
International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

DOI : 10.5121/ijcsea.2011.1510 119

FPGA DESIGN FOR H.264/AVC ENCODER

A. Ben Atitallah

(1,2)
, H. Loukil

(2)
 , N. Masmoudi

(2)

(1)
University of Sfax, High Institute of Electronics and Communication, BP 868, 3018

Sfax, TUNISIA
(2)

LETI laboratory–ENIS, University of Sfax, BP W, 3038 Sfax, TUNISIA
Ahmed.benatitallah@isecs.rnu.tn

Abstract

In this paper, we describe an FPGA H.264/AVC encoder architecture performing at real-time. To reduce

the critical path length and to increase throughput, the encoder uses a parallel and pipeline architecture

and all modules have been optimized with respect the area cost. Our design is described in VHDL and

synthesized to Altera Stratix III FPGA. The throughput of the FPGA architecture reaches a processing rate

higher than 177 million of pixels per second at 130 MHz, permitting its use in H.264/AVC standard

directed to HDTV.

Index Terms

H.264/AVC, Video coding, VHDL, FPGA architecture.

1. INTRODUCTION

Digital video compression techniques play an important role that enables efficient transmission

and storage of multimedia content in bandwidth and storage space limited environment. The

H.264/AVC [1, 2, 3] is a video coding standard that has been developed to achieve significant

improvements, in the compression performance, over the existing standards. In fact, the high

compression performance comes mainly from the prediction techniques that remove spatial and

temporal redundancies. To remove spatial redundancy, H.264/AVC intra prediction supports

many prediction modes to make better prediction. Inter prediction is enhanced by motion

estimation (ME) to remove more temporal redundancy. However, the H.264/AVC coding

performance comes at the price of computational complexity. According to the instruction

profiling with HDTV specification, H.264/AVC encoding process requires 3600 giga-instructions

per second (GIPS) computation and 5570 giga-bytes per second (GBytes/s) memory access. For

real-time applications, the acceleration by a dedicated hardware is a must.

This paper focuses on implementing the H.264/AVC encoder in FPGA technology. Indeed, we

propose a high throughput rate H.264/AVC encoder in order to support a large band of real time

application such as the HDTV (High Definition TV) 720p (1280x720) and 1080i (1920x1088)

exploiting advantages of the parallel structures that can be efficiently implemented in hardware

using VHDL (VHSIC Hardware Description Language) language. The key point of a parallel

architecture is to reduce the number of operations and the ability to achieve fast execution. The

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

120

rest of the paper is organized as follows: section 2 presents an overview of the H.264/AVC

encoder algorithm. The proposed architecture and the FPGA implementation of the H.264/AVC

encoder are discussed in section 3. Section 4 presents the synthesis results and the performance

evaluations of the H.264/AVC encoder under the Altera FPGA. Finally, a conclusion will be

given in section 5.

II. OVERVIEW OF H.264/AVC ENCODER ALGORITHM

Figure 1 shows the H.264 encoder scheme that is a hybrid encoder similar to previous standards

[1]. A coded video sequence in H.264/AVC consists of a sequence of coded pictures. Each

picture is divided into MacroBlocks (MB) of 16x16 pixels. Each MB performs intra and inter

prediction mode to find the best predictor in the spatial and temporal domains. There are two

kinds of intra prediction modes in H.264. One is intra 4x4 prediction and the other is the intra

16x16 prediction. The inter prediction is implemented by motion estimation prediction on several

reference frames. The residual MB is then obtained by subtracting predictor from the original.

The residual MB is transformed using an integer transform, and the transform coefficients are

quantized followed by zigzag ordering and entropy coding. For coding the residual data block

into inter or intra 4x4 prediction mode, the Integer Cosine Transform (ICT), Quantization (Q),

Inverse Quantization (IQ) and Inverse ICT (IICT) are applied. But in the intra 16x16 prediction

mode, we use both 4x4 ICT and Hadamard transforms with a quantization of the transformed

Hadamard coefficients

Q
uantized

C
oefficient

E
n
tro
p
y
 C
o
d
in
g

M
otion V

ector

R
ec
o
n
stru
c
tio
n

V
id
eo

Figure 1. The H.264 encoder scheme

In this section, we present an overview of the different blocks which compose the H.264/AVC

encoder such as: prediction mode, ICT/IICT and Q/IQ blocks.

2.1. Prediction modes algorithm

2.1.1. Inter prediction

In fact, motion estimation (ME) is one of the most important operations in H.264/AVC and

employs block-based motion estimation to remove temporal redundancy within frames. Thus, it

provides coding systems with high compression ratio. The most popular technique for motion

estimation is the full search block-matching algorithm (FSBMAs) as sketched in Figure 2.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

121

Current FramePrevious reference Frame

V

W

p

p

Search Window

Candidate MB

Current MB

L

H

j

i

Figure 2. Block-Matching algorithm

The current frame of a video sequence is divided into 16x16 blocks (current MB). For each of

them a block in the previous frame (candidate MB) is exhaustively searched for the best matching

within a search window with maximum horizontal and vertical displacements of p.

