Mapping the Shinholser Site, 2007

By Mark Williams

Lamar Institute Publication 133 Lamar Institute 2009

Introduction

This very brief report is designed to present a new map of the village area around the Shinholser site, 9BL1, create during the summer of 2007. There were no new excavations conducted as part of this project. The map does permit some more detailed use of existing archaeological information from my 1985 and 1987 work on the site (Williams 1990).

Acknowledgements

The most important thanks for this project go to Larry Thompson, owner of the site, for his kind permission for us to conduct our work at Shinholser. John Chamblee and John Turck converted the 1985 mound contour map into elevation data that could be integrated with the new village elevation data using ARCGIS. John Chamblee, Jared Wood and I led the 2007 University of Georgia Archaeological Field School students in the field work. These students included Brandon Batt, Andrew Carbo, Hannah Clark, Ryan Cochran, Eve Copeland, Sean Cummings, Lara Duncan, Tabitha Ferguson, Kevin Gibbons, Michael Hunt, Evan Jaecks-Bonet, Michael Kennerty, Will Kinard, Alicia Lipsey, Richard Moss, Amanda Newsome, Hollie Pennington, Casey Sloan, Leslie Smith-Pryor, and Matt Wynn. I thank all these archaeologists, young and older.

Background

The Shinholser site is an important two-mound Mississippian center located about 12 miles below Milledgeville, Georgia, on the eastern bank of the Oconee River. Located essentially on an island surrounded by the river on the west and cypress swamps

on the east, the site was first mapped and tested archaeologically in 1985 and 1987 by Williams (Williams 1990). At the time of that work, conducted by earlier University of Georgia Archaeological Field Schools, the mounds were covered in large trees and the village was planted in pine trees. It was possible, with difficulty, to make a contour map of the two mounds, but the 15 foot tall pine trees in the village made it impossible to map the village adequately at that time. The mounds were mapped in 1985 using a traditional transit and stadia rod, cutting 16 lines from the top center of the mounds. This is described in the 1990 report on the site (Williams 1990:19-22).

At the time of the original work, Williams discussed with the owner of the site the possibility of mapping the village when the current planted pines on the village site were harvested. Then 20 years went by in a flash. In February of 2007 I happened to be using Google Earth aerial photos to look at various places in Georgia and focused in on the Shinholser site (Figure 1). It was clear at a glance that the pine trees covering the village area had been cut. Knowing that these photos were usually somewhat dated, I contacted Larry Thompson, the owner, in Milledgeville and he stated that, indeed, the trees had been cut about 2004 and the site replanted in pines soon thereafter. He gave me permission to visit the site and I went there for the first time in 20 years in the early spring of 2007. I found that the new pine trees were already about 6 feet high and apparently growing fast. Further, Larry had realized that the large oak trees on the mounds were causing some damage, and had them removed.

I concluded that the summer of 2007 would be the best opportunity to gather elevation data for the village and make a full contour map of the site that we would have for another generation. A full open view of the entire site was available from the now cut

summit of Mound A, and this would only be so for another year or two as the pines in the village would continue to grow. The availability of modern total station survey equipment was also a plus.

The Mapping Project

The majority of the summer Archaeology Field School program of the University of Georgia for 2007 took place at the Copeland site, 9GE18, in Greene County. We took two separate day trips to the Shinholser site on July 12 and July 20. All the field work that the current report is based upon was accomplished on these two days. The first task, and one that took the entire crew the first day, involved clearing the heavy weeds and brush from both mounds. The weeds on the summit were 10 feet high, and many small redbud trees were taking hold. All of this was cleared from both mound summits (Figures 2 and 3).

On the return trip on July 20 the mapping was initiated and completed. We used two total stations and mapping crews at the same time. One of these was set on the southern summit edge of Mound A (Figure 4), and the other was set on the northern summit edge (Figures 5 and 6). Using two sets of radios, we had two crews carrying the reflector rods over the perimeter and center sections of the site in both directions at the same time. The northern summit Instrument Point was assigned an arbitrary elevation of 100.00 meters. The area south of the mound was more complicated by the presence of a small drainage area southwest of the mound. By the end of the second day adequate coverage of the entire village had been completed and we happily left the site. The

number of points made from the southern instrument point was 84 and from the northern point, 93 (See Appendix).

