
PARTHENOS – D6.6

 i

PARTHENOS Cloud Infrastructure (final)

PARTNER(s): CNR

DATE: 30 April 2019

 ii

PARTHENOS – D6.6

 iii

HORIZON 2020 - INFRADEV-4-2014/2015:

Grant Agreement No. 654119

PARTHENOS

 Pooling Activities, Resources and Tools for Heritage E-research Networking, Optimization

and Synergies

NAME OF THE DELIVERABLE

Deliverable Number D6.6

Dissemination Level Public

Delivery date 30 April 2019

Status Final

Author(s)

Pasquale Pagano

Massimiliano Assante

Luca Frosini

Paolo Manghi

Alessia Bardi

Fabio Sinibaldi

Roberto Cirillo

Giancarlo Panichi

 iv

Project Acronym PARTHENOS

Project Full title Pooling Activities, Resources and Tools for Heritage E-

research Networking, Optimization and Synergies

Grant Agreement nr. 654119

Deliverable/Document Information

Deliverable nr./title D6.6 PARTHENOS Cloud Infrastructure (final)

Document title PARTHENOS Cloud Infrastructure (final)

Author(s) Massimiliano Assante, Alessia Bardi, Roberto Cirillo, Luca

Frosini, Paolo Manghi, Pasquale Pagano, Giancarlo Panichi

and Fabio Sinibaldi.

Dissemination

level/distribution

Public

Document History

Version/date Changes/approval Author/Approved by

V 0.1 15.01.19 Revised Structure, table of contents,

introduction

Massimiliano Assante

V 0.2 05.03.19 Updated 2.6.3.2. Shared Workspace

System and 2.1.2.1 Infra Monitoring

and Alerting tools

Massimiliano Assante

V 0.3 25.03.19 Updated 2.3.1.2. Resource

Registry

Luca Frosini and Pasquale

Pagano

V 0.4 11.04.19 Updated Section 2.5 Content Cloud

Framework

Alessia Bardi

V. 0.5 17.04.19 Minor Update to Section 2.5 Content

Cloud Framework

Alessia Bardi

V. 0.6 18.04.19 Updated Summary, ToC and List of

Figures

Massimiliano Assante

V. 0.7 24.04.2019 Review Sheena Bassett

This work is licensed under the Creative Commons CC-BY Licence. To view a copy of the

licence, visit https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

PARTHENOS – D6.6

 v

Table of contents

Executive summary………………………………………………………………………………………………………. 1

1. Introduction ..3

1.1. Structure of this report ... 4

2. Cloud Infrastructure ...5

2.1. Hardware Layer ... 5

2.1.1. Enabling Technology... 5

2.1.2. Supporting Technology .. 6

2.1.2.1. Monitoring and Alerting System ... 6

2.1.2.2. Provisioning System.. 9

2.2. Enabling Framework .. 10

2.2.1. Overview ... 10

2.2.2. Key Features .. 12

2.2.3. Subsystems ... 12

2.2.3.1. Resource Registry ... 12

2.2.3.2. Resource Manager... 15

2.2.3.3. Virtual Research Environment Manager .. 16

2.2.3.4. Authentication and Authorization .. 17

2.2.3.5. Accounting .. 22

2.3. Storage Framework... 25

2.3.1. Overview ... 25

2.3.2. Key Features .. 26

2.3.3. Subsystems ... 26

2.3.3.1. File-Based Store System ... 26

2.3.3.2. Metadata Store System ... 28

2.3.3.3. Spatial Data Repositories... 28

2.4. Analytics Framework ... 31

2.4.1. Overview ... 31

2.4.2. Key Features .. 31

2.4.3. Subsystems ... 31

2.4.3.1. Data Miner System .. 31

2.4.3.2. Smart Executor System... 33

2.5. Content Cloud Framework ... 35

2.5.1. Overview ... 35

2.5.2. Key Features .. 36

2.5.3. Subsystems ... 36

 vi

2.5.3.1. Workflow Management .. 38

2.5.3.2. Data Source Manager ... 40

2.5.3.3. Metadata Collector Service ... 42

2.5.3.4. Transformator... 46

2.5.3.5. Provision services ... 47

2.6. Collaborative Framework ... 49

2.6.1. Overview ... 49

2.6.2. Key Features .. 50

2.6.3. Subsystems ... 50

2.6.3.1. Social Networking System... 50

2.6.3.2. Shared Workspace System.. 51

2.6.3.3. User Management System ... 53

PARTHENOS – D6.6

 vii

Table of Figures

Figure 1. High-level architecture of the PARTHENOS infrastructure ... 4

Figure 2. Nagios Status Report and Availability Report for the Accounting Cluster 7