In order to determinate the best MV, The matching algorithm consists in computing an error cost

function, usually the Sum of Absolute Differences (SAD) between the MB which is defined by:

∑∑
= =

++−=
15

0

15

0

),(),(),(
i j

njmiyjixnmSAD (1)

Where SAD(m,n) is the distortion of the candidate MB at search position (m,n), x(i,j) means

current MB data and y(i,j) stands for search area data. Thus, the FSBMA demand a lot of

computation to calculate the distortion for all the (2p+1)
2
 possible positions of the candidate MBs

within the search window whose the pixel size is (2p+16+1)
2

pixels. For example, Real Time

FSBMA for a 30 Hz CIF (352 x 288 pixels) format with [-16,+15] search window requires 9.3

Giga operations per second (GOPS). This high number of operations makes this approach

unsuited for Real Time applications such as 3G mobile phones, CMOS cameras Personal Digital

Assistants and wireless surveillance terminals…

Hence, many fast algorithms have been proposed in the literature allowing to reduce of the

computational complexity at the price of a slight loss of performance. The basic principle of these

algorithms is to divide the search process into a few sequential steps and to choose the next

search direction according to the current search result. Based on previous studies [4, 5], the LDPS

Line Diamond Parallel Search algorithm (LDPS) provides an acceptable objective quality and

speed performance compared to several fast algorithms such as the Three Step Search (TSS) [6],

the Diamond Search (DS) [7], the HEXagon-Based Search (HEXBS) [8] and the Nearest

Neighbors Search (NNS) [9]. The LDPS [4, 5] search algorithm is illustrated in Figure 3. LDPS

exploits the center-biased characteristics of the real world video sequences by using in the initial

step, the Small Diamond Search Pattern (SDSP) that is presented in Figure 3.a. The second

dynamic pattern improves search on the horizontal and vertical motion components as illustrated

in Figure 3.b and c.

(a) Model of the Line Diamond Parallel Search algorithm

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

122

Figure 3. Operation of Line Diamond Parallel Search

2.1.2. Intra 4x4 prediction mode

There are nine kinds of intra prediction mode for a 4x4 intra block. The intra 4x4 prediction mode

is illustrated by Figure 4 where the arrows indicate the direction of prediction in each mode.

Figure 4. Direction of nine intra 4x4 prediction in H.264/AVC

A 4x4 intra block contains 16 pixels labeled from a to p. The pixels A to M are from the

neighboring blocks and are assumed to be already reconstructed. Each intra 4x4 prediction mode

generates 16 predicted pixel values (named a to p) using some or all of the neighboring pixels A

to M as shown in Figure 5. To encode an intra 4x4 block, we have to opt the best mode with the

minimum cost value by computing the sum of absolute transformed difference (SAD) value for

all nine candidate modes. After, the residual block, which obtained by the difference between the

reference block and best predicted block, is processed by 4x4 integer transform and quantization

algorithm and reconstructed by inverse quantization and transform to be the reference of next

block.

a b c d

e f g h

i j k l

m n o p

M A B C D

I

J

K

L

E F G H

Figure 5. A 4x4 block and neighboring pixels

2.1.3. Intra 16x16 prediction mode

As an alternative to the 4x4 intra prediction mode, the entire 16x16 intra prediction component of

a MB may be predicted in one operation. In fact, the current MB is predicted by the 17 pixels

(c) Horizontal line search (b) Vertical line search

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

123

from upper MBs and 16 pixels from the left MB. The 16x16 intra prediction has four modes that

are calculated for a 16x16 block and is shown in Figure 6.

H

V … … … … … .

M o d e 0 (v er t ica l)

H

V

…
…

…
…

..

M o d e 1 (h o r izo n ta l)

H

V M ean (H + V)

M o d e 2 (D C)

H

V

M o d e 3 (p lan e)

Figure 6. 16x16 intra prediction mode

2.2. 4x4 Integer Transform Algorithm

H.264/AVC adopts transform coding for the prediction error signals. The DCT has been widely

used in image and video coding standards, unlike the popular 8x8 DCT utilized in previous

standards, while the H.264/AVC encoder is based on a 4x4 ICT which can be computed exactly

in integer arithmetic to avoid inverse transform mismatch problems.

