
i

Hybrid Recommender System towards

User Satisfaction

By

Raza Ul Haq

A thesis submitted to the

Faculty of Graduate and Postdoctoral studies
In partial fulfillment of the requirements for the degree of

Masters in Computer Science

Ottawa-Carleton Institute for Computer Science

School of Information Technology and Engineering

University of Ottawa

April, 2013

© Raza Ul Haq, Ottawa, Canada, 2013

ii

Abstract

An individual’s ability to locate the information they desire grows more slowly than the rate

at which new information becomes available. Customers are constantly confronted with

situations in which they have many options to choose from and need assistance exploring or

narrowing down the possibilities. Recommender systems are one tool to help bridge this gap.

There are various mechanisms being employed to create recommender systems, but the most

common systems fall into two main classes: content-based and collaborative filtering

systems. Content-based recommender systems match the textual information of a particular

product with the textual information representing the interests of a customer. Collaborative

filtering systems use patterns in customer ratings to make recommendations. Both types of

recommender systems require significant data resources in the form of a customer’s ratings

and product features; hence they are not able to generate high quality recommendations.

Hybrid mechanisms have been used by researchers to improve the performance of

recommender systems where one can integrate more than one mechanism to overcome the

drawbacks of an individual system.

The hybrid approach proposed in this thesis is the integration of content and context-based

with collaborative filtering, since these are the most successful and widely used mechanisms.

This proposed approach will look into the integration of content and context data with rating

data using a different mechanism that mainly focuses on boosting a customer’s trust in the

recommender system. Researchers have been trying to improve system performance using

hybrid approaches, but research is lacking on providing justifications for recommended

products. Hence, the proposed approach will mainly focus on providing justifications for

recommended products as this plays a crucial role in obtaining the satisfaction and trust of

customers. A product’s features and a customer’s context attributes are used to provide

justifications. In addition to this, the presentation mechanism needs to be very effective as it

has been observed that customers trust more in a system when there are explanations on how

the recommended products have been computed and presented. Finally, this proposed

recommender system will allow the customer to interact with it in various ways to provide

feedback on the recommendations and justifications. Overall, this integration will be very

useful in achieving a stronger correlation between the customers and products. Experimental

iii

results clearly showed that the majority of the participants prefer to have recommendations

with their justifications and they received valuable recommendations on which they could

trust.

iv

Acknowledgements

I would like to thank my thesis supervisor, Dr. Thomas Tran, for his constant guidance,

motivation, and support throughout my thesis writing. I would also like to extend my

gratitude to all my friends who helped me succeed especially Kazi Masudul Alam. Finally, I

would also like to acknowledge constant encouragement and appreciation from my family

members throughout the whole program.

v

Table of Contents

Abstract ... ii

Acknowledgments .. iv

Table of Contents .. v

List of Figures ... vii

List of Tables.. viii

List of Acronyms .. ix

Chapter 1. Introduction ... 1

1.1. Information Overload .. 1

1.2. Recommender Systems .. 2

1.3. Challenges and Problems .. 5

1.4. Motivation ... 7

1.5. Objectives and Contributions .. 8

Chapter 2. Background and Related Work ..10

2.1. Input Data ..10

2.2. Recommendation Techniques ...10

2.2.1 Content-Based Filtering ..11

2.2.2 Collaborative Filtering ..12

2.2.3 Context-Based Filtering ..18

2.2.4 Demographic Filtering ..18

2.2.5 Knowledge-Based Filtering...19

2.2.6 Hybrid Filtering ...19

2.3. Generation of Recommendation or Prediction ..22

2.4. Related Work ..23

2.5. Trust on Recommender Systems ..33

2.6. Explanation Interfaces of Recommender Systems ...36

Chapter 3. The Proposed Model ...39

3.1. Hybrid Approach ..39

3.2. Design of Proposed Model ...40

3.2.1 New Customer Profile ...42

3.2.2 Collaborative Filtering ..42

vi

3.2.3 Explanation of Recommendations ..46

 3.2.3.1 Customer's Feature and Preference Profiles47

 3.2.3.2 Justification Style ...51

 3.2.3.3 Explanation Interface ...51

Chapter 4. System Implementation ..55

4.1. System Architecture ...55

4.1.1 Technologies and Tools ...56

4.1.2 Database Design ..57

4.1.3 System Performance ...59

4.1.4 System Configuration ..60

4.2. System Implementation ...60

4.2.1 Web Pages ..61

4.2.2 JAVA Package ..62

4.2.3 Screenshots of the Application ..65

4.2.4 Data Flow Diagrams ...72

Chapter 5. Experimental Evaluation ..75

5.1. Dataset ...75

5.2. Evaluation Metrics ...75

5.3. Experimental Procedure ...79

5.3.1 Evaluation Measures ...79

5.3.2 Participants and Material ...81

5.3.3 Experimental Platform ..82

5.4. Experiment Results ...82

5.5. Limitations of Evaluatoin Approach ...87

5.6. Discussion ..87

5.6.1 Comparison with Related Work ..87

Chapter 6. Conclusions and Future Research Directions ..90

6.1. Conclusions ..90

6.2. Future Research Directions ..91

References ..93

Appendices ..96

Appendix A – Web Pages ..96

Appendix B – Java Package .. 104

vii

List of Figures

Figure 1: Amazon shopping cart recommendations

Figure 2: Design of the Proposed Model

Figure 3: Customer Product Matrix

Figure 4: Product Feature Matrix

Figure 5: User-Item Matrix

Figure 6: Customer Profile Matrix

Figure 7: Design of the Proposed Explanation Interface

Figure 8: Three Tier Architecture

Figure 9: Entity Relationship Model

Figure 10: Structure of Pages and Class Packages

Figure 11: Home Page of Prototype Application

Figure 12: New Customer Registration

Figure 13: Rating Form

Figure 14: Explanation Interface of Recommender System

Figure 15: Recommendation Process of Old Customer

Figure 16: Recommendation Process of New Customer

Figure 17: Evaluation Measure’s Results

Figure 18: Surveys Results

viii

List of Tables

Table 1: Aims for explanation

Table 2: Survey Questions

Table 3: Survey’s Results [1]

Table 3: Survey’s Results [2]

Table 4: Comparison Results

ix

List of Acronyms

Acronym Definition
IR Information Retrieval

TF-IDF Term Frequency- Inverse Document Frequency

CF Collaborative Filtering

CB Content-Based

IIA Interactive Interface Agent

EPSS Electronic Performance Support System

ERP Enterprise Resource Planning

HRMS Human Resources Managements System

DMS Document Management system

LMS Learning Management system

MAE Mean Absolute Error

GUI Graphical User Interface

IMDB Internet Movie Database

JSP Java Server Pages

JDBC Java Database Connectivity

DDL Data Definition Language

DML Data Manipulation Language

ROC Receiver Operating Characteristic

1

Chapter 1: Introduction

The rapid growth of the internet has resulted in a huge amount of online content including

various types of products that can be purchased and sold on the Internet. According to some

studies, there are more than 10 billion uniquely pages on the web. In addition to this, six

terabytes of new content is added to the web every month [1].

While the web grows rapidly,

the information it contains is also updated constantly. However, this information is not

always well organized. Web resources are published and distributed in various ways, and

there is no specific mechanism to find the existing web resources [2].

1.1. Information Overload

When searching for information about a specific topic on the internet, there is a large amount

of information available that is very difficult to filter through. For example most search

engines on the internet give hundreds to thousands of results on every query, while only a

few of those results are really relevant to the desired search. As the web is rapidly increasing

and changing, the web user community is also becoming very diverse. Users have different

backgrounds and preferences. As a result, users have a hard time finding the right

information at the right time, and it has been shown that too many choices make users unable

to handle the amount of information and also lead to anxiety generated by worrying about

whether something important is being missed. This crucial problem is often referred to as

information overload. Information overload refers to the state of having too much

information to make a decision about a topic [2, 3].

Generally, there are three approaches that are being used to find items: the retrieval

approach, the filtering approach and the browsing approach. The retrieval approach is also

called information retrieval, where the user makes a request to the information retrieval

system with a query and then the information is provided using an information retrieval

method. Information systems that use the filtering approach are designed to sort through

large volumes of dynamically generated information. They provide useful resources to the

users that are likely to satisfy his or her desired information [4]. The goal of an information

filtering system is to boost the user’s ability to identify useful information sources. This can

2

be accomplished by automatically selecting which sources of information to show.

Furthermore, it has been shown that user satisfaction can be enhanced in interactive

applications by using the techniques which exploit the strengths of both humans and

machines [4]. Browsing is a process in which query formulation is tightly integrated with

results presentation. In browsing, the user does not know exactly what he is looking for;

hence, he explores all the available information and tries to find something according to his

desired purpose. On the web, pages of information are linked together. Users browse through

this huge collection of information by following these links. With browsing, they implicitly

formulate what they are looking for by clicking on these links [4].

1.2. Recommender Systems

E-commerce companies have started offering a large quantity of various products and

services to their customers. Hence, it becomes very difficult for customers to choose a

product from amongst the overwhelming sets of available options. Most of the customers

complain that the large amount of information that a customer has to browse to find the

desired product makes the process harder and time consuming. Therefore, e-commerce

companies have developed tools to help customers search for the most suitable product that

meets their needs. The most successful and widely used tools in this area have been the

recommender systems.

Recommender systems can make recommendations based on the top sellers of a specific

website, the demographic information of consumers, or based on the previous purchase

history of the customers. The output of a recommender system includes suggesting products

to a consumer, providing personalized product information and providing community

opinion and critiques [5]. Information filtering systems are also often used on e-commerce

sites to help customers find specific products in which they are interested. These systems

have some features in common with recommender systems, in that both systems provide lists

of suggestions for a customer. Recommender systems gather various types of information

about a customer’s tastes, suggestions, preferences, and with a recommendation method, give

recommendations that help customers find the most suitable products for them. Mainly,

recommender systems are used to recommend various products in online stores. For

3

example, when a customer wants to buy a book “Creating a Web Site: The Missing Manual”

through a website such as Amazon.com, the website can use a recommender system to

provide recommendations like “Customers who bought this book also bought “JavaScript:

The Missing Manual”. The figure below shows recommendations that offer customers

product suggestions based on the products in their shopping cart [6].

Figure 1: Amazon shopping cart recommendations [6]

Most websites also show customer reviews and ratings for a particular product. A

recommender system collects customer ratings and creates a profile of the customer.

Customers can give explicit ratings or they may be inferred implicitly from the customer’s

actions. For example, in [7], the authors designed an interface to help customers distinguish

interesting web pages on a particular topic from the uninteresting ones. The customers can

click on a ‘thumbs up’ symbol when visiting a web site they like and a ‘thumbs down’

symbol when visiting a web site they do not like. Once the feedback has been provided from

the customer, a recommender system can make better recommendations for the customer [7].

A recommender system does not always result in a list of recommendations, i.e, a list of only

products that the customer will find interesting; it can also provide other means of guiding a

customer to those products that are of interest to him; e.g, highlighting interesting products,

etc. The main concept here is ‘individualized’ or ‘personalized’: every customer gets

recommendations or is guided to interesting or useful products in a way that best suits that

customer based on his/her interest profile, his/her preferences and the product’s features [8].

Generally, recommendations can be provided to the customers in a pull-based and push-

based manner. In pull-based recommenders, customers explicitly make a request for

4

recommendations since they control when recommendations are displayed. Recommender

systems inform the customer that recommendations are available, but do not display

recommendations until he or she wants. This request may appear in different ways, such as a

request to evaluate a specific product, a request to find a gift, or a request for

recommendations in a category. Most applications used pull delivery, because

recommendation computation is expensive and could slow down the interactivity of a

website. Currently, it is considered a choice for each application [5]. In push-based

recommenders, recommendations are sent to customers without their specific request

(although subscription may be required in some systems).

It has the benefit of reaching out

to a customer when the customer is not currently interacting with the seller. In e-commerce

applications, e-mail is the most commonly used push technology for delivering

recommendations. Sending recommendations, and perhaps promotional offers, invites the

customer to return to the seller. Indeed, today’s technology allows customers to click on a

link in the e-mail message and to be taken directly to the recommended products on-line [5].

Recommender systems can also help customers in navigating through a complex product

space. These are called conversational recommender systems. In conversational

recommender systems, customers interact more closely with a recommender by providing

feedback (critiques) on a recommended product. They work well for recommending products

that customers rarely need to buy and where the customer needs to choose one product; for

example a house and car [9].

Non-personalized recommender systems recommend products to customers based on what

other customers have mentioned about the products. These recommendations are completely

independent of the customer, so each customer receives the same recommendations [10].

They are considered automatic, because they need only minor customer effort to generate a

recommendation. Non-personalized recommender systems are common in physical stores,

since they can be set up on a display that is viewed without being personalized for a

customer. For example, the average customer ratings displayed by Amazon.com and

Moviefinder.com are non-personalized recommendations. Recommenders systems can also

provide personalize recommendations to the customer because they are based on real input

5

from the customer. Whenever the customer buys or reviews a new product, a new

recommendation list is created for that particular customer [9, 10]. They are also useful for

retail companies to help their customers in finding the desired product. However, sometimes

recommendations generated by these systems are not satisfactory. Therefore, in last few

years, various extensions to recommender systems have been proposed that enhance

recommendation capabilities and make recommender systems applicable to an even broader

range of applications.

1.3. Challenges and problems

The rapid growth in the amount of available information and the numbers of web users

produces the following crucial challenges for recommender systems.

Sparsity / Quality of recommendation

Collaborative filtering recommender systems produce high quality recommendations

compared to other recommender systems. They collect ratings of products from many

customers and generate recommendations based on those ratings to a given customer. In

collaborative filtering, the process of comparing two customers with the goal of computing

their similarity involves comparing the ratings they provided to products. In order to compare

the ratings, it is important that the two customers rated at least some products in common.

However in the case of movies or books, the number of products is very large while the

number of products rated by every single customer is in general small. This means that it is

very unlikely two random customers have rated any products in common and hence they are

not comparable. Therefore the probability of finding a set of customers with significantly

similar ratings is usually low. This creates an inability to find successful neighbors and

finally produces weak recommendations [11, 12].

Scalability

Collaborative filtering algorithms are able to search tens of thousands of neighbors in real-

time, but the demands of modern E-commerce systems are to search tens of millions of

potential neighbors. Hence, there is a needed to improve the scalability of the collaborative

algorithms [13]. Scalability means how quickly a recommender system can generate

recommendations. Recommender systems mostly have a huge dataset, therefore, the

6

algorithm needs to maintain its speed and work properly. Response time is very crucial factor

to evaluate the performance of recommender systems. Thus, it is very important to

implement efficient algorithms, which are capable of handling this situation very efficiently

[11, 14].

New product / customer problem

A Recommender system can only work efficiently after a large collection of ratings has been

obtained. When a new customer starts with no profile, a training period is required to create a

profile before the recommender system can make recommendations. As recommendations

follow from a comparison between the target user and other users based only on the

accumulation of ratings, a user with few ratings becomes difficult to categorize [15]. This is

called the “start-up” or “ramp-up” problem. Hence, in order to generate quality

recommendations, a recommender system needs a customer’s preference profile. [11, 14,

16].

Gray Sheep problem

The gray sheep problem refers to individuals with opinions that are “unusual”, meaning that

they do not agree or disagree consistently with any type or group of customers. They have

low correlation coefficients with other customers, as they partially agree or disagree with

other customers. Hence they may not receive accurate recommendations and they may

negatively affect the recommendations of the rest of community [17].

Justifications

E-commerce is a field that influences people’s activities. It allows customers to write reviews

on products, which other customers read and trust thereby influencing them to purchase a

certain product. Due to the lack of face-to-face interaction with customers in online

shopping, a customer's actions undertake a higher degree of uncertainty and risk compared

with traditional shopping. Therefore, customers need recommendations in which they can

trust. In order to obtain customer trust, a recommender system needs to provide justifications

for recommended products. Trust creates a long-term relationship between a customer and an

organization. Additionally, it has been shown that a customer’s trust is positively associated

with a customer’s intentions to purchase a product and return to the website [18-20].

7

From the above-mentioned challenges, this proposed approach will mainly focus on

providing valuable recommendations and knowledgeable explanations as justifications for

recommended products. Furthermore, this approach will create feature and preference

profiles to generate recommendations for the existing and new customers. Finally, this

proposed recommender system will adopt a structured presentation mechanism that will

display the recommendations with justifications for the customer.

1.4. Motivation

A crucial problem in e-commerce is the vast amount of information and its accessibility.

Many web customers complain that the information about a specific product that a specific

customer needs to find makes the process very complex and time consuming. The time and

cost which is required for searching for a specific product can be greater than obtaining the

product without e-commerce. Therefore, researchers have been focusing on browsing for the

required product in the least time and for the best price. Recommender systems have been

utilized in e-commerce sites to recommend products to their customers. These products can

be recommended based on the demographic information of customers or based on the past

purchasing history of customers [10].

However, the recommendations generated by these

systems do not always meet the customer’s requirements. Consequently, researchers have

been working to improve the predictions or suggestions generated by these systems.

Various filtering mechanisms are being used to produce recommendations for customers.

Each of these mechanisms however, has some limitations. Therefore, researchers have

started to integrate more than one technique to provide accurate recommendations for

customers. It has been shown by researchers that hybrid techniques can perform better than

any individual technique. This motivated me to work on hybrid techniques in order to

generate good quality recommendations so that customers may feel confident when making

online decisions. In order to make online decisions it is very important to generate

recommendations with useful justifications that will give the reasoning behind these

recommendations to customers. Furthermore, the presentation of these recommendations is

important to minimize the customer’s decision making time.

8

1.5. Objectives and Contributions

Recommender systems have become popular on the web because the objective of such

systems is to customize the information that they gather according to the customer’s tastes

and preferences. Furthermore, personal recommender systems help customers with specific

products by predicting the customer’s interest in that product [15].

Hybrid mechanisms have

been a popular research area and have shown better results than using any individual

technique. However, hybrid mechanisms are lacking in providing useful justifications for

their recommended products.