Figure 3. Prometheus Aggregated View via Grafana for the Accounting Cluster 9

Figure 4. Enabling Framework Architecture ... 11

Figure 5. Resource Registry Architecture ... 14

Figure 6. Resource Manager Architecture .. 16

Figure 7. VRE Manager Architecture .. 17

Figure 8. Authorization Architecture.. 20

Figure 9. Accounting Architecture ... 23

Figure 10. File-Based System Architecture .. 27

Figure 11. Spatial Data Repositories Architecture .. 30

Figure 12. Data Miner System Architecture ... 32

Figure 13. Smart Executor System Architecture .. 34

Figure 14. D-NET Aggregative Infrastructure Architecture .. 37

Figure 15. The data flow devised for the PARTHENOS aggregator .. 39

Figure 16. D-Net workflows for PARTHENOS ... 40

Figure 17. GUI for Data Source Management .. 40

Figure 18. Modify connection parameter to a remote data source .. 41

Figure 19. Parameters section: configuration of the aggregation workflow 41

Figure 20. History section: view status of past executions of the same workflow 41

Figure 21. Other settings section: configure scheduling and email notifications 42

Figure 22. Screenshot of the D-Net Metadata Inspector ... 48

Figure 23. Screenshot of the PARTHENOS Joint Resource Registry .. 49

 viii

Tables

Table 1. Analysis of the APIs of PARTHENOS research infrastructure with respect to the
collection plugins natively available in D-NET……………………………………………………………………46

PARTHENOS – D6.6

 1

Executive Summary

“D6.6 PARTHENOS cloud infrastructure” is the revised and final version of “D6.1

PARTHENOS cloud infrastructure”. This deliverable reports the PARTHENOS e-

infrastructure architecture: the hardware and the services. Hardware is organized as a

dynamic cloud of virtual machines, supporting computation and storage, while the services

are organized into e-infrastructure middleware, storage, and end user services.

This revised version of the document covers the whole period of the project, including the

up to date information of the D6.1 deliverable and the improvements implemented for the

management of the hardware as well as for the performance of the services developed

through the project’s lifetime. Specifically, Section 2.1 is updated with information about the

technology change that has occurred in the infrastructure regarding the Monitoring and

Alerting tools, Section 2.3 is updated for the part concerning the enhancements delivered in

the Resource Registry, and Section 2.5 is updated with information about the customization,

in terms of workflows and services, of the D-Net instance for the implementation of the

PARTHENOS aggregative infrastructure. Finally, Section 2.6 has been updated with

information about the technology change that occurred in the Shared Workspace Service,

for which the previous core component (Home Library) was replaced by a new one named

StorageHub.

 2

Abbreviations

ABAC Attribute Based Access Control

API Application Program Interface

BLOB Binary Large Objects

CCF Content Cloud Framework

CRUD Create Read Update Delete

GIS Geographic Information System

OAI-PMH Open Archives Initiative Protocol for Metadata Harvesting

RBAC Role Based Access Control

RI Research Infrastructure

REST Representational State Transfer

ROA Resource Oriented Architecture

SAML Security Assertion Markup Language

SDI Spatial Data Infrastructure

THREDDS
Thematic Real-time Environmental Distributed Data

Services

VRE Virtual Research Environment

WCS Web Coverage Service

WFS Web Feature Service

WMS Web Map Service

XACML eXtensible Access Control Markup Language

XSLT Extensible Stylesheet Language Transformations

PARTHENOS – D6.6

 3

1. Introduction

The PARTHENOS e-infrastructure architecture consists of a hardware layer and a service

layer. The hardware layer is organized as a dynamic pool of virtual machines, supporting

computation and storage, while the services layer is organized into e-infrastructure

middleware, storage, and end user services. The hardware layer consists of an OpenStack

installation, supporting the deployment of services in the upper layer by provision of

computational and storage resources. The service layer, illustrated in Figure 1, consists of

five service frameworks, which can be summarized as follows:

