coupling approaches are reviewed in Alazmi and Vafai [2001].

Properties, extensions and assumptions

As the coupling conditions describe the �uxes across the interfaces, the coupling is mass conser-
vative. The coupling interface has no thickness, does not store any quantity, makes no resistance
to the normal transport of thermodynamic quantities, and both sides of the interface are in a local
thermodynamic equilibrium. Regarding the classi�cation explained in Hassanizadeh and Gray
[1989b], we have a simple interface.
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The coupling conditions were developed for laminar �ow and do not re�ect turbulent e�ects.
For porous materials which are 200 times more permeable than ours, an experiment of turbulent
�ow over a porous bed together with according simulations revealed that the �ow characteristics
on top of the porous medium is more of a mixing layer than a boundary layer [Prinos et al., 2003].
Hahn et al. [2002] propose di�erent boundary conditions, matching results obtained by a direct
numerical simulation. The �ndings include less friction, a reduction of turbulence, and a thinner
boundary layer in some cases. For lower permeabilities, these e�ects diminish. The turbulent �ow
does only slightly a�ect the �ow in the porous medium, especially when the results from Chan
et al. [2007] are extrapolated for lower permeabilities. De Lemos [2009] simulates turbulent �ows
both outside and inside the porous medium. The in�uence of roughness and approaches to model
its e�ect are investigated by Fetzer et al. [2016].

As there is no consensus yet on how to include turbulent e�ects in the coupling conditions, and
primarily low permeabilities and porosities occur in our applications, we do not alter the coupling
conditions. As long as the viscous sublayer is above the porous medium, the �ow conditions next
to the interface remain laminar.

For low permeabilities, it is possible to neglect the pressure jump and the Beavers-Joseph
condition altogether. Instead, a continuous pressure and the no-slip condition result in a less
di�cult coupling. For example, this is done by Masson et al. [2016].

To summarize the underlying assumptions of our model: We assume binary di�usion, following
Fick’s law, occurs throughout the system, and that all �uids behave as Newtonian �uids, without
any dilatation, and further that the system maintains a local thermodynamic equilibrium. We
also assume that the free �ow consists of a single compositional gaseous phase, that the gases are
incompressible, and that we can neglect gravitational forces. We assume that the velocities in the
free �ow near the interface remain small. Regarding the porous media, we assume that the media
has a rigid soil matrix, that �ow inside the pores is creeping with Re < 1, and that it contains two
immiscible compositional phases.

40



In the good old days physicists repeated each other’s

experiments, just to be sure. Today they stick to Fortran, so

that they can share each other’s programs, bugs included.

Edsger W. Dijkstra, 19754 Discretization

Compiling all of the previous chapter’s equations results in a system of nonlinear partial
di�erential equations (PDE). For certain plain Navier-Stokes or Darcy problems analytic

solutions of the resulting systems exist. It would be an involved task to describe the system
analytically including various coupled equations and plenty of non-linear, regularized physical
relationships. For the coupled one-phase Stokes/Darcy system, problems with known solutions
have been constructed, e. g., by Chidyagwai and Rivière [2011], but not for more complicated
problems.

Numerical mathematics o�ers tools to get approximated solutions for these complicated systems.
First, we separate time from space and solve them separately; this is called the method of lines
[LeVeque, 2002]. Second, we approximate the spatially continuous, time independent problem
with a discrete method; we choose the �nite volume method (FVM). Third, the time is discretized
by an implicit Euler method to obtain a series of spatial discretizations. Fourth, we linearize the
discrete problem with Newton’s method. Finally, we solve the gained system of linear equations.

The partial di�erential equations introduced in the last chapter are balance equations of the
form

∂

∂t
w − div ( f (w )) = q (4.1)

on a domain Ω. They conserve a quantity w , that can be pressure, momentum or energy, for
example. In an integrated form and after applying the divergence theorem, the equation takes the
form ∫

Ω

∂

∂t
w −

∫
∂Ω

f (w ) · nΩ =

∫
Ω

q. (4.2)

and states that the changes ofw inside Ω are the normal �uxes over the surface ∂Ω and the source
term q.

4.1 Spatial

To start, we shelve the storage term ∂
∂tw and discretize the space. We divide the domain Ω into

rectangles Ωi , each called an element or a control volume. They do mutually not overlap or the
overlap of two di�erent elements is of co-dimension one. In the latter case it is called a face or
an intersection. Equation 4.2 holds true for each element Ωi . For two adjacent elements, the
out�ow

∫
∂Ωi

f (w ) · nΩi of one element is the in�ow of the other element. We replace w by an
averaged value ω = 1

|Ωi |

∫
Ωi

f (w ) and keep this value at the center of the element. As the solution
w or the discrete solution ω is unknown, it is called a degree of freedom. Instead of calculating
the �ux between two adjacent elements Ωi and Ωj with an integral along their face, the �ux is
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Figure 4.1: Cell-centered �nite volume �ux (a) between two grid elements (b) for Neumann bound-
ary condition (c) for Dirichlet boundary condition between boundary grid element and
ghost element Ω̃i

approximated by f̄ij (ωi ,ωj ), see �gure 4.1a. The numerical �ux

f̄di�,ij (ωi ,ωj ) =
ωi − ωj

���xi − xj
���

(4.3)

with xi , the location of the degree of freedom in Ωi , and the Euclidean distance | · |, is the most
simple approximation for the di�usive parts of f . This numerical �ux is called the two-point �ux
approximation. When discretizing advective terms, that are governed by the velocity vij at the
face, the use of the upwind scheme

f̄up,ij (ωi ,ωj ,vij ) =



ωi if vij ·
(
xi − xj

)
< 0

ωj else
(4.4)

will result in a stable scheme. This can be interpreted physically as the �uid transporting the
quantity ω in the direction of the velocity. The upstream value determines the �ux across the face.

Instead of writing the �ux f̄di�,ij and f̄up,ij between two adjacent elements Ωi and Ωj , we sum
the �uxes for a singe element Ωi with respect to all its neighbors Ni as∑

j∈Ni

(
f̄di�,ij

(
ωi ,ωj

)
+ f̄up,ij (ωi ,ωj ,vij )

)
. (4.5)

The �nite volume method describes �uxes between the elements. Boundary conditions are
incorporated as �uxes over the domain boundary ∂Ω. For Neumann boundary conditions, which
specify a �ux across ∂Ω, the �ux value is implemented as an additional �ux f̃N,i for Ωi , see
�gure 4.1b. Dirichlet boundary conditions specify the value of ω at ∂Ω. To ful�ll this boundary
condition we introduce a ghost element Ω̃i that is mirrored at ∂Ω. The ghost value ω̃i for the
ghost element is chosen in such a way, that the linear interpolation between ωi and ω̃i matches
the Dirichlet boundary condition. Then the �ux across the boundary f̃D,i can be evaluated similar
to the �ux between two inner elements, see �gure 4.1c. Robin boundary conditions are a weighted
combination of an absolute value of ω and a �ux value. In this case, we use a solution-dependent
Neumann boundary condition for our implementation. Depending on the current value of ωi , we
calculate the according �ux f̃R,i to match the given boundary condition.
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A more extensive description of the �nite volume method can be found in books dedicated
to this topic, like LeVeque [2002] or Mazumder [2015]. The latter examines all three types of
boundary conditions in more detail.

We use the �nite volume method to discretize the component transport of the free �ow (3.21),
the total mass balance equations of the Darcy �ow (3.26), the balance equation for the component
mass of the Darcy �ow (3.25), and the energy transport equations (3.22), (3.27). For all equations
we use the same regular rectangular grid. Each grid element has one degree of freedom for each
primary variable, and these degrees of freedom coincide in the element’s center.

The discretization is implemented in the form of local operators. A spatial local operator adds
up all contributions from the equations for a single element, an intersection with the two adjacent
elements, or a boundary face with the attached element. The advantage is that the implementation
is generic and close to the mathematical formulation. Assembling the global residual can be done
in a general way with a grid traversal. On the contrary the concept negatively limits the stencil
of the implemented operator, because only variables from neighboring elements can be made
dependent.

4.1.1 Navier-Stokes

A similar �nite volume discretization for the Navier-Stokes equation (3.3), where the degrees of
freedom for velocities are located in the element centers together with degrees of freedom from
the mass balance equation (3.4) yields an unstable method. It is easy to construct an example
with large, unphysical oscillations like the checkerboard-style pressure solution presented in
Versteeg and Malalasekera [2007]. From the theory of �nite elements, it is known that the
function space representing the velocity must be richer than the one representing the pressure.
This is a consequence of stability proofs which involves the inf-sup condition, sometimes called
Ladyshenskaja-Babuška-Brezzi (LBB) condition. A common approach which ful�lls the inf-sup
condition are methods with mixed �nite elements. Mixed �nite elements have additional degrees
of freedom and their normal components are continuous across interfaces [Chen, 2005]. The
lowest order case is one degree of freedom in the element center for the pressure, and one degree
of freedom per face for the normal velocity component. For rectangular elements, the scheme can
be interpreted as a �nite di�erence or �nite volume scheme on a staggered grid, then called the
marker and cell (MAC) scheme [Harlow and Welch, 1965]. It took almost 30 years to provide the
error analysis for this scheme [Nicolaides, 1992, Nicolaides and Wu, 1996]; a more recent proof,
provided by Kanschat [2008], interprets the MAC scheme as a Discontinuous Galerkin method. In
this work, it is used as a �nite volume method, as sketched in �gure 4.2: The velocity components
are normal to the interface and their degrees of freedom are moved half an element towards the
edges of the pressure control volume. All secondary variables, like density or viscosity, do not
depend on the velocity and remain in the element centers. With the velocity components at the
interfaces, it is natural to use them for the upwind direction at the faces of the primary grid.

For each velocity component, a �nite volume discretization on a secondary, staggered grid is
constructed. Instead of constructing these grids explicitly, we deduce the geometric information of
the secondary elements from the primary grid. For example, the location of the degree of freedom
for a normal velocity is a face center in the primary grid.
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Figure 4.2: Degrees of freedom in the MAC scheme: arrows indicate velocities, circles all other
primary variables, gray areas are the corresponding control volumes from the secondary
grid, the black lines form the primary grid

4.1.2 Coupling Navier-Stokes and Darcy

During the discretization of the free-�ow and the porous-medium-�ow regions, the degrees of
freedom are located at the element centers, except for those of the free-�ow velocities. Instead
of having two grids side by side, a single grid is used and cut into two parts along the coupling
interface Γ. On one part of the grid, the Darcy �ow and the heat equation are approximated,
whereas on the other part, the free �ow, the component transport, and the heat equation are
simulated, see �gure 4.3a. At the interface we have to apply the coupling conditions in a discrete
form. For the implementation, we use a special local operator, called the coupling operator, which
includes two elements sharing the coupling interface as their common face. We have to consider
this restriction in our coupling scheme. We already published our coupling scheme in Grüninger
et al. [2017], and adopt some paragraphs in the following.

For the Navier-Stokes equation (3.3), the two coupling conditions, continuity of normal stresses
(3.29) and the Beavers-Joseph-Sa�man condition (3.31), are realized as boundary conditions. In
particular, the continuity of the normal stresses (3.29) is a Neumann boundary condition for the
normal momentum. The Neumann �ux value is the porous medium pressure integrated over the
interface. As ppm

g at the interface is not available from the discretization, we use the pressure
from the adjacent porous-medium element center. The Beavers-Joseph-Sa�man condition (3.31) is
a Robin-type boundary condition for the tangential momentum of (3.3). It is implemented as a
solution-dependent Neumann boundary condition. The i-th tangential velocity at the interface
v�

g ·ti
���Γ =: v�

g,Γ,ti is not a primary variable, �gure 4.3b shows the position of the tangential velocities.
It occurs in (3.31) and we use it for approximating the derivative of the tangential velocity in the
normal direction grad

(
v�

g
)
n · ti ≈

(
v�

g,ti −v
�
g,Γ,ti

)
2
∆x , to get the discrete equation

αBJv
�
g,Γ,ti −

√
k

(
v�

g,ti −v
�
g,Γ,ti

) 2
∆x
= 0. (4.6)

Solving for

v�
g,Γ,ti =

2v�
g,ti

√
k

2
√
k − αBJ∆x

, (4.7)

we can calculate the approximation of grad
(
v�

g
)
n · ti which is the Neumann boundary condition

for the tangential momentum, because ϱgv
�
gv

�,ᵀ
g vanishes in the proximity of the interface.
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Figure 4.3: Coupling of grid parts discretizing the free and porous-medium �ow. (a) A single grid is
split at the interface with di�erent discretizations on both subdomains. (b) Tangential
velocity at the interface as used by the discretized Beavers-Joseph-Sa�man condition.

The free-�ow mass balance equation (3.4) requires no coupling condition and the mass �ux
ϱ�

gv
�
g is calculated on the corresponding �nite volume face at the interface.

For the total mass balance equation in the porous-medium subdomain, the continuity of the
total mass �uxes (3.28) is used as a Neumann boundary condition. The Neumann �ux value is the
free-�ow momentum ϱ�

gv
�
g · n and resides directly at the interface.

In principle, we would like to apply a standard two-point �ux approximation, with harmonic
averaging, in order to discretize the continuity of mass fractions (3.32) and the di�usive parts of the
vapor component �ux (3.33). The latter proves to be di�cult due to the di�erent terms occurring
on both sides of the equation, especially since direct relationships between the individual terms
are unknown. Therefore, we evaluate the free-�ow part of (3.33) to calculate the interface �ux,
which is imposed as a Neumann boundary condition for both component transport equations
(3.21) and (3.25). The partial derivative of the vapor component molar mass fraction in the normal
direction to the interface is approximated with a �nite di�erence including both values located at
the element centers: gradxw

mole,g · n ≈
(
xw,�

mole,g − x
w,pm
mole,g

)
1
∆x . The value for the Neumann boundary

conditions is calculated as ϱ�
gX

�,w
g v�

g − D
�
gϱ

�
mole,gM

w
(
xw,�

mole,g − x
w,pm
mole,g

)
1
∆x .

As for the transport of the vapor component, the same argument is applicable to the energy
exchange described by the continuity of temperature (3.34) and the continuity of heat �uxes (3.35).
Equation (3.35) contains an additional di�culty: The di�usive terms from the free-�ow side hw

g j
w
�

and ha
gj

a
� are incorporated in the porous-medium thermal conductivity λpm on the other side. As

the relationship between the di�usive terms remains unknown, it is not clear how to treat the
terms when averaging. Again, the �ux is evaluated from the free-�ow part of the heat �uxes (3.35)
using the approximated gradient across the interface for gradT · n and gradxw

mole,g · n.
The relationship between the subdomain equations and their boundary conditions—derived

from the coupling conditions—is summarized in �gure 4.4.

Alternative coupling discretizations

In Fetzer et al. [2017a], we investigate alternative coupling conditions which have additional
degrees of freedom at the interface. The following is a modi�ed excerpt from the publication.
The porous-medium pressure p

pm,Γ
g is not directly used to calculate �uxes inside the porous
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Figure 4.4: Coupling conditions between the subdomain equations with their associated primary
variables. Each arrow represents a boundary condition applied to the equation it points
at. The two-point �ux approximation of the coupling condition’s free-�ow side is
applied to both sides, and is indicated in the diagram by the shorthand � �ux.

medium towards the interface. Instead, the mass �uxes entering or leaving the porous medium
are speci�ed via the continuity of total mass �uxes (3.28). Regarding the continuity of normal
stresses (3.29), both pressures p�,Γ

g and p
pm,Γ
g are unknown. The position of the pseudo degrees of

freedom are shown in �gure 4.5a. The pressure values di�er due to the di�erent model concepts
and the assumption of continuity of normal stresses. Determining ppm,Γ

g is necessary to couple the
free-�ow momentum balance equation with �ow processes inside the porous medium.

The simple momentum coupling introduced above assumes ppm,Γ
g = p

pm
g . For a �ne enough

discretization, this should be a good approximation of the gas pressure at the interface. Coarser
grids or higher �uxes lead to an underestimated pressure at the interface, and thus a too low �ow
resistance at the interface. Further, no pressure can be predicted around corners of the porous
media that protrude into the free �ow, as depicted in �gure 4.5b. We present three di�erent
methods to improve the determination of ppm,Γ

g .
For the total momentum coupling, ppm,Γ

g is recalculated using Darcy’s law (3.23) and the conti-
nuity of total mass �uxes (3.28),

(
ϱgvg

)�
· n = *

,

∑
α

ϱα
kαk

ϱανα

(
pΓα − pα(
xΓ − x

)
· n
− ϱαд · n

)
+
-

pm

. (4.8)

The liquid saturation S
pm,Γ
l and thus the liquid pressure at the interface p

pm,Γ
l are unknown.

Therefore, no di�erence in the liquid phase saturation is assumed, Spm,Γ
l = S

pm
l . This simpli�cation

results in the same pressure di�erence for both phases ppm,Γ
l − p

pm
l = p

pm,Γ
g − p

pm
g and therefore
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Figure 4.5: Alternative coupling discretizations (a) Location of degrees of freedom and pseudo
degrees of freedom at the coupling interface, the latter have the superscript Γ and
are printed in gray. (b) When the porous medium extends into the free �ow, the �ow
through the porous medium might becomes unphysical, especially at the corners.

the gradients contributing to the liquid and gas phase �ux are equal. With that, we calculate the
interface gas pressure as

p
pm,Γ
g =

(
ϱgvg · n

)�
+

(∑
α

kαk
να
ϱαд · n

)pm∑
α

kαk
να

(
xpm,Γ − xpm

)
· n + p

pm
g . (4.9)

When we neglect gravitational forces, the porous medium and its discretization are given. With
this, the lowest gas pressure and highest gas velocity along the interface occur in areas of small
�ow resistances (

∑
α
kα/να )

−1 which are found at Sl = 1.
For the gas momentum coupling approach, the free �ow gas is not allowed to transfer momentum

to the liquid phase. This means the liquid terms in (4.9) are dropped and the gas pressure at the
interface becomes

p
pm,Γ
g =

(
ϱgvg · n

)�
+

(
kgk

νg
ϱgд · n

)pm

kgk

νg

(
xpm,Γ − xpm

)
· n + p

pm
g . (4.10)

As opposed to the �rst alternative approach, a fully liquid saturated system acts as an impermeable
barrier. No additional assumptions about the liquid state have to be made. Now, the lowest
resistance (kg/νg)

−1 and thus the highest velocities occur for Sl = 0.
To make as few assumptions concerning interface conditions as possible, we present the

coupling via an interface solver. For each primary variable, we introduce a pseudo-unknown
at the interface. These pseudo-unknowns are p

pm,Γ
g , Xw,�,Γ

g , Spm,Γ
l or X

w,pm,Γ
g , T �,Γ , and T pm,Γ .

Assuming local thermodynamic equilibrium, two of them can be eliminated: Xw,�,Γ
g = X

w,pm,Γ
g , or

Xw,�,Γ
g = f

(
S

pm,Γ
l ,p

pm,Γ
g

)
, and T �,Γ = T pm,Γ . The three necessary equations are (3.28), (3.32) and
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(3.35). In contrast to the above mentioned assumptions, Spm,Γ
l = S

pm
l is no longer required. This

means the pressure gradients of the liquid and of the gas phase might di�er. Further, the gradients
driving the di�usive and conductive �uxes can now be built without using quantities from the
other subdomain. The di�usive �uxes in (3.32) and (3.35) can be expressed by

jκα = −Dg ϱmole,gM
κ xw,Γ

α − xw
α(

xΓ − x
)
· n
, (4.11)

the conductive �uxes in (3.35) are given by

− λg gradT = −λg
T Γ −T(
xΓ − x

)
· n

(4.12)

for both subdomains. To calculate the �uxes across the interface, this system of equations has
to be solved with Newton’s method. If the method has converged, the pseudo-unknown p

pm,Γ
g is

used to calculate all �uxes. In comparison to all previous coupling methods, this method is able to
consider co-current �ow of liquid and gas for estimating the normal momentum �ux and thus the
interface gas pressure.

We will not use these alternative approaches in this work as the simple method works for our
applications [Grüninger et al., 2017] and does converge for �ner grid cells [Fetzer et al., 2017a].

4.2 Temporal
Using the �nite volume method to discretize the space, we have a system of semi-discrete equations
of the form

∂

∂t
ωi +

∑
j∈Ni

(
f̄di�,ij

(
ωi ,ωj

)
+ f̄up,ij

(
ωi ,ωj ,vij

))
= 0 (4.13)

for each element Ωi . This is a system of ordinary di�erential equations (ODE) with respect
to the time t . The continuous time is replaced by discrete points called time steps tk with
t0 < t1 < . . . < tend where the time step size is de�ned as ∆tk := tk − tk−1. The superscript on any
variable indicates, that the value is evaluated at the time step with the same index, for example,
ωk := ω |tk . The time step size is determined adaptively depending on the number of Newton
steps. The time step size cannot grow beyond a maximum time step size ∆tmax that is given as a
parameter. If the time step size falls below a given minimum, the simulation aborts.

The partial derivative in the storage term is approximated with a backward �nite di�erence

ωk
i − ω

k−1
i

∆tk
+

∑
j∈Ni

(
f̄di�,ij

(
ωk
i ,ω

k
j

)
+ f̄up,ij

(
ωk
i ,ω

k
j ,v

k
ij

))
= 0. (4.14)

This is called the backward Euler method, which is an implicit method because the solution for
the new time step ωk

i cannot be calculated directly from local data using the last time tk−1. All
variables build a nonlinear system that must be solved. The implicit Euler method has the largest
stability region of all the ODE solvers, in particular as it is L-stable [LeVeque, 2002]. The method
does not impose any restriction on the time step size.
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4.3 Linearization
Let uω be a vector for all degrees of freedom with uωi as the degree of freedom for ω from the i-th
grid element Ωi . Further, let u be the vector for all degrees of freedom for all primary variables
from both subdomains

u :=
(
uv1,�,uv2,�, . . . ,up�,uX�,uT�,upg,pm,uspm,uTpm

)ᵀ
. (4.15)

Equation (4.14) postulates the property of the balance equation in a discrete way: the change over
time, the �ux over the faces, and contribution from sources must add up to zero. Using the right
hand side of the equation, we de�ne the element residual

ri
(
ωk−1
i ,ω

k
i

)
:=
ωk
i − ω

k−1
i

∆tk
+

∑
j∈Ni

(
f̄di�,ij

(
ωk
i ,ω

k
j

)
+ f̄up,ij

(
ωk
i ,ω

k
j ,v

k
ij

))
(4.16)

and the residual r
(
uk−1,uk

)
with the entries r

(
uk−1,uk

)
i

:= ri
(
uk−1
i ,u

k
i

)
. The residual indicates

the quality of uk as an approximation for the discrete system. For zero entries, it is a perfect
approximation. For small entries, the approximation can be good enough. For large absolute
values, it is clearly not a suitable approximation.

We use Newton’s method: From an approximation of the solution uk,l , we calculate the Jacobian
matrix for the residual

Jr
(
uk−1,l ,uk,l

)
:= *.

,

∂

∂uk,lj
r
(
uk−1,l
i ,uk,li

)+/
-i∈{1,...},j∈{1,...}

. (4.17)

The Jacobian matrix’ entries are partial derivatives with respect to all unknowns; they describe
how the value of an unknown is in�uenced by other unknowns. By solving the linear system

Jr
(
uk−1,l ,uk,l

)
zk,l = uk,l , (4.18)

we obtain the update vector zk,l . The next approximation of the solution is

uk+1,l = uk,l − zk,l . (4.19)

The Newton step is then repeated until the approximation is su�cient. For linear problems only a
single Newton iteration must be performed.

There are several possibilities to measure the quality of the current approximation: the di�erence
of two subsequent solutions 


u

k+1,l − uk,l


 =



z

k,l


, the size of the residual 


r
(
uk−1,uk

)


, the

reduction of the residual’s size compared to the initial residual’s size ‖r (u
k−1,uk )‖

‖r (u0,u1)‖
, or the maximum

of all residual entries maxi
(
rki

)
. Here, a combination of the last two is used: The Newton’s method

�nishes successfully when either the residual reduction is lower than 10−7 or the maximum entry
is smaller than 10−5. Depending on the simulation, other values are more suitable.

The number of Newton iterations ζ k until the method �nished successfully is used to adapt the
next time step size ∆tk+1. A simulation parameter is the target number of Newton iterations ξ . If
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the number of iterations remain below the target number ζ k < ξ , the time step size is increased
to ∆tk+1 = ∆tk

(
1 + ξ−ζ k

1.2ξ

)
. If the number of iterations exceed the target number ζ k > ξ , the time

step size is reduced to ∆tk+1 = ∆tk
(
1 + ζ k−ξ

ξ

)−1
. If the Newton method does not converge, we

half the time step size and restart the Newton method. We do the same if non-physical values like
a negative saturation appears or if solving the linear system fails.

4.4 Solving the system of linear equations

Each Newton iteration performs the assembly of the Jacobian and the solution of a large system
of linear equations. To simplify the notation from (4.18), we use Az = b. For the examples in
this work, the number of unknowns η in the system lies in the range of 10 000 to 100 000. The
upper limit is marked by the available computer hardware and computing time. Solving this linear
system is computationally expensive.

The matrix A is sparse; in other words, most of its entries are zero and the number of nonzero
entries is of linear complexity O (η) instead of the possible quadratic complexity O

(
η2

)
. This

structure can be exploited to solve the system faster. Depending on the numbering of the degrees
of freedom, the nonzero entries are usually along the diagonal in a structure of bands, see �gure 4.6
for an example. The matrix is nonsymmetric.