� My thesis will mainly focus on providing valuable recommendations and various

forms of justifications for recommended products as this plays a crucial role in

obtaining the satisfaction and trust of customers. My goal is to produce useful

explanations that make it faster for customers to decide which recommended product

is best or suitable for them.

� An attractive and organized explanation interface that will reduce the customer’s

decision making time and provide more confidence was also created. It has been

noticed by various researchers that the presentation mechanism to display the

recommendations attracts the customer more effectively and boosts the trust on the

recommender system [21-23].

� The proposed recommender system will allow the customer to interact with it in order

to provide feedback on the recommendations. This feedback can be provided

by giving a rating on recommended products and also by modifying the previous

ratings. In addition to this, customers can make a suggestion on the justifications that

are based on product’s features in order to revise the recommendations.

� A prototype application that implements the proposed approach was also developed.

Hence, movies are being used as an example of products in this thesis. This

prototype is a web based application that recommends movies to customers and

provides justifications for its recommendations. This application has a categorized

9

explanation interface that mainly boosts the trust of customers and helps them make a

decision. This prototype implementation currently works only for movies; however it

can be easily modified for a wide range of products such as books, cameras, etc.

10

Chapter 2: Background and Related Work

Usually, each recommender system consists of three steps. These are gathering input data,

computing the recommendations using different recommendation techniques, and giving

results to the customer. The following terms that will be used throughout this thesis.

Active Customer – The customer for whom the system would generate recommendations.

Target Product – The product for which the system would predict a rating value.

2.1. Input Data

Each recommendation technique requires some input upon which to base its

recommendations. Usually this input is provided by the customer. However, it is possible

that the input may also be provided by the business. Various ways exist to gather input data

and some of the common ways are listed below [5, 10].

� Customer information – This includes personal information such as name, gender, personal

interests and preferences.

� Customer history – Recommender systems can store the preferences of their customers by

observing their transaction histories or browsing activities.

� Product ratings – This is mostly used in collaborative-filtering recommender systems

whereby customers are requested to rate some products to indicate their preferences.

2.2. Recommendation Techniques

Every recommender system employs a technique to find the required products for their

current customer (the active user). There are various techniques that have been applied to the

basic problem of making accurate and efficient recommender systems. Recommendation

techniques often work in the following challenging environments [6]:

� A retailer has large amounts of data, tens of millions of customers and millions of distinct

catalog products.

� New customers typically have extremely limited information, based on only a few purchases

or product ratings.

11

� Older customers have a greater amount of information, based on thousands of purchases and

ratings.

� Customer data is volatile: Each interaction provides valuable customer data, and the

algorithm should work accordingly.

There are various techniques that have been implemented to generate useful

recommendations for customers. These are mainly categorized into various types: content-

based filtering, collaborative filtering, context-based filtering, demographic filtering,

knowledge-based filtering and hybrid filtering. These are described in detail below.

2.2.1. Content-Based Filtering

Content-based recommender systems match the textual information of a particular product

with the textual information representing the interests of a customer. For example, a movie

recommender that employs a content-based approach might use the metadata of the movie,

e.g, title, genre, etc., or reviews by other customers to make recommendations [12]. It

recommends a product to a customer based upon a description of the product and the profile

of a customer’s interests. It is mainly based on the contents of the products and transaction

history of the products that a customer has purchased before [16]. Furthermore, it also uses

attribute-based filtering that is purely based on the syntactic properties of products and a

customer’s interests.

Information retrieval (IR) and machine learning mechanisms have been used in content-

based recommender systems. One of the most widely used IR mechanisms is the assignment

of weights to keywords. Term frequency-inverse document frequency (TF-IDF) is used to

assign weights to keywords [21].

This integrates two measures, the term frequency and the

inverse document frequency. The vector representation of a document‘d’ contains the TF-

IDF value for each term in the document‘d’. Cosine similarity can be used to calculate the

similarity between two or more documents. The term frequency (TF) assigns a weight to a

term based on how many times the term‘t’ is available in a document ‘d’. The inverse

document frequency (IDF) provides the importance of the least occurring terms. It shows that

the IDF of a rare term is high and the IDF of a frequent term is low.

12

Other mechanisms used for content-based recommendations include probabilistic models,

such as Bayesian classifiers, and machine learning mechanisms like artificial neural

networks. These mechanisms give predictions by learning the underlying model with

statistical analysis and machine learning mechanisms. The full details of the content-based

mechanisms are beyond the scope of this thesis; the interested reader is referred to Manning

et al., for more information [24].

The following are the limitations of this technique [16]:

� In order to have a good profile for a customer’s interests, they have to rate a sufficient

number of products before a recommender system can understand the user’s preferences and

give recommendations to the customer.

� Since this technique is purely based on content, if two different products have similar

contents then the recommendation system is not able to differentiate between them.

� The TF-IDF approach is not suitable with synonym words, for example the words

"automobile" and "car" are not considered the same, even though they have the same

meaning.

2.2.2. Collaborative Filtering

Collaborative recommender systems are mainly based on identification of other customers

with similar tastes. Generally, it collects ratings of various products from many individuals

and then gives recommendations based on those ratings to a given customer [16].

The typical

input of collaborative recommender systems is represented as a matrix of ratings, in which

the customers are represented as rows, the products are represented as columns and the

values in the cells represent the rating given by a customer about the product.

Each entry in

the matrix denotes the opinion that a customer has about the product as a numeric value.

These ratings can either be the explicit ratings or implicit ratings deduced from the

customer's reviews, purchase history or browsing history. Many entries in the matrix will be

empty, as a customer is not aware of all the products in the system and hence might not have

rated all the products or simply might have chosen not to rate a product.

13

This assumes that like minded people have almost similar preferences. For example, if Tom

and Ron have liked many of the same books and Tom liked “Creating a Web Site: The

Missing Manual”, which Ron has not read yet, then the system can recommend this same

book to Ron. Researchers have categorized a number of collaborative filtering algorithms

into two types, memory-based (user-based) and model-based (item-based).

Memory-based algorithms check every other customer and whether they are the active

customer’s neighbor, which is determined by the personal correlation coefficient. Once a

neighborhood of customers is found, various algorithms are used to combine the preferences

of neighbors to generate a prediction or top N-recommendations for an active customer. The

prediction of the product, which the active customer has not rated, is calculated as an

aggregation of all ratings of a customer’s neighbor for the same product. These techniques

are known as customer-based collaborative filtering [11, 21]. However, scalability is the

major issue of user-based collaborative filtering: It is very hard to calculate a user’s

similarity when the number of users gets too large. It works well only with a small dataset.

Model-based algorithms generate product recommendations by creating a model of a

customer’s ratings. It uses the ratings to learn a model, which is then used to create the

ratings for those products which are not rated by active customers. This model can be

created by various machine learning techniques such as clustering and rule-based approaches

[25]. A

clustering model considers collaborative filtering that works by clustering similar

customers in the same class/cluster and estimating the probability that a particular customer

is in a particular class, and then calculates the conditional probability of ratings.

Item-based is another collaborative filtering algorithm that is based on item/product relations

and not on customer relations. It builds the model of item/ product similarities and consists of

following three main steps [14]:

� First, all the products rated by an active customer are retrieved.

14

� Second, the item-based approach looks into the retrieved products from step 1 and

determines how similar they are to target product ‘i’ and then selects the ‘K’ most similar

products. In addition, their corresponding similarities are also determined.

� Finally, after finding the most similar items, the prediction is then determined by taking a

weighted average of the active users rating on these similar products ‘K’.

Neighborhood Formation

Neighborhood formation is crucial to find the similarities between customers in the

customer-product matrix. It is implemented in two steps: initially, the similarities between all

the customers in a customer-product matrix are calculated with the help of the proximity

metrics. The second step is the actual neighborhood generation for the active customer,

where the similarities of customers are processed in order to select those customers from

whom the neighborhood of the active customer will consist [11, 18, 23].

Similarity of Customers / Products

Pearson correlation similarity or cosine / vector similarity metrics have been used to find the

similarities between customers in the literature. The most widely used similarity

measurement is Pearson Correlation Coefficient. This can be calculated using the following

equation [26].

From above equation, raj indicates the rating value of customer ‘a’ on item ‘j’;

indicates the mean rating value of user a. The calculation is made on the products that are

rated by both customers ‘a’ and ‘b’ [21].

Pearson Correlation Coefficient has also been used to calculate the similarities between the

products. In order to calculate the similarities between two products, the customers who

(1)

15

have rated both products first need to be isolated and then a similarity computation technique

is applied.

In the case of the Pearson correlation similarity, the difference is that we are not using the

ratings that two customers have given for a common product, but instead the ratings of two

products ‘k’ and ‘l’, whose similarity we want to calculate, have been given by a common

customer ‘u’[11]. This can be calculated using the following equation [27].

From the above equation, sim (k, l) denotes the similarity between the products ‘k’

and ‘l’; ‘m’ denotes the total number of customers, which rated both the products ‘k’ and’ l’;

 are the average ratings of the products ‘k’ and ‘l’, respectively;

denotes the rating of customer ‘u’ on the product’ k’ and’ l’ respectively [27].

Cosine similarity also has been used to calculate the similarity of customers. In the cosine-

based approach, each customer's ratings are modeled as a vector and the similarity between

two customers is measured by the cosine of the angle between the two vectors. The similarity

between the active customer ‘a’ and another customer ‘u’ is measured using their rating

vectors ‘a’ and ‘u’, respectively [21]:

From the above equation, denotes the dot product between the two vectors and

is the product between the two vectors' Euclidean lengths. The Euclidean length of

a vector ‘a’ with ‘m’ components is given by [21]:

(2)

(3)

16

This, however, has one shortcoming. The difference in the rating scale between different

customers will show in quite a different similarity. For instance, if Tom only rates a score of

4 on the best movie, never rates 5 on any movie, and rates 1 on the bad movie and, in

contrast, Ron always rates according to the standard level (score of 5 on the best movie, and

2 on the bad movie). The adjusted cosine similarity has been used to consider this drawback

and is specifically used for item-based collaborative filtering. This can be calculated with the

following equation [16].

From the above equation, sim (k, l) denotes the similarity between the product ‘k’

and ‘l’; ‘m’ denotes the total number of customers,which rated both the products ‘k’ and ‘l’;

is the average rating of the customer ‘u’; denote the rating of customer

‘u’ on the product ‘k’ and ‘l’, respectively.

Once we have calculated the similarities between customers in the customer’s-product

matrix, the next step is to generate a prediction for that product [11]. The most common way

to achieve this is through a weighted sum. The predicted rating is the weighted sum of the

ratings given by other customers for that product, where the weights are the similarity

coefficient of the active customer with the other customers. It clearly indicates that the rating

expressed by a very similar customer has a larger influence on the rating predicted for the

active customer [18]. It can be calculated using the following equation [11, 18].

(5)

(6)

(4)

17

From the above equation, pa,i indicates the predicted rating that the active customer ‘a’ would

possibly give for product ‘i’, ru is the average of the rating provided by customer ‘u’, wa,u is

the customer similarity weight of ‘a’ and ‘u’ as computed in first step and ‘k’ is the number

of customers whose ratings of product ‘i’ are considered in the weighted sum [18].

Neighborhood Generation

After neighborhood formation, it is mandatory to distinguish a single customer, called the

active customer. The active customer is for whom we would like to make the predictions.

This can be accomplished using various approaches [11]:

Center based scheme

The center-based scheme creates a neighborhood for the active customer by selecting the row

of the similarity matrix, which corresponds to the active customer [11].

Aggregate Neighborhood Scheme

The aggregate neighborhood scheme creates a neighborhood of customers, not by finding the

customers who are closest to the active customer, but by collecting the customers who are

closest to the centroid of the current neighborhood. It forms a neighborhood by first selecting

the user who is the closest to the active customer. Those two customers will now form the

current neighborhood, and the selection of the next neighbor will be based on them. This is

an effective method in the case of a very sparse user-item matrix [12].

Collaborative filtering also has the following limitations:

� It can only work efficiently after a large collection of ratings. This is called the start-up or

ramp-up problem. For example, if there is a new product, the recommender system would

not be able to recommend it until it is rated by a number of customers, and in the same way,

in order to get good recommendations, a new customer has to rate many products to create a

strong profile.

� The process of comparing two customers with the goal of computing their similarity involves

comparing the ratings they provided to products. In order to compare the ratings, it is

important that the two customers have rated at least some products in common. It is common

that in online stores even the most active customers have purchased or rated a very limited

percentage of products, when compared to the available total. This leads to sparse user-item

18

matrices, the inability to locate successful neighbors and, finally, the generation of weak

recommendations. Hence, in the case of movies or books, the number of products is very

large, while the number of products rated by every single customer is in general small. This

means that it is very unlikely that two random customers have rated any products in

common, and hence they are not comparable [18].

� If a product is purchased often by many customers, then it will always be recommended to

every user. This is called as a banana problem.

� It does not work properly when a customer’s interests change [16].

2.2.3. Context-Based Filtering

Traditional recommender systems consider only the customer and product dimensions in the

recommendation process. It may not be enough to consider only customers and products —it

is also important to incorporate the contextual information of the customer’s decision

scenario into the recommendation process. For example, in the case of personalizing content

on a Web site, it is important to determine what content needs to be delivered to a customer

and when [28]. Context aware recommender systems predict customer’s tastes and

preferences by incorporating available contextual information into the recommendation

process. The contextual information can be gathered explicitly from the customer, and also

implicitly from the application data or environment. For example, one can obtain explicit

data regarding a change in the location of the customer detected by a cellular company, and

also implicitly obtained data from the timestamp of a transaction [28, 29]. Context-aware

recommender systems have been used for generating recommendations for music and

movies, since contextual information is very important for these two products

recommendations. For a music recommender system, customers want music according to

context such as an event or occasion and to an emotional state, rather than a singer or an

artist [30].

2.2.4. Demographic Filtering

Demographic-based recommender systems classify customers or products based on their

personal attributes and produce recommendations based on demographic classifications.

Demographic data refers to information such as the age, gender, address and the education of

19

users. This data is normally gathered explicitly from the customer [11, 14]. Demographic

characteristics of customers play a crucial role in identifying categories of customers who

like a specific type of products or have similar tastes. This has been used to recommend

books based on personal information and also for marketing research to suggest a range of

products and services [15]. In some situations, collaborative and content-based algorithms

are not able to predict ratings or recommend products to customers, specifically in the case of

new customers or products [31]. Demographic techniques form “people-to-people”

correlations like the collaborative technique, however, use different data. The benefit of a

demographic approach is that it may not require a history of customer ratings of the type

needed by collaborative and content-based techniques [15].

2.2.5. Knowledge-based Filtering

Knowledge-based recommender systems recommend the product to a customer by using the

knowledge of the product domain. It collects the customer’s preferences on a specific

product, and uses its knowledge to find the products according to the customer’s preferences.

It does not need a rating database since its recommendations do not depend on a customer’s

ratings. It can easily manage the recommendations if a customer’s interest changes, since its

recommendations are independent of the user’s preferences [32].

However, in order to make

useful recommendations for a customer, a system has to fully understand the product

domain. It should have knowledge of all important features of the product and be able to get

these features where this information is stored. The crucial task in this mechanism is the

process needed for extracting the desired information and building the needed models, such

as knowledge acquisition and representation [32, 33].

2.2.6. Hybrid Filtering

Collaborative, content and knowledge-based filtering techniques are widely used to build the

recommendation systems for e-commerce websites. Collaborative systems are very

successful due to their simplicity and better results. However, such systems have an

important problem known as cold-start or ramp-up. This means that when a new customer

comes, it cannot provide useful recommendations, because of the lack of required data for its

recommendation computation process. In order to overcome this problem, a useful technique

20

is hybridizing different methods of recommendation. My research is also on these hybrid

techniques. Researchers have been working on these hybrid techniques to boost the

performance of recommender systems in different manners.

Hybrid filtering methods integrate more than one technique in order to avoid the limitations

of individual filtering technique. Generally, they integrate collaborative and content-based

methods or combine collaborative and knowledge-based methods, in order to overcome the

cold-start or ramp-up problem and performance issues. The hybrid methods are detailed

below [15].

Weighted hybrid:

A weighted hybrid recommender is one in which the score of a recommended item is

computed from the results of all the available recommendation techniques present in the

system. This integrates the scores from each technique using a linear formula. Therefore, the

various techniques must be able to produce their recommendation score, which can be

linearly combinable. It is very useful that all of the system’s capabilities are brought to bear

on the recommendation process and it is easy to perform post-hoc credit assignment and

adjust the hybrid system accordingly [15].

Switching hybrid:

This uses different criteria to switch between recommendation techniques. The DailyLearner

system uses a content/collaborative hybrid in which a content-based recommendation method

is used first. If the content-based system cannot make a recommendation with sufficient

confidence, then a collaborative recommendation is attempted. However, this creates

complexity into the recommendation process since the switching criteria must be determined.

Mixed hybrid:

It is based on the merging of multiple-ranked lists into one. Each technique in this hybrid

should be able to create a recommendation list with ranks, and the core algorithm merges

them into a single ranked list. For example, it uses content-based techniques based on the

content information of TV shows, and collaborative information about the preferences of

21

other users. Recommendations from the two techniques are combined together in the final

recommendations. This mixed hybrid avoids the “new item” start-up problem: the content-

based component can be relied on to recommend new shows on the basis of their

descriptions even if they have not been rated by anyone [15].

Feature combination hybrid:

It treats collaborative information as additional feature data and uses content-based

techniques over this augmented data set. It allows the system to consider collaborative data

without relying on it exclusively, so it reduces the sensitivity of the system to the number of

users who have rated an item.

Cascade hybrid:

It involves a staged process. In this technique, one recommendation technique is used to

produce a list of recommended items, and then a second technique is used to refine the

recommendation among the previous created list. The restaurant recommender EntreeC, is a

cascaded knowledge-based and collaborative recommender. It uses its knowledge of

restaurants to make recommendations based on the user’s stated interests [15].

Feature augmentation hybrid:

It is similar to the feature-combination hybrid, but different in that the contributor generates

new features. One technique is used to produce a rating of an item and that information is

then incorporated into the processing of the next recommendation technique. For example,

the Libra system makes content-based recommendations of books based on data found at

Amazon.com, using a naive Bayes text classifier [15]. Furthermore, it is more flexible and

adds a smaller dimension than the feature-combination method. It is also attractive because it

offers a way to improve the performance of a core system.