The 1985 mound contour map (Figure 7) was digitized using ARCGIS into a grid of points every 1 meter over a large block. This yielded a total of 7296 elevation points for the core of the site. Figure 8 shows the old 1985 map of the site away from the mounds, with the location of excavation units. This data plus the new elevation data were integrated by recognizing a common point in the very center of Mound A on both data sets. Thus a new contour map of the entire island was generated using Surfer from Golden Software. Figure 9 shows the new contour map of the entire site, and Figure 10 shows the same information in a color version. Figure 11 shows the color version of the new contour map overlaying the aerial photo presented earlier in Figure 1. As can be seen from this image, we were not able to gather contours from the extreme northern or eastern parts of the island since these were not visible from the summit of Mound A. These areas have relatively few artifacts anyway based upon the work from 1985 and 1987 (Williams 1990).

Observations

Examination of the new contour maps shows several interesting and somewhat unexpected results. First, the surface of the island has been considered generally flat and this just is not the case. In fact the only area that is flat is a large area just north and south of the area of the mounds. There is a large and unexpected depression 50 meters east – northeast of the mounds and the island gently rises to the northeast toward the narrow part of the island, although there are irregularities in this rise. To the west of Mound

A is a north-south trending edge that drops to the west—Mound A is situated just on the edge of this drop off and in the center north to south of the flat area of the site. Southwest of Mound A a drainage area is present, probably an original spring run coming from the area of Mound A. The area all around the two mounds is lower than the flat areas to the north and south. This may be the result of dirt being gathered here for creation of the mounds. A large possible borrow pit area is present just northwest of Mound A. The village of the Shinholser site can now be viewed in the future as one that was not ideally flat, but has sufficient relief to warrant future discussion.

Figure 12-16 are sherd density contour maps based upon test pit data in the 1990 report. These illustrate five different ceramic periods, and are presented here from earliest to most recent.

Figure 12 shows the density distribution of fiber tempered sherds from the Late Archaic period (ca. 1500 B.C). The total number of sherds is certainly minimal, but the hot area is clearly in the southwestern part of the mapped area and on the flat parts of the site. There is almost none to the northeast or the area of the drainage southwest of Mound A. Of course, neither of the mounds was present during this early period.

Figure 13 show the distribution of the simple stamped material that dates from the Late Woodland period. This also was an occupation of the island prior to the creation of the mounds. The pattern is distinct from the earlier one. The hot area is from the southern extreme of the island and mainly n the flat area south of Mound A's location. The hot area actually looks to be a bit rectangular in shape. There is a minimal occupation to the north of Mound A, and, surprisingly, a small amount on the far northeastern part of the island. The area to the southeast of the hot area is obviously

unmapped and untested archaeologically. This area is in woods and heads toward a small drainage. I suspect that the high density continues all the way to that drainage.

The period of the initial construction of the mounds is represented here by the density of Savannah period (Middle Mississippian) pottery shown in Figure 14. This pattern is actually quite similar to that of the Late Woodland, with the exception that there is no occupation on the northeastern part of the island. The area of highest sherd density is the same, and it is south of the location of the mounds. It would appear that the mounds were on the northern side of "downtown" Shinholser at that time.

Figure 15 shows the distribution during the Lamar period, particularly the time after A.D. 1450. As can be seen, while the hot area is the same as the previous two periods, the entire area mapped was occupied at this time. This was the period of maximum occupation at the site, and when it likely had is maximum population. It is likely that much of the mound construction took place then also.

The final image, Figure 16, shows the distribution of the occupation during the historic period (Bell phase) of the late 16th and early 17th centuries A.D. This is similar to all those previously illustrated, but the hot area is clearly to the south away from the mounds. It is likely that the mounds were abandoned and not in use by this period. This is likely the original location of the town of Tama as recognized by the Spanish explorers from St. Augustine in the early 17th century.

This simple report, then, is presented to make available for present and future researchers an accurate contour map of the village area at Shinholser. This important site deserves additional excavation in the future as one of the most important archaeological sites in the Oconee Valley and all of Georgia.