The discretizations of the two coupled subdomains are visible in the block structure of A, with
the free-�ow part in the upper left and the porous-medium-�ow part in the lower right. Both parts
are only coupled with few entries in the large o�-diagonal blocks. For two-dimensional problems,
the number of nonzero entries in the o�-diagonals is O

(√
η
)

and O
(
η2/3

)
for three-dimensional

ones.
One submatrix is of special interest because it di�ers from the others and requires special care

in the process of solving the overall linear system. The linearized system for the incompressible
Navier-Stokes equation (3.3) and the mass balance equation (3.4) forms a saddle point problem of
the type (

Ā B

C 0

)
. (4.20)

For symmetric problems Ā is symmetric and B = Cᵀ. The zero block is caused by the assumed
incompressibility of the �uids. It is common to refer to a saddle point problem as nonsymmetric
or generalized, if Ā is not symmetric, but B = Cᵀ remains [Bramble et al., 2000, Krzyzanowski,
2001]. Such problems arise amongst others from discretizations of mixed �nite elements. From
our problem, we get even less symmetric linear systems, as Ā is not symmetric and additionally
B , Cᵀ. Saddle point problems are hard to solve, most iterative algorithms, which are well-suited
for other types of matrices, break down or show poor convergence. Standard iterative methods
developed for saddle point problems, like the Uzawa algorithm [Chen, 2005], only work for
symmetric matrices. Benzi et al. [2005] thoroughly deal with saddle point problems, partially also
with nonsymmetric ones. Most algorithms are not directly applicable and there is no obvious
ready-to-use linear solver, beside direct methods.
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Figure 4.6: Structure of an exemplary matrix obtained from a discretization of a coupled system
with 4×4 elements per subdomain, row-scaled for visualization; the number of nonzero
entries is 1541, the original condition number was 1.2 · 1012; visible are the block
structure, the saddle point problem in the v� and p�

g blocks, the nonsymmetry like the
blocks for p�

g and T �.

4.4.1 Direct linear solvers

Gaußian elimination is a numerically robust algorithm for solving a system of linear equations. It
directly solves the linear system. It has a large memory footprint and, if naïvely implemented, its
computational complexity is cubic O

(
η3

)
. If the band structure with the band widthω is exploited,

it can be reduced to O
(
ω η2

)
. The idea is to eliminate the entries below the diagonal for each row

i by adding multiples of the i-th row. The resulting system with an upper right matrix is solved
by backward substitution. The method is prone to �ll-in, which is a phenomenon of initially zero
entries becoming nonzero during the elimination of entries further left. Fill-in can be reduced by
reordering the degrees of freedom. We use two di�erent direct linear solvers, UMFPack [Davis,
2004] and SuperLU [Demmel et al., 1999]. Both compute an LU decomposition A = LU with L an
lower triangular matrix and U an upper triangular matrix where L stores the coe�cients of the
elimination procedure. The two algorithms try to identify or to create dense blocks which are
independent from other parts of the matrix and can be solved fast with BLAS routines. UMFPack
is a multifrontal method, i. e., dense submatrices are created for the parts where the factorizing is
active, while the submatrices are related by an elimination tree. SuperLU uses supernodes which
are adjacent columns with the same zero pattern. We refer to Davis et al. [2016] for an explanation
of similarities and di�erences between the algorithms.
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Multithreaded algorithms like SuperLU_MT open up the computational power of multiple
threads without requiring multiple copies of the matrix, but their capability to so solve large
systems is bound by their high memory usage. Initially, the use of graphics processing units (GPU)
for direct linear solvers has not shown good results [Vuduc et al., 2010], but promising algorithms
were published in the last couple of years [Davis et al., 2016]. The use of multi-core parallel
direct solvers which distribute the problem over several nodes and communicate intermediate
results between the nodes is out of this work’s scope. It could be bene�cial when the grid and the
matrix assembly are already distributed. Recent advances in sparse direct solvers like memory-
aware scheduling techniques, low-rank approximations, and distributed/shared memory hybrid
programming are covered in Agullo et al. [2013] and Davis et al. [2016]. There is no specialized
direct solver for saddle point problems [Benzi et al., 2005].

4.4.2 Iterative linear solvers
Iterative methods for linear systems generate sequences of approximations which converge to-
wards the solution. A single iteration typically requires one or more matrix-vector multiplications
as the most expensive operation. For sparse matrices, this is of linear complexity O (η). For large
matrices, good iterative methods outperform direct solvers because the number of iterations
needed for convergence grows only moderately when η is increased. Numerous iterative methods
are published; the book Saad [2003] gives an excellent overview of iterative methods for sparse
linear systems. Unfortunately only few methods can be used for nonsymmetric saddle point prob-
lems. Two common iterative Krylov subspace methods, suitable for nonsymmetric systems, are
the Generalized Minimal Residual method (GMRES) with restarts and the Bi-conjugate Gradient
stabilized method (BiCG-stab).

GMRES minimizes in the i-th step the residuum’s Euclid norm ‖Az − b‖2 with respect to an
a�ne Krylov subspace z0 + span

({
r0,Ar0,A

2r0, . . . ,A
i−1r0

})
, with the initial solution z0 and the

initial residual r0 := Az0 − b. The construction of the Krylov subspace requires to construct
orthonormal basis vectors. To reduce the e�ort, restarts are used which dismiss all base vectors
and start with a new, empty Krylov subspace. With exact arithmetic and without the restarts,
GMRES is a direct method and yields a solution after η iterations. It is commonly used as an
iterative method with an adequate preconditioner, with far less than η steps, and with restarts
after every 20 to 40 iterations.

The conjugate gradient method minimizes 1/2 zᵀAz − bz which is equivalent to solving the
original linear system. The gradient for the minimization problem at zi is −ri := Azi − b. Instead
of directly using a gradient descent, the conjugate gradient is used, meaning that the directions
of the descent di are conjugated and for all i , j it holds that dᵀi Adj = 0. One generalization for
nonsymmetric matrices is the Biconjugate Gradient (BiCG) method which involves Aᵀ. As the
resulting method is unstable, BiCG-stab performs a single GRMES iteration for stabilization after
every BiCG iteration. Again, this method is commonly combined with a preconditioner.

To improve the convergence of iterative methods a preconditioner P is multiplied from left and
the iterative method is applied to PAz = Pb instead. The preconditioned system should converge
faster compared to the original one. An ideal preconditioner would be P = A−1 but obviously such
a preconditioner is di�cult to obtain. A preconditioner can be constructed from a simpli�cation
of A which can be cheaply inverted. An example is the diagonal matrix DA which provides
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the Jacobi preconditioner D−1
A . Here, preconditioners can be based on two approaches: Purely

algebraic techniques or methods incorporating knowledge about the structure of the problem and
its discretization.

Problem-specific preconditioners

In many applications, the block structure of a saddle point problem can be utilized to construct
e�cient methods. The problem at hand has even more structure as the coupling leads to almost
empty o�-diagonal blocks.

We rewrite Az = b in a blocked form—which must not be confused with the saddle-point
structure given in equation (4.20)—as (

Ā B

C D

) (
z1
z2

)
=

(
b1
b2

)
(4.21)

with Ā ∈ �η1×η1 , D ∈ �η2×η2 , and η = η1 + η2. Multiplying the upper row from left by −CĀ−1 gives
−Cz1 −CĀ

−1Bz2 = −CĀ
−1b1. Adding it to the lower row results in(

D −CĀ−1B
)
z2 = b2 −CĀ

−1b1, (4.22)

where S := D −CĀ−1B is the Schur complement of Ā in A. It is known that for an invertible A also
S is invertible. Iterative methods are not suitable to solve a system including S , because in general,
S is dense [Smith et al., 1996].

After solving the equation (4.22) for z2, we can solve

Āz1 = b1 − Bz2 (4.23)

for z1, to obtain the complete solution vector. Instead of solving a system of the size η × η, we
solve one of the size η2 × η2 and one of the size η1 × η1. Inverting Ā is expensive and any method
computing the inverse Ā−1 renders useless for faster solving. When we solve (4.22) and (4.23) with
iterative methods, we only require the e�ect of Ā−1 and −CĀ−1B on a vector. We can use an inner
iterative method for this calculation without explicitly inverting Ā or computing S .

We examine three advantageous splits of A along its block structure. First, we can split the
matrix into a free-�ow and a porous-medium-�ow part, cf. �gure 4.7a. Second, it is bene�cial
to split o� the saddle point problem due to its di�cult solution, cf. �gure 4.7b. Third, we can
separate the free-�ow mass balance equation and its diagonal zero block from all other equations
which are diagonally dominant, cf. �gure 4.7c. Considering the �rst two splits, we cannot expect
these methods to be faster than a direct solver, as we are lacking an iterative method for the
saddle point problem; thus, we have to invert Ā. The third split looks more promising, as Ā is
diagonally dominant and can be solved with BiCG-stab or GMRES. Further, D = 0 simpli�es the
computation of S . The crux is in the computation of equation (4.22); without an explicit S , the
usual preconditioners cannot be applied directly. For some problems, approximations of S−1 can
be constructed [Benzi et al., 2005], but we are not aware of such an approximation suitable for
our problem.
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� mass balance
� Navier-Stokes
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Figure 4.7: Advantageous splits of the linear system along its block structure (a) split free �ow
from porous-medium �ow (b) split o� saddle point problem (c) split empty diagonal
block from diagonal-dominant block. Note the altered blocking order in the saddle
point problem compared to (4.20).

A similar problem arises for the preconditioner
(
Ā 0
0 S

)−1

for the overall system. It is motivated

by a block triangular factorization step on the block structure

A =

(
Ā B

C D

)
=

(
I 0

BA−1 I

) (
Ā 0
0 S

) (
I A−1C

0 I

)
. (4.24)

Setting up this preconditioner requires as much e�ort as solving the original problem [Benzi et al.,
2005].

These Schur complement methods are sometimes called substructuring methods or non-over-
lapping domain decomposition methods. They can be viewed as disjoint substructures of the
original problem which are solved independently and coupled to obtain an overall solution. For
problems with strong advection, standard iterative substructuring methods do not perform well.
Promising results with more sophisticated methods are published [Toselli and Widlund, 2004],
but these are out of scope for this work.

Furthermore, overlapping domain decomposition methods have overlapping substructures and
show better results for nonsymmetric problems with advection and larger Reynolds numbers
[Toselli and Widlund, 2004].

Multigrid methods are designed for solving large systems of discretized partial di�erential
equations. Krylov subspace methods converge slower for larger systems but in the direction of
A’s larger eigenvectors, called high-frequency modes. The low-frequency modes are di�cult
to damp and slow down the convergence of iterative methods. On a coarser grid a fraction of
the low-frequency modes are mapped to high-frequency ones, which can be quickly damped.
The restriction to a coarser grid, applying some solver iterations, and prolonging the solution
to the original grid is usually repeated, sometimes in a recursive manner. The convergence of
these geometric multigrid methods is faster, but the implementation needs access to the grid
management.

Algorithms that utilize the blocking structure arising from the coupling of two physical subdo-
mains are rare, especially for nonsymmetric problems. Howle et al. [2013] propose to use D as a
preconditioner for the Schur complement S .
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Algebraic preconditioners

The preconditioners purely based on algebraic techniques are black-box methods which aim for
general applicability ignoring A’s block structure. Examples of these types of preconditioners
are the Jacobi preconditioner, the Incomplete LU factorization (ILU), and the Algebraic Multigrid
methods (AMG). They can be applied to any system but some show bad convergence or breakdowns
for saddle point problems because the corresponding matrices lack diagonal dominance [Benzi
et al., 2005]. The ILU factorization is a LU decomposition restricted to the sparsity pattern of the
matrix. This limits the �ll-in and the computational complexity of the algorithm. An extension
allows some �ll-in, to trade higher computational e�ort for an improved preconditioner. The
ILU(1) factorization extends the sparsity pattern fromA toA2, the ILU(k) factorization toAk+1. The
performance of ILU factorization can be improved by the ILU method with threshold (ILUT), which
drops less important entries from the LU decomposition step. As a trivial example, ILU(0) drops
all entries that are not in the sparsity pattern of A. Another approach keeps the p largest entries.
This conserves the most important entries but also limits the growth of the preconditioner. ILUT
breaks for zero-diagonal entries, precluding it for our saddle point problems. The ILU method
with threshold and pivoting (ILUTP) avoids zeros on the diagonal by reordering rows and storing
the permutation in an additional array, while preserving the overall costs to those of ILUT [Saad,
2003].

Algebraic Multigrid methods are a generalization of the multigrid methods. They lift the
restriction of requiring access to the grid management, as the coarse level is derived from the
linear system itself. For Galerkin methods with higher ansatz spaces, the easiest approach is to
coarsen the degrees of freedom for one element by a single degree of freedom [Saad, 2003]. This
does not work for our �nite volume method which has only one degree of freedom per element.
Alternative approaches represent the matrix as a weighted graph, identify aggregates with strong
connections, and replace them with single degrees of freedom [Blatt, 2010]. These AMG methods
are no longer problem-speci�c preconditioners.

Reordering and scaling techniques do not necessarily improve convergence behavior, but
improve or create necessary features for further preconditioner or solver steps. A simple scaling
is to divide all entries of a row by their diagonal entry, which is the Jacobi preconditioner, or an
appropriate vector norm. A reordering changes the order ofA’s row and columns to move nonzero
entries to the diagonal or reduce the bandwidth of a matrix which reduces �ll-in. A reduced �ll-in
improves the quality of ILU factorizations as they miss fewer entries. The reverse Cuthill-McKee
algorithm treats A as the adjacency matrix of a graph and does a breadth-�rst traversal sorted by
increasing node degree, see �gure 4.8a for an example. A simple reordering is pivoting which
moves large entries to the diagonal. A more sophisticated approach is MC64, that is part of the
Harwell Subroutine Library (HSL) and was called Maximum Product on Diagonal (MPD) algorithm
when it was �rst published [Du� and Koster, 1999]. The goal is to permute the matrix to get
entries with large absolute values to the diagonal. This is achieved by a representation of the
matrix in a bipartite graph, with one part for rows and the other for columns. A nonzero entry in
row i and column j leads to an according connection in the bipartite graph. A bipartite matching
is performed, i. e., as many nodes and edges as possible are selected to maximize the nodes with a
single edge, all others have no edges. This subset of edges determines the diagonal entries and the
associated matrix permutation. With weights for the edges, larger entries are preferred for the
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diagonal [Du� and Koster, 2001]. We give an example of how MC64 works in �gure 4.8b; note the
large bandwidth of the resulting matrix.

Germane to our linear system

We apply some of the more promising algorithms presented in this subsection to our problems.
Some methods are provided by the Dune iterative solver template library (Dune-ISTL, Blatt
and Bastian [2007]), like bindings to the direct solvers UMFPack and SuperLU. Also iterative
methods like BiCG-stab and GMRES are implemented. For the preconditioners, we use the Jacobi
preconditioner, ILU factorization, and the AMG method described above [Blatt, 2010]. None of
the combinations of preconditioner and iterative methods work satisfactorily. Without further
preconditioner or the Jacobi preconditioner, convergence breaks quickly. With ILU the �rst few
Newton steps can be solved, but eventually the convergence rate approaches 1. The use of AMG
as a preconditioner shows unexpected high initial errors around 1016, causing the method to stop
too early with an error of about 108. It is possible that the method could be tweaked to improve
the stopping criterion. Additionally, AMG o�ers a plethora of parameters which we did not all try.
Deeper knowledge might help to �nd a better set of parameters.

Numerical tests with damped overlapping block Jacobi and Gauß-Seidel methods do diverge.
The Schur complement methods with the three di�erent splitting strategies are outperformed by
the direct solvers in the range of 100s and 1000s. We do not further consider these methods.

The reverse Cuthill-McKee reordering did not show speedups for ILU preconditioners and we
do not follow up its use.

Encouraged by the performance of the ILU factorization, we found publications of other groups
which used ILUTP with great success for systems similar to the one we have: Konshin et al.
[2015] provides an analysis of ILU with threshold for nonsymmetric saddle-point matrices with
B = Cᵀ. Du� and Koster [2001] introduces a combination of MC64 and an ILUTP preconditioner
to solve various sparse matrices which are known to be di�cult to solve. ILUTP reduces the large
bandwidth created by MC64 by the tendency of dropping entries distant to the diagonal. In a test
with further problems, Benzi et al. [2000] con�rmed the general applicability of the resulting
method. We use an implementation from Li and Shao [2011] which includes MC64, but the ILUTP
preconditioner has a di�erent dropping strategy to accommodate the use of supernodes. The
performance of this algorithm for our problems will be presented in the following chapter.

4.5 Implementation

The basis for this implementation are the frameworks Dune and DuMux; for more information,
see �gure 4.9. The Distributed and Uni�ed Numerics Environment (Dune) is a modular C++
framework for grid based discretizations of partial di�erential equations. It is rooted in the
community of applied Mathematics but has users from applications as electro-physics, weather
forecasting, petroleum prospecting and biomechanics. The idea of Dune is to o�er a common
interface for various advanced grid managers [Bastian et al., 2008b,a]. Since then, a module for
solving linear systems has been developed, Dune-ISTL, along with a module providing local
functions, and a whole ecosystem of additional modules has been grown. This project relies on
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Figure 4.8: Exemplary matrix from �gure 4.6 after applying reordering algorithms (a) reverse
Cuthill–McKee (b) MC64
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our code

DuMux
MultiDomain

PDELab MultiDomainGrid

Dune core modules

Figure 4.9: The software basis is composed of di�erent Dune modules

Dune’s release 2.4 [Blatt et al., 2016] and its YaspGrid in the tensor-grid mode for the grading
towards the coupling interface and free-�ow walls.

DuMux, Dune for Multi-{Phase, Component, Scale, Physics, . . . } �ow and transport in porous
media, is an application module based on Dune. It provides robust solvers for multi-phase �ow
in porous media, optionally with component and energy transport. Various material laws are
implemented to calculate �uid properties, �uid matrix interactions, changes to the aggregate state
and much more [Flemisch et al., 2011]. DuMux in version 2.11 [Ackermann et al., 2017], without
some late commits, is used with its cell-centered �nite volume discretization of the two-phase
compositional non-isothermal Darcy �ow. The free-�ow and coupling local operators also use the
implemented material laws for air and water.

On top of Dune, Dune-PDELab o�ers a way to implement discretizations for systems of partial
di�erential equations which can be expressed as weighted residual formulation. This includes
�nite volume, �nite element and discontinuous Galerkin methods, with the restriction that they
can be formulated to require at most face-neighbors. Rapid prototyping of new discretizations,
code re-use, and a small performance overhead are goals of PDELab. A PDELab program consists
of two parts, a local operator and the driver code. The local operator describes the discretization
of the PDE per element or face with two adjacent elements. The driver code sets up the grid,
the function spaces and the actual problem including the initial values, boundary conditions and
used coe�cients [Bastian et al., 2010]. We use PDELab to implement the MAC scheme, mainly
because it supports mixed degree of freedom handling for element and intersection centers. The
cell-centered �nite-volume scheme for component and energy transport in the free �ow had to be
implemented in PDELab to gain a local operator for the whole system of PDEs in the free-�ow
region.
Dune-MultidomainGrid is a Dune meta-grid which means it internally uses another grid and

alters it, while conforming to the Dune grid interface itself. MultidomainGrid can take sub-domains
from a grid and o�ers them as Dune grids. Further, MultidomainGrid provides iterators for inner
boundaries [Müthing and Bastian, 2012, Müthing, 2015]. This is used by Dune-Multidomain, a
module on top of Dune-PDELab, for solving multi-physics and multi-domain problems. The
sub-domains from MultidomainGrid get assigned PDELab local operators and the user has to
implement a special local operator according to the coupling conditions. Dune-Multidomain
assembles the matrix with the entries for both sub-domains and the coupling [Müthing, 2015].

To solve the monolithic sparse linear system, we use Dune-ISTL [Blatt and Bastian, 2007] and
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Figure 4.10: Logos of the used software frameworks Dune and DuMux

DuMux & PDELab driver

spatial multi-domain operator

local operator
coupling

local operator
free �ow

PDELab wrapper

local operator
porous-medium �ow

transient multi-domain operator

transient local operator
free �ow

transient local operator
zero operator

DuMux

PDELab

Dune-Multidomain

Figure 4.11: Software structure of our monolithic coupled free-�ow/porous-medium-�ow simulator
for evaporation processes

the direct solvers UMFPack [Davis, 2004] from SuiteSparse 4.4 or SuperLU [Demmel et al., 1999].
The description of our implementation is already published as Grüninger et al. [2017]; this

subsection contains direct textural adoptions.

4.5.1 Structure

The monolithic concept requires a tight integration of the free-�ow and the porous-medium
simulator. The subdomain simulators share data structures like vectors, utilize the same material
laws, and are controlled by a common Newton’s method and a common time stepping. Dune
is chosen as the common basis, but the di�erences between the discretization modules PDELab
and DuMux mean that adjustments must be made. The general structure is made up of the local
operators for the free-�ow and the porous-medium subdomains and coupling operators, see
�gure 4.11.

The local operator for the free-�ow region was developed for this work and uses the material
laws from DuMux. Dune-Multidomain can directly use this. The porous medium local operator
is part of DuMux. It is not aware of the subdomain and needs modi�ed classes to suppress
the generation of super�uous �uxes across the interface, which would adulterate the entries in
the residual and the Jacobian matrix. Further, we create a wrapper class, taking the form of a
PDELab local operator which hands over the data from the DuMux local operator. DuMux adds
the contributions from the storage terms in the generation of the Jacobian matrix. PDELab uses a
distinct transient local operator to describe the e�ect from the storage term. We address this by
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synchronizing the time stepping and providing a zero transient local operator for the wrapped
DuMux local operator.

The coupling local operator is limited to an element on every side of the coupling interface.
This limitation is considered when forming the discrete coupling conditions. In the driver code
user parameters are read in, the material laws are initialized, the grid with the function spaces are
set up, the initial conditions are loaded, and the Newton’s iteration and the time stepping begin.
Dune-Multidomain collects all contributions to the residual and calculates the Jacobian matrix.
The linear system is solved, the current solution is updated, and copied to DuMux to evaluate the
variable switch in the Darcy subdomain.

4.5.2 MAC local operator
The marker and cell scheme can be interpreted as a cell-centered �nite volume method for the
pressure combined with cell-centered �nite volume methods on staggered grids, shifted by half an
element, for the velocities. Discretizing equation (3.4) with the pressure as a primary variable is
straight forward with a cell-centered �nite volume method. Avoiding multiple explicit staggered
grids, we piece the contributions from the momentum balance equation (3.3) together as volume
or skeleton terms on the primal grid. We follow the naming from PDELab, where volume terms
denote element contributions and skeleton terms are contributions from the vertex between two
elements. Volume terms can only depend on degrees of freedom from the same element, skeleton
terms are restricted to degrees of freedom from the two adjacent elements.

For a discretized domain, equation (3.3) can be formulated as∫
Ṽ

∂

∂t

(
ϱgvg

)
+

∫
∂Ṽ

(
ϱgvgv

ᵀ
g
)
· n∂Ṽ −

∫
∂Ṽ

(
µg gradvg

)
· n∂Ṽ +

∫
∂Ṽ

pgn∂Ṽ = 0, (4.25)

when it is discretized by a �nite volume scheme for an element Ṽ on the according staggered grid,
its boundary ∂Ṽ , and the normal with respect to the boundary n∂Ṽ . We have to express the terms
regarding the staggered grid element Ṽ by contributions from an element of the primal grid V .
Without loss of generality, we use the two-dimensional case as depicted in �gure 4.12 together
with the terms left, right, upper and lower. By primal grid, we mean the grid used for the mass
balance equation which we have as a Dune grid. As the momentum balance equation is shifted
by half an element, we have to distinguish two cases: (a) The face normal is directed in the same
direction as the velocity, the �ux is within an element of the primal grid, cf. �gure 4.12a. (b) The
face normal is orthogonal to the velocity, the �ux crosses the faces of the primal grid and it cannot
be accounted for by a volume term, cf. �gure 4.12b.

The storage term
∫
Ṽ
∂
∂t

(
ϱgvg

)
is split between the volume terms of two elements on the primal

grid. The contribution of an element V on the primal grid to the residuum is 1
2 |V |

∂
∂t

(
ϱgvg,left

)
for

the velocity degree of freedom located on the left, cf. �gure 4.12a.
For the inertia term

∫
∂Ṽ

(
ϱgvgv

ᵀ
g
)
· n∂Ṽ we have the two cases. (a) vg is co-directed to n∂Ṽ . The

�ux across the edge is a volume term ∆x2ϱgvg,avgv
ᵀ
g,up · n∂Ṽ in the primal grid for the left half. As

the velocity is not located in the middle of V , one velocity is replaced by the averaged velocity,
and the other velocity is obtained via an upwind scheme with respect to the averaged velocity. (b)
vg is normal to n∂Ṽ . The contributions are considered as skeleton terms. One primal grid volume
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Figure 4.12: Discretization with MAC scheme for momentum balance equation (a) velocity direct
in same direction as the face normal (b) velocity normal to face normal

is covered by two velocity control volumes halves, cf. �gure 4.12b. In the two adjacent elements,
four velocities in the considered direction are present, but we need only two for the contributions
from the parts on the left. This results in 1

2∆x1ϱgvg,leftv
ᵀ
g,left · n∂Ṽ with one averaged velocity; for

the density and the other velocity we use an upwind scheme.
The viscous term −

∫
∂Ṽ

(
µg gradvg

)
· n∂Ṽ also requires the distinction of cases. (a) vg is co-

directed to the normal n∂Ṽ . The gradient is the partial derivative in the direction of the ve-
locity which is approximated by a �nite di�erence. The contribution to the volume term is
−∆x2µg

1
∆x1

(
vg,right −vg,left

)
. (b) vg is normal to n∂Ṽ . The contribution for the primal grid is con-

sidered as a skeleton term. The gradient is the partial derivative in the direction normal to the
velocity. This leads to −1

2∆x1µg
1

∆x2

(
vg,upper −vg,lower

)
with an averaged viscosity.

