
Is the Stack Distance Between Test Case and Method
Correlated With Test Effectiveness?

Rainer Niedermayr

University of Stuttgart, CQSE GmbH

Garching b. München, Germany

niedermayr@cqse.eu

Stefan Wagner

University of Stuttgart

Stuttgart, Germany

stefan.wagner@iste.uni-stuttgart.de

ABSTRACT

Mutation testing is a means to assess the effectiveness of a test suite

and its outcome is considered more meaningful than code coverage

metrics. However, despite several optimizations, mutation testing

requires a significant computational effort and has not been widely

adopted in industry. Therefore, we study in this paper whether

test effectiveness can be approximated using a more light-weight

approach. We hypothesize that a test case is more likely to detect

faults in methods that are close to the test case on the call stack

than in methods that the test case accesses indirectly through many

other methods. Based on this hypothesis, we propose the minimal

stack distance between test case and method as a new test measure,

which expresses how close any test case comes to a given method,

and study its correlation with test effectiveness. We conducted an

empirical study with 21 open-source projects, which comprise in

total 1.8 million LOC, and show that a correlation exists between

stack distance and test effectiveness. The correlation reaches a

strength up to 0.58. We further show that a classifier using the

minimal stack distance along with additional easily computable

measures can predict the mutation testing result of a method with

92.9% precision and 93.4% recall. Hence, such a classifier can be

taken into consideration as a light-weight alternative to mutation

testing or as a preceding, less costly step to that.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging;

KEYWORDS

software testing • test effectiveness • test metrics • minimal stack

distance • mutation test prediction

ACM Reference Format:

Rainer Niedermayr and Stefan Wagner. 2019. Is the Stack Distance Be-

tween Test Case and Method Correlated With Test Effectiveness?. In Eval-
uation and Assessment in Software Engineering (EASE ’19), April 15–17,
2019, Copenhagen, Denmark. ACM, New York, NY, USA, 10 pages. https:

//doi.org/10.1145/3319008.3319021

EASE ’19, April 15–17, 2019, Copenhagen, Denmark
© 2019 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in Evaluation and
Assessment in Software Engineering (EASE ’19), April 15–17, 2019, Copenhagen, Denmark,
https://doi.org/10.1145/3319008.3319021.

1 INTRODUCTION

Automated software tests are an important means for quality assur-

ance in software projects and are used to reveal faults and prevent

regressions in software applications. Different measures to evaluate

test suites have been proposed. Most common are code coverage

metrics [19, 48] expressing which portion of the application code is

executed by test cases. They can be computed at different levels, for

example, as line coverage, branch coverage, or decision coverage [9].

However, since code coverage metrics measure test completeness

and do not assess oracle quality, they are not necessarily suitable

for expressing the test effectiveness of a test suite [3, 20, 33]. More

advanced approaches take data-flow criteria into account [39] and

measure which portion of the covered statements is checked in

assertions [41].

Another established, powerful technique to evaluate test suites

is mutation testing [25]. The general idea behind mutation test-

ing is to generate mutants by seeding faults into the code of a

program and check whether the tests can kill (detect) these faults.

Hence, compared to code coverage metrics, this technique takes

oracle quality into account and can provide more meaningful re-

sults. However, mutation testing is—despite several optimization

techniques—computationally complex due to the effort needed for

generating and testing a large number of mutants. Despite its effec-

tiveness, there are no indications that mutation testing is widely

adopted as a test efficacy criterion in practice [21, 25].

Since mutation testing can be expensive and code coverage is

not necessarily meaningful enough for assessing test suites, we

study in this paper whether test effectiveness can be approximated

using a more light-weight approach. We hypothesize that a test

case that directly invokes a method is more likely to detect faults

in that method than another test case that accesses the method

indirectly through many others. Therefore, we propose a measure

called minimal stack distance, which expresses how close any test

case comes to a given method, and study whether methods with a

high minimal stack distance value are more likely to be ineffectively

tested. For that, we conduct a mutation analysis using the Descartes

operator [46] and assess whether methods that contain surviving

mutants exhibit a higher minimal stack distance than the remaining

methods. Furthermore, we train a classifier using stack distance

values and further measures, which can be collected in a single

execution of a test suite, and evaluate the classifier’s performance

in predicting mutation testing results.

Research goal: We aim at reducing the effort to identify ineffec-

tively tested code. In this paper, we investigate how well the stack

distance measure correlates with and can be used to predict test ef-

fectiveness. This would allow us to use it as alternative to mutation

testing.

https://doi.org/10.1145/3319008.3319021
https://doi.org/10.1145/3319008.3319021
https://doi.org/10.1145/3319008.3319021

EASE ’19, April 15–17, 2019, Copenhagen, Denmark R. Niedermayr and S. Wagner

Contributions: This paper makes two contributions: First, we

propose and study the minimal stack distance measure, which char-

acterizes the proximity of a method to any of its test cases. Second,

we evaluate a machine-learning classifier based onmethod test-case

characteristics and show that classifiers to predict mutation testing

results can come into question as an alternative to mutation testing

or as a preceding, less costly step to that. For example, this could

allow the use in continuous integration where mutation testing

would take too long or is not applicable for other reasons.

The remainder of the present paper is organized as follows. Sec-

tion 2 discusses related work. Section 3 defines relevant terms.

Afterwards, Section 4 describes the approach to compute the stack

distance measure. Section 5 presents design and results of the em-

pirical study. Then, Section 6 discusses the study’s results and impli-

cations, and Section 7 explains threats to validity. Finally, Section 8

summarizes the main findings and sketches future work.

Data to replicate the study is available at [34].

2 RELATEDWORK

Mutation testing was first proposed by Lipton [29] in the 1970s and

formalized by DeMillo et al. [11]. It has since then been extensively

studied [25, 38, 45]. In general, mutation testing is computation-

ally complex; to address this downside, researchers have suggested

several approaches to reducing the cost of mutation analysis. Of-

futt et al. [37] classified these approaches as do fewer, do smarter,
and do faster. Do fewer approaches comprise the use of a smaller,

representative set of mutation operators [35, 36, 42], sampling of

mutants [1], mutants clustering [23], and higher order mutation, in

which multiple mutation operators are applied at once [24]. The

most prominent do smarter approach is weak mutation, in which a

mutant is immediately evaluated after its execution point instead

of checking it at the end of a test execution [18, 25]. Do faster ap-
proaches comprise further run-time optimization techniques to

speed up the generation and execution of mutants (e.g., bytecode

mutants [30, 40], aspect-oriented mutation [6], or parallel mutation

testing [12]).

In our work, we study whether measures describing the rela-

tionship between methods and test cases can uncover ineffectively

tested methods representing surviving mutants. Hence, we propose

an approach to predict the mutation testing result of a method in a

light-weight way without the need for executing mutation testing.