References Cited

Williams, Mark

1990 Archaeological Excavations at Shinholser (9BL1): 1985 & 1987. *Lamar Institute Publication* 4. Lamar Institute, Rincon, Georgia.

Figure 1. Shinholser Site, Google Earth Aerial, 2007.

Figure 2. Mound A, 2007, Looking South.

Figure 3. Mound B, 2007, from Mound A.

Figure 4. Mound A Southern Summit Survey Point.

Figure 5. Mound A, Northern Summit Survey Point, Looking Northeast.

Figure 6. View of Village to North from Mound A Summit.

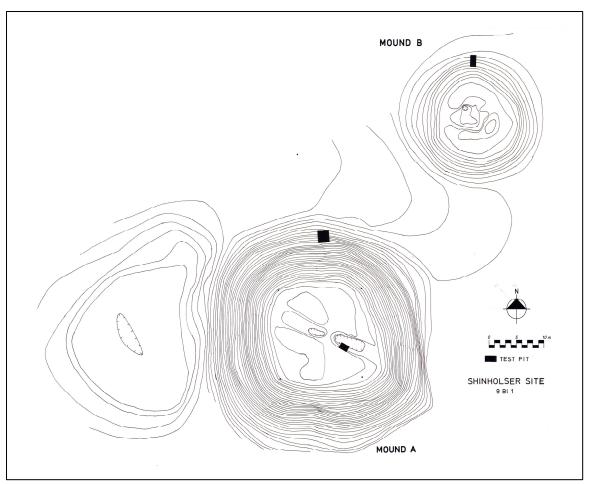


Figure 7. 1985 Contour Map of Mounds A and B.

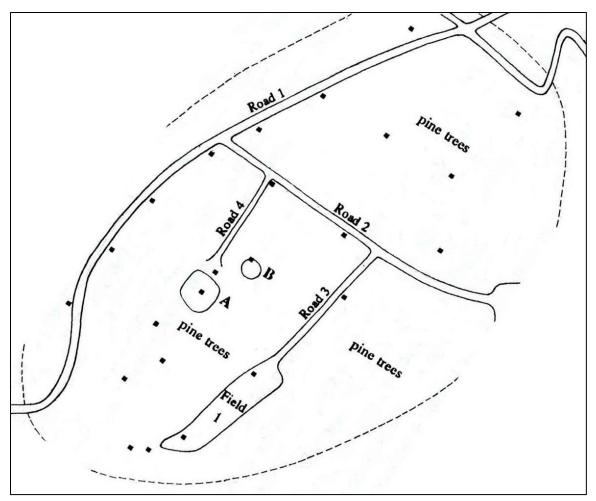


Figure 8. 1985 Map of Excavation Units, "Roads", and Mounds.

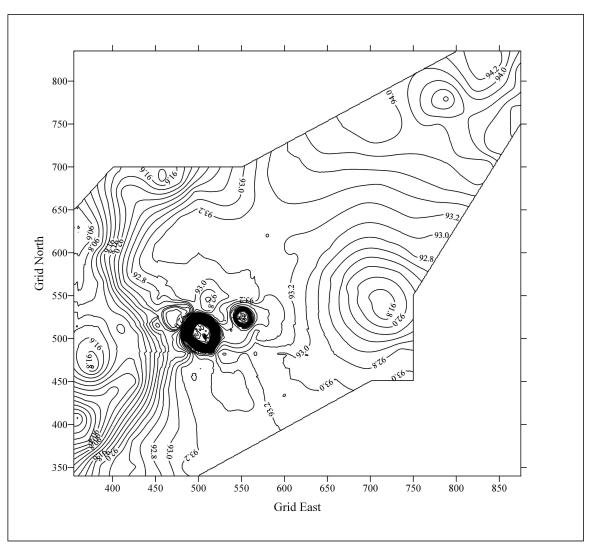


Figure 9. New Contour Map of Site, 20 Cm. Contours.