The pressure term
∫
∂Ṽ

pgn∂Ṽ is considered to be the volume term ∆x2pgn∂Ṽ .
The other free-�ow balance equations for mass, vapor mass fraction and energy are discretized

with a cell-centered �nite volume method. All occurring �uxes cross faces on the primal grid and
are implemented as skeleton terms.

4.5.3 Reproducibility

We believe scienti�c software should be as free as science itself. Thus, Dune and DuMux are open
source software frameworks. It seems natural to publish research codes in addition to plain results.
A fraction of the code developed for this thesis became part of Dune, DuMux, or one of the other
used modules, as the changes are of wider interest.

DuMux-pub has hosted all codes used for scienti�c articles and Ph. D. theses written in the
Department of Hydromechanics and Modelling of Hydrosystems, University of Stuttgart since
2014. It collects the code as Dune modules in a public Git repository. Every module provides an
install script and it describes the necessary third party software together with their used versions.
Interested researchers and follow-up Ph. D. students can base their own research on the code, or
can use it to compare their own work with our published approaches and tested codes. We hope
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to mitigate the problems with reproducibility in our �eld of science [Hutton et al., 2016].
Everything needed to follow our decisions for the model, the setup of our test cases, and to

reproduce our numerical results, can be found at DuMux-pub, too. The code is published under
the terms of the GNU Public License (GPL) version 2 or, at your option, any later version. The
module can be downloaded with Git from https://git.iws.uni-stuttgart.de/dumux-pub/
Grueninger2017a.git and it provides the script installGrueninger2017a.sh that downloads
and compiles all required Dune and DuMux modules. The README.md contains further information
concerning the executables and how to reproduce the numerical results that will be presented in
the next chapter of this work.

62

https://git.iws.uni-stuttgart.de/dumux-pub/Grueninger2017a.git
https://git.iws.uni-stuttgart.de/dumux-pub/Grueninger2017a.git


Dans un monde toujours plus complexe, les scientifiques ont

besoin des deux outils: des images aussi bien que des nombres,

de la vision géométrique aussi bien que de la vision analytique.

Benoît Mandelbrot, 20055 Numerical results

Our goal is a further investigation of the evaporation experiments conducted by Mosthaf
et al. [2014]. Further, we are going to showcase the versatility of our implementation by

simulating a nuclear waste repository, and demonstrate the implementation’s capability to model
fuel cells, with complex geometries in three dimensions.

5.1 Soil water evaporation

The laboratory experiment from Mosthaf [2014] aims to measure various aspects of soil-water
evaporation and to simulate the experiment for comparison. The complete setup and results from
the measurements are described in Mosthaf [2014] and Mosthaf et al. [2014]. Figure 1.1b shows a
photograph of the experiment.

The free �ow is developed within a horizontal pipe with a diameter of d = 0.25 m. A propeller
creates a constant �ow of air. Below the pipe is a box, isolated with styrofoam panels from the
outside. The dimensions of the box are (0.25 m)2 · 0.08 m. The box is �lled with a sand, which has
known properties, and is saturated with water. It resides on a balance to measure its weight. The
evaporated water mass is measured by tracking the mass loss.

5.1.1 General setup

The accompanying simulations from Mosthaf et al. [2014] are limited to Stokes �ow in the free �ow,
with a simple boundary layer model limiting the evaporation rate by a higher vapor concentrations
next to the interface. In Fetzer et al. [2016], the setup is extended to a Navier-Stokes �ow with
turbulence models. We are going to execute direct numerical simulations considering laminar
�ows. We want to investigate �ows with Reynolds numbers 0.5, 5, 50, 500, and 2500, which are
below or close enough to the critical value Recrit ≈ 2300.

After the coupling, the pipe has only a short outlet to save degrees of freedom. It is long
enough to get a glimpse of the vapor plume and to reduce the in�uence of the out�ow boundary
condition. Overall, the pipe is eight meters long. This does not match the actual experiment which
had a shorter pipe and higher Reynolds numbers, but is sensitive and is akin to other pipe �ow
experiments, for example, the one from Laufer [1954].

If not stated otherwise, we use the following physical properties. The �uid properties for water
follow the proposition of the International Association for the Properties of Water and Steam
[IAPWS, 2007]. For air, we assume an ideal gas with the constants from Reid et al. [1987]. In
the free �ow, density and viscosity are independent of pressure and temperature. The binary
di�usion coe�cient is pressure-independent. The porous-medium properties are ϕ = 0.41, k =
2.65 · 10−10 m2, ϱs = 2700 kg/m3, τpm = 0.5 [Carman, 1937], λs = 5.26 W/m K, cs = 790 J/kg K, and
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Figure 5.1: Setup of the experiments with a pipe above a sand-�lled and fully water-saturated box
(a) dimensions and boundary conditions with in�ow on the left, out�ow on the right
and no-�ow everywhere else (b) complete and to scale geometry of the pipe and the
box

Figure 5.2: The grid for the evaporation pipe, for clarity only every �fth grid elements in vertical
direction is drawn

д = (0, . . . ,−9.81 m/s2)ᵀ. With the Van Genuchten model we describe kα and pc using the constants
Sl,r = 0.005, Sg,r = 0.01, nvG = 8 and αvG = 6.371 · 10−4 1/Pa. For better convergence, the functions
from the Van Genuchten model are regularized with a linear approximation for saturations below
1% and above 99%. The initial values for the free �ow are v�

g,init = (0.436, 0)ᵀ m/s, p�
g,init = 105 Pa,

X�
init = 0.0005, T �

init = 298.15 K and for the porous medium p
pm
g,init = 105 Pa, Sl,init = 0.5, T pm

init =

298.15 K with both phases present. The initial time step size is t init = 4 s, the time step size is
limited to 300 s = 5 min, and the simulations ends at tend = 18 000 s = 5 h.

The setup is depicted in �gure 5.1. The pipe with the free �ow is in the upper part. Wall
boundary conditions are indicated by a hatching, in�ow by the velocity pro�le and out�ow by a
dotted line. The porous medium is below. To distinguish the porous medium from the free �ow the
area is covered by gray circles. The gray circles are unrelated to the actual soil matrix. Neumann
boundary conditions are marked by the same hatching used for the wall boundary conditions.
The grid is shown in �gure 5.2.

The evaporation cools down the surrounding of the interface, see �gure 5.3b. The porous
medium dries from the top and the vapor forms a boundary which shrinks over time as the
evaporation decreases, see �gure 5.3a. Most of the water evaporated in the �rst half hour and the
upper part of the porous medium dries out. Later, with less evaporation, the di�erences in the
water saturation between the forth and the �fth hour are barely visible.

We estimate the evaporation rate as de�ned by equation (2.26), but consider the porous-medium
�ow side of the interface using equation (3.33) and calculate the di�erence in water mass within
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Figure 5.3: Development of some primary variables over time, cross-section at x1 = 7.74 m, inter-
face at x2 = 0 (a) saturation of liquid phase Sl in porous medium, vapor mass fraction
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Figure 5.4: Evaporation rate for evaporation pipe test case, comparison with simulation on a
re�ned discretization (dashed) with twice as many grid cells per dimension in the free
�ow
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the porous medium between two subsequent time steps, divided by the time step size

qi ≈

∑
α∈{g,l} ϕ

∂
∂t

(
ϱiαS

i
αX

w,i
α

)
−

∑
α∈{g,l} ϕ

∂
∂t

(
ϱi−1
α Si−1

α Xw,i−1
α

)
∆t i

. (5.1)

This is valid when mass enters or leaves the porous medium only via the interface by evaporation
and not through the other boundaries.

The resulting evaporation rate over time for the example at hand is plotted in �gure 5.4. We
compare the evaporation rate with one obtained with a re�ned discretization: The initial and
the maximum time step sizes are halved, and the free-�ow grid has twice as many elements in
each dimension. The evaporation rates match well, indicating that the coarse grid is �ne enough.
The di�erence after the �rst hour can be attributed to the changes in drying behavior given the
changes in the horizontal porous-medium element size.

5.1.2 Influence of the Reynolds number
We simulate the evaporation pipe case for di�erent Reynolds numbers. While keeping the velocity
constant, we used a �xed viscosity in equation (3.3) to adjust the Reynolds number. For laminar
�ow regimes, the evaporation decreases with an increasing Reynolds number, see �gure 5.5.
Somewhere near Re = 500 it reaches a minimum, and for larger values, slightly more water
evaporates. The reason for this is, that the di�erent viscosities in�uence both the velocity near the
coupling interface, cf. �gure 5.6a, and the vapor mass fraction near the coupling interface, due to
di�erent lateral di�usion, cf. �gure 5.6b. The product of those two values determines how much
vapor is transported away, which is the limiting factor in stage 1. Larger values in �gure 5.6c lead
to higher evaporation rates in the �rst hour in �gure 5.5.
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Figure 5.5: Evaporation rate depending on the Reynolds number
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5.1.3 Validity of two-dimensional simplification
We want to check the validity of the assumption that the two-dimensional setup from above
is a good approximation of the conducted three-dimensional laboratory experiment. The basic
assumptions are that transversal �uxes can be neglected, and that the in�uence of the boundary
conditions from both sides remains small. These assumptions might be unjusti�ed given the wider
pipe compared to the sand box, inducing additional vapor di�usion, and thermal �ux perpendicular
to the main �ow direction.

We simplify the setup of the evaporation pipe test case to enable three-dimensional simulations
for comparison. We reduce the in�ow velocity to 0.01 m/s to lower the intertia e�ects, resulting in
a Reynolds number of Re = 245. This allows for a coarser grid of only 25 elements between bottom
and top of the pipe. Further, the grid is no longer graded to make an approximated pipe possible,
which cannot use a grading towards the wall. Elsewhere, the pipe geometry remains the same, but
the runo� is shortened to 4.75 m, which is su�ciently long according to Le ≈ 0.06 ·245d ≈ 3.675 m.
Other simpli�cations include the use of a smaller sand box, which is only 10 cm deep, and a lower
initial water saturation of Sl = 0.005 in the porous medium. The simulation ends at tend = 1800 s
which is still long enough to reach stage 2, due to the reduced water saturation and the lower
Reynolds number. The time step size is limited to 150 s.

We create four test cases, cf. �gure 5.7: (A) The simpli�ed two-dimensional test case, (B) a
three-dimensional test case, which is 8 cm wide and incorporates the complete sand box and a
slice of the free �ow pipe, aptly named pseudo two-dimensional, as it has symmetrical boundary
conditions on the left and on the right, (C) a case identical to the previous case, B, except with wall
boundary conditions left and right, (D) same as previous test case, but the free-�ow channel has a
width of 25 cm, and (E) the free-�ow subdomain is round, resulting in a pipe instead of a channel.
Despite the low Reynolds number, (E) is a close representation of the actual labrotary experiment.

The additional e�ect of transversal di�usion is visible in the results shown in �gure 5.8. Lower
vapor mass fractions occur in the elements above the porous medium which are near the walls of
the sand box. As a result, more water can evaporate. Figure 5.9 shows higher evaporation rates for
the pipe E and for the 25 cm-channel D. Compared to the two-dimensional test case A, at t = 0.1 h,
the pipe F has an 18% higher evaporation rate, the 25 cm-channel D even a 38% higher rate.

The evaporation rate for A and B are the same, as both have constant solutions for all quantities
transversal to the pipe, cf. �gure 5.8a. The re�ned case A is only included to ensure that no
dependency exists on the grid element size or the time step size. The higher evaporation rate of
the 8 cm-channel C compared to the pseudo two-dimensional channel B is caused by a higher
maximum velocity for C. Near the walls, the �uid is slower, while in the center it is higher to
maintain the �ux. Next to the porous medium, the velocity is also higher by a factor of two to
almost three, excluding the corners. This leads to a higher �ux and more vapor being transported
away.

For the low Reynolds number, the two-dimensional setup is insu�cient. We except a less
pronounced di�erence for higher Reynolds numbers, as the wall in�uence is reduced and the
transveral di�usion is lower.
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(a) (b) (c) (d) (e)

Figure 5.7: Evaporation pipe test cases in two and three dimensions, in�ow at the front, out�ow at
the back, wall boundary conditions everywhere else, the porous medium has Neumann
no-�ow boundary conditions (a) A: two-dimensional (b) B: three-dimensional, pseudo
two-dimensional, 8 cm wide (c) C: three-dimensional channel, 8 cm wide (d) D: three-
dimensional channel, 25 cm wide (e) E: three-dimensional pipe, 25 cm diameter

(a) (b) (c)

Figure 5.8: Comparison of vapor plume for (a) the pseudo-2d channel C with with t = 8 cm width
and symmetry boundary conditions, (b) the pipe E and (c) the channel D with t = 25 cm
width; vapor mass fraction X�,w

g , the location of the porous medium is indicated by the
black boxes, t = 0.1 h, slice near the end of the porous medium at x1 = 4.74 m.
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Figure 5.9: Evaporation rates for test cases in two and three dimensions

5.2 Solving the system of linear equations

To compare di�erent solvers for the system of linear equations, we use the simpli�ed setups from
the previous subsection. We use a two-dimensional and a three-dimensional problem, re�ne the
grid, and measure the runtimes. This reveals trends which can be extrapolated to some extend. For
the two-dimensional setup, we use case A with tend = 360 s and every re�nement level doubles the
number of elements in both dimensions for the free �ow. For the three-dimensional setup, we use
case C with tend = 60 s and four elements in the x2-direction. A re�nement doubles the elements
in the x2-direction. The resulting number of unknowns and the number of nonzero elements are
compiled in the table of �gure 5.10.

All measurements were done on a Intel Core i5-4590 processor at 3.3 GHz with 8 GiB memory.
The operating system is openSuse 13.2 and the C++ compiler from the GNU Compiler Collection
(GCC) 6.2.1 is used with -O3 -march=native as the most important �ags. We compare SuperLU
5.2.1, UMFPack 5.7.1 from SuiteSparse 4.4.6, and a GMRES preconditioned with ILUTP which is
part of and makes use of SuperLU 5.2.1.

The runtimes are plotted in �gure 5.11. The grid is re�ned until the problem grows too large:
UMFPack terminates and complains about running out of memory. SuperLU starts swapping

Table 5.10: Number of unknowns η and number of nonzero elements NNZ for matrix A and
di�erent re�nement levels

re�nement 2d η 2d NNZ 3d η 3d NNZ
0 2 695 92 881 13 280 831 664
1 10 390 372 856 26 060 1 723 908
2 40 780 1 493 806 51 620 3 508 396
3 161 560 5 979 706 102 740 7 077 372
4 643 120 23 927 506
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Figure 5.11: Simulation runtimes of various solvers for the linear system

data to the hard-drive which retards the solution process too much. The preconditioned GMRES
only converged for time steps shorter than a second, which causes many short time steps and
recalculations for failed time steps.

The most surprising result is that the preconditioned GMRES has almost the same runtimes as
the direct solver SuperLU. Probably the computation of the preconditioner is dominating over the
GMRES step, which stays below 10 steps. Further, for our use-case SuperLU needs between 0.1
and 5 times longer than UMFPack.

The limited time step can be seen in �gure 5.12 where the attempted and the succeeded time
step sizes are plotted. For the three-dimensional problem without re�nement, the time step size
growth during the simulation and reaches t6 = 19.9018 s without a single failing linearization.
With one re�nement, the successfully calculated time steps are always smaller than 1.5 s, some
are even below 0.3 s. If used in an application, one would limit the maximum size of the time step
to avoid the failing linearizations. Here, we want to show that the restriction of the time step size
persists for the whole simulation. The same behavior occurs for the two-dimensional case with
three grid re�nements.

The preconditioned GMRES requires less memory than the direct solvers, in some cases only a
forth, see �gure 5.13. The iterative approach can be useful for applications which already have a
restriction on the time step size, like for the simulation of a fuel cell presented in a subsequent
section.

Regarding the extrapolated asymptotic growth of time and memory for the preconditioned
GMRES, we do not expect relevant gains in performance for larger systems. Probably it is limited
by the LU factorization which makes it unfavorable for our sparse matrices which still have many
nonzero entries and a large bandwidth.
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Figure 5.12: Time step sizes for preconditioned GMRES for the three-dimensional test case
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5.3 Ventilation gallery for a nuclear waste repository

One solution that many countries are considering for the disposal of high-level radioactive waste
is storage in deep geological formations. The radioactive decay produces heat which a�ects the
surrounding rock formation and compromises the stability of the repository. France plans to
aerate their repository to manage the temperature and to keep the option open to retrieve the
nuclear waste for at least 100 years.

We simulate a simpli�ed setup that is based on a ventilation gallery and its in�uence on the soil
water in the covering concrete and rock [Zhang, 2015, Masson et al., 2016]. The gallery is 5 m high,
the concrete ceiling is 1 m thick, and above we consider a 9 m thick layer of Callovo Oxfordian
(COx) clay, see �gure 5.14. The setup has a length of 100 m. Air enters the ventilation gallery
from the left and leaves it on the right. The bottom has wall boundary conditions. The porous
medium has Neumann no-�ow conditions on both sides and Dirichlet boundary conditions at the
top, where initial values are used. Note that the Dirichlet boundary conditions at the top lead to
an in�ow of water. Calculating the evaporation rate with the approximation (5.1) remains valid as
the in�ow is several orders of magnitudes smaller than the evaporation rate.

The material parameters for the free �ow remain, but we adjust the porous-medium properties.
For the concrete, we use ϕ = 0.3, k = 10−18 m2, and the regularized Van Genuchten model
with Sl,r = 0.01, Sg,r = 0, nvG = 1.54 and αvG = 5 · 10−7 1/Pa. For the Callovo Oxfordian clay,
we use ϕ = 0.15, k = 5 · 10−20 m2, and the regularized Van Genuchten model with Sl,r = 0.4,
Sg,r = 0, nvG = 1.49 and αvG = 1/15 · 10−6 1/Pa. We use for both porous-medium types τpm = 0.5,
λs = 10 W/m K, cs = 1000 J/kg K, and ϱs = 2000 kg/m3. For the e�ective thermal conductivity λpm, we
can alternatively use a constant value of 10 W/m K instead of the value obtained from the Johanson
model. Masson and Birgle [2017] suggested the values for cs, ϱs and λpm. Further, we use the
Kelvin equation (2.25) analog to Masson et al. [2016]. Without the Kelvin equation, the simulation
aborts when the �rst element dries out due to the occurring high capillary pressure and the
accompanying step derivatives of the capillary pressure.

The initial values for the free �ow are v�
g,init = 0.5 m/s, p�

g,init = 105 Pa, Xw,�
g,init = 0.01321, and

T �
init = 303 K. The initial values for the porous-medium �ow are ppm

g,init = 105 Pa, Spm
l,init = 0.98, and

T
pm
init = 303 K. The simulation starts with a time step of t init = 1 s, the maximum time step size is

1 year = 3.1536 · 107 s, and the simulation lasts until tend = 200 years = 3.1536 · 109 s is reached.
Notable changes to the setup from Masson et al. [2016] are the liquid phase pressure ppm

l , which
is deduced by our code from the gaseous phase pressure, and the water saturation, which ranges

5 m
1 m

9 m

100 m

Figure 5.14: Setup for the nuclear waste repository’s ventilation gallery, the values for the Dirichlet
boundary conditions at the top are the initial values
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(a) (b)

Figure 5.15: Right most 25 m of the porous medium above the gallery, gallery is not shown, at
t = 200 years (a) water saturation S

pm
l (b) temperature T pm
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Figure 5.16: Evaporation rate for the ventilation gallery

between 328 000 Pa and 354 100 Pa instead of 400 000 Pa. Further, Masson et al. [2016] uses a RANS
model for the free �ow; their material laws di�er, and we consider non-isothermal e�ects.

After 200 years, the lower third of the concrete has left 15% water saturation, the concrete in
the upper two thirds has less than 50% of its original water saturation left, and the rock remains
almost fully water saturated, see �gure 5.15a. In other words, after 200 years, the water saturation
decreased only in the concrete, not the surrounding rock. This matches the results reported by
Masson et al. [2016].

The shapes of the evaporation rate plot in �gure 5.16 di�er from the expected shape shown
in �gure 2.10 which is caused by the combination of two di�erent soils, the Dirichlet boundary
conditions at the top of the porous medium, and that the plot is log-log scaled. The evaporation
rate matches qualitatively the results from Masson et al. [2016], as it forms a plateau that ends
after the �rst elements are fully dried. Quantitatively, our plateau lasts at least ten times longer
before the rate falls, and the rate itself is �rst up to seven times smaller, then two times larger and
towards the end ten times smaller than the results of Masson et al. [2016]. Our rate does not reach
a steady state within the simulated 200 years.

The cumulative evaporate rate indicates the amount of water that evaporated so far. The
cumulative evaporate rates are given in �gure 5.17a. During the �rst 40 years, most of the time
our models predicts more evaporated water, which reverses and leads to a 50% higher cumulative
evaporate rate after 200 years. That both models have the same value after roughly 100 years is a
coincident. The log-log scaled graph in �gure 5.17b reveals another reversal after roughly a month.
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Figure 5.17: Cumulative evaporation for the ventilation gallery (a) linear scale (b) log-log scale

The exact cause of the di�erent results remains unsettled, although the di�erent models in the
porous medium, the di�erent material laws, and the top boundary condition are likely at fault.
A detailed causal research would require more data than the evaporation rate. We expect that
non-isothermal e�ects are of minor importance as the temperature drop is small due to the low
evaporation rate, see �gure 5.15b.

The di�erent e�ective heat conductivities play a negligible role.

5.4 Fuel cell
Next, we apply our model to the processes behind a polymer electrolyte membrane (PEM) fuel
cell’s water management. Its simulation requires more detailed geometries, as the interaction
between the free �ow and the porous medium is more complex. A fuel cell converts the chemical
energy from an oxidation process into electrical energy. We consider the common case of oxidizing
hydrogen H2 by oxygen O2. The two gases are separated by a polymer electrolyte membrane
which is coated by a catalyst, like platinum. Promoted by the catalyst, the hydrogen disassociates
into protons H+ and electrons e−, or overall H2 → 2H+ + 2e−. Only the protons can pass the
membrane, while the electrons lead to a negative electric charge. Both sides of the membrane
are connected by a cable and an electric current, the goal of the fuel cell, establishes to balance
the electric charge. The protons form, together with the oxygen atoms and the electrons from
the cable, water H2O in an exothermic reaction, 1/2O2 + 2H+ + 2e− → H2O. On the hydrogen side,
the electron reduction is an oxidation and the reaction layer is called anode. The reaction layer on
the oxygen side is called cathode.

The protons can only pass the membrane if it is humidi�ed, but too much water blocks the
supply of oxygen for further reactions. The reaction produces water and heat, both of which
in�uence the water management. To prevent the clogging of the membrane with the produced
water, both sides of the membrane are covered by thin layers of hydrophobic porous media. This
makes it easier to remove liquid water and the larger water surface increases the evaporation.
Conventional gas distributors have continuous gas channels parallel to the porous medium. This
limits the gas supply to the rate of di�usion. Gas distributors with an interdigitated �ow �eld in
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the gas channels gas channels, see �gure 5.21 for an example, force the gas to �ow advectively
through the porous medium, resulting in an increased gas supply and better removal of water
[Nguyen, 1996]. The resulting fuel cells are more e�cient compared to the ones with conventional
gas channel layouts [Wang and Liu, 2004, Yan et al., 2006]. The composition of a fuel cell is
sketched in �gure 1.4a, a laboratory sample of a gas distributor is shown in �gure 1.4b.

Numerical simulations are of great importance for the development of fuel cells [Wu, 2016]. Of
particular interest is the process by which the gas �ow in the channel interacts with the discharge
of water, produced by the reaction, into the gas channels. This interaction eventually includes
a number of processes: advective free �ow in the gas channels, transport of water in the gas
channels, interaction in the gas channels, transport of vapor in the gas channels, and interaction
between the gas-channel �ow and the �ow in the porous di�usion layer through shear stress.

We want to show the capabilities of our implementation as a tool to investigate the water
management in a fuel cell. To focus the complexity of the model, we don’t include the electro-
chemical processes. To simplify, instead of tracking the oxygen level of the air, we assume that all
components of the air, excluding vapor, are consumed. The consumption of air and the production
of water and heat have a �xed rate, independent from the concentration of the substances. The
porous medium is not hydrophobic, water remains the wetting phase. The energy transport
through the casing and the collector for the electric current is not modeled. The values for the
following quantities are devised: the free-�ow inlet velocity, the humidity of air, and the source
and sink term rates. The geometry and most porous medium properties are taken from Acosta
et al. [2006].