Meta Level:

It offers a way in which two recommendation techniques can be combined using the model

generated by one as the input for another. The benefit of the meta-level method, especially

for the content/collaborative hybrid is that the learned model is a compressed form of user’s

22

interest, and a collaborative mechanism that follows can operate on this information easier

than on raw rating data [15].

2.3. Generation of Recommendation or Prediction

The output of a recommender system varies with product type, quantity, and display of the

information provided to the customer. The most common type of output is to provide a single

suggestion. The word “this” is usually used for the recommendation of a single product. With

a recommendation of a single item, the seller has more chances that the customer will pay

more attention to it. However, a drawback is that it places all of the risk in a single

recommendation which can be rejected by the customer. Typically, recommender systems

provide a set of suggestions in the form of a list for a customer in a particular context. Some

web developers prefer to leave the list unordered, to avoid giving the impression that a

particular recommendation is the best one [5].

Prediction Generation

The main goal of a collaborative filtering algorithm is to find a set of products for an active

customer that he might like, or find a prediction value for one of the empty slots in his

rating’s vector. Generally, the output of the collaborative filtering algorithm will either be a

prediction value or a top-N recommendation list. The prediction value is a numerical value in

the same scale as the other ratings by the active customer for a product that he has not rated

before. The predicted rating indicates how much the customer may like the product [11].

These predicted ratings can help customers understand the strength of a recommendation.

Predicted ratings can be displayed in the context of individual recommendations, lists of

recommendations, or in the context of general item information [5].

Top-N Recommendation Generation

The top-N recommendation list is a list of products that the active customer will like the

most. These products should not appear in the list of products already rated by the active

customer [12].

23

Most-Frequent Item Recommendation

Most-frequent item recommendation searches into the neighborhood of the active customer

and performs a frequency count of the products that each neighbor customer has purchased

or rated. After considering all the neighbor customers and the total counts for their rated

products have been calculated, the system will exclude products already rated by the active

customer. It will then sort the remaining products according to their frequency counts and

give the recommendation of the most frequent products for the active customer [12].

2.4. Related Work

Researchers have been working to boost the performance of recommender systems using

hybrid mechanisms. Over the past years, they have found promising results with the

integration of more than one technique. Various hybrid approaches such as multi-clustering,

incomplete preference relation, unified approach and mobile hybrid recommender systems

have been shown the good results. Below is summarized related work on hybrid

recommender systems relevant to this thesis.

In [32], a hybrid architecture integrates collaborative and knowledge-based filtering

techniques. This architecture has the following components:

� The interactive interface agent (IIA)

� The knowledge-based engine

� The knowledge base of the product domain

� The collaborative filtering engine

� The database of user’s ratings for items

� The product database

The interactive interface agent works as a controller in this architecture. In other words, it

works as an intermediary between the customer and the two recommender systems. It selects

the appropriate system for the recommendation process. As stated earlier collaborative

filtering is not efficient for a specific customer until a large number of customers, whose

profiles are known, have rated enough products. In this architecture, the interactive interface

24

agent has values for these two variables. When a recommendation process runs, it compares

the values of these two variables with their thresholds. If either of these variable values is

less than its threshold, then the interactive interface agent selects the knowledge-based

recommender system. Otherwise the collaborative filtering recommender system will be used

[32].

With the selection of a knowledge-based system, first it helps the customer sign in to the

system. If this is not a new customer then it forwards the user’s name and password to the

collaborative filtering engine, which will open the customer’s profile for modification. If this

is a new customer, then the IIA helps the customer sign in to the system and suggests to the

user to rate some products. This rated information will help create the customer’s profile in

the collaborative filtering engine. After obtaining the customer’s preferences, the IIA

transfers it to a knowledge-based engine. The knowledge-based recommender system

generates recommendations after consulting the product domain and the customer’s

preferences. In the end, IIA receives these recommendations and gives them to the customer.

This information can be presented in a graphical user interface.

In [34], a hybrid architecture integrates collaborative and knowledge-based filtering

techniques. This model is based on incomplete preference relations in a knowledge-based

system. It is very useful to get rid of the cold start problem. This model consists of three

phases.

� Acquiring the user preference information

� Building the user profile

� Recommendation

Acquiring the user preference information: It gathers the user’s preferences in two phases:

Setting favorite examples: the user will provide two or three favorite examples and with the

help of this, user can provide an incomplete preference relation as a form of one row.

Filling preference relation: This incomplete preference relation can be completed using

algorithms. These algorithms try to get a preference relation with a consistency of maximum

degree.

25

Building the user profile: The system can create the user profile with the complete preference

relation and description of the items from the product database.

Recommendation: Finally, the user profile is used to search for the product according to the

user’s preferences.

REJA: A Restaurant recommender system

This system has been implemented for restaurants for the province Jean, in Spain. The

system provides recommendations to its users about existing restaurants. It uses the

collaborative approach for the restaurant database and registered customers. In this system, a

customer has to be registered and provide ratings of known restaurants. This system also

uses the knowledge-based approach for new customers or when the collaborative approach

does not work. Knowledge-based systems use the incomplete preference relation to get the

minimum amount of information about the customer and the knowledge that the system has

about the restaurants [34].

In [27], the authors suggested a technique that introduces the contents of products into the

product-based collaborative filtering system to improve the performance of a prediction

algorithm. It is called the product-based clustering hybrid approach. In this approach, they

first applied the clustering algorithm to group the products. The main purpose was to group

the products into various sets and provide content-based information to determine

similarities. Each product has its own attributes, such as the movie product, which may have

actor, actress, director, etc. Thus, they grouped the items-based on those attributes. They

implemented the K-means clustering algorithm to group the products with some adjustments.

After the implementation of the clustering algorithm, they determined the sub-similarity of

the group-rating matrix, and then calculated the sub-similarity of a product-rating matrix.

Finally, they determined the total similarity that is the linear combination of the above two.

They implemented the Pearson correlation measures to determine the similarity that

measures the degree to which a linear relationship exists between two variables. They also

implemented the adjusted cosine similarity, in order to address the problem between different

rating scales given by the customers. The difference in rating scales between different

26

customers will give different similarities. Finally, they performed a weighted average of

deviations from the neighbor’s mean to give a prediction for a product. This can work well in

the cold start problem. In order to address this problem, they proposed two methods: one was

to use the average rating of all ratings on the new product’s nearest neighbors, which is

inferred by the group rating matrix; the second is using a weighted sum method for

prediction.

In [35], this hybrid recommender system integrates collaborative and content-based

approaches. Firstly, the content-based filtering algorithm is applied to find customers, who

share similar interests. Secondly, a collaborative algorithm is applied to make predictions. It

integrates the product information and product ratings to calculate the product - product

similarity, called product-based clustering method. It also integrates a customer’s

information and a customer’s ratings to calculate the customer – customer similarity, called

customer-based clustering method.

Hybrid filtering approach

The hybrid filtering approach is classified into two parts: an off-line and an online module.

The off-line module is a batch processing unit that runs periodically. It further consists of

two modules: the training and the clustering module. In the training module, it creates new

rating data and stores them in a database. This new rating data is determined using a

collaborative prediction to fulfill the sparse customer-rating matrix. In the clustering module,

it performs clustering again on the new rating matrix, in order to find a group of like-minded

customers. This group is small in size compared to the original set, thus making the

technique scalable.

The online module further consists of three modules; registration, rating and

recommendation module. The registration module gathers a customer’s information such as

sex, age, occupation, education, address, postal code, etc. This information is gathered by the

customer in a web form at the time of registration. This module also gathers a product's

information that is recorded by an administrator. On the other hand, the rating module

gathers a customer’s ratings of products in a rating database. The customer’s ratings range

starts from zero to five stars. Zero stars denote extreme dislike for a product, whereas five

27

stars denote high praise. The recommendation module searches for similarities between an

active customer and a group of like-minded customers that it obtained from the offline

component. They used the preferences of like-minded customers to recommend Top-N

recommended products to the current active customers by using the Pearson's correlation

coefficient algorithm.

In [12], the authors proposed a content-based predictor to enhance existing user data, and

then generated personalized suggestions through collaborative filtering. They implemented a

bag-of-words naive Bayesian text classifier extended to handle a vector of bags of words;

where each bag-of-words corresponds to a movie-feature such as actor and director.

Furthermore, they used the classifier to learn a user’s profile from a set of rated movies. The

learned profile is then used to predict the rating of unrated movies. User-based collaborative

filtering is used to create the neighborhood with the Pearson correlation algorithm.

In this approach, the authors created a pseudo user-ratings vector for every user ‘u’ in the

database. The pseudo user-ratings vector ‘vu’ consists of the item ratings provided by the

user ‘u’, where available, and those predicted by the content-based predictor. The pseudo

user-ratings vectors of all the users provide the dense pseudo rating's matrix ‘V’. Finally,

they performed collaborative filtering using this dense matrix.

Weighted Harmonic Mean

The accuracy of a pseudo user-ratings vector depends on the number of products that have

been rated. If a customer rates many products, the content-based predictions will be a lot

better, and additionally the pseudo user-ratings vector will be accurate. On the other hand, if

a customer rates only a few products, then the pseudo user-ratings vector will not be as

accurate. It has been observed that the inaccuracies in the pseudo user-ratings vector

sometimes produce wrong correlations between the active customer and their neighbors.

Therefore, in order to make a strong correlation, the authors used a weighted harmonic mean

factor in this approach [13].

28

In the above equation, ‘ni’ refers to the number of products that customer ‘i’ has rated. The

harmonic mean tends the weight towards the lower of the two correlated values – ‘mi’ and

‘mj’. Thus, the correlation between a customer’s rating profiles, with at least 50 customers

rated products each, will receive the highest weight regardless of the actual number of

movies each customer rated. On the other hand, even if one of the customer’s rating profile is

based on less than 50 customer-rated products, the correlation will be devalued appropriately

[12].

In [36], the authors proposed moreTourism, a hybrid recommender system that provides

valuable information about tourist resources depending on the customer’s profile, location,

schedule and the amount of time available for visiting their favorite places. Mobile

technology has evolved to offer valuable services for computation and connectivity. For this

reason, the authors suggested a platform that helps customers make decisions based on their

location, timetable, context and mobility needs. This proposed system consists of two

components – the smart phone and a server. A smart phone is a device that connects the user

with the system; the user can perform all the actions at any time. A server provides various

functionalities to the user such as presentation, recommendation, personalization,

socialization and advertising.

This proposed approach integrates collaborative filtering with content-based approaches.

Furthermore, these approaches are improved by social recommendations, taking into account

the tags provided by customers. These tags are used to create the customer’s tag cloud with

all the tags provided by the customer, weighted by the ratings and the attraction tag cloud

with all the tags that the customers have provided. In addition to that, a folksonomy is

created as an undirected graph that reflects the relationships among tags.

(7)

29

The social content-based approach computes the recommendations by comparing the

customer tag cloud with the attraction tag cloud considering not only the coincident tags in

both clouds, but also the relationships between tags reflected in the folksonomy. The social

collaborative filtering approach creates for each attraction a new tag cloud from the tag

clouds of those customers who liked it. In this manner, they achieve the target customer tag

cloud, which is shaped to the customers who may like this attraction. Then, the tag cloud of

the customer who wants to receive recommendations is compared to the target customer tag

cloud taking into account the relationships between tags by the folksonomy. This proposed

moreTourism service is currently being developed for Android Dev Phone 1 terminal with

SDK 2.1 and it has been successfully tested. This mobile application proved very useful for

the customer for rating tourist resources and achieving recommendations.

In [14], the authors proposed a unique cascading hybrid recommendation approach by

integrating the customer’s rating, a product’s feature, and demographic information about the

products. This approach builds product models based on a customer’s rating, a product’s

feature, and demographic information about the products.

Proposed Algorithm

This proposed algorithm consists of the following three steps: first, the similarity between

products using rating data, demographic data, and feature data is computed and stored.

Furthermore, adjusted cosine similarity between two products is used for measuring the

similarity over rating data, and vector similarity between two products is used for measuring

the similarity using demographic and feature vectors.

Boosted similarity, BoostedSim, is determined by a function, fmax that combines RISim,

DISim, FISim, RDSim, DDSim, and FDSim over a set of products in the training set. Let

RISim, DISim, and FISim represent the rating, demographic, and feature similarity between

the products respectively. Furthermore, let RDSim, DDSim, and FDSim represent the rating

similarity, demographic similarity, and feature similarity among candidate products found

after applying the rating correlation among all products. Formally, it can be specified as

follows:

30

This describes how to choose the function which boosts the utility of all customers MT over

set of products NT in the training set. This function uses the following equation for making

prediction, and tries to boost the utility.

In [37], the authors proposed a content-based collaborative hybrid recommender which

determines similarities between the customers-based on their content-based interest profiles

rather than comparing their rating patterns. Recommender systems are being used to suggest

relevant information according to the customer's preferences, thus EPSSs (Electronic

Performance Support System) could take benefit of the recommendation mechanisms that

have the effect of guiding customers in a large space of possible options. The JUMP project

intends to integrate an EPSS with a hybrid recommender system.

They proposed a mechanism to determine a group of customers,who have similar interest

profiles, by determining similarity values without requiring overlapping ratings. Customer

interest profiles are made with machine learning techniques by analyzing both textual

metadata about the product's description and the corresponding customer ratings. This textual

metadata contains natural language processing mechanisms, which depend on the linguistic

knowledge stored in the WordNet lexical database. Furthermore, the “captured” knowledge

is stored in semantic customer profiles. This approach overcomes the limitations of the

similarity measures based on co-rated products, because customers might be considered

similar not only if they like or dislike the same products. Finally, collaborative

recommendations are provided by a nearest-neighbor algorithm, which predicts scores for the

products to be recommended.

(8)

(9)

31

The Architecture of the JUMP EPSS

The objective of the JUMP project was to create an infrastructure that provides intelligent

communication among different systems. The key idea of this project was to use a

recommender system as the central engine that will provide the best information against the

various requests issued by the customers in a specific working context.

The EPSS has a central recommender system that communicates with legacy systems, such

as Enterprise Resource Planning (ERP), Human Resources Management system (HRMS),

Document Management system (DMS), and Learning Management system (LMS). These

systems manage structured and unstructured information, and the communication among

them that is based on a common ontology describing and connecting the various knowledge

bases. This common ontology provides a semantic representation of information that can be

used in a personalized way. Furthermore, in this approach a customer’s profile is divided by

implementing a bisecting k-means clustering algorithm for calculating neighborhood.

Particularly, the clustering algorithm is applied to the set of positive and negative profiles

representing positive and negative customer interests. The neighborhood for the active

customer is the union of all the customers contained in the cluster of positive and negative

profiles the active user belongs to. Clusters obtained by positive parts indicate groups of

similar customers, because they share the same interests, while clusters obtained by negative

parts indicate groups of similar customers, because they share common dislikes.

The authors validated the hypothesis that the knowledge contained in customer profiles is

useful to boost the performance of recommendations within an EPSS. Mean Absolute Error

(MAE) is used to measure the quality of recommendations, it calculates the average absolute

deviation between a predicted rating and the customer’s true rating. A lower MAE value

indicates more accuracy in the recommender system. Experimental results indicated a

decrease in MAE values that are achieved by using clusters of semantic-based profiles

compared to those obtained using the other techniques.

32

In [38], the authors proposed a hybrid approach that integrates content-based, collaborative

and demographic filtering techniques to improve the prediction accuracy, to allow better

coverage, and to overcome the cold start problem. The demographic characteristics of

customers (e.g, gender, race, age, employment status, occupation, etc.) are used to overcome

the cold start problem by categorizing the customers into various categories using a nearest

neighbor technique. They used the KNN algorithm to find the nearest neighbors. Each

category contains customers sharing similar demographic characteristics. For a new

customer, products are recommended using only the cluster to which this customer belongs.

In the same way, the combination of demographic characteristics and content-based

approaches allow to solve the problem of new products that are added in the system. The

authors evaluated their hybrid approach and compared it with various algorithms. Their

results indicated that their approach performs well for all customers as well as for the cold

start problem compared to the other methods.

Researchers have been working to boost the performance of recommender systems using

hybrid mechanisms. My proposed approach also incorporates the integration of content-

based with collaborative filtering techniques. As discussed in the related work, this

integration has shown better recommendation results. However, research is lacking on

providing useful justifications of recommended products. This proposed approach will

mainly focus on providing justifications for recommended products as this plays a crucial

role in obtaining the satisfaction and trust of customers. Trust creates a long term relationship

between a customer and an organization. It has been shown that a customer’s trust is

positively associated with a customer’s intentions to purchase a product and return to the

website. Furthermore, this proposed approach will also consider having an attractive and

organized explanation interface that will reduce the customer’s decision making time and

provide more confidence on it. It has been noticed by various researchers that the

presentation mechanism to display the recommendations attracts the customer more

effectively and boosts the trust on the recommender system [21-23]. Finally, this proposed

recommender system will allow the customer to interact with it in order to provide feedback

on the recommendations. Once the feedback has been provided, recommender system can

revise the recommendation process to provide better recommendations in future.

33

2.5. Trust in Recommender Systems

Trust is a widely-used term in computer science, such as trust management, trusted

computing and reputation system. In recommender systems, trust is the customer’s belief that

the recommender system (trustee) has the ability to create or recommend useful products.

There are two classes of belief: the trustee’s ability to create useful products and the trustee’s

ability to recommend useful products. On the web, two types of judgments can be used to

estimate the trust for generating recommendations: a trust statement and a customer’s ratings.

A trust statement can be either binary or scaled. Intuitively, the scaled one can provide more

information about the strengths of belief [26].

E-commerce is a field that influences people’s activities. It allows customers to write

reviews on products, which other customers read and trust thereby influencing them to

purchase a certain product. Due to the lack of face-to-face interaction with customers in

online shopping, customers' actions undertake a higher degree of uncertainty and risk

compared to traditional shopping. Hence, researchers have been researching these trust

related issues in the e-commerce area, and various trust models have been validated in

different circumstances. It is crucial to study these issues in recommender system where the

traditional salesperson, and subsequent relationship, is replaced by a product-recommender

agent.