Namin et al. [42] used linear models to predict the overall mu-

tation score, and Jalbert et al. [22] also predicted that score using

machine learning models. However, both did not perform predic-

tions on individual methods. Strug et al. [43, 44] calculated the

structural similarity of mutants, predicted based on results of simi-

lar mutations whether a given test would detect a mutant or not,

and thereby reduced the number of mutants to be executed. How-

ever, their approach still requires a mutation analysis of a subset of

mutants. The most related work to ours is from Zhang et al. [47],

who predicted the mutation testing result of individual mutations

and achieved promising results. They also included mutations that

are not covered by any test case and hence cannot be killed. In con-

trast to the work of Zhang et al., we predict the mutation testing

result of a method and not of single mutations, exclude methods

Figure 1: The minimal stack distance of method M8 is 3. No

test case can accessM8 through fewer method invocations.

that cannot be killed since they are not covered, and include the

proposed minimal stack distance measure in the prediction model.

Stack distance as ameasurewas first defined and used byMattson

et al. to evaluate storage hierarchies [31]. Caşcaval et al. used it to

estimate cache misses [7]. Barford et al. used it for web servers to

measure the likelihood that a requested file will be requested again

in the near future [5]. In this paper, we define stack distance in the

context of testing to characterize the proximity between test cases

and methods.

3 DEFINITIONS

We define the minimal stack distance between a methodm and a test
case t as the length of the shortest path from t tom.

1
Hence, the

value is one for a method that is directly invoked by a given test

case and, for example, two for a method that is indirectly invoked

by a given test case through one other method.

We define theminimal stack distance of amethodm as the shortest

distance between m and any of its covering test cases T (m). It

corresponds to the minimal distance on the call stack between the

methodm and all test cases. Figure 1 illustrates an example.

We call a method covered if it is executed by at least one test case.

The mutation testing result of a covered method can either take the

value ineffectively tested or effectively tested. We consider a covered,

non-empty method as ineffectively tested if its whole logic can be

removed without causing any test case to fail. Such ineffectively

tested methods are also known as pseudo-tested methods [33, 46].

The idea behind pseudo-testedness is that if no single test case can

detect such an extreme transformation, test cases will not be able

to detect more subtle mutations. Pseudo-tested methods can be

detected with the Descartes mutation operator, which works as

follows [46]. For void methods, the operator removes the whole

method body. For methods with a return type, depending on the

type, one or two mutants are created, which replace the method

body with a statement returning a value satisfying the declared

return type. Table 1 presents the return values per type. When two

mutants are created, a method is only considered pseudo-tested if

both mutants cannot be killed; hence, the use of two mutants avoids

that equivalent mutants influence the mutation testing result of a

method.

We further use common mutation testing terms as defined in

literature [25]: A mutation operator is a transformation rule that

generates a mutant by applying syntactical changes to the original

program. A mutant is said to be killed if at least one test case of

the test suite fails due to the changes; otherwise it is said to have

1
In this paper, we define and apply minimal stack distance based onmethods. However,
the definitions are also applicable to functions in non-object-oriented programming

languages.

Is Stack Distance Correlated With Test Effectiveness? EASE ’19, April 15–17, 2019, Copenhagen, Denmark

Table 1: Return values of the Descartes operator.

Return Type Class Mutant 1 Mutant 2

void (void) (not created)
boolean false true

byte, short, int, long 0 1

float, double 0.0 0.1

char ’ ’ ’A’

string "" "A"

T[] new T[]{} (not created)
reference type null (not created)

survived. An equivalent mutant is—despite syntactical changes—
semantically equivalent to the original program and can therefore

not be killed.

4 COMPUTATION OF MINIMAL STACK

DISTANCE

In the following, we describe the computation of the minimal stack

distance for Java applications; nonetheless, this measure is applica-

ble to other programming languages as well. The steps to compute

the minimal stack distance comprise the instrumentation of the

code, the replacement of Java’s Thread class, and the recording of

the method invocations during the test execution. Figure 2 presents

an overview of the computation.

1) Instrumentation: We instrument each method of the source

code so that it notifies our stack-recorder class when a method is

entered and exited. To instrument a method, we introduce a new

try-finally block and move the original code into the try block.

We then insert a statement before the try block, which calls our

recorder class with the signature of the considered method. Next,

we insert a further statement into the newly created finally block,

which informs the recorder that the method invocation needs to

be removed from the current stack. The finally block is always

invoked when the method is left (even if an exception is raised or

propagated).

To conduct the code instrumentation, we developed a Maven-

plugin, which operates at the byte-code level and uses the ASM
2

library. The decompiled source code of an instrumented method

might look as follows:

1 public int getSize () {

2 InvocationLogger.push(

3 "org.SampleClass.getSize ()");

4 try {

5 /* BEGIN ORIGINAL CODE */

6 return this.size;
7 /* END ORIGINAL CODE */

8 } finally {

9 InvocationLogger.pop(

10 "org.SampleClass.getSize ()");

11 }

12 }

2) Thread class replacement: To achieve a thread-aware compu-

tation of the minimal stack distance, we need to be aware of the

current stack height of each thread and know which thread was

2
http://asm.ow2.io/

Figure 2: Overview of the stack distance computation.

started by which other thread. For that, we need to be notified

when a new thread is started. Since Java’s Thread class does not

provide the possibility to register listeners, we took the original

code from the JDK and adjusted it so that our stack-recorder class

gets informed about the start of a new thread. We compiled the

modified thread class and put it into the “endorsed” folder of the

JDK. The replacement of the thread class does not influence test

results.

3) Recording: Finally, we need to execute the test suite and record
the distances between test cases and methods. We use Maven’s

Surefire plugin for the execution of unit tests and Failsafe plugin for

integration tests and register our stack-recorder class as test listener

in these plugins. Hence, the recorder will be notified when a new

test case execution begins and can assign all subsequent method

invocations to that test case. When a test case execution starts

and an instrumented method is entered, the method’s signature is

pushed onto the recorder’s stack for the current thread. Then, the

stack’s height is counted and, if appropriate, the distance from the

executed test case to the start of the current thread is added. If the

resulting distance constitutes a new minimum for a given method

test-case pair, the pair’s minimal stack distance value is updated.

When an instrumented method is left, its signature is taken down

from the stack of the appropriate thread.

Note that if a method is invoked recursively, the height of the

stack increases with each invocation; however, we are only inter-

ested in the minimal stack distance of each method test-case pair.

In short, the recorder class holds the so far minimal stack distance

of each executed method test-case pair, the method invocations

on the stack of each thread, and the relations between the threads.

At the end of each test case execution, the minimal stack distance

values are persisted.