5.4.1 Two gas channels with connecting porous layer

The model domain includes the area between the centers of two neighboring, but not connected,
gas channels, and the connecting porous media layer beneath. We exclude the membrane and the
complete anode side, as the processes on the anode side are identi�ed to limit the e�ciency of the
fuel cell [Acosta et al., 2006]. At the base of the 0.05 mm thick porous medium layer, there is a
reaction layer where the chemical reaction happens. The reaction layer contains the source and
sink terms. The left gas channel has an in�ow of air, the right channel has an out�ow, and every
other boundary has wall or Neumann no-�ow boundary conditions. This means that the only
�ow path is through the porous medium. The complete �ow is forced to enter the porous medium
from one gas channel and leave it through the other gas channel, see �gure 5.18.

Below we list the physical properties that di�er from the above evaporation pipe example. The
porous-medium properties areϕ = 0.78, k = 5.2·10−11 m2, ϱs = 1430 kg/m3, τpm = 3, λs = 15.6 W/m K,
cs = 710 J/kg K. We use again the regularized Van Genuchten for kα and pc with the constants
Sl,r = 0.005, Sg,r = 0.05, nvG = 3.652 and αvG = 6.66 · 10−5 1/Pa. In the reaction layer we have
ϕ = 0.07, the source term for the total mass balance equation (3.26) is −20 kg/m3 s, the source term
for the water mass balance equation (3.25) is 20 kg/m3 s, and the source term for the the energy
balance equation (3.27) is 4 · 107 J/m3 s.

The initial values for the free �ow section are p�
g,init = 2.0135 Pa, X�

init = 0.1,T �
init = 343.15 K and

the initial values for the porous medium section areppm
g,init = 2.0135 Pa, Sl,init = 0.01,T pm

init = 343.15 K
with both phases present. At the inlet, the �ow has a velocity v�

g = 0.86 m/s in a block velocity
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Figure 5.18: Setup for the fuel cell channel (a) general view (b) side view of left gas channel with
inlet on left (c) front view (d) side view of right gas channel with outlet on right

pro�le. The resulting maximum velocity of 1.5 m/s and the related Reynolds number of Re = 71
are too small by a factor of 20 to 30. In this test case, we are less interested in the free �ow within
the gas channel, and rather focus on the processes within the porous medium. In this case, the
�ux through the porous medium is in the right order of magnitude. For longer gas channels, the
gas channel entry velocity should be accordingly increased.

The initial time step size is t init = 0.25 s, the maximum time step size is 2 s, and the simulation
lasts for 60 s. The resulting linear system has 12 514 degrees of freedom.

Some simulation results are shown in �gure 5.19. The aim is not to reach steady-state. The air
�ows through the left gas channel and dips towards the porous medium. The �ow then crosses
the porous medium in a curved path, almost perpendicular to the gas channel. Finally, the air
reaches the left gas channel and continues to the outlet. Beneath the left gas channel, the porous
medium dries out completely, in contrast to the right part which accumulates liquid water, see
�gures 5.20. The reason for this phenomenon is shown in �gure 5.19b and 5.19c. In the left section
the water is taken up by the air, and evaporation cools the system. In the right section, the more
humid air takes up less water, leaving more of the produced water in the porous media.

These modeled e�ects are essentially what occurs in the fuel cells, which can lead to �ooded
fuel cells. After including the electrochemistry, we believe that the model can help improve the
understanding of the relevant in�uencing factors.
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(a)

(b) (c)

Figure 5.19: Evaporation within the fuel cell’s porous medium, lower temperature indicates evapo-
ration which increases the vapor mass fraction of air, t = 60 s; (a) arrow orientation:
�ow �eld direction, arrow color: vapor mass fraction in air Xw

g , volume color: temper-
ature (b) temperature T at x1-x3 plane in the middle of the porous medium (c) vapor
mass fraction in the air Xw

g

(a) t = 15 s (b) t = 30 s

(c) t = 45 s (d) t = 60 s

Figure 5.20: Water saturation within the fuel cell’s porous medium over time, at x1-x3 plane in
the middle of the porous medium
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5.4.2 Complex gas channel layouts
To simulate a complete gas distributor, the geometry must become more complex. To demonstrate
the feasibility, we simulate two simpli�ed gas distributors. The �rst is a serpentine layout where
a single gas channel connects the inlet and outlet with a zig-zag-pattern; see �gure 5.21a for
the simulation setup and �gure 1.4b for a photograph of a laboratory sample. The second is a
interdigitated layout which has no direct gas channel between inlet and outlet, forming a pattern
of two combs with an o�set. The gas is forced to enter the porous medium to reach the gas
channels leading to the outlet, see �gure 5.21b.

The serpentine layout has 39 003 degrees of freedom, the interdigitated 38 355. All parameters
are taken from the fuel cell simulation above, including the source and sink terms, the dimensions
in x3 direction, and the initial conditions. The only modi�cations are that Sl,init = 0.05 is �ve times
higher to reduce the number of variable switches due to dry out, and the simulation is shortened
to tend = 5 s.

We do not expect to discover anything new with our simple model, but we hope to provide
insight into the water and heat management, as well as display the results from the di�erent gas
channel layouts for better comparison.

The incoming air dries the porous medium next to the gas channels. The serpentine layout has
more completely dry elements. In the interdigitated layout evaporation happens within the porous
medium, as the air entering the porous medium is dryer compared to the air leaving the porous
medium, see �gure 5.22. Lower temperatures indicate a higher evaporation rate, but it is not clear
from the temperature where evaporation in the porous medium happens, as it is blurred by the
temperature drop caused by evaporation below the gas channels. In some areas, the air coming
from the porous medium is warmer than the air leaving the system, see �gure 5.23. This could
mean that di�erent layouts have di�erent cooling capabilities. Further, the layouts in�uences the
gas �ow in the reaction layer. Considering the relative gas pressure ppm

g − 2.013 · 105 at the bottom
of the reaction layer, as in �gure 5.24, the di�erence becomes obvious. The serpentine layout has
an almost steady, small gradient, while the interdigitated layout has steeper gradients between
the gas channels. The latter could be bene�cial to provide oxygen for the chemical reaction and to
transport away the produced water.
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Figure 5.21: Top view of the complex gas channel layouts (a) serpentine (b) interdigitated

(a) (b)

Figure 5.22: Water saturation and vapor mass fraction for di�erent gas channel layouts, streamlines
are vapor mass fraction Xw,�

g in free �ow, background is water saturation Sl in porous
medium, t = 5 s (a) serpentine (b) interdigitated
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(a) (b)

Figure 5.23: Temperature for di�erent gas channel layouts, streamlines are in free �ow, background
is porous medium, t = 5 s (a) serpentine (b) interdigitated

(a) (b)

Figure 5.24: Relative gas pressure pg − 2.013 · 105 in the reaction layer for di�erent gas channel
layouts; view from bottom, t = 5 s (a) serpentine (b) interdigitated
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Człowiek nigdy nie ogląda się na to, co zrobione, ale na to

patrzy, co ma przed sobą do zrobienia.

Marie Skłodowska Curie, 18946 Finale

We introduced the relevant physical processes in the compositional non-isothermal free �ow
and the two-phase compositional non-isothermal porous-medium �ow. We described how

we model these using partial di�erential equations, closing conditions and material laws. We
emphasized how both the Navier-Stokes equation and the Darcy equation play an important role.
Then we presented the coupling conditions based on a local thermodynamic equilibrium and the
Beavers-Joseph-Sa�man condition, following the approach from Mosthaf et al. [2011].

We use a cell-centered �nite volume method on an axially parallel grid to discretize the partial
di�erential equations. For the Navier-Stokes equation, we use the marker and cell scheme which
moves the degrees of freedom for the velocities towards the edges of the grid elements, forming one
secondary, staggered grid per dimension. The coupling conditions are applied without additional
variables along the coupling interface. They are incorporated as Dirichlet, Neumann or Robin
boundary conditions, all of which result in interfaces �uxes.

For the porous-medium �ow we use the �nite volume implementation provided by DuMux.
The marker and cell scheme is implemented using PDELab. The grid is split into two subdomains,
where the elements on both sides of the coupling interface match, simplifying the implementation.
The coupling is provided by a Dune-Multidomain local coupling operator. The time integration is
approximated with an implicit Euler scheme. All contributions are compiled in one non-linear
system. This is linearized by a Newton method.

The resulting nonsymmetric sparse matrices are solved with direct methods. We investigated
iterative methods and tested promising ones: An algebraic multigrid (AMG) method, a Schur
complement method, and a GMRES preconditioned with MC64 and an incomplete LU factorization
with threshold and pivoting (ILUTP). We experienced problems with AMG’s error criteria leading
to convergence problems. The Schur complement method is slow as we lack a preconditioner for
the not explicitly calculated Schur complement. GMRES with ILUTP shows a restriction on the
time step size for larger problems; the reason remains unclear.

The numerical results presented in the previous chapter show that there is a wide range
of applications that our implementation is capable of simulating. Three applications are then
simulated: A laboratory experiment to investigate soil-water evaporation, the water content of the
concrete and rock covering a ventilation gallery of a deep geological repository for nuclear waste,
and the simpli�ed water management of a fuel cell. These simulations cover time scales which
span from seconds to decades and length scales which range between nanometers and dozens of
meters. We are able to simulate setups in two and three dimensions, including complex geometries
as long as they can be approximated with an axially parallel grid, using various porous-medium
types, and with free �ows spanning several magnitudes of Reynolds numbers.

Compared to the work of our predecessors [Mosthaf et al., 2011, Baber et al., 2012], we obtain a
speedup for the simulations between one and two orders of magnitude with comparable results
[Grüninger et al., 2017] and without oscillations in the free �ow.
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Regarding the applications, we have determined that the Reynolds number has an in�uence
on the evaporation rate. If the free �ow channel or pipe is wider than the porous medium, a
simulation using a two-dimensional simpli�cation may be �awed, depending on the Reynolds
number. The evaporation rate in the ventilation gallery di�ers by a factor of up to ten and the
cumulative evaporation rate by 50% when compared with the results from Masson et al. [2016].
That being said, we can con�rm the overall result of the given setup, where the water saturation
in the rock is not altered, and only the concrete ceiling partially dries. For the fuel cell with an
interdigitated �ow �eld, we could show that parts of the porous medium accumulate water which
might reduce the e�ciency of the fuel cell. Further investigations and insights will be reachable
after the electrochemistry is included.

6.1 Conclusions
We draw the following conclusions regarding the coupled Navier-Stokes and Darcy �ow in general,
particularly our discretization and implementation

Material laws

Our implementation heavily relies on the material laws provided by DuMux. We adopted the set
of material laws used by the predecessor code. We altered some material laws—for example, the
law used to compute the e�ective thermal conductivity λpm, or the assumption of incompressible
�ow in the free-�ow subdomain—to either reduce computational costs or to diminish the number
of nonzero matrix entries. We tried to keep our results close to the results from the predecessor
code, and did not systematically examine all used material laws. As the example in section 5.3
shows, changing some laws will marginally impact the result. Further simpli�cations could have
two advances: First, one could reduce the computational costs of the matrix assembly. Second,
it would lower the bar for other scienti�c groups to reproduce our results as implementing the
used material laws is a major obstacle. Still, one has to balance every simpli�cation against the
applicability to the di�erent applications. If the implementation becomes more focused on a
speci�c example, it can exploit the special circumstances at hand.

Free flow

The used �rst-order upwind scheme introduces severe numerical di�usion which prevents eddy
detachment as the �ne grid required leads to linear systems too large to solve. Replacing the
upwind scheme with a total variation diminishing (TVD) or a higher-order scheme would improve
this, but we cannot include such schemes due to PDELab’s ability to only access face-neighboring
degrees of freedom. In general, when detached eddies occur near the interface, the validity of the
coupling conditions must be reviewed.

In this work, the grid resolution and the consequential large number of degrees of freedom limit
the free �ow to laminar �ows with moderate Reynolds numbers. To investigate �ows with higher
Reynolds numbers, the implicit scheme can be replaced by a semi-implicit predictor-corrector
scheme [Versteeg and Malalasekera, 2007] and a higher-order scheme. This con�icts with the
implicit coupling of free �ow and porous-medium �ow. More suitable methods like spectral
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methods or discontinuous Galerkin methods require appropriate coupling conditions. The general
approach by Kanschat and Rivière [2010] might be of avail.

The examined applications all have a stationary �ow �eld, no change in the boundary conditions
over time, and no processes within the domain that a�ect the �ow �eld. Precomputing the velocity
once, similar to Masson et al. [2016], would reduce the computational cost for both the assembly
and the linear methods, especially as the linear system would no longer contain a saddle-point
problem. Note that applications with transient �ow �elds exist like soil-water evaporation using
measured wind velocities, or biological applications considering breathing or heartbeats.

Solving the system of linear equations

The limiting factor remains the solver for the system of linear equations. The direct solver
UMFPack is currently the preferred choice. The easiest way to raise the bar with simulating
larger problems is to use better computers. Instead of a desktop computer which we used for
the simulations in this work, a workstation or a cluster node with the latest hardware and more
memory can cope with larger linear systems. The thread-parallel SuperLU_MT might decrease the
time for solving the system, but only by the number of possible threads. Nevertheless, the memory
limit, common for all direct methods, remains. Further progress with direct solvers [Agullo et al.,
2013], especially utilizing the enormous computational capacities of graphics processors [Davis
et al., 2016], will reduce the time to solve the occurring linear systems in the future.

The use of iterative methods to speed up the solution of linear systems still needs more work.
The investigated combination of MC64 reordering and ILUTP can probably be improved with a
more suitable choice of parameters, especially regarding the restriction on the time step size. A
less frequent calculation of the preconditioner carries potential; the MC64 reordering is calculated
every time step and the ILUTP preconditioner every Newton step, which can be done less often. As
this reduces the quality of the preconditioner, one must, in turn, take care to ensure the robustness
of the overall method.

The algebraic multigrid methods are worthy of a more in-depth investigation. This also applies to
the Schur complement methods, for which we lack a cheap approximation of the Schur complement.
Both approaches promise a lower computational complexity compared to the LU decomposition of
the direct solvers and the ILU preconditioners. Additionally, the used algebraic multigrid method
scales well for parallel computations [Blatt, 2010].

Decoupling time steps

The idea to decouple the two domains, and to compute the free �ow more often was proposed
by Rybak and Magiera [2014] and Rybak et al. [2015]. This idea stems from the fact that the
porous-medium �ow is much slower, and requires updates less frequently. If it were solved less
often, it would reduce the overall computational cost. For the examined applications, the bene�t
is negligible. Regarding the two-dimensional setup from section 5.1.3, the porous medium is
accountable for only 10% of the degrees of freedom and its matrix assembly causes less than a sixth
of the overall time spend for the assembly. For the other evaporation pipe setups, the free �ow
takes up even a larger share of both degrees of freedom and assembly time. This is true as, in the
free �ow, the time steps are keep small, the values change little, and no additional Newton steps
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are required by the nonlinear material laws. For the fuel cell, the appearance and disappearance
of the liquid phase triggers the computation of additional Newton solver steps. The time step size
is limited by the physics of the porous medium and not by the free �ow. As the air crosses the
porous medium, both physical compartments have similar time and length scales.

This does not mean that auspicious examples do not exists. Simulating the impact to the surface
of a CO2 storage with a leakage [Oldenburg and Unger, 2004] requires a large porous-medium
subdomain, compared to the one for the free �ow. For such setups with large Darcy domains, the
in�uence of the free �ow can maybe be incorporated as top boundary conditions [Tang and Riley,
2013].

6.2 Outlook

This work can be the basis for further research which might lead to a continued development of
the software. The software can be extended—similar to the extensions to the predecessor code—to
include salt precipitation for soil water evaporation [Jambhekar et al., 2015], drop formation at the
interface for fuel cells [Baber, 2014], surface roughness [Fetzer, 2012], boundary layer models or
Reynolds-averaged Navier-Stokes methods with eddy viscosity models like zero-equation models
[Fetzer et al., 2016] or a k-ε model. Further possible extensions to the model could include solar
radiation, which should be considered for soil-water evaporation in arid regions, as well as a way
to include rainfall for the recharge of the soil water, which could include a tertiary coupled shallow
water model [Sochala et al., 2009] that might require a coupling including vertical momentum
transfer [Furman, 2008]. One could conduct a simulation of soil-water evaporation for a �eld
with measured weather data, especially temperature, air humidity and wind velocity. This could
also include day-night cycles and condensation of vapor caused by nocturnal cooling. Another
possible extension is evapotranspiration, which also considers transpiration, i. e., living plants
cause vaporization of water through their stomata. This a�ects the evaporation rate of surfaces
covered with plants. A far-distance goal could be a complete simulation of the grain yield of a
�eld, covering its water dynamics, root-water uptake, and crop growth [Zhang et al., 2015]. Future
research could also investigate the e�ect of vegetation on the turbulence, e. g., it is reduced by the
porous bed while it is increased by grass [Pechlivanidis et al., 2015]. Biological applications would
be interesting as well.

The software can be improved by parallelization of the assembly and the solving. Replacing
PDELab and Dune-Multidomain would lift the restriction on face-neighboring degrees of freedom
which would allow for a replacement of the upwind scheme and would allow a decoupling
of the subdomains with a Robin-Robin coupling, as the Dirichlet-Neumann coupling shows
poor convergence [Ackermann, 2016, Discacciati, 2004]. For the marker and cell scheme, a
generalization exists for triangles and tetrahedra or prisms respectively [Nicolaides, 1989, 1993];
while there is a restriction on the angles to obtain valid dual grids, its use would allow for
geometries more general than axially parallel geometries.
To use a state-of-the-art discretization for the free �ow together with DuMux, one has to consider
coupling non-Dune software. Bungartz et al. [2016] describe preCICE which is a general framework
for coupling di�erent grid-based numerical simulators. It would be handy to couple DuMux with
established free-�ow simulators like OpenFOAM, Comsol or Fluent. Even without utilizing
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preCICE, the described ideas of data interchange, non-matching grids, and coupling schemes are
useful by themselves.

To attract people to develop methods for our system of linear equations, we submitted matrices
from a two- and a three-dimensional coupled evaporation pipe test case to the SuiteSparse Matrix
Collection, formerly known as the University of Florida Sparse Matrix Collection [Davis and Hu,
2011]. Matrices from this collection where used for benchmarks of linear solvers in Benzi et al.
[2000] and Li and Shao [2011].

There is a lack of test cases with generally recognized results. The scienti�c groups have their
own test cases, but they are seldom veri�ed by other groups. If di�erences occur, like the ones
described in section 5.3, it is unclear which result is preferred. It would be great to announce a
benchmark problem that can be simulated by many groups and which can be set up in a laboratory
to obtain data for comparison. Analytic solutions are probably out of reach, but direct numerical
solutions can act as referee.

Invitation to use our results and our so�ware

Hopefully we have made a fruitful contribution to the �eld of coupled Navier-Stokes �ow with
Darcy �ow. We want other researchers to use our results to improve their work. We invite
everybody to utilize our implementation, either for comparison with new numerical codes or to
simulate applications of their own.
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Omne tulit punctum qui miscuit utile dulci.

Horace, c. 19 BC

Colophon

This work is typeset with LATEX 2ε—the typesetting system originally developed by Leslie Lamport,
based on TEX created by Donald Knuth—using TEX Live 2016 and pdfLATEX 3.14159265. KOMA-Script
3.20 provides the document class scrbook. The �gures were created with TikZ 3.0.1a, the graphs
with PGFPlots 1.13, and the visualizations of two- and three-dimensional results were drawn with
ParaView 5.3.0 and included as PNG images. The serif typeface of the text body is Linux Libertine,
inspired by 19th century book types. Linux Bioline is used as the humanist sans-serif typeface for
the headings and the quotes. The math font is newtxmath in Libertine mode.

LATEX and TikZ are great tools for beautifully typeset documents and for thesis procrastination.

�otes
We give the English translation of the quotes next to the chapter headings.

Chapter 1 Johann Wolfgang von Goethe: Water is a friendly element to whomever is familiar
with it and is able to manage it.

Chapter 2 Genesis, 2:6 (KJV): But there went up a mist from the earth, and watered the whole
face of the ground.

Chapter 5 Benoît Mandelbrot: In an ever-more complex world, scientists need both tools: image
as well as number, the geometric view as well as the analytic.

Chapter 6 Marie Skłodowska Curie: One never notices what has been done; one can only see
what remains to be done.

Colophon Horace: He wins every hand who blends the useful with the sweet.
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I’m glad I’m not the clueless person I was five years ago,

but now I don’t want to get any older.

Randall Munroe, xkcd #907
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Nomenclature

A matrix of linear system, A ∈ �η×η , p. 50
b right hand side of linear system, b ∈ �η , p. 50
c speci�c heat capacity, p. 13 J/kg K

D di�usion coe�cient, p. 19
F force kg m/s2

д gravitational acceleration vector, p. 28 m/s2

H Henry coe�cient, p. 12 1/Pa

h speci�c enthalpy, p. 13 J/kg

j di�usive �ux, p. 19
k intrinsic permeability, p. 14 m2

kα relative permeability, p. 17 −

M molar mass, p. 10 kg/mol

m mass kg
n outer normal of porous medium subdomain regarding Γ, p. 36 −

nmole amount of substance, p. 10 mol
nVG Van Genuchten model parameter, relates to pore size distribution, p. 17 −

O big O, upper bound of asymptotic growth rate
p pressure, p. 11 Pa
pc capillary pressure, p. 17 Pa
pw

sat saturated vapor pressure, p. 21 Pa
q evaporation rate, p. 23 mm/day

Rs speci�c gas constant, p. 12 J/kg K

Re Reynolds number, p. 19 −

S saturation, p. 15 −

T temperature, p. 13 K
t time s
tk time step, a discrete point in time, p. 48 s
ti tangentials of the interface Γ with ti ⊥ tj for i , j, p. 36 −

u speci�c internal energy, p. 13 J/kg

v velocity v = (v1,v2, . . . )
ᵀ, p. 11 m/s

vpm Darcy velocity, p. 32 m/s

ṽpm seepage velocity, p. 32 m/s

X mass fraction, p. 10 −

x space coordinate x = (x1,x2, . . . )
ᵀ m

xmole mole fraction, p. 10 −

z vector of unknowns in the linear system, z ∈ �η , p. 50
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α phase index, p. 10
αVG Van Genuchten model parameter, relates to inverse entry pressure, p. 17 1/Pa

Γ interface between porous-medium and free-�ow subdomain, p. 36
∆tk time step size between tk−1 and tk , p. 48 s
η number of unknowns in the linear system, p. 50 −

κ component index, p. 10
λ thermal conductivity, p. 13 J/s m K

λpm e�ective porous-medium thermal conductivity, p. 18 J/s m K

µ dynamic viscosity, p. 11 Pa s
ϱ density, p. 11 kg/m3

σ stress, p. 11 Pa
τ shear stress, p. 11 Pa
τpm pore tortuosity, p. 19 −

ϕ porosity, p. 14 −

χα characteristic function for phase α , p. 15 −

div divergence, for matrices div(U )i :=
∑

j
∂
∂x j

Ui,j

grad gradient, for vectors grad(v )i,j := grad (vi )j
�, pm free �ow, porous medium subdomain superscript
a, w air, water component superscript
g, l, s gas, liquid, solid phase subscript

When symbols are only used in close proximity to their de�nition, they have been omitted from
the nomenclature.

91



92



Bibliography

S. Ackermann. Development and evaluation of iterative solution strategies for coupled Stokes-
Darcy problems. Master’s thesis, University of Stuttgart, 2016.

S. Ackermann, M. Beck, B. Becker, H. Class, T. Fetzer, B. Flemisch, D. Gläser, C. Grüninger, K. Heck,
R. Helmig, J. Hommel, A. Kissinger, T. Koch, M. Schneider, G. Seitz, and K. Weishaupt. DuMuX
2.11.0, 2017. doi: 10.5281/zenodo.439488.

M. Acosta, C. Merten, G. Eigenberger, H. Class, R. Helmig, B. Thoben, and H. Müller-Steinhagen.
Modeling non-isothermal two-phase multicomponent �ow in the cathode of PEM fuel cells.
Journal of Power Sources, 159(2):1123–1141, 2006. doi: 10.1016/j.jpowsour.2005.12.068.

E. Agullo, P. R. Amestoy, A. Buttari, A. Guermouche, G. Joslin, J.-Y. L’Excellent, X. S. Li, A. Napov,
F.-H. Rouet, W. M. Sid-Lakhdar, S. Wang, C. Weisbecker, and I. Yamazaki. Recent advances in
sparse direct solvers. In 22nd Conference on Structural Mechanics in Reactor Technology, page 10,
San Francisco, United States, 2013.

B. Alazmi and K. Vafai. Analysis of �uid �ow and heat transfer interfacial conditions between
a porous medium and a �uid layer. International Journal of Heat and Mass Transfer, 44(9):
1735–1749, 2001. doi: 10.1016/S0017-9310(00)00217-9.

C. Argyropoulos and N. Markatos. Recent advances on the numerical modelling of turbulent
�ows. Applied Mathematical Modelling, 39(2):693–732, 2015. doi: 10.1016/j.apm.2014.07.001.

D. Aronson and L. Löfdahl. The plane wake of a cylinder: Measurements and inferences on
turbulence modeling. Physics of Fluids A, 5(6):1433–1437, 1993. doi: 10.1063/1.858579.

K. Baber. Coupling free �ow and �ow in porous media in biological and technical applications:
from a simple to a complex interface description. PhD thesis, University of Stuttgart, 2014.
doi: 10.18419/opus-594.