In [26], the authors proposed a solution to deal with collaborative filtering issues by

associating similarity measurement from customers’ rating patterns with trust metric. In

collaborative recommender systems, user similarity can be used as one of the sources for

estimating recommender trust. User similarity is the measurement pertaining to how two

customers’ rating patterns are correlated. The Pearson correlation coefficient has been widely

used for calculating the similarity between customers and products. Customer similarity can

be used as one of the sources for estimating recommender trust. By combining customer

ratings and author information, one can obtain the author’s trust. It is also one of the sources

for estimating recommender trust. According to their experimental results, they found that

customer similarity and trust are strongly correlated. They claimed that customers who have

34

high trust but low similarity or vice versa should be seen as the unreliable advisors. The

experimental results showed that a good prediction strategy comes from filtering the ratings

from these unreliable customers [26].

Many researchers discovered that, in order to gain the trust of customers, the output of a

recommender system should be justified [19, 20, 22]. This increases the customer’s trust on

the specific recommender system. Trust creates a long-term relationship between a customer

and an organization. Additionally, it has been shown that a customer’s trust is positively

associated with a customer’s intentions to purchase a product and return to the website.

Providing explanations of recommendations justifies the selection of the product and allows

the customer to determine how much confidence to put in the recommendation.

Explanations help to educate the customer about the process of recommendations. It

removes the black box from the recommender system and provides the following major

benefits:

� Justification: It gives a customer reasoning behind recommendations in order to help for the

customer make a decision faster.

� User Involvement: It plays an important role in the recommendation process because it gives

the customer a chance to interact with it to provide feedback on the recommendations and

justifications.

� Acceptance: This depends on the customer’s satisfaction. Hence, providing reasoning behind

the recommendations boosts the customer’s decision process and overall acceptance of the

system.

The table below describes seven possible aims of explanation facilities in recommender systems

[19]:

Aim Definition

Transparency Describes how the system operates

Scrutability Allows users to interact with the system

Trust Boosts the user’s confidence in the system

Effectiveness Aids users in good decision making

Persuasiveness Sway users to buy

35

Efficiency Aids users in faster decision making

satisfaction Gives users easiness with navigation

Table 1: Aims for explanation [19]

In [19], the authors showed that explanations are basically linked with the way of displaying

recommendations, and with the degree of interactivity offered. Furthermore, they considered

how to measure the ‘quality’ of explanations for each of the aims mentioned in the above

table. For example, one way to evaluate how effective explanations are is to measure the

‘liking’ of the recommended product prior to and after using it. They also used a mechanism

to elicit the key features from the product domain. The rationale behind studying product

features is that simply saying that two products are similar does not obtain the attention of

the customers to observe the commonality between products, while an explanation using

feature-based information can be useful to help a user understand how two products are

related. Furthermore, in the study, they performed an experiment to investigate whether the

balance between more features in more detail has an impact on gaining the customer’s trust.

They validated this with trust questionnaires to determine how much participants put their

trust in recommender systems that are based on explanation. According to their findings, the

results of this study were not definite, however some customers trust was impacted positively

by more features, and others by more detail.

In [20], the authors described Amazon’s justification style: “Customers who bought product

‘X’ also bought products’ Y and Z’. This is called the “nearest neighbor” style of

justification. In contrast, another way to recommend is: “Product ‘Y’ is recommended

because you rated product ‘X’”. This is called the influence style of justification. Many

researchers claim that the influence style is better than the nearest neighbor style, since it

allows customers to accurately predict their true opinion of a product. Both of these styles

cannot adequately justify their recommendations, since they are based only on data about

customer’s ratings or navigational data, ignoring content data, which is extracted in the form

of features that are obtained from the products. Content data contains a valuable source of

information in addition to rating data. In addition to this, content data can be useful for

providing the justifications against recommended products. In order to provide justifications,

36

content-based filtering is used to explore the features of a product. Hence, the integration of

content with rating data helps to achieve a stronger correlation between customers and

products, which provide more accurate recommendations with justifications.

2.6. Explanation Interfaces of Recommender Systems

The interfaces of a recommender system play a crucial role in obtaining the satisfaction of

customers, since it boosts the customers’ decision process by reducing their time and effort

to find their desired products. Researchers have started to investigate the effective design

factors that can accelerate and impact the promotion of a customers’ trust, as well as their

behavioral intentions [23]. Recommender systems provide information about the products

they recommend. This includes product description, reviews written by other customers,

average user ratings, and predicted personalized ratings for the active customer. Some of the

recommender systems also provide a way for customers to rate a product when it is

recommended.

The attractive interface of a recommender system is crucial for explaining the reasoning

behind the recommended products, as it boosts the customer’s decision process and provides

trust, security and privacy as well. Hence, researchers have started to consider this as a

crucial design factor. Only a few researchers have investigated the effect of interfaces on the

use of recommendations, most research in recommender systems has focused on achieving

the best results from recommendation algorithms. Their research has showed that customers

trust more in such a system that has a good GUI interface to explain the reasoning of

recommended products [2, 23].

Reasoning-based recommender systems use traditional strategies for displaying and

explaining recommendations to the customers and commercial websites display the

recommended products in a rank-ordered list and use a “why” component along with each

product to explain the computational reasoning behind it [23]. Various measures have been

used to evaluate the trust and interfaces of recommender systems. In [23], the authors

measured variables that are related to their proposed competence-based trust model for

recommender systems. This trust model consists of three main components: system-design

37

features, competence-inspired trust, and trust-induced behavioral intentions. System-design

features are useful for the promotion of overall competence perceptions that include three

measures: recommendation quality, transparency, and user-control. The overall competence

consists of crucial measures: perceived ease of use, perceived usefulness decision

confidence, cognitive effort, and satisfaction, which have been determined as the primary

factors of persuading customers to accept and use a certain technology. Trusting intentions

are behavioral attitudes expected from customers once their trust has been built. They

determine whether customers will potentially reduce their decision-making effort in repeated

visits upon establishing a certain trust level with the recommender system [23].

In [19], the authors compared various mechanisms of presenting explanations. They wanted

to measure the qualitative feedback from various interfaces. They focused on various things,

with a sixty seven participants. In this experiment, they compared graphical and textual

equivalents. They found that a graphical interface gained the most attention of the

participants; it did not have a textual counterpart. Furthermore, they received a great

qualitative feedback, including the relevance of the content. For example, most of the

participants felt that information about the recommendation confidence should be excluded

altogether, or at least not be displayed as a justification for a recommended item. Rather, the

participants felt that uncertain recommendations should simply be excluded.

This proposed approach adopts an attractive GUI-based explanation interface that mainly

displays the recommendations for the customer. This approach has a categorized presentation

mechanism that displays the same type of recommendation under one category, rather than

displaying each product individually. Furthermore, it explains the reasoning behind the

recommended products. This interface mainly consists of two sections. The first section

displays the current user’s rated products and the user’s favorite products type. The second

section displays the recommendations with justifications. A movie’s contents, such as movie

type, actors, director and movie release date, are being used to justify the reasoning behind

the recommendations. Furthermore, the average rating of each recommended movie is being

displayed to the customer that shows the popularity of that movie among other users. Finally,

this interface allows the customer to interact with the recommender system to provide

38

feedback on the recommendations. Overall, the strategy of displaying and explaining

justifications will be very effective, as it has been observed that customers trust more in a

system when there are explanations on how the recommended products have been computed

and displayed.

From the above-discussed recommendation techniques, I am going to use collaborative

filtering, content-based filtering and context-based filtering in my proposed model. These

three techniques will be used to generate recommendations and justifications for the

customer. From collaborative filtering, item-based collaborative filtering will be used to

generate item-based recommendations from the rating data. Furthermore, content and

context-based filtering will be mainly used to generate useful justifications for

recommendations. As this proposed approach mainly focuses on providing justifications, a

product’s features and the active customer’s context dimensions will be used. Finally, an

attractive presentation mechanism will be used to display all the information about

recommendations.

39

Chapter 3: The Proposed Model

Hybrid techniques have been used by researchers to overcome the drawbacks of individual

technique and mainly to improve the predictions of recommender systems. There are various

ways to integrate more than one technique as discussed in the chapter 2. My proposed hybrid

approach is the integration of content and context-based systems with collaborative

recommender systems, since this is the most successful and widely-used mechanism.

Research is lacking on providing justifications against recommended products. In this

proposed approach, I will mainly focus on providing valuable recommendation and various

types of justifications for recommended products, as this plays a crucial role in obtaining the

satisfaction and trust of customers. In addition to this, the method of presenting

recommendations and explaining justifications will be very effective as it has been observed

that customers trust more in a system when there are explanations on how the recommended

products have been computed and displayed [22]. Finally, this proposed recommender

system will allow the customer to interact with it to provide feedback in various forms on the

recommendations and justifications.

3.1. Hybrid approach: Content and context-based collaborative filtering

Initially, many recommender systems were very simple query based information retrieval

systems, which are called content-based recommender systems. They recommend products to

a customer-based upon a description of the product and a profile of the customer’s interests.

Therefore, reliable and automatic determining of the results of content analysis and

customer’s preferences are required for this system [25]. Furthermore, in order to have a

sufficient set of features, the content must be in a form whose features can be extracted

automatically. To overcome these above limitations, researchers have been working on the

integration of content data with rating data in various ways. My proposed approach will look

into the integration of content and context data with rating data using a different mechanism

that will mainly focus on providing justifications for the recommended products. This

integration will be very useful in achieving a stronger correlation between customers and

products. Finally, this approach will have a categorized attractive explanation interface that

will display the recommendations with justifications and also minimize the customer’s

decision-making time.

40

3.2. Design of the Proposed Model

This proposed hybrid recommender system consists of three major components as shown in

the diagram below:

Figure 2: Design of the Proposed Model

Each recommendation technique requires some input upon which to base the

recommendations. The input of this proposed system also contains a customer’s interest

profile, community or rating data and product information. Accurate customer information

has a crucial role for integrating different recommendation techniques. I have classified a

customer’s profile into two types of information: customer description and customer

behavior information. Customer description information includes basic information such as

name, gender, geographical location, occupation, etc. That information is usually gathered in

the process of customer registration. Customer behavior information can be gathered in

various ways such as from previous purchasing history, navigation of pages, customer’s

ratings on products and feedback provided from the customer.

In this proposed approach, customer behavior information is gathered by giving ratings to the

products as shown in the customer-product matrix below, where c1 to c5 represents the

41

customers and p1 to p5 represents the products. Customers used a rating scale of 1 to 5,

where 1 indicates a less favorite and 5 indicates a top favorite product. The customers that

have not given ratings to products are indicated by a value 0. Furthermore, a customer’s

rating information also incorporates contextual information that is linked to the application.

This means that the customer’s context is being considered when they provided a rating, as

shown in the below rating function:

R: Customers * Product * Context -> Rating

This contextual information is gathered explicitly from the customer and also implicitly from

the application. Context aware recommender systems predict a customer’s preferences by

incorporating contextual information into the recommendation process. Hence, it is very

important to consider not only information about products and customers, but also

contextual information such as the shopping date, time, location and who accompanies the

main customer / buyer [28, 29].

 P1 P2 P3 P4 P5

C1 3 4 5 3 4

C2 4 3 4 5 0

C3 3 5 3 4 5

C4 0 3 4 5 0

C5 4 5 3 0 4

Figure 3: Customer Product Matrix

With the customer’s behavior information, the system can get an idea of their rating behavior

and an idea of their favorite and non-favorite products. In this approach, we assumed that

each product has four features (f1, f2, f3, f4) as shown in the product feature matrix below,

where 1 indicates that this feature is available in the product. With these features, the system

will create a feature profile for each customer containing their favorite features. This feature

(10)

42

profile is created using a customer’s preference profile and the products feature profile. In

order to create a feature profile, the system will select only those products that are highly

rated by a customer. These steps or components are described in detail in the following

sections.

 f1 f2 f3 f4

P1 1 1 1 1

P2 1 1 1 1

P3 1 1 1 1

P4 1 1 1 1

P5 1 1 1 1

Figure 4: Product Feature Matrix

3.2.1. New customer profile

For a new customer, description and behavior information will be gathered during the

process of customer registration. For customer description information, new customers will

find a link “Register here” on the main page of the system. This will be required mainly to

enter login credentials for creating a new account. In the next step, this proposed approach

will ask the new customer to rate some products. The system will offer a set of products and

the customer will select the closest ones to their necessities, tastes, or preferences. In this

step, the system will offer only a small subset of the products. This subset will include

favorite products as well as those products that are not liked by many customers. In addition,

these products will belong to all the available categories that will allow customers to find

more appropriate products that are suitable to their tastes. The customer will provide rating

information regarding which of these products are closer to their real expectations. With this,

the system will have the feature and preference profile of a new customer.

3.2.2. Collaborative Filtering

This mainly consists of two types: user and item-based collaborative filtering. As described

earlier, user-based collaborative filtering has crucial limitations such as sparsity, scalability,

43

performance and does not work efficiently with a large dataset [11]. Therefore, item-based

collaborative filtering was used in the proposed approach. It is based on item relations

instead of user relations, as in user collaborative filtering. Item-based collaborative filtering

consists of representation, neighborhood formation and recommendation generation, as

described below [11, 14]:

� Firstly, all the products rated by an active customer are retrieved.

� Secondly, the item-based approach looks into the retrieved products from the step 1 and

determines how similar they are to target product ‘i’ and then selects the ‘K’ most similar

products. In addition, their corresponding similarities are also determined.

� Finally, after finding the most similar items, the prediction is then determined by taking a

weighted average of the active users rating on these similar products ‘k’.

This process is illustrated using the following diagram. Here, the purpose is to find Alice’s

rating for item5. As the algorithm described above, the first step is to retrieve Alice’s ratings

of all the items. In the second step, a set of the most similar products (K) to item5, with their

similarities, are selected. In the final step, we take Alice's ratings for these similar items to

predict the rating for Item5 [39]. The process of item similarity computation and prediction

generation is described in details in the following section.

44

Figure 5: User-Item Matrix [39]

Algorithm 1: Item-based Collaborative Filtering Algorithm

Input:

Active customer (User ID)

Community Ratings

Output:

S= Set of Item-based recommendations

P= Set of preferences of predicted items

Main Procedure: Calculate the recommendations for active customer

1- Create a MYSQL data source

2- Assign the data source properties (Parameters)

Set data source= root (user)

Set data source= raza (Password)

Set data source= localhost (Server Name)

Set data source= 3306 (Port)

Set data source= hybridrecommender (Database Name)

3- Create a JDBC data model

Assign the parameters to data model

Set data model= data source

Set data model= Database table ‘ratings’ with the fields ("User_id", "movie_id", "rating",

"rating_date")

4- Calculate the item similarities using equation 11(Pearson Correlation) based on the

data model

 Item1 Item2 Item3 Item4 Item5

Alice 5 3 4 4 ?

User1 3 1 2 3 3

User2 4 3 4 3 5

User3 3 3 1 5 4

User4 1 5 5 2 1

45

Set similarity = PearsonCorrelationSimilarity (model)

5- Build the item-based recommender based on the model and similarity

Set recommender = ItemBasedRecommender (model, similarity)

6- Run recommend function using equation 12 that takes two parameters of User ID and

Maximum recommendations required

Set recomendations = recommender.recommend (user ID, maxRecomendationsReqd)

7- Display all the recommendations and add them in the list of recommendations (S)

For i= 1 to recomendations.size

 Display recomendations.get(i).getItemID - recommended item

 Display recomendations.get(i).getValue - Predicted preference value

 Add recommended item in the list

 End For

Item Similarity Computation

The Pearson Correlation Similarity or the Cosine / Vector Similarity metrics have been used

to find the similarity between customers and products in the literature. The most widely used

similarity measurement is the Pearson Correlation Coefficient. In order to calculate the

similarity between two products one must first isolate the customers who have rated both of

these products and then apply a similarity computation technique. In the case of the Pearson

Correlation Similarity, the difference is that we are not using the ratings that two customers

have given for a common product, but the ratings that two products ‘i’ and ‘j’, whose

similarity we want to calculate, have been given by a common customer ‘u’. This can be

calculated using the following equation [11, 25, 27].

Here indicates the rating of user u on product i, is the average rating of the i-th

product [25].

 Once we have calculated the similarities between all the products in the user-

(11)

46

product matrix, collaborative filtering isolates the most similar products based on the

similarity measures. Once this is done, the next step is to generate a prediction for that

product.

Weighted Sum

The prediction of a user on a target product is computed after we have a similarity score of

all the other products to the target product. The most common way to achieve this is through

a weighted sum. The predicted rating is the weighted sum of the ratings given by the other

customers to that product, where the weights are the similarity coefficient of the active

customer with the other customers. This clearly indicates that the rating expressed by a very

similar customer has a larger influence on the rating predicted for the active customer. This

can be calculated using the following equation [25].

∑

∑

=

|)(|

),*,(

,,

,

,

NiNitemsallsimilar

NitemsAllsimilar

iu

s

NuRNiS
P

Where s i,N is the similarity between product i and the other product in set N. R u,N is the rating

of user u on the products in the set N. N is the set of the products which are rated by user u.

The predicted value will have the same scale as the rated products such as 1-5. However, in

order to determine the accuracy of a recommender system, the proposed algorithm sets the

threshold value to determine whether this product is relevant or irrelevant for the active

customer. This threshold value is based on the predicted ratings that are achieved after

running the item-based collaborative filtering algorithm.

3.2.3. Explanation of Recommendations

Once the item-based recommendations are determined, the next step of this proposed

approach is to generate final recommendations with justifications. It is very important for a

recommender system to explain the reasoning behind the recommended products. When

customers are selecting the right product to purchase, the ability to convince them to buy that

(12)

47

product should be an important goal of any recommender system. Furthermore, an attractive

presentation mechanism is needed to display the recommendations with justifications that

will take customer’s less time to find their desired products. Therefore, these key points are

taken into consideration in my proposed approach.