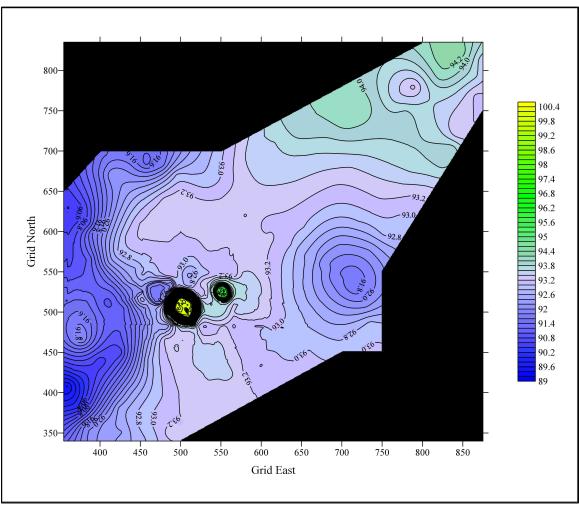


Figure 10. Color Contour Map, 20 Cm Contours.

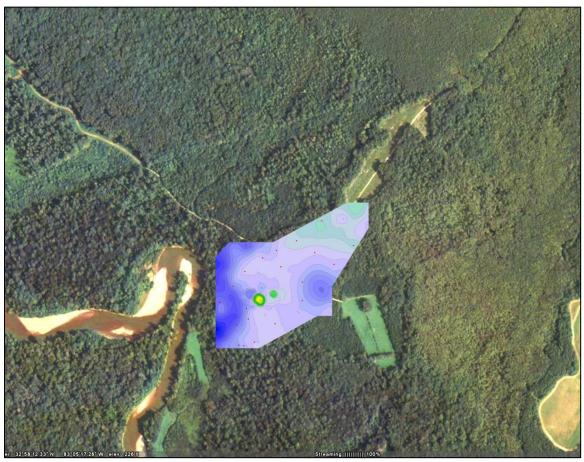


Figure 11. Color Contour Map on Aerial.

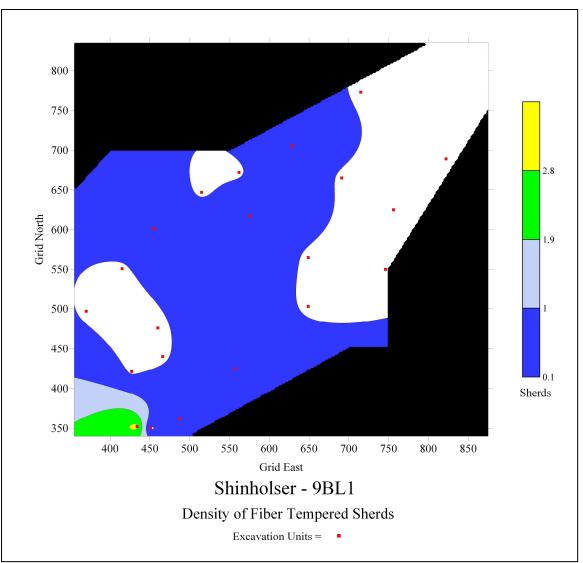


Figure 12. Distribution of Fiber Tempered Pottery.

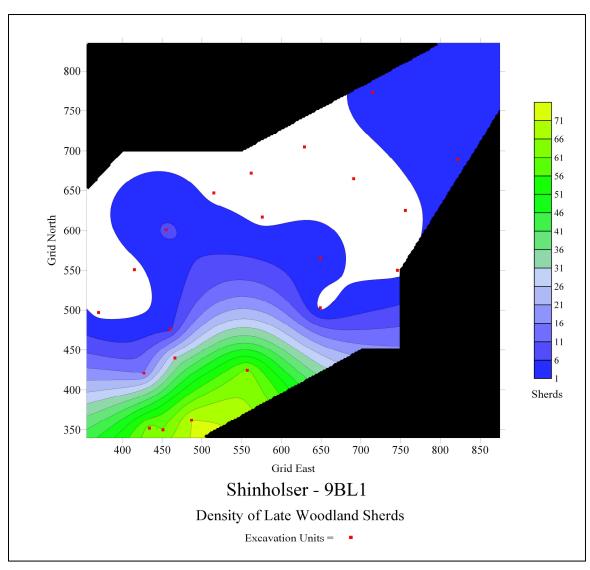


Figure 13. Distribution of Late Woodland Pottery.