Note that another imaginable approach that computes the stack

height by requesting the current thread to dump its stack trace (as

done when creating exceptions) is not fast enough to be viable for

doing the computation in test executions.

Limitations are as follows: We applied the instrumentation to all

methods except constructors. We excluded constructors, because it

is tricky to instrument a constructor in a way so that its beginning

is correctly intercepted, because a constructor’s very first state-

ment unavoidably delegates to another constructor or a super con-

structor such that the code there gets executed first. Consequently,

constructor invocations will not be counted when computing the

stack distance; notwithstanding the above, methods invoked by

constructors are still considered. Furthermore, external libraries

are not instrumented; therefore, method invocations in external

http://asm.ow2.io/

EASE ’19, April 15–17, 2019, Copenhagen, Denmark R. Niedermayr and S. Wagner

libraries are not counted. The consequence of both limitations is

that the computed stack distance will in some cases be slightly

lower than the actual distance. Hence, the computed minimal stack

distances should be considered as a lower bound.

5 EMPIRICAL STUDY

This section reports on the design and results of the empirical study

that we conducted to investigate the influence of the minimal stack

distance between test case and method on test effectiveness. We

further examined how well the mutation testing result of a method

can be predicted using this measure.

5.1 Research Questions

We investigate the following research questions:

RQ1: Aremethods with a higher stack distance to the test

cases more likely to be ineffectively tested?With this research

question, we want to find out whether the minimal stack distance

of a method is correlated with the property how well a method is

tested. We hypothesize that a test case that never comes close to

a given method is not effective in detecting faults in that method.

Consequently, we expect a method tested only by distant test cases

to be less effectively tested. In other words, we hypothesize that

methods with a high minimal stack distance are more likely to

contain surviving mutants. The answer to this question helps de-

termining whether stack distance can be a useful predictor for test

effectiveness.

RQ2:Howwell can themutation testing result of amethod

be predicted using test-relationshipmeasures? Sincemutation

testing is costly, we want to find out whether a more light-weight

approach can approximate results gained from mutation analysis.

We are interested in predicting the mutation testing result of a

method based on measures characterizing relationships between

methods and test cases. If such a prediction approach works well, it

could be used as an alternative to mutation testing or as a preceding,

less costly step to that.

5.2 Study Objects

We selected study objects from GitHub
3
based on the following

criteria: The projects need to be written in Java, contain test cases

designed for the JUnit test framework, and use Maven as build sys-

tem. We manually selected five Apache projects (Commons Geom-

etry, Commons Imaging, Commons Lang, Commons Math, Com-

mons Statistics), and JFreechart, which are popular open-source

projects used in several empirical test studies (e.g., in [17, 20, 26]).

We selected additional study objects that satisfy the previously men-

tioned criteria by searching GitHub for recently updated projects

with at least five forks (to require a certain popularity). We excluded

a project if it was not possible to build it (e.g., due to compilation

problems or unresolvable dependencies), if more than 5% of the

test cases failed in a local execution of the original test suite, or if

the mutation analysis was not successful (e.g., due to special test

runners or class loading mechanisms).

3
https://github.com

The selected study objects are from different domains and con-

tain both single- and multi-module projects. Their characteristics

are presented in Table 2. LOC (lines of code) refers to the applica-

tion code (i.e., code without test and sample code) and was mea-

sured with Teamscale [16]. # Tests refers to the number of test cases

as reported by Maven. Line and branch coverage were computed

with JaCoCo
4
. The largest project, biojava, consists of 240.6 k LOC.

Commons Math contains with 5,254 the most test cases. The line

coverage of the projects ranges between 28.0% and 95.0%.

5.3 Study Design

RQ1:We hypothesize that the higher the minimal stack distance of

a method is to any test case, the less likely the method is effectively

tested. To test this hypothesis, we analyze whether a correlation

exists between a method’s minimal stack distance to any test case

and its mutation testing result (i.e., whether a method is ineffec-

tively tested by all test cases or not). For that, we compute for each

project the Spearman rank correlation coefficient, which expresses

the strength of this relationship (between −1 and +1), and the p-

value. We use a significance level of 0.05. Moreover, we present

plots illustrating the proportion of ineffectively tested methods per

minimal stack distance value.

RQ2: To answer this research question, in which we train and

evaluate a classifier to predict mutation testing results, we collect

further measures besides stack distance for each covered method.

We chose the following method measures because they can easily

be computed during a single execution of a test suite:

• Line count: number of coverable lines of code in the method

• Branch count: number of branches

• Line coverage: proportion of covered lines out of coverable lines

• Branch coverage: proportion of covered branches out of coverable

branches (100% for covered methods without branches)

• Number of covering test cases: number of test cases that execute

the method

• Scope of covering test cases: minimum number of covered meth-

ods of any of the method’s covering test cases

• Maximum invocation count: maximum number of invocations

of the method during the execution of any covering test case

• Return type of the method: void, boolean, numeric, string, array,

reference to object

For each project, we train one machine-learning classifier to

predict the mutation testing result of a method with respect to all

covering test cases, and one to predict the mutation testing result

of a method test-case pair.

We evaluate the performance of the models with respect to

within-project and cross-project predictions. Within-project evalu-

ations show how well predictions work when models are trained on

a data-subset of the same project, cross-project evaluations indicate

how well models can be generalized to conduct predictions in other

projects. For within-project predictions, we apply repeated ten-fold

cross-validation [27]. For cross-project predictions, we test each

project with a model that is trained on the respective remaining

projects.

4
https://www.eclemma.org/jacoco/

https://github.com
https://www.eclemma.org/jacoco/

Is Stack Distance Correlated With Test Effectiveness? EASE ’19, April 15–17, 2019, Copenhagen, Denmark

Table 2: Study objects.