• Enabling Framework: the enabling framework includes services required to support

the operation of all services and the VREs supported by such services. As such it

includes: a resource registry service, to which all e-infrastructure resources (data

sources, services, computational nodes, etc.) can be dynamically (de)registered

and discovered by user and other services; Authentication and Authorization

services, as well as Accounting Services, capable of both granting and tracking

access and usage actions from users; and a VRE manager, capable of deploying in

the collaborative framework VREs inclusive of a selected number of “applications”,

generally intended as sets of interacting services;

• Storage Framework: the storage framework includes services for efficient,

advanced, and on-demand management of digital data, encoded as: files in a

distributed file system, collection of metadata records, and time series in spatial

databases; such services are used by all other services in the architecture,

exception made for the enabling framework;

• Content Cloud Framework: the content cloud framework includes all services

required to collect, transform, harmonize, and provide via APIs of different kinds all

metadata records of interest to the PARTHENOS community and provided by data

sources managed by the organisations in the PARTHENOS consortium. The data

collection and provision activity are ruled by workflows, configured by data curators

(e.g. transformation rules) and orchestrated by a local enabling layer, in order to

keep the content cloud up to date with respect to the content available in the

aggregated data sources;

• Analytics Framework: the analytics framework includes the services required for

running methods provided by scientists taking advantage, in transparent way, of the

power of the underlying computation cloud (e.g. parallel computation) and of a

plethora of standard statistics methods, provided out of the box to compute over

given input data;

• Collaborative framework: the collaborative framework includes all VREs deployed

by the scientists and for each of them provides social networking services, user

management services, shared workspace services, and WebUI access to the

information cloud and to the analytics framework, via analytics laboratory services.

 4

Figure 1. High-level architecture of the PARTHENOS infrastructure

1.1. Structure of this report

This report is structured into two sections: Section 1 is the introduction and Section 2 is

about the Cloud Infrastructure, which concludes the report. In more detail, Section 2 is

organized into six subsections: section Enabling Technology, for the hardware (storage and

computation) layer, and sections Enabling Framework, Storage Framework, Analytics

Framework, and Content Cloud Framework, and Collaborative Framework for the service

layer.

PARTHENOS – D6.6

 5

2. Cloud Infrastructure

The PARTHENOS e-infrastructure architecture consists of a hardware layer and a service

layer.

The hardware layer is organized as a dynamic pool of virtual machines, supporting

computation and storage. The operations and management of those resources is performed

via a set of enabling technologies selected to ensure availability and reliability of the

infrastructure while guaranteeing reduction of costs of ownership and a set of supporting

technologies selected to ensure secure monitoring, alerting and provisioning.

The services layer is organized into layered software frameworks that increasingly hide the

complexity of the cloud-based infrastructure.

2.1. Hardware Layer

2.1.1. Enabling Technology

The following well-known technologies have been selected to manage the PARTHENOS e-

infrastructure hardware resources:

a. Ceph, http://www.ceph.com, has been selected as block storage since it is Amazon S3

compatible and OpenStack Swift compatible, it is completely distributed, and it may even

use disposable server hardware;

b. Openstack, http://www.openstack.org, has been selected as cloud-computing software

platform. It uses Ceph as storage;

c. ManageIQ, http://manageiq.org, has been selected to manage quotas, permissions,

production vs. development environments.

The Ceph Storage offers object, block, and file storage under a unified system. It has been

designed to provide excellent performance, reliability and scalability. It supports rapid

provisioning of massively scalable cloud storage and enables computationally intensive

workloads. It provides access to the storage via application written in Java, Python, Ruby,

C, etc. It scales to Petabytes and it offers linear scaling with linear performance increase.

http://www.ceph.com/
http://www.openstack.org/
http://manageiq.org/

 6

The Openstack, open source cloud computing platform, provides Infrastructure-as-a-

Service (IaaS). OpenStack lets the PARTHENOS Enabling Framework deploys virtual

machines and other instances that handle different tasks on the fly. It makes horizontal

scaling affordable, which means that services that benefit from running concurrently can

easily serve more or fewer tasks – issued either by users or by other services - on the fly by

just spinning up more service instances.

The ManageIQ open source platform is a management framework for infrastructure

integrating resources from several data centres. It has been designed to manage small and

large infrastructure, and supports private data centres exploiting virtual machines and even

public clouds. ManageIQ supports continuous monitoring of the latest state of the

infrastructure, simplifies the enforcement of policies across the environment, and it

optimizes the performance and utilization of the hardware resources.