K. Baber, K. Mosthaf, B. Flemisch, R. Helmig, S. Müthing, and B. Wohlmuth. Numerical scheme
for coupling two-phase compositional porous-media �ow and one-phase compositional free
�ow. IMA Journal of Applied Mathematics, 77(6):887–909, 2012. doi: 10.1093/imamat/hxs048.

L. Badea, M. Discacciati, and A. Quarteroni. Numerical analysis of the Navier–Stokes/Darcy
coupling. Numerische Mathematik, 115(2):195–227, 2010. doi: 10.1007/s00211-009-0279-6.

P. Ball. Water and life: Seeking the solution. Nature, 436(7054):1084–1085, Aug 2005. doi: 10.1038/
4361084a.

93

http://dx.doi.org/10.5281/zenodo.439488
http://dx.doi.org/10.1016/j.jpowsour.2005.12.068
http://dx.doi.org/10.1016/S0017-9310(00)00217-9
http://dx.doi.org/10.1016/j.apm.2014.07.001
http://dx.doi.org/10.1063/1.858579
http://dx.doi.org/10.18419/opus-594
http://dx.doi.org/10.1093/imamat/hxs048
http://dx.doi.org/10.1007/s00211-009-0279-6
http://dx.doi.org/10.1038/4361084a
http://dx.doi.org/10.1038/4361084a


H. Basser, E. Daly, C. Lu, and H. H. Bui. SPH modeling of multi-phase �ow over a porous layer.
In The XXI International Conference Computational Methods in Water Resources, CMWR 2016,
Toronto, Canada, 2016.

P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber, M. Ohlberger, and O. Sander.
A generic grid interface for parallel and adaptive scienti�c computing. Part II: Implementation
and tests in DUNE. Computing, 82(2–3):121–138, 2008a. doi: 10.1007/s00607-008-0004-9.

P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger, and O. Sander. A generic grid
interface for parallel and adaptive scienti�c computing. Part I: Abstract framework. Computing,
82(2–3):103–119, 2008b. doi: 10.1007/s00607-008-0003-x.

P. Bastian, F. Heimann, and S. Marnach. Generic implementation of �nite element methods in the
Distributed and Uni�ed Numerics Environment (DUNE). Kybernetika, 46(2):294–315, 2010. URL
http://hdl.handle.net/10338.dmlcz/140745.

J. Bear. Dynamics of Fluids in Porous Media. Dover, 1972. ISBN 9780486656755.

G. S. Beavers and D. D. Joseph. Boundary conditions at a naturally permeable wall. Journal of
Fluid Mechanics, 30(1):197–207, 1967. doi: 10.1017/S0022112067001375.

M. Benzi, J. C. Haws, and M. Tůma. Preconditioning highly inde�nite and nonsymmetric matrices.
SIAM Journal on Scienti�c Computing, 22(4):1333–1353, 2000. doi: 10.1137/S1064827599361308.

M. Benzi, G. H. Golub, and J. Liesen. Numerical solution of saddle point problems. Acta Numerica,
14:1–137, 2005. doi: 10.1017/S0962492904000212.

R. B. Bird, W. E. Stewart, and E. N. Lightfoot. Transport Phenomena. Wiley, 2007. ISBN
9780470115398.

N. Birgle, R. Masson, and L. Trenty. A nonlinear domain decomposition method to couple
compositional gas liquid Darcy and free gas �ows. In C. Cancès and P. Omnes, editors, Finite
Volumes for Complex Applications VIII – Hyperbolic, Elliptic and Parabolic Problems: FVCA 8, Lille,
France, June 2017, pages 387–395, 2017. ISBN 9783319573946. doi: 10.1007/978-3-319-57394-6_41.

M. Blatt. A parallel algebraic multigrid method for elliptic problems with highly discontinuous
coe�cients. PhD thesis, Heidelberg University, July 2010. doi: 10.11588/heidok.00010856.

M. Blatt and P. Bastian. The iterative solver template library. In B. Kågström, E. Elmroth, J. Don-
garra, and J. Waśniewski, editors, Applied Parallel Computing. State of the Art in Scienti�c Com-
puting: 8th International Workshop, PARA 2006, Umeå, Sweden, June 18-21, 2006, Revised Selected
Papers, pages 666–675. Springer, 2007. ISBN 9783540757559. doi: 10.1007/978-3-540-75755-9_82.

M. Blatt, A. Burchardt, A. Dedner, C. Engwer, J. Fahlke, B. Flemisch, C. Gersbacher, C. Gräser,
F. Gruber, C. Grüninger, D. Kempf, R. Klöfkorn, T. Malkmus, S. Müthing, M. Nolte, M. Piatkowski,
and O. Sander. The Distributed and Uni�ed Numerics Environment, Version 2.4. Archive of
Numerical Software, 100(4):13–29, 2016. doi: 10.11588/ans.2016.100.26526.

94

http://dx.doi.org/10.1007/s00607-008-0004-9
http://dx.doi.org/10.1007/s00607-008-0003-x
http://hdl.handle.net/10338.dmlcz/140745
http://dx.doi.org/10.1017/S0022112067001375
http://dx.doi.org/10.1137/S1064827599361308
http://dx.doi.org/10.1017/S0962492904000212
http://dx.doi.org/10.1007/978-3-319-57394-6_41
http://dx.doi.org/10.11588/heidok.00010856
http://dx.doi.org/10.1007/978-3-540-75755-9_82
http://dx.doi.org/10.11588/ans.2016.100.26526


M. Braack and A. Ern. A posteriori control of modeling errors and discretization errors. Multiscale
Modeling & Simulation, 1(2):221–238, 2003. doi: 10.1137/S1540345902410482.

J. Bramble, J. Pasciak, and A. Vassilev. Uzawa type algorithms for nonsymmetric saddle point
problems. Mathematics of Computation of the American Mathematical Society, 69(230):667–689,
2000. doi: 0.1090/S0025-5718-99-01152-7.

H. C. Brinkman. A calculation of the viscous force exerted by a �owing �uid on a dense swarm of
particles. Flow, Turbulence and Combustion, 1(1):27–34, 1949. doi: 10.1007/BF02120313.

R. H. Brooks and A. T. Corey. Hydraulic Properties of Porous Media. Colorado State University
Hydrology Papers. Colorado State University, 1964.

W. Brutsaert. Evaporation into the Atmosphere: Theory, History and Applications. Springer, 1982.
ISBN 9789027712479.

H.-J. Bungartz, F. Lindner, B. Gatzhammer, M. Mehl, K. Scheufele, A. Shukaev, and B. Uekermann.
preCICE - A fully parallel library for multi-physics surface coupling. Computers & Fluids, 141:
250–258, 2016. doi: 10.1016/j.comp�uid.2016.04.003.

Y. Cao, M. Gunzburger, F. Hua, and X. Wang. Coupled Stokes-Darcy model with Beavers-Joseph
interface boundary condition. Communications in Mathematical Sciences, 8(1):1–25, 2010. doi: 10.
4310/CMS.2010.v8.n1.a2.

P. C. Carman. Fluid �ow through granular beds. Transactions, Institution of Chemical Engineers, 15:
150–166, 1937. doi: 10.1016/S0263-8762(97)80003-2. Reprinted in Chemical Engineering Research
and Design, 75:S32–S48, 1997.

A. Çeşmelioğlu and B. Rivière. Existence of a weak solution for the fully coupled Navier–Stokes/
Darcy-transport problem. Journal of Di�erential Equations, 252(7):4138–4175, 2012. doi: 10.1016/j.
jde.2011.12.001.

H. Chan, W. Huang, J. Leu, and C. Lai. Macroscopic modeling of turbulent �ow over a porous
medium. International Journal of Heat and Fluid Flow, 28(5):1157–1166, 2007. doi: 10.1016/j.
ijheat�uid�ow.2006.10.005.

M. Chandesris, A. D’Hueppe, B. Mathieu, D. Jamet, and B. Goyeau. Direct numerical simulation
of turbulent heat transfer in a �uid-porous domain. Physics of Fluids, 25(12), 2013. doi: 10.1063/1.
4851416.

Z. Chen. Finite element methods and their applications. Springer, 2005. ISBN 9783540240780.

P. Chidyagwai and B. Rivière. A two-grid method for coupled free �ow with porous media �ow.
Advances in Water Resources, 34(9):1113–1123, 2011. doi: 10.1016/j.advwatres.2011.04.010.

F. Cimolin and M. Discacciati. Navier–Stokes/Forchheimer models for �ltration through porous
media. Applied Numerical Mathematics, 72:205–224, 2013. doi: 10.1016/j.apnum.2013.07.001.

95

http://dx.doi.org/10.1137/S1540345902410482
http://dx.doi.org/0.1090/S0025-5718-99-01152-7
http://dx.doi.org/10.1007/BF02120313
http://dx.doi.org/10.1016/j.compfluid.2016.04.003
http://dx.doi.org/10.4310/CMS.2010.v8.n1.a2
http://dx.doi.org/10.4310/CMS.2010.v8.n1.a2
http://dx.doi.org/10.1016/S0263-8762(97)80003-2
http://dx.doi.org/10.1016/j.jde.2011.12.001
http://dx.doi.org/10.1016/j.jde.2011.12.001
http://dx.doi.org/10.1016/j.ijheatfluidflow.2006.10.005
http://dx.doi.org/10.1016/j.ijheatfluidflow.2006.10.005
http://dx.doi.org/10.1063/1.4851416
http://dx.doi.org/10.1063/1.4851416
http://dx.doi.org/10.1016/j.advwatres.2011.04.010
http://dx.doi.org/10.1016/j.apnum.2013.07.001


H. Class and R. Helmig. Numerical simulation of non-isothermal multiphase multicomponent
processes in porous media. 2. Applications for the injection of steam and air. Advances in Water
Resources, 25(5):551–564, 2002. doi: 10.1016/S0309-1708(02)00015-5.

H. Class, R. Helmig, and P. Bastian. Numerical simulation of non-isothermal multiphase multi-
component processes in porous media. 1. An e�cient solution technique. Advances in Water
Resources, 25(5):533–550, 2002. doi: 10.1016/S0309-1708(02)00014-3.

W. Dahmen, T. Gotzen, S. Müller, and M. Rom. Numerical simulation of transpiration cooling
through porous material. International Journal for Numerical Methods in Fluids, 76(6):331–365,
2014. doi: 10.1002/�d.3935.

H. Darcy. Les fontaines publiques de la ville de Dijon: exposition et application des principes à suivre
et des formules à employer dans les questions de distribution d’eau. Victor Dalmont, 1856.

D. Das, V. Nassehi, and R. Wakeman. A �nite volume model for the hydrodynamics of combined
free and porous �ow in sub-surface regions. Advances in Environmental Research, 7(1):35–58,
2002. doi: 10.1016/S1093-0191(01)00108-3.

H. Davarzani, K. Smits, R. M. Tolene, and T. Illangasekare. Study of the e�ect of wind speed on
evaporation from soil through integrated modeling of the atmospheric boundary layer and
shallow subsurface. Water Resources Research, 50(1):661–680, 2014. doi: 10.1002/2013WR013952.

T. A. Davis. A column pre-ordering strategy for the unsymmetric-pattern multifrontal method.
ACM Transactions on Mathematical Software, 30(2):165–195, 2004. doi: 10.1145/992200.992205.

T. A. Davis and Y. Hu. The University of Florida sparse matrix collection. ACM Transactions on
Mathematical Software, 38(1):1:1–1:25, 2011. doi: 10.1145/2049662.2049663.

T. A. Davis, S. Rajamanickam, and W. M. Sid-Lakhdar. A survey of direct methods for sparse linear
systems. Acta Numerica, 25:383–566, 2016. doi: 10.1017/S0962492916000076.

M. De Lemos. Turbulent �ow around �uid–porous interfaces computed with a di�usion-jump
model for k and ε transport equations. Transport in Porous Media, 78:331–346, 2009. doi: 10.
1007/s11242-009-9379-0.

T. Defraeye. Advanced computational modelling for drying processes – a review. Applied Energy,
131(C):323–344, 2014. doi: 10.1016/j.apenergy.2014.06.027.

T. Defraeye, B. Blocken, and J. Carmeliet. Analysis of convective heat and mass transfer coe�cients
for convective drying of a porous �at plate by conjugate modelling. International Journal of
Heat and Mass Transfer, 55(1–3):112–124, 2012. doi: 10.1016/j.ijheatmasstransfer.2011.08.047.

T. Defraeye, B. Nicolaï, D. Mannes, W. Aregawi, P. Verboven, and D. Derome. Probing inside fruit
slices during convective drying by quantitative neutron imaging. Journal of Food Engineering,
178:198–202, 2016. doi: 10.1016/j.jfoodeng.2016.01.023.

J. W. Delleur. The Handbook of Groundwater Engineering. CRC Press, second edition, 2006. ISBN
1420006001.

96

http://dx.doi.org/10.1016/S0309-1708(02)00015-5
http://dx.doi.org/10.1016/S0309-1708(02)00014-3
http://dx.doi.org/10.1002/fld.3935
http://dx.doi.org/10.1016/S1093-0191(01)00108-3
http://dx.doi.org/10.1002/2013WR013952
http://dx.doi.org/10.1145/992200.992205
http://dx.doi.org/10.1145/2049662.2049663
http://dx.doi.org/10.1017/S0962492916000076
http://dx.doi.org/10.1007/s11242-009-9379-0
http://dx.doi.org/10.1007/s11242-009-9379-0
http://dx.doi.org/10.1016/j.apenergy.2014.06.027
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.08.047
http://dx.doi.org/10.1016/j.jfoodeng.2016.01.023


J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu. A supernodal approach to
sparse partial pivoting. SIAM Journal on Matrix Analysis and Applications, 20(3):720–755, 1999.
doi: 10.1137/S0895479895291765.

A. D’Hueppe. Heat transfer modeling at an interface between a porous medium and a free re-
gion. PhD thesis, Ecole Centrale Paris, 2011. URL https://tel.archives-ouvertes.fr/
tel-00711470/.

M. Discacciati. Iterative methods for Stokes/Darcy coupling. In Domain Decomposition Methods in
Science and Engineering, volume 40, pages 563–570. Springer, 2004. doi: 10.1007/3-540-26825-1_
59.

M. Discacciati and A. Quarteroni. Convergence analysis of a subdomain iterative method for the
�nite element approximation of the coupling of Stokes and Darcy equations. Computing and
Visualization in Science, 6(2):93–103, 2004. doi: 10.1007/s00791-003-0113-0.

M. Discacciati and A. Quarteroni. Navier-Stokes/Darcy coupling: modeling, analysis, and numer-
ical approximation. Revista Matemática Complutense, 22(2):315–426, 2009. doi: 10.5209/rev_
REMA.2009.v22.n2.16263.

M. Discacciati, A. Quarteroni, and A. Valli. Robin-Robin domain decomposition methods for the
Stokes-Darcy coupling. SIAM Journal on Numerical Analysis, 45(3):1246–1268, 2007. doi: 10.1137/
06065091X.

M. Discacciati, P. Gervasio, A. Giacomini, and A. Quarteroni. The interface control domain
decomposition method for Stokes–Darcy coupling. SIAM Journal on Numerical Analysis, 54(2):
1039–1068, 2016. doi: 10.1137/15M101854X.

V. Dolean, P. Jolivet, and F. Nataf. An Introduction to Domain Decomposition Methods: Algorithms,
Theory, and Parallel Implementation. Society for Industrial and Applied Mathematics, 2015. ISBN
9781611974058.

I. S. Du� and J. Koster. The design and use of algorithms for permuting large entries to the
diagonal of sparse matrices. SIAM Journal on Matrix Analysis and Applications, 20(4):889–901,
1999. doi: 10.1137/S0895479897317661.

I. S. Du� and J. Koster. On algorithms for permuting large entries to the diagonal of a sparse
matrix. SIAM Journal on Matrix Analysis and Applications, 22(4):973–996, 2001. doi: 10.1137/
S0895479899358443.

V. J. Ervin, M. Kubacki, W. Layton, M. Moraiti, Z. Si, and C. Trenchea. On limiting behavior of
contaminant transport models in coupled surface and groundwater �ows. Axioms, 4(4):518, 2015.
doi: 10.3390/axioms4040518.

L. C. Evans. Partial Di�erential Equations. American Mathematical Society, 2010. ISBN
9780821849743.

97

http://dx.doi.org/10.1137/S0895479895291765
https://tel.archives-ouvertes.fr/tel-00711470/
https://tel.archives-ouvertes.fr/tel-00711470/
http://dx.doi.org/10.1007/3-540-26825-1_59
http://dx.doi.org/10.1007/3-540-26825-1_59
http://dx.doi.org/10.1007/s00791-003-0113-0
http://dx.doi.org/10.5209/rev_REMA.2009.v22.n2.16263
http://dx.doi.org/10.5209/rev_REMA.2009.v22.n2.16263
http://dx.doi.org/10.1137/06065091X
http://dx.doi.org/10.1137/06065091X
http://dx.doi.org/10.1137/15M101854X
http://dx.doi.org/10.1137/S0895479897317661
http://dx.doi.org/10.1137/S0895479899358443
http://dx.doi.org/10.1137/S0895479899358443
http://dx.doi.org/10.3390/axioms4040518


B. Faigle, M. A. Elfeel, R. Helmig, B. Becker, B. Flemisch, and S. Geiger. Multi-physics modeling of
non-isothermal compositional �ow on adaptive grids. Computer Methods in Applied Mechanics
and Engineering, 292:16–34, 2015. doi: 10.1016/j.cma.2014.11.030.

E. Fattahi, C. Waluga, B. I. Wohlmuth, and U. Rüde. Large scale lattice Boltzmann simulation for the
coupling of free and porous media �ow. In T. Kozubek, R. Blaheta, J. Šístek, M. Rozložník, and
M. Čermák, editors, High Performance Computing in Science and Engineering: Second International
Conference, HPCSE 2015, Soláň, Czech Republic, May 25-28, 2015, Revised Selected Papers, pages
1–18. Springer, 2016. ISBN 9783319403618. doi: 10.1007/978-3-319-40361-8_1.

C. L. Fe�erman. Existence and smoothness of the Navier-Stokes equation. Technical re-
port, Clay Mathematics Institute, 2000. URL www.claymath.org/sites/default/files/
navierstokes.pdf.

J. Ferziger and M. Perić. Computational methods for �uid dynamics. Springer, 2002. ISBN
9783540420743.

T. Fetzer. Numerical analysis of the in�uence of turbulence on exchange processes between
porous-medium and free �ow. Master’s thesis, University of Stuttgart, 2012.

T. Fetzer, K. M. Smits, and R. Helmig. E�ect of turbulence and roughness on coupled porous-
medium/free-�ow exchange processes. Transport in Porous Media, pages 1–30, 2016. doi: 10.
1007/s11242-016-0654-6.

T. Fetzer, C. Grüninger, B. Flemisch, and R. Helmig. On the conditions for coupling free �ow and
porous-medium �ow in a �nite volume framework. In C. Cancès and P. Omnes, editors, Finite
Volumes for Complex Applications VIII – Hyperbolic, Elliptic and Parabolic Problems: FVCA 8, Lille,
France, June 2017, pages 347–356, 2017a. ISBN 9783319573946. doi: 10.1007/978-3-319-57394-6_37.

T. Fetzer, J. Vanderborght, K. Mosthaf, K. M. Smits, and R. Helmig. Heat and water transport in
soils and across the soil-atmosphere interface: 2. numerical analysis. Water Resources Research,
53(2):1080–1100, 2017b. doi: 10.1002/2016WR019983.

S. Finsterle. Inverse Modellierung zur Bestimmung hydrogeologischer Parameter eines Zweipha-
sensystems. Zürich, 1993. doi: 10.3929/ethz-a-000693070.

B. Flemisch, M. Darcis, K. Erbertseder, B. Faigle, A. Lauser, K. Mosthaf, S. Müthing, P. Nuske,
A. Tatomir, M. Wol�, and R. Helmig. DuMux : DUNE for multi-{phase, component, scale, physics,
. . . } �ow and transport in porous media. Advances in Water Resources, 34(9):1102–1112, 2011.
doi: 10.1016/j.advwatres.2011.03.007.

J. Freund and R. Stenberg. On weakly imposed boundary conditions for second order problems. In
Proceedings of the 9th International Conference on Finite Elements in Fluids, pages 327–336, 1995.

M. Fritsch. Analysis of processes and properties at a porous-medium free-�ow interface with the
application of evaporation. Master’s thesis, University of Stuttgart, 2016.

98

http://dx.doi.org/10.1016/j.cma.2014.11.030
http://dx.doi.org/10.1007/978-3-319-40361-8_1
www.claymath.org/sites/default/files/navierstokes.pdf
www.claymath.org/sites/default/files/navierstokes.pdf
http://dx.doi.org/10.1007/s11242-016-0654-6
http://dx.doi.org/10.1007/s11242-016-0654-6
http://dx.doi.org/10.1007/978-3-319-57394-6_37
http://dx.doi.org/10.1002/2016WR019983
http://dx.doi.org/10.3929/ethz-a-000693070
http://dx.doi.org/10.1016/j.advwatres.2011.03.007


A. Furman. Modeling coupled surface-subsurface �ow processes: A review. Vadose Zone Journal,
7(2):741–756, 2008. doi: 10.2136/vzj2007.0065.

C. Grüninger, T. Fetzer, B. Flemisch, and R. Helmig. Coupling DuMuX and DUNE-PDELab to
investigate evaporation at the interface between Darcy and Navier-Stokes �ow. Technical
Report 2017 - 1, SimTech, University of Stuttgart, 2017. doi: 10.18419/opus-9360.

S. Hahn, J. Je, and H. Choi. Direct numerical simulation of turbulent channel �ow with permeable
walls. Journal of Fluid Mechanics, 450:259–285, 2002. doi: 10.1017/S0022112001006437.

F. H. Harlow and J. E. Welch. Numerical calculation of time-dependent viscous incompressible
�ow of �uid with free surface. Physics of Fluids, 8(12):2182–2189, 1965. doi: 10.1063/1.1761178.

S. Hassanizadeh and W. G. Gray. Mechanics and thermodynamics of multiphase �ow in porous
media including interphase boundaries. Advances in Water Resources, 13(4):169–186, 1990.
doi: 10.1016/0309-1708(90)90040-B.

S. M. Hassanizadeh and W. G. Gray. Derivation of conditions describing transport across zones of
reduced dynamics within multiphase systems. Water Resources Research, 25(3):529–539, 1989a.
doi: 10.1029/WR025i003p00529.

S. M. Hassanizadeh and W. G. Gray. Boundary and interface conditions in porous media. Water
Resources Research, 25(7):1705–1715, 1989b. doi: 10.1029/WR025i007p01705.

R. Helmig. Multiphase �ow and transport processes in the subsurface: a contribution to the modeling
of hydrosystems. Springer, 1997. ISBN 9783540627036.

J. G. Heywood, R. Rannacher, and S. Turek. Arti�cial boundaries and �ux and pressure conditions
for the incompressible Navier–Stokes equations. International Journal for Numerical Methods in
Fluids, 22(5):325–352, 1996. doi: 10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.
CO;2-Y.

E. Holzbecher. Modellierung dynamischer Prozesse in der Hydrologie. Springer, 1996. ISBN
9783540605164.

U. Hornung. Homogenization and Porous Media. Springer, 2012. ISBN 9781461219200.

V. E. Howle, R. C. Kirby, and G. Dillon. Block preconditioners for coupled physics problems. SIAM
Journal on Scienti�c Computing, 35(5):S368–S385, 2013. doi: 10.1137/120883086.

C. Hutton, T. Wagener, J. Freer, D. Han, C. Du�y, and B. Arheimer. Most computational hydrology
is not reproducible, so is it really science? Water Resources Research, 52(10):7548–7555, 2016.
doi: 10.1002/2016WR019285.

IAPWS. Revised release on the IAPWS industrial formulation 1997 for the thermodynamic
properties of water and steam, 2007. URL http://www.iapws.org/relguide/IF97-Rev.
pdf.

99

http://dx.doi.org/10.2136/vzj2007.0065
http://dx.doi.org/10.18419/opus-9360
http://dx.doi.org/10.1017/S0022112001006437
http://dx.doi.org/10.1063/1.1761178
http://dx.doi.org/10.1016/0309-1708(90)90040-B
http://dx.doi.org/10.1029/WR025i003p00529
http://dx.doi.org/10.1029/WR025i007p01705
http://dx.doi.org/10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y
http://dx.doi.org/10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y
http://dx.doi.org/10.1137/120883086
http://dx.doi.org/10.1002/2016WR019285
http://www.iapws.org/relguide/IF97-Rev.pdf
http://www.iapws.org/relguide/IF97-Rev.pdf


V. A. Jambhekar, R. Helmig, N. Schröder, and N. Shokri. Free-�ow–porous-media coupling for
evaporation-driven transport and precipitation of salt in soil. Transport in Porous Media, 110(2):
251–280, 2015. doi: 10.1007/s11242-015-0516-7.

Ø. Johansen. Varmeledningsevne av Jordarter. PhD thesis, Norwegian University of Science and
Technology, Trondheim, 1975. Translated as Thermal conductivity of soils by U.S. Army, Cold
Regions Research and Engineering Laboratory, 1977.

I. P. Jones. Low Reynolds number �ow past a porous spherical shell. Mathematical Proceedings of
the Cambridge Philosophical Society, 73(1):231–238, 1973. doi: 10.1017/S0305004100047642.

W. Jäger and A. Mikelić. On the interface boundary condition of Beavers, Joseph, and Sa�man.
SIAM Journal on Applied Mathematics, 60(4):1111–1127, 2000. doi: 10.1137/S003613999833678X.