Name ↓ Purpose LOC #Tests Line Cov. Branch Cov. Git Revision

Apache Commons Geometry geometric utilities 19.4 k 643 76.9% 70.7% be34ad93

Apache Commons Imaging image library 48.4 k 575 71.3% 58.9% eb98398b

Apache Commons Lang utility classes for Java 77.0 k 4,053 95.0% 91.1% 1f0dfc31

Apache Commons Math mathematics library 186.3 k 5,254 89.8% 84.8% eafb16c7

Apache Commons Statistics statistics library 6.1 k 358 91.5% 87.6% aa5cbad1

biojava biological data processing 240.6 k 1,181 40.5% 38.5% 523c78e1

bitcoinj Java Bitcoin library 59.1 k 5,222 67.5% 61.3% 911f6d49

geometry-api-java spatial data processing 87.0 k 408 71.6% 59.4% 3704c220

google-gson JSON serialization 14.8 k 1,039 84.4% 79.2% 57085d62

Google HTTP Java Client HTTP client library 30.1 k 635 54.9% 58.8% df0e9f2a

graphhopper route planning library and server 60.5 k 1,680 65.4% 60.9% e954f008

jackson-databind databinding for JSON data 103.0 k 2,159 77.8% 70.7% bf604125

javaparser parser and AST for Java 118.4 k 1,284 59.8% 48.1% 1cca4c46

JFreechart chart library 222.8 k 2,175 55.5% 46.4% 39dfee3c

jsoup HTML and CSS parser 18.2 k 671 81.4% 77.8% 220b7714

openwayback web wayback machine 66.8 k 320 28.0% 26.8% 680fba15

pdfbox PDF document manipulation 227.6 k 1,587 49.7% 43.3% d9930344

scifio scientific image format IO 79.4 k 1,019 37.1% 19.3% 281e7ce2

traccar server for GPS tracking 59.6 k 310 56.4% 49.0% 6d259427

urban-airship library for marketing platform 37.9 k 706 79.3% 46.0% 98edb3ca

vectorz fast vector mathematics 61.9 k 456 61.1% 63.8% a05c69d8

Table 3: Example of a full mutation matrix.

Method Test Case Mutation Testing Result

m1 t1 ineffectively tested

m1 t2 effectively tested

m2 t2 ineffectively tested

We measure model performance by computing precision, recall,

and F-score. Following Zhang et al. [47], we predict both outcomes

(ineffectively and effectively tested) and use the weighted average

of the performance metrics (i.e., “each metric is weighted according

to the number of instances with the particular class label”). In

addition, we report the performance of the outcome ineffectively
tested, because methods with this outcome represent the minority

class and are therefore more difficult to predict.

Furthermore, we exemplary show the prediction model’s com-

puted variable importances for one project.

5.4 Data Collection and Processing

To collect data for the study, we first executed the test suite of

each study object and recorded the minimal stack distance of each

method test-case pair. The recording of the stack distance was

carried out as defined in Section 3 and described in Section 4. Note

that we were working on the existing test suites of the projects; we

did not generate test cases.

Second, we conducted a mutation analysis for each study object.

For that, we used Pitest (PIT) [10] in version 1.4.0 with the pit-mp
extension to support multi-module projects. Pitest is a well-known

mutation testing tool for Java applications and has been used in

several studies (e.g., [2, 13, 14]). As performance optimization, Pitest

aborts the analysis of a mutant after the mutant is first killed by a

test case. However, for this study, we need a full mutation matrix,

which contains the result (killed or survived) of each mutant for

each covering test case. Therefore, we adjusted Pitest to compute a

full mutationmatrix as proposed by [2]. Table 3 presents an example

of such a matrix.

To gain further insights, we made an additional adjustment to

Pitest and recorded for each killed mutation by what event it was

killed. Hence, we know for a mutation whether it is detected by

a test case because of a failing assertion (AssertionError) or be-

cause of another implicit exception being thrown (e.g., NullPointer-

Exception, or ArithmeticException due to a division by zero).

We used Pitest with the Descartes plugin [46], which implements

the mutation operator to uncover pseudo-tested methods (see Sec-

tion 3). More details on the mutation operator can be found in [33].

We excluded empty methods and methods solely returning null

from the analysis because their mutation would result in an equiv-

alent mutant. We also excluded hashCode methods because we are

convinced that mutation testing is not suitable for assessing their

testing state.
5
We further excluded constructors because, as de-

scribed in the limitations of the stack distance computation in

Section 4, we cannot compute reliable stack distance values of these

special methods. Moreover, we excluded generated code, which was

present for example in bitcoinj, because the code is re-generated

during the build process and not designed to be tested.

5
As long as a hashCodemethod considers no additional fields for computing an object’s

hash value, it still fulfills its contract even if fewer fields are considered or another

computation formula is used. The usedmutation operator does not introduce additional

field accesses.

EASE ’19, April 15–17, 2019, Copenhagen, Denmark R. Niedermayr and S. Wagner

Table 4: Overview of the mutation analysis results.

Project

ineffectively

tested methods

% ineffectively tested

out of all covered methods ↓

scifio 154 32.0%

pdfbox 829 26.3%

biojava 1147 24.4%

traccar 193 22.4%

Commons Imag 244 21.4%

openwayback 166 18.6%

JFreechart 754 17.7%

Google HTTP 145 16.5%

javaparser 293 14.0%

graphhopper 252 11.5%

geometry API 224 9.9%

vectorz 339 8.0%

jackson-db 307 7.8%

bitcoinj 77 4.7%

jsoup 37 4.4%

urban-airship 78 3.5%

Commons Geom 20 2.8%

gson 15 2.8%

Commons Math 129 2.7%

Commons Stat 7 2.6%

Commons Lang 43 1.7%

median 166 9.9%

For RQ 2, we collected further measures to enhance the predic-

tion model. We used JaCoCo to compute a method’s number of lines

and branches as well as line and branch coverage values. The num-

ber of covering test cases per method and their scope was computed

based on the full mutation matrix. The method’s invocation count

during a test execution was collected alongside the stack distance

recording. Finally, the return type of a method was deduced from

the mutation testing output.

We used the statistical software R to process data. We trained

and evaluated prediction models with R’s caret package [28]. We

chose Random Forest as machine-learning algorithm because pre-

liminary experiments on our datasets revealed that it achieved the

best performance. adaboost achieved an almost equal performance,

but was about eleven times slower. Zhang et al. also used Random

Forest for their predictions [47].

5.5 Results

This section presents the results to the research questions. Data to

reproduce the results are available at [34].

Before addressing the research questions, we present in Table 4

the absolute and relative number of ineffectively tested methods

of each project as computed in the mutation analysis. Depending

on the project, between 1.7% and 32.0% of the covered methods are

ineffectively tested methods. According to these measurements,

methods in gson and four of the Apache projects are especially

well tested compared to the other projects. In contrast, the results

of scifio, pdfbox, and biojava are below average.

Table 5: RQ1: Spearman’s correlation coefficient for a

method’s mutation result and its minimal stack distance. Ab-

solute coefficient values ≥ 0.2 and p-values < 0.05 are highlighted.

Project coefficient ↓ p-value

JFreechart +0.58 <0.001

scifio +0.48 <0.001

javaparser +0.41 <0.001

Commons Stat +0.35 <0.001

traccar +0.33 <0.001

pdfbox +0.31 <0.001

biojava +0.29 <0.001

graphhopper +0.24 <0.001

Commons Lang +0.21 <0.001

bitcoinj +0.20 <0.001

jackson-db +0.18 <0.001

jsoup +0.18 <0.001

Commons Geom +0.17 <0.001

Commons Imag +0.16 <0.001

geometry API +0.15 <0.001

openwayback +0.14 <0.001

gson +0.13 0.003

urban-airship +0.11 <0.001

Commons Math +0.08 <0.001

vectorz +0.07 <0.001

Google HTTP -0.17 <0.001

RQ1: Aremethods with a higher stack distance to the test

cases more likely to be ineffectively tested? Table 5 shows the

results of the Spearman correlation test between a method’s mini-

mal stack distance and mutation testing result.