2.1.2. Supporting Technology

2.1.2.1. Monitoring and Alerting System

The PARTHENOS e-infrastructure currently comprises 212 servers. This means that neither

all of them are exploited at the same time nor that all of them have to be active concurrently

to deliver specific service capabilities. Servers are allocated dynamically in accordance with

the Cloud-computing approach and are activated/deactivated in response to load, failures,

changes in policies and deployment strategies. This complexity requires a proper monitoring

infrastructure to check the servers and the services running on the servers and to issue

alerts when failures are identified. The PARTHENOS e-infrastructure exploits two well-

known technologies to perform this task: Nagios and Prometheus.

Nagios is an enterprise-class monitoring and alerting solution that provides extended insight

of the infrastructure, enabling quick identification and resolution of problems before they

may affect critical business processes. It provides monitoring of all mission-critical

infrastructure components including applications, services, operating systems, network

protocols, systems metrics, and network infrastructure. Nagios provides a central view of

operations, network, and business processes running on the infrastructure. Powerful

dashboards provide at-a-glance access to powerful monitoring information and third-party

data. Views provide users with quick access to the information they find most useful, and

help them spot problems easily with advanced data visualization reports. Moreover, alerts

PARTHENOS – D6.6

 7

are sent to infrastructure managers and the Parthenos quality assurance task force via email

or mobile text messages, providing them with outage details so they can start resolving

issues immediately. Finally, multiple APIs provide for simple integration with in-house and

third-party applications. In particular, for well-known technologies exploited in the

PARTHENOS e-infrastructure, e.g. MongoDB, Cassandra, Couchbase, PostgreSQL, etc.,

existing add-ons have been installed to extend monitoring and native alerting functionality;

for technologies developed both by PARTHENOS and by the exploited framework, i.e.

gCube and D-Net, specific add-ons have been designed, implemented, and installed to

extend monitoring and native alerting functionality in order to have a fully-complete and

always up-to-date image of the status of the PARTHENOS e-infrastructure. Overall 2,194

service checks have been added and continuously executed to the monitoring and alerting

infrastructure.

Figure 2. Nagios Status Report and Availability Report for the Accounting Cluster

 8

Prometheus is an open-source system monitoring and alerting toolkit originally built at

SoundCloud1. It is a standalone open source project and maintained independently of any

company. Prometheus's main features are:

• a multi-dimensional data model with time series data identified by metric name and

key/value pairs;

• time series collection happens via a pull model over HTTP;

• PromQL, a flexible query language to leverage this dimensionality;

• no reliance on distributed storage, single server nodes are autonomous;

• pushing time series is supported via an intermediary gateway;

• targets are discovered via service discovery or static configuration;

• multiple modes of graphing and dashboarding support.

The multiple modes of graphing and dashboarding support feature has been exploited by

adopting Grafana2, which allowed to query, visualise, alert on and understand Prometheus

data on metrics.

Grafana allows dashboards to be virtually defined as a set of servers that collectively

perform a specific task. In the PARTHENOS e-infrastructure we defined a catch-all

dashboard to include all servers and then specific virtual clusters to monitor the performance

and the exploitation of physical resources for the key enabling software frameworks

exploited in the infrastructure and reported in Section 2.2 and subsequent sections.

1 http://soundcloud.com/
2 https://grafana.com/grafana

http://soundcloud.com/
https://grafana.com/grafana

PARTHENOS – D6.6

 9

Figure 3. Prometheus Aggregated View via Grafana for the Accounting Cluster

2.1.2.2. Provisioning System

The PARTHENOS e-infrastructure currently comprises 212 servers and one of the core

ambitions in designing it was the reduction of the deployment, operation, and maintenance

costs. To achieve this ambition a key aspect was to automatize the configuration and

management of servers, combining multi-servers software deployment, supporting ad hoc

task execution, and configuration management.

Ansible is a free-software platform allowing configuration of servers according to

idempotence. Idempotency is basically based on the description of what state is required on

a server and Ansible figures out how to get to that state. This approach is opposite to other

approaches that require specification of what to run on a server and how to run it. This

allows drastic reduction of the costs of operations since it becomes possible to run Ansible

plays over and over and it does the right thing according to the status of the server instead

of repeating commands and configurations. Ansible is really useful for repeatedly setting up

servers in the Cloud which need to be set up the same way.

