
688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 1 of 94
 © Copyright 2018, the Members of the symbIoTe

Symbiosis of smart objects across IoT
environments

688156 - symbIoTe - H2020-ICT-2015

Integrated Prototype and Developed
Applications

The symbIoTe Consortium

Intracom SA Telecom Solutions, ICOM, Greece
Sveučiliste u Zagrebu Fakultet elektrotehnike i računarstva, UNIZG-FER, Croatia
AIT Austrian Institute of Technology GmbH, AIT, Austria
Nextworks Srl, NXW, Italy
Consorzio Nazionale Interuniversitario per le Telecomunicazioni, CNIT, Italy
ATOS Spain SA, ATOS, Spain
University of Vienna, Faculty of Computer Science, UNIVIE, Austria
Unidata S.p.A., UNIDATA, Italy
Sensing & Control System S.L., S&C, Spain
Fraunhofer IOSB, IOSB, Germany
Ubiwhere, Lda, UW, Portugal
VIPnet, d.o.o, VIP, Croatia
Instytut Chemii Bioorganicznej Polskiej Akademii Nauk, PSNC, Poland
NA.VI.GO. SCARL, NAVIGO, Italy
Universität Zürich, UZH, Switzerland

© Copyright 2018, the Members of the symbIoTe Consortium

For more information on this document or the symbIoTe project, please contact:
Sergios Soursos, INTRACOM TELECOM, souse@intracom-telecom.com

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 2 of 94
 © Copyright 2018, the Members of the symbIoTe

Document Control

Number: D5.4

Title: Integrated Prototype and Developed Applications

Type: Public

Editor(s): Ilia Pietri, ICOM
E-mail: ilpiet@intracom-telecom.com

Author(s): Vasilis Glykantzis, ICOM, Gerhard Duennebeil, Karl Kreiner, Christoph
Ruggenthaler, AIT, Petar Krivic, Ivana Podnar Žarko, Pavle Skocir, UNIZG-
FER, Matteo Pardi, Luca Tomaselli, NXW, Luca De Santis, NAVIGO, Michael
Jacoby, IOSB, Jose Antonio Sanchez Murillo, ATOS, Szymon Mueller,
Mikolaj Dobski, Jakub Toczek, Roman Łapacz, PSNC, Matteo Di Fraia,
UNIDATA, Reinhard Herzog, IOSB, Joao Garcia, UW, Antonio Paradell
Bondia, Juan Belmonte Rodriguez, WLI, Raquel Ventura Miravet, S&C,
Zvonimir Zelenika, VIP

Doc ID: D5_4-v09

Amendment History

Version Date Author Description/Comments

V0.1 May 8
th
 I. Pietri Initial ToC

V0.2 May 25
th

 I. Pietri, V. Glykantzis, G. Duennebeil Assignment for contributions to partners

V0.3 May 29
th

 I. Pietri, V. Glykantzis, G. Duennebeil Finalised ToC

V0.4 June 15
th
 I. Pietri, P. Krivic, M. Pardi, L. De Santis,

P. Skocir, J. Garcia, M. Jacoby, J. A.
Sanchez Murillo, S. Mueller, K. Kreiner,
M. Di Fraia, R. Herzog, V. Glykantzis

Merged first round of contributions. Added input from partners

V0.5 July 5
th

 I. Pietri, V. Glykantzis, M. Dobski,J.
Toczek, C. Ruggenthaler, J. Garcia

Merged second round of contributions. Added input from ICOM, AIT,
PSNC and UW partners.

V0.6 July 6th I. Pietri G. Duennebeil, R. Ventura
Miravet, A. Paradell Bondia

Merged new round of contributions. Added input from AIT, S&C, WLI
partners.

V0.7 July 17th I. Pietri, , V. Glykantzis, M. Dobski, M.
Pardi

Draft for internal review. Edits by ICOM and added missing input from
PSNC and NXW partners.

V0.8 July 24th I. Pietri, I. Podnar Žarko, R. Łapacz, J.
Garcia, K. Kreiner

Draft with merged comments from internal reviews. Edits and
comments by Corinna and Roman. Added missing inputs from UW and
AIT partners.

V0.9 July 27th I. Pietri, V. Glykantzis, R. Ventrura
Miravet, L. De Santis, Z. Zelenika, M. Di
Fraia, J. Garcia, R. Herzog, M. Jacoby,
L. Tomaselli, K. Kreiner, J. Belmonte
Rodriguez

Document to submit. Some final edits from involved partners to
address the comments of reviewers, added enabler applications.

Legal Notices
The information in this document is subject to change without notice.
The Members of the symbIoTe Consortium make no warranty of any kind with regard to this document,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
The Members of the symbIoTe Consortium shall not be held liable for errors contained herein or direct,
indirect, special, incidental or consequential damages in connection with the furnishing, performance, or use
of this material.

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 3 of 94
 © Copyright 2018, the Members of the symbIoTe

Table of Contents

1 Executive Summary 5

2 Introduction 7

2.1 symbIoTe 7

2.1.1 System Architecture 8

2.2 Purpose of the Document and Scope 10

2.3 Task T5.1 Objectives 10

2.4 Task T5.2 Objectives 11

2.5 Document Structure 11

3 Prototype Integration 12

3.1 Project Build and Deployment 12

3.2 Common Integration Information across Components 12

3.2.1 Programming Language 12

3.2.2 Generic Source Tree Information 13

3.2.3 Building Tool 13

3.2.4 External Tools 14

3.2.5 Continuous Integration 14

3.3 Software Releases 14

4 Integrated Prototype 16

4.1 Common Java Dependencies across Components 16

4.2 Common Components/Libraries 16

4.2.1 symbIoTeLibraries 16

4.2.2 symbIoTeSecurity 17

4.2.3 SymbIoTeSemantics 19

4.2.4 SemanticMapping 20

4.2.5 Authentication and Authorization Manager 21

4.3 Core Components 23

4.3.1 Administration 23

4.3.2 Cloud-core Interface 25

4.3.3 Core Interface 25

4.3.4 Core Resource Access Monitor 26

4.3.5 Core Resource Monitor 27

4.3.6 Registry 28

4.3.7 Search 29

4.3.8 Semantic Manager 31

4.3.9 Core Bartering and Trading Manager 32

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 4 of 94
 © Copyright 2018, the Members of the symbIoTe

4.3.10 Core Anomaly Detection 32

4.4 Platform Components 34

4.4.1 Federation Manager 34

4.4.2 Monitoring 34

4.4.3 Platform Registry 35

4.4.4 Registration Handler 36

4.4.5 Resource Access Proxy 37

4.4.6 Subscription Manager 38

4.4.7 Trust Manager 39

4.4.8 Bartering & Trading Manager 40

4.4.9 SLA Manager 40

4.5 Smart Space Components 41

4.5.1 Smart Space Middleware 41

4.5.2 SDEV SymbIoTe Agent 42

5 Developed Applications 44

5.1 Applications Developed for symbIoTe Use Cases 44

5.1.1 Smart Residence 44

5.1.2 Smart Mobility and Ecological Routing 55

5.1.3 EduCampus 59

5.1.4 Smart Stadium 63

5.1.5 Smart Yachting 74

5.2 Applications Developed for Demos 80

5.2.1 Demo Web App 80

5.3 Enabler-based Applications 82

5.3.1 Indoor Positioning based on Location Enabler 82

6 Conclusions 91

7 References 92

8 Acronyms 93

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 5 of 94
 © Copyright 2018, the Members of the symbIoTe

1 Executive Summary

The purpose of this deliverable is to document the final release of the symbIoTe software
prototype. The symbIoTe project aims to provide a cooperation environment for Internet of
Things (IoT) platforms to interoperate, collaborate and share resources by implementing
IoT platform federations. It also has the objective to provide a uniform interface for the
client applications to access different types of IoT platforms and to facilitate the
implementation of cross-platform and cross-domain IoT applications.

To make this possible, applications as well as IoT platforms, need to be interoperable.
symbIoTe builds an interoperability middleware and offers four interoperability modes for
platforms to select the desired collaboration level with other platforms within the symbIoTe-
enabled ecosystem. The four interoperability modes, referred to as “Compliance Levels”
(L1 to L4), aim to enable an incremental deployment of functionalities across four
architectural domains identified: 1) Application Domain, 2) Cloud Domain, 3) Smart Space
Domain, and 4) Device Domain.

Among the main activities of Work Package 5 (WP5) “Use-case based Trials and
Deployments” are the following: (i) the integration of the system components into a
software prototype and (ii) the implementation of applications based on the use cases
designed in T1.1 of WP1 to utilize symbIoTe APIs; these activities are the focus of this
deliverable, D5.4. Our work relies on previous symbIoTe deliverables, especially D1.2 [1]
and D5.2 [2] that describe in detail the system requirements and architecture, the
components developed in earlier software releases, as well as their role, interactions and
basic features incrementally deployed.

The first part of this deliverable documents the final release of the symbIoTe prototype
including information about the build and deployment of the system, the structure of the
project, the source tree and the maintained repositories, developed software components
and their main features. A microservices architecture which allows for better scalability,
performance and code maintenance in a highly-distributed environment was selected for
the development of the project to design and provide distributed, performance-oriented IoT
services.

The second part of the deliverable focuses on the implementation of applications designed
to utilize the symbIoTe ecosystem (use case-related and demo applications) and the
deployment of initial functional tests used to validate their features. Five use cases of
symbIoTe that make use of different applications have been identified:

1) Smart Residence with Smart Healthy Indoor Air, Smart Area Controller, Home Comfort
and Smart Health Mirror applications.

2) Smart Mobility and Ecological Routing with Mobile and Web applications offering
optimized routing alternatives and point of interest search.

3) EduCampus with Searching for a Room application.
4) Smart Stadium with Visitor, Retailer and Promowall applications.
5) Smart Yachting with Portnet and Centrale Acquisti applications.

Most of the aforementioned use cases target L1 and L2 compliance levels. Smart
Residence and Smart Yachting use cases also require extensions for L3 and L4
compliance. Different components are needed depending on the different domains and
compliance levels desired. The IoT platforms need to integrate the required symbIoTe

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 6 of 94
 © Copyright 2018, the Members of the symbIoTe

components according to these compliance levels and the applications need to be
designed and developed accordingly. The selected applications are used to test the
usability of developed middleware in practice and for specific domains. They comprise an
excellent example to demonstrate the development of new or adjustment of existing
applications to provide services in the symbIoTe ecosystem and test the software
prototype across existing platforms that interoperate and use a plethora of available
resources (sensors, actuators, mobile devices, processing resources, etc.) within a
symbIoTe-enabled cooperation environment.

In summary, this deliverable documents the work done in Tasks T5.1 and T5.2 for the
system integration and implementation of the use case-related symbIoTe applications.
Extensive trials and deployment of the symbIoTe platform and the developed applications
with end users have been planned and will continue until month 33 and 36 in Tasks T5.4
and T5.5, respectively. The trials and final results will be presented in Deliverable D5.6.

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 7 of 94
 © Copyright 2018, the Members of the symbIoTe

2 Introduction

This section gives an overview of symbIoTe and summarizes the purpose of this document
and the activities that correspond to the objectives mentioned in the Description of Action
(DoA). Finally, the structure of the document follows.

2.1 symbIoTe

The use of smart objects in different domains of our life is rapidly increasing with actuators
and sensors monitoring from personal activities to environmental and traffic data. As a
result, the need for transparent and secure access to and usage of the available resources
across various IoT domains to provide daily life services and satisfy the needs of an
increasingly connected society emerges. Currently, IoT is evolving around a plethora of
vertical solutions specifically suited to given scenarios. Although such solutions integrating
connected objects within local environments like home and office coexist, they cannot
cooperate to enable cross domain applications as they often adopt non-standard,
sometimes fully proprietary protocols to control the variety of sensors and actuators.
Application developers and providers are locked in with a platform and need to adjust their
solutions to each new platform and underlying infrastructure, while infrastructure providers
cannot offer their resources to multiple IoT service providers.

The symbIoTe project aims to address the challenging task of remedying this fragmented
environment of isolated IoT ecosystems offering an abstraction layer for a unified view on
various platforms and their sensing/actuating resources in a way that resources are
transparent to application designers and developers. It creates a cooperation environment
for IoT platforms to securely interoperate, collaborate and share resources for the mutual
benefit (IoT platform federations). Last but not least, it enables the implementation of
dynamic smart spaces where smart objects can seamlessly migrate and roam between
various IoT domains and platforms. The example, Figure 1 is used to illustrate the
symbIoTe’s vision to provide a cooperation environment for various IoT domains: Smart
Home environments (Platform 1), Smart office/Smart Campus environments (Platform 2)
and public spaces solutions (Platform 3).

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 8 of 94
 © Copyright 2018, the Members of the symbIoTe

Figure 1: SymbIoTe ecosystem

2.1.1 System Architecture

The symbIoTe approach is built around a layered IoT stack connecting various devices
(sensors, actuators and IoT gateways) within Smart Spaces (local environments with
connected objects) with the Cloud. In this section we give an overview of the symbIoTe
architecture. More details can be found in deliverables D1.2 [1] and D1.4 [3], the reports
on the initial and final system architecture and requirements, respectively.

The symbIoTe architecture consists of four layered domains (shown in Figure 2):

1) Application Domain (APP), which offers a high-level API to provide a unified view on
the symbIoTe’s IoT environments and support cross-platform discovery and
management of resources.

2) Cloud Domain (CLD) that hosts the cloud-adjusted building blocks of specific

platforms to enable platform collaboration and sharing of resources in accordance

with platform-specific business rules.

3) Smart Space Domain (SSP) which consists of smart objects, IoT gateways and
local and storage computing resources and enables dynamic sensor discovery and
configuration within local smart spaces.

4) Smart Device Domain (SD) that spans over heterogeneous smart devices and their
roaming capability to dynamically blend with a surrounding smart environment and
get discovered to interact with devices in the visited smart space according to
predefined access policies.

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 9 of 94
 © Copyright 2018, the Members of the symbIoTe

Figure 2: The symbIoTe architecture

Also, the symbIoTe approach offers four interoperability mechanisms (compliance levels),
as depicted in Figure 3, to enable an incremental deployment of functionalities across the
architectural domains (namely, APP, CLD, SSP and SD) and allow IoT platforms to define
the appropriate level of integration of symbIoTe-specific services in order to achieve the
desired level of cooperation within a symbIoTe-enabled ecosystem.

1) Level 1 compliance (L1) offers an open symbIoTe-defined platform interface within
the Cloud Domain so that platform resources and IoT services are searchable
within the symbIoTe Core Services.

2) Level 2 compliance (L2) implements functionality needed for platform federations
and direct platform to platform interworking for resource bartering and trading.

3) Level 3 compliance (L3) supports dynamic smart spaces.

4) Level 4 compliance (L4) supports device roaming in visited domains so that a smart
device can use services in a visited smart space.

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 10 of 94
 © Copyright 2018, the Members of the symbIoTe

Figure 3: symbIoTe compliance levels

Different components are required to be installed in different domains according to the
desirable compliance level. The project defines the components based on the domain in
which they are placed, rather than which set of features or compliance level they provide.

The symbIoTe project with all the developed components is available in GitHub1. In the
microservice architecture used the components are bundled into super-repositories that
make use of the git submodules according to the domain; the symbIoTe Core2 repository
contains all the components belonging to the core, while components needed in the
respective platform side can be found in the symbIoTe Cloud3 repository. Finally, each
environment considered as smart space needs to deploy the components in the symbIoTe
Smart Space Middleware4 repository.

2.2 Purpose of the Document and Scope

The purpose of Deliverable D5.4 “Integrated Prototype and Developed Applications” is to
document the final symbIoTe prototype and the developed use case-related applications
running on top of it based on the work done in Tasks T5.1 and T5.2.

2.3 Task T5.1 Objectives

Task T5.1 defines an implementation framework for the symbIoTe architecture. It serves
as a guide for all the implementation tasks (T2.2, T2.3, T3.3, T4.1, T4.2 and T4.3) in the
technical WPs by setting common methodologies, tools and workflows for the
development of the symbIoTe components. A second set of activities concerns the
integration of the system components developed in previous WPs (WP2, WP3 and WP4)
into a working software prototype.

1
 https://github.com/symbiote-h2020

2
 https://github.com/symbiote-h2020/SymbioteCore

3
 https://github.com/symbiote-h2020/SymbioteCloud

4
 https://github.com/symbiote-h2020/SymbioteSmartSpace

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 11 of 94
 © Copyright 2018, the Members of the symbIoTe

2.4 Task T5.2 Objectives

Task T5.2 implements the symbIoTe applications based on the use cases defined in Tasks
T1.1 and T1.3. The implementation phase of the symbIoTe use case-related applications,
including scenarios, tools and application workflows, is followed by initial functional tests to
validate their features. T5.2 also interacts with the 2nd symbIoTe Open Call partners (WP6)
who base their applications on the defined domain-specific symbIoTe APIs. To this end, it
provides an empirical set of guidelines for the implementation of symbIoTe applications.

2.5 Document Structure

The rest of the deliverable is organized as follows. Section 3 provides information about
the prototype integration (the build and installation process, etc.), while Section 4 presents
the symbIoTe prototype and the integration of individual components. Section 5 describes
the design and implementation of use case driven applications, followed by functional
tests. Section 6 concludes the deliverable.

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 12 of 94
 © Copyright 2018, the Members of the symbIoTe

3 Prototype Integration

This section provides information about the system integration, covering the structure of
the developed software, build and deployment requirements, the software releases, the
functionalities of the individual components and dependencies specific to them.