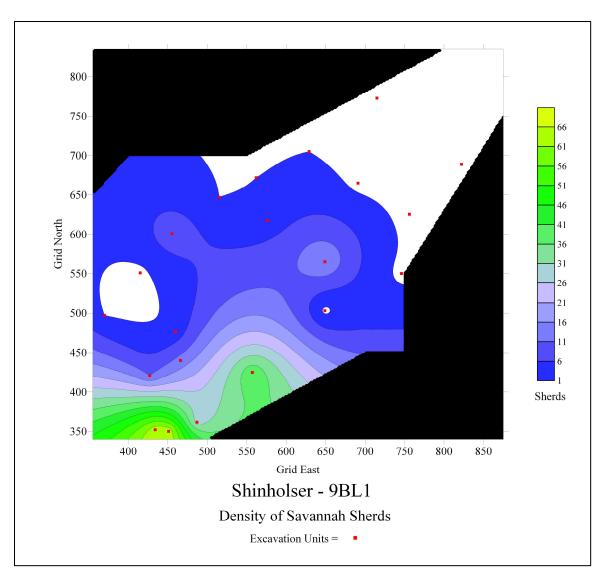


Figure 14. Distribution of Savannah Period Pottery.

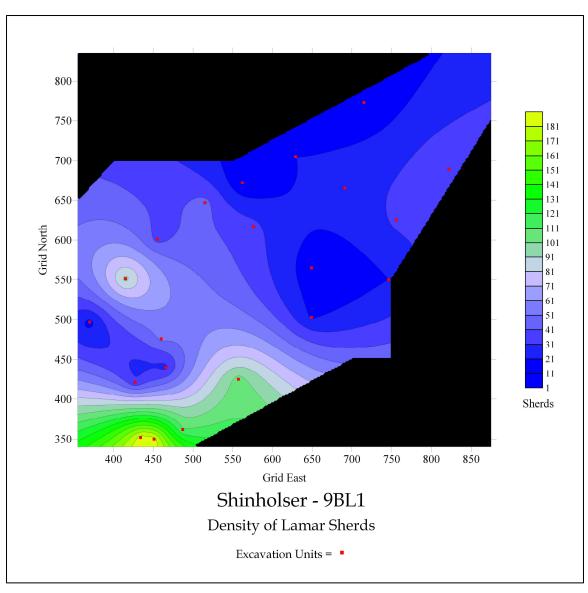


Figure 15. Distribution of Lamar Period Pottery.

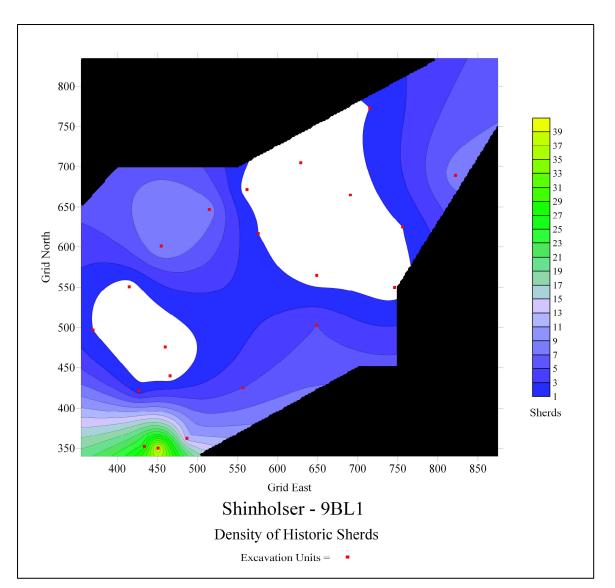


Figure 16. Distribution of Historic Indian Pottery.

Appendix

2007 Elevation Data.

IP1=Southern Mound Summit Point; IP2= Northern Mound Summit Point.