W. Jäger, A. Mikelić, and N. Neuss. Asymptotic analysis of the laminar viscous �ow over
a porous bed. SIAM Journal on Scienti�c Computing, 22(6):2006–2028, 2001. doi: 10.1137/
S1064827599360339.

G. Kanschat. Divergence-free discontinuous Galerkin schemes for the Stokes equations and
the mac scheme. International Journal for Numerical Methods in Fluids, 56(7):941–950, 2008.
doi: 10.1002/�d.1566.

G. Kanschat and B. Rivière. A strongly conservative �nite element method for the coupling of
Stokes and Darcy �ow. Journal of Computational Physics, 229(17):5933–5943, 2010. doi: 10.1016/j.
jcp.2010.04.021.

W. M. Kays, M. E. Crawford, and B. Weigand. Convective heat and mass transfer. McGraw-Hill
Higher Education, 4th edition, 2005. ISBN 9780071238298.

J. B. Keller. Darcy’s law for �ow in porous media and the two-space method. In R. L. Sternberg, A. J.
Kalinowski, and J. S. Papadakis, editors, Nonlinear Partial Di�erential Equations in Engineering
and Applied Science, pages 429–443. CRC Press, 1980. ISBN 9780824769963.

I. N. Konshin, M. A. Olshanskii, and Y. V. Vassilevski. ILU preconditioners for nonsymmetric
saddle-point matrices with application to the incompressible Navier-Stokes equations. SIAM
Journal on Scienti�c Computing, 37(5):A2171–A2197, 2015. doi: 10.1137/15M1012311.

M. Krafczyk, K. Kucher, Y. Wang, and M. Geier. DNS/LES studies of turbulent �ows based on the
cumulant lattice Boltzmann approach. In W. E. Nagel, D. H. Kröner, and M. M. Resch, editors,
High Performance Computing in Science and Engineering ’14, pages 519–531. Springer, 2014.

M. Krotkiewski, I. S. Ligaarden, K.-A. Lie, and D. W. Schmid. On the importance of the Stokes-
Brinkman equations for computing e�ective permeability in karst reservoirs. Communications
in Computational Physics, 10(5):1315–1332, 2015. doi: 10.4208/cicp.290610.020211a.

P. Krzyzanowski. On block preconditioners for nonsymmetric saddle point problems. SIAM
Journal on Scienti�c Computing, 23(1):157–169, 2001. doi: 10.1137/S1064827599360406.

100

http://dx.doi.org/10.1007/s11242-015-0516-7
http://dx.doi.org/10.1017/S0305004100047642
http://dx.doi.org/10.1137/S003613999833678X
http://dx.doi.org/10.1137/S1064827599360339
http://dx.doi.org/10.1137/S1064827599360339
http://dx.doi.org/10.1002/fld.1566
http://dx.doi.org/10.1016/j.jcp.2010.04.021
http://dx.doi.org/10.1016/j.jcp.2010.04.021
http://dx.doi.org/10.1137/15M1012311
http://dx.doi.org/10.4208/cicp.290610.020211a
http://dx.doi.org/10.1137/S1064827599360406


J. Laufer. The structure of turbulence in fully developed pipe �ow. NACA Technical Report 1174,
1954.

W. J. Layton, F. Schieweck, and I. Yotov. Coupling �uid �ow with porous media �ow. SIAM Journal
on Numerical Analysis, 40(6):2195–2218, 2002. URL http://www.jstor.org/stable/4100990.

P. Lehmann, S. Assouline, and D. Or. Characteristic lengths a�ecting evaporative drying of porous
media. Physical Review E, 77:056309, 2008. doi: 10.1103/PhysRevE.77.056309.

R. J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, 2002.
ISBN 9781139434188.

X. S. Li and M. Shao. A supernodal approach to incomplete LU factorization with partial pivoting.
ACM Transactions on Mathematical Software, 37(4):43:1–43:20, 2011. doi: 10.1145/1916461.1916467.

C. Liu, Y. Yan, and P. Lu. Physics of turbulence generation and sustenance in a boundary layer.
Computers & Fluids, 102:353–384, 2014. doi: 10.1016/j.comp�uid.2014.06.032.

R. Masson and N. Birgle. Private communication, 2017.

R. Masson, L. Trenty, and Y. Zhang. Coupling compositional liquid gas Darcy and free gas �ows
at porous and free-�ow domains interface. Journal of Computational Physics, 321:708–728, 2016.
doi: 10.1016/j.jcp.2016.06.003.

S. Mazumder. Numerical Methods for Partial Di�erential Equations: Finite Di�erence and Finite
Volume Methods. Elsevier Science, 2015. ISBN 9780128035047.

K. Mosthaf. Modeling and analysis of coupled porous-medium and free �ow with application to
evaporation processes. PhD thesis, University of Stuttgart, 2014. doi: 10.18419/opus-519.

K. Mosthaf, K. Baber, B. Flemisch, R. Helmig, A. Leijnse, I. Rybak, and B. Wohlmuth. A coupling
concept for two-phase compositional porous-medium and single-phase compositional free �ow.
Water Resources Research, W10522, 2011. doi: 10.1029/2011WR010685.

K. Mosthaf, R. Helmig, and D. Or. Modeling and analysis of evaporation processes from porous
media on the REV scale. Water Resources Research, 2014. doi: 10.1002/2013WR014442.

S. Müthing. A Flexible Framework for Multi Physics and Multi Domain PDE Simulations. PhD thesis,
University of Stuttgart, January 2015. doi: 10.18419/opus-3620.

S. Müthing and P. Bastian. Dune-Multidomaingrid: A metagrid approach to subdomain modeling.
In A. Dedner, B. Flemisch, and R. Klöfkorn, editors, Advances in DUNE: Proceedings of the DUNE
User Meeting, Held in October 6th–8th 2010 in Stuttgart, Germany, pages 59–73. Springer, 2012.
ISBN 9783642285899. doi: 10.1007/978-3-642-28589-9_5.

J. R. Natvig and K.-A. Lie. Fast computation of multiphase �ow in porous media by implicit
discontinuous Galerkin schemes with optimal ordering of elements. Journal of Computational
Physics, 227(24):10108–10124, 2008. doi: 10.1016/j.jcp.2008.08.024.

101

http://www.jstor.org/stable/4100990
http://dx.doi.org/10.1103/PhysRevE.77.056309
http://dx.doi.org/10.1145/1916461.1916467
http://dx.doi.org/10.1016/j.compfluid.2014.06.032
http://dx.doi.org/10.1016/j.jcp.2016.06.003
http://dx.doi.org/10.18419/opus-519
http://dx.doi.org/10.1029/2011WR010685
http://dx.doi.org/10.1002/2013WR014442
http://dx.doi.org/10.18419/opus-3620
http://dx.doi.org/10.1007/978-3-642-28589-9_5
http://dx.doi.org/10.1016/j.jcp.2008.08.024


T. V. Nguyen. A gas distributor design for proton-exchange-membrane fuel cells. Journal of The
Electrochemical Society, 143(5):L103–L105, 1996. doi: 10.1149/1.1836666.

R. A. Nicolaides. Flow discretization by complementary volume techniques. In Proceedings of 9th
AIAA CFD Meeting, pages 464–470, 1989. doi: 10.2514/6.1989-1978.

R. A. Nicolaides. Analysis and convergence of the MAC scheme. I. The linear problem. SIAM
Journal on Numerical Analysis, 29(6):1579–1591, 1992. doi: 10.1137/0729091.

R. A. Nicolaides. Three dimensional covolume algorithms for viscous �ows. In M. Y. Hussaini,
A. Kumar, and M. D. Salas, editors, Algorithmic Trends in Computational Fluid Dynamics, pages
397–414. Springer, 1993. ISBN 9781461227083.

R. A. Nicolaides and X. Wu. Analysis and convergence of the MAC scheme. II. Navier-Stokes
equations. Math. Comput., 65(213):29–44, 1996. doi: 10.1090/S0025-5718-96-00665-5.

D. A. Nield. The Beavers-Joseph boundary condition and related matters: A historical and critical
note. Transport in Porous Media, 78(3):537–540, 2009. doi: 10.1007/s11242-009-9344-y.

D. A. Nield and A. V. Kuznetsov. The e�ect of a transition layer between a �uid and a porous
medium: shear �ow in a channel. Transport in Porous Media, 78(3):477–487, 2009. doi: 10.1007/
s11242-009-9342-0.

C. M. Oldenburg and A. Unger. Coupled vadose zone and atmospheric surface-layer transport
of carbon dioxide from geologic carbon sequestration sites. Vadose Zone Journal, 3(3), 2004.
doi: 10.2136/vzj2004.0848.

D. Or, P. Lehmann, E. Shahraeeni, and N. Shokri. Advances in soil evaporation physics—a review.
Vadose Zone Journal, 12(4), 2013. doi: 10.2136/vzj2012.0163.

G. Pechlivanidis, E. Keramaris, and I. Pechlivanidis. Experimental study of the e�ects of grass
vegetation and gravel bed on the turbulent �ow using particle image velocimetry. Journal of
Turbulence, 16(1):1–14, 2015. doi: 10.1080/14685248.2014.946605.

D. Pokrajac and C. Manes. Velocity measurements of a free-surface turbulent �ow penetrating a
porous medium composed of uniform-size spheres. Transport in Porous Media, 78(3):367–383,
2009. doi: 10.1007/s11242-009-9339-8.

S. B. Pope. Turbulent Flows. Cambridge University Press, 2000. ISBN 9780521598866.

M. Prat. Recent advances in pore-scale models for drying of porous media. Chemical Engineering
Journal, 86(1–2):153–164, 2002. doi: 10.1016/S1385-8947(01)00283-2.

P. Prinos, D. So�alidis, and E. Keramaris. Turbulent �ow over and within a porous bed. Journal of
Hydraulic Engineering, 129(9):720, 2003.

A. Quarteroni, F. Pasquarelli, and A. Valli. Heterogeneous domain decomposition principles,
algorithms, applications. In D. E. Keyes, T. F. Chan, G. A. Meurant, J. S. Scroggs, and R. G. Voigt,
editors, Fifth International Symposium on Domain Decomposition Methods for Partial Di�erential
Equations, pages 129–150, Philadelphia, PA, 1992. SIAM.

102

http://dx.doi.org/10.1149/1.1836666
http://dx.doi.org/10.2514/6.1989-1978
http://dx.doi.org/10.1137/0729091
http://dx.doi.org/10.1090/S0025-5718-96-00665-5
http://dx.doi.org/10.1007/s11242-009-9344-y
http://dx.doi.org/10.1007/s11242-009-9342-0
http://dx.doi.org/10.1007/s11242-009-9342-0
http://dx.doi.org/10.2136/vzj2004.0848
http://dx.doi.org/10.2136/vzj2012.0163
http://dx.doi.org/10.1080/14685248.2014.946605
http://dx.doi.org/10.1007/s11242-009-9339-8
http://dx.doi.org/10.1016/S1385-8947(01)00283-2


R. Reid, J. Prausnitz, and B. Poling. The properties of gases and liquids. McGraw Hill, 1987.

D. Rind, C. Rosenzweig, and M. Stieglitz. The role of moisture transport between ground and
atmosphere in global change. Annual Review of Energy and the Environment, 22(1):47–74, 1997.
doi: 10.1146/annurev.energy.22.1.47.

I. Rybak and J. Magiera. A multiple-time-step technique for coupled free �ow and porous medium
systems. Journal of Computational Physics, 272:327–342, 2014. doi: 10.1016/j.jcp.2014.04.036.

I. Rybak, J. Magiera, R. Helmig, and C. Rohde. Multirate time integration for coupled satu-
rated/unsaturated porous medium and free �ow systems. Computational Geosciences, 19(2):
299–309, 2015. doi: 10.1007/s10596-015-9469-8.

Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics,
second edition, 2003. ISBN 9780898715347. doi: 10.1137/1.9780898718003.

P. G. Sa�man. On the boundary condition at the surface of a porous medium. Studies in Applied
Mathematics, 50(2):93–101, 1971. doi: 10.1002/sapm197150293.

A. G. Salinger, R. Aris, and J. J. Derby. Finite element formulations for large-scale, coupled �ows in
adjacent porous and open �uid domains. International Journal for Numerical Methods in Fluids,
18(12):1185–1209, 1994. doi: 10.1002/�d.1650181205.

H. A. Schwarz. Ueber einen Grenzübergang durch alternirendes Verfahren. Vierteljahrsschrift der
Naturforschenden Gesellschaft in Zürich. Zürcher und Furrer, 1870.

E. Shahraeeni, P. Lehmann, and D. Or. Coupling of evaporative �uxes from drying porous surfaces
with air boundary layer: Characteristics of evaporation from discrete pores. Water Resources
Research, 48:W09525, 15 pp, 2012. doi: 10.1029/2012WR011857.

S. Shao. Incompressible SPH �ow model for wave interactions with porous media. Coastal
Engineering, 57(3):304–316, 2010. doi: 10.1016/j.coastaleng.2009.10.012.

H. E. Siekmann and P. U. Thamsen. Strömungslehre: Grundlagen. Springer, 2008. ISBN
9783540737278.

B. F. Smith, P. E. Bjørstad, and W. Gropp. Domain decomposition: parallel multilevel methods for
elliptic partial di�erential equations. Cambridge University Press, 1996. ISBN 9780521495899.

K. M. Smits, A. Cihan, T. Sakaki, S. E. Howington, J. F. Peters, and T. H. Illangasekare. Soil moisture
and thermal behavior in the vicinity of buried objects a�ecting remote sensing detection:
Experimental and modeling investigation. IEEE Transactions on Geoscience and Remote Sensing,
51(5):2675–2688, 2013. doi: 10.1109/TGRS.2012.2214485.

P. Sochala, A. Ern, and S. Piperno. Mass conservative BDF-discontinuous Galerkin/explicit �nite
volume schemes for coupling subsurface and overland �ows. Computer Methods in Applied
Mechanics and Engineering, 198(27–29):2122–2136, 2009. doi: 10.1016/j.cma.2009.02.024.

103

http://dx.doi.org/10.1146/annurev.energy.22.1.47
http://dx.doi.org/10.1016/j.jcp.2014.04.036
http://dx.doi.org/10.1007/s10596-015-9469-8
http://dx.doi.org/10.1137/1.9780898718003
http://dx.doi.org/10.1002/sapm197150293
http://dx.doi.org/10.1002/fld.1650181205
http://dx.doi.org/10.1029/2012WR011857
http://dx.doi.org/10.1016/j.coastaleng.2009.10.012
http://dx.doi.org/10.1109/TGRS.2012.2214485
http://dx.doi.org/10.1016/j.cma.2009.02.024


P. R. Spalart. Philosophies and fallacies in turbulence modeling. Progress in Aerospace Sciences, 74:
1–15, 2015. doi: 10.1016/j.paerosci.2014.12.004.

K. Suga. Understanding and modelling turbulence over and inside porous media. Flow, Turbulence
and Combustion, 96(3):717–756, 2016. doi: 10.1007/s10494-015-9673-6.

J. Y. Tang and W. J. Riley. A new top boundary condition for modeling surface di�usive exchange
of a generic volatile tracer: theoretical analysis and application to soil evaporation. Hydrology
and Earth System Sciences, 17(2):873–893, 2013. doi: 10.5194/hess-17-873-2013.

A. Toselli and O. Widlund. Domain Decomposition Methods – Algorithms and Theory. Springer,
2004. ISBN 9783540206965.

R. Usha, A. Anjalaiah, and Y. V. S. S. Sanyasiraju. Dynamics of a pre-lens tear �lm after a blink:
Model, evolution, and rupture. Physics of Fluids, 25(11), 2013. doi: 10.1063/1.4831795.

S. V. Utyuzhnikov. Robin-type wall functions and their numerical implementation. Applied
Numerical Mathematics, 58(10):1521–1533, 2008. doi: 10.1016/j.apnum.2007.09.003.

M. T. Van Genuchten. A closed-form equation for predicting the hydraulic conductivity of
unsaturated soils. Soil Science Society of America Journal, 44(5):892–898, 1980. doi: 10.2136/
sssaj1980.03615995004400050002x.

J. Vanderborght, T. Fetzer, K. Mosthaf, K. M. Smits, and R. Helmig. Heat and water transport in
soils and across the soil-atmosphere interface: 1. theory and di�erent model concepts. Water
Resources Research, 53(2):1057–1079, 2017. doi: 10.1002/2016WR019982.

P. Verboven, D. Flick, B. Nicolaï, and G. Alvarez. Modelling transport phenomena in refrigerated
food bulks, packages and stacks: basics and advances. International Journal of Refrigeration, 29
(6):985–997, 2006. doi: 10.1016/j.ijrefrig.2005.12.010.

H. Versteeg and W. Malalasekera. An Introduction to Computational Fluid Dynamics: The Finite
Volume Method. Prentice Hall, 2007. ISBN 9780131274983.

R. Vuduc, A. Chandramowlishwaran, J. Choi, M. Guney, and A. Shringarpure. On the limits of
GPU acceleration. In Proceedings of the 2nd USENIX Conference on Hot Topics in Parallelism,
HotPar’10, Berkeley, CA, USA, 2010. USENIX Association.

L. Wang and H. Liu. Performance studies of PEM fuel cells with interdigitated �ow �elds. Journal
of Power Sources, 134(2):185–196, 2004. doi: j.jpowsour.2004.03.055.

M. F. Wheeler and I. Yotov. Physical and computational domain decompositions for modeling
subsurface �ows. Contemporary Mathematics, 218:217–228, 1998.

F. M. White. Fluid Mechanics. McGraw-Hill, 4th edition, 1999. ISBN 9780072281928.

Wikipedia: The Free Encyclopedia, 2017.

D. Wilcox. Turbulence Modeling for CFD. DCW Industries, 1998. ISBN 9780963605153.

104

http://dx.doi.org/10.1016/j.paerosci.2014.12.004
http://dx.doi.org/10.1007/s10494-015-9673-6
http://dx.doi.org/10.5194/hess-17-873-2013
http://dx.doi.org/10.1063/1.4831795
http://dx.doi.org/10.1016/j.apnum.2007.09.003
http://dx.doi.org/10.2136/sssaj1980.03615995004400050002x
http://dx.doi.org/10.2136/sssaj1980.03615995004400050002x
http://dx.doi.org/10.1002/2016WR019982
http://dx.doi.org/10.1016/j.ijrefrig.2005.12.010
http://dx.doi.org/j.jpowsour.2004.03.055


H.-W. Wu. A review of recent development: Transport and performance modeling of PEM fuel
cells. Applied Energy, 165:81–106, 2016. doi: 10.1016/j.apenergy.2015.12.075.

W.-M. Yan, S.-C. Mei, C.-Y. Soong, Z.-S. Liu, and D. Song. Experimental study on the performance
of PEM fuel cells with interdigitated �ow channels. Journal of Power Sources, 160(1):116–122,
2006. doi: 10.1016/j.jpowsour.2006.01.063.

A. G. Yiotis, I. N. Tsimpanogiannis, A. K. Stubos, and Y. C. Yortsos. Coupling between external
and internal mass transfer during drying of a porous medium. Water Resources Research, 43(6),
2007. doi: 10.1029/2006WR005558. W06403.

S. Zeng and P. Wesseling. An ILU smoother for the incompressible Navier-Stokes equations in
general co-ordinates. International Journal for Numerical Methods in Fluids, 20(1):59–74, 1995.
doi: 10.1002/�d.1650200104.

K. Zhang, A. D. Bosch-Serra, J. Boixadera, and A. J. Thompson. Investigation of water dynamics and
the e�ect of evapotranspiration on grain yield of rainfed wheat and barley under a mediterranean
environment: A modelling approach. PLOS ONE, 10(6):1–18, 2015. doi: 10.1371/journal.pone.
0131360.

Y. Zhang. Modélisation et simulation des dispositifs de ventilation dans les stockages de déchets
radioactifs. PhD thesis, Université Nice Sophia Antipolis, Dec 2015. URL https://hal.inria.
fr/tel-01273148.

105

http://dx.doi.org/10.1016/j.apenergy.2015.12.075
http://dx.doi.org/10.1016/j.jpowsour.2006.01.063
http://dx.doi.org/10.1029/2006WR005558
http://dx.doi.org/10.1002/fld.1650200104
http://dx.doi.org/10.1371/journal.pone.0131360
http://dx.doi.org/10.1371/journal.pone.0131360
https://hal.inria.fr/tel-01273148
https://hal.inria.fr/tel-01273148




 
 
 
 
 
 

 

Institut für Wasser- und 

Umweltsystemmodellierung 

Universität Stuttgart 
 
 
Pfaffenwaldring 61 
70569 Stuttgart (Vaihingen) 
Telefon (0711) 685 - 64717/64749/64752/64679 
Telefax (0711) 685 - 67020 o. 64746 o. 64681 
E-Mail: iws@iws.uni-stuttgart.de 
http://www.iws.uni-stuttgart.de 

 
 

Direktoren 
Prof. Dr. rer. nat. Dr.-Ing. András Bárdossy 
Prof. Dr.-Ing. Rainer Helmig 
Prof. Dr.-Ing. Silke Wieprecht 
Prof. Dr.-Ing. Wolfgang Nowak 
 
 
 

Vorstand (Stand 1.3.2017) 
Prof. Dr. rer. nat. Dr.-Ing. A. Bárdossy 
Prof. Dr.-Ing. R. Helmig 
Prof. Dr.-Ing. S. Wieprecht 
Prof. Dr. J.A. Sander Huisman 
Jürgen Braun, PhD 
apl. Prof. Dr.-Ing. H. Class 
Dr.-Ing. H.-P. Koschitzky 
Dr.-Ing. M. Noack 
Prof. Dr.-Ing. W. Nowak 
Dr. rer. nat. J. Seidel 
Dr.-Ing. K. Terheiden 
Dr.-Ing. habil. Sergey Oladyshkin 
 
 
 
 

Emeriti 
Prof. Dr.-Ing. habil. Dr.-Ing. E.h. Jürgen Giesecke 
Prof. Dr.h.c. Dr.-Ing. E.h. Helmut Kobus, PhD 

Lehrstuhl für Wasserbau und  

Wassermengenwirtschaft 
Leiter: Prof. Dr.-Ing. Silke Wieprecht 
Stellv.:  Dr.-Ing. Kristina Terheiden 
Versuchsanstalt für Wasserbau 
Leiter:   Dr.-Ing. Markus Noack 
 

Lehrstuhl für Hydromechanik  

und Hydrosystemmodellierung 
Leiter:   Prof. Dr.-Ing. Rainer Helmig 
Stellv.:  apl. Prof. Dr.-Ing. Holger Class 

 

Lehrstuhl für Hydrologie und Geohydrologie 
Leiter: Prof. Dr. rer. nat. Dr.-Ing. András Bárdossy 
Stellv.:  Dr. rer. nat. Jochen Seidel 
Hydrogeophysik der Vadosen Zone 
(mit Forschungszentrum Jülich) 
Leiter:  Prof. Dr. J.A. Sander Huisman 

 

Lehrstuhl für Stochastische Simulation und  

Sicherheitsforschung für Hydrosysteme 
Leiter:  Prof. Dr.-Ing. Wolfgang Nowak 
Stellv.:  Dr.-Ing. habil. Sergey Oladyshkin 
 

VEGAS, Versuchseinrichtung zur  

Grundwasser- und Altlastensanierung 
Leitung: Jürgen Braun, PhD, AD 
 Dr.-Ing. Hans-Peter Koschitzky, AD 

 
 
 

Verzeichnis der Mitteilungshefte 
 

1 Röhnisch, Arthur: Die Bemühungen um eine Wasserbauliche Versuchsanstalt an der 
Technischen Hochschule Stuttgart, und 
Fattah Abouleid, Abdel: Beitrag zur Berechnung einer in lockeren Sand gerammten, zwei-
fach verankerten Spundwand, 1963 

2 Marotz, Günter: Beitrag zur Frage der Standfestigkeit von dichten Asphaltbelägen im 
Großwasserbau, 1964 

3 Gurr, Siegfried: Beitrag zur Berechnung zusammengesetzter ebener Flächentrag-werke 
unter besonderer Berücksichtigung ebener Stauwände, mit Hilfe von Rand-wert- und 
Lastwertmatrizen, 1965 

4 Plica, Peter: Ein Beitrag zur Anwendung von Schalenkonstruktionen im Stahlwasserbau, 
und  
Petrikat, Kurt: Möglichkeiten und Grenzen des wasserbaulichen Versuchswesens, 1966 



2 Institut für Wasser- und Umweltsystemmodellierung * Universität Stuttgart * IWS  
 
5 Plate, Erich: Beitrag zur Bestimmung der Windgeschwindigkeitsverteilung in der durch eine 

Wand gestörten bodennahen Luftschicht, und 
Röhnisch, Arthur; Marotz, Günter: Neue Baustoffe und Bauausführungen für den Schutz 
der Böschungen und der Sohle von Kanälen, Flüssen und Häfen; Gestehungskosten und 
jeweilige Vorteile, sowie  
Unny, T.E.: Schwingungsuntersuchungen am Kegelstrahlschieber, 1967 

6 Seiler, Erich: Die Ermittlung des Anlagenwertes der bundeseigenen Binnenschiffahrts-
straßen und Talsperren und des Anteils der Binnenschiffahrt an diesem Wert, 1967 