3.1 Project Build and Deployment

All source codes are available in Github:

 https://github.com/symbiote-h2020/SymbioteCore for all core components.

 https://github.com/symbiote-h2020/SymbioteCloud for platform-side

components.

 https://github.com/symbiote-h2020/SymbioteSmartSpace for environments
considered as smart spaces.

The project also maintains the following repositories/libraries:

 symbIoTeLibraries5 repository, which is a set of common models, definitions and
methods used by components at all layers.

 symbIoTeSecurity6 repository, which implements the symbIoTe-specific security
solution.

 symbIoTeSemantics7 repository, which contains the necessary ontology files for the
symbIoTe framework and its use cases.

 semanticMapping8 repository, which implements the semantic mapping solution of
the symbIoTe framework.

 Ontologies9 repository, which contains the information models and ontologies
created.

Information on how to install and build all components can be found at the Wikipage of

each repository (e.g., https://github.com/symbiote-h2020/SymbioteCore/wiki).

3.2 Common Integration Information across Components

3.2.1 Programming Language

For developing the symbIoTe framework, the project chose the Java programming
language, since it is a very popular, easy to write, compile and debug, while it offers

5
https://github.com/symbiote-h2020/symbIoTeLibraries

6
https://github.com/symbiote-h2020/ symbIoTeSecurity

7
https://github.com/symbiote-h2020/symbIoTeSemantics

8
https://github.com/symbiote-h2020/symbIoTeMapping

9
https://github.com/symbiote-h2020/Ontologies

https://github.com/symbiote-h2020/SymbioteCore
https://github.com/symbiote-h2020/SymbioteCloud
https://github.com/symbiote-h2020/SymbioteSmartSpace

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 13 of 94
 © Copyright 2018, the Members of the symbIoTe

numerous frameworks (e.g., Spring10). Furthermore, the choice of Java is highly
compatible with the microservices approach chosen, since there are many available
frameworks that facilitate the development of microservices (e.g., Spring Boot11, Spring
Cloud12).

Even though symbIoTe is entirely developed in Java, the project provides standard
communication mechanisms to all the symbIoTe components (e.g., https and message
queues). Therefore, the platform-specific plugins required to enable the integration of an
IoT platform to the symbIoTe framework are language independent and must not
necessarily be developed in Java.

3.2.2 Generic Source Tree Information

The symbIoTe developers follow the Standard Directory Layout for Java and all the
symbIoTe components include the following subfolders:

 src/main/java/eu/h2020/symbiote: Application/Library sources.

 src/main/resources: Application/Library resources (e.g., bootstrap.properties
configuration file of Spring Boot).

 src/test/java/eu/h2020/symbiote: Test sources.

 src/test/resources: Test resources.

3.2.3 Building Tool

Gradle13 was the final choice for a building tool, due to its simplicity of creating and
maintaining building scripts, its extensive documentation and good performance. In order
to facilitate the simplicity and quality of the development procedure, the project used the
following Gradle plugins listed in Table 1.

Table 1: Gradle plugins

Plugin Version Description

java default Plugin necessary for java

org.springframework.boot 1.5.14.RELEASE Plugin necessary for Spring Boot

io.spring.dependency-
management

1.0.0.RELEASE
A Gradle plugin that provides Maven-like
dependency management functionality

jacoco default
Gradle plugin that generates Jacoco reports
from a Gradle Project.

org.owasp.dependencycheck 3.0.2
A software composition analysis plugin that
identifies known vulnerability dependencies
used by the project.

eclipse default Plugin for Eclipse

10

https://spring.io/

11
 https://projects.spring.io/spring-boot/

12
http://projects.spring.io/spring-cloud/

13
https://gradle.org/

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 14 of 94
 © Copyright 2018, the Members of the symbIoTe

idea default Plugin for Intellij IDEA

com.cinnober.gradle.semver-git 2.2.2
Gradle plugin that combines git tags and
semantic versioning, and sets the gradle
version property accordingly.

3.2.4 External Tools

symbIoTe has further dependencies on external tools, so that certain aspects of the
projects can be easily realized:

 RabbitMQ14 (version 3.6.+): message queue server for internal messaging between
same domain components. RabbitMQ’s use is granted under a “Mozilla Public
License”.

 MongoDB15 (version 3.6+): database used by symbIoTe components. The related
license is the “GNU AFFERO GENERAL PUBLIC LICENSE”.

 Icinga 216: for monitoring registered resources. Icinga is licensed under the terms of
the GNU General Public License Version 2.

 Nginx17 (version 1.12.+): for enabling access of platform components with the
external world (i.e., applications, enablers, symbIoTe core). Nginx is released
under the terms of a BSD-like license.

3.2.5 Continuous Integration

During implementation, the project team used the branching model as described in
Deliverable D5.1 [4] along with the continuous integration server Travis18. The test reports
are also automatically pushed to codecov19, a reporting tool used to group, merge, archive
and compare coverage reports. Specific testing information per component is provided in
the next section (Section 4).

3.3 Software Releases

The project has performed five major releases of the symbIoTe software (R1-R5)
summarized in the following table. The date of release and the respective GitHub links are
provided in the following table.

Table 2: Software releases

Release Date GitHub Link

0.1.0 (R1) 21/02/2017 Core: https://github.com/symbiote-h2020/SymbioteCore/releases/tag/0.1.0

Cloud: https://github.com/symbiote-h2020/SymbioteCloud/releases/tag/0.1.0

14

https://www.rabbitmq.com/
15

 https://www.mongodb.com/
16

https://www.icinga.com/products/icinga-2/
17

 https://nginx.org/en/
18

 https://travis-ci.org/
19

https://codecov.io/github/symbiote-h2020

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 15 of 94
 © Copyright 2018, the Members of the symbIoTe

0.2.0 (R2) 22/05/2017 Core: https://github.com/symbiote-h2020/SymbioteCore/releases/tag/0.2.0

Cloud: https://github.com/symbiote-h2020/SymbioteCloud/releases/tag/0.2.0

0.2.1 20/07/2017 Core:https://github.com/symbiote-h2020/SymbioteCore/releases/tag/0.2.1

Cloud: https://github.com/symbiote-h2020/SymbioteCloud/releases/tag/0.2.1

1.0.0 (R3) 17/10/2017 Core:https://github.com/symbiote-h2020/SymbioteCore/releases/tag/1.0.0

Cloud: https://github.com/symbiote-h2020/SymbioteCloud/releases/tag/1.0.0

1.1.0 16/11/2017 Core:https://github.com/symbiote-h2020/SymbioteCore/releases/tag/1.1.0

Cloud: https://github.com/symbiote-h2020/SymbioteCloud/releases/tag/1.1.0

1.2.0 10/04/2018 Core: https://github.com/symbiote-h2020/SymbioteCore/releases/tag/1.2.0

Cloud: https://github.com/symbiote-h2020/SymbioteCloud/releases/tag/1.2.0

2.0.0 (R4) 16/05/2018 Core: https://github.com/symbiote-h2020/SymbioteCore/releases/tag/2.0.0

Cloud: https://github.com/symbiote-h2020/SymbioteCloud/releases/tag/2.0.0

3.0.0 (R5) 17/08/2018
(expected)

Core: https://github.com/symbiote-h2020/SymbioteCore/releases/tag/3.0.0

Cloud: https://github.com/symbiote-h2020/SymbioteCloud/releases/tag/3.0.0

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 16 of 94
 © Copyright 2018, the Members of the symbIoTe

4 Integrated Prototype

4.1 Common Java Dependencies across Components

Towards simplifying and accelerating the implementation procedure, the project team also
made use of the Spring framework and specifically of the Spring Boot (1.5.11.RELEASE)
and Spring Cloud (Dalston.RELEASE) projects. All the common Java dependencies
across projects are listed in Table 3.

Table 3: Java dependencies

Group Id Artifact Id Version Type

org.springframework.cloud spring-cloud-starter-config Dalston.SR5 compile

org.springframework.cloud spring-cloud-starter-eureka Dalston.SR5 compile

org.springframework.cloud spring-cloud-starter-zipkin Dalston.SR5 compile

org.springframework.boot spring-boot-starter-amqp 1.5.14.RELEASE compile

com.github.symbiote-h2020 SymbIoTeLibraries 5.+ compile

junit junit 4.+ testcompile

4.2 Common Components/Libraries

4.2.1 symbIoTeLibraries

4.2.1.1 Generic Information

URL of git repository https://github.com/symbiote-h2020/SymbIoTeLibraries

URL of javadoc https://symbiote-h2020.github.io/SymbIoTeLibraries/doxygen

URL of code coverage reports https://codecov.io/github/symbiote-h2020/SymbIoTeLibraries

Code coverage snapshot 26%

4.2.1.2 Feature History

Release Main Features

5.0.0 Support for Composite Access Policies

5.1.0 Adding observed property by iri to the core query request

5.4.0 Added necessary classes for Platform Registry

5.7.0 Added property UOM iri implementation

5.11.0 Adding input parameters and capabilities to query response class

5.14.0 Return resource urls to Enabler Logic

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 17 of 94
 © Copyright 2018, the Members of the symbIoTe

5.15.0 Added Trust values to resources

5.16.0 Finalized Smart Space classes

5.17.0 Finalized Federation classes

5.18.0 Added GDPR-compliant SymbIoTeSecurity dependency

4.2.1.3 Specific Dependencies

GroupId Artifact/Plugin Version

joda-time joda-time 2.9.9

javax.validation validation-api 2.0.0.Final

io.swagger swagger-annotations swaggerAnnotationsVersion

com.querydsl querydsl-mongodb 4.1.4

4.2.1.4 Component Source Tree Information

The SymbIoTeLibraries contain the following packages:

 /src/main/java/eu/h2020/symbiote/client: offers a set of clients for
communicating with symbIoTe components.

 /src/main/java/eu/h2020/symbiote/cloud: classes used in the Cloud
Domain.

 /src/main/java/eu/h2020/symbiote/core/cci: classes used for
communication with between the platform and Core components.

 /src/main/java/eu/h2020/symbiote/core/ci: classes used for

communication with between applications and Core components.

 /src/main/java/eu/h2020/symbiote/core/internal: classes used for
internal communication of the symbIoTe Core components.

 /src/main/java/eu/h2020/symbiote/enabler: a set of classes facilitating the
communication of the Enabler components.

 /src/main/java/eu/h2020/symbiote/model/cim: a set of classes describing
the symbIoTe information Core Information Model (CIM).

 /src/main/java/eu/h2020/symbiote/model/mim: a set of classes describing

the symbIoTe Meta Information Model (MIM).

 /src/main/java/eu/h2020/symbiote/util: general helper classes.

4.2.2 symbIoTeSecurity

4.2.2.1 Generic Information

URL of git repository https://github.com/symbiote-h2020/SymbIoTeSecurity

URL of javadoc https://symbiote-h2020.github.io/SymbIoTeSecurity/doxygen

URL of code coverage reports https://codecov.io/gh/symbiote-h2020/SymbIoTeSecurity

Code coverage snapshot 40%

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 18 of 94
 © Copyright 2018, the Members of the symbIoTe

4.2.2.2 Feature History

Release Main Features

21.4.0 constants, errors and enums used throughout the system

 single token access policies that can be used out of the box

 AAM client implementation

 Thin java security handler and component security handler clients with
corresponding factory

 Group of helper classes: generating keystores, validating security responses,
converting certificates to PEMs etc.

23.0.0 Readme containing basic instructions added

 Component Home Token Access Policy added

 Better error handling in AAMClient

 Payloads hardening

 Security Handlers locality added

23.2.0 Logging support added

 ability to work in platforms disconnected from SymbIoTe Core

24.2.0 SSP payloads added

 extended IComponentSecurityHandler access policies resolver to optionally
provide external cache of validated credentials

 Composite Access Policies introduction

 Keystore certificate mismatch with registered one check in Component Security
Handler

 Public method checking trust chain of the certificates

25.0.0 Certificate Key Store Factory generalized to support Platform, Enabler and
SmartSpace AAMs

25.4.0 Improved verbosity of the service response validator

25.7.0 Anomaly Detection Module payloads and client added

 SingleFederatedTokenAccessPolicy changed

26.0.0 Release missing due to jitpack bug

27.0.0 GDPR compliance release introduced:
o user service terms agreement consent
o research and marketing consent
o user statuses which can cause blocked access to symbiote services

without required service terms agreement

 updated dependencies

27.1.0 Bartering And Trading support added

4.2.2.3 Specific Dependencies

GroupId Artifact/Plugin Version

io.jsonwebtoken

jjwt 0.9.1

org.bouncycastle

bcprov-jdk15on

1.60

org.bouncycastle

bcpkix-jdk15on

1.60

io.github.openfeign

feign-jackson

9.7.0

commons-logging

commons-logging

1.2

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 19 of 94
 © Copyright 2018, the Members of the symbIoTe

javax.xml.bind

jaxb-api

2.3.0

4.2.2.4 Component Source Tree Information

The SymbIoTeSecurity library includes 6 main packages:

 src/main/java/eu/h2020/symbiote/security/accesspolicies: offers a set of
default access policies that can be used out of the box.

 src/main/java/eu/h2020/symbiote/security/clients: offers some factories
creating clients for the essential modules.

 src/main/java/eu/h2020/symbiote/security/commons: contains constants,

errors and enums used throughout the system.

 src/main/java/eu/h2020/symbiote/security/communication: contains
communication interfaces, used payloads and clients to modules responsible for
security, such as AnomalyDetectionModule, AuthenticationAuthorizationManager
and BarteringTradingModule.

 src/main/java/eu/h2020/symbiote/security/handler: thin java clients used
throughout different components and different layers. It contains methods that allow
the clients to acquire authorization credentials, service to evaluate the received
credentials in terms of both authorizing operations and authenticating the clients
and finally the clients to verify the authenticity of service they interact with.

 src/main/java/eu/h2020/symbiote/security/helpers: helper classes

containing methods used for security purposes.

4.2.3 SymbIoTeSemantics

4.2.3.1 Generic Information

URL of git repository https://github.com/symbiote-h2020/SymbIoTeSemantics

URL of javadoc https://symbiote-h2020.github.io/SymbIoTeSemantics/doxygen

URL of code coverage reports https://codecov.io/gh/symbiote-h2020/SymbIoTeSemantics

Code coverage snapshot 45%

4.2.3.2 Feature History

Release Main Features

1.0.0 Helper functions for handling semantic data

 Java classes representing information models v2.1.0

2.2.0 Updated to information model v2.2.0

2.3.0 Updated to information model v2.3.0

2.3.1 Added more helper methods for SPARQL execution

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 20 of 94
 © Copyright 2018, the Members of the symbIoTe

4.2.3.3 Specific Dependencies

GroupId Artifact/Plugin Version

org.apache.jena jena-core 3.4.0

org.apache.jena jena-querybuilder 3.4.0

org.apache.jena jena-cmds 3.4.0

4.2.3.4 Component Source Tree Information

The SymbIoTeSemantic component includes three main folders:

 src/main/java/eu/h2020/symbiote/semantics: the helper classes this library
provides.

 src/main/java/eu/h2020/symbiote/semantics/ontology: auto-generated
classes representing all information models provided by symbIoTe (CIM, BIM, MIM,
internal).

 src/main/java/eu/h2020/symbiote/semantics/util: utility classes used for
implementation.

4.2.4 SemanticMapping

4.2.4.1 Generic Information

URL of git repository https://github.com/symbiote-h2020/SemanticMapping

URL of Javadoc https://symbiote-h2020.github.io/SemanticMapping/doxygen

URL of code coverage reports https://codecov.io/gh/symbiote-h2020/SemanticMapping

Code coverage snapshot 47%

4.2.4.2 Feature History

Release Main Features

1.0.0 Initial commit, prototype status

 parser & printer for mapping DSL

 SPARQL query re-writing

 RDF data transformation

4.2.4.3 Specific Dependencies

GroupId Artifact/Plugin Version

org.apache.jena jena-core 3.4.0

org.apache.jena jena-querybuilder 3.4.0

org.apache.jena jena-cmds 3.4.0

org.apache.jena jena-arq 3.4.0

org.reflections reflections 0.9.11

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 21 of 94
 © Copyright 2018, the Members of the symbIoTe

4.2.4.4 Component Source Tree Information

The SemanticMapping component includes six main folder:

 src/main/java/eu/h2020/symbiote/semantics/mapping/model: the main and
model classes for semantic mapping

 src/main/java/eu/h2020/symbiote/semantics/mapping/data: classes
related to RDF data transformation.

 src/main/java/eu/h2020/symbiote/semantics/mapping/sparql: classes
related to SPARQL query re-writing.

 src/main/java/eu/h2020/symbiote/semantics/mapping/utils: utility
classes.

 src/main/java/eu/h2020/symbiote/semantics/mapping/parser: the parser

for the mapping language.

 src/main/jjtree: input data for automatic parser generation.