 10

In order to exploit Ansible in the PARTHENOS e-infrastructure, definition was needed of a

number of resources and configuration scripts that are used by Ansible to perform the

activities:

• inventories - list of servers to configure and maintain;

• playbooks - collection of plays, or simply a collection of roles for a 1-play playbook;

• plays - a collection of roles;

• roles - generally, one service (like postgres or nginx);

• tasks - a command that Ansible runs via its modules, like a task for installing a

package via apt-get;

• handlers - like tasks that get called when other tasks request them via notifications.

Typically used to restart services;

• host vars - variables that apply to one collection of hosts;

• modules - provided by Ansible to do things like configure MySQL (mysql module),

install via apt-get (apt module), copy over files (file module), add users (user

module).

Overall, to manage the PARTHENOS e-infrastructure, 197 roles have been defined.

2.2. Enabling Framework

2.2.1. Overview

The Enabling Framework is realized by a combination of services and libraries powered by

the gCube System open-source project. Those services promote the optimal exploitation of

the resources available in the PARTHENOS Cloud Infrastructure and the integration of

technology external to it. They insulate, as much as possible, the management of the

infrastructure from the data and the data management services that are hosted in or

accessible through the infrastructure itself.

The motto at the heart of the management facilities is ‘less dependencies for more

management’ meaning that the requirements posed to resources (even independent

resources) to be managed are minimal, close to zero in some cases. All the implemented

solutions are prioritized in order to pursue this goal.

In order to comply with the new directions of openness and interoperability called for by our

growing community, management facilities are implementing:

PARTHENOS – D6.6

 11

• adoption of standards;

• support for new software platforms by implementing a zero-dependency

approach to software management.

The Enabling framework is composed of three main systems: Resource Management

System, Information System, and Security System. These are complex ICT systems that

exploit tailored persistence technologies managed via web services.

• The Resource Management System supports the creation of a Virtual Research

Environment and its exploitation via the registration, management, and utilization of

the resources assigned to it.

• The Information System supports the registration, discovery, and access of the

resources profile.

• The Security System ensures the correct exploitation, auditing, and accounting of

the resources under the policies defined at registration time and customized at VRE

definition time. It is orthogonal to all services operating in the infrastructure and its

components are deployed on all computing nodes.

•

Figure 4. Enabling Framework Architecture

 12

2.2.2. Key Features

Extensible notion of resource A resource model which is open to modular extensions at

runtime by arbitrary third parties.

Transparent software resource

management

Nearly zero-dependency requested to managed resources

for being part of the infrastructure.

Environment propagation Operational information among services are transparently

propagated over a range of protocols (SOAP, HTTP/S, and

more).

Dynamic Deployment and

Optimal Resource (re)Allocation

Remote deployment and (re-)configuration of resources

across the infrastructure.

Resource lifetime management Complete running of the entire lifetime of resources ranging

from creation and publication to discovery, access and

consumption.

Self-elastic management Dynamic resource provisioning to meet peaks and lows in

demand.

Interoperability, openness and

integration at software level

Third-party software can be added to the infrastructure at

runtime.

Support to standards Crucial functionalities are accessible via recognized

standards in order to enhance interoperability.

2.2.3. Subsystems

2.2.3.1. Resource Registry

The gCube Resource Registry is the core subsystem connecting producers and

consumers of resources. It acts as a registry of the infrastructure by offering global and

partial views of its resources and their current status and notification instruments. The

approach provided by the Resource Registry is of great support for the dynamic allocation

of resources and the interoperability solutions offered by the Resource Manager system.

The feedback obtained during the first reporting period has been used to improve the quality

of the design, the APIs of both services and clients, the design of the Graphical User

Interfaces (GUIs), and the REST APIs (to strictly adhere to REST principles). Furthermore,

the client’s APIs has been simplified and enriched: two new Java clients have been released:

Resource Registry Context Client and Resource Registry Schema Client which now makes

a total of four Java Clients:

PARTHENOS – D6.6

 13

• Resource Registry Context Client;

• Resource Registry Schema Client;

• Resource Registry Publisher;

• Resource Registry Client.