There are two types of 4x4 integer transforms for the residual coding. The first one is for

luminance residual blocks and is described by (1) [2].
T

DCT MXMY = (2)

Where the matrix X is the input 4x4 residual block and M is specified by the following:

−−

−−

−−
=

cbbc

aaaa

bccb

aaaa

M

With: () ()83cos21,8cos21,21 ππ === cba . Thus, (2) can be factorized in the

following form (3) [2]:

ECXCY
T

⊗=)((3)

With:

=

−−

−−

−−
=

22

22

22

22

22

1111

22

1111

babbab

abaaba

babbab

abaaba

Eand

dd

dd
C

Where E is a matrix of scaling factors. The symbol ⊗ means that each component of
T

CXC is

multiplied by the corresponding coefficient in E . To reduce hardware implementation of the

transform, the constant d is approximated by 0.5 and the constant b by 52 . The final forward

transform becomes (4) [2]:

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

124

f

T

ff EXCCY ⊗=)((4)

Where:

=

−−

−−

−−
=

4242

22

4242

22

1221

1111

2112

1111

22

22

22

22

babbab

abaaba

babbab

abaaba

EandC ff

So, the scaling matrix fE is be incorporated into the quantization process. Then
T

ff XCC

becomes the core of a 2-D integer forward transform and contains only 4 coefficients, 1, -1, 2 and

-2 that can be implemented by using only additions and shifting operations.

The 4x4 Inverse Integer Cosine Transform (IICT) is very similar to the ICT and the complexity is

the same. The coefficient of 1-D inverse transform iC is given by (5).

−−

−−

−−
=

5.0111

115.01

115.01

5.0111

iC
 (5)

The other kind of transform is Hadamard Transform (HT). It is applied to the luminance DC

terms in 16x16 intra prediction mode. The Hadamard transform is defined by (6).
T

ff XHHY = (6)

With:

−−

−−

−−
=

1111

1111

1111

1111

fH

The Hadamard transform matrix is very similar to the forward transform matrix. The difference is

to replace the coefficient 2 by 1 in the transform matrix. The Inverse Hadamard Transform (IHT)

is the same as the forward Hadamard transform because the transform matrix is symmetric.

2.3. 4x4 Quantization Algorithm

In H.264/AVC, the quantization matrix
fE which defined by equation (4) is incorporated in the

quantization. Then the quantizer mechanisms become complicated because of the requirements

for avoiding division and floating point arithmetic. In H.264/AVC, there are two types of

quantization algorithm for the 4x4 integer transform. The first one is for the transformed

coefficients of luminance residual block. The AC Quantization Operation (ACQ) is shown in (7)

[2].

)(
QStep

PF
Y ijroundZ ij = (7)

Where,)(T

ff XCCY = is the unscaled coefficient after integer core transformation, PF is the

scaling factor of integer transform, QStep is the quantization step size and ijZ is the coefficient

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

125

after quantization. A total of 52 vlues of QStep are supported by the standard as presented in

Table 1, where QStep doubles in size for every increment of 6 in QP. Hence, to simplify the

arithmetic, the quantization stated in (7) can be rewritten as (8) and implemented PF/QStep as a

multiplication by a factor MF (a multiplication factor) and a right-shift, to avoid the division

operations.

)
2

(
qbits

MF
Y ijroundZ ij = (8)

Where

Qstep

PFMF
qbits

=
2

 (9)

)6/(15 QPfloorqbits += (10)

Table 1. Quantization step sizes in H.264/AVC codec

QP 0 1 2 3 4 5
QStep 0.625 0.6875 0.8125 0.875 1 1.125
QP 6 7 8 9 10 11
QStep 1.25 1.375 1.625 1.75 2 2.25
QP … … … … … …
QStep … … … … … …
QP 48 49 50 51
QStep 160 … … 224

The MF value depends on QP and the position (i,j) of the element in the matrix as shown in Table

2. The factor MF remains unchanged for QP>5 which can be calculated using (11).

6%5 QPQPQP MFMF => = (11)

Then (8) can be represented using integer arithmetic [2] as follows:

() qbitsfMFYZ ijij >>+= . (12)

Were f is a parameter used to avoid rounding errors and it depends on prediction type of the block

and QP.

Table 2. The Multiplication factor MF in H.264/AVC

QP
Positions

(0,0),(2,0),(0,2),(2,2)
Positions

(1,1),(1,3),(3,1),(3,3)
Other positions

0 13107 5243 8066

1 11916 4660 7490

2 10082 4194 6554

3 9362 3647 5825

4 8192 3355 5243

5 7282 2893 4559

The Inverse of AC Quantization (IACQ) is defined as:

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

126

()6/2.. QPfloor

ijijij VZY = (13)

Where ijZ is the quantized coefficient, ijY is a scaled coefficient and ijV is rescaling factor.

The other type of quantization is for DC coefficients of 4x4 Hadamard transform. The DC

Quantization (DCQ) is shown in 14.