4.2.5 Authentication and Authorization Manager

4.2.5.1 Generic Information

URL of git repository
https://github.com/symbiote-
h2020/AuthenticationAuthorizationManager

URL of javadoc
https://symbiote-
h2020.github.io/AuthenticationAuthorizationManager/doxygen

URL of code coverage reports
https://codecov.io/github/symbiote-
h2020/AuthenticationAuthorizationManager

Code coverage snapshot 76%

4.2.5.2 Feature History

Release Main Features

0.1.0 Initial release supporting
o issuing of GUEST tokens
o Platform management
o User management

1.0.0 L1 compliance release

 Certificate issuing

 Token acquisition (GUEST, HOME, FOREIGN)

 User Details acquisition

 Local attributes management

 Platform Owners list acquisition

 Owned platform details acquisition

 Revocation service

 Token and certificate validation features

1.1.0 acquiring component certificate from DB

 checking deployment type with certificate

 strengthened validation

 Home token acquisition using AMQP removed

1.2.0 Caching added (available AAMs, getComponentCertificate, valid tokens)

 Revocation check of remote tokens during validation added
1.3.2 getAAMsInternally added

 AMQP listeners reimplemented

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 22 of 94
 © Copyright 2018, the Members of the symbIoTe

 Activation of the listener depending on the AAM role (Core, Platform)

2.0.0 L2 support finalized

 Federation Management

 Federation attributes in tokens added

3.0.0 L3/L4 support introduced

 Smart Space handling added

 Unused getPlatformOwners AMQP consumer removed

 Core certificate checked during validation

 Platform Agents management added

3.1.0 Offline validation improved

4.0.0 GDPR compliance introduced by managing users consents
o service terms
o marketing

4.2.5.3 Specific Dependencies

GroupId Artifact/Plugin Version

io.github.swagger2markup swagger2markup-spring-restdocs-ext 1.2.0

io.github.swagger2markup swagger2markup-gradle-plugin 1.2.0

org.asciidoctor asciidoctorj-pdf 1.5.0-alpha.10.1

io.spring.dependency-
management

io.spring.dependency-management 1.0.4.RELEASE

org.springframework.boot spring-boot-gradle-plugin 1.5.14.RELEASE

org.owasp dependencycheck 3.2.0

com.cinnober.gradle semver-git 2.3.1

org.springframework.cloud spring-cloud-starter Dalston.SR5

org.springframework.cloud spring-cloud-starter-config Dalston.SR5

org.springframework.cloud spring-cloud-starter-eureka Dalston.SR5

org.springframework.cloud spring-cloud-starter-zipkin Dalston.SR5

org.springframework.retry spring-retry Dalston.SR5

org.springframework.boot spring-boot-starter-amqp 1.5.14.RELEASE

org.springframework.boot spring-boot-starter-aop 1.5.14.RELEASE

org.springframework.boot spring-boot-starter-cache 1.5.14.RELEASE

org.springframework.boot spring-boot-starter-data-mongodb 1.5.14.RELEASE

org.springframework.boot spring-boot-starter-web 1.5.14.RELEASE

javax.xml.bind jaxb-api 2.3.0

io.swagger swagger-annotations 1.5.16

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 23 of 94
 © Copyright 2018, the Members of the symbIoTe

com.github.symbiote-h2020 SymbIoTeSecurity 27.0.0

com.github.symbiote-h2020 SymbIoTeLibraries 5.6.1

4.2.5.4 Component Source Tree Information

The Authentication and Authorization Manager component includes five main packages:

 /src/main/java/eu/h2020/symbiote/security/commons: containing enums

used in the module.

 /src/main/java/eu/h2020/symbiote/security/config: configuration classes.

 /src/main/java/eu/h2020/symbiote/security/listeners: containing all the

REST and AMQP interfaces and controllers/consumers.

 /src/main/java/eu/h2020/symbiote/security/repositories: repositories
definitions with payloads.

 /src/main/java/eu/h2020/symbiote/security/services: all services

responsible for the module logic.

4.3 Core Components

4.3.1 Administration

4.3.1.1 Generic Information

URL of git repository https://github.com/symbiote-h2020/Administration

URL of Javadoc https://symbiote-h2020.github.io/Administration/doxygen

URL of code coverage reports https://codecov.io/github/symbiote-h2020/Administration

Code coverage snapshot 84%

4.3.1.2 Feature History

Release Main Features

0.1.0 Interface definition

 User registration

 Platform registration, modification, removal

0.2.0 Interface definition (enhancements)

 Visual improvements

 App registration

 Security credential passing to users

1.0.0 Interface definition (enhancements)

 List registered resources

 Administrator user actions
1.1.0 Clear platform resources as Administrator

 Delete information model as Administrator

 Getting platform configuration

1.2.0 Integrated React.js

 Platform update

 Update of user email and password

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 24 of 94
 © Copyright 2018, the Members of the symbIoTe

 Initial implementation of creating federations

 Registration and deletion of SSPs

2.0.0 Updated platform configuration feature for L2

4.3.1.3 Specific Dependencies

GroupId Artifact/Plugin Version

org.springframework.boot spring-boot-starter-data-rest 1.5.14.RELEASE

org.springframework.boot spring-boot-starter-data-mongodb 1.5.14.RELEASE

org.springframework.boot spring-boot-starter-security 1.5.14.RELEASE

org.springframework.boot spring-security-test 1.5.14.RELEASE

org.webjars jquery 3.2.1

org.webjars bootstrap 3.3.7-1

commons-validator commons-validator 1.6

4.3.1.4 Component Source Tree Information

The Administration component includes the packages below:

 src/main/java/eu/h2020/symbiote/administration/communication/rabbit:
contains classes responsible for RabbitMQ messaging.

 src/main/java/eu/h2020/symbiote/administration/communication/contro

llers: contains definitions of the REST endpoints.

 src/main/java/eu/h2020/symbiote/administration/exceptions: contains
custom exceptions.

 src/main/java/eu/h2020/symbiote/administration/model: contains the

model classes used in the component.

 src/main/java/eu/h2020/symbiote/administration/repository: contains
classes which interact with the database.

 src/main/java/eu/h2020/symbiote/administration/services: contains the
service classes which handle the requests.

 src/main/java/eu/h2020/symbiote/administration/AppConfig.class:

provides the generic configuration of the Administration component.
 src/main/java/eu/h2020/symbiote/administration/CustomAuthentication

Provider.class: provides a custom AuthenticationProvider which communicates

with Core AAM for authenticating and authorizing users.

 src/main/java/eu/h2020/symbiote/administration/MvcConfig.class:

provides the MVC configuration of the Administration component.
 src/main/java/eu/h2020/symbiote/administration/WebSecurityConfig.cl

ass: provides the security configuration of the Administration component

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 25 of 94
 © Copyright 2018, the Members of the symbIoTe

4.3.2 Cloud-core Interface

4.3.2.1 Generic Information

URL of git repository https://github.com/symbiote-h2020/CloudCoreInterface

URL of Javadoc https://symbiote-h2020.github.io/CloudCoreInterface/doxygen

URL of code coverage reports https://codecov.io/github/symbiote-h2020/CloudCoreInterface

Code coverage snapshot 73.04%

4.3.2.2 Feature History

Release Main Features

0.1.0 Interface definition for resource registration (json and rdf), update and removal

0.2.0 Adding security (X-Auth-Token header) to existing interfaces

 Adding monitoring information interface

1.0.0 Updating security to SecurityRequests
 Adding resource access notification interface

1.1.0 Adding clearData interface for synchronization between Cloud and Core

1.2.0 Updates with respect to updated Libraries

2.0.0 Updates with respect to updated Libraries

4.3.2.3 Specific Dependencies

GroupId Artifact/Plugin Version

io.swagger swagger-annotations 1.5.13

4.3.2.4 Component Source Tree Information

The Cloud-Core Interface component includes two packages:

 src/main/java/eu/h2020/symbiote/communication: contains classes
responsible for RabbitMQ messaging.

 src/main/java/eu/h2020/symbiote/controllers: contains definitions of the
endpoints (REST services) to be used by the Cloud components.

4.3.3 Core Interface

4.3.3.1 Generic Information

URL of git repository https://github.com/symbiote-h2020/CoreInterface

URL of javadoc https://symbiote-h2020.github.io/CoreInterface/doxygen

URL of code coverage reports https://codecov.io/github/symbiote-h2020/CoreInterface

Code coverage snapshot 85.04%

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 26 of 94
 © Copyright 2018, the Members of the symbIoTe

4.3.3.2 Feature History

Release Main Features

0.1.0 Interface definition for parameterized search, sparql search and
resource urls

0.2.0 Adding security (X-Auth-Token header) to existing interfaces

 Adding security related interfaces (login, getCaCert, getAvailableAAMs)

1.0.0 Updating security to SecurityRequests
 Adding more security related endpoints (getHome/Guest/ForeginToken,

sign/revokeCertificate)
1.1.0 Updates with respect to updated Libraries

1.2.0 Updates with respect to updated Libraries

2.0.0 Updates with respect to updated Libraries

4.3.3.3 Specific Dependencies

GroupId Artifact/Plugin Version

io.swagger swagger-annotations 1.5.13

4.3.3.4 Component Source Tree Information

The Core Interface component includes two packages:

 src/main/java/eu/h2020/symbiote/communication: contains classes

responsible for RabbitMQ messaging.

 src/main/java/eu/h2020/symbiote/controllers: contains definitions of the
endpoints (REST services) to be used by the applications and Enablers.

4.3.4 Core Resource Access Monitor

4.3.4.1 Generic Information

URL of git repository https://github.com/symbiote-h2020/CoreResourceAccessMonitor

URL of Javadoc
https://symbiote-
h2020.github.io/CoreResourceAccessMonitor/doxygen

URL of code coverage reports
https://codecov.io/github/symbiote-
h2020/CoreResourceAccessMonitor

Code coverage snapshot 81%

4.3.4.2 Feature History

Release Main Features

0.1.0 Interface definition

 User registration

 Platform registration, modification, removal

0.2.0 Interface definition (enhancements)

 Visual improvements

 App registration

 Security credential passing to users

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 27 of 94
 © Copyright 2018, the Members of the symbIoTe

1.0.0 Interface definition (enhancements)

 List registered resources

 Administrator user actions
1.1.0 Clear platform resources as Administrator

 Delete information model as Administrator

 Getting platform configuration

1.2.0 Integrated React.js

 Platform update

 Update of user email and password

 Initial implementation of creating federations

 Registration and deletion of SSPs

2.0.0 Updated platform configuration feature for L2

4.3.4.3 Specific Dependencies

GroupId Artifact/Plugin Version

org.springframework.boot spring-boot-starter-data-rest 1.5.14.RELEASE

org.springframework.boot spring-boot-starter-data-mongodb 1.5.14.RELEASE

org.springframework.boot spring-amqp 2.0.0.M1

org.springframework.boot spring-rabbit 2.0.0.M1

4.3.4.4 Component Source Tree Information

The Core Resource Access Monitor component includes the packages below:

 src/main/java/eu/h2020/symbiote/cram/exceptions: contains custom

exceptions.
 src/main/java/eu/h2020/symbiote/cram/managers/AuthenticationManager

.class: responsible for the authentication and authorization of the receiving

requests.

 src/main/java/eu/h2020/symbiote/cram/messaging: contains classes
responsible for RabbitMQ messaging.

 src/main/java/eu/h2020/symbiote/cram/model: contains the model classes
used in the component.

 src/main/java/eu/h2020/symbiote/cram/repository: contains classes which

interact with the database.

 src/main/java/eu/h2020/symbiote/cram/utils: contains custom utility

classes.

 src/main/java/eu/h2020/symbiote/cram/AppCon.fig.class: provides the
generic configuration of the CRAM component.

4.3.5 Core Resource Monitor

4.3.5.1 Generic Information

URL of git repository https://github.com/symbiote-h2020/CoreResourceMonitor

URL of javadoc https://symbiote-h2020.github.io/CoreResourceMonitor/doxygen

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 28 of 94
 © Copyright 2018, the Members of the symbIoTe

URL of code coverage reports https://codecov.io/github/symbiote-h2020/CoreResourceMonitor

Code coverage snapshot 45.58%

4.3.5.2 Feature History

Release Main Features

1.0.0 Collecting monitoring information from platforms, regarding availability and load
information for resources

2.0.0 Added security headers’ checks

4.3.5.3 Specific Dependencies

GroupId Artifact/Plugin Version

org.springframework.boot spring-boot-starter-data-rest 1.5.14.RELEASE

org.springframework.boot spring-boot-starter-data-mongodb 1.5.14.RELEASE

org.springframework.boot spring-amqp 2.0.0.M1

org.springframework.boot spring-rabbit 2.0.0.M1

4.3.5.4 Component Source Tree Information

The Core Resource Monitor component includes the packages below:

 src/main/java/eu/h2020/symbiote/crm/exceptions: contains custom
exceptions.

 src/main/java/eu/h2020/symbiote/crm/managers: responsible for the

authentication and authorization of the receiving requests.

 src/main/java/eu/h2020/symbiote/crm/interfaces: contains classes
responsible for RabbitMQ messaging.

 src/main/java/eu/h2020/symbiote/crm/repository: contains classes which
interact with the database.

 src/main/java/eu/h2020/symbiote/crm/resources: contains classes for static

definitions and application configuration.

4.3.6 Registry

4.3.6.1 Generic Information

URL of git repository https://github.com/symbiote-h2020/Registry

URL of javadoc https://symbiote-h2020.github.io/Registry/doxygen

URL of code coverage reports https://codecov.io/github/symbiote-h2020/Registry

Code coverage snapshot 60.08%

https://codecov.io/github/symbiote-h2020/CoreResourceMonitor

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 29 of 94
 © Copyright 2018, the Members of the symbIoTe

4.3.6.2 Feature History

Release Main Features

0.1.0 Initial implementation of the resource and platform handling
(registration/update/removal)

0.2.0 Integration with first iteration of Security

 Adding communication with SemanticManager for resource validation

1.0.0 Implementation of the symbiote federation handling
 Implementation of the PIM handling

1.1.0 Implementation of the clearData functionality

1.2.0 Updates with respect to updated Libraries

2.0.0 Updates with respect to updated Libraries

4.3.6.3 Specific Dependencies

GroupId Artifact/Plugin Version

commons-io commons-io 2.5

org.springframework.boot spring-boot-starter-data-mongodb 1.5.14.RELEASE

4.3.6.4 Component Source Tree Information

The Registry component includes four main packages:

 src/main/java/eu/h2020/symbiote/managers: definition of three managers
used by the component: RabbitMQ communication, authorization and repository.

 src/main/java/eu/h2020/symbiote/consumers: consumers used to handle
incoming requests to the Registry.

 src/main/java/eu/h2020/symbiote/model: contains definitions of the classes
used internally by this component.

 src/main/java/eu/h2020/symbiote/repository: contains MongoDB
repository definitions.

 src/main/java/eu/h2020/symbiote/utils: helper methods used by other

classes.

4.3.7 Search

4.3.7.1 Generic Information

URL of git repository https://github.com/symbiote-h2020/Search

URL of Javadoc https://symbiote-h2020.github.io/Search/doxygen

URL of code coverage reports https://codecov.io/github/symbiote-h2020/Search

Code coverage snapshot 69.16%

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 30 of 94
 © Copyright 2018, the Members of the symbIoTe

4.3.7.2 Feature History

Release Main Features

0.1.0 Initial implementation definition for resource and platform handling
(registration/update/removal)

 Initial implementation of the search functionality (parameterized)

0.2.0 Implementation of the sparql search functionality

 Moving some functionalities to SemanticManager

1.0.0 Implementation of the ranking algorithm
 Integration with popularity information messages

1.1.0 Integration with availability information message and adding it to ranking
algorithm

 Adding handling of the public and private resources (filtering) based on the
SecurityRequest

1.2.0 Performance improvements in sparql searching

2.0.0 Updates with respect to updated Libraries and semantic models

4.3.7.3 Specific Dependencies

GroupId Artifact/Plugin Version

com.github.symbiote-h2020 SymbIoTeSemantics 1.+

org.springframework.boot spring-boot-starter-data-mongodb 1.5.14.RELEASE

org.apache.jena jena-core 3.4.0

 jena-querybuilder 3.4.0

 jena-permissions 3.4.0

 jena-spatial 3.4.0

4.3.7.4 Component Source Tree Information

The Search component includes following packages:

 src/main/java/eu/h2020/symbiote/communication: definition of classes used

in RabbitMQ communication, including consumers.

 src/main/java/eu/h2020/symbiote/filtering: classes used in handling
filtering of the private resources in Jena.

 src/main/java/eu/h2020/symbiote/handlers: contain feature specific
implementations used by various functionalities.

 src/main/java/eu/h2020/symbiote/ontology: package containing Jena
specific classes.

 src/main/java/eu/h2020/symbiote/query: contains classes responsible for
query construction.

 src/main/java/eu/h2020/symbiote/ranking: contains classes responsible for
ranking functionality.

 src/main/java/eu/h2020/symbiote/search: search engine.

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 31 of 94
 © Copyright 2018, the Members of the symbIoTe

4.3.8 Semantic Manager

4.3.8.1 Generic Information

URL of git repository https://github.com/symbiote-h2020/SemanticManager

URL of javadoc https://symbiote-h2020.github.io/SemanticManager/doxygen

URL of code coverage reports https://codecov.io/github/symbiote-h2020/SemanticManager

Code coverage snapshot 55.40%

4.3.8.2 Feature History

Release Main Features

0.2.0 Initial implementation of resource and platform RDF generation

1.0.0 Adding PIM handling: validation and storage.

 Support for local caching of ontologies.

1.1.0 Updates with respect to updated Libraries and information models

1.2.0 Updates with respect to updated Libraries and information models

2.0.0 Updates with respect to updated Libraries and information models

4.3.8.3 Specific Dependencies

GroupId Artifact/Plugin Version

org.apache.jena jena-core 3.4.0

 jena-querybuilder 3.4.0

 jena-cmds 3.4.0

org.mongodb bson 3.4.2

com.github.symbiote-h2020 SymbIoTeSemantics 1.+

4.3.8.4 Component Source Tree Information

The SemanticManager component includes following packages:

 src/main/java/eu/h2020/symbiote/messaging: classes responsible for

RabbitMQ communciation.

 src/main/java/eu/h2020/symbiote/ontology/errors: contains RDF
validation/translation exceptions definitions.

 src/main/java/eu/h2020/symbiote/ontology/utils: contains utility classes
for RDF translation.

 src/main/java/eu/h2020/symbiote/ontology/validation: contains classes

for RDF validation.