3.2.3.1. Customer’s Feature and Preference Profiles

In this proposed approach, a customer’s feature and preference profiles are being created for

providing final recommendations with justifications. The product features (f1, f2, f3, f4, etc.)

mainly describes the characteristics of the product. With the customer behavior information,

the system will create a feature profile for each customer that will have their favorite

features. This feature profile is created using a customer’s rating information and the

products feature profile. In this feature profile, the system will select only those products that

are very highly-liked by a customer. In addition to this, from the customer behavior

information, the system will also create a preference profile that will have their favorite

context attributes. In order to generate more personalized recommendations and

justifications, it is very important to consider contextual dimensions that are associated to the

application. Hence accurate prediction of customer preferences depends on the degree to

which relevant contextual information is considered in the recommendation process [28, 29].

This clearly indicates that the integration of content and context with rating data helps to

achieve a stronger correlation between customers and products, which provides more

accurate recommendations. In addition to this, the consideration of content and context can

provide high quality justifications for recommendations.

A database view has been created, which stores the customer’s feature profile with their

favorite features and customer’s preference profile with their context attributes, as shown in

the customer profile matrix below. In this approach, we assumed that each customer has at

least four favorite features (f1, f2, f3, f4, etc.) and two context attributes (cn1, cn2, etc.) that

are indicated by value 1 in the matrix. A database view is similar to the database table which

also consists of a row and column, so you can get and modify data on it in the same way as a

table. Database management systems stores database views as SQL SELECT statements with

48

various joins. When the tables that are the data source of a database view changes, the view

reflects that changes as well [40].

 f1 f2 f3 f4 cn1 cn2

C1 1 1 1 1 1 1

C2 1 1 1 1 1 1

C3 1 1 1 1 1 1

C4 1 1 1 1 1 1

C5 1 1 1 1 1 1

Figure 6: Customer Profile Matrix

Once these profiles have been created, the system will use these profiles to filter the final

recommendations from the initial item-based recommendations. Content and context post-

filtering mechanism are being used in this proposed approach that filter out those

recommendations that are irrelevant to the active customer’s content and context. Contextual

post-filtering is a derivation of recommendations via contextual preference elicitation and

estimation mechanism. It has been widely used for tourist and mobile recommender systems,

where current context plays a key role in generating more personalized recommendations.

[28, 29]. It ignores context information (C) initially from the input data and the unknown

ratings are predicted using traditional recommender systems. Finally, recommendations are

generated for each customer according to a customer’s favorite content and context [29].

This proposed approach employs the post filtering mechanism, where item-based

collaborative filtering is applied to the customer’s ratings that generate the initial

recommendations. Once these initial recommendations are generated, these will be filtered

out according to content and context. The process of computing the content and context-

based recommendations with justifications consists of comparing each recommended

product’s features and context attributes with the customer’s feature and preference profiles,

as described in the proposed algorithm 2. Hence, it is very crucial for the customer to rate the

products very carefully, since recommendations are fully dependent on the profiles.

49

Algorithm 2: Proposed Algorithm for Creating Recommendations with Justifications

Input:

S= Set of initial recommendations (item-based recommendations)

F= Set of product’s features (f1, f2, f3, f4, etc.)

CF= Active customer’s feature profile

CP= Active customer’s preference profile with context dimensions

CP–S= Customer’s preference profiles of other customers who have rated to recommended

products

Main Procedure: It consists of two steps:

� Comparison of recommended product’s features with the feature’s profile of the

active customer

� Comparison of active customer’s preference profile with other customers who have

rated recommended products

For each item in S {s1, s2, s3, etc.}

1- Compare features of s1 with the feature profile of the active customer (CF)

If s1’s product type (f1) IN CF then

i- Include s1 in the final list of recommendations (N)

ii- Include feature f1 (product type) as a justification

iii- Compare other features of s1 with the feature profile of the active customer (CF)

If s1 (f2, f3, f4) IN CF then

 Include these features as a justification

 Else

 Ignore these features

 End If

2- Compare active customer’s preference profile (CP) with other customer’s preference

profiles (CP–S) who have rated to recommended products (S)

If features of CP–S in CP then

 Include these features as a justification

50

 Else

 Ignore these features

End If

Else

Reject s1

End If

End For

Output:

N= Final list of recommendations

Display content-based justifications

Display context-based justifications

In order to implement this proposed approach, movies are being used as an example product

in this thesis. Hence, a movie’s features such as movie type (f1), actors (f2), director (f3) and

movie release date (f4) are being used for providing content-based justifications. When a

customer rates any specific movie, the system stores the features of those movies that are

highly rated by the customer. This rating data also includes a customer’s context attributes

such as the time of week, as well as their companion, which means that the rating given to a

movie by a customer depends on how the movie has been watched and at what time of the

week. These context attributes are being used to generate personalized recommendations

with justifications.

The process of computing the justifications is shown in the proposed algorithm 2. If it finds a

similarity in these profiles then these attributes will be used to provide the justifications of

recommended movies. The above proposed algorithm compares a movie’s features such as

movie type, actor, director and movie release date of each movie from the initial set of item-

based recommendations with the active customer’s feature profile. In addition to this, it

compares a customer’s context dimensions from the preference profile such as the time of

week and their companion, with other customer’s profiles who have rated the recommended

movies. First, the movie type of a recommended movie should belong to the types of rated

movies. This clearly indicates that this recommender system would only recommend the

51

same type of products (movies) that the active customer has shown interest to. Second, the

other content and context attributes will be matched to the rated movies. Finally, for the

matched product types, a product’s features and customer’s context attributes will be used to

generate final recommendations with justifications. Hence, it is very crucial for the customer

to rate the products very carefully since recommendations are fully dependent on the profiles.

3.2.3.2. Justification Style

Various justification styles such as nearest neighbor and influence styles have been used.

However, they cannot adequately justify their recommendations, since they are based only on

data about a customer’s ratings or navigational data and ignore content and context data.

Content and context data is extracted in the form of features that are obtained from the

products and the contextual information that is associated to the customer. It contains a

valuable source of information that can be used to provide justifications. The justification

style used in this approach combines the “keyword based” with the influence styles that will

include justifications from a product’s features and the active customer’s context dimensions.

It has the following form: “Product X is recommended, since it contains the product’s

features and context dimensions which are included in products Z and W that the active

customer has already rated”. For example, “the movie ‘The Godfather’ is recommended since

it contains the actor ‘Al Pacino’ who also acted in the movie ‘Glengarry Glen Ross’.

Furthermore, this movie has been watched on a weekday with a friend”. This clearly

indicates that the active customer’s behaviors with context dimensions are being used to

generate more personalized recommendations that will boost the customer’s trust on

recommender system.

3.2.3.3. Explanation Interface

This proposed approach adopts a GUI-based explanation interface that displays all the

information regarding recommendations and their justifications to the customer. This

approach has a categorized presentation mechanism that displays the same type of

recommendations under one category rather than displaying the same type of product

individually. It clearly eliminates duplicate information and saves time when making a

decision. This proposed interface mainly consists of two sections as shown in the diagram

52

below. The first section displays the current customer’s rated products and the customer’s

most favorite products type. The second section displays the recommendations with their

justifications.

Explanation Interface of Hybrid

Recommender System

Active Customer’s Rated Products

Product 1

Product 2

Product 3

Favorite Product Types

Product type 1

Product type 2

Recommendations For Active Customer

Product type

Product 1

Reasoning Behind to Recommend This Product

Content Based Knowledgable Justifications

Justification

Context Based Knowledgable Justifications

Justification

Interacting with Recommender System – Improve your

recommendations

Comments

Current Trend – Most Popular Products

Based on your Favorite Product Types

Product type

Product 1

Reasoning Behind to Recommend This Product

Justification 1

Justification 2

Justification 3

Figure 7: Design of the Proposed Explanation Interface

53

As movies are being used as an example product in this thesis, hence this explanation

interface displays the movies recommendations for the active customer. The first section

displays the active customer’s rated movies and the most favorite movie types. In the second

section, the recommendations will be presented in order for the active customer. The

recommendations from the most favorite movie types will be displayed first and then other

movies will be displayed. The movie type is being used to categorize the recommendations

in different sections or blocks. This means that if there are two recommendations with the

same movie type, then it will be displayed under the same category (movie type).

Furthermore, justifications will always be displayed with each recommendation that clearly

explains the reasoning behind this recommendation. In addition to this, the average rating of

each recommended movie is being displayed to the customer that shows the popularity of

that movie among other users. Finally, the current most-popular movies that belong to the

active customer’s favorite movie types will be recommended. This will indicate the current

trend of other customers that have the same preferences with the active customer. It has been

noticed by researchers that the organized view of recommended product lists was more

accepted by customers to accelerate the process of product comparison and choice making

than the traditional “why” based list view [23]. Overall, the strategy of displaying and

explaining justifications will be very effective, as it has been observed that customers trust

more in a system when there are explanations on how the recommended products have been

computed and displayed.

Interacting with Recommender System

Once the recommendations are presented to the customer, the recommender system should

allow the customer to interact with it. It is very crucial for the performance of recommender

systems to allow the customer to provide feedback on it, since this feedback would provide a

chance for the recommender system to improve the prediction. It has been noticed that if

customers are allowed to make alteration to the recommended products then they can find

their desired products quicker [22]. Hence, this proposed explanation interface allows the

customer to provide feedback on recommendations. This feedback can be provided

by modifying the previous ratings and also providing direct suggestions in the form of ‘like’

or ‘dislike’. In addition, customers can make a suggestion on a product’s features that were

54

used to provide justifications. This process can improve the recommendations as described

below.

As movies are being used as an example product in this thesis, hence movie’s features are

being used to provide justifications. Once justifications are provided, customer’s can provide

feedback on the movies features (f1, f2, f3, f4, etc.) in the various following forms such as:

� I want further recommendations on Action movies (f1)

� I do not want further recommendations on movies with actor such as ‘Al Pacino’ (f2).

� I do not want further recommendations on movies directed by such as ‘George Lucas’

(f3).

Once the feedback is provided, the system can update the active customer’s feature and

preference profiles based on this feedback. Now the process of computing the justifications

should be based on the updated customer’s profile. Hence, the system will be able to

generate better recommendations for the customer.

55

Chapter 4: System Implementation

This chapter presents the implementation of a recommender system, which is built on the basis of

the proposed hybrid approach discussed in Chapter 3.

4.1. System Architecture

In order to evaluate my proposed approach, I developed a web based application to

experiment the applicability and performance of the designed model. This web application is

designed on a three-tier model and consists of the three main components shown in the figure

below [41]:

� A client PC (Browser)

� Application or Web Server

� Database Server

Figure 8: Three Tier Architecture [41]

The three-tier architecture consists of presentation and application logic in the client,

application and business logic in a middle tier application server, and data managed by

database servers in the

third tier. The application is typically controlled by user interface in

the client with substantial application processing taking place in the middle tier application

server. In the three-tier model, commands or requests are sent to a "middle tier" of services,

56

which then sends the commands to the data source. The data source processes the commands

and sends the results back to the middle tier, which then sends them to the user. JDBC API is

being used more and more in the middle tier of three-tier architecture. There are some

features that make JDBC a good server technology, such as its support for connection

pooling and distributed transactions [41].

4.1.1. Technologies and Tools

This proposed hybrid recommender system is developed using the following open-source

tools and technologies with Java platform in the Windows XP environment.

� Netbeans IDE: It is an open source integrated development environment for developers to

develop various types of desktop and web-based applications.

� Java Server Pages (JSP): a server-side Java technology was used to create web pages. JSP

allows software developers to create dynamically-generated web pages, with HTML, CSS

and Java Script, in response to a web client request to a server.

� Java Database Connectivity (JDBC) is used to communicate with the database. The JDBC

API is a Java API that can access any kind of tabular data, especially data stored in a

relational database management system. Mainly, it establishes a connection with the data

source. A data source can be a DBMS, a legacy file system, or some other source of data

with a corresponding JDBC driver. Typically, a JDBC application connects to a target data

source using one of two classes: ‘Driver Manager’ and ‘Data Source’.

� MYSQL database engine version 5.1 was used for storing and manipulating with the

MovieLens dataset.

� MySQL Command Line Client and MySQL Query Browser: These are front-end tools that

were used for DDL (data definition language) and DML (data manipulation language)

statements.

� Tomcat web server: This web application is hosted using Tomcat web server. It is an open

source software implementation of the Java Servlet and Java Server Pages technologies.

� Notepad++: This is a very useful source code editor that was used to write and edit the Java

code and the MovieLens text files.

57

MS-Visio 2010: Is a Microsoft tool to create or design various types of diagrams. This was

used to create the entity relationship diagrams for my database schema.

4.1.2. Database Design

In order to implement this proposed approach, movies are being used as an example product

in this thesis. Hence, the MovieLens dataset was used for evaluating the proposed approach.

In order to implement the proposed approach, the MovieLens dataset was modified

accordingly. A ‘password’ attribute was added in the customers table, in order to login to the

application. The MovieLens dataset does not have content and context data, hence the dataset

was modified accordingly as explained below in the algorithm 3. The data regarding a

movie’s features such as actors and directors was extracted from the international movie

database (IMDB). IMDB is an online database for movies and television shows. It has all the

information that is associated with movies such as actors, directors and movie types. The

information for those movies that were in the MovieLens dataset was collected [42]. In

addition to this, a customer’s context dimensions (time_of_week and companion) were added

to generate more personalized recommendations with justifications. The context data for time

of the week and companion dimensions indicates that the rating given to a movie by a

customer depends on how the movie has been watched and at what time of the week.

Algorithm 3 describes the process to add a customer’s content and context data. For

implementation, matching content and context data was added in the dataset. Hence, the

proposed algorithm 2 finds the matching data in the active customer’s profile and the other

customer’s profile who rated the recommended movies.

Algorithm 3: Proposed Algorithm for Updating the MovieLens Dataset

Input:

S= Set of rated movies

Main Procedure: Addition of content and context data

For each movie in S{s1, s2, s3, etc.}

s1(actor) = IMDB database

s1(director) = IMDB database

If s1(movie_type) = 'Action' OR s1(movie_type) = 'Comedy' Then

time_of_week = 'Weekday'

companion= 'Family or Friends'

58

End IF

If s1(movie_type) = 'Romance' Then

Time_of_week = 'Weekend'

companion= 'Significant Other'

End IF

End For

Output:

M= Set of rated movies with movie’s features and customer’s context data

For database implementation, a MYSQL database was created with the name of

‘HybridRecommender’. Once the database was created, various tables were created as shown

in the entity relationship diagram below. In order to load the dataset, MYSQL load utility

was used that reads rows from a text file into a table at a very high speed. The file name must

be given as a literal string. All MovieLens text files were placed in the root (C:\) directory

and the following command was used to load data into the table.

Figure 9: Entity Relationship Model

59

MYSQL Load Statement

LOAD DATA LOCAL INFILE '/users.txt'

INTO TABLE customers

FIELDS TERMINATED BY '|'

LINES TERMINATED BY '\n'

(User_id,age,gender,occupation,zip_code);

The database view ‘Customers_profile_V’ was mainly created to retrieve a customer’s

favorite features and context attributes. The database view is dynamic because it is not

related to the physical schema. The database view is stored as view definition as SELECT

statements. The database view always shows updated data since it always retrieves the data

from the database tables [40] . The database objects are:

� Customers: It has customer_id, password, age, gender, occupation and zip code attributes.

� Products or Movies: It has movie_id, movie_title, movie_rdate, movie_url, actor, director

and various movie_types (action, comedy, romance) attributes.

� Ratings: It has customer_id, movie_id, rating, rating_date, time_of_week and companion

attributes.

� Customers_Profile_V: It has customer_id, movie_id, actor and director, movie type,

time_of_week and companion attributes.

4.1.3. System Performance

This approach is being tested with the training and test data from the MovieLens dataset. It

has 100,000 ratings from 943 users on 1682 movies [14, 25]. As this is a large dataset, it is

very important to consider the response time of the algorithm. Therefore, database indexes

have been implemented on the database tables. Generally, indexes are something extra that

you can enable on your MySQL tables to boost the system performance. The index entries

work like pointers to the table rows, allowing the query to quickly find which rows match a

condition in the WHERE clause, and retrieve the other column’s values for those rows [43,

44].

60

4.1.4. System Configuration

As this proposed approach was tested using Windows XP operating system, a new parameter

needed to be entered in the windows registry. Since, MovieLens is a large dataset, the JDBC

interface needs enough capacity to open many connections from the TCP ports. This

parameter controls the maximum port number that is used when a program requests any

available user port from the system. Without this entry from the JDBC, the system gives the

following exception:

Communications link failure: The last packet sent successfully to the server was 0

milliseconds ago. The driver has not received any packets from the server [45].

4.2. System Implementation

This web based application is developed in JAVA using NetBeans IDE and movies are being

used as an example product in this thesis. Hence, this implementation has been done for

movies (product). The figure below is taken from NetBeans IDE, and shows the structure of

the entire project. It mainly contains the web pages and classes of the packages as described

below in detail.

61

Figure 10: Structure of Pages and Class Packages

4.2.1. Web Pages

The following are the JSP web pages that were developed for the implementation of this

proposed recommender system. Here is the brief description of each web page and the code

is described in the Appendix section.

� Index: This is the main page of the application. This page briefly describes the proposed

hybrid recommender system and highlights the main contributions of this system. It contains

62

the login form for existing customers to login to the application to obtain recommendations,

as well as a web link for new customer to the registration page.

� Check: This page validates the login credentials of the active customer from the database. If

this validation is successful then it displays the recommendations on the explanation

interface of this proposed recommender system. This page mainly contains the logic to create

an explanation interface that mainly displays the recommendations and their justifications.

� Register: This page is created for the new customers to get registered in the system. It

requires basic information to create an account in the system.

� Validate: This page validates and stores the new customer’s information into the database.

Furthermore, in order to create a profile of the new customer it displays some movies for

which the new customer has to provide ratings to show his /her preferences or tastes about

the available products.

� Rating-result: This page validates the entered rating and displays the result whether the rating

has been successfully entered into the system or not. It is very important for the active

customer to rate with the same rating scale that was originally used by the system. This

system uses 1 to 5 to rate the products, where 1 indicates the least favorite and 5 indicates the

most favorite.