() 12.)0,0(+>>+= qbitsfMFYZ ijij (14)

)()(ijij YsignZsign =

Where
)0,0(MF is the multiplication factor for position (0, 0) in Table 2. The inverse of DC

quantization (IDCQ) is defined as:

If QP≥12 then:

26/
2.

)0,0(
.

+
=

QPfloor

V
ij

Z
ij

Y (15)

Otherwise:

()()6/2
6/1

2
)0,0(

. QPfloor
QPfloor

V
ij

Z
ij

Y −>>

 −
+=

3. PROPOSED HARDWARE ARCHITECTURE

This section presents an overview of the proposed architecture for H.264/AVC encoder. The

design of the architecture has been based on the analysis of the functionality of the encoder

blocks and on their mapping on computing resources to produce the modules of the architecture.

Figure 7 shows the hardware architecture of the inter and intra prediction, ICT/IICT and Q/IQ

blocks. In fact, after loading the current MB and the reference search area, the decision block

gives the residual MB which is obtained by subtracting the best predictor with the minimum SAD

from the original. The residual MB is transformed using an integer transform, and the transform

coefficients are quantized followed by zigzag ordering. The reconstruction process is applied in

order to obtain a reference block for the next block.

The implementation technique of the different block composed our architecture will be detailled

in next subsections.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

127

Figure 7. Hardware design for the H.264/AVC encoder

3.1. Proposed Prediction Hardware Architecture

The present section describes the details of the inter, intra 4x4 and intra 16x16 prediction blocks.

3.1.1. Inter Prediction Architecture

The hardware component of the LDPS algorithm is shown in Figure 8. This hardware architecture

is composed of four sub-modules. The control unit is responsible for synchronization between

different blocks of the search module, the extraction module, the SAD module and the

comparator module in order to find the suitable MB for the reference MB in the defined search

area.

 Figure 8. Block diagram of the LDPS architecture

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

128

In the first step, the extraction module extract pixels associated of the each reference MB through

the search area memory per sending the specific address. This address is generated by the control

unit by indicating the position of the small diamond or the line search as shown in Figure 9.

Figure 9. Position of the reference Macroblock

The second step allows evaluating SAD for the reference MB. This is why we have injected the

appropriate reference MB in the SAD module (concerning the small diamond or the line search

necessary to the LDPS algorithm). As illustrated in Figure 10, the SAD module is used to

compute the nine SAD values such as one SAD 16x16, two SAD 16x8, two SAD 8x16 and four

SAD 8x8. In fact, the pixels of the current and the reference MB are applied simultaneously to the

SAD module through the “Pix_cur” and the “Pix_ref_MB” signals. Furthermore, the SAD

module computes the difference, the absolute and the addition between the various pixels in

sixteen clock cycle for the nine SAD.

Figure 10. SAD module

After calculating the nine SAD values for one MB position in the search area, the comparator

module, as shown in Figure 11, allows to accumulate the various SAD following the block size in

order to obtain the best SAD 16x16. In fact, the comparator module accumulates four SAD 8x8,

two SAD 16x8 and two SAD 8x16 to obtain one SAD 16x16 for each case and compare the

various SAD values to select the best reference MB.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

129

Figure 11. Comparator module

The LDPS algorithm is a non constant time algorithm. In fact, it provides the motion vector when

the minimum SAD coincides with the current minimum position or the center of SDSP, as shown

in Figure 3, or exceeding the search area. Therefore, the needed time to obtain the motion vector

varies with the MB. For example, in the SDSP, the minimum SAD value needs 105 cycles where

each position requires one clock cycle for read memory and extraction, sixteen clock cycles for

computing SAD with variable block size and tree cycle for comparison. In fact, (21xN) clock

cycles are needed to compute the motion vector for the best reference MB where N presents the

number of the reference MB used to verify the stop criterions of the LDPS algorithm with

VBSME (Variable Block Size Motion Estimation). Indeed, from the realized simulation, we

conclude that the average time to determinate the best motion vector for several MB is 250 clock

cycles.

3.1.2. Intra 4x4 Prediction Architecture

The intra 4x4 prediction architecture is composed by the predictor module, SAD calculator

module and comparator module as shown in Figure 12. In this figure, the controller module

receives input control signal (Clk, Reset, Start) and generates all the internal control signals for

each stage and the output control signals for the communication with other hardware block.

Figure 12. Intra prediction 4x4 design

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

130

The core of the predictor module is based on the prediction equations. In fact, after a careful

analysis of the equations used in intra 4x4 prediction modes, it is observed that there are common

parts in the equations and some of the equations are identical in each intra 4x4 prediction mode.

The intra prediction equations are organized for exploiting these observations to reduce both the

number of memory accesses and computation time required for generating the predicted pixels.