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 32 of 94
 © Copyright 2018, the Members of the symbIoTe

4.3.9 Core Bartering and Trading Manager

4.3.9.1 Generic Information

URL of git repository https://github.com/symbiote-h2020/BarteringAndTrading

URL of javadoc https://symbiote-h2020.github.io/BarteringAndTrading/doxygen

URL of code coverage reports https://codecov.io/github/symbiote-h2020/BarteringAndTrading

Code coverage snapshot 72.92%

4.3.9.2 Feature History

Release Main Features

1.0.0 Overseeing and providing support for Bartering Operations

 Provide Trust Manager with Bartering information for trust calculation

4.3.9.3 Component Source Tree Information

The Core Bartering & Trading component shares the repository with the Bartering &
Trading Manager component, since they share a lot of models and functionalities. Their
interfaces are defined by Spring profiles.

The Bartering & Trading Manager is composed of the following repositories:

 communication: Classes for REST communication with other components.

 config: Configuration classes.

 listeners: Classes used for RabbitMQ and REST communication specific for the
BTM and Core B&T.

 repositories: Classes used to store information regarding Coupons.

 services: Classes that contain services provided by these components.

4.3.10 Core Anomaly Detection

4.3.10.1 Generic Information

URL of git repository https://github.com/symbiote-h2020/AnomalyDetectionModule

URL of javadoc
https://symbiote-
h2020.github.io/AnomalyDetectionModule/doxygen

URL of code coverage reports https://codecov.io/gh/symbiote-h2020/AnomalyDetectionModule

Code coverage snapshot 79%

4.3.10.2 Feature History

Release Main Features

1.0.0 Handling reports of failed authorization within the federation

 Providing statistics about platform misdeeds

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 33 of 94
 © Copyright 2018, the Members of the symbIoTe

4.3.10.3 Specific Dependencies

GroupId Artifact/Plugin Version

org.asciidoctor convert 1.5.3

org.asciidoctor asciidoctorj-pdf 1.5.0-alpha.10.1

io.github.swagger2markup swagger2markup-spring-restdocs-ext 1.2.0

io.github.swagger2markup swagger2markup-gradle-plugin 1.2.0

org.springframework.cloud spring-cloud-dependencies Dalston.SR5

org.springframework.cloud spring-cloud-starter Dalston.SR5

org.springframework.cloud spring-cloud-starter-config Dalston.SR5

org.springframework.cloud spring-cloud-starter-eureka Dalston.SR5

org.springframework.cloud spring-cloud-starter-zipkin Dalston.SR5

org.springframework.boot spring-boot-starter-amqp 1.5.14.RELEASE

org.springframework.boot spring-boot-starter-data-mongodb 1.5.14.RELEASE

org.springframework.boot spring-boot-starter-web 1.5.14.RELEASE

javax.xml.bind jaxb-api 2.3.0

io.swagger swagger-annotations 1.5.16

com.github.symbiote-h2020 SymbIoTeSecurity 25.7.3

com.github.symbiote-h2020 SymbIoTeLibraries 5.15.1

4.3.10.4 Component Source Tree Information

The Core Anomaly Detection component includes the following packages:

 src/main/java/eu/h2020/symbiote/security/communication: contains
communication interfaces

 src/main/java/eu/h2020/symbiote/security/config: configuration classes

 src/main/java/eu/h2020/symbiote/security/listeners: containing all the
REST and AMQP interfaces and controllers/consumers.

 src/main/java/eu/h2020/symbiote/security/repositories: repositories
definitions with payloads.

 src/main/java/eu/h2020/symbiote/security/services: all services
responsible for all the module logic.

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 34 of 94
 © Copyright 2018, the Members of the symbIoTe

4.4 Platform Components

4.4.1 Federation Manager

4.4.1.1 Generic Information

URL of git repository https://github.com/symbiote-h2020/FederationManager

URL of javadoc https://symbiote-h2020.github.io/FederationManager/doxygen

URL of code coverage reports https://codecov.io/github/symbiote-h2020/FederationManager

Code coverage snapshot 82.14%

4.4.1.2 Feature History

Release Main Features

2.0.0 Receive and process federation and QoS updates from Administration

 Validate federation information and access (security & business validation)

 Distribute federation updates to relevant components within platform

3.0.0 Maintain and generate federation history events for all federation activities

 Aggregate federation history per platform for Trust management

4.4.1.3 Specific Dependencies

No specific dependencies apart from the common libraries listed in Section 4.1 used.

4.4.1.4 Component Source Tree Information

The Federation Manager component include the following subfolders:

 src/main/java/eu/h2020/symbiote/fm/interfaces: REST Controllers and
RabbitMQ Connector classes.

 src/main/java/eu/h2020/symbiote/fm/model: Internal DTO classes for data
storage.

 src/main/java/eu/h2020/symbiote/fm/repositories: DAO classes and
central backend service.

 src/main/java/eu/h2020/symbiote/fm/services: Business logic services.

4.4.2 Monitoring

4.4.2.1 Generic Information

URL of git repository https://github.com/symbiote-h2020/Monitoring

URL of javadoc https://symbiote-h2020.github.io/Monitoring/doxygen

URL of code coverage reports https://codecov.io/github/symbiote-h2020/Monitoring

Code coverage snapshot 80.88%

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 35 of 94
 © Copyright 2018, the Members of the symbIoTe

4.4.2.2 Feature History

Release Main Features

1.0.0 Basic compatibility with Icinga2

2.0.0 New implementation without Icinga2

 Metric gathering

 Metric querying

 Metric aggregation

 RAP integration

4.4.2.3 Specific Dependencies

GroupId Artifact/Plugin Version

org.mongodb mongodb-driver 3.6.0

org.apache.commons
commons-lang3 3.4

commons-colection4 4.1

4.4.2.4 Component Source Tree Information

The Monitoring component include the following subfolders:

 src/main/java/eu/h2020/symbiote/monitoring/beans: Java beans used by
the component.

 src/main/java/eu/h2020/symbiote/monitoring/compat: Compatibility
classes used as helpers for MongoDB.

 src/main/java/eu/h2020/symbiote/monitoring/constants: Constants used

in different classes of the component.

 src/main/java/eu/h2020/symbiote/monitoring/db: Classes to interact with
the database backend.

 src/main/java/eu/h2020/symbiote/monitoring/service: REST and
RabbitMQ facades to the database services.

 src/main/java/eu/h2020/symbiote/monitoring/utils: Utility classes.

4.4.3 Platform Registry

4.4.3.1 Generic Information

URL of git repository https://github.com/symbiote-h2020/PlatformRegistry

URL of javadoc https://symbiote-h2020.github.io/PlatformRegistry/doxygen

URL of code coverage reports https://codecov.io/github/symbiote-h2020/PlatformRegistry

Code coverage snapshot 58%

4.4.3.2 Feature History

Release Main Features

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 36 of 94
 © Copyright 2018, the Members of the symbIoTe

1.0.0 Interface definition

2.0.0 Registration, update and delete of home resource metadata exposed to the
federations.

 Share and unshare resources to federations.

 Basic search functionalities of federated resources.

3.0.0 Handling of enhanced search requests (ranking-filtering)

4.4.3.3 Specific Dependencies

GroupId Artifact/Plugin Version

com.querydsl querydsl-mongodb 4.1.4

com.querydsl queydsl-apt 4.1.4

 com.ewerk.gradle.plugins.querydsl 1.0.9

4.4.3.4 Component Source Tree Information

The PlatformRegistry component includes four main subfolders:

 src/main/java/eu/h2020/symbiote/pr/communication: the rabbit listeners for

the registration and rest controller of the search service.

 src/main/java/eu/h2020/symbiote/pr/repositories: the resource repository.

 src/main/java/eu/h2020/symbiote/pr/services: the registration and search
services.

 src/main/java/eu/h2020/symbiote/pr/helpers: helper methods for the
authentication service.

4.4.4 Registration Handler

4.4.4.1 Generic Information

URL of git repository https://github.com/symbiote-h2020/RegistrationHandler

URL of javadoc https://symbiote-h2020.github.io/RegistrationHandler/doxygen

URL of code coverage reports https://codecov.io/github/symbiote-h2020/RegistrationHandler

Code coverage snapshot 65.07%

4.4.4.2 Feature History

Release Main Features

1.0.0 Basic L1 functionality

1.2.0 Complete L1 functionality

2.0.0 Complete L2 functionality

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 37 of 94
 © Copyright 2018, the Members of the symbIoTe

4.4.4.3 Specific Dependencies

GroupId Artifact/Plugin Version

org.apache.commons commons-collections 4.1

4.4.4.4 Component Source Tree Information

The Registration Handler component include the following subfolders:

 src/main/java/eu/h2020/symbiote/rh/constants: Constants used in
different classes of the component.

 src/main/java/eu/h2020/symbiote/rh/db: Sprint data repositories for
MongoDB.

 src/main/java/eu/h2020/symbiote/rh/exceptions: Custom exceptions for the
REST interface.

 src/main/java/eu/h2020/symbiote/rh/inforeader: Plug-Ins to read resource
metadata from different sources when the component loads.

 src/main/java/eu/h2020/symbiote/rh/messaging: RabbitMQ utilities to
communicate changes to the rest of the components.

 src/main/java/eu/h2020/symbiote/rh/service: REST interface for resource

metadata management.

 src/main/java/eu/h2020/symbiote/rh/util: Miscellaneous utilities used in the
component.

4.4.5 Resource Access Proxy

4.4.5.1 Generic Information

URL of git repository https://github.com/symbiote-h2020/ResourceAccessProxy

URL of javadoc https://symbiote-h2020.github.io/ResourceAccessProxy/doxygen

URL of code coverage reports https://codecov.io/github/symbiote-h2020/ResourceAccessProxy

Code coverage snapshot 18.51%

4.4.5.2 Feature History

Release Main Features

1.0.0 Support for REST and OData access to resources (for sensing and actuation)

 Support for push mechanism via WebSockets

 Support for custom Platform Information Models (described with .owl files)

 Support for a subset of OData features (such as filters)

 Mapping between symbIoTe global and platform internal IDs of resources

 Security features using Security Handler component from Symbiote Libraries

2.0.0 Support for multiple platform plugins

 Support for accessing L2 resources

 Checking federation access policies

3.0.0 Support for accessing bartered L2 resources

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 38 of 94
 © Copyright 2018, the Members of the symbIoTe

4.4.5.3 Specific Dependencies

GroupId Artifact/Plugin Version

org.springframework.boot spring-boot-starter-data-rest 1.5.14.RELEASE

org.springframework.boot spring-boot-starter-data-mongodb 1.5.14.RELEASE

org.springframework.boot spring-amqp 2.0.0.M1

org.springframework.boot spring-rabbit 2.0.0.M1

org.apache.olingo odata-commons/odata-server 4.3.0

org.springframework.boot spring-boot-starter-websocket 1.5.14.RELEASE

net.sourceforge.owlapi owlapi-contract 5.1.1

net.sourceforge.owlapi owlapi-util 3.3

4.4.5.4 Component Source Tree Information

The Resource Access Proxy component includes the packages below:

 src/main/java/eu/h2020/symbiote/rap/exceptions: contains custom exceptions

 src/main/java/eu/h2020/symbiote/rap/managers: responsible for the
authentication and authorization of the receiving requests.

 src/main/java/eu/h2020/symbiote/rap/interfaces: contains classes
responsible for implementing the external interfaces but OData (for plugin registration,
for notifications, for interacting with CRAM and RH, for accessing to resources).

 src/main/java/eu/h2020/symbiote/rap/bim: contains classes for reading platform

information model files (.owl).

 src/main/java/eu/h2020/symbiote/rap/resources: contains classes for static
definitions, application configuration, mongo db and filters.

 src/main/java/eu/h2020/symbiote/rap/messages: contains classes for data
models of the json messages exchanged with external modules.

 src/main/java/eu/h2020/symbiote/rap/plugin: contains classes for template

RAP plugin.

 src/main/java/eu/h2020/symbiote/rap/service: contains classes for OData and
WebSocket interface implementation.

4.4.6 Subscription Manager

4.4.6.1 Generic Information

URL of git repository https://github.com/symbiote-h2020/SubscriptionManager

URL of javadoc https://symbiote-h2020.github.io/SubscriptionManager/doxygen

URL of code coverage reports https://codecov.io/github/symbiote-h2020/SubscriptionManager

Code coverage snapshot 72%

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 39 of 94
 © Copyright 2018, the Members of the symbIoTe

4.4.6.2 Feature History

Release Main Features

1.0.0 Interface definition

2.0.0 Broadcast of shared (and unshared) resources to all federated platforms

3.0.0 Enabled subscription definition to the platform owner
 Broadcast of platform subscription to all federated platforms
 Forwarding of shared (or unshared) resources to federated platforms

depending on their subscription definitions

4.4.6.3 Component Source Tree Information

The SubscriptionManager component includes three main subfolders:

 src/main/java/eu/h2020/symbiote/subman/controller: REST interface and
authentication helper classes.

 src/main/java/eu/h2020/symbiote/subman/messaging: Configuration of
RabbitMQ and implementation of listeners for communication with PlatformRegistry
and FederationManager components.

 src/main/java/eu/h2020/symbiote/subman/repositories: Mongo resource
repositories.

4.4.7 Trust Manager

4.4.7.1 Generic Information

URL of git repository https://github.com/symbiote-h2020/TrustManager

URL of javadoc https://symbiote-h2020.github.io/TrustManager/doxygen

URL of code coverage reports https://codecov.io/github/symbiote-h2020/TrustManager

Code coverage snapshot 62.38%

4.4.7.2 Feature History

Release Main Features

3.0.0 Calculate (own) resource trust for offered resources with federated platforms

 Calculate (foreign) platform reputation for federated platforms

 Calculate (foreign) adaptive resource trust for shared resources from foreign
platforms within the federation

4.4.7.3 Specific Dependencies

No specific dependencies apart from the common libraries listed in Section 4.1 used.

4.4.7.4 Component Source Tree Information

The Trust Manager component include the following subfolders:

 src/main/java/eu/h2020/symbiote/tm/interfaces: REST and RabbitMQ
Connector classes.

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 40 of 94
 © Copyright 2018, the Members of the symbIoTe

 src/main/java/eu/h2020/symbiote/tm/repositories: DAO class to access
MongoDB repository.

 src/main/java/eu/h2020/symbiote/tm/services: Business logic services.

 src/main/java/eu/h2020/symbiote/tm/cron: Scheduled tasks for
trust/reputation update.

4.4.8 Bartering & Trading Manager

4.4.8.1 Generic Information

URL of git repository https://github.com/symbiote-h2020/BarteringAndTrading

URL of javadoc https://symbiote-h2020.github.io/BarteringAndTrading/doxygen

URL of code coverage reports https://codecov.io/github/symbiote-h2020/BarteringAndTrading

Code coverage snapshot 72.92%

4.4.8.2 Feature History

Release Main Features

1.0.0 Providing Bartering mechanisms for bartering of resources between federated
platforms

4.4.8.3 Component Source Tree Information

The Bartering & Trading Manager component shares the repository with the Core
Bartering & Trading component, since they share a lot of models and functionalities. Their
interfaces are defined by Spring profiles.

The Bartering & Trading Manager is composed by the following repositories:

 communication: Classes for REST communication with other components.

 config: Configuration classes.

 listeners: Classes used for RabbitMQ and REST communication specific for the
BTM and Core B&T.

 repositories: Classes used to store information regarding Coupons.

 services: Classes that contain services provided by these components.

4.4.9 SLA Manager

4.4.9.1 Generic Information

URL of git repository https://github.com/symbiote-h2020/SLAManager

URL of javadoc https://symbiote-h2020.github.io/SLAManager/doxygen

URL of code coverage reports https://codecov.io/github/symbiote-h2020/SLAManager

Code coverage snapshot https://codecov.io/github/symbiote-h2020/SLAManager

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 41 of 94
 © Copyright 2018, the Members of the symbIoTe

4.4.9.2 Feature History

Release Main Features

1.0.0 L2 functionality

4.4.9.3 Specific Dependencies

Contrary to the rest of the components, SLA Manager is not a Spring Boot application but
a Spring one and the build system is based on Maven instead of Gradle. As such, we don’t
provide here the difference in dependencies since most of them are different to the rest
and it would mean to list all of the project’s dependencies.

4.4.9.4 Component Source Tree Information

SLA Manager is composed of several sub components:

 sla-common: Common classes used by the rest of the sub components.

 sla-enforcement: Sub-component dedicated to the evaluation and enforcement of

SLAs.

 sla-personalization: Specific classes related to SymbIoTe which include
adapters from JSON to WS-Agreement and RabbitMQ communication.

 sla-repository: JPA classes and utilities to persist SLAs into MySQL.

 sla-service: Web Services interface based on WS-Agreement.

 sla-tools: Miscellaneous utilities and tools used in the rest of the sub-
components.

 sla-swag-model: Beans based on the WS-Agreement data model.