We observe that a statistically significant correlation exists in all

21 projects (p-value < 0.05). The positive correlation coefficients in-

dicate that the proportion of ineffectively tested methods increases

with increasing stack distance values. The strongest correlation is

achieved in the project JFreechart with a correlation coefficient

of 0.58. When looking at this project’s test code, it was striking that

the test cases contain many assertions. A moderate correlation with

a coefficient between 0.3 and 0.5 is present in five further projects. A

weak correlation is present in the remaining projects. In the project

Google HTTP a weak negative correlation is observed; however, in

this project, the minimal stack distance does not exceed the value 2

in 81% of the methods.

The red line in Figure 3 presents the proportion of ineffectively

tested methods per minimal stack distance value. In the project

JFreechart, more than 50% of the methods with a minimal stack

distance higher than 3 are ineffectively tested.

The illustration in Figure 4 indicates that the correlation between

a method’s minimal stack distance and its mutation testing result

is stronger in larger projects with a high proportion of ineffectively

tested methods. (The correlation between the project’s correlation

coefficient and these two project characteristics is each 0.4.)

Methods with a higher minimal stack distance to covering test cases

are more likely to be ineffectively tested.

Is Stack Distance Correlated With Test Effectiveness? EASE ’19, April 15–17, 2019, Copenhagen, Denmark

●

●

● ●

● ●0%

25%

50%

75%

100%

1 2 3 4 5 6

COMMONS LANG

●

●
●

●
●

●

●

●

1 2 3 4 5 6 7 8

COMMONS MATH

●

●
● ●

●

●

●

1 2 3 4 5 6 7

BITCOINJ

● ●
●

●

●

●

●

● ●

●

●

●

1 2 3 4 5 6 7 8 9 10 11 12

GEOMETRY API

●

●

●
●

●

●

●

1 2 3 4 5 6 7

GSON

●

●

●

●

●

●

●

●

●

1 2 3 4 5 6 7 8 9

JFREECHART

●

●

●

●

1 2 3 4

TRACCAR

●
●

●
●

●

0%

25%

50%

75%

100%

1 2 3 4 5

VECTORZ

●
●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10 12 14 16

JAVAPARSER

●

●
● ● ●

●

●

● ●
●

●

●

●

●

●

●

2 4 6 8 10 12 14 16

JACKSON−DB

●

● ●

●

●

●

1 2 3 4 5 6

COMMONS GEOM

● ●

●

1 2 3

COMMONS STAT

●

●

●

●

●

●

1 2 3 4 5 6

GOOGLE HTTP

● ●

●

●

●

●

●

●
●

1 2 3 4 5 6 7 8 9

COMMONS IMAG

● ●

●
●

●

●

●

● ●0%

25%

50%

75%

100%

1 2 3 4 5 6 7 8 9

JSOUP

●

●

●
●

●

●

●

●

1 2 3 4 5 6 7 8

GRAPHHOPPER

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10 12 14 16

PDFBOX

●

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5 6 7 8 9 10 11

BIOJAVA

●

●

●

●
●

●

1 2 3 4 5 6

OPENWAYBACK

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5 6 7 8 9 10

SCIFIO

●

●
●

●

●
●

●

1 2 3 4 5 6 7

URBAN−AIRSHIP

Figure 3: RQ1: The charts present the proportion of ineffectively testedmethods as red line and the proportion ofmethods

per minimal stack distance value as gray bars. The hypothesis is that the proportion of ineffectively tested methods increases with increasing

minimal stack distance values. The x-axis is cropped when the proportion of methods per distance value falls below 0.5%.

0

50

100

150

200

250

10.0% 20.0% 30.0%

% ineffectively tested methods of project

si
ze

 o
f p

ro
je

ct
 (

kL
O

C
)

0.0 0.2 0.4
Project's minimal stack distance correlation strength

Figure 4: The projects’ proportion of ineffectively tested

methods (x-axis), project size in kLOC (y-axis), and the

strength of the correlation between a method’s minimal

stack distance and its mutation testing result from Table 5

(color).

RQ2:Howwell can themutation testing result of amethod

be predicted using test-relationship measures?

Table 6 presents the classifier’s precision, recall, and F-score of

the within-project prediction of the mutation testing result of a

method. As described in Section 5.3, the performance measures

Importance

lineCoverage

branchCount

branchCoverage

maxInvocationCount

coveringTestCases

lineCount

minStackDistance

testCaseScope

0 20 40 60 80 100

●

●

●

●

●

●

●

Figure 5: RQ2: Variable importance of JFreechart’s predic-

tion model (scaled to one).

constitute the weighted average of the outcomes ineffectively and

effectively tested. Median precision is 92.9%, and median recall is

93.4%. When conducting cross-project prediction for the same sce-

nario, median precision and recall deteriorate to 85.6% resp. 88.1%.

Ineffectively tested methods represent the minority class and are

therefore more difficult to predict. Table 7 shows the within-project

prediction performance for identifying ineffectively tested methods.

Median precision of this outcome is 70.7% and median recall is

34.3%. In the best case, 96.6% precision and 100.0% recall are still

achieved (Commons Stat).

EASE ’19, April 15–17, 2019, Copenhagen, Denmark R. Niedermayr and S. Wagner

Table 6: RQ2: Performance when predicting amethod’s mu-
tation result.

Project Precision Recall F-score ↓

Commons Stat 99.9% 99.9% 99.9%

Commons Lang 98.8% 98.9% 98.7%

gson 97.5% 97.7% 97.1%

Commons Math 96.7% 97.5% 96.7%

Commons Geom 96.2% 97.2% 96.4%

urban-airship 96.3% 96.9% 96.3%

Google HTTP 95.1% 95.1% 94.9%

jsoup 94.1% 95.6% 94.3%

bitcoinj 93.7% 95.3% 94.0%

JFreechart 93.1% 93.4% 93.1%

javaparser 92.9% 93.2% 92.8%

vectorz 92.5% 93.5% 92.4%

jackson-db 91.5% 93.0% 91.7%

graphhopper 89.5% 90.8% 89.3%

geometry API 86.6% 90.0% 87.1%

traccar 86.8% 87.1% 86.9%

Commons Imag 87.2% 87.7% 86.8%

biojava 85.1% 85.7% 85.1%

pdfbox 84.1% 84.7% 83.8%

openwayback 81.3% 83.5% 81.4%

scifio 78.7% 79.0% 78.8%

median 92.9% 93.4% 92.8%

Table 7: RQ2: Performance when predicting ineffectively
tested methods.