Therefore, instead of breaking down the predictor calculation into individual calculator blocks for

each mode, the calculation is divided into two stages: base and derived prediction equations as

shown in Table 3 and Table 4 respectively.

Table 3. Base prediction equations

Output Equation

Eq_0 = A + B + 1

Eq_1 = B + C + 1

Eq_2 = C + D + 1

Eq_3 = D + E + 1

Eq_4 = E + F + 1

Eq_5 = F + G + 1

Eq_6 = G + H + 1

Eq_7 = I + J + 1

Eq_8 = J + K + 1

Eq_9 = K + L + 1

Eq_10 = M + A + 1

Eq_11 = M + I + 1

Eq_12 = 2H + 1

Eq_13 = 2L + 1

Table 4. Derived prediction equations

Output Equation

Derived

Equations

Eq_14 = M + 2*A + B + 2 Eq_0 + Eq_10

Eq_15 = A + 2*B + C + 2 Eq_0 + Eq_1

Eq_16 = B + 2*C + D + 2 Eq_1 + Eq_2

Eq_17 = C + 2*D + E + 2 Eq_2 + Eq_3

Eq_18 = D + 2*E + F + 2 Eq_3 + Eq_4

Eq_19 = E + 2*F + G + 2 Eq_4 + Eq_5

Eq_20 = F + 2*G + H + 2 Eq_5 + Eq_6

Eq_21 = M + 2*I + J + 2 Eq_7 + Eq_11

Eq_22 = I + 2*J + K + 2 Eq_7 + Eq_8

Eq_23 = J + 2*K + L + 2 Eq_8 + Eq_9

Eq_24 = A + 2*M + I + 2 Eq_10 + Eq_11

Eq_25 = G + 3*H + 2 Eq_6 + Eq_12

Eq_26 = K + 3*L + 2 Eq_9 + Eq_13

Eq_27 = A + B + C + D + 2 Eq_0 + Eq_2

Eq_28 = I + J + K + L + 2 Eq_7 + Eq_9

Eq_29 = A+B+C+D+I+J+K+L+4 Eq_27 + Eq_28

The predictor module receives the thirteen neighbouring pixels from reconstructed blocks. Since

not all of the neighbouring pixels may be available due to MB edges, there are valid inputs for

each group of neighbouring pixels. The prediction calculator captures all reconstructed pixels and

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

131

then calculates the equations needed to create all predicted values for all nine modes in parallel.

The final operation is to fan-out the equation results to predicted values as shown in Table 5. The

prediction calculator needs one clock cycle to generate all predicted pixels. The prediction

calculator also creates a prediction valid (pred_valid_n) flag for each prediction mode.

The SAD calculator calculates the difference between the source pixels and the predicted pixels

for all nine prediction modes in parallel. This operation needs 2 clock cycles. Finally, the SAD

Comparator takes the 9 input SAD values corresponding to the 9 prediction modes and

determines which SAD value is lowest. The lowest SAD value and its corresponding prediction

mode are both output. This operation needs 2 clock cycles.

Table 5. Equation to Predicted Pixels Routing

Pixel Mode

 0 1 2 3 4 5 6 7 8

a A I Eq_29 Eq_15 Eq_24 Eq_10 Eq_11 Eq_0 Eq_7

b B I Eq_29 Eq_16 Eq_14 Eq_0 Eq_24 Eq_1 Eq_22

c C I Eq_29 Eq_17 Eq_15 Eq_1 Eq_14 Eq_2 Eq_8

d D I Eq_29 Eq_18 Eq_16 Eq_2 Eq_15 Eq_3 Eq_23

e A J Eq_29 Eq_16 Eq_21 Eq_24 Eq_7 Eq_15 Eq_8

f B J Eq_29 Eq_17 Eq_24 Eq_14 Eq_21 Eq_16 Eq_23

g C J Eq_29 Eq_18 Eq_14 Eq_15 Eq_11 Eq_17 Eq_9

h D J Eq_29 Eq_19 Eq_15 Eq_16 Eq_24 Eq_18 Eq_26

i A K Eq_29 Eq_17 Eq_22 Eq_21 Eq_8 Eq_1 Eq_9

j B K Eq_29 Eq_18 Eq_21 Eq_10 Eq_22 Eq_2 Eq_26

k C K Eq_29 Eq_19 Eq_24 Eq_0 Eq_7 Eq_3 L

l D K Eq_29 Eq_20 Eq_14 Eq_1 Eq_21 Eq_4 L

m A L Eq_29 Eq_18 Eq_23 Eq_22 Eq_9 Eq_16 L

n B L Eq_29 Eq_19 Eq_22 Eq_24 Eq_23 Eq_17 L

o C L Eq_29 Eq_20 Eq_21 Eq_14 Eq_8 Eq_18 L

p D L Eq_29 Eq_25 Eq_24 Eq_15 Eq_22 Eq_19 L

3.1.3. Intra 16x16 Prediction Architecture

Referring to the Figure 13, our Intra 16x16 prediction architecture calculates in parallel the

predicted MB for all 3 intra 16x16 prediction modes specified in the H.264 standard (horizontal,

vertical and DC) based on the reconstituted pixels from the previous MB (planar mode is not used

[10]).