4.5 Smart Space Components

4.5.1 Smart Space Middleware

4.5.1.1 Generic Information

URL of git repository https://github.com/symbiote-h2020/symbioteSmartSpace

URL of javadoc https://symbiote-h2020.github.io/symbioteSmartSpace/doxygen

URL of code coverage reports https://codecov.io/github/symbiote-h2020/symbioteSmartSpace

Code Coverage Snapshot 9.6 %

4.5.1.2 Feature History

Release Main Features

1.0.0 Registration/Unregistration of L3 resources

 Access to L3 resources

 Keep alive messages

2.0.0 Added lightweight security protocol

 Added interfaces

 Added Core communication for L3/L4 resources

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 42 of 94
 © Copyright 2018, the Members of the symbIoTe

4.5.1.3 Specific Dependencies

GroupId Artifact/Plugin Version

org.mongodb mongodb-driver 3.4.2

org.apache.commons commons-lang3 3.3.2

4.5.1.4 Component Source Tree Information

The Smart Space Middleware application includes a set of packages:

 src/main/java/eu/h2020/symbiote/innkeper: Innkeeper component related
classes (for REST controller, data models, services).

 src/main/java/eu/h2020/symbiote/rap: SSP RAP component related classes
(for REST / OData controllers, data models, push service.

 src/main/java/eu/h2020/symbiote/lwsp: LightWeight Security Protocol

implementation classes.

 src/main/java/eu/h2020/symbiote/resources: data models and service
classes for MongoDB.

4.5.2 SDEV SymbIoTe Agent

4.5.2.1 Generic Information

URL of git repository
https://github.com/symbiote-h2020/SymbioteSmartSpace/tree/sym-
agent/sym-agent

URL of javadoc https://symbiote-h2020.github.io/symbioteSmartSpace/doxygen

URL of code coverage reports https://codecov.io/github/symbiote-h2020/symbioteSmartSpace

Code coverage snapshot --

4.5.2.2 Feature History

Release Main Features

1.0.0 Basic interfaces (registration, unregistration, keep alive, etc.) without security

2.0.0 Added lightweight security protocol

 Added interfaces

 Added semantic class

 Added NTP server synch for timestamp value reading

4.5.2.3 Specific Dependencies

GroupId Artifact/Plugin Version

ArduinoJson bblanchon/ArduinoJson v5.11.1-1-g729bf0a

RestClient DaKaZ/esp8266-restclient 3.3.2

Cypto intrbiz/arduino-crypto commit: *7943d

Hash -- 2.4.0

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 43 of 94
 © Copyright 2018, the Members of the symbIoTe

sha1 bbx10/Cryptosuite commit: *48669

base64 Densaugeo/base64_arduino 1.1.0

ESP8266WebServer -- 2.4.0

WiFiUdp -- 2.4.0

NTPClient arduino-libraries/NTPClient 3.1.0

4.5.2.4 Component Source Tree Information

SDEV agent is a C++ library for the ESP8266 Arduino platform. It is composed of the
following sub components:

 libraries/ contains:

 lsp/ the lightweight security protocol library that is automatically included
from the agent library.

 semantic_resources/ that contains the semantic handling class for
resource mapping into the symbIoTe ontology.

 src/ contains the agent library and a helper header file (symbiote_resources.h)
from which you have a list of validated symbIoTe resource type.

 test-sketch/ contains a list of example sketches20 divided by platform specific
type (e.g. commercial available board like Huzzah, Wemos, etc.) and library test
class.

20

Arduino C++ code is called sketch.

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 44 of 94
 © Copyright 2018, the Members of the symbIoTe

5 Developed Applications

5.1 Applications Developed for symbIoTe Use Cases

SymbIoTe uses a set of use cases to validate the implemented interoperability concepts.
Each use case uses and accomplishes chains of information flows starting from the
sensors through different stages like enablers up to the applications. Detailed descriptions
of each use case can be found in Deliverable 1.3 [5].

The use cases were chosen to drive the development of symbIoTe and thus are now
testing as many different aspects of the symbIoTe framework as possible. All use cases
interact with users and needed Human-Machine-Interfaces, usually a GUI in the form of an
application, to interact with the underlying logic. In the following sections these applications
are described in more detail.

5.1.1 Smart Residence

The following applications that offer comfort, automation, security, energy efficiency and
healthcare services have been implemented within the Smart Residence use case:

 Smart Healthy Indoor Air: This application is based on the indoor/outdoor air quality

monitoring with the aim to improve indoor air quality by giving recommendations

and alerts.

 Smart Area Controller: This application is related to the Dynamic Interface

Adaptation scenario, where the users can control different devices according to the

controllable room in range.

 Home Comfort: this application demonstrates the Energy Saving scenario, which

shows how to automatically control home devices, in order to keep environmental

parameters (e.g. light, temperature, humidity, etc.) at some predefined comfort

values.

 Smart Health Mirror: It is an Ambient Assisted Living (AAL) application to help

people, in particular elderly people, to live independently for longer.

5.1.1.1 Smart Healthy Indoor Air

This application is based on the indoor/outdoor air quality monitoring and pursues to
improve indoor air quality. Indoor air quality (IAQ) refers to the quality of the air inside
buildings as represented by concentrations of pollutants and thermal (temperature and
relative humidity) conditions that affect the health, comfort and performance of occupants.
It is important to ensure that the air inside the building people inhabit on a daily basis is of
a good quality. Outdoor generated air pollution is relevant for indoor air quality and health.
Exposure to indoor air pollution has been linked to the development of different diseases
from infections to asthma or to poor sleep. It can also cause less serious side effects such
as headaches, dry eyes and nasal congestion21.

21 Quantifying the Performance of Natural Ventilation Windcatchers. Jones, B; (2010) Quantifying the

Performance of Natural Ventilation Windcatchers. Doctoral thesis , Brunel University

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 45 of 94
 © Copyright 2018, the Members of the symbIoTe

Sensing and Control Systems SL partner’s (S&C) roadmap aims to create a smart
home/office connected with the city. The current S&C’s platform, nAssist22, monitors and
controls a number of direct parameters related to indoor air quality, such as CO2 levels,
humidity and temperature. In addition, this platform monitors and controls other factors that
are important for indoor environmental quality considerations such as light and noise since
they also affect occupants.

The idea is to improve this framework to understand how indoor and outdoor sources of
pollution, heat and humidity, together with the ventilation and air conditioning systems,
affect the indoor air quality in buildings. It also begins to address methods of controlling
those factors in order to improve quality of the indoor air for occupants’ health, comfort and
performance. To achieve this goal, the smart home retrieves outdoor air quality data
received from other platforms. Such data can include air pollution levels. The smart home
reacts to changes in indoor parameters such as temperature, humidity, CO2 levels and
noise to maintain a healthy and safe indoor environment by recommending actions to the
user such as using air purifiers, ventilation systems and opening/closing the windows to
eliminate unpleasant impacts. S&C aims to provide more robust solutions with focus on
clean environment and optimised energy use.

In particular, the project has developed an application capable of monitoring real-time
indoor and outdoor air quality information. Without this information, usually we ventilate
late and too long. Smart Healthy Indoor Air indicates when a room should be ventilated
taking into consideration that windows are the easiest ventilation option but not the
healthiest one depending on the outdoor air quality. There are other ways to provide
healthy flow of air throughout the room, such as turning on the air conditioner, or individual
air purifiers. The automatic control of some devices, as air purifiers, ventilation and air
conditioning systems are out of the scope of this application.

5.1.1.1.1. Design

Outdoor air quality data is provided by a Public Service offered by the Generalitat de
Catalunya23 but it could be provided by other federated platforms dedicated to offering
Smart Cities’ services. Also, given the limited number of monitoring stations available and
placed at representative spots to record the outdoor air quality, an accurate assessment of
spatial variation is highly required. Spatial interpolation techniques applied to the available
monitoring data to provide air quality information closest to the location of the smart home
are used. This functionality is provided by the component named as Interpolator, which is
also used in the smart mobility use case. This showcases how symbIoTe enables the
realization of high level services, involving different IoT platforms, and offers their results to
different (end-user) applications. The application sends the GPS location of the smart
home and gets the estimated value about the air quality for this specific location from
symbIoTe, in particular from the interpolator. This is the main benefit of using symbIoTe.
The project can offer a more robust and precise application without developing new
functionalities (Figure 4).

22

 http://www.sensingcontrol.com/solutions/customizable-iot-platform.html

23
 http://dtes.gencat.cat/icqa/start.do?lang=en

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 46 of 94
 © Copyright 2018, the Members of the symbIoTe

On the other hand, the S&C’s platform, nAssist, makes available to symbIoTe data related
to the indoor air quality at home: temperature, humidity, CO levels, and luminosity. As
already explained, exposure to indoor air pollution has been linked to the development of
everything from infections to asthma to poor sleep. It can also cause less serious side
effects such as headaches, dry eyes and nasal congestion. This information can be helpful
for remote healthcare applications.

Figure 4: High-level architecture showing the involved platforms, applications and involved
symbIoTe components (e.g., Enabler) for Smart Healthy Indoor Air application

5.1.1.1.2 Compliance Level

The S&C’s platform nAssist (symbIoTe L1-compliant) acquires, stores and processes all
data that measure the indoor and outdoor air quality. Temperature, humidity, CO, NO2,
O3, PM10, and luminosity levels data are published within symbIoTe.

5.1.1.1.3 Platform

The service can be accessed through a mobile app (iOS and Android) or the website.

5.1.1.1.4 User Interaction

The GUI design for the app was based on the current S&C’s product, enControl24. The
application has GUI based on web and smartphone iOS and Android (Figure 5 - Figure 8).

24

http://www.encontrol.io/

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 47 of 94
 © Copyright 2018, the Members of the symbIoTe

Figure 5: Main screen for all functionalities provided by enControl: comfort, security,
energy consumption and automatic control of devices

Figure 6: Main screen for comfort with the indoor and outdoor air quality levels

Figure 7: Indoor air quality values

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 48 of 94
 © Copyright 2018, the Members of the symbIoTe

Figure 8: Examples of GUI for iPhone

5.1.1.1.5 Implementation

The application involves the implementation of three main different functionalities:

 Monitoring real-time indoor air quality and providing recommendations about when
should ventilate the home by using the smart home system. The following figures show
how the application interprets the levels of both indoor and outdoor air quality and the
recommendations to improve the indoor air quality by taking some actions:

Figure 9: Indoor and outdoor air quality

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 49 of 94
 © Copyright 2018, the Members of the symbIoTe

Figure 10: Recommendations to improve the indoor air quality

 Acquisition of outdoor air quality data from The Atmospheric Pollution Vigilance and
Forecast Network25 (the XVPCA) from the Ministry for Territory and Sustainability at
the Generalitat of Catalonia. Outdoor air quality data could be provided by other
federated platforms dedicated to offering Smart Cities’ services but not in this trial. The
application shows the values of the O3, NO2 and PM10, as shown in the following
figure:

Figure 11: Visualization of air quality parameters provided by the outdoor stations

25

http://dtes.gencat.cat/icqa/start.do?lang=en

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 50 of 94
 © Copyright 2018, the Members of the symbIoTe

 Interpolation of the outdoor air quality values taking into consideration the location of
the smart home used provided by the module Enabler Logic from symbIoTe.

5.1.1.1.6 Initial Functional Tests

The initial functional tests were done with 5 home installations located in Barcelona. The

outdoor air quality data acquisition is provided by a Public Service of the Generalitat of

Catalonia.

5.1.1.2 Smart Area Controller

The mobile application will be capable of controlling CPS devices located in a room,
selected by the user, according to his/her needs. The main interface will allow to navigate
the structure (building, floor, room, etc.) for selecting the device to control (registered by
the platforms that reside in that space). For example, the user will be able to change the
temperature in the room controlled by a Netatmo thermostat of a Platform A, or to move
the curtains and change the luminance level controlled in Platform B.

The application will leverage on a specific enabler, which gives the possibility to filter the
devices in the space, based on their position (building, floor, room, etc.). In this way, the
application has to query the symbIoTe Enabler in order to retrieve the list of the CPSs in
the selected area and then allow the user to control them.

5.1.1.2.1 Design

Figure 12 shows a high-level diagram of the application communicating with the symbIoTe
Enabler and the symbIoTe compliant platforms involved in the use case.

The platforms register their devices specifying information with respect to their indoor
locations; the Administration console, accessible from the Enabler, allows the SSP
administrator to manage the hierarchy of the resources’ locations. Lastly, the mobile
application is the user entry-point to interact with platform devices. In this specific use case
scenario, no Web application is required.

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 51 of 94
 © Copyright 2018, the Members of the symbIoTe

The main benefit of using symbIoTe is the possibility to use a single application for
dynamically controlling the different devices and platforms present in the house.

Figure 12: High-level architecture showing the involved platforms, applications and
symbIoTe components (e.g., Enabler) for the Smart Area Controller and Home Comfort

applications

5.1.1.2.2 Compliance Level

The application is L3 compliant according to the Smart Space definitions and features.

5.1.1.2.3 Platform

The Smart Area application is a mobile application compatible with Android platform.

5.1.1.2.4 User Interaction

First of all, the user will select the area in which she/he desires to control the devices
(Figure 13 and Figure 14): it could be a room, a flat, the entire building or even a desk,
according to the configuration made in the service enabler. Afterwards, the interactions will
be related to the devices present and may vary according to the nature of the CPSs
themselves.

5.1.1.2.5 Implementation

The language used for implementation is Java, since it depends on the mobile platform of
the application (Android). The application is specific for this scenario purposes, but it can
also be used for every use case which needs a direct control of local devices. At the time
of writing this document, the implementation of the application has been completed and it
is currently under testing. All the developments are based on symbIoTe version 2.0.0.

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 52 of 94
 © Copyright 2018, the Members of the symbIoTe

Figure 13: From left to the right: (1) Settings; (2) Navigation in the hierarchy of locations;
(3) Loading before getting the resources

Figure 14: Resource with which to interact regarding the selected location

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 53 of 94
 © Copyright 2018, the Members of the symbIoTe

5.1.1.2.6 Initial Functional Tests

The initial functional tests have been performed with the current installations located in
Pisa. Different devices (some lights, rgb lights, curtain, presence sensor and luminosity
sensors) located in three different room situated in two different floors have been used.

5.1.1.3 Home Comfort

The L3 compliant application will be used to automatically control home devices in order to
keep comfort values for home environmental parameters like temperature, luminosity, etc.
The application is composed by both a backend and a frontend part: the first one manages
the core operations, by constantly monitoring the surrounding and controlling devices in
order to reach a desired comfort state; the second one acts as a configurator of comfort
set-points.

Consequently, the backend of Home Comfort application run on a server having a frontend
accessible via web for configuration purposes.

5.1.1.3.1 Design

As described in Section 5.1.1.1, the platforms register their devices by specifying
information with respect to their indoor locations, so the SSP administrator configures the
hierarchy of the resources’ locations through the administration console. The Web
Application allows the resident to configure all the set-points for the home devices through
a graphical user interface (for example turn on light in a room when someone is present).

The main benefit of using symbIoTe is the possibility to leverage on the interoperability
between the various platforms present in the house for driving the environment towards a
comfort state.

5.1.1.3.2 Compliance Level

The application will be L3 compliant, according to the Smart Space definitions and
features.

5.1.1.3.3 Platform

The backend application will be Linux based and the frontend can be accessed through a
web page.

5.1.1.3.4 User Interaction

The core of the application is a service which does not need any interaction from the user
apart from the configuration of the comfort set-points.

5.1.1.3.5 Implementation

The language used for the implementation of the backend is Java and of the frontend is
HTML and Javascript.

At the time of writing this document, the implementation of the application is almost ready
to move over to the testing phase. All the developments are based on symbIoTe version
2.0.0.

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 54 of 94
 © Copyright 2018, the Members of the symbIoTe

5.1.1.3.6 Initial Functional Tests

The initial functional tests are performed with the current installations located in Pisa.

5.1.1.4 Smart Health Mirror

5.1.1.4.1 Design

The smart health mirror SMILA (Smart Mirror Integrated Living Assistant) is an interactive
voice-driven mirror assisting elderly people in managing their health. It was specifically
designed for people suffering from chronic heart failure where regular measurement of
vital parameters (e.g., weight or blood pressure) are necessary for treatment. SMILA was
constructed of a wooden frame (40x30x4cm, gross weight 2.5kg) housing the semi-
transparent mirror hiding a Samsung Galaxy Tab A 10.1 Android tablet. By using off the
shelf materials and simple constructions the total costs for one smart mirror are around
300€.

Figure 15: From left to right: (1) Living lab evaluation scenario; (2) SMILA and (3) user
interacting with the device

5.1.1.4.2 Compliance level

The smart mirror app is connected to the KIOLA eHealth platform which is L1-compliant.

5.1.1.4.3 Platform

The KIOLA eHealth platform was developed on Python and the web framework Django.
The smart mirror app was developed on top of the Google Android operating system.

5.1.1.4.4 User interaction

The overall workflow can be described as follows: The user enters the bathroom and
SMILA detects the presence of a wristband. It queries the symbIoTe Core using the ID of
the wristband and gains access to a symbIoTe-enabled eHealth platform KIOLA. The
eHealth platform is then accessed directly through the reverse access proxy provided by
the symbIoTe Core. Subsequently, SMILA gathers data, such as sensor data and personal
information about the user. Using a health measurement profile, SMILA then asks the user
to perform a weight measurement, asks questions related to personal wellbeing and finally
transmits the collected data using the reverse access proxy to the KIOLA platform.