Project Precision Recall F-score ↓

Commons Stat 96.6% 100.0% 98.2%

Google HTTP 94.6% 74.8% 83.5%

JFreechart 87.0% 73.4% 79.6%

javaparser 84.1% 63.4% 72.3%

traccar 72.6% 68.0% 70.2%

biojava 76.4% 59.9% 67.1%

pdfbox 78.4% 57.6% 66.4%

scifio 68.5% 63.8% 66.1%

Commons Imag 81.1% 55.5% 65.9%

Commons Lang 85.5% 41.3% 55.7%

graphhopper 70.6% 34.3% 46.2%

vectorz 70.7% 32.5% 44.5%

openwayback 60.7% 32.5% 42.4%

urban-airship 64.2% 27.6% 38.6%

jackson-db 61.4% 26.6% 37.1%

gson 87.5% 23.3% 36.8%

Commons Math 60.3% 15.9% 25.2%

Commons Geom 50.0% 15.0% 23.1%

bitcoinj 50.0% 13.0% 20.6%

jsoup 51.5% 11.5% 18.8%

geometry API 46.9% 11.0% 17.9%

median 70.7% 34.3% 46.2%

Table 8: RQ2: Performance when predicting the mutation

result of a method test-case pair.

Project Precision Recall F-score ↓

scifio 92.8% 92.8% 92.8%

Commons Stat 92.1% 92.4% 91.7%

Commons Geom 90.8% 91.2% 90.4%

javaparser 90.1% 90.2% 90.1%

urban-airship 89.1% 90.2% 88.7%

Google HTTP 88.4% 88.6% 88.2%

gson 87.9% 88.0% 87.9%

Commons Lang 87.5% 87.8% 86.8%

JFreechart 86.5% 86.5% 86.4%

bitcoinj 86.1% 86.1% 86.1%

Commons Math 85.2% 85.7% 85.1%

traccar 85.1% 85.0% 85.1%

vectorz 85.4% 86.6% 84.9%

jsoup 84.4% 84.9% 84.1%

pdfbox 83.8% 83.8% 83.8%

Commons Imag 82.5% 82.7% 82.2%

biojava 81.7% 81.7% 81.5%

openwayback 80.9% 80.8% 80.8%

graphhopper 80.6% 80.7% 80.5%

geometry API 77.6% 78.1% 77.4%

jackson-db 72.4% 72.4% 72.4%

median 85.4% 86.1% 85.1%

Figure 5 exemplary presents the variable importance of JFree-

chart’s within-project prediction model. The figure shows that the

minimal stack distance and the minimal scope value of a method’s

covering test cases (the scope of a test case expresses how many

methods it covers) are the most important variables for the predic-

tion model.

Cross-project prediction for identifying ineffectively tested meth-

ods only achieves a poor performance. Even when applying the

over-sampling technique SMOTE6 to pre-process training sets, me-

dian precision is only 19.2% and median recall is 43.2%. Hence,

cross-project prediction is not well suited for uncovering ineffec-

tively tested methods.

The mutation testing result of a method can on average be predicted

with 92.9% precision and 93.4% recall. Cross-project prediction is

more challenging and achieves a weaker performance.

The above results concern the prediction of a method’s mutation

testing result with respect to all test cases. For other use cases, e.g.,

for enhancing test case prioritization with test effectiveness infor-

mation, it can also be useful to predict the mutation testing result

of a method test-case pair. Table 8 presents the within-project per-
formance when predicting the mutation testing result of a method

test-case pair. In this scenario, median precision and recall are 84.8%

resp. 85.3%. When focusing on the outcome ineffectively tested, me-

dian precision and recall still achieve 82.4% resp. 71.7%.

6
Synthetic Minority Over-Sampling Technique [8]

Is Stack Distance Correlated With Test Effectiveness? EASE ’19, April 15–17, 2019, Copenhagen, Denmark

Table 9: Duration of analyses (in hours) and slowdown factor

based on the normal test suite execution.

Project

Test Suite

Execution

Test Suite

Execution +

Stack Dist.

Recording

Mutation

Analysis

with Early

Abort

Mutation

Analysis

with Full

Matrix

biojava 00:27:45 01:31:00 23:00:00 46:49:00

(1.0) (3.3) (49.7) (101.2)
bitcoinj 00:01:40 00:02:45 00:43:26 03:36:00

(1.0) (1.7) (26.1) (129.6)
JFreechart 00:00:13 00:00:17 00:09:07 00:13:38

(1.0) (1.3) (42.1) (63.0)
pdfbox 00:01:38 00:07:56 02:33:00 05:14:00

(1.0) (4.9) (93.7) (192.0)

Hence, the prediction achieves promising results when working

on method test-case pairs. A reason for this is that, unlike when

predicting the result of a method with respect to all test cases, test

case metrics are not aggregated.

Ineffectively tested method test-case pairs can be predicted with

82.4% precision and 71.7% recall on average.

Zhang et al. [47] achieved precision and recall values of around

90% (depending on project and scenario). They only present per-

formance measures aggregated of both outcomes. Although an

in-depth comparison with their results does not seem sensible—

because they predicted for different mutation operators, used other

metrics, and included methods not covered by any test—we can

still say that the prediction performance is roughly comparable.

6 DISCUSSION

The study’s results show that the correlation between a method’s

minimal stack distance and its mutation testing result is moderate

to strong in six projects and present in further projects to a lower

degree. In general, the correlation is stronger in larger projects

(JFreechart, biojava, pdfbox), which also exhibit higher minimal

stack distance values. In large, multi-module projects somemethods

are only tested by integration tests, which usually have a higher

distance to many of the covered methods than a unit test does.

In such projects, the minimal stack distance can provide valuable

insights about the testing state of methods and thereby provide an

additional value to coverage information.

The evaluation of the prediction models shows that machine

learning models can successfully predict the mutation testing result

of a method. Hence, suchmodels can be considered as a light-weight

alternative to mutation testing.

To point out possible time savings, Table 9 presents the duration

of different analyses exemplarily of four projects. The current—

not yet performance-optimized—implementation for recording the

minimal stack distance has an influence on the duration of the test

execution. It slows the execution down by a low but perceptible

single-digit factor. Nonetheless, a predictionmodel using this metric

can achieve significant savings compared to the execution of a

mutation analysis. The analysis with the state-of-the-art mutation

testing tool Pitest takes about 50–200 times as long as a single

execution of the corresponding test suite. In the largest project

(biojava), the computation of a full mutation matrix took more

than 46 hours (101 times the duration of the test execution) and an

analysis that stops assessing a mutant after having found the first

killing test case still needed 23 hours. Consequently, such prediction

models can also be taken into consideration in projects in which a

mutation analysis is not applicable due to a long duration.