Key Features

Resource Publication, Access

and Discovery

The Resource Registry is functionally complete offering Java

and WEB APIs to register new resources, to discover, and

access them.

Consistency with the new

Resource Model

The Resource Registry grants publication and access to

resources compliant with the Resource Model.

Production level QoS -

Responsiveness

Each query served in milliseconds, thousands of queries

served each hour.

Production level QoS -

Scalability

Infrastructures with more than 100K of resources

successfully powered.

Production level QoS -

Permanent and Uninterrupted

Functioning

The Resource Registry instances have been continuously up

for more than one year without human intervention.

Flexible deployment scenarios The Resource Registry components can be deployed in

several ways, to best fit the needs of the infrastructure or a

specific community.

Architecture

The design of the Resource Registry supports distribution and replication wherever it is

possible while abstracting clients from the deployment scenario. It exploits HAProxy for

proxying requests to the deployed instances of the Resource Registry web service.

HAProxy is a free, very fast and reliable solution offering high availability and load balancing

for very high traffic web applications. Over the years it has become the de-facto standard

open-source load balancer and it is now shipped with most mainstream Linux distributions.

For these reasons, it is deployed by default in the PARTHENOS Cloud Infrastructure.

https://wiki.gcube-system.org/gcube/Information_System_Resource_Registry#Resource_Registry_Service

 14

Figure 5. Resource Registry Architecture

The Resource Registry web service has now five port-types, each responsible for:

• Context Management: manage hierarchical contexts;

• Types Management: manages the definition of entities and relations types and

their schema. This choice allows for easy extension and support modification to the

resource model. This is the key factor for the sustainability of the service and

infrastructure that have to last for several years;

• Instances Management: manage instances of registered Entity and Relation type;

• Sharing Management: manages instances sharing across different contexts;

• Query & Access: query instances and get the schema definition of registered

types.

Every port-type is exposed with a REST3 API. REST is an excellent architectural style to

support scalability of service while keeping the complexity of design, implementation, and

deployment at very affordable costs. During the last decade, REST has emerged as a best

practice to design web services. For this reason, REST has guided the design of the JRR.

REST is an architectural style defined in 2000 by Roy Thomas Fielding. REST defines six

principles and four constraints but it does not provide any concrete guidelines or

architecture. An example of concrete architecture for REST is ROA (Resource Oriented

3 https://en.wikipedia.org/wiki/JSON

https://en.wikipedia.org/wiki/JSON

PARTHENOS – D6.6

 15

Architecture) which is based on HTTP 1.1. The design of the Resource Registry service

follows the ROA guidelines. In particular, every REST API is JSON4 based. This means that

any content present in an HTTP request is formatted using the JSON standard. The

Resource Registry web service is stateless making it possible to replicate it horizontally.

2.2.3.2. Resource Manager

The Resource Manager is responsible for providing Resources compliant with the gCube-

Model. In fact, this service is the only one entitled to perform operations on the Resource

Registry. It does so by exposing three port types:

1. Context Management enables Resource Registry context management by checking

if the requester has the proper role/rights to do the requested action.

2. Schema Management enables schema management on the Resource Registry by

checking if the requester has the proper role/rights to do it;

3. Resource Management: enables management of Resource instances by checking if:

• the requester has the proper role/rights to do the requested action;

• the action can be performed looking at the policies attached to the entities and

relation instances;

• the action involves other entities or relations.

When all these checks are performed, and if and only if the action is feasible, the Resource

Manager translates the incoming request in one or more outgoing requests to the Resource

Registry service.

Key Features

Resource Publication, Access

and Discovery

The Resource Manager offers Java and WEB APIs to register

new resource types and instances.

Consistency with the gCube

Model

The Resource Registry grants publication and access to

resources compliant with the gCube Model at Resource level.

4 https://en.wikipedia.org/wiki/JSON

https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/JSON

 16

Architecture

Figure 6. Resource Manager Architecture

As depicted in Figure 6. Resource Manager Architecture, the Resource Manager uses the

Resource Registry Client to query the Resource registry and get the actual knowledge of

the infrastructure.

When the Resource Manager receives a request, once it has performed the proper checks,

it uses the Resource Registry publisher to effect the request.

Both Resource Registry Client and Publisher interact with one of the instances of Resource

Registry through HA-Proxy.

2.2.3.3. Virtual Research Environment Manager

The VRE Manager is responsible for providing context guarantees based on the gCube-

Model.