7 Sonderheft anläßlich des 65. Geburtstages von Prof. Arthur Röhnisch mit Beiträgen von 
Benk, Dieter; Breitling, J.; Gurr, Siegfried; Haberhauer, Robert; Honekamp, Hermann; Kuz, 
Klaus Dieter; Marotz, Günter; Mayer-Vorfelder, Hans-Jörg; Miller, Rudolf; Plate, Erich J.; 
Radomski, Helge; Schwarz, Helmut; Vollmer, Ernst; Wildenhahn, Eberhard; 1967 

8 Jumikis, Alfred: Beitrag zur experimentellen Untersuchung des Wassernachschubs in ei-
nem gefrierenden Boden und die Beurteilung der Ergebnisse, 1968 

9 Marotz, Günter: Technische Grundlagen einer Wasserspeicherung im natürlichen Unter-
grund, 1968 

10 Radomski, Helge: Untersuchungen über den Einfluß der Querschnittsform wellenförmiger 
Spundwände auf die statischen und rammtechnischen Eigenschaften, 1968 

11 Schwarz, Helmut: Die Grenztragfähigkeit des Baugrundes bei Einwirkung vertikal gezoge-
ner Ankerplatten als zweidimensionales Bruchproblem, 1969 

12 Erbel, Klaus: Ein Beitrag zur Untersuchung der Metamorphose von Mittelgebirgsschnee-
decken unter besonderer Berücksichtigung eines Verfahrens zur Bestimmung der thermi-
schen Schneequalität, 1969 

13 Westhaus, Karl-Heinz: Der Strukturwandel in der Binnenschiffahrt und sein Einfluß auf den 
Ausbau der Binnenschiffskanäle, 1969 

14 Mayer-Vorfelder, Hans-Jörg: Ein Beitrag zur Berechnung des Erdwiderstandes unter An-
satz der logarithmischen Spirale als Gleitflächenfunktion, 1970 

15 Schulz, Manfred: Berechnung des räumlichen Erddruckes auf die Wandung kreiszylin-
drischer Körper, 1970 

16 Mobasseri, Manoutschehr: Die Rippenstützmauer. Konstruktion und Grenzen ihrer Stand-
sicherheit, 1970 

17 Benk, Dieter: Ein Beitrag zum Betrieb und zur Bemessung von Hochwasserrückhaltebe-
cken, 1970  

18 Gàl, Attila: Bestimmung der mitschwingenden Wassermasse bei überströmten Fisch-
bauchklappen mit kreiszylindrischem Staublech, 1971, vergriffen 

19 Kuz, Klaus Dieter: Ein Beitrag zur Frage des Einsetzens von Kavitationserscheinungen in 
einer Düsenströmung bei Berücksichtigung der im Wasser gelösten Gase, 1971, vergriffen 

20 Schaak, Hartmut: Verteilleitungen von Wasserkraftanlagen, 1971 

21 Sonderheft zur Eröffnung der neuen Versuchsanstalt des Instituts für Wasserbau der Uni-
versität Stuttgart mit Beiträgen von Brombach, Hansjörg; Dirksen, Wolfram; Gàl, Attila; 
Gerlach, Reinhard; Giesecke, Jürgen; Holthoff, Franz-Josef; Kuz, Klaus Dieter; Marotz, 
Günter; Minor, Hans-Erwin; Petrikat, Kurt; Röhnisch, Arthur; Rueff, Helge; Schwarz, Hel-
mut; Vollmer, Ernst; Wildenhahn, Eberhard; 1972 

22 Wang, Chung-su: Ein Beitrag zur Berechnung der Schwingungen an Kegelstrahlschiebern, 
1972 

23 Mayer-Vorfelder, Hans-Jörg: Erdwiderstandsbeiwerte nach dem Ohde-Variationsverfahren, 
1972 

24 Minor, Hans-Erwin: Beitrag zur Bestimmung der Schwingungsanfachungsfunktionen über-
strömter Stauklappen, 1972, vergriffen 

25 Brombach, Hansjörg: Untersuchung strömungsmechanischer Elemente (Fluidik) und die 
Möglichkeit der Anwendung von Wirbelkammerelementen im Wasserbau, 1972, vergriffen 

26 Wildenhahn, Eberhard: Beitrag zur Berechnung von Horizontalfilterbrunnen, 1972 



Verzeichnis der Mitteilungshefte 3  
 
27 Steinlein, Helmut: Die Eliminierung der Schwebstoffe aus Flußwasser zum Zweck der un-

terirdischen Wasserspeicherung, gezeigt am Beispiel der Iller, 1972 

28 Holthoff, Franz Josef: Die Überwindung großer Hubhöhen in der Binnenschiffahrt durch 
Schwimmerhebewerke, 1973 

29 Röder, Karl: Einwirkungen aus Baugrundbewegungen auf trog- und kastenförmige Kon-
struktionen des Wasser- und Tunnelbaues, 1973 

30 Kretschmer, Heinz: Die Bemessung von Bogenstaumauern in Abhängigkeit von der Tal-
form, 1973 

31 Honekamp, Hermann: Beitrag zur Berechnung der Montage von Unterwasserpipelines, 
1973 

32 Giesecke, Jürgen: Die Wirbelkammertriode als neuartiges Steuerorgan im Wasserbau, 
und Brombach, Hansjörg: Entwicklung, Bauformen, Wirkungsweise und Steuereigenschaf-
ten von Wirbelkammerverstärkern, 1974 

33 Rueff, Helge: Untersuchung der schwingungserregenden Kräfte an zwei hintereinander 
angeordneten Tiefschützen unter besonderer Berücksichtigung von Kavitation, 1974 

34 Röhnisch, Arthur: Einpreßversuche mit Zementmörtel für Spannbeton - Vergleich der Er-
gebnisse von Modellversuchen mit Ausführungen in Hüllwellrohren, 1975 

35 Sonderheft anläßlich des 65. Geburtstages von Prof. Dr.-Ing. Kurt Petrikat mit Beiträgen 
von:  Brombach, Hansjörg; Erbel, Klaus; Flinspach, Dieter; Fischer jr., Richard; Gàl, Attila; 
Gerlach, Reinhard; Giesecke, Jürgen; Haberhauer, Robert; Hafner Edzard; Hausenblas, 
Bernhard; Horlacher, Hans-Burkhard; Hutarew, Andreas; Knoll, Manfred; Krummet, Ralph; 
Marotz, Günter; Merkle, Theodor; Miller, Christoph; Minor, Hans-Erwin; Neumayer, Hans; 
Rao, Syamala; Rath, Paul; Rueff, Helge; Ruppert, Jürgen; Schwarz, Wolfgang; Topal-
Gökceli, Mehmet; Vollmer, Ernst; Wang, Chung-su; Weber, Hans-Georg; 1975 

36 Berger, Jochum: Beitrag zur Berechnung des Spannungszustandes in rotationssym-
metrisch belasteten Kugelschalen veränderlicher Wandstärke unter Gas- und Flüs-
sigkeitsdruck durch Integration schwach singulärer Differentialgleichungen, 1975 

37 Dirksen, Wolfram: Berechnung instationärer Abflußvorgänge in gestauten Gerinnen mittels 
Differenzenverfahren und die Anwendung auf Hochwasserrückhaltebecken, 1976 

38 Horlacher, Hans-Burkhard: Berechnung instationärer Temperatur- und Wärmespannungs-
felder in langen mehrschichtigen Hohlzylindern, 1976 

39 Hafner, Edzard: Untersuchung der hydrodynamischen Kräfte auf Baukörper im Tief-
wasserbereich des Meeres, 1977, ISBN 3-921694-39-6 

40 Ruppert, Jürgen: Über den Axialwirbelkammerverstärker für den Einsatz im Wasserbau, 
1977, ISBN 3-921694-40-X 

41 Hutarew, Andreas: Beitrag zur Beeinflußbarkeit des Sauerstoffgehalts in Fließgewässern 
an Abstürzen und Wehren, 1977, ISBN 3-921694-41-8, vergriffen 

42 Miller, Christoph: Ein Beitrag zur Bestimmung der schwingungserregenden Kräfte an unter-
strömten Wehren, 1977, ISBN 3-921694-42-6 

43 Schwarz, Wolfgang: Druckstoßberechnung unter Berücksichtigung der Radial- und Längs-
verschiebungen der Rohrwandung, 1978, ISBN 3-921694-43-4 

44 Kinzelbach, Wolfgang: Numerische Untersuchungen über den optimalen Einsatz variabler 
Kühlsysteme einer Kraftwerkskette am Beispiel Oberrhein, 1978, ISBN 3-921694-44-2 

45 Barczewski, Baldur: Neue Meßmethoden für Wasser-Luftgemische und deren Anwendung 
auf zweiphasige Auftriebsstrahlen, 1979, ISBN 3-921694-45-0 

46 Neumayer, Hans: Untersuchung der Strömungsvorgänge in radialen Wirbelkammerver-
stärkern, 1979, ISBN 3-921694-46-9 

47 Elalfy, Youssef-Elhassan: Untersuchung der Strömungsvorgänge in Wirbelkammerdioden 
und -drosseln, 1979, ISBN 3-921694-47-7 

48 Brombach, Hansjörg: Automatisierung der Bewirtschaftung von Wasserspeichern, 1981, 
ISBN 3-921694-48-5 

49 Geldner, Peter: Deterministische und stochastische Methoden zur Bestimmung der Selbst-
dichtung von Gewässern, 1981, ISBN 3-921694-49-3, vergriffen 



4 Institut für Wasser- und Umweltsystemmodellierung * Universität Stuttgart * IWS  
 
50 Mehlhorn, Hans: Temperaturveränderungen im Grundwasser durch Brauchwasserein-

leitungen, 1982, ISBN 3-921694-50-7, vergriffen 

51 Hafner, Edzard: Rohrleitungen und Behälter im Meer, 1983, ISBN 3-921694-51-5 

52 Rinnert, Bernd: Hydrodynamische Dispersion in porösen Medien: Einfluß von Dichteun-
terschieden auf die Vertikalvermischung in horizontaler Strömung, 1983,  
ISBN 3-921694-52-3, vergriffen 

53 Lindner, Wulf: Steuerung von Grundwasserentnahmen unter Einhaltung ökologischer Kri-
terien, 1983, ISBN 3-921694-53-1, vergriffen 

54 Herr, Michael; Herzer, Jörg; Kinzelbach, Wolfgang; Kobus, Helmut; Rinnert, Bernd: Metho-
den zur rechnerischen Erfassung und hydraulischen Sanierung von Grundwasser-
kontaminationen, 1983, ISBN 3-921694-54-X 

55 Schmitt, Paul: Wege zur Automatisierung der Niederschlagsermittlung, 1984,  
ISBN 3-921694-55-8, vergriffen 

56 Müller, Peter: Transport und selektive Sedimentation von Schwebstoffen bei gestautem 
Abfluß, 1985, ISBN 3-921694-56-6 

57 El-Qawasmeh, Fuad: Möglichkeiten und Grenzen der Tropfbewässerung unter besonderer 
Berücksichtigung der Verstopfungsanfälligkeit der Tropfelemente, 1985,  
ISBN 3-921694-57-4, vergriffen 

58 Kirchenbaur, Klaus: Mikroprozessorgesteuerte Erfassung instationärer Druckfelder am 
Beispiel seegangsbelasteter Baukörper, 1985, ISBN 3-921694-58-2 

59 Kobus, Helmut (Hrsg.): Modellierung des großräumigen Wärme- und Schadstofftransports 
im Grundwasser, Tätigkeitsbericht 1984/85 (DFG-Forschergruppe an den Universitäten 
Hohenheim, Karlsruhe und Stuttgart), 1985, ISBN 3-921694-59-0, vergriffen 

60 Spitz, Karlheinz: Dispersion in porösen Medien: Einfluß von Inhomogenitäten und Dichte-
unterschieden, 1985, ISBN 3-921694-60-4, vergriffen 

61 Kobus, Helmut: An Introduction to Air-Water Flows in Hydraulics, 1985,  
ISBN 3-921694-61-2 

62 Kaleris, Vassilios: Erfassung des Austausches von Oberflächen- und Grundwasser in hori-
zontalebenen Grundwassermodellen, 1986, ISBN 3-921694-62-0 

63 Herr, Michael: Grundlagen der hydraulischen Sanierung verunreinigter Porengrundwasser-
leiter, 1987, ISBN 3-921694-63-9 

64 Marx, Walter: Berechnung von Temperatur und Spannung in Massenbeton infolge Hydra-
tation, 1987, ISBN 3-921694-64-7 

65 Koschitzky, Hans-Peter: Dimensionierungskonzept für Sohlbelüfter in Schußrinnen zur 
Vermeidung von Kavitationsschäden, 1987, ISBN 3-921694-65-5 

66 Kobus, Helmut (Hrsg.): Modellierung des großräumigen Wärme- und Schadstofftransports 
im Grundwasser, Tätigkeitsbericht 1986/87 (DFG-Forschergruppe an den Universitäten 
Hohenheim, Karlsruhe und Stuttgart) 1987, ISBN 3-921694-66-3 

67 Söll, Thomas: Berechnungsverfahren zur Abschätzung anthropogener Temperaturanoma-
lien im Grundwasser, 1988, ISBN 3-921694-67-1 

68 Dittrich, Andreas; Westrich, Bernd: Bodenseeufererosion, Bestandsaufnahme und Bewer-
tung, 1988, ISBN 3-921694-68-X, vergriffen 

69 Huwe, Bernd; van der Ploeg, Rienk R.: Modelle zur Simulation des Stickstoffhaushaltes 
von Standorten mit unterschiedlicher landwirtschaftlicher Nutzung, 1988,  
ISBN 3-921694-69-8, vergriffen 

70 Stephan, Karl: Integration elliptischer Funktionen, 1988, ISBN 3-921694-70-1 

71 Kobus, Helmut; Zilliox, Lothaire (Hrsg.): Nitratbelastung des Grundwassers, Auswirkungen 
der Landwirtschaft auf die Grundwasser- und Rohwasserbeschaffenheit und Maßnahmen 
zum Schutz des Grundwassers. Vorträge des deutsch-französischen Kolloquiums am 
6. Oktober 1988, Universitäten Stuttgart und Louis Pasteur Strasbourg (Vorträge in 
deutsch oder französisch, Kurzfassungen zweisprachig), 1988, ISBN 3-921694-71-X 

 



Verzeichnis der Mitteilungshefte 5  
 
72 Soyeaux, Renald: Unterströmung von Stauanlagen auf klüftigem Untergrund unter Berück-

sichtigung laminarer und turbulenter Fließzustände,1991, ISBN 3-921694-72-8 

73 Kohane, Roberto: Berechnungsmethoden für Hochwasserabfluß in Fließgewässern mit 
übeströmten Vorländern, 1991, ISBN 3-921694-73-6 

74 Hassinger, Reinhard: Beitrag zur Hydraulik und Bemessung von Blocksteinrampen in fle-
xibler Bauweise, 1991, ISBN 3-921694-74-4, vergriffen 

75 Schäfer, Gerhard: Einfluß von Schichtenstrukturen und lokalen Einlagerungen auf die 
Längsdispersion in Porengrundwasserleitern, 1991, ISBN 3-921694-75-2 

76 Giesecke, Jürgen: Vorträge, Wasserwirtschaft in stark besiedelten Regionen; Umweltfor-
schung mit Schwerpunkt Wasserwirtschaft, 1991, ISBN 3-921694-76-0 

77 Huwe, Bernd: Deterministische und stochastische Ansätze zur Modellierung des Stick-
stoffhaushalts landwirtschaftlich genutzter Flächen auf unterschiedlichem Skalenniveau, 
1992, ISBN 3-921694-77-9, vergriffen 

78 Rommel, Michael: Verwendung von Kluftdaten zur realitätsnahen Generierung von Kluft-
netzen mit anschließender laminar-turbulenter Strömungsberechnung, 1993,  
ISBN 3-92 1694-78-7 

79 Marschall, Paul: Die Ermittlung lokaler Stofffrachten im Grundwasser mit Hilfe von Einbohr-
loch-Meßverfahren, 1993, ISBN 3-921694-79-5, vergriffen 

80 Ptak, Thomas: Stofftransport in heterogenen Porenaquiferen: Felduntersuchungen und 
stochastische Modellierung, 1993, ISBN 3-921694-80-9, vergriffen 

81 Haakh, Frieder: Transientes Strömungsverhalten in Wirbelkammern, 1993,  
ISBN 3-921694-81-7 

82 Kobus, Helmut; Cirpka, Olaf; Barczewski, Baldur; Koschitzky, Hans-Peter: Versuchsein-
richtung zur Grundwasser und Altlastensanierung VEGAS, Konzeption und Programm-
rahmen, 1993, ISBN 3-921694-82-5 

83 Zang, Weidong: Optimaler Echtzeit-Betrieb eines Speichers mit aktueller Abflußregenerie-
rung, 1994, ISBN 3-921694-83-3, vergriffen 

84 Franke, Hans-Jörg: Stochastische Modellierung eines flächenhaften Stoffeintrages und 
Transports in Grundwasser am Beispiel der Pflanzenschutzmittelproblematik, 1995,  
ISBN 3-921694-84-1 

85 Lang, Ulrich: Simulation regionaler Strömungs- und Transportvorgänge in Karstaquiferen 
mit Hilfe des Doppelkontinuum-Ansatzes: Methodenentwicklung und Parameteridenti-
fikation, 1995, ISBN 3-921694-85-X, vergriffen 

86 Helmig, Rainer: Einführung in die Numerischen Methoden der Hydromechanik, 1996, 
ISBN 3-921694-86-8, vergriffen 

87 Cirpka, Olaf: CONTRACT: A Numerical Tool for Contaminant Transport and Chemical 
Transformations - Theory and Program Documentation -, 1996,  
ISBN 3-921694-87-6 

88 Haberlandt, Uwe: Stochastische Synthese und Regionalisierung des Niederschlages für 
Schmutzfrachtberechnungen, 1996, ISBN 3-921694-88-4 

89 Croisé, Jean: Extraktion von flüchtigen Chemikalien aus natürlichen Lockergesteinen mit-
tels erzwungener Luftströmung, 1996, ISBN 3-921694-89-2, vergriffen 

90 Jorde, Klaus: Ökologisch begründete, dynamische Mindestwasserregelungen bei Auslei-
tungskraftwerken, 1997, ISBN 3-921694-90-6, vergriffen 

91 Helmig, Rainer: Gekoppelte Strömungs- und Transportprozesse im Untergrund - Ein Bei-
trag zur Hydrosystemmodellierung-, 1998, ISBN 3-921694-91-4, vergriffen 

92 Emmert, Martin:  Numerische Modellierung nichtisothermer Gas-Wasser Systeme in porö-
sen Medien, 1997, ISBN 3-921694-92-2 

93 Kern, Ulrich: Transport von Schweb- und Schadstoffen in staugeregelten Fließgewässern 
am Beispiel des Neckars, 1997, ISBN 3-921694-93-0, vergriffen 

94 Förster, Georg:  Druckstoßdämpfung durch große Luftblasen in Hochpunkten von Rohrlei-
tungen 1997, ISBN 3-921694-94-9 



6 Institut für Wasser- und Umweltsystemmodellierung * Universität Stuttgart * IWS  
 
95 Cirpka, Olaf: Numerische Methoden zur Simulation des reaktiven Mehrkomponenten-

transports im Grundwasser, 1997, ISBN 3-921694-95-7, vergriffen 

96 Färber, Arne: Wärmetransport in der ungesättigten Bodenzone: Entwicklung einer thermi-
schen In-situ-Sanierungstechnologie, 1997, ISBN 3-921694-96-5  

97 Betz, Christoph: Wasserdampfdestillation von Schadstoffen im porösen Medium: Entwick-
lung einer thermischen In-situ-Sanierungstechnologie, 1998, SBN 3-921694-97-3 

98 Xu, Yichun: Numerical Modeling of Suspended Sediment Transport in Rivers, 1998, ISBN 
3-921694-98-1, vergriffen 

99 Wüst, Wolfgang: Geochemische Untersuchungen zur Sanierung CKW-kontaminierter 
Aquifere mit Fe(0)-Reaktionswänden, 2000, ISBN 3-933761-02-2 

100 Sheta, Hussam: Simulation von Mehrphasenvorgängen in porösen Medien unter Einbezie-
hung von Hysterese-Effekten, 2000, ISBN 3-933761-03-4 

101 Ayros, Edwin: Regionalisierung extremer Abflüsse auf der Grundlage statistischer Verfah-
ren, 2000, ISBN 3-933761-04-2, vergriffen 

102 Huber, Ralf: Compositional Multiphase Flow and Transport in Heterogeneous Porous Me-
dia, 2000, ISBN 3-933761-05-0 

103 Braun, Christopherus: Ein Upscaling-Verfahren für Mehrphasenströmungen in porösen 
Medien, 2000, ISBN 3-933761-06-9 

104 Hofmann, Bernd: Entwicklung eines rechnergestützten Managementsystems zur Beur-
teilung von Grundwasserschadensfällen, 2000, ISBN 3-933761-07-7 

105 Class, Holger: Theorie und numerische Modellierung nichtisothermer Mehrphasen-
prozesse in NAPL-kontaminierten porösen Medien, 2001, ISBN 3-933761-08-5 

106 Schmidt, Reinhard: Wasserdampf- und Heißluftinjektion zur thermischen Sanierung kon-
taminierter Standorte, 2001, ISBN 3-933761-09-3 

107 Josef, Reinhold:, Schadstoffextraktion mit hydraulischen Sanierungsverfahren unter An-
wendung von grenzflächenaktiven Stoffen, 2001, ISBN 3-933761-10-7 

108 Schneider, Matthias: Habitat- und Abflussmodellierung für Fließgewässer mit unscharfen 
Berechnungsansätzen, 2001, ISBN 3-933761-11-5 

109 Rathgeb, Andreas: Hydrodynamische Bemessungsgrundlagen für Lockerdeckwerke an 
überströmbaren Erddämmen, 2001, ISBN 3-933761-12-3 

110 Lang, Stefan: Parallele numerische Simulation instätionärer Probleme mit adaptiven Me-
thoden auf unstrukturierten Gittern, 2001, ISBN 3-933761-13-1 

111 Appt, Jochen; Stumpp Simone: Die Bodensee-Messkampagne 2001, IWS/CWR Lake 
Constance Measurement Program 2001, 2002, ISBN 3-933761-14-X 

112 Heimerl, Stephan: Systematische Beurteilung von Wasserkraftprojekten, 2002,  
ISBN 3-933761-15-8, vergriffen 

113 Iqbal, Amin: On the Management and Salinity Control of Drip Irrigation, 2002,  
ISBN 3-933761-16-6 

114 Silberhorn-Hemminger, Annette: Modellierung von Kluftaquifersystemen:  Geostatistische 
Analyse und deterministisch-stochastische Kluftgenerierung, 2002, ISBN 3-933761-17-4 

115 Winkler, Angela: Prozesse des Wärme- und Stofftransports bei der In-situ-Sanierung mit 
festen Wärmequellen, 2003, ISBN 3-933761-18-2 

116 Marx, Walter: Wasserkraft, Bewässerung, Umwelt - Planungs- und Bewertungsschwer-
punkte der Wasserbewirtschaftung, 2003, ISBN 3-933761-19-0 

117 Hinkelmann, Reinhard: Efficient Numerical Methods and Information-Processing Tech-
niques in Environment Water, 2003, ISBN 3-933761-20-4 

118 Samaniego-Eguiguren, Luis Eduardo: Hydrological Consequences of Land Use / Land 
Cover and Climatic Changes in Mesoscale Catchments, 2003, ISBN 3-933761-21-2 

119 Neunhäuserer, Lina: Diskretisierungsansätze zur Modellierung von Strömungs- und Trans-
portprozessen in geklüftet-porösen Medien, 2003, ISBN 3-933761-22-0 

120 Paul, Maren: Simulation of Two-Phase Flow in Heterogeneous Poros Media with Adaptive 
Methods, 2003, ISBN 3-933761-23-9 



Verzeichnis der Mitteilungshefte 7  
 
121 Ehret, Uwe: Rainfall and Flood Nowcasting in Small Catchments using Weather Radar, 

2003, ISBN 3-933761-24-7 

122 Haag, Ingo: Der Sauerstoffhaushalt staugeregelter Flüsse am Beispiel des Neckars - Ana-
lysen, Experimente, Simulationen -, 2003, ISBN 3-933761-25-5 

123 Appt, Jochen: Analysis of Basin-Scale Internal Waves in Upper Lake Constance, 2003, 
ISBN 3-933761-26-3 

124 Hrsg.: Schrenk, Volker; Batereau, Katrin; Barczewski, Baldur; Weber, Karolin und Ko-
schitzky, Hans-Peter: Symposium Ressource Fläche und  VEGAS - Statuskolloquium 
2003, 30. September und 1. Oktober 2003, 2003, ISBN 3-933761-27-1 

125 Omar Khalil Ouda: Optimisation of Agricultural Water Use: A Decision Support System for 
the Gaza Strip, 2003, ISBN 3-933761-28-0 

126 Batereau, Katrin: Sensorbasierte Bodenluftmessung zur Vor-Ort-Erkundung von Scha-
densherden im Untergrund, 2004, ISBN 3-933761-29-8 

127 Witt, Oliver: Erosionsstabilität von Gewässersedimenten mit Auswirkung auf den 
Stofftransport bei Hochwasser am Beispiel ausgewählter Stauhaltungen des Oberrheins, 
2004, ISBN 3-933761-30-1 