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 55 of 94
 © Copyright 2018, the Members of the symbIoTe

5.1.1.4.5 Implementation

SMILA is powered by an Android-based, symbIoTe-enabled app responsible for managing
devices and user interaction. In idle mode the mirror displays the current time and the
weather situation at its current location. It was decided against showing more information
for several reasons: (1) to prevent information overload and only provide context-relevant
information and (2) to keep battery and bandwidth usage low. As we chose the setting of
cardiovascular diseases, a number of vital parameters are interesting with respect to
therapy: regular measurements of heart rate, blood pressure, body weight and daily
activity are relevant to the therapy in order to assess effectiveness as well as to detect any
deterioration in a person’s health status. For initial evaluation we chose connecting the
smart mirror to a Bluetooth-enabled scale for two reasons. (1) a scale is most likely to be
found in bathrooms and (2) a sudden increase in weight (> 1 kg / per night, > 2kg/ over
three days, > 2,5 kg/ per week) might indicate a severe deterioration of the overall health
status. Moreover, SMILA uses voice input to collect information on personal well-being
using Google’s Cloud Speech API. Moreover, we considered several options for user
identification: (1) identification and authorization by a separate device using PIN codes
once the device is close to the mirror (2) facial recognition and (3) wearable Bluetooth low
energy beacons for identification. Bluetooth low energy (BLE) beacons are devices
transmitting signals containing their ID along with other technical information on a regular
interval. Devices such as smartphones or tablets can identify these radio signals within a
limited range and apps can react to the presence of such beacons. We favoured this
approach especially to biometric identification as it is (1) more privacy-preserving and (2)
BLE beacons are in general built into fitness wristbands, thus combining identification with
reading further health measurements. BLE beacons have been used in various scenarios,
most prominently in e-Commerce settings offering consumers guide within shops. For our
initial evaluation we decided to use wristband type beacons or devices that can be
attached to a keychain (D15 UFO Bluetooth). The latter can be incorporated in a necklace
as well. Apart from BLE wristbands, support for fitness trackers (Fitbit Ionic smart watch)
was implemented as mode of user identification. If users wear a fitness tracker instead of a
wristband, additional data is displayed on the mirror with respect to daily activity.

5.1.1.4.6 Initial Functional Tests

Initial functional tests were conducted in two living lab trials: one was conducted in with
students of the University of Vienna and a second trial was conducted to test the smart
mirror with elderly people.

5.1.2 Smart Mobility and Ecological Routing

The Smart Mobility and Ecological Routing Use Case addresses the problems regarding
environment pollution and air quality in the major European cities. It does so by collecting
air quality data from multiple IoT platforms in different countries and uses such
measurements for runners, joggers and cyclists to plan the best routes to their destination.

Through symbIoTe, air quality measurement are obtained from different platforms. Due to
the nature of routing algorithms, these measurements need substantial pre-processing
with the purpose of associating air measurements to the map’s street segments.

Having streets correctly classified by their air quality, routing engines can take that
information into account when computing the most ecological routes for the application’s

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 56 of 94
 © Copyright 2018, the Members of the symbIoTe

users. Route calculation can also benefit from other factors such as traffic density and
available parking spaces for bikes, in case the platforms have access to this kind of
information.

Finally, users should be able to search for Points of Interest (POIs) following certain
criteria. Routes for the selected POI can be computed using the previously mentioned
routing service.

All in all, this use case showcases platform interoperability within the application and cloud
domain. More details can be found in Section 6.4 of Deliverable D1.3 [5].

There are three platforms providing services and data to the use case:

 OpenIoT from UNIZG-FER provides air quality data from users’ wearables,

 openUWEDAT from AIT provides air quality data from stationary sensors and a
routing service for the city of Vienna,

 MoBaaS (Mobility Backend as a Service) from Ubiwhere provides their routing
service.

Additionally, the OpenStreetMap26 service is used to obtain cities’ POIs.

The mobile application (symbIoTe SMEUR27) aims at delivering to users ecological green
routes to their destinations. These routes direct the user to their destination, avoiding
highly polluted areas. Additionally, the application also provides the user with the ability to
search for POIs and, subsequently, obtain a route to the selected POI.

As such, there are two main functionalities that the application should provide to the user:

 Computation of ecological green routes

 POI search.

The application will access these services through the Smart Mobility and Ecological
Routing Enabler, which handles the exchange of data and services between the platforms
involved in the use case. As such, the application communicates with the Enabler to
provide the routing and POI Search services for the user.

Users of the application are presented with a map after logging in. Users can then choose
an origin and destination point for their desired route and a preferred means of
transportation and are presented with the best ecological route computed.

Users can also request POIs, select their filtering preferences from a range of possible
criteria, such as the type of POI, distance to a certain location, etc. POIs matching the
users’ criteria are presented. Users can then choose and be presented with an ecological
route to the selected POI.

26

 https://www.openstreetmap.org/

27
 https://play.google.com/store/apps/details?id=com.ubiwhere.symbiote&hl=en_GB

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 57 of 94
 © Copyright 2018, the Members of the symbIoTe

5.1.2.1 Design

Figure 16: High-level architecture showing the involved platforms, applications and
involved symbIoTe components (e.g., enabler) for Smart Mobility and Ecological Routing

applications

As can be seen in Figure 16, the Green Route Enabler orchestrates the activity in the use
case. It obtains air quality data from the platforms and interpolate it with the street
segments of the map being used in order to obtain the air quality of a given street. These
data are provided to the routing services (either the ones residing within a platform or
external services) which, combined with other data such as traffic or parking, will compute
green routes. Additionally, the data provided by the platforms can also be used to obtain
POIs of interest to users.

It is clear from the figure how symbIoTe is relevant to this use case. It shows how
developers using symbIoTe can use different data from different platforms from different
domains easily. This is very advantageous in the development process, helping
developers create complex systems using various sources of data. In the context of smart
cities, it will also show how advantageous it is for platform owners and cities to provide
their data through the symbIoTe ecosystem, allowing developers/organizations to easily
create valuable services to citizens.

5.1.2.2 Compliance Level

The application interfaces with the developed Enabler, which complies with symbIoTe’s
L1.

5.1.2.3 Platform

The application will be developed for the Android mobile operating system.

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 58 of 94
 © Copyright 2018, the Members of the symbIoTe

5.1.2.4 User Interaction

The user primary means of interacting with the application is through the map, where it can
set, for example, start and end points of his destination or the area near which the user is
looking for POIs. It is also be through this map that the user is able to see the results of the
requests, being the route to the destination or the POIs return from the search. Figure
1Figure 17 shows a screenshot of the mobile application.

Figure 17: Smart mobility mobile App

5.1.2.5 Implementation

The core of the mobile application is based on the Ionic framework28, a free and open
source mobile SDK. Ionic is, in turn, built on top of AngularJS29 and Apache Cordova30.

Currently, a first version of the application has been developed, where it is already
possible for users to obtain routes and search for POIs using the symbIoTe enabler.

5.1.2.6 Initial Functional Tests

It is expected that the use case will run trials in at least three European cities. Each trial
will have at least 20 users, for a period of 30 days with different types of end-users which
will actively use the ecological urban routing application and in parallel will contribute with
air quality and traffic data.

28

https://ionicframework.com

29
 https://angularjs.org

30
 https://cordova.apache.org

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 59 of 94
 © Copyright 2018, the Members of the symbIoTe

5.1.3 EduCampus

5.1.3.1 User Interaction

The IOSB Mobile application provides a user interface to retrieve room information and to
place room reservations. The application scans for BLE beacon signals and connects to
the IOSB backend server.

The figure below shows some screenshots of the application.

Figure 18: IOSB mobile app screenshot

5.1.3.2 IOSB Administration Site

The IOSB administration site is used for administration purposes. It allows the BLE beacon
registration and room assignment and the user management.

Figure 19: IOSB administration site screenshot

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 60 of 94
 © Copyright 2018, the Members of the symbIoTe

5.1.3.3 IOSB Backend Server

The IOSB backend server implements the IOSB room information model, the beacon
management and the room reservation service. The Sensor Information will be stored in
the FROST Server, which is an implementation of the OGC SensorThings API standard.

In its final release it will implement the symbIoTe RAP for L2.

5.1.3.4 KIT Mobile App

The KIT mobile application is a user frontend for the KIT navigation service. It reads BLE
beacon information and connects to the KIT backend server. The user can select indoor
areas and request navigation information starting from the current position. Some
screenshots are shown in the figure below.

Figure 20: KIT mobile app screenshots

5.1.3.5 KIT Administration Site

The KIT administration site is used for the beacon management and the room layout
definitions. The interface is browser based and served by the KIT backend server.

5.1.3.6 KIT Backend Server

The KIT backend server implements the KIT information model, the beacon management
and the navigation service.

In its final release it will implement the symbiote RAP for L2.

5.1.3.7 Compliance Level

The application complies with symbIoTe’s L2.

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 61 of 94
 © Copyright 2018, the Members of the symbIoTe

5.1.3.8 Semantic Mapping of Platform Specific Information Models

The main feature of the EduCampus use case is the mapping between two different
platform specific information models. The backend applications of both platforms will
publish their resources with their original concepts.

Figure 21: KIT application model

For the KIT application this will be an Area Location object, which is subtyped to more
specific classes.

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 62 of 94
 © Copyright 2018, the Members of the symbIoTe

Figure 22: KIT platform specific information model

The IOSB application only supports generic Room objects with room related attributes.

Figure 23: IOSB application model

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 63 of 94
 © Copyright 2018, the Members of the symbIoTe

Figure 24: IOSB platform specific information model

5.1.4 Smart Stadium

Smart Stadium enhances the user experience of visitors coming to a stadium. In the retail
context, it provides that both visitors and retailers get closer even in large distances across
the stadium.

Although being an IoT project, Smart Stadium does not involve sensors and actuators,
which are usually the first thing that comes to one’s mind when mentioning IoT devices. In
this use case, however, smartphones, sales terminals and smart TVs are the IoT players.

Different IoT platforms can live together in the stadium, offering access to their devices to
all other platforms and client applications through symbIoTe. Three different types of
applications have been designed for this use case:

 Visitor application.

 Retailer application.

 Promowall application.

Visitors are identified by their smartphones, while retailers (both moving carts and physical
shops) are identified by their Point of Sale Terminal and beacons. From the visitor’s point
of view, Smart Stadium brings the opportunity for detecting closest retailers, place orders
independent of where they are, for receiving products they bought directly in their seat.

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 64 of 94
 © Copyright 2018, the Members of the symbIoTe

On the other hand, retailers can broadcast their offers and promotions to all visitors inside
the stadium, or those that are moving near specific areas inside the stadium. Retailers can
send their promotions to large SmartTVs (Promowalls) strategically placed throughout the
stadium.

5.1.4.1 Visitor Application

The visitor application, in order to get much more downloads and use, have been
integrated into the application of the club in which the trials take place, Atlètic Terrassa
Hockey Club. The visitor application, named “ATLETIC Terrassa Oficial”, can be
downloaded from either Play Store (Android) or App Store (iOS), and provides visitors in
the stadium access to all retailer information as well as an entry point of news and
promotions. As soon as the user arrives to the stadium, the app registers user’s location
based on the proximity to beacons. From now on, the user is discoverable and accessible
thanks to this application and its backend.

5.1.4.1.1 Design

Figure 25: Components and interactions for all smart stadium use cases

The main benefit that symbIoTe provides to the application is the discoverability for new
incoming devices to the stadium as well as the continuous status updates. It also
standardizes the communication process by defining common information models, and
rules to add custom ones.

The application uses a typical client and server architecture, where the server is the one
that knows and interacts with symbIoTe. This way the mobile app capabilities can grow
with no deep details on where those services come from (new platforms, a new enabler
merging data from different platforms, etc.). Visitor platform provides access to known
services registered in symbIoTe. The platform acts as a facade. All IoT devices are located
using a custom symbolic location based on proximity to beacons spread throughout the

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 65 of 94
 © Copyright 2018, the Members of the symbIoTe

stadium. All beacons emit unique identifiers that are used to locate IoT devices inside the
stadium.

For example, a mobile app running on a Bluetooth low energy (BLE) capable device
detects the following known beacons:

 Beacon 1 tagged as ‘door 14’ at a distance of 1 meter (near)

 Beacon 2 tagged as ‘corridor 3’ at a distance of 15 meters (far)

 Beacon 3 tagged as ‘floor 1’, at a distance of 1 meter (near)

The device is then located at the symbolic location “near door 14, near floor 1, far corridor
3”. Physical shops can be easily located by using a specific beacon at the entrance door.

The following diagram depicts the device registration performed by both visitor and retailer
applications as well as all components involved in the Smart Stadium use case.

Figure 26: Smart Stadium Device Registration

5.1.4.1.2 Compliance level

The primary compliance level of symbIoTe integration is L1.

5.1.4.1.3 Platform

The visitor application solution is implemented using the following technology stacks:

 Mobile application: hybrid application developed using Cordova as a native
envelope and Ionic and AngularJS as application core.

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 66 of 94
 © Copyright 2018, the Members of the symbIoTe

 Application: runs on Android devices with BLE capability to locate near beacons.

 Backend: J2EE stateless RESTful services implemented using Spring Framework
and MongoDB.

5.1.4.1.4 User Interaction

The visitor application brings to people arriving to the stadium all information and services
they need to get updated of sport events and products they might be interested in, for
example, sport stuff, food and drinks. The other great functionality the application provides
to the user is passive to the user: receiving incoming data from devices/people with
granted access to symbIoTe and Visitor Platform related devices: push notifications.

Figure 27: Reception of notifications on visitor application

The visitor application looks for shops near the visitor and displays the products they sell;
visitor prepares an order with some products (and maybe coupons and discounts) and
sends it to the retailer, waiting for confirmation.

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 67 of 94
 © Copyright 2018, the Members of the symbIoTe

Figure 28: Closest shops to the visitor, selection, and list of available products

Figure 29: Visitor selects products and place the order

The communication between the Visitor platform and the mobile app is implemented by
means of push messages.

5.1.4.1.5 Implementation

As mentioned above, there are two pieces of software involved in this application which
are implemented in the following way:

 Backend: J2EE application implemented using the following frameworks and tools

o Spring Framework: core framework

o Apache Camel: to implement relevant processes

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 68 of 94
 © Copyright 2018, the Members of the symbIoTe

o Spring Data: data layer abstraction

o MongoDB: NoSQL database

o Apache CXF: implement RESTful services

o CAS: security for REST API

 Mobile application: hybrid application

o Cordova: envelop providing access to native capabilities as well as platform
specific application stores

o Ionic and AngularJS: core framework to develop application logic and UI

o Flux: data flow pattern for large applications

Moreover, this use case required a modification of the Core Information Model to add a
generic entity Device as an abstraction for Sensors and Actuators, letting us to use
different hardware (current version 2.3.0 reflects this).

Currently, both the mobile application and backend have completed their implementation.

5.1.4.1.6 Initial Functional Tests

In order to guarantee code quality, the backend has been analyzed using SonarQube31
and JaCoCo32 (code coverage), and the RESTful API has been tested using Postman. On
the other hand, the mobile application has been tested using functional test cases. These
functional tests took place in a first stage at the own premises of Worldline in Barcelona
during the months of April and May 2018, and in a second stage at the trial location, on the
premises of Atlètic Terrassa Hockey Club, during the month of June 2018.

We faced performance issues that caused the service to be down intermittently. Users’
location updates were triggered too frequently and symbIoTe Core could not manage
them.

5.1.4.2 Retailer Application

The retailer application provides retailers the opportunity to publish their services and
products to anyone in the stadium. This application let retailers manage the order inbox
and all the orders being processed and delivered. It also lets the seller to emit specific
discounts and coupons to either visitors’ devices or Promowalls located in certain sections
of the stadium. It is intended to be integrated into the Point of Sale terminals of each
retailer and, hence, be adapted to its particular look and feel (custom UI).

5.1.4.2.1 Design

The main benefit of using symbIoTe is the device discoverability via the Search registry to
access all kind of symbIoTe enabled platforms that are currently defined but much more
that could raise in the future.

31 https://www.sonarqube.org/

32 http://www.eclemma.org/jacoco/trunk/index.html

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 69 of 94
 © Copyright 2018, the Members of the symbIoTe

The application is divided into a regular client and server architecture (Figure 25), where
the server is the one that knows and interacts with symbIoTe. This way client app
capabilities can grow with no deep details on where those services come from (new
platforms, a new enabler merging data from different platforms, etc.). Remote Ordering
platform provides access to known services registered in symbIoTe, related to the Smart
Stadium use case. The platform acts as a facade. All IoT devices are localized using a
custom symbolic location based on proximity to beacons spread throughout the stadium.

All beacons emit unique identifiers that can be used to locate IoT devices inside the
stadium.

5.1.4.2.2 Compliance Level

The primary compliance level of symbIoTe integration is L1.

5.1.4.2.3 Platforms

The retailer application solution is implemented using the following technology stacks:

 Desktop application: web application developed using Electron as a native envelope
and Ionic and AngularJS as application core.

 App runs on a RaspberryPi device with a plugged display.

 Backend: J2EE stateless RESTful services implemented using Spring Framework
and MongoDB.

5.1.4.2.4 User Interaction

The retailer application allows sellers to make their products and services accessible to
anyone in the stadium, send messages and offers to visitors and promowalls. As already
described in the Visitors’ application, the visitor can accept a promotion or place an order
to a close retailer. The retailer application allows the retailer to receive and process all
orders placed from visitors.

Figure 30: Retailer application receives orders from visitors

The retailer gets a specific order and checks its contents. If there is any problem, the order
can be rejected and the visitor that placed the order notified about the rejection. Otherwise,

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 70 of 94
 © Copyright 2018, the Members of the symbIoTe

the retailer prepares the order and, when ready, accepts the order. The visitor is notified
that the order is ready.

Figure 31: Retailer selection and acceptance of orders

5.1.4.2.5 Implementation

As mentioned above, there are two pieces of software involved in this application that are
implemented in the following way:

 Backend: J2EE application implemented using the following frameworks and tools

o Spring Framework: core framework

o Apache Camel: to implement relevant processes

o Spring Data: data layer abstraction

o MongoDB: NoSQL database

o Apache CXF: implement RESTful services

o CAS: security for REST API

 Mobile application: desktop application developed using HTML5

o Electron: envelop providing access to OS capabilities as well as platform
specific installer and runtime

o Ionic and AngularJS: core framework to develop application logic and UI

o Flux: data flow pattern for large applications

Moreover, this use case required a modification of the Core Information Model to add a
generic IoT device, as until then it only covered sensors and actuators.