Figure 13. Intra prediction 16x16 design

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

132

In fact, the MB pixels are loaded into a dual RAM (Random Access Memory) for reordering and

then output (to the residual or reconstruction blocks) by sets of 16 pixels (4x4 block). The

predicted pixels are stored into RAM for all modes. We use a SAD_4x4 block for calculating the

SAD value for each mode. We accumulate this value 16 times in order to obtain the SAD_16x16

for each mode. The comparator compares the SAD values for all prediction modes and picks the

lowest SAD value for the best prediction mode. Indeed, from the realized simulation, we

conclude that 108 clock cycles are necessary to obtain the best prediction mode whose 16 clock

cycles for predictor block, 5 clock cycles to compute the SAD value for each 4x4 block and 2

clock cycles for the comparator block.

3.2. 4x4 ICT/IICT Hardware Architecture

The proposed architecture for the 2-D integer transform uses 4x4 parallel input data. A block

diagram of this architecture is shown in Figure 14. This diagram contains two 1-D integer

transform units and a control unit that provides clocks and others control signals such as the

Done_ICT output flag signal to indicate that outputs coefficients are valid.

Figure 14. Architecture of the 2-D integer transform

In Figure 14, the 16 x 16-bit residual inputs data of the transform is captured from the outside

environment through residual_0..15 signal. Moreover, after intra or motion estimation prediction,

the dynamic range of the inputs data is 9 bits, i.e. from -256 to +255. Because we have used

operations like additions, subtractions and shifts, the dynamic range of the pixel data is extended

to a 16-bit value [11]. So, the 4x4 residual data are processed in parallel by the transform block.

This block consists of two cascaded 1-D transform units, i.e. one 1-D row transform and one 1-D

column transform. The separable nature of the 2-D transform given by (3) is exploited by

computing the 1-D transform on the rows and then the 1-D transform on the columns.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

133

3,32,31,30,3

3,22,21,20,2

3,12,11,10,1

3,02,01,00,0

xxxx

xxxx

xxxx

xxxx

3,32,31,30,3

3,22,21,20,2

3,12,11,10,1

3,02,01,00,0

vvvv

vvvv

vvvv

vvvv

3,0

2,0

1,0

0,0

x

x

x

x

3,1

2,1

1,1

0,1

x

x

x

x

3,2

2,2

1,2

0,2

x

x

x

x

3,3

2,3

1,3

0,3

x

x

x

x

0,3

0,2

0,1

0,0

v

v

v

v

1,3

1,2

1,1

1,0

v

v

v

v

2,3

2,2

2,1

2,0

v

v

v

v

3,3

3,2

3,1

3,0

v

v

v

v

Figure 15. Architecture of the 1-D integer transform

Figure 16. Fast implementation of 4x4 1D- ICT

+

+

+

+

+

+

+

+

-1

-1

-1

-1

X(0)

X(2)

X(1)

X(3)

V(0)

V(1)

V(2)

V(3)

1/2

1/2

Figure 17. Fast implementation of 4x4 1D-IICT

Figure 18. Fast implementation of 4x4 1D-HT

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

134

The parallel hardware architecture of the 1-D integer transform, 1-D ICT, unit is presented by

Figure 15 and is designed to process 16 pixels per cycle by computing the transform of four lines

in parallel. In fact, equation 17 is implemented by using concurrently four fast data-flow

algorithm as detailed in Figure 16. Figure 17 and 18 are based on the same approach to present

the fast implementation of the 1-D IICT and 1-D HT, respectively. These fast algorithms use only

addition, subtraction and shift operations.

3.3. 4x4 Q/IQ Hardware Architecture

The proposed architecture for 4x4 AC and DC quantization is shown in Figure 19.