128 Jakobs, Hartmut: Simulation nicht-isothermer Gas-Wasser-Prozesse in komplexen Kluft-
Matrix-Systemen, 2004, ISBN 3-933761-31-X 

129 Li, Chen-Chien: Deterministisch-stochastisches Berechnungskonzept zur Beurteilung der 
Auswirkungen erosiver Hochwasserereignisse in Flussstauhaltungen, 2004,  
ISBN 3-933761-32-8 

130 Reichenberger, Volker; Helmig, Rainer; Jakobs, Hartmut; Bastian, Peter; Niessner, Jen-
nifer: Complex Gas-Water Processes in Discrete Fracture-Matrix Systems: Up-scaling, 
Mass-Conservative Discretization and Efficient Multilevel Solution, 2004,  
ISBN 3-933761-33-6  

131 Hrsg.: Barczewski, Baldur; Koschitzky, Hans-Peter; Weber, Karolin; Wege, Ralf:  VEGAS - 
Statuskolloquium 2004, Tagungsband zur Veranstaltung am 05. Oktober 2004 an der Uni-
versität Stuttgart, Campus Stuttgart-Vaihingen, 2004, ISBN 3-933761-34-4 

132 Asie, Kemal Jabir: Finite Volume Models for Multiphase Multicomponent Flow through Po-
rous Media. 2005, ISBN 3-933761-35-2 

133 Jacoub, George: Development of a 2-D Numerical Module for Particulate Contaminant 
Transport in Flood Retention Reservoirs and Impounded Rivers, 2004, 
ISBN 3-933761-36-0  

134 Nowak, Wolfgang: Geostatistical Methods for the Identification of Flow and Transport Pa-
rameters in the Subsurface, 2005, ISBN 3-933761-37-9 

135 Süß, Mia: Analysis of the influence of structures and boundaries on flow and transport pro-
cesses in fractured porous media, 2005, ISBN 3-933761-38-7 

136 Jose, Surabhin Chackiath: Experimental Investigations on Longitudinal Dispersive Mixing 
in Heterogeneous Aquifers, 2005, ISBN: 3-933761-39-5 

137 Filiz, Fulya: Linking Large-Scale Meteorological Conditions to Floods in Mesoscale Catch-
ments, 2005, ISBN 3-933761-40-9 

138 Qin, Minghao: Wirklichkeitsnahe und recheneffiziente Ermittlung von Temperatur und 
Spannungen bei großen RCC-Staumauern, 2005, ISBN 3-933761-41-7 

139 Kobayashi, Kenichiro: Optimization Methods for Multiphase Systems in the Subsurface - 
Application to Methane Migration in Coal Mining Areas, 2005, ISBN 3-933761-42-5 

140 Rahman, Md. Arifur: Experimental Investigations on Transverse Dispersive Mixing in Het-
erogeneous Porous Media, 2005, ISBN 3-933761-43-3 

141 Schrenk, Volker: Ökobilanzen zur Bewertung von Altlastensanierungsmaßnahmen, 2005, 
ISBN 3-933761-44-1 

142 Hundecha, Hirpa Yeshewatesfa: Regionalization of Parameters of a Conceptual Rainfall-
Runoff Model, 2005, ISBN: 3-933761-45-X 

143 Wege, Ralf: Untersuchungs- und Überwachungsmethoden für die Beurteilung natürlicher 
Selbstreinigungsprozesse im Grundwasser, 2005, ISBN 3-933761-46-8 



8 Institut für Wasser- und Umweltsystemmodellierung * Universität Stuttgart * IWS  
 
144 Breiting, Thomas: Techniken und Methoden der Hydroinformatik - Modellierung von kom-

plexen Hydrosystemen im Untergrund, 2006, ISBN 3-933761-47-6 

145 Hrsg.: Braun, Jürgen; Koschitzky, Hans-Peter; Müller, Martin: Ressource Untergrund: 10 
Jahre VEGAS: Forschung und Technologieentwicklung zum Schutz von Grundwasser und 
Boden, Tagungsband zur Veranstaltung am 28. und 29. September 2005 an der Universi-
tät Stuttgart, Campus Stuttgart-Vaihingen, 2005, ISBN 3-933761-48-4 

146 Rojanschi, Vlad: Abflusskonzentration in mesoskaligen Einzugsgebieten unter Berücksich-
tigung des Sickerraumes, 2006, ISBN 3-933761-49-2  

147 Winkler, Nina Simone: Optimierung der Steuerung von Hochwasserrückhaltebecken-
systemen, 2006, ISBN 3-933761-50-6 

148 Wolf, Jens:  Räumlich differenzierte Modellierung der Grundwasserströmung alluvialer 
Aquifere für mesoskalige Einzugsgebiete, 2006, ISBN: 3-933761-51-4 

149 Kohler, Beate: Externe Effekte der Laufwasserkraftnutzung, 2006, ISBN 3-933761-52-2 

150 Hrsg.: Braun, Jürgen; Koschitzky, Hans-Peter; Stuhrmann, Matthias: VEGAS-Statuskol-
loquium 2006, Tagungsband zur Veranstaltung am 28. September 2006 an der Universität 
Stuttgart, Campus Stuttgart-Vaihingen, 2006, ISBN 3-933761-53-0 

151 Niessner, Jennifer: Multi-Scale Modeling of Multi-Phase - Multi-Component Processes in 
Heterogeneous Porous Media, 2006, ISBN 3-933761-54-9 

152 Fischer, Markus: Beanspruchung eingeerdeter Rohrleitungen infolge Austrocknung bindi-
ger Böden, 2006, ISBN 3-933761-55-7 

153 Schneck, Alexander: Optimierung der Grundwasserbewirtschaftung unter Berücksichti-
gung der Belange der Wasserversorgung, der Landwirtschaft und des Naturschutzes , 
2006, ISBN 3-933761-56-5 

154 Das, Tapash: The Impact of Spatial Variability of Precipitation on the Predictive Uncertainty 
of Hydrological Models, 2006, ISBN 3-33761-57-3 

155 Bielinski, Andreas: Numerical Simulation of CO2 sequestration in geological formations, 
2007, ISBN 3-933761-58-1 

156 Mödinger, Jens: Entwicklung eines Bewertungs- und Entscheidungsunterstützungs-
systems für eine nachhaltige regionale Grundwasserbewirtschaftung, 2006,  
ISBN 3-933761-60-3 

157 Manthey, Sabine: Two-phase flow processes with dynamic effects in porous media - 
parameter estimation and simulation, 2007, ISBN 3-933761-61-1 

158 Pozos Estrada, Oscar: Investigation on the Effects of Entrained Air in Pipelines, 2007, 
ISBN 3-933761-62-X 

159 Ochs, Steffen Oliver: Steam injection into saturated porous media – process analysis in-
cluding experimental and numerical investigations, 2007, ISBN 3-933761-63-8 

160 Marx, Andreas: Einsatz gekoppelter Modelle und Wetterradar zur Abschätzung von Nie-
derschlagsintensitäten und zur Abflussvorhersage, 2007, ISBN 3-933761-64-6 

161 Hartmann, Gabriele Maria: Investigation of Evapotranspiration Concepts in Hydrological 
Modelling for Climate Change Impact Assessment, 2007, ISBN 3-933761-65-4 

162 Kebede Gurmessa, Tesfaye: Numerical Investigation on Flow and Transport Characteris-
tics to Improve Long-Term Simulation of Reservoir Sedimentation, 2007,  
ISBN 3-933761-66-2 

163 Trifković, Aleksandar: Multi-objective and Risk-based Modelling Methodology for Planning, 
Design and Operation of Water Supply Systems, 2007, ISBN 3-933761-67-0 

164 Götzinger, Jens: Distributed Conceptual Hydrological Modelling - Simulation of Climate, 
Land Use Change Impact and Uncertainty Analysis, 2007, ISBN 3-933761-68-9 

165 Hrsg.: Braun, Jürgen; Koschitzky, Hans-Peter; Stuhrmann, Matthias: VEGAS – Kolloquium 
2007,  Tagungsband zur Veranstaltung am 26. September 2007 an der Universität Stutt-
gart, Campus Stuttgart-Vaihingen, 2007, ISBN 3-933761-69-7 

166 Freeman, Beau: Modernization Criteria Assessment for Water Resources Planning; Kla-
math Irrigation Project, U.S., 2008, ISBN 3-933761-70-0 



Verzeichnis der Mitteilungshefte 9  
 
167 Dreher, Thomas: Selektive Sedimentation von Feinstschwebstoffen in Wechselwirkung mit 

wandnahen turbulenten Strömungsbedingungen, 2008, ISBN 3-933761-71-9 

168 Yang, Wei: Discrete-Continuous Downscaling Model for Generating Daily Precipitation 
Time Series, 2008, ISBN 3-933761-72-7 

169 Kopecki, Ianina: Calculational Approach to FST-Hemispheres for Multiparametrical Ben-
thos Habitat Modelling, 2008, ISBN 3-933761-73-5 

170 Brommundt, Jürgen: Stochastische Generierung räumlich zusammenhängender Nieder-
schlagszeitreihen, 2008, ISBN 3-933761-74-3 

171 Papafotiou, Alexandros: Numerical Investigations of the Role of Hysteresis in Heterogene-
ous Two-Phase Flow Systems, 2008, ISBN 3-933761-75-1 

172 He, Yi: Application of a Non-Parametric Classification Scheme to Catchment Hydrology, 
2008, ISBN 978-3-933761-76-7 

173 Wagner, Sven: Water Balance in a Poorly Gauged Basin in West Africa Using Atmospher-
ic Modelling and Remote Sensing Information, 2008, ISBN 978-3-933761-77-4 

174 Hrsg.: Braun, Jürgen; Koschitzky, Hans-Peter; Stuhrmann, Matthias; Schrenk, Volker: 
VEGAS-Kolloquium 2008  Ressource Fläche III, Tagungsband zur Veranstaltung am 
01. Oktober 2008 an der Universität Stuttgart, Campus Stuttgart-Vaihingen, 2008,  
ISBN 978-3-933761-78-1 

175 Patil, Sachin: Regionalization of an Event Based Nash Cascade Model for Flood Predic-
tions in Ungauged Basins, 2008, ISBN 978-3-933761-79-8 

176 Assteerawatt, Anongnart: Flow and Transport Modelling of Fractured Aquifers based on a 
Geostatistical Approach, 2008, ISBN 978-3-933761-80-4 

177 Karnahl, Joachim Alexander: 2D numerische Modellierung von multifraktionalem Schweb-
stoff- und Schadstofftransport in Flüssen, 2008, ISBN 978-3-933761-81-1 

178 Hiester, Uwe: Technologieentwicklung zur In-situ-Sanierung der ungesättigten Bodenzone 
mit festen Wärmequellen, 2009, ISBN 978-3-933761-82-8 

179 Laux, Patrick: Statistical Modeling of Precipitation for Agricultural Planning in the Volta Ba-
sin of West Africa, 2009, ISBN 978-3-933761-83-5 

180 Ehsan, Saqib: Evaluation of Life Safety Risks Related to Severe Flooding, 2009,  
ISBN 978-3-933761-84-2 

181 Prohaska, Sandra: Development and Application of a 1D Multi-Strip Fine Sediment 
Transport Model for Regulated Rivers, 2009, ISBN 978-3-933761-85-9 

182 Kopp, Andreas: Evaluation of CO2 Injection Processes in Geological Formations for Site 
Screening, 2009, ISBN 978-3-933761-86-6 

183 Ebigbo, Anozie: Modelling of biofilm growth and its influence on CO2 and water (two-
phase) flow in porous media, 2009, ISBN 978-3-933761-87-3 

184 Freiboth, Sandra: A phenomenological model for the numerical simulation of multiphase 
multicomponent processes considering structural alterations of porous media, 2009,  
ISBN 978-3-933761-88-0 

185 Zöllner, Frank: Implementierung und Anwendung netzfreier Methoden im Konstruktiven 
Wasserbau und in der Hydromechanik, 2009, ISBN 978-3-933761-89-7 

186 Vasin, Milos: Influence of the soil structure and property contrast on flow and transport in 
the unsaturated zone, 2010, ISBN 978-3-933761-90-3 

187 Li, Jing: Application of Copulas as a New Geostatistical Tool, 2010,  
ISBN 978-3-933761-91-0 

188 AghaKouchak, Amir: Simulation of Remotely Sensed Rainfall Fields Using Copulas, 2010, 
ISBN 978-3-933761-92-7 

189 Thapa, Pawan Kumar: Physically-based spatially distributed rainfall runoff modelling for 
soil erosion estimation, 2010, ISBN 978-3-933761-93-4 

190 Wurms, Sven: Numerische Modellierung der Sedimentationsprozesse in Retentionsanla-
gen zur Steuerung von Stoffströmen bei extremen Hochwasserabflussereignissen, 2011, 
ISBN 978-3-933761-94-1 



10 Institut für Wasser- und Umweltsystemmodellierung * Universität Stuttgart * IWS  
 
191 Merkel, Uwe: Unsicherheitsanalyse hydraulischer Einwirkungen auf Hochwasserschutz-

deiche und Steigerung der Leistungsfähigkeit durch adaptive Strömungsmodellierung, 
2011, ISBN 978-3-933761-95-8 

192 Fritz, Jochen: A Decoupled Model for Compositional Non-Isothermal Multiphase Flow in 
Porous Media and Multiphysics Approaches for Two-Phase Flow, 2010,  
ISBN 978-3-933761-96-5 

193 Weber, Karolin (Hrsg.): 12. Treffen junger WissenschaftlerInnen an Wasserbauinstituten, 
2010, ISBN 978-3-933761-97-2 

194 Bliefernicht, Jan-Geert: Probability Forecasts of Daily Areal Precipitation for Small River 
Basins, 2011, ISBN 978-3-933761-98-9 

195 Hrsg.: Koschitzky, Hans-Peter; Braun, Jürgen: VEGAS-Kolloquium 2010 In-situ-Sanierung 
- Stand und Entwicklung Nano und ISCO -, Tagungsband zur Veranstaltung am 07. Okto-
ber 2010 an der Universität Stuttgart, Campus Stuttgart-Vaihingen, 2010, 
ISBN 978-3-933761-99-6 

196 Gafurov, Abror: Water Balance Modeling Using Remote Sensing Information - Focus on 
Central Asia, 2010, ISBN 978-3-942036-00-9 

197 Mackenberg, Sylvia: Die Quellstärke in der Sickerwasserprognose: Möglichkeiten und 
Grenzen von Labor- und Freilanduntersuchungen, 2010, ISBN 978-3-942036-01-6 

198 Singh, Shailesh Kumar: Robust Parameter Estimation in Gauged and Ungauged Basins, 
2010, ISBN 978-3-942036-02-3 

199 Doğan, Mehmet Onur: Coupling of porous media flow with pipe flow, 2011, 
ISBN 978-3-942036-03-0 

200 Liu, Min: Study of Topographic Effects on Hydrological Patterns and the Implication on 
Hydrological Modeling and Data Interpolation, 2011, ISBN 978-3-942036-04-7 

201 Geleta, Habtamu Itefa: Watershed Sediment Yield Modeling for Data Scarce Areas, 2011,  
ISBN 978-3-942036-05-4 

202 Franke, Jörg: Einfluss der Überwachung auf die Versagenswahrscheinlichkeit von Staustu-
fen, 2011, ISBN 978-3-942036-06-1 

203 Bakimchandra, Oinam: Integrated Fuzzy-GIS approach for assessing regional soil erosion 
risks, 2011, ISBN 978-3-942036-07-8 

204 Alam, Muhammad Mahboob: Statistical Downscaling of Extremes of Precipitation in 
Mesoscale Catchments from Different RCMs and Their Effects on Local Hydrology, 2011, 
ISBN 978-3-942036-08-5 

205 Hrsg.: Koschitzky, Hans-Peter; Braun, Jürgen: VEGAS-Kolloquium 2011 Flache Geother-
mie - Perspektiven und Risiken, Tagungsband zur Veranstaltung am 06. Oktober 2011 an 
der Universität Stuttgart, Campus Stuttgart-Vaihingen, 2011, ISBN 978-3-933761-09-2 

206 Haslauer, Claus: Analysis of Real-World Spatial Dependence of Subsurface Hydraulic 
Properties Using Copulas with a Focus on Solute Transport Behaviour, 2011,  
ISBN 978-3-942036-10-8 

207 Dung, Nguyen Viet: Multi-objective automatic calibration of hydrodynamic models – 
development of the concept and an application in the Mekong Delta, 2011,  
ISBN 978-3-942036-11-5 

208 Hung, Nguyen Nghia: Sediment dynamics in the floodplain of the Mekong Delta, Vietnam, 
2011, ISBN 978-3-942036-12-2 

209 Kuhlmann, Anna: Influence of soil structure and root water uptake on flow in the unsaturat-
ed zone, 2012, ISBN 978-3-942036-13-9 

210 Tuhtan, Jeffrey Andrew: Including the Second Law Inequality in Aquatic Ecodynamics:  
A Modeling Approach for Alpine Rivers Impacted by Hydropeaking, 2012, 
ISBN 978-3-942036-14-6 

211 Tolossa, Habtamu: Sediment Transport Computation Using a Data-Driven Adaptive Neuro-
Fuzzy Modelling Approach, 2012, ISBN 978-3-942036-15-3 



Verzeichnis der Mitteilungshefte 11  
 
212 Tatomir, Alexandru-Bodgan: From Discrete to Continuum Concepts of Flow in Fractured 

Porous Media, 2012, ISBN 978-3-942036-16-0 

213 Erbertseder, Karin: A Multi-Scale Model for Describing Cancer-Therapeutic Transport in 
the Human Lung, 2012, ISBN 978-3-942036-17-7 

214 Noack, Markus: Modelling Approach for Interstitial Sediment Dynamics and Reproduction 
of Gravel Spawning Fish, 2012, ISBN 978-3-942036-18-4 

215 De Boer, Cjestmir Volkert: Transport of Nano Sized Zero Valent Iron Colloids during Injec-
tion into the Subsurface, 2012, ISBN 978-3-942036-19-1 

216 Pfaff, Thomas: Processing and Analysis of Weather Radar Data for Use in Hydrology, 
2013, ISBN 978-3-942036-20-7 

217 Lebrenz, Hans-Henning: Addressing the Input Uncertainty for Hydrological Modeling by a 
New Geostatistical Method, 2013, ISBN 978-3-942036-21-4 

218 Darcis, Melanie Yvonne: Coupling Models of Different Complexity for the Simulation of CO2 
Storage in Deep Saline Aquifers, 2013, ISBN 978-3-942036-22-1 

219 Beck, Ferdinand: Generation of Spatially Correlated Synthetic Rainfall Time Series in High 
Temporal Resolution - A Data Driven Approach, 2013, ISBN 978-3-942036-23-8 

220 Guthke, Philipp: Non-multi-Gaussian spatial structures: Process-driven natural genesis, 
manifestation, modeling approaches, and influences on dependent processes, 2013,  
ISBN 978-3-942036-24-5 

221 Walter, Lena: Uncertainty studies and risk assessment for CO2 storage in geological for-
mations, 2013, ISBN 978-3-942036-25-2 

222 Wolff, Markus: Multi-scale modeling of two-phase flow in porous media including capillary 
pressure effects, 2013, ISBN 978-3-942036-26-9 

223 Mosthaf, Klaus Roland: Modeling and analysis of coupled porous-medium and free flow 
with application to evaporation processes, 2014, ISBN 978-3-942036-27-6 

224 Leube, Philipp Christoph: Methods for Physically-Based Model Reduction in Time: Analy-
sis, Comparison of Methods and Application, 2013, ISBN 978-3-942036-28-3 

225 Rodríguez Fernández, Jhan Ignacio: High Order Interactions among environmental varia-
bles: Diagnostics and initial steps towards modeling, 2013, ISBN 978-3-942036-29-0 

226 Eder, Maria Magdalena: Climate Sensitivity of a Large Lake, 2013,  
ISBN 978-3-942036-30-6 

227 Greiner, Philipp: Alkoholinjektion zur In-situ-Sanierung von CKW Schadensherden in 
Grundwasserleitern: Charakterisierung der relevanten Prozesse auf unterschiedlichen 
Skalen, 2014, ISBN 978-3-942036-31-3 

228 Lauser, Andreas: Theory and Numerical Applications of Compositional Multi-Phase Flow in 
Porous Media, 2014, ISBN 978-3-942036-32-0 

229 Enzenhöfer, Rainer: Risk Quantification and Management in Water Production and Supply 
Systems, 2014, ISBN 978-3-942036-33-7 

230 Faigle, Benjamin: Adaptive modelling of compositional multi-phase flow with capillary pres-
sure, 2014, ISBN 978-3-942036-34-4 

231 Oladyshkin, Sergey: Efficient modeling of environmental systems in the face of complexity 
and uncertainty, 2014, ISBN 978-3-942036-35-1 

232 Sugimoto, Takayuki: Copula based Stochastic Analysis of Discharge Time Series, 2014,  
ISBN 978-3-942036-36-8 

233 Koch, Jonas: Simulation, Identification and Characterization of Contaminant Source Archi-
tectures in the Subsurface, 2014, ISBN 978-3-942036-37-5 

234 Zhang, Jin: Investigations on Urban River Regulation and Ecological Rehabilitation 
Measures, Case of Shenzhen in China, 2014, ISBN 978-3-942036-38-2 

235 Siebel, Rüdiger: Experimentelle Untersuchungen zur hydrodynamischen Belastung und 
Standsicherheit von Deckwerken an überströmbaren Erddämmen, 2014, 
ISBN 978-3-942036-39-9 



12 Institut für Wasser- und Umweltsystemmodellierung * Universität Stuttgart * IWS  
 
236 Baber, Katherina: Coupling free flow and flow in porous media in biological and technical 

applications: From a simple to a complex interface description, 2014,  
ISBN 978-3-942036-40-5 

237 Nuske, Klaus Philipp: Beyond Local Equilibrium — Relaxing local equilibrium assumptions 
in multiphase flow in porous media, 2014, ISBN 978-3-942036-41-2 

238 Geiges, Andreas: Efficient concepts for optimal experimental design in nonlinear environ-
mental systems, 2014, ISBN 978-3-942036-42-9 

239 Schwenck, Nicolas: An XFEM-Based Model for Fluid Flow in Fractured Porous Media, 
2014, ISBN 978-3-942036-43-6 

240 Chamorro Chávez, Alejandro: Stochastic and hydrological modelling for climate change 
prediction in the Lima region, Peru, 2015, ISBN 978-3-942036-44-3 

241 Yulizar: Investigation of Changes in Hydro-Meteorological Time Series Using a Depth-
Based Approach, 2015, ISBN 978-3-942036-45-0 

242 Kretschmer, Nicole: Impacts of the existing water allocation scheme on the Limarí water-
shed – Chile, an integrative approach, 2015, ISBN 978-3-942036-46-7 

243 Kramer, Matthias: Luftbedarf von Freistrahlturbinen im Gegendruckbetrieb, 2015,  
ISBN 978-3-942036-47-4 

244 Hommel, Johannes: Modeling biogeochemical and mass transport processes in the sub-
surface: Investigation of microbially induced calcite precipitation, 2016,  
ISBN 978-3-942036-48-1 

245 Germer, Kai: Wasserinfiltration in die ungesättigte Zone eines makroporösen Hanges und 
deren Einfluss auf die Hangstabilität, 2016, ISBN 978-3-942036-49-8 

246 Hörning, Sebastian: Process-oriented modeling of spatial random fields using copulas, 
2016, ISBN 978-3-942036-50-4 

247 Jambhekar, Vishal: Numerical modeling and analysis of evaporative salinization in a cou-
pled free-flow porous-media system, 2016, ISBN 978-3-942036-51-1 

248 Huang, Yingchun: Study on the spatial and temporal transferability of conceptual hydrolog-
ical models, 2016, ISBN 978-3-942036-52-8  

249 Kleinknecht, Simon Matthias: Migration and retention of a heavy NAPL vapor and remedia-
tion of the unsaturated zone, 2016, ISBN 978-3-942036-53-5 

250 Kwakye, Stephen Oppong: Study on the effects of climate change on the hydrology of the 
West African sub-region, 2016, ISBN 978-3-942036-54-2 

251 Kissinger, Alexander: Basin-Scale Site Screening and Investigation of Possible Impacts of 
CO2 Storage on Subsurface Hydrosystems, 2016, ISBN 978-3-942036-55-9 

252 Sinsbeck, Michael: Uncertainty Quantification for Expensive Simulations – Optimal Surro-
gate Modeling under Time Constraints, 2017, ISBN 978-3-942036-56-6 

253 Grüninger, Christoph: Numerical Coupling of Navier-Stokes and Darcy Flow for Soil-Water 
Evaporation, 2017, ISBN 978-3-942036-57-3 

 

Die Mitteilungshefte ab der Nr. 134 (Jg. 2005) stehen als pdf-Datei über die Homepage des Insti-
tuts: www.iws.uni-stuttgart.de zur Verfügung. 

 


	Abstract
	German abstract
	Contents
	Figures and Tables
	Motivation
	Classification
	Outline

	Fundamentals
	Fluids
	Porous media
	Occurring processes

	Modeling
	Free flow
	Porous-medium flow
	Coupling

	Discretization
	Spatial
	Temporal
	Linearization
	Solving the system of linear equations
	Implementation

	Numerical results
	Soil water evaporation
	Solving the system of linear equations
	Ventilation gallery for a nuclear waste repository
	Fuel cell

	Finale
	Conclusions
	Outlook

	Acknowledgment
	Nomenclature
	Bibliography