� Content: This page has a search form for the active customer, to allow them to search for a

specific available product. It has the functionality to search through the entire database about

the required product.

� Content-result: This page validates and displays the search results for the active customer.

4.2.2. JAVA Package

The web based application has a Java package that has various classes in it. This package

contains all the core business logic that is required to develop the proposed hybrid

recommender system. The code of the following classes is described in the Appendix

section.

� Item-based recommender

� Explaining reasoning

63

Item-Based Recommender

As described in the last section, an item-based recommender system is used in the proposed

approach. ‘Mahout Library’ is used to build the item-based recommender. Mahout provides a

scalable machine learning library that includes core algorithms for clustering, classification

and batch-based collaborative filtering [46]. A JAVA class with the name of ‘Itembased’

was created, in a package, which has the functionality to recommend products to the

customers. It mainly consists of the following steps.

� First, create a database data source with the parameters of schema name, password,

server name, database name and port. This data source is used to create a MYSQL

database data model. This data model is based on the customer’s rating data of the

movies. It is created with the following ‘MySQLJDBCDataModel’ function of the

item-based recommender class. This function takes six parameters. It consists of the

data source’s name, rating (table name), user_id, movie_id, rating and rating date.

MySQLJDBCDataModel model = new

MySQLJDBCDataModel(dataSource,"ratings", "User_id", "movie_id", "rating",

"rating_date");

� Second, the ‘Pearson Correlation’ coefficient is used (equation 7) to compute the item

similarities between the items that are loaded in the data model. It returns the degree

of similarity of two items, based on the preferences (ratings) that users have

expressed for the items. It returns values in the range -1.0 to 1.0, with 1.0

representing perfect similarity.

� Finally, the item-based recommender is built on the previously-computed data model

and similarities. Once the item-based recommender is built, then the recommender

function is executed which takes two parameters (User ID and Maximum

recommendations). This following line of code indicates that three items will be

recommended to the customer1.

 List<RecommendedItem> recomendations = recommender.recommend(1,3);

64

Explaining the Reasoning

This class is created to explain the reasoning behind the recommended products. It has all the

required functionality to provide justifications to the customer in order to obtain their trust on

the recommender system. As I described in chapter 3, a customer’s feature profile is created

based on the favorite features of the customer. Once the customer’s feature profile has been

created, the system can recommend the closest products to the customer. Mainly, this feature

profile is being used to provide justifications against recommendations. Hence, it is very

crucial for the customer to rate the products very carefully since recommendations are fully

dependent on their profile. The process of computing the justifications consists of comparing

each recommended product’s features (f1, f2, f3, f4, etc.) with the customer’s feature profile

and active customer’s context dimensions with the other customers who rated recommended

products. This process is described in the proposed algorithm of creating justifications

mentioned in chapter 3. This class has the following two functions:

� ReasoningMoviesType (user): This function takes the active customer as a parameter

and generates a recommendation of the same (product) movie type that belongs to the

active customer’s favorite movie types. It makes sure that the movie type of the

recommended movie belongs to the types of rated movies. This clearly indicates that

this recommender system would only recommend the same type of products (movies)

that the active customer has shown interest to.

� Reasoning (user): This function takes the active customer as a parameter and

generates the reasoning behind the recommendations. It considers all other movie

features such as actors, directors and movie release date and customer’s context

dimensions such as time_of_week companion that are compared with the active

customer’s feature and preference profiles. If it finds similarity in these profiles then

these attributes or features will be used to explain the reasoning or provide the

justification of recommended movies. The justification style combines the “keyword

based” with the influence styles. It has the following form: “Product ‘X’ is

recommended, since it contains features which are included in products ‘Z and W’

that you have already rated or liked.” Furthermore, the average rating of the

65

recommended movies will be shown to the customer as a justification. The average

rating indicates the popularity of these specific movies from all the customers.

4.2.3. Screenshots of the Application

The following are various screenshots of the application:

Main Page

This is the main page of the application that highlights the features of this proposed hybrid

recommender system. It mainly has a login form for an existing customer, as well as a

navigation link for the new customer registration.

Figure 11: Home Page of Prototype Application

66

New Customer Registration

This page contains the customer registration form that would be used for new customers to

get registered in the system.

Figure 12: New Customer Registration

Rating Movies

Once the customer is registered the next step is to rate the movies.

67

Figure 13: Rating Form

Explanation Interface

This interface display mainly consists of two sections. The first section displays the active

customer’s rated movies and the favorite movie types. The second section displays the

recommendations with justifications.

68

Figure 14 (A): Explanation Interface of the Recommender System

69

Figure 14 (B): Explanation Interface of Recommender System

70

Figure 14 (C): Explanation Interface of Recommender System

71

Figure 14 (D): Explanation Interface of Recommender System

Interacting with Recommender System

This explanation interface also allows the customer to provide feedback on the

recommendations. The feedback can be provided by giving ratings on the recommendations

and also by providing feedback on the products features justifications.

72

Figure 14 (E): Explanation Interface of Recommender System

4.2.4. Data Flow Diagrams

The following are high level data flow diagrams that were created to describe the process of

obtaining recommendations from this proposed hybrid recommender systems.

73

Existing Customer

Figure 15: Recommendation Process of Old Customer

74

New Customer

Figure 16: Recommendation Process of New Customer

75

Chapter 5: Experimental Evaluation

This chapter will describe the experimental methodology and the metrics that will be used to

evaluate the performance of the algorithms. Furthermore, the results of the proposed

approach will be detailed.

5.1. Dataset

The MovieLens dataset was used for evaluating the proposed approach. MovieLens is a web-

based research recommender system that was started in 1997. Each week, hundreds of users

visit MovieLens to rate and receive recommendation for movies. This recommender system

has been used in many research projects. It contains 943 users, 1682 movies, and 100 000

ratings on an integer scale of 1 (bad) to 5 (excellent) [14, 25]. In this dataset all movies are

not rated by all customers, but each movie must be rated by at least one of the users. It also

contains 19 movie genres and a movie can belong to more than one genre. A binary value (0

or 1) is used to indicate whether a movie belongs to a specific genre. The dataset is divided

into disjoint training (80%) and test (20%) sets. The training and test data was used to

evaluate the evaluation measures [31]. The training dataset was used to evaluate the

evaluation measures and the test dataset was used to compare the results with the predicted

results.

5.2. Evaluation Metrics

There are various metrics that have been used to evaluate the recommendation algorithms in

the literature. Systems that generate predictions should be considered separately from

systems whose output is a top-N recommendation, hence distinct evaluation schemes or

metrics should be considered in each case. Researchers have classified these measures in the

following categories [11, 12, 14, 25]:

� Metrics evaluating Statistical Accuracy

� Metrics evaluating Decision Support Accuracy

� Metrics evaluating top-N Recommendation Quality

� Metrics evaluating Performance

76

In order to evaluate this proposed approach, the metrics that evaluates statistical accuracy of

recommendations and top-N recommendations will be used. Furthermore, a survey will be

conducted to evaluate the overall performance of a justification-based recommender system’s

interface. The evaluating measures are described as follows:

Metrics evaluating Statistical Accuracy

Statistical accuracy metrics evaluate the accuracy of a recommender system or predictor by

comparing predicted values with customer provided values. Mean Absolute Error (MAE) is a

widely used metric for this. It measures the average absolute deviation between a

recommender system’s predicted rating and actual rating given by the user [11, 12, 14, 25].

The MAE is measured only for those products, for which the active customer ui has

expressed his opinion. It can be calculated with the following equation, where arij and rij

indicate the actual ratings and predicted ratings respectively, and ni are the total rated

products by the active customer. Lower MAE values indicate good performance of a

recommender system algorithm [14].

Metrics evaluating Decision Support Accuracy

Decision support accuracy metrics measure how well a recommender system or predictor

helps customers choose their desired products. Receiver operating characteristic (ROC)

sensitivity has been used for this objective [14, 18]. It assumes the prediction process is a

binary operation and products are predicted as either good or bad. A predictor can be treated

as a filter, where predicting a high rating for a product is equivalent to accepting the product,

and predicting a low rating is equivalent to rejecting the product. In [12], the authors define

that the ROC sensitivity is given by the area under the ROC curve— a curve that plots

sensitivity versus specificity for a predictor. Sensitivity is defined as the probability that a

good product is accepted by the filter; and specificity is defined as the probability that a bad

product is rejected by the filter. They consider a product good if the customer gave it a rating

(13)

77

of 4 or above, otherwise it is considered bad. They referred to this ROC sensitivity with a

threshold of 4 as ROC-4

Metrics evaluating top-N Recommendation Quality

These metrics are used to evaluate the quality of top-N recommendations. The main focus in

evaluating such a system is to find out the value of that list or to find out whether the

customer would be interested in rating or purchasing some or all the items included in that

top-N list. Precision and recall are the two most widely-used measures for this purpose [11,

47, 48]. Basically, these measures are used to evaluate search strategies. These measures

assume that there is a set of records in the database which are either relevant or irrelevant to

the desired query and the actual retrieval set may not perfectly match the set of relevant

records.

The precision of an algorithm is the percentage of suggested products that were actually

desirable products or the ratio of the number of relevant records retrieved to the total number

of irrelevant and relevant records retrieved. A high precision is best [11, 47, 48].

 Recall is

the percentage of relevant products returned by the algorithm or the ratio of the number of

relevant records retrieved to the total number of relevant records in the database. A high

recall rate is best [11, 47-49]. In other words, precision is the proportion of recommended

movies that are actually good and recall is the proportion of all good movies recommended.

They can also be described using the following equations [50]:

Metrics evaluating Performance

There are various evaluation techniques that are considered for the performance of the

system. Response time is a widely-used performance metric, which has been used for various

purposes and in different domains. In the case of recommender systems, it defines the time

that has elapsed between a customer’s stated request and the system’s response to that

(14)

(15)

78

request. A recommender system must be able to efficiently guide a customer through a

product-space and, in general, short recommendation sessions are to be preferred. For this

evaluation, researchers measure the length of a session in terms of recommendation cycles,

i.e, the number of products viewed by users before they accepted the system’s

recommendation. User’s perceived satisfaction about a recommendation algorithm is

obtained by conducting a survey in the form of a questionnaire [11, 12]. Another way of

evaluating a filtering algorithm is through storage requirement. It is very common to expect

online stores, such as Amazon and eBay, to provide services that reach millions of customers

and have an even greater number of products. Hence, it is crucial to evaluate how these

systems manipulate the space provided to them. Storage requirements are usually analyzed in

two ways: by checking their main memory requirement, which represents the on-line space

usage of the system, and by checking their secondary storage requirement, which refers to

the off-line space usage of the system [11].

Coverage measures the percentage of items for which a recommender system is capable of

making predictions [14].

In some cases, a recommender system will not be able to generate a

prediction for specific products due to the sparsity in the data of the initial customer product

matrix or other restrictions, which are set during the recommender system’s execution. Such

cases will lead to low coverage values [11]. A low coverage value indicates that the

recommender system will not be able to help the customer with many of the products he has

not rated and a high coverage value indicates that the recommender system will be able to

generate useful recommendations of products for the customers. Assuming that ni are the

products for which customer ui has given a rating, and npi is the number of those products for

which the recommender system was able to generate a prediction, where clearly npi less than

or equal to ni, then coverage can be calculated using the following equation [11]:

(16)

79

5.3. Experimental Procedure

The proposed hybrid recommender system generates recommendations in the form of top-N

recommendations. Algorithm 1 generates item-based recommendations and algorithm 2

generates final recommendations with justifications to the customers. After algorithm 2, the

number of recommendations can decrease from the initial item-based recommendations. The

following measures are applied to the final recommendations. The training and test data from

MovieLens dataset is used to evaluate these measures. The predicted values from training

data were compared with the actual values in the test data.

5.3.1. Evaluation Measures

Precision and Recall

As described previously, precision and recall are the most important measures for evaluating

top-N recommendations. Algorithm 4 describes the calculation process for precision and

recall measures. The threshold value was required to select the highest predicted value

recommendations. This value is based on the predicted preference value that is determined

by algorithm 1. This value is set to greater than or equal to 3.5; hence it selects those

recommended products that meet this condition.

Mean Absolute Error (MAE)

It measures the average absolute deviation between a recommender system’s predicted

ratings and the actual rating given by the user [11, 12, 14, 25]. It can be calculated with

equation 14 as described in algorithm 4.

Algorithm 4: Proposed Algorithm for Calculation of Evaluation Measures

Input:

A= List of actual ratings from the test dataset

N= List of recommendations

Output:

Precision and Recall

MAE

Main Procedure: Calculate the evaluation measures for active customer

80

1- Set V= relevance threshold value

2- Set relevantItem = 0(zero)

3- Set irRelevantItem =0(zero)

4- Set allRelevantItems=0(zero)

5- Select highest recommendations from the actual ratings (test dataset)

For i= 1 to recomendations.size (A)

 If actual rating (i) >= V then

 Set allRelevantItems = allRelevantItems + 1

 End If

 End For

6- Select relevant and irrelevant recommendations from the final recommendations(N)

For i= 1 to recomendations.size (N)

Set p= recomendations.get(i).getValue (Predicted preference value)

 If p >= V then

 If p(i)= actual rating (i)

 Set relevantItem = relevantItem + 1

 Else

 Set irRelevantItem = irRelevantItem + 1

 End If

 End If

 End For

7- Calculate Precision using equation 14

Set Precision = relevantItem * 100 / relevantItem + irRelevantItem

8- Calculate Recall using equation 15

Set Recall = relevantItem * 100 / allRelevantItems

9- Calculate MAE using equation 13

Set MAE= Sum (value p(i) - actual rating (i)) / Count of actual ratings from list A.

81

5.3.2. Survey Participants and Materials

A survey was conducted to evaluate the proposed hybrid recommender system’s explanation

interface. The objective of this survey was to measure the overall performance of a

justification-based recommender system. The participants volunteered to take part in this

survey. Fifty participants were selected that have been using e-commerce web sites for their

shopping needs. The majority were university students from different disciplines. Most of

them were Master’s students from computer science, electrical engineering and other

engineering disciplines. Some of them were professional people who have online shopping

experience.

SurveyMonkey was used to conduct the survey [51]. This is a very useful web-based tool

that is used to design a survey, collect responses and analyze the results [51]. The proposed

hybrid recommender system’s interface was presented to the participants with various survey

questions, as listed in the table 2. Furthermore, other related justification based recommender

systems [19, 20] were also presented to the participants for comparison with the proposed

system. This survey was done online by sending the participants the URL and also in real-

time by using the system. Researchers have been using various types of measurements to

evaluate the overall quality of recommender systems. Many of them claimed that statistical

accuracy metrics (MAE) and evaluating top-N recommendations (precision and recall) can

only partially evaluate the recommender system. It has been noticed that customer

satisfaction and trust on recommender systems are the most crucial measurements to evaluate

the overall performance of recommender system [18, 22]. Hence, these survey questions are

specifically designed to consider these measurements. The following set of questions were

prepared and asked to each individual in this survey [23]. The participants were required to

give their answers to all of the following questions in the form of YES or NO, in addition to

comments on each question.

Evaluation Purpose Questions

Recommendation

quality

Does this hybrid recommender system give you very good movie

recommendations?

Perceived ease of use Do you find this interface easy to use?

82

Perceived usefulness Is this explanation interface (with content and context-based

justifications) competent to help you effectively in finding

movies (products) that you really like?

Do you find this interface useful in comparison to the other

given interfaces in order to improve your shopping performance?

Decision confidence Are you confident that the recommended movie is really the best

choice for you?

Intention to purchase If you had to search for a movie (product) online in the future

and an interface like this was available, would you be very likely

to use it?

Table 2: Survey Questions

5.3.3. Experimental Platform

As mentioned in the chapter 4 (4.2) this application is implemented and tested in Java

programming language. Furthermore, this application is tested on Windows XP based

machine with Intel Core Duo CPU processor having a speed of 2.26GHz and 1.98GB of

RAM.

5.4. Experimental Results

Since this recommender system has an explanation-based interface, recommendations are

justified to the customers. For all used evaluation measures such as precision, recall, and

Mean Absolute Error (MAE), this proposed recommender system is evaluated with various

users on the training and the test dataset was used to compare the results. This proposed

recommender system is able to generate the recommendations for existing and new

customers because this dataset does not have sparsity. It was tested with the various random

customers and also for the new customer as well. However, the system needs a good feature

and preference profiles for the existing and new customer to generate valuable

recommendations. The obtained values indicate that this proposed algorithm is able to

generate maximum valuable recommendations for the active customer, as shown by

precision and recall values in the figure below. These values can lie between 0 and 1 and the

maximum value is best. However, these precision and recall values depend on the threshold

83

value that was set in the calculation of these measures. The threshold value was set to

maximum in order to generate valuable recommendations. Finally, MAE (Mean Absolute

Error) values clearly indicate that this proposed recommender system is able to generate

accurate predictions as shown in the figure below. Lower MAE values indicate that this

proposed recommender system predicts more accurate customer’s ratings.

Figure 17: Evaluation Measure’s Results

The tables below are based on the participant’s answers of the survey questions.

Approximately, 30% of the participants completed the survey using the system in real time.

The rest were sent various snapshots of the proposed system and other related systems. Both

groups of participants had almost the same experiences, except that the real time participants

understood the system better because they went through all the recommendation process. It

was clear that the majority of both types of participants preferred to have recommendations

with their justifications. Their answers clearly described that they received valuable

recommendations on which they can trust. Especially, both content and context-based

justifications were very helpful to provide strong reasoning behind these recommendations.

Furthermore, they found the explanation-based interface easy to use. Some of their

comments described that it is easy to use, as long as the interface requires minimal

information. In addition to this, the majority of the participants really liked the method of

displaying the justifications with a recommended product where the interface does not

84

require any further input from the customer. However, some of them mentioned that in-depth

justifications for the recommendation should show up only once the recommended product is

clicked, or perhaps if the mouse hovers over it.

Number Questions Yes No

1 Does this hybrid recommender system give you very good

movie recommendations?