Currently, both the mobile application and backend have completed their implementation.

5.1.4.2.6 Initial Functional Tests

In order to guarantee code quality, the backend has been analyzed using SonarQube and
JaCoCo (code coverage), and the RESTful API has been tested using Postman. On the
other hand, mobile application has been tested using functional test cases. These
functional tests took place in a first stage at the own premises of Worldline in Barcelona
during the months of April and May 2018, and in a second stage at the trial location, on the
premises of Atlètic Terrassa Hockey Club, during the month of June 2018.

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 71 of 94
 © Copyright 2018, the Members of the symbIoTe

5.1.4.3 Promowall Application

Promowall is an existing solution from Worldline that offers the ability to publish stylish
promotions and limited coupons to customers in two different channels: Promowall mobile
app and large touch-screen Smart TVs, the Promowalls.

5.1.4.3.1 Design

The main benefit of using symbIoTe is the broadcasting of the Promowall published
information thanks to the discoverability of new devices and the ability to introduce new
symbIoTe enabled platforms that could use Promowall.

The Promowall backoffice application was implemented as a monolithic piece of software
containing a RESTful API, used by the mobile app, and a backoffice GUI implemented
using ZK Framework (server-side rendering).

The Promowall solution is divided into three applications:

 Promowall backoffice (out of Smart Stadium use case, because it’s replaced by the
Retailer application described above).

 Frontend HTML5 application running on Promowall devices displaying promotions,
relevant information and the QR code to activate promotions using any QR scanner
application from their devices (Promowall mobile app is not even required).

 Promowall mobile application for final users.

5.1.4.3.2 Compliance Level

The primary compliance level of symbIoTe integration is L1.

5.1.4.3.3 Platforms

The Promotion and Information platform is nothing else than the symbIoTe enabled
Promowall backend.

The retailer application solution is implemented using the following technology stacks:

 RESTful API: J2EE web application using Spring Framework.

 SmartTV frontend: HTML5 application

 Mobile application: Android native application running on a BLE capable device

5.1.4.3.4 User Interaction

The Promowall solution relevant for Smart Stadium use case involves the interaction of
visitors with Promowalls. The visitor can select and capture a promotion on the promowall
device and use the QR code of the promotion to redeem it at the physical store, or place
an order and pay on the mobile device if the retailer has enabled this option.

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 72 of 94
 © Copyright 2018, the Members of the symbIoTe

Figure 32: Promowall in the Smart Stadium scenario

The following figure shows some of the promotions that have been used for the Smart
Stadium use case on the Promowall device.

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 73 of 94
 © Copyright 2018, the Members of the symbIoTe

Figure 33: Promotion at the Smart Stadium Promowall

5.1.4.3.5 Implementation

As mentioned above, there are three pieces of software involved in this application that are
implemented in the following way:

 Backend: J2EE application implemented using the following frameworks and tools

o Spring Framework: core framework

o MySQL database

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 74 of 94
 © Copyright 2018, the Members of the symbIoTe

o Apache CXF: implement RESTful services

 SmartTV frontend: HTML5 site

o jQuery: core library

o Mustache.js: logic-less HTML template library

o Hammer.js: gesture library for web

o Isotope: dynamic masonry tile layout

 Mobile application: Android native application

This application does not require any special attention. The effort on this platform is to
convert this in a real symbIoTe platform.

Currently Promowall application has been completed and adapted as a symbIoTe enabled
platform.

5.1.4.3.6 Initial Functional Tests

This application is fully developed and it does not need any new functional tests.

5.1.5 Smart Yachting

The focus of Smart Yachting is to provide advanced services for the Yachting industry
based on IoT solutions. From an implementation viewpoint, the use case focuses on two
specific showcases: Smart Mooring and Automated Supply Chain (ASC).

The former aims to automate the mooring procedure of the Port, in itself a quite
bureaucratic and tedious process, since Marinas operate in strongly regulated contexts.
For the use case, the workflow logic is provided by the Navigo application Portnet.

Figure 34: A screenshot of the Portnet application

ASC aims to automatically identify the needs for goods and services on board of the
Yacht, so that automated requests for offers can be issued on the marketplace platform of
the Port, provided by another application of the Navigo infrastructure, Centrale Acquisti.

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 75 of 94
 © Copyright 2018, the Members of the symbIoTe

Figure 35: A screenshot of the Centrale Acquisti application

Both showcases exploit data from sensors to automatically acquire information from the
Yacht and pass them through symbIoTe’s enablers to the aforementioned business
applications that are connected to the Port infrastructure.

The choice of implementing Enablers in the use case has been motivated by the need to
facilitate the integration of Ports’ business applications with symbIoTe. This way it is
possible to encapsulate the technical details of the whole integration logic and expose only
the minimum set of methods that application developers must implement to integrate their
specific Mooring Workflow Management Systems and Marketplace solutions in the use
case.

A description for each of the two showcases of Smart Yachting follows.

5.1.5.1 Smart Mooring

Smart Mooring aims to simplify, through M2M interactions, the mooring authorization
workflow. It allows the Port’s workflow management system to automatically retrieve data
from the Yacht needed for the workflow authorization.

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 76 of 94
 © Copyright 2018, the Members of the symbIoTe

The showcase wants to intercept a particular phase of the Mooring process that starts
when the Yacht is approaching – at a distance – the destination port and ends when it
finally berths into one of its piers.

It is assumed that the initial mooring request (a sort of "booking" for the boat in the Port)
always starts offline or in any case outside symbIoTe.

The hypotheses that we are considering for Smart Mooring involve several interactions
amongst the Boat, the Port IoT System and the symbIoTe components.

When approaching the port, the vessel is first detected through LoRaWAN (we assume
that a LoRA antenna is controlled by the Port’s IoT platform). When the Yacht is near the
port, through LoRaWAN or other strategies, Wi-Fi credentials are transmitted to the Yacht
which starts a full Internet connection and can connect to the Smart Space (SSP).

Since the Yacht is a roaming Smart Device (L3 & L4 symbIoTe compliance levels), its
resources and properties must be updated in the Registry. In particular the
ConnectionStatus and ConnectedInPort attributes allow to know whether a Yacht is
connected to a Port’s Smart Space and in which Port this has happened. To reflect this
situation, the SSP’s Innkeeper aptly updates the Yacht/SDEV properties in the Registry.

When the Yacht is fully connected to the SSP, the PortNet’s Enabler can invoke the SDEV
services to retrieve data from boat sensors: M2M data is passed to the Mooring application
and attached to the specific approval workflow. In particular we assume to acquire from
the vessel’s sensors:

 Latest route, mapped as a sequence of waypoints, each described by geographical
coordinates.

 Average Yacht speed (in knots)

 Average Fuel Consumption per nautical mile (in litres)

 Fresh, Grey and Black Water tanks level (in litres)

 Service Fuel and Storage Fuel Oil tanks level (in litres)

 Port Exhaust and Starboard Exhaust temperature (in degree Celsius).

The whole process allows to greatly simplify the mooring management of the Port. First of
all, it is possible to automatically detect the vessel when it is approaching the port area but
still at a distance, allowing to send alerts to the port personnel in the piers to wait for the
incoming boat; yacht data that must be specified in the authorization procedure can be
automatically acquired and there is no need to manually copy them on paper forms; last
but not least, there is no need for the yachtsman to physically go to the Port Authority’s
offices, unless any problems are detected and reported.

5.1.5.1.1 Design

The Mooring Workflow application interacts, through symbIoTe’s components, with the
Yacht’s IoT platform to receive data from sensors that must be attached to the
authorization workflow, while sensors in the Port area, managed by its IoT platform, can
recognize when the Yacht has finally berthed on the assigned pier.

For the use case, we are integrating IoT platforms and applications of project partners,
namely Nextworks’ Symphony and Navigo’s Navigo Digitale and Portnet.

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 77 of 94
 © Copyright 2018, the Members of the symbIoTe

Allowing other Mooring Applications, beyond Navigo’s Portnet, to become symbIoTe-
enabled is at the same time essential and a critical factor, since there isn’t any standard,
nor a market leader in this arena. In order to encourage software vendors to adopt this
model, we must simplify their work; that is why it has been decided to encapsulate the
integration details within an enabler which hides all the possible complications and
provides simple cooperation mechanisms.

5.1.5.1.2 Compliance Level

Smart Mooring has:

 L3 compliance: as said, we see the Yacht as a Smart Device (SDEV) and the Port
as a Smart Space (SSP). The implementation of the showcase becomes similar to
the symbIoTe scenario of a Smart Device (the Yacht) entering a Smart Space (the
Port).

 L4 compliance: we assume that the Yacht maintains its ID when moving between
Ports. The Yacht will be therefore seen as an example of a Roaming Device.

By default the use case also implies L1 symbIoTe compliance.

5.1.5.1.3 Platforms

Smart Mooring involves the use of Navigo Digitale IoT platform and of the Navigo’s
business application Portnet, the latter integrated in symbIoTe through an Enabler. On the
Yacht side, Nextworks’ Symphony IoT platform is used.

5.1.5.1.4 User Interaction

No specific GUI is needed for this showcase. The only GUIs are those of the Portnet
application which is beyond the scope of symbIoTe.

5.1.5.1.5 Implementation

The following programming languages have been used for the development of the
showcase:

 Navigo Digitale IoT platform: its backend has been developed in Python while the
frontend is a web application. It is an L1 compliant platform.

 Portnet is a web application developed in PHP by using the Drupal 8 framework.

 The Enabler has been implemented in Java.

 The Smart Device logic (L3/L4), integrated with the Yacht’s IoT platform
(Nextworks’ Symphony), has been implemented in Python on a Raspberry Pi 3.

5.1.5.1.6 Initial Functional Tests

A specific test plan has been defined to cover all kinds of tests, from functional to
integration and possibly load testing.

Moreover the showcase is tested live through trials foreseen in the Port of Viareggio: a real
yacht, with all the hardware and software components foreseen for the showcase, will
navigate towards the Viareggio port. Before, a mooring workflow procedure will be initiated

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 78 of 94
 © Copyright 2018, the Members of the symbIoTe

on the Portnet application, to make sure that all systems are ready for the arrival of the
boat.

To make the trial successful, it is necessary that the following events are correctly
recognized and managed by the involved systems:

 The yacht is detected through LoRaWAN when still at a distance from the port;
accordingly, a message is sent to the Portnet application, which successfully
manages this communication by updating the workflow and alerting both the Port
Authority operators and the Port Area workers.

 The yacht’s IoT platform, when the vessel is near the berthing pier, connects to the
port’s Wi-Fi network and, through the S3M, to the symbIoTe infrastructure. Data
from sensors on board are sent to Portnet and attached to the workflow of the
current mooring procedure. Communications to the aforementioned users are sent:
in particular Port Area workers are requested to move to the berthing pier to wait for
the incoming yacht.

 The presence sensors on the pier detect when the yacht has finally berthed: a
communication is sent to the Portnet application that can successfully close the
workflow and inform the Port Authority operators.

Trials have already started and will continue until September 2018.

5.1.5.2 Automated Supply Chain (ASC)

The purpose of ASC showcase is to allow the Ports’ marketplace web applications to
access the resources of a Yacht to retrieve information about the needs of goods or
services on board, as identified by the vessel’s sensors.

Like in the previous case, we assume that the showcase always starts offline or in any
case outside symbIoTe.

5.1.5.2.1 Design

Similarly to the case of Smart Mooring, we have an application here (Navigo’s Centrale
Acquisti) that exploits M2M and symbIoTe to automatically get the list of the possible
needs of goods and services on board of the Yacht as detected by its IoT platform (for the
use case, Nextworks’ Symphony). Again, we aim to involve other third party software
vendors that provide applications similar to Centrale Acquisti: in order to simplify their
integration task, we decided to use an enabler to mediate the interaction with the
symbIoTe infrastructure.

The use of symbIoTe in the Centrale Acquisti application simplifies how Yachtsmen can
resupply or execute maintenance tasks on the Yacht by automatically finding possible
sellers or service providers in the area, even on their first visit to the (symbIoTe enabled)
Port.

5.1.5.2.2 Compliance Level

Similarly to the former case, we assume that the Yacht is a Roaming device that interacts
with the symbIoTe’s ecosystem through the Port’s Smart Space. Therefore the showcase
is compliant to the L1, L3 and L4 symbIoTe levels.

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 79 of 94
 © Copyright 2018, the Members of the symbIoTe

5.1.5.2.3 Platforms

ASC is based on the integration of the Navigo’s business application Centrale Acquisti in
symbIoTe through an enabler. On the Yacht side, Nextworks’ Symphony IoT platform is
used.

5.1.5.2.4 User Interaction

No specific GUI is needed for this showcase. The only GUIs are those of the Centrale
Acquisti application (beyond the scope of symbIoTe).

5.1.5.2.5 Implementation

The following programming languages have been used for the development of the
showcase:

 Navigo Digitale IoT platform (L1 compliant): its backend has been developed in
Python while the frontend is a web application.

 Centrale Acquisti: it consists of a PHP application, implemented with the WordPress
framework.

 Enabler: implemented in Java.

5.1.5.2.6 Initial Functional Tests

A specific test plan has been defined to cover all kinds of tests, from functional to
integration and possibly load testing.

Moreover live testing of this showcase has already started in the trial foreseen in the Port
of Viareggio; other trials will also be performed in the Marina Cala De’ Medici port, again in
Tuscany, Italy.

The trial again involves a Yacht, this time berthed on a pier of the Port and steadily
connected through Wi-Fi at the Port’s Smart Space. The Yacht is configured (through real
actions or simulations) to express a certain amount of maintenance or supply needs.

The trial consists of the following steps:

 From the Centrale Acquisti web interface a request to access the Yacht’s machine
data is made.

 Centrale Acquisti accesses the Yacht’s resources – through its enabler – to have
the list of the needs on board. The application must perform a corresponding
match-making with the possible suppliers in the Port area (in particular of those
involved in the trial).

The Port Authority operators supervise the flow of requests and the successful execution
of the matchmaking actions performed by Centrale Acquisti, given the machine data
received from the yacht.

The local suppliers use the backend of the Centrale Acquisti to answer to the requests of
offer automatically generated by the system: in particular they evaluate if the information
acquired by sensors on board and received through symbIoTe’s services are detailed
enough (or simply useful) to allow them to produce an offer, without the need to directly
contact the yachtsman.

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 80 of 94
 © Copyright 2018, the Members of the symbIoTe

The test will be repeated simulating different conditions (and therefore needs) on board
until September 2018.

5.2 Applications Developed for Demos

5.2.1 Demo Web App

The symbIoTe demo app in a Web Application is developed to showcase L1 symbIoTe
functionalities. This includes search of resources, access to historical data and actuation
capabilities. It only makes use of public resources, thus it does not have login capabilities,
but it uses the symbIoTe Client component to handle requests.

5.2.1.1 Design

The web app mostly interacts with symbIoTe using the symbIoTe Client, which handles
some access logic such as setting the security headers and the fetching of certificates.

The application has been developed to be generic enough to be able to show any
registered public resource in symbIoTe. This includes showing their location, their type and
the platform they belong to. For sensors, the app is also able to access and show sensor
readings. For actuators, specific widgets were developed to interact with light bulbs
(changing RGB lights, light intensity, on/off), although they will work with lightbulbs
registered in different platforms. In the future, this behaviour could become more generic
by presenting widgets according to the registered parameters of the actuator.

5.2.1.2 Compliance Level

The web app is L1 symbIoTe compliant.

5.2.1.3 Platforms

The web app was designed to work with any kind of platform registered within symbIoTe
(L1 compliance), but it has mostly been tested with sensor readings from the openUwedat,
OpenIoT and MoBaaS platforms and with actuators from Symphony and OpenHub
platforms.

5.2.1.4 User Interaction

The user is firstly presented with a search screen (Figure 36) where search parameters
can be inserted. It is also possible to not provide any input, thus receiving every result
available.

Figure 36: Web App Search

https://github.com/symbiote-h2020/Demo
https://github.com/symbiote-h2020/SymbIoTeClient

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 81 of 94
 © Copyright 2018, the Members of the symbIoTe

The user is then taken to the main screen, where he/she is presented with a map with pins
indicating resource location and a list containing the resources’ metadata (Figure 37).

Figure 37: Web App main screen

If the user clicks a specific pin on the map, information regarding that pin is presented,
such as the platform it belongs to, its coordinates and its type. If the user clicks on an entry
of the list, the web app accesses the sensor historic information and presents it to the user
(Figure 38).

Figure 38: Web App sensor Readings

The functionalities presented until this point are generic, making use of symbIoTe
capabilities to search for and present information regarding all registered resources, but

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 82 of 94
 © Copyright 2018, the Members of the symbIoTe

specific logic was also developed to actuate light bulbs. With this functionality, the web app
is able to interact with any light bulb from any platform, as long as it has been registered
using the symbIoTe information model.

5.2.1.5 Implementation

The web app has been developed with JavaScript, using bootstrap plugins and leaflet
libraries.

5.3 Enabler-based Applications

5.3.1 Indoor Positioning based on Location Enabler

Indoor positioning (and subsequently navigation) has been a field of recent interest,
though so far there has not been much visible results, beyond some trials and a small
number of locations where such services have been offered, based on specialized
implementations. While outdoor positioning and navigation can be considered “solved” (in
most outdoor cases) with the help of Global Navigation Satellite Systems (GNSS) system
such as GPS, Galileo, GLONASS and BeiDeo, providing rather quick and precise
positioning, practical, useful and universal indoor positioning is still quite far away.