The VRE Manager operates on the PARTHENOS Cloud Infrastructure by using components

of:

• the enabling technologies such as Resource Manager;

• supporting technologies such as Provisioning System.

The VRE Manager contacts the Resource Registry to get a current view of the infrastructure;

uses the provisioning system to deploy/remove services and data; asks the Resource

Manager to update the infrastructure state consistently.

PARTHENOS – D6.6

 17

Key Features

Context Management The VRE Manager offers Java and WEB APIs to create, edit,

and delete security context, i.e. Virtual Research Environment.

Consistency with the gCube

Model

The VRE Manager grants publication and access to resources

compliant with the gCube Model at context level.

Architecture

Figure 7. VRE Manager Architecture

As shown in Figure 7, the VRE Manager uses the Resource Registry Client to query the

Resource Registry and get the actual knowledge of the infrastructure resources. By

exploiting this information, the VRE Manager provides the support for the creation of the

VRE. It creates a new security context and registers it in the Resource Registry. Then, it

creates a secure symmetric key to enable encrypted conversion in the newly created

security context. Finally, it interacts with the Resource Manager to allocate infrastructure

resources to the newly created security context.

During the VRE lifetime, when the VRE Manager receives requests for VRE modifications,

once it has performed the proper checks, it interacts with the Resource Manager to either

edit, modify, or delete a Virtual Research Environment.

2.2.3.4. Authentication and Authorization

The goal of the Policy-oriented Security Facilities is to protect PARTHENOS Cloud

Infrastructure resources from unauthorized accesses.

 18

Service Oriented Authorization and Authentication is a security framework providing

''security services'' as web services, according to the ''Security as a Service'' ('''SecaaS''')

research topic. It is based on standard protocols and technologies, providing:

• an open and extensible architecture;

• interoperability with external infrastructures and domains, obtaining, if required, also

so-called ''Identity Federation'';

• total isolation from the enabling framework and technologies: zero dependencies in

both the directions.

The Policy-oriented Security Facilities are powered by the gCube Authorization framework.

The gCube Authorization framework is a token-based authorization system. The token is

a string generated on request by the Authorization service for identification purposes and

associated with every entity interacting with the infrastructure (users or services).

The token is passed in every call and is automatically propagated in the lower layers.

The token can be passed to a service in three ways:

• using the HTTP-header: adding the value ("gcube-token","{your-token}") to the

header parameters;

• using the query-string: adding gcube-token={your-token} to the existing query-

string;

• logging via the default authentication widget showed by the browser using your

username as username and your token as password.

The personal token can be retrieved using the token widget deployed on every environment

of the portal.

This framework is compliant with the Attribute-based Access Control (ABAC) that defines

an access control paradigm whereby access rights are granted to users through the use of

policies which combine attributes together.

ABAC defines access control based on attributes that describe:

• the requesting entity (either the user or the service);

• the targeted resource (either the service or the resource);

• the desired action (read, write, delete, execute);

• and environmental or contextual information (either the VRE or the VO where the

operation is executed).

ABAC is a logical access control model that is distinguishable because it controls access to

objects by evaluating rules against the attributes of the entities (requesting entity or target

resource) actions and the environment relevant to a request. ABAC relies upon the

PARTHENOS – D6.6

 19

evaluation of attributes of the requesting entity, attributes of the targeted resource,

environment conditions, and a formal relationship or access control rule defining the

allowable operations for entity-resource attribute and environment condition combinations.

The Authorization framework is compliant with the XACML reference architecture. XACML

is the OASIS standard for fine-grained authorization management based on the concept of

Attribute-based access control (ABAC), where access control decisions are made based on

attributes associated with relevant entities while operating in a given operational context, a

natural evolution from Role Based Access Control (RBAC).

Key Features

Security as a Service Authentication and Authorization provided by web services

called by resource management modules.

Flexible authentication model The user is not required to have personal digital certificates.

Attribute-based Access Control A generic way to manage access: access control decisions

are based on one or more attributes.

Support for different categories

of attributes

User related attributes (e.g. roles) and environment related

attributes (e.g. context).

Modularity Composed of different modules: each module has a well-

defined scope and provides well-defined services.

Support to standards All the operations delivered by the facilities are built atop of

recognized standards.

High performance The design and architectural choices have been made

paying great attention to performances.