Figure 19. Architecture of AC and DC quantization module

The hardware quantization components for the AC and DC coefficients rescale the transformed

coefficients according to the quantization step as defined by (12) and (14). It contains sixteen

Processing Elements (PE), the register bank for storing the input pixels noted input_0..15 and two

read only memories (ROM) for storing QBIT and F values noted ROM_F and ROM_QBIT,

respectively. The AC and DC quantization modules receive the sixteen 16 bits transformed

coefficients in the same time and quantize these coefficients according to the QP factor in four

clock cycles. The main component of the quantization architecture is the PE which shown in

Figure 20. It is composed by four basic components and a control unit and is designed to quantize

one transformed coefficient every four clock cycles. An integer multiplier assures the

multiplication of AC and DC transformed coefficients with the corresponding MF(i,j) factor that

is stored into the ROM_MF memory as shown in Table 2 and selected according to the QP

modulo 6 value. The adder makes the sum of value given by the multiplier with the F parameter

given by the ROM_F memory. A shifter register shifts the result set by the adder by qbits (varies

15 to 23 according to the value of QP). The multiplier, the adder, the shifter and the ROM_MF

memory modules take one clock cycle each one. The control unit receives input control signals

(Reset, Clk, Start_Quant) and generates all internal control signals for each stage and the output

flag (Done_Quant) signal to indicate that the quantized coefficient is valid.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

135

Figure 20. PE module of the quantization architecture

The inverse AC and DC quantization components share the same architecture design with AC and

DC quantization presented in Figure 19. The differences between the architecture for the

quantization and for the inverse quantization are presented in the PE module. In fact, for

computing the inverse AC quantization values respecting (13), we have just eliminated the

addition block from the PE module depicted according to Figure 20. On the contrary, to

implement (15) the inverse DC quantization, we use the same PE module of the DC quantization.

But the shifter block is implicated when QP<12. The AC and DC inverse quantization

architecture is designed to provide sixteen coefficients every three and four clock cycles,

respectively.

4. PERFORMANCE RESULTS

The proposed architecture is implemented in VHDL language. The implementation is verified

with RTL simulations using Mentor Graphics ModelSim. It is then synthesized and placed and

routed to a Stratix III EP3SL150 FPGA [12] using Altera Quartus II tool. Table 6 shows the

hardware cost in terms of ALUTs (Adaptive Look-Up Tables), DSP (Digital signal processing)

blocks which is introduced by Altera for signal processing applications [13] and RAM blocks.

Table 6. FPGA implementation of Hardware design for the H.264/AVC encoder

 ALUTs DSP RAM

(Kbit)

Frequency

(MHz)

Inter 4849 (4%) 0% 127 (<1%) 136

Intra 4x4 4358 (4%) 0% 0% 310

Intra 16x16 1951 (2%) 0% 0% 260

ICT 1024 (<1%) 0% 0% 480

IICT 1504 (<1%) 0% 0% 405

HT 1088 (<1%) 0% 0% 418

IHT 1056 (<1%) 0% 0% 436

ACQ 4108 (4%) 32 (8%) 6 (<1%) 221

IACQ 2013 (2%) 32 (8%) 2 (<1%) 269

DCQ 4047 (4%) 32 (8%) 6 (<1%) 211

IDCQ 5426 (5%) 32 (8%) 2 (<1%) 230

H.264 Design 37178 (33%) 128 (54%) 150 (<1%) 130

The entire hardware architecture for the H.264/AVC encoder uses 33% of the ALUTs, 1% of the

RAM blocks, 54% of the DSP blocks and 10% of the IOBs. We can see that there is enough free

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

136

space to add other H.264/AVC blocks. Our architecture operates at 130 MHz thus 7.7 ns delay for

each coded data is required.

Figure 21, 22 and 23 present the performance of the proposed H.264/AVC FPGA architecture in

term of the number of hardware cycles. This performance is evaluated with different types of the

video formats indicating the time needed for processing one MB for each prediction mode (inter,

intra 4x4, intra 16x16). The prototyping results are compared with the reference software results

and the comparison confirms the correctness of the prototyped architecture.

Figure 21. Hardware cycles for inter mode

Figure 22. Hardware cycles for intra 4x4 mode

Figure 23. Hardware cycles for intra 16x16 mode

With operating clock frequency 130 MHz, the data throughput of the proposed architecture can

achieve 113 Mpixels/sec, 122 Mpixels/sec and 177 Mpixels/sec which depend of the prediction

mode inter, intra 4x4 and intra 16x16 respectively. The most important result is the maxima

throughput of the internal H.264/AVC encoder architecture that, in all case, is sufficient to

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

137

operate in H.264/AVC encoder for HDTV. Considering a HDTV 1080i (1920x1088@30Hz)

video format and a downsampling relation of 4:2:0 then the required throughput is 94 Mpixels/s.

The FPGA design of the H.264/AVC design is able in worse case, i.e., when the inter prediction

mode is always chosen, to reach a processing rate of 113 Mpixels/s which is outperforming the

HDTV requirement. So, aiming the target application, appropriate frequency can be chosen for

the specific application in order to achieve lower power consumption.

5. CONCLUSION

This paper has presented an FPGA video encoder for H.264/AVC which achieves a real-time

performance and has low area cost. Our parallel and pipeline design was described in VHDL and

synthesized to the Altera Stratix III EP3SL150 FPGA can encode HDTV 1080i 30 fps video in

real-time at 130 MHz.