93.3% 6.7%

2 Do you find this interface easy to use? 100% 0 %

3 Is this explanation interface (with content and context-based

justifications) competent to help you effectively in finding

movies (products) that you really like?

93.3% 6.7%

4 Do you find this interface useful in comparison to the other

given interfaces in order to improve your shopping

performance?

93.3% 6.7%

5 Are you confident that the recommended movie is really the

best choice for you?

100% 0%

6 If you had to search for a movie (product) online in the future

and an interface like this was available, would you be very

likely to use it?

100% 0%

N (number of participants who used the system in real time) =15

Table 3: Survey’s Results[1]

Number Questions Yes No

1 Does this hybrid recommender system give you very good

movie recommendations?

91.4% 8.6%

2 Do you find this interface easy to use? 97.2% 2.8%

3 Is this explanation interface (with content and context-based

justifications) competent to help you effectively in finding

movies (products) that you really like?

91.4% 8.6%

4 Do you find this interface useful in comparison to the other

given interfaces in order to improve your shopping

performance?

94.3% 5.7%

5 Are you confident that the recommended movie is really the 91.4% 8.6%

85

best choice for you?

6 If you had to search for a movie (product) online in the future

and an interface like this was available, would you be very

likely to use it?

97.2% 2.8%

N (number of participants who viewed images of the system) =35

Table 3: Survey’s Results[2]

Figure 18: Survey Results of Both Groups Combined)

In addition to this, the participants liked the style of the explanation interface that displays

the recommendations by category rather than displaying them individually with some of the

same information. Their comments described that it saves time when making a decision and

attracts the customer more effectively. Judgments on whether the product is the best will be

clearer once the product is received, but that they are certainly more confident about the

quality of their purchase than would be if there was no recommendation software.

In comparison with the other related proposed recommender systems [12, 19, 20], this

system works different in various ways. First this system uses item-based collaborative

filtering rather than user-based collaborative filtering. Secondly, this system uses more

product features and a customer’s context attributes (dimensions) to provide high-quality

86

knowledgeable justifications for recommendations. In addition, it uses a categorized

presentation mechanism to display recommendations with justifications. Table 4 below

shows a comparison between the proposed explanation interface and that by Tinarev [19]

which is content-based explanation interface of recommender systems. Finally, this system

allows the customer to provide feedback on the recommendations and justifications. This

feedback can be provided by giving a rating on the recommended movies, as well as by

modifying the previous ratings. In addition, customers can make suggestions on the

justifications that are based on a product’s features in order to revise the recommendations in

the following ways.

� I want further recommendations on Action movies

� I do not want further recommendations on movies with the actor Al Pacino.

� I do not want further recommendations on movies directed by George Lucas.

Questions Addressed in

the Paper [19]

Qualitative Results My Proposed Approach

Results

Number of Participants 67 50

How data was gathered Through focus group survey Online survey

Compared a graphical

with textual interface for

recommender systems

Most of the users preferred

graphical interface

Graphical interface

Recommendation quality

(Effectiveness)

Users found that the

recommendations are useful

with the content-based

justifications. However, they

suggested that uncertain

recommendations should

simply be omitted.

This system generates accurate

recommendations that contain

content and context-based

justifications (therefore the

recommendations are more

personalized and less

uncertain)

Design of the

recommender system

interface

Users found that the interface

was not very efficient and

suggested more details and

possible improvements to the

interfaces.

This proposed interface was

easy to use (97.1% of users)

and more efficient because it

displays recommendations

categorically and eliminates

duplicates

Table 4: Comparison Results

87

5.5. Limitations of Evaluation Approach

This approach is the integration of content and context data with rating data to provide

valuable recommendations with justifications. The MovieLens dataset does not contain

content and context data; therefore, it was modified accordingly for evaluation purposes as

explained in chapter 4. We had to manually add the required data to the MovieLens database

since it was required for evaluation purposes. In our literature review, to the best of our

knowledge, no other context aware recommender system is evaluated with the MovieLens

dataset. Hence, we could not compare our final recommendations quantitatively with other

related recommender systems. An extrapolation for future work would be to apply our

system to multiple other data sets and compare their performance both quantitatively and

qualitatively.

Since this proposed system presents justifications along with final recommendations, we had

to measure their quality using human evaluators. For this purpose, a survey was conducted as

justifications could not be measured quantitatively. The survey was conducted to evaluate the

overall performance of the proposed recommender system. This survey was completed

online by sending the participants the URL and also in real-time by using the system.

Approximately, 30% of the participants completed the survey using the system in real time.

The rest were sent various snapshots of the proposed system and other related systems. It was

done this way as it was not feasible for all of the participants to interact with the system in

real-time.

5.6. Discussion

This section describes how this proposed approach is different from other related approaches

and how it provides accurate recommendations with the justifications for existing and new

customers.

5.6.1. Comparison with Related Work

This proposed hybrid recommender is related to the work of the authors who integrated

collaborative, content-based and context-based filtering approaches. The proposed approach

was inspired by various authors from [12, 19, 20], who also proposed hybrid recommender

88

systems. According to these works, the integration of a product’s content with rating data

has been shown to give good recommendations and also provided justifications against its

recommendations. It has been noticed by many researchers that a lot of work is required to

provide effective explanations that would be useful to boost the customer’s trust on a

recommender system. In addition to this, a very attractive explanation interface is required to

display the recommendations along with the justifications, thereby reducing the customer’s

decision making time and effort to interact with the recommender system.

Hence, this proposed approach mainly focuses on the above-mentioned two major

challenges. This system is mainly different in various factors. Firstly, item-based

collaborative filtering rather than user-based collaborative filtering was used, since user-

based collaborative filtering has some major limitations. Second, an attractive categorized

explanation interface was created to display the same type of recommendations in a category

format rather than duplicating the same information. Product features and active customer’s

context dimensions are used to create useful explanations for recommendations. Therefore,

customers would get only those recommendations for which they can get justifications.

Finally, this proposed recommender system allows the customer to interact with it to provide

feedback on the recommendations and also on the justifications. Once the feedback is there

the recommender system can revise the recommendations for the active customer

accordingly.

For the new customer, this proposed system created preference and feature profiles. For

creating a good profile, a new customer has to rate at least ten products. Once these profiles

have been created, the system can generate good recommendations and justifications for the

new customer. A customer’s feature and preference profiles play a key role in this proposed

approach as this matches the contents of profiles with the contents of recommended products

as described in the proposed algorithm2. In the results, the system will recommend only

those products that have even one of the features in the current customer’s profiles. Hence,

this proposed approach only recommends those products for which it can provide

justifications.

89

With the comparison of [19, 20], Netflix and AMAZON, this proposed system uses more

product features and active customer’s context dimensions in order to provide quality

recommendations and knowledgeable justifications for recommendations. Furthermore, a

categorized presentation mechanism is utilized to display recommendations with

justifications. Finally, this system allows the customer to provide feedback on the

recommendations and also on justifications. This feedback can be provided by giving a rating

on the recommended movies and also by making a suggestion on the justifications that are

based on a product’s features as follows.

� I want further recommendations on action movies

� I do not want further recommendations on movies with the actor Al Pacino.

� I do not want further recommendations on movies directed by George Lucas.

Our survey results clearly show that the number of features for a product and customer’s

context plays a crucial role in obtaining the satisfaction and trust of the customers and

additionally a categorized presentation mechanism is really liked by the customers as it

reduces decision making time.

90

Chapter 6: Conclusion and Future Research Directions

6.1. Conclusion

Recommender systems have made significant progress over the last years since hybrid

recommendation methods have been proposed and implemented. My proposed hybrid

approach mainly focuses on providing justifications for the recommendations. This proposed

hybrid approach is the integration of content and context data with rating data, since it boosts

the prediction performance of a recommender system and also provides accurate

justifications for recommendations. A product’s features and active customer’s context

dimensions have been used to create a customer’s feature and preference profiles that mainly

play a crucial role in providing justifications. Hence, this proposed approach only

recommends those products for which it can provide justifications. Experimental results

indicate that the majority of participants preferred to have recommendations with their

justifications.

Furthermore, this proposed system adopts a categorized explanation interface that displays

the recommendations in a group or a category rather than duplicating the same information

which reduces the time for decision making of customers. Furthermore, this system will

allow the customer to interact with it in order to provide feedback on the recommendations

and justifications. The results have clearly shown that interact with the customer more

effectively and boosts the customer’s satisfaction on the recommender system. Interacting

with the recommender system allows the customer to achieve their desired product quicker.

This proposed approach is implemented by a prototype web-based application in the JAVA

platform. This prototype is implemented for movies; however it can be easily implemented

for other products. However, despite all of these advances, the current generation of

recommender systems still requires further improvements to make recommendation methods

more effective in a broader range of applications. Specifically, there is lot of work needed in

the area of providing effective explanations that will increase the customer’s trust on the

recommender systems and also boosts the business of the organization.

91

6.2. Future Research Directions

As this proposed approach focuses on providing explanations against recommendations,

there are different areas of explanations in which there is room for improvement.

� Explanations have shown very good results in reasoning-based recommender systems

and expert systems. It removes the black box from the recommender system, and

provides transparency. It has been noticed that customers like and feel more confident

in recommendations perceived as transparent. However, a lot of work is required to

investigate various mechanisms in order to achieve system transparency. Especially,

crucial challenges are to achieve more meaningful explanations from various

computational models that would be useful to boost the trust in recommender

systems.

� A product’s features have been used by researchers to provide explanations against

recommendations. Therefore, in order to have a sufficient set of features, the content

must either be in a form whose features can be extracted automatically by a computer

(e.g., text). Research on automatic feature extraction methods are required, especially

to obtain features from multimedia data.

� Researchers have been working on generating accurate recommendations. However,

presenting these accurate recommendations with explanations in a way that attracts

the customer more effectively is an open issue. Explanations need an attractive and

usable recommender system interface that would display all the recommendation`s

information in an organized way that is useful to minimize the customer’s decision

making time.

� This proposed recommender system allows the customer to interact with it to provide

feedback on the recommendations. Specifically, customers can make a suggestion on

the justifications that are based on a product’s features in order to revise their

recommendations. Future work can include a recommender system that is able to

92

revise the recommendation for the active customer once the suggestions or feedback

has been provided.

93

7. References

[1] H. Shimazu. Expertclerk: Navigating shopers’ buying process with the combination

of asking and proposing. In proceedings of the Seventeenth International Joint

Conference on Artifical Intelligence, San Francisco, CA , pp. 1443-448, ACM, 2001.

[2] D. Cosley, S. K. Lam, I. Albert, J. A. Konstan, and J. Riedl. Is Seeing Believing?

How Recommender Systems Influence Users’ Opinions. In Proceedings of CHI

2003: Human Factors in Computing Systems, New York, NY, pp. 585-592, ACM,

2003.

[3] A. Edmunds, and A. Morris. The problem of information overload in business

organisations: a review of the literature. In International Journal of Information

Management, Volume 20, Issue 1, pp. 17-28, Elsevier Science, 2000.

[4] D. W Oard. The State of the Art in Text Filtering. In User Modeling and User-

Adapted Interaction,Volume 7, Issue 3, pp. 141-178, Springer,1997.

[5] J. B. Schafer, J. Konstan, and J. Riedl. E-Commerce Recommendation Applications.

In the Journal of Data Mining & Knowledge Discovery, vol. 5, pp. 115-153,

Springer, 2001.

[6] G. Linden, B. Smith, and J. York. Amazon.com Recommendations: Item-to-Item

Collaborative Filtering. In Internet Computing, Volume 7, Issue 1, pp.76-80, IEEE,

2003.

[7] M. Pazzani, J. Muramatsu, and D. Alexander Billsus. Syskill&Webert: Identifying

interesting web sites. In Proceedings of the National Conference on Artificial

Intelligence, Irvine, CA, pp.69-77, 1996.

[8] R. Burke. Hybrid Recommender Systems: Survey and Experiments. In User

Modeling and User-Adapted Interaction,Volume 7, Issue 3, pp. 331-370, Kluwer

Academic Publishers, 2002.

[9] R. Burke. The FindMe Approach to Assisted Browsing. In IEEE Expert, Volume 12

 , Issue 4 , pp. 32-40, IEEE,1997.

[10] J. B. Schafer, J. Konstan, and J. Riedl. Recommender Systems in E-Commerce. In

Proceedings of the 1st ACM conference on Electronic commerce, New York,

ACM,1999.

[11] E. Vozalis, and K. G. Margaritis. Analysis of recommender systems algorithms. In

Proceedings of the Sixth Hellenic-European Conference on Computer Mathematics

and its Applications, 2003.

[12] M. Perm, R. J. Mooney, and R. Nagarajan. Content boosted collaborative filtering for

improved recommendations. In Proceedings of Eighteenth National Conference on

Artificial Intelligence, Edmonton, Canada, 2002.

[13] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Recommender Systems for Large-

scale E-Commerce: Scalable Neighborhood Formation Using Clustering. In

Proceedings of the Fifth International Conference on Computer and Information

Technology, 2002.

[14] M. A. Ghazanfar, and A. Prugel-Bennett. A scalable, accurate hybrid recommender

system. In Proceedings of International Conference on Knowledge Discovery and

Data Mining, Phuket, pp. 94-98, IEEE,2010.

[15] R. Burke. Hybrid Recommender Systems: Survey and Experiments. In User

Modeling and User-Adapted Interaction, Volume 12, Issue 4,pp. 331 - 370, 2002.

94

[16] Puntheeranurak. A Multi-Clustering Hybrid Recommender System. In Proceedings

of Seventh International Conference on Computer and Information Technology,

Tokyo, pp. 223-228, IEEE,2007.

[17] M. A. Ghazanfar, and A. Prugel-Bennett. Fulfilling the Needs of Gray-Sheep Users in

Recommender Systems, A Clustering Solution. In Proceedings of International

Conference on Information Systems and Computational Intelligence, Harbin, China,

Eprints, 2011.

[18] P. Massa, and Paolo Avesani. Trust-aware Recommender Systems. In Proceedings of

ACM conference on Recommender systems, New York, NY, ACM, 2007.

[19] N. Tintarev. Explanations of recommendations. In Proceedings of the ACM

conference on Recommender systems, pp. 203-206, ACM,2007.

[20] P. Symeonidis, A. Nanopoulos, and Y. Manolopoulos. Providing justifications in

Recommender System. In IEEE Transactions on Systems, MAN, and Cybernetics—

Part A: Systems and Humans, vol. 38, Issue 6, pp: 1262 - 1272, IEEE,2008.

[21] G. Adomavicius, and A. Tuzhilin. Toward the next generation of recommender

system: a survey of the state-of-the-art and possible extensions. In IEEE Transactions

on Knowledge and Data Engineering, vol,17, issue 6. pp. 734-749, IEEE,2005.

[22] N. Tintarev, and J. Masthoff. A Survey of Explanations in Recommender Systems. In

Proceedings of IEEE conference on data engineering, Istanbul, 2007.

[23] L. Chen, and P. Pu. A Cross-Cultural User Evaluation of Product Recommender

Interfaces. In Proceedings of ACM conference on Recommender systems, New

York, pp, 75-82, ACM,2008.

[24] C. D. Manning, P. Raghavan, and H. Schtze. Introduction to Information Retrieval.

New York: Cambridge University, 2008.

[25] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-Based Collaborative Filtering

Recommendation Algorithms. In Proceedings of the 10th International Conf on

World Wide Web, New York,Pages 285-295, ACM,2001.

 [26] S. Chen, T. Luo, W. Liu, and Y. Xu. Incorporating similarity and trust for

collaborative filtering. In Proceedings of the the International Conference on Fuzzy

Systems and Knowledge Discovery, Beijing, 2009.

[27] Q. Li, and B. Man Kim. Clustering Approach for Hybrid Recommender System. In

Proceedings of the International Conference on Web Intelligence, South Korea, IEEE

, 2003.

[28] G. Adomavicius, S. RAMESH, S. SHAHANA, and T. ALEXANDER. Incorporating

Contextual Information in Recommender Systems Using a Multidimensional

Approach. In ACM Transactions on Information Systems, vol. 23, Issue 1, pp. 103-

145, ACM, 2005.

[29] G. Adomavicius, and A. Tuzhilin. Context-Aware Recommender Systems. pp. 1-34,

Springer, 2001.

[30] F. Ricci. Context-Aware Music Recommender Systems. In Proceedings of the WWW

– AdMIRe'12 Workshop, Lyon, France, 2012.

[31] B. Chikhaoui. An Improved Hybrid Recommender System by Combining

Predictions. In Proceedings of the International Conference on Advanced Information

Networking and Applications, Biopolis, pp. 644-649,IEEE,2011.

[32] T. Tran. Designing Recommender Systems for E-Commerce: An Integration

Approach. In Proceedings of the 8th international conference on Electronic

commerce, New York, pp. 512 - 518. ACM,2006.

95

[33] F. Lorenzi. A Multiagent Knowledge-Based Recommender Approach With Truth

Maintenance. In Proceedings of the ACM conference on Recommender systems,

New York, Pp. 195-198, ACM,2007.

[34] L. Martínez. REJA: A Georeferenced hybrid recommender systems for restaurants. In

Proceedings of the International Joint Conferences on Web Intelligence and

Intelligent Agent, Milan, Italy, IEEE,2009.

[35] S. Puntheeranurak, and H.Tsuji. A Multi-Clustering Hybrid Recommender System. In

Proceedings of the International Conference on Computer and Information

Technology, Aizu-Wakamatsu, Fukushima, pp. 223 - 228, IEEE,2007.

[36] M. Rey-López1, A. Belén Barragáns-Martínez, A. Peleteiro, and F. A. Mikic-Fonte.

moreTourism: Mobile Recommendations for Tourism. In Proceedings of the

International Conference on Consumer Electronics, Las Vegas, NV, pp. 347 - 348,

IEEE,2011.

[37] L. Iaquinta, A. Lisa Gentile, P. Lops, M. de Gemmis and G. Semeraro. A Hybrid

Content-Collaborative Recommender System Integrated into an Electronic

Performance Support System. In Proceedings of the Seventh International

Conference on Hybrid Intelligent Systems, Kaiserlautern, pp. 47 - 52, IEEE, 2007.