7 THREATS TO VALIDITY

We separate the threat to validity into internal and external threats.

The computation of the stack distance is a threat to internal valid-

ity. Although we developed the computation logic with great care,

the implementation could contain faults that affect the outcome. To

mitigate this threat, we verified computed values of different code

samples and developed automated tests to check the implementa-

tion. In addition, the source code of our tool can be inspected on

GitHub [32].

The same applies to the conducted extension of the Pitest mu-

tation testing tool to enable computing a full mutation matrix. To

mitigate this threat, we created a pull request, which was carefully

reviewed and merged by the head developer of Pitest [4].

Some of the generated mutants may be equivalent mutants,

which differ only syntactically but not semantically from the origi-

nal source code, and, hence, cannot be killed [15]. Therefore, some

of the mutants that were regarded as surviving could be equivalent

mutants and affect the results. Due to the design of the mutation

operator (cf. Section 3) and the exclusion of empty methods and

methods returning null, hardly any equivalent mutants are gener-

ated [33]. A manual review on a sample confirmed this observation.

Although we selected 21 study objects with different character-

istics, the selection of the projects poses a threat to external valid-

ity. Since we chose only open-source projects that use Maven as

build system and in which nearly all tests succeed, well-engineered

projects with mature test suites may be over-represented in our

sample. Hence, future work is necessary to validate whether the

results are generalizable for Java projects and projects in other

programming languages.

8 CONCLUSION

In this paper, we proposed and studied the minimal stack distance

measure, which describes the proximity of a method to any of its

test cases. Our results indicate that a correlation exists between this

measure and a property indicating whether amethod is ineffectively

tested (pseudo-tested). Classifiers that predict the mutation testing

result of a method achieve a median precision of 92.9% and recall of

93.4%. The measures needed for such a classifier can be computed

in a single test suite execution, while mutation testing may take—

depending on the size of an application—several hours or days.

Therefore, we suggest considering such classifiers as a light-weight

alternative to mutation testing or as a preceding, less costly step to

that. In particular, the classifiers can be a reasonable alternative in

continuous integration. Furthermore, they can be useful for projects

in which a mutation analysis is not applicable (due to the analysis

duration or class loading issues).

EASE ’19, April 15–17, 2019, Copenhagen, Denmark R. Niedermayr and S. Wagner

For future work, we plan to investigate more measures, such as,

information about assertions in tests, and incorporate them into

the prediction models to further improve their performance. In

addition, we want to enhance cross-project predictions. For that,

we plan to include project characteristics into the model and focus

model training on projects with similar properties.

ACKNOWLEDGMENTS

This work was partially funded by the German Federal Ministry of

Education and Research (BMBF), grant “SOFIE, 01IS18012A”. The

responsibility for this article lies with the authors.

REFERENCES

[1] Allen Troy Acree Jr. 1980. On Mutation. Technical Report. Georgia Institute of
Tech.

[2] Iftekhar Ahmed, Rahul Gopinath, Caius Brindescu, Alex Groce, and Carlos Jensen.

2016. Can Testedness Be Effectively Measured?. In Proc. 24th International Sym-
posium on Foundations of Software Engineering (FSE’16). ACM.

[3] Vard Antinyan, Jesper Derehag, Anna Sandberg, and Miroslaw Staron. 2018.

Mythical Unit Test Coverage. IEEE Software 35, 3 (2018).
[4] Author 1. 2018. Pitest: pull request for computing a full mutation matrix. (2018).

https://github.com/hcoles/pitest/pull/511.

[5] Paul Barford and Mark Crovella. 1998. Generating Representative Web Work-

loads for Network and Server Performance Evaluation. In ACM SIGMETRICS
Performance Evaluation Review, Vol. 26. ACM.

[6] Bartosz Bogacki and Bartosz Walter. 2006. Evaluation of Test Code Quality

with Aspect-Oriented Mutations. In Proc. 6th International Conference on Extreme
Programming and Agile Processes in Software Engineering (XP’06). Springer.

[7] Calin Caşcaval and David A Padua. 2003. Estimating Cache Misses and Locality

Using Stack Distances. In Proc. 17th International Conference on Supercomputing
(ICS’03). ACM.

[8] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.

2002. SMOTE: Synthetic Minority Over-Sampling Technique. Journal of Artificial
Intelligence Research (JAIR) 16 (2002).

[9] John Joseph Chilenski and Steven P Miller. 1994. Applicability of Modified

Condition/Decision Coverage to Software Testing. Software Engineering Journal
9, 5 (1994).

[10] Henry Coles, Thomas Laurent, Christopher Henard, Mike Papadakis, and An-

thony Ventresque. 2016. PIT: A Practical Mutation Testing Tool For Java. In Proc.
25th International Symposium on Software Testing and Analysis (ISSTA’16). ACM.

[11] Richard A DeMillo, Richard J Lipton, and Frederick G Sayward. 1978. Hints on

Test Data Selection: Help for the Practicing Programmer. Computer 11, 4 (1978).
[12] Vladimir N Fleyshgakker and Stewart N Weiss. 1994. Efficient Mutation Analysis:

A New Approach. In Proc. 3rd International Symposium on Software Testing and
Analysis (ISSTA’94). ACM.

[13] Rahul Gopinath, Amin Alipour, Iftekhar Ahmed, Carlos Jensen, and Alex Groce.

2015. How Hard Does Mutation Analysis Have to Be, Anyway?. In Proc. 26th
International Symposium on Software Reliability Engineering (ISSRE’15). IEEE.

[14] Rahul Gopinath, Mohammad Amin Alipour, Iftekhar Ahmed, Carlos Jensen, and

Alex Groce. 2016. On the Limits of Mutation Reduction Strategies. In Proc. 38th
International Conference on Software Engineering (ICSE’16). IEEE.

[15] Bernhard JM Grün, David Schuler, and Andreas Zeller. 2009. The Impact of Equiv-

alent Mutants. In Proc. International Conference on Software Testing, Verification
and Validation Workshops (ICSTW’09). IEEE.

[16] Lars Heinemann, Benjamin Hummel, and Daniela Steidl. 2014. Teamscale: Soft-

ware quality control in real-time. In Companion Proc. 36th International Conference
on Software Engineering (ICSE’14 Companion). ACM.

[17] Hadi Hemmati. 2015. How Effective Are Code Coverage Criteria?. In Proc. 15th
International Conference on Software Quality, Reliability and Security (QRS’15).
IEEE.