As future works, it is planned to integrate in the design the entropy coding block, then other

optimization can be performed and better results can be achieved.

REFERENCES

[1] Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification,

ITU-T Rec. H.264 and ISO/IEC 14496-10 AVC.

[2] I. E. G. Richardson, “H.264 and MPEG 4 Video Compression-Video Coding for Next Generation

Multimedia”, New York: Wiley, 2003.

[3] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview of the H.264/AVC Video

Coding Standard”, IEEE Trans. on Circuits and Systems for Video Technology vol. 13, no. 7, pp.

560–576, July 2003.

[4] Imen Werda, Haithem Chaouch, Amine Samet, Mohamed Ali Ben Ayed, Nouri Masmoudi,

“Optimal DSP-Based Motion Estimation Tools Implementation for H.264/AVC Baseline

Encoder,” IJCSNS International Journal of Computer Science and Network Security, vol. 7, no. 5,

2007.

[5] Imen Werda, Haithem Chaouch, Amine Samet, Mohamed Ali Ben Ayed, Nouri Masmoudi,

“Optimal DSP-Based integer Motion Estimation Implementation for H.264/AVC Baseline

Encoder,” The International Arab Journal of information Technology, vol. 7, no. 1, January 2010.

[7] Tham Y J, Ranganath S, Ranganath M et al, “A novel unrestricted center-biased diamond search

algorithm for block motion estimation,” IEEE Trans. on Circuits and Systems for Video

Technology, vol.8, no. 4, pp 369-377, 1998.

[8] C. Zhu, X. Lin, and L.P. Chau, "Hexagon-based search pattern for fast block motion estimation",

IEEE Trans. on Circuits and Systems for Video Technology, vol. 12, no. 5, pp. 349–355, 2002.

[9] M. Gallant, G. Côté, F. Kossentini, "An Efficient Computation- Constrained Block-Based Motion

Estimation Algorithm for Low Bit Rate Video Coding", IEEE Trans. Image Processing, vol. 8, no.

12, 1999.

[10] A. Kessentini, B. Kaanich, I. Werda, A. Samet and N. Masmoudi, "Low complexity intra 16x16

prediction for H.264/AVC", ICESCA’08, May 2008, Tunisia.

[11] H.S. Malvar, A. Hallapuro, M. Karczewicz, L. Kerofsky, “Low-complexity Transform and

Quantization in H.264/AVC”, IEEE Trans. On Circuits and Systems Video Technology, vol. 13,

pp. 598–603, July. 2003.

[12] Altera Stratix III development platform http://www.altera.com/products/devkits/altera/kit-siii-

host.html

[13] A. Ben Atitallah, P. Kadionik, F. Ghozzi, P. Nouel, N. Masmoudi, Ph. Marchegay “Optimization

and implementation on FPGA of the DCT/IDCT algorithm”, IEEE ICASSP '06, Toulouse, France,

14-19 Mai 2006.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

138

Authors

Ahmed Ben Atitallah received his Dipl.-Ing and MS degree in electronics from the National

Engineering School of Sfax (ENIS) in 2002 and 2003, respectively and Ph.D. degree in

electronics from IMS laboratory, University of Bordeaux1 in 2007. He is currently an

assistant professor at Higher Institute of Electronic and Communication of Sfax (Tunisia).

He is teaching Embedded System conception and System on Chip. His main research

activities are focused on image and video signal processing, hardware implementation,

embedded systems.

Hassen Loukil was born in Sfax, Tunisia, in 1979. He received electrical engineering degree

from the National School of Engineering-Sfax (ENIS) in 2004. He received his M.S. and

Ph.D. degrees in electronics engineering from Sfax National School of Engineering in 2005

and 2011 respectively. He is currently researcher in the Laboratory of Electronics and

Information Technology and an assistant at the University of Sfax, Tunisia. His research

interests include signal and image processing, hardware implementation using FPGA,

embedded systems technology.

Nouri Masmoudi received electrical engineering degree from the Faculty of Sciences and

Techniques - Sfax, Tunisia, in 1982, the DEA degree from the National Institute of Applied

Sciences-Lyon and University Claude Bernard-Lyon, France in 1984. From 1986 to 1990,

he prepared his thesis at the laboratory of Power Electronics (LEP) at the National School

Engineering of Sfax (ENIS). He received his PhD degree from the National School

Engineering of Tunis (ENIT), Tunisia in 1990. From 1990 to 2000, he was an assistant

professor at the electrical engineering department -ENIS. Since 2000, he has been an

associate professor and head of the group ‘Circuits and Systems’ in the Laboratory of

Electronics and Information Technology. Currently, he is responsible for the Electronic Master Program at

ENIS. His research activities have been devoted to several topics: Design, Telecommunication, Embedded

systems and Information technology.