[38] B. Chikhaoui, M. Chiazzaro, and S. Wang. An Improved Hybrid Recommender

System by Combining Predictions. In Proceedings of the International Conference on

Advanced Information Networking and Applications, Biopolis, pp. 644 - 649, IEEE,

2011.

[39] D. Jannach, and G. Friedrich. Tutorial: Recommender Systems. In Proceedings of the

International Joint Conference on Artificial Intelligence, Barcelona, 2011.

[40] (January 05, 2013). Introduction to Database View. Available:

http://www.mysqltutorial.org/introduction-sql-views.aspx

[41] (29-04-2012). 3-Tier Architecture. Available:

http://channukambalyal.tripod.com/NTierArchitecture.pdf

[42] (03-07-2012). Internet Movie Database. Available: http://www.imdb.com/

[43] (Sunday, January 06, 2013). Managing Database Index in MySQL. Available:

http://www.mysqltutorial.org/mysql-create-drop-index.aspx

[44] (Sunday, January 06, 2013). Optimization and Indexes. Available:

http://dev.mysql.com/doc/refman/5.5/en/optimization-indexes.html

[45] (04-05-2012). Microsoft support. Available: http://support.microsoft.com/kb/196271

[46] (02-05-2012). Mahout. Available:

https://cwiki.apache.org/confluence/display/MAHOUT/Overview

[47] C. Liu, C. Sun, and J. Yu. The Design of an Open Hybrid Recommendation System

for Mobile Commerce. In Proceedings of the International Conference on

Communication Technology, Hangzhou, pp. 129 - 134, IEEE,2008.

[48] J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive

algorithms for collaborative filtering. In Proceedings of the Fourteenth Conference

on Uncertainty in Artificial Intelligence, San Francisco, pp. 43-52, ACM,1998.

[49] R. Jizba. Measuring Search Effectiveness. Creighton university, 2007.

[50] (02-07-2012). Survey Monkey. Available: http://www.surveymonkey.com

96

Appendices

Appendix A

This appendix contains JSP and HTML code from the various developed web pages that

performs the main functionalities in the proposed system. The following code validates the

customer login credentials from the database:

<%

 String user = request.getParameter("user");

 String pass = request.getParameter("pass");

 Connection conn = null;

 String url = "jdbc:mysql://localhost:3306/";

 String dbName = "hybridrecommender";

 String driver = "com.mysql.jdbc.Driver";

 String userName = "root";

 String password = "raza";

 Statement st;

 HashMap ratedMoviesRDateMap = new HashMap();

 try {

 Class.forName(driver).newInstance();

 conn = DriverManager.getConnection(url + dbName, userName, password);

 String sql = "select * from users where user_id='" + user + "' and password='" +

pass + "'";

 ResultSet rs;

 st = conn.createStatement();

 rs = st.executeQuery(sql);

 int count = 0;

 while (rs.next()) {

 count++;

 }

 if (count > 0) {

 out.println("<h2>");%>

 Login Successful

 <%

 } else {

 response.sendRedirect("index.jsp");

 }

 %>

The following code registers the new customer into the system and also stores the rating

information in the system

<%

97

 String user = request.getParameter("user");

 String pass = request.getParameter("pass");

 Connection connection = null;

 Class.forName("com.mysql.jdbc.Driver").newInstance();

 connection=

DriverManager.getConnection("jdbc:mysql://localhost:3306/hybridrecommender", "root",

"raza");

 Statement statement = connection.createStatement();

 String sql = ("INSERT INTO users (user_id, password) VALUES ('" + user + "','" +

pass + "') ");

 statement.executeUpdate(sql);

 %>

 <h2>

 Registeration Successful!

 <hr />

 Please Rate Movies

 </h2>

 <h3> Rating Scale: 1 to 5</h3>

 <h4> 1: Less Favorite</h4>

 <h4> 5: Most Favorite</h4>

 <form name="frmRating" action="rating_result.jsp">

 <%

 ResultSet resultset = statement.executeQuery("select distinct

movies.movie_id,movies.movie_title,ratings.rating,movies.action,movies.comedy,movies.ro

mance from movies,ratings where ratings.movie_id=movies.movie_id and (ratings.rating=5

or ratings.rating=1) and (movies.action=1 or movies.comedy=1 or movies.romance=1) and

ratings.user_id between 1 and 20");

 int i = 1;

 while (resultset.next()) {

 session.setAttribute("userid", user);

 String movieId = resultset.getString("movies.movie_id");

 String movieTitle = resultset.getString("movies.movie_title");

 out.println(movieTitle + "<input type=text id=mRating" + i + " name=mRating" +

i + ">
");

 out.println("<input type=hidden id=mId" + i + " name=mId" + i + " value=" +

movieId + ">
");

 i++;

 %>

 <%

 out.println("</br>");

 }

 %>

 <input type="submit">

 </form>

98

The following code first validates a customer’s credentials and if it is successful then

displays his rating products (movies) and also displays his favorite product types.

 <%

 String user = request.getParameter("user");

 String pass = request.getParameter("pass");

 Connection conn = null;

 String url = "jdbc:mysql://localhost:3306/";

 String dbName = "hybridrecommender";

 String driver = "com.mysql.jdbc.Driver";

 String userName = "root";

 String password = "raza";

 Statement st;

 HashMap ratedMoviesRDateMap = new HashMap();

 try {

 Class.forName(driver).newInstance();

 conn = DriverManager.getConnection(url + dbName, userName, password);

 String sql = "select * from users where user_id='" + user + "' and password='" +

pass + "'";

 ResultSet rs;

 st = conn.createStatement();

 rs = st.executeQuery(sql);

 int count = 0;

 while (rs.next()) {

 count++;

 }

 if (count > 0) {

 out.println("<h2>");%>

 Login Successful

 <%

 } else {

 response.sendRedirect("index.jsp");

 }

 %>

 <%

 out.println("</br>");

 out.println("<hr />");

 ResultSet rs1 = st.executeQuery("select

users.user_id,movies.movie_title,ratings.rating,movie_rdate,movies.movie_id from

users,movies,ratings where users.user_id= ratings.user_id and

ratings.movie_id=movies.movie_id and ratings.rating >=4 and users.user_id='" + user + "'");

 int count1 = 0;

 %>

 <TABLE cellpadding="15" border="1" style="background-color: #ffffcc;">

99

 Your rated movies

 <%

 out.println("</h2>");

 out.println("</br>");

 while (rs1.next()) {

 ratedMoviesRDateMap.put(rs1.getString("movie_id"),

rs1.getDate("movie_rdate"));

 %>

 <TR>

 <TD><%=rs1.getString("movies.movie_title")%></TD>

 </TR>

 <% }%>

 </TABLE>

 <%

 } catch (Exception e) {

 out.println(e.toString());

 }

 ItemBased itemobj = new ItemBased();

 try {

 itemobj.itemBased(user);

 if (itemobj.Reclist_Item.size() > 0) {

 recommendationsPackage.Reasoning res_obj = new

recommendationsPackage.Reasoning();

 res_obj.Reason(user);

 res_obj.ReasoningMoviesType(user);

 ArrayList Actionlist = new ArrayList(), Comedylist = new ArrayList(),

Romancelist = new ArrayList();

 %>

 Your Most Favorite Movie Type

 <%

 out.println("</br>");

 out.println(res_obj.mostFavoriteMovietype + " movies");

 %>

The following code displays the recommendations and justifications for the active customer.

 Recommended Movies For You

 <%

 String suggestedMovieIds = "'-1'";

 for (int i = 0; i < res_obj.AllType_list_suggested.size(); i++) {

 suggestedMovieIds += "," + res_obj.Allid_list_suggested.get(i);

100

 }

 String sqlm = "SELECT movie_id,movie_rdate FROM movies WHERE

movie_id in (" + suggestedMovieIds + ")";

 ResultSet rsm;

 Statement stm = conn.createStatement();

 rsm = stm.executeQuery(sqlm);

 HashMap suggestedMoviesRDateMap = new HashMap();

 while (rsm.next()) {

 suggestedMoviesRDateMap.put(rsm.getString("movie_id"),

rsm.getDate("movie_rdate"));

 }

 %>

 Movie type: Romance Movies

 <%

 out.println("</br>");

 int movieCount = 0;

 movieCount = 0;

 for (int m = 0; m < res_obj.AllType_list_suggested.size(); m++) {

 if (res_obj.AllType_list_suggested.get(m) == "romance") {

 Romancelist.add(res_obj.Allid_list_suggested.get(m));

 // Getting average of recommended movie

 String sql = "SELECT movie_title,round(avg(rating))as ratings FROM

ratings,movies WHERE ratings.movie_id=movies.movie_id and movies.movie_id='" +

res_obj.Allid_list_suggested.get(m) + "'";

 ResultSet rs;

 st = conn.createStatement();

 rs = st.executeQuery(sql);

 while (rs.next()) {

 movieCount++;

 %>

 <TABLE cellpadding="15" border="1" style="background-color: #ffffcc;"

width="100%">

 <TR>

 <TD><center><%out.println(movieCount + ": " +

rs.getString("movie_title"));%></center>

</TD>

 </TR>

 <TR>

 <TD>

 Reasoning Behind To Recommend This Movie

101

 Popularity Among Other Users

 <%

 out.println("Average Rating of this Movie is:");

 out.println(rs.getString("ratings") + "/5");

 }

 %>

 Content-Based Knowledgeable Justifications

 <%

 try {

 out.println("Recommending you this movie because you like

romnace movies");

 String likedActors = "";

 for (int j = 0; j < Romancelist.size(); j++) {

 for (int i = 0; i < res_obj.Actor_list_suggested.size(); i++) {

 if

(res_obj.ID_list_suggested.get(i).toString().equals(Romancelist.get(j).toString())) {

 //out.println("Recommending you the movie" +

res_obj.ID_list_suggested.get(i) + " because you like the " +

res_obj.Actor_list_suggested.get(i).toString());

 if (likedActors.equals("")) {

 likedActors += res_obj.Actor_list_suggested.get(i).toString();

 } else {

 likedActors += " ," +

res_obj.Actor_list_suggested.get(i).toString();

 }

 }

 }

 }

 if (!likedActors.equals("")) {

 out.println("Recommending you this movie because you like the

actor(s) " + likedActors + "");

 }

 String likedDirectors = "";

 for (int j = 0; j < Romancelist.size(); j++) {

 for (int i = 0; i < res_obj.Director_list_suggested.size(); i++) {

 if

(res_obj.ID_list_suggested.get(i).toString().equals(Romancelist.get(j).toString())) {

 if (likedDirectors.equals("")) {

102

 likedDirectors +=

res_obj.Director_list_suggested.get(i).toString();

 } else {

 likedDirectors += " ," +

res_obj.Director_list_suggested.get(i).toString();

 }

 }

 }

 }

 if (!likedDirectors.equals("")) {

 out.println("Recommending you this movie because you like the

director(s) " + likedDirectors + "");

 }

 int releaseDateMatchCount = 0;

 //for (int j = 0; j < Romancelist.size(); j++) {

 String suggestedMovieId =

res_obj.Allid_list_suggested.get(m).toString();

 Date rDateSuggestedMovie = (Date)

suggestedMoviesRDateMap.get(suggestedMovieId);

 Set s = ratedMoviesRDateMap.keySet();

 Iterator it = s.iterator();

 while (it.hasNext()) {

 String ratedMovieId = (String) it.next();

 Date rDateRatedMovie = (Date)

ratedMoviesRDateMap.get(ratedMovieId);

 if (rDateSuggestedMovie.getYear() <= rDateRatedMovie.getYear() +

10 && rDateSuggestedMovie.getYear() >= rDateRatedMovie.getYear() - 10) {

 releaseDateMatchCount++;

 }

 }

 // }

 if (releaseDateMatchCount > 0) {

 out.println("Recomending you this movie because the release date

of this movie is within 10 years of " + releaseDateMatchCount + " other rated movies");

 }

 %>

 Context-Based Knowledgeable Justifications

 <%

 // Added a logic to display context-based justifications

 String watchedTimeofweek = "";

 for (int j = 0; j < Romancelist.size(); j++) {

 for (int i = 0; i < res_obj.Timeofweek_list_suggested.size(); i++) {

103

 if

(res_obj.ID_list_suggested.get(i).toString().equals(Romancelist.get(j).toString())) {

 if

(watchedTimeofweek.indexOf(res_obj.Timeofweek_list_suggested.get(i).toString()) == -1) {

 if (watchedTimeofweek.equals("")) {

 watchedTimeofweek +=

res_obj.Timeofweek_list_suggested.get(i).toString();

 } else {

 watchedTimeofweek += " ," +

res_obj.Timeofweek_list_suggested.get(i).toString();

 }

 }

 }

 }

 }

 if (!watchedTimeofweek.equals("")) {

 out.println("Recommending you this movie because you have

watched the movie on a " + watchedTimeofweek + "");

 }

 String watchedCompanion = "";

 for (int j = 0; j < Romancelist.size(); j++) {

 for (int i = 0; i < res_obj.companion_list_suggested.size(); i++) {

 if

(res_obj.ID_list_suggested.get(i).toString().equals(Romancelist.get(j).toString())) {

 if

(watchedCompanion.indexOf(res_obj.companion_list_suggested.get(i).toString()) == -1) {

 if (watchedCompanion.equals("")) {

 watchedCompanion +=

res_obj.companion_list_suggested.get(i).toString();

 } else {

 watchedCompanion += " ," +

res_obj.companion_list_suggested.get(i).toString();

 }

 }

 }

 }

 }

 if (!watchedCompanion.equals("")) {

 out.println("Recommending you this movie because you have

watched romnace movies with a " + watchedCompanion + "");

 }

 // Ended a logic to display context-based justifications

 } catch (Exception ex) {

 out.println("
<i>Exception in generating reasonings</i> ");

104

 ex.printStackTrace();

 }

 %>

 </td>

 </tr>

Appendix B

Appendix B mainly contains the code from the JAVA package that has two classes. The first

class is ‘itembased’ that creates an item-based recommender and second class is ‘reasoning’

that determines the reasoning behind the recommendations.

Itembased

MysqlConnectionPoolDataSource dataSource = new MysqlConnectionPoolDataSource();

 dataSource.setUser("root");

 dataSource.setPassword("raza");

 dataSource.setServerName("localhost");

 dataSource.setPort(3306);

 dataSource.setDatabaseName("hybridrecommender");

 MySQLJDBCDataModel model = new MySQLJDBCDataModel(dataSource,

"ratings", "User_id", "movie_id", "rating", "rating_date");

 RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {

 public Recommender buildRecommender(DataModel model) throws

TasteException {

 ItemSimilarity similarity = new PearsonCorrelationSimilarity(model);

 return new GenericItemBasedRecommender(model, similarity);

 }

 };

 int usr = Integer.parseInt(user);

 Recommender recommender = recommenderBuilder.buildRecommender(model);

 List<RecommendedItem> recomendations = recommender.recommend(usr,

maxRecomendationsReqd);

 for (int i = 0; i < recomendations.size(); i++) {

 System.out.println(recomendations.get(i).getItemID() + " Recommanded Movie

ID");

 System.out.println(recomendations.get(i).getValue() + " Preference value");

 Long s = recomendations.get(i).getItemID();

 Reclist_Item.add(s);

 }

105

Reasoning

public void Reason(String user) {

 ItemBased item_obj = new ItemBased();

 try {

 item_obj.itemBased(user);

 } catch (Exception ex) {

 System.out.println(ex.toString());

 }

 int usr = Integer.parseInt(user);

 try {

 Class.forName(driver).newInstance();

 conn = DriverManager.getConnection(url + dbName, userName, password);

 System.out.println("Connected to the database");

 String sql;

 ArrayList Users_Actor_list = new ArrayList();

 ArrayList Users_Director_list = new ArrayList();

 ArrayList Users_Timeofweek_list = new ArrayList();

 ArrayList Users_Companion_list = new ArrayList();

 String actor_movie = null, director_movie = null, time_of_week_movie = null,

companion_movie = null;

 sql = "select actor,director,time_of_week,companion from feature_profile_v where

user_id ="+usr;

 st = conn.createStatement();

 rt = st.executeQuery(sql);

 System.out.println("user's actor,director,time of week and companion");

 while (rt.next()) {

 Users_Actor_list.add(rt.getString("actor"));

 Users_Director_list.add(rt.getString("director"));

 Users_Timeofweek_list.add(rt.getString("time_of_week"));

 Users_Companion_list.add(rt.getString("companion"));

 }

 for(int i=0;i<item_obj.Reclist_Item.size();i++) {

 sql = "select actor,director,time_of_week,companion from feature_profile_v where

movie_id =+"

 + item_obj.Reclist_Item.get(i);

 st = conn.createStatement();

 rt = st.executeQuery(sql);

 if (rt.next()) {

 actor_movie = rt.getString("actor");

 director_movie = rt.getString("director");

 time_of_week_movie=rt.getString("time_of_week");

 companion_movie=rt.getString("companion");

 System.out.println(actor_movie);

106

 System.out.println(director_movie);

 System.out.println(time_of_week_movie);

 System.out.println(companion_movie);

 }

 boolean OneTimeAdded = false;

 if (Users_Actor_list.contains(actor_movie)) {

 Actor_list_suggested.add(actor_movie);

 ID_list_suggested.add(item_obj.Reclist_Item.get(i));

 OneTimeAdded = true;

 }

 if (Users_Director_list.contains(director_movie)) {

 Director_list_suggested.add(director_movie);

 if(!OneTimeAdded)

 ID_list_suggested.add(item_obj.Reclist_Item.get(i));

 }

 if (Users_Timeofweek_list.contains(time_of_week_movie)) {

 Timeofweek_list_suggested.add(time_of_week_movie);

 if(!OneTimeAdded)

 ID_list_suggested.add(item_obj.Reclist_Item.get(i));

 }

 if (Users_Companion_list.contains(companion_movie)) {

 companion_list_suggested.add(companion_movie);

 if(!OneTimeAdded)

 ID_list_suggested.add(item_obj.Reclist_Item.get(i));

 }

 }

 conn.close();

 System.out.println("Disconnected from database");

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