[18] William E. Howden. 1982. Weak Mutation Testing and Completeness of Test Sets.

IEEE Transactions on Software Engineering (TSE) 4 (1982).
[19] JC Huang. 1975. An Approach to Program Testing. ACM Computing Surveys

(CSUR) 7, 3 (1975).
[20] Laura Inozemtseva and Reid Holmes. 2014. Coverage Is Not Strongly Correlated

With Test Suite Effectiveness. In Proc. 36th International Conference on Software
Engineering (ICSE’14). ACM.

[21] Goran Petrović Marko Ivanković, Bob Kurtz, Paul Ammann, and René Just. 2018.

An Industrial Application of Mutation Testing: Lessons, Challenges, and Re-

search Directions. In Proc. 13th International Workshop on Mutation Analysis

(MUTATION’18).
[22] Kevin Jalbert and Jeremy S Bradbury. 2012. Predicting mutation score using

source code and test suite metrics. In Proc. 1st International Workshop on Realizing
AI Synergies in Software Engineering (RAISE’12). IEEE.

[23] Changbin Ji, Zhenyu Chen, BaowenXu, and Zhihong Zhao. 2009. ANovelMethod

of Mutation Clustering Based on Domain Analysis.. In Proc. 21st International
Conference on Software Engineering and Knowledge Engineering (SEKE’09), Vol. 9.

[24] Yue Jia and Mark Harman. 2008. Constructing Subtle Faults Using Higher Order

Mutation Testing. In Proc. 8th International Working Conference on Source Code
Analysis and Manipulation (SCAM’08). IEEE.

[25] Yue Jia and Mark Harman. 2011. An Analysis and Survey of the Development of

Mutation Testing. Transactions on Software Engineering (TSE) 37, 5 (2011).
[26] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A Database of

Existing Faults to Enable Controlled Testing Studies for Java Programs. In Proc.
23rd International Symposium on Software Testing and Analysis (ISSTA’14). ACM.

[27] Ron Kohavi and others. 1995. A study of cross-validation and bootstrap for

accuracy estimation and model selection. In Ijcai, Vol. 14.
[28] Max Kuhn, the R Core Team, and further contributors. 2017. caret: Classification

and Regression Training. https://CRAN.R-project.org/package=caret R package

version 6.0-76.

[29] Richard J Lipton. 1971. Fault Diagnosis of Computer Programs. Technical Report.
[30] Yu-Seung Ma, Jeff Offutt, and Yong Rae Kwon. 2005. MuJava: An Automated

Class Mutation System. Software Testing, Verification and Reliability (STVR) 15, 2
(2005).

[31] Richard L. Mattson, Jan Gecsei, Donald R. Slutz, and Irving L. Traiger. 1970.

Evaluation Techniques for Storage Hierarchies. IBM Systems Journal 9, 2 (1970).
[32] Rainer Niedermayr. 2018. TestAnalyzer. (2018). https://github.com/cqse/

test-analyzer/ Computation of the Minimal Stack Distance (V3).

[33] Rainer Niedermayr, Elmar Juergens, and Stefan Wagner. 2016. Will My Tests

Tell Me If I Break This Code?. In Proc. 1st International Workshop on Continuous
Software Evolution and Delivery (CSED’16). ACM.

[34] Rainer Niedermayr and Stefan Wagner. 2019. Dataset: Is the Stack Distance

Between Method and Test Case Correlated With Test Effectiveness? (2019). DOI:
http://dx.doi.org/10.6084/m9.figshare.7543409.v1

[35] A Jefferson Offutt, Ammei Lee, Gregg Rothermel, Roland H Untch, and Christian

Zapf. 1996. An Experimental Determination of Sufficient Mutant Operators. ACM
Transactions on Software Engineering and Methodology (TOSEM) 5, 2 (1996).

[36] A Jefferson Offutt, Gregg Rothermel, and Christian Zapf. 1993. An Experimen-

tal Evaluation of Selective Mutation. In Proc. 15th International Conference on
Software Engineering (ICSE’93). IEEE Computer Society Press.

[37] A Jefferson Offutt and Roland H Untch. 2001. Mutation 2000: Uniting the Or-

thogonal. In Mutation Testing for the New Century. Springer.
[38] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark

Harman. 2017. Mutation Testing Advances: An Analysis and Survey. Advances
in Computers (2017).

[39] Sandra Rapps and Elaine J Weyuker. 1982. Data Flow Analysis Techniques for

Test Data Selection. In Proc. 6th International Conference on Software Engineering
(ICSE’82). IEEE Computer Society Press.

[40] David Schuler, Valentin Dallmeier, and Andreas Zeller. 2009. Efficient Mutation

Testing by Checking Invariant Violations. In Proc. 18th International Symposium
on Software Testing and Analysis (ISSTA’09). ACM.

[41] David Schuler and Andreas Zeller. 2013. Checked Coverage: An Indicator for

Oracle Quality. Software Testing, Verification and Reliability (STVR) 23, 7 (2013).
[42] Akbar Siami Namin, James H Andrews, and Duncan J Murdoch. 2008. Sufficient

Mutation Operators for Measuring Test Effectiveness. In Proc. 30th International
Conference on Software Engineering (ICSE’08). ACM.

[43] Joanna Strug and Barbara Strug. 2012. Machine learning approach in mutation

testing. In Proc. 24th International Conference on Testing Software and Systems
(ICTSS’12). Springer.

[44] Joanna Strug and Barbara Strug. 2018. Evaluation of the prediction-based ap-

proach to cost reduction in mutation testing. In Proc. 39th International Conference
on Information Systems Architecture and Technology (ISAT’18). Springer.

[45] Macario Polo Usaola and Pedro Reales Mateo. 2010. Mutation Testing Cost

Reduction Techniques: A Survey. IEEE Software 27, 3 (2010).
[46] Oscar Luis Vera-Pérez, Martin Monperrus, and Benoit Baudry. 2018. Descartes:

a PITest engine to detect pseudo-tested methods-tool demonstration. In Proc.
33rd International Conference on Automated Software Engineering (ASE’18). ACM
Press.

[47] Jie Zhang, Lingming Zhang, Mark Harman, Dan Hao, Yue Jia, and Lu Zhang.

2018. Predictive Mutation Testing. Transactions on Software Engineering (TSE)
(2018).

[48] Hong Zhu, Patrick AV Hall, and John HR May. 1997. Software Unit Test Coverage

and Adequacy. ACM Computing Surveys (CSUR) 29, 4 (1997).

https://github.com/hcoles/pitest/pull/511
https://CRAN.R-project.org/package=caret
https://github.com/cqse/test-analyzer/
https://github.com/cqse/test-analyzer/
http://dx.doi.org/10.6084/m9.figshare.7543409.v1