IP	Point	North	East	Elevation
IP1	1	500.00	500.00	100.000
IP1	2	515.02	500.00	99.716
IP1	3	511.80	505.41	99.983
IP1	4	599.49	610.58	93.238
IP1	5	583.87	635.24	93.043
IP1	6	566.69	660.92	92.591
IP1	7	553.04	680.87	92.128
IP1	8	539.93	698.77	91.886
IP1	9	527.38	718.05	91.699
IP1	10	508.94	728.52	92.109
IP1	11	485.14	735.15	92.886
IP1	12	466.21	723.58	92.968
IP1	13	457.80	702.57	92.843
IP1	14	456.60	658.75	92.998
IP1	15	454.96	638.03	92.910
IP1	16	446.52	616.13	93.023
IP1	17	433.00	598.73	92.996
IP1	18	427.74	579.92	93.162
IP1	19	423.38	561.89	93.440
IP1	20	411.59	545.03	93.362
IP1	21	392.78	527.61	93.341
IP1	22	375.52	513.29	93.266
IP1	23	362.44	500.20	93.182
IP1	24	350.34	485.15	93.269
IP1	25	343.43	463.07	92.856
IP1	26	344.15	444.45	92.681
IP1	27	350.98	425.88	92.382
IP1	28	359.93	406.29	92.294
IP1	29	356.60	381.82	91.889
IP1	30	379.73	373.24	90.262
IP1	31	407.84	359.44	89.381
IP1	32	427.43	368.38	90.388
IP1	33	466.30	377.03	92.042
IP1	34	491.95	378.89	91.744
IP1	35	513.22	382.91	91.412
IP1	36	532.51	389.69	91.128
IP1	37	550.49	401.69	91.501
IP1	38	567.05	414.51	92.426
IP1	39	547.58	388.02	91.117
IP1	40	566.12	386.41	91.059
IP1	41	597.78	389.49	91.570
IP1	42	611.00	384.56	90.828

IP	Point	North	East	Elevation
IP1	43	628.73	377.26	90.548
	43			
IP1		660.11	395.96	91.443
IP1	45	670.43	414.85	92.168
IP1	46	680.59	435.65	91.888
IP1	47	684.77	457.28	91.341
IP1	48	683.37	476.97	91.690
IP1	49	669.76	495.81	92.859
IP1	50	669.58	512.75	92.821
IP1	51	663.15	532.63	92.852
IP1	52	649.03	540.39	93.110
IP1	53	652.71	515.40	93.087
IP1	54	649.95	498.75	93.224
IP1	55	638.60	480.66	93.293
IP1	56	624.81	463.81	93.219
IP1	57	609.84	449.36	93.204
IP1	58	593.38	435.90	93.113
IP1	59	576.84	422.76	92.820
IP1	60	560.62	408.93	92.119
IP1	61	555.26	444.89	92.610
IP1	62	538.99	431.54	92.168
IP1	63	526.45	451.85	91.940
IP1	64	529.31	414.62	91.309
IP1	65	512.76	409.33	90.919
IP1	66	505.59	431.32	91.240
IP1	67	504.91	455.63	92.179
IP1	68	499.05	470.32	92.585
IP1	69	493.51	480.60	92.733
IP1	70	483.05	488.89	93.104
IP1	71	465.64	481.27	93.252
IP1	72	441.38	461.48	92.695
IP1	73	402.53	436.80	92.297
IP1	74	380.73	424.23	92.450
IP1	75	367.09	451.51	92.912
IP1	76	395.49	478.51	93.012
IP1	77	416.36	504.58	93.302
IP1	78	431.74	517.92	93.396
IP1	79	456.42	532.74	93.488
IP1	80	481.52	554.20	93.402
IP1	81	500.73	568.19	93.557
IP1	82	513.80	578.91	93.601
IP1	83	531.40	591.42	93.558
IP1	84	545.70	606.29	93.214
IP2	1	540.45	539.00	93.370
IP2	2	538.90	560.68	93.507
IP2	3	548.62	577.05	93.418
IP2	4	599.87	610.76	93.134
IP2	5	581.48	639.04	92.894
11 2	5	501.40	057.04	74.074