Useful Indoor Positioning and subsequent Navigation has numerous applications in
various use cases (both observed within symbIoTe scope and outside) – from simple
finding a car in a large closed parking garage, finding a shop or ATM within a large
shopping centre all the way to complex indoor navigation solutions (finding various
resources in a complex corporate, academic, sport or health campus), not mentioning the
upcoming need to enable vehicle positioning in tunnels for some future autonomous
driving applications.

Based on the design defined in D2.6 (chapter 5.4) [6] an indoor positioning system has
been implemented which can use multiple available infrastructures (BLE beacons, WiFi
access points, mobile network cell information) to provide a most precise indoor position.
Such hybrid solutions are foreseen in the upcoming 3GPP-based mobile networks (5G
networks), thus we can expect future interest and implementations of indoor positioning,
with the ultimate goal of a standardized implementation.

The application is currently developed in a Smart Campus environment (on the example of
Vipnet Zagreb Žitnjak main campus and a testing setup on UNIZG-FER in their IoT Lab
environment), though the design and development approach enables simple creation of
the specific implementation for the other environments.

5.3.1.1 Design

Indoor Positioning is determined by trilateration (positioning by calculating distance from
pre-determined points) based on the various radio transmitters that exist within the
environment. Transmitters can include existing public mobile network base stations,
existing wireless LAN access points but it can also include specialized BLE beacon
transmitters installed for the purpose of the augmenting indoor navigation. Distance to the
fixed transmitters is determined by the RSSI (Received signal strength indication) signal
level received by the mobile phone wireless receivers and calculated using the algorithms
that use transmit power and propagation loss.

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 83 of 94
 © Copyright 2018, the Members of the symbIoTe

Algorithms are different for each wireless technology and there are issues with signal
propagation through obstacles (including people present in the room. Thus, there are limits
to precision that can be achieved, which depend for example on the number of
transmitters and their positioning in the space. Also, often WiFi access points are not
distributed in a practical fashion for trilateration. Finally, today mobile network cells (even
in indoor coverage systems) are still too large for practical and precise indoor positioning.
Mobile network cells will become smaller in the future with upcoming 5G mobile
technologies, which will increase the usage of smaller micro-cells and nano-cells.

Figure 39: Placement of the transmitters (BLE and WiFi) and sectors (rooms)

In all cases it is necessary to describe in advance the transmitters and calculate their exact
physical location within the building (coordinates in three dimensions, as the floor on which
the user is needs to be determined). Apart from providing precise position for each
transmitter we need a method to describe rooms (which is done by defining their corners)
and a method to provide the floorplan of the indoor space, as without visual and symbolic
name it is difficult to understand the indoor (Figure 39).

5.3.1.2 Compliance Level

Global Location Enabler and Specific Location Enablers register as a service in symbIoTe
core. Search in symbIoTe core is used to discover positioning service providers (Specific
Enablers) for certain area of interest. Therefore this solution is considered as L1-
compliant, thought it does not register any sensors or resources as a typical L1-compliant
platform, but only registers the service it provides.

5.3.1.3 Platforms and Enablers

Due to the necessary modularity of the solution (which needs to discover and incorporate
various infrastructures that exist at the certain location), an enabler design is used;
depending on the location from which Clients contact, the top-level Global Location
Enabler queries Specific Location Enablers which operate on the location. Another enabler
(Symbolic Location Enabler) translates the physical location to symbolic location that is

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 84 of 94
 © Copyright 2018, the Members of the symbIoTe

definitively more useful in the indoor (building, floor, room) than the exact physical location
(Figure 40).

 Smartphone Applications: There are two types of smart phone applications, one for
iOS and one for Android. They collect fingerprint (iOS just collects BLE beacons
due to iOS limitations in accessing detailed network information) and send collected
data to the proxy server or directly to the Global Location Enabler. They show
current user location and ground plans for buildings in which the user is.

 Proxy Server: Proxy Server is not a mandatory part of this system. Android and iOS
application can communicate directly with the Global Location Enabler but if in the
future other functions want to be added it is better to have a unique endpoint and
that is the purpose of this server. This server also has a web administrator
application for adding rooms/spaces and transmitters into FROST server.

 FROST: FROST server is an implementation of SensorThings API and its database
stores all information about transmitters and rooms. This data is used by the
Symbolic Location Enabler to translate physical location to symbolic location. In our
current implementation, FROST is also used by Specific Location Enablers as well,
but they can also have their own separate databases describing transmitters and
rooms (having SensorThings API compatibility is a useful and practical addition).

 symbIoTe Core: symbIoTe core is used by Global Location Enabler to find Specific
and Symbolic Enablers for the last known user location (which is sent initially by the
user Application). Symbolic Location Enabler and Global Location Enabler register
location services into symbIoTe core (as they provide location service for certain
area).

 Global Location Enabler: The Global location enabler has a function to combine
results from various Specific Location Enablers that operate in the area and then
pass that result to Symbolic Location Enabler. The Global location enabler returns
collected information to Mobile Applications.

 Specific Location Enablers: Various types of specific location enablers exist. This
use case has up to three Specific Location Enablers (one for BLE infrastructure,
one for WiFi and one for mobile network infrastructure). The purpose of the Specific
Location Enabler is to calculate user location from RSSI using trilateration.

 Symbolic Location Enabler: Symbolic Location Enabler uses absolute location to
determine symbolic user location. By using the data stored in FROST server (which
describe buildings, floors and spaces) it can translate a physical location
(coordinates and heights) to a symbolic name which is returned to the application.

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 85 of 94
 © Copyright 2018, the Members of the symbIoTe

Figure 40: Architecture of the Indoor Positioning enabler system

In this initial implementation, one FROST database is used to store transmitter and room
(sector) data, which is then used by both Specific Location Enablers and Symbolic
Location Enablers. In the general case, each Specific Location Enabler can have its own
geospatial database, which is preferably automatically populated from the infrastructure
management system (BLE beacon database, WiFi network controller or mobile network
infrastructure database).

5.3.1.4 End-User Interaction

Android (Figure 41) and iOS application (Figure 42) follow similar logic; they display the
floorplan of the identified floor overlaid over supported map (Google Earth or Apple Maps)
with user location indicated by a pin. Apart from the position on the floorplan, a symbolic
location is shown as a text description (room ID or position description). In multi-floor
buildings, floorplans of all floors can be seen with their symbolic designation and
designation of “active” floor (where User is currently located) by selecting the Floors tab.

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 86 of 94
 © Copyright 2018, the Members of the symbIoTe

Figure 41: Android application (VIP and UNIZG-FER campus)

Figure 42: iOS application (VIP and UNIZG-FER campus)

An additional feature of the Android application is the “Scan result” tab (Figure 43) which
can be used for simple and quick analysis of surrounding network infrastructures as it can
show BLE beacons, WiFi access points and identification of mobile network cells to which
the phone is attached. By providing the additional information in FROST (or other
database storing transmitter information) the application can be used for additional
scanning and testing of the performance and quality of the positioning information.

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 87 of 94
 © Copyright 2018, the Members of the symbIoTe

Figure 43: Wireless fingerprint and floorplans in Android Application

Absolute feature parity between iOS and Android is not possible, due to the limitation of
iOS API which only allows reading out the BLE beacons from the surrounding area (by
using iBeacon protocol), while Android allows access to both surrounding WiFi and mobile
networks.

5.3.1.5 Backend User Interface

Simple web user interface is used to manage the data stored in the FROST server
(containing room information and transmitter information). It includes three sections:
Sensors (editing the information on BLE, WiFi and mobile network transmitters), Rooms
(defining symbolic naming for the buildings, floors and rooms) and Users (defining
additional users and user rights).

Room is defined by four corners (given with absolute latitude/longitude) and by the relative
height of the room floor from the surrounding ground (convention of using absolute height
is also possible). Room does not have to be rectangular but is described by four outside
points, though in the case of some unusual room shapes, multiple quadrilaterals can be
defined identifying the same room (Figure 44).

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 88 of 94
 © Copyright 2018, the Members of the symbIoTe

Figure 44: Entering Room information

Sensor (transmitter) is defined by its identification (major:minor ID for BLE beacons, MAC
address for WiFi access point and CellID information for mobile network). Exact location
(longitude and latitude) and altitude is required as it is needed to detect the floor on which
the user is currently located. Information on transmit strength is needed for the RSSI
measurement and trilateration algorithm to work properly (Figure 45).

Figure 45: Entering and managing Sensor information

User tab allows for creation and deletion of additional users for the FROST backend
system, allowing adding users with non-admin roles (for example just editing the Sensor or
Room information (Figure 46).

Figure 46: User management

In case of using other infrastructure database (not the one built on FROST) different
backend user interface would be provided. The ideal option would be retrieving the
information on transmitters directly from their management system where some
description fields would store longitude/latitude/altitude information together with the
transmitted signal strength. This approach would retrieve information from its source
management systems without intervention and any changes to sensor location and
characteristics would be immediately propagated for the Specific Location Enabler.

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 89 of 94
 © Copyright 2018, the Members of the symbIoTe

5.3.1.6 Implementation

Various tools and toolkits have been used to implement the elements of the solution, as it
includes both iOS and Android smartphone applications and several server-side
components.

 FROST is a Java implementation of SensorThings API that provides syntactic and
semantic interoperability of Internet of Things. SensorThings API has a data model
which has entities for storing location data and is developed for Internet of Things
and interoperability. SensorThings follows REST principles, JSON data encoding,
the OASIS OData protocol and URL conventions. SensorThings has also MQTT
extension so IoT devices or users can publish subscription updates.

 iOS Smartphone Application is developed using Xcode IDE, written in Swift4
programming language using CocoaPods. Classical MVC architecture is used for
developing the application. Due to iOS limitations, only iBeacon protocol and BLE
beacons are supported.

 Android Smartphone Application is developed also in MVC model and is developed
in Android Studio IDE using Java and Kotlin programming languages. BLE beacons
are scanned by using Altbeacon library, while WiFi information is collected via
WiFiManager library and mobile base station data via TelephonyManager library.

 Global, Specific and Sybolic Location Enablers are developed in IntelliJ IDEA using
the Spring framework for development of web servers and applications. They also
implement FROST client library to connect to FROST server.

5.3.1.7 Initial Functional Tests

Testing has been performed on two locations (VIP main campus and UNIZG-FER campus
in Zagreb) and with two application implementations (Android and iOS) to demonstrate the
implementations in the Smart Campus environment and perform the testing of the
precision for the Indoor Positioning System (IPS). Testing on VIP campus was performed
on 1400m2 space (one floor of the main office building) where existing WiFi installation
(with not usefully spaced access points) consisting of 3 access points was augmented by
BLE beacons (Figure 47) positioned in what was considered a best practice for trilateration
(three WiFi access points were augmented by 8 BLE beacons).

Figure 47: BLE Beacons used for the testing

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 90 of 94
 © Copyright 2018, the Members of the symbIoTe

Precision of the positioning (measured repeatedly on pre-determined test points) was
between 1m and 3m, with application obtaining the new position within 5-10 seconds
(Figure 44). Experience from the measurements was then re-applied to positioning of the
beacons to improve the precision. General conclusion is that precision increases with
adding more BLE beacons as they provide better transmitter granularity than WiFi as they
can be easily moved around (WiFi access points are pre-installed to certain ceiling location
while BLE beacons can easily be moved to better location). Android application showed
somewhat better results than the iOS application, which is also an area of future testing
and implementations.

Figure 48: iOS application showing test points and measurement

Additional tests are planned in the Smart Stadium environment (closed indoor arena)
where higher-precision mobile network is implemented with massive small cells design,
where mobile network data would also provide good precision granularity. The general
idea for the implementation would be to include these features in company-specific or
location-specific smartphone applications.

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 91 of 94
 © Copyright 2018, the Members of the symbIoTe

6 Conclusions

This deliverable contains the report of the final release of symbIoTe software. One of the
outcomes of this work is the source code and its documentation, published as an open
source project in the GitHub service: https://github.com/symbiote-h2020. The main
software components/libraries (26 in total) in the final release (Release 3.0.0) include 4
common libraries (symbIoTeLibraries, symbIoTeSecurity, symbIoTeSemantics,
symbIoTeMapping) and one common component (Authentication and Authorization
Manager), 10 core components (Administration, Cloud-core Interface, Core Interface, Core
Resource Access Monitor, Core Resource Monitor, Registry, Search, Semantic Manager,
Core Bartering and Trading Manager, Core Anomaly Detection), 9 platform components
(Federation Manager, Monitoring, Platform Registry, Registration Handler, Resource
Access Proxy, Subscription Manager, Trust Manager, Bartering and Trading Manager,
SLA Manager) and 2 Smart Space components (Smart Space Middleware, SDEV
SymbIoTe Agent). The components are organized in three GitHub super-repositories:
SymbioteCore, SymbioteCloud and SymbioteSmartSpace. Four supporting projects are
also used, CoreConfigService and CloudConfigService, as well as EurekaService and
ZipkinService (with separate versions for core and cloud modes), which are located in
separate repositories. The information models created within symbIoTe are located at the
Ontologies repository.

Also, five use cases of symbIoTe that make use of the following applications have been
identified:

 The Smart Residence applications that cover the indoor, house environment

involving air quality control, health monitoring, and comfort and device control.

 The Smart Mobility and Ecological Routing web and mobile applications that

provides green ecological routes based on data collected from several IoT platforms

and analysed by the SMEUR enabler.

 The EduCampus scenario with the indoor location service for multiple campus

solutions to ease a student’s life by, e.g., allowing to book a room of navigate inside

buildings.

 The Smart Yachting applications that aim to automate the mooring process of the

port (Smart Mooring) and automatically identify the needs for goods and services on

board of the Yacht (ASC).

 The Smart Stadium applications (Visitor, Retailer and Promowall applications) that

involve the provisioning of location based services e.g., orders and purchases,

offers, promotions, etc. to brings visitors and retailers at a stadium closer.

Most of the use cases utilize IoT platforms at L1 and L2 compliance levels, while Smart

Residence and Smart Yachting use case scenarios also make use of the symbIoTe

platform L3 and L4 functionality.

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 92 of 94
 © Copyright 2018, the Members of the symbIoTe

7 References

[1]The symbIoTe consortium. (2016). D1.2 – Initial Report on System Requirements and

Architecture.

[2] The symbIoTe consortium. (2017). D5.2 - Report on System Integration and Application

Implementation.

[3] The symbIoTe consortium. (2017). D1.4 – Final Report on System Requirements and

Architecture.

[4] The symbIoTe consortium. (2016). D5.1 - Implementation Framework.

[5] The symbIoTe consortium. (2017). D1.3 - Final Specification of Use Cases and Initial

Report on Business Models.

[6] The symbIoTe consortium. (2017). D2.6 - symbIoTe Domain-Specific Enablers and

Tools.

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 93 of 94
 © Copyright 2018, the Members of the symbIoTe

8 Acronyms

AIT Austrian Institute of Technology GmbH

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

APP Application

ATOS ATOS Spain SA

BIM Building Information Modelling

BLE Bluetooth Low Energy Beacon

CIM Common Information Model

CLD Cloud Domain (symbIoTe domain layer)

CPS Cyber Physical Systems. A mechanism controlled or monitored by
computer-based algorithms

CRAM Core Resource Access Monitor

DAO Data Access Object

DoA Description of Action

DTO Data Transfer Object

FER Faculty of Electrical Engineering and Computer Science, University
of Zagreb

H2020 “Horizon 2020” EU Research and Innovation Programme

HTTP Hypertext Transfer Protocol

IAQ Indoor Air Quality

ICOM Intracom Sa Telecom Solutions

ICT Information and Communication Technology

IOSB Fraunhofer Gesellschaft zur Förderung der Angewandten Forschung
ev

IoT Internet of Things

JSON Javascript Object Notation, a human readable data exchange format

JVM Java Virtual Machine

KIOLA Telehealth Service Platform

KIT Karlsruhe Institute of Technology

LoRa

LoRaWAN

Long Range

LoRa Alliance Technology Low Power Wide Area Network

MIM Minimum Information Model

MoBaaS Mobility Backend as a Service

688156 - symbIoTe - H2020-ICT-2015 D5.4 - Integrated Prototype and Developed Applications

 Public

Version 0.9 Page 94 of 94
 © Copyright 2018, the Members of the symbIoTe

MVC Model View Controller

M2M Machine to machine

NAVIGO Na.Vi.Go. Societa Consortile a Responsabilita Limitata

NXW Nextworks

OData Open Data Protocol, an open protocol to allow the creation and
consumption of queryable and interoperable RESTful APIs

openUwedat AIT’s platform to manage observations and related data

PIM Platform Information Model

POI Point of Interest

RAP Resource Access Proxy

RDF Resource Description Framework, a description standard for
semantical relations

REST REpresentational State Transfer

RH Registration Handler

S&C Sensing & Control Systems SL

SD Device Domain (symbIoTe domain layer)

SMILA Smart Mirror Integrated Living Assistant

SPARQL A query language for semantically linked data sets (see RDF)

SSP Smart Space Domain (symbIoTe domain layer)

symbIoTe Symbiosis of Smart Objects across IoT Environments

S3M symbIoTe Smart Space Middleware

ToC Table of Contents

UNIDATA Unidata Spa

UNIVIE Universität Wien

UNIZG-FER Sveučilište u Zagrebu, Fakultet elektrotehnike i računarstva

URL Uniform Resource Locator

UW Ubiwhere Lda

VIP Vipnet d.o.o.