IP	Point	North	East	Elevation
IP2	6	568.81	658.00	92.516
IP2 IP2	7			
	-	556.15	676.35	92.128
IP2	8	545.02	691.86	91.821
IP2	9	533.76	707.67	91.721
IP2	10	540.11	708.55	91.618
IP2	11	557.74	718.63	91.822
IP2	12	578.69	735.50	92.239
IP2	13	578.68	735.48	92.241
IP2	14	598.69	753.31	92.875
IP2	15	618.67	770.04	92.986
IP2	16	637.15	789.27	93.090
IP2	17	662.01	805.68	93.471
IP2	18	681.48	823.91	93.834
IP2	19	701.88	836.11	93.953
IP2	20	724.16	842.92	93.196
IP2	21	746.46	852.76	93.281
IP2	22	768.33	866.28	93.159
IP2	23	793.25	865.62	93.641
IP2	24	812.82	874.80	93.439
IP2	25	823.46	848.87	94.309
IP2	26	828.87	834.91	94.371
IP2	27	832.40	829.43	94.335
IP2	28	814.20	817.82	94.233
IP2	29	779.39	788.56	93.140
IP2	30	767.13	767.94	93.467
IP2	31	763.28	744.84	93.852
IP2	32	759.73	729.10	94.079
IP2	33	749.67	695.59	94.091
IP2	34	737.45	667.31	93.956
IP2	35	724.51	646.10	93.892
IP2	36	709.64	615.99	93.591
IP2	37	694.13	590.10	93.527
IP2	38	676.14	567.49	93.233
IP2	39	662.06	553.35	93.055
IP2	40	642.54	548.38	93.179
IP2	41	630.80	563.78	93.353
IP2	42	620.33	579.98	93.412
IP2	43	608.60	597.54	93.256
IP2	44	599.61	610.53	93.136
IP2	45	606.39	651.61	93.020
IP2	46	625.04	668.84	93.018
IP2	47	652.93	692.28	93.153
IP2	48	674.45	710.20	93.335
IP2	49	706.41	732.43	93.713
IP2	50	728.03	760.93	93.846
IP2	51	746.16	779.07	93.881
IP2	52	763.90	800.11	93.571
11 4	54	103.90	000.11	15.571

IP	Point	North	East	Elevation
IP2	53	793.57	823.00	94.136
IP2	54	813.21	835.27	94.318
IP2	55	754.10	723.41	94.153
IP2	56	735.20	703.94	94.093
IP2	57	713.40	683.22	93.764
IP2	58	692.75	669.16	93.557
IP2 IP2	59	660.71	642.33	93.387
IP2 IP2	60	630.03	617.21	
				93.251
IP2	61	608.39	603.39	93.121
IP2	62	559.50	677.21	92.029
IP2	63	587.25	695.92	92.255
IP2	64	611.91	720.38	92.787
IP2	65	634.43	747.42	93.154
IP2	66	645.05	760.26	93.237
IP2	67	664.41	774.43	93.448
IP2	68	663.13	775.17	93.451
IP2	69	678.97	787.21	93.665
IP2	70	525.96	552.80	95.827
IP2	71	524.66	550.68	95.868
IP2	72	525.46	548.57	95.663
IP2	73	527.48	548.56	95.806
IP2	74	528.54	550.30	95.639
IP2	75	529.17	552.47	95.775
IP2	76	520.75	531.17	93.041
IP2	77	509.55	538.23	93.179
IP2	78	505.14	505.29	99.641
IP2	79	501.12	508.15	98.893
IP2	80	495.24	511.73	98.311
IP2	81	509.78	501.79	99.213
IP2	82	515.43	496.21	98.122
IP2	83	509.90	496.66	99.697
IP2	84	503.20	494.00	99.418
IP2	85	499.76	498.74	99.765
IP2	86	494.97	508.43	99.350
IP2	87	500.19	511.30	99.431
IP2	88	505.28	512.63	99.429
IP2	89	515.30	501.66	99.664
IP2	90	539.34	518.83	92.912
IP2	91	560.05	529.35	93.093
IP2	92	598.07	554.26	93.355
IP2	93	624.98	571.11	93.318
F1		450.00	425.00	90.700
F2		475.00	425.00	91.000
F3		440.00	400.00	90.500
F4		600.00	500.00	93.200
Г4 F5		575.00	475.00	93.200 93.100
F6	l	625.00	525.00	93.300