Resource Usage Tracking Administrators and users can monitor applications resources

usage.

Architecture

The XACML standard proposes a reference architecture with commonly accepted names

for the various entities involved in the architecture. The nomenclature is not new (SAML

uses similar names to describe entities in its ecosystem), nor is the architecture complicated,

allowing for easier common base of understanding of the standard. XACML is composed of

five modules:

• Policy Administration Point (PAP) - Point which manages access authorization

policies;

 20

• Policy Decision Point (PDP) - Point which evaluates access requests against

authorization policies before issuing access decisions;

• Policy Enforcement Point (PEP) - Point which intercepts user's access request to a

resource, makes a decision request to the PDP to obtain the access decision (i.e.

access to the resource is approved or rejected), and acts on the received decision;

• Policy Information Point (PIP) - the system entity that acts as a source of attribute

values (i.e. a resource, subject, environment);

• Policy Retrieval Point (PRP) - Point where the XACML access authorization policies

are stored, typically a database or the filesystem.

The five modules' capabilities are implemented by gCube as follow.

• Policy Administration Point (PAP) is implemented by the gCube Authorization

Service;

• Policy Decision Point (PDP) is implemented by a PDP library distributed with gCube

SmartGears;

• Policy Enforcement Point (PEP) is implemented by a PEP library distributed with

gCube SmartGears;

• Policy Information Point (PIP) is implemented by the gCube Resource Registry

(Information System);

• Policy Retrieval Point (PRP) is implemented by a database controlled exclusively by

the gCube Authorization Service.

•

Figure 8. Authorization Architecture

PARTHENOS – D6.6

 21

The gCube Authorization Framework controls access to applications to allow or prevent the

clients from performing various operations in the applications. This is controlled by the

Authorization Service with the help of authorization policies. The purpose of authorization

policies is to control clients’ access. The authorization policies determine at runtime whether

or not a particular action is allowed or denied.

All the policies are used to permit or deny to a client an operation in a specific context. Two

types of policy are supported:

• User2Service (U2S)

• Service2Service (S2S).

The U2S policies are used to deny to a user or a role the access to specific service or class

of services. By default, users are permitted access to the operation in a specific context.

The S2S policies are used to deny to a service or a class of services, the access to a specific

service or class of services. To make it easier to allow access only to few clients, an except

restriction clause can be added to the policies.

For every policy, a specific ACTION, i.e. Access, Write, Delete, and Execute, can be

specified (if supported by the service), otherwise all the ACTION will be denied.

 22

2.2.3.5. Accounting

Accounting is defined as the recording, summarizing, and classifying of service invocations

and other events, e.g. storage of data, systematically. Accountancy, in a simpler sense, is

the procedure of communicating and translating raw data from the infrastructure operation

to its managers and stakeholders.

The resource owner uses the policy-authoring tool (GUI) (part of the PAP) to write policies governing access

and exploitation of his/her own resources.

The policy administrator then uses the PAP GUI to administer the policies. Please note that policies are

not distributed to PDPs upon their creation but at first request referring access/exploitation of a given

resource. PDPs use a cache with TTL to avoid the exchange of too many requests.

The PEP intercepts the business level request to access the resource decorated with a token. It resolves

the token by sending a request to the PAP and gets back information about the validity of the token to

operate in the specific operational context. If the access is denied (invalid token) a Deny Response is

immediately issued. If the access is permitted the request to the PAP allows to populate the PDP cache

with the appropriate policies. Then it produces a request out of it and sends it to the PDP for actual decision-

making.

The PDP, on receiving the request, looks up the policies deployed on it and figures out the ones which are

pertinent to the specific request. It may, if necessary, query the PIP for additional attributes that are needed

to evaluate the policies. By exploiting the attributes contained in the request, the attributes obtained from

the PIP and attributes that are generic to the operational context, the PDP decides whether the request can

be allowed (Permit response), denied (Deny response), is not applicable since none of the policies

deployed on it can be used to evaluate the request (NotApplicable response) or there was some issue with

evaluating the response against the policy, for example due to lack of sufficient attributes available to the

PDP (Indeterminate response).

The response is then sent by the PDP to the PEP. The PEP parses the response from the PDP and handles

each of the four possible response cases. If either a Permit or a NotApplicable response is getting back

then the business request is passed to the service, otherwise a Deny response is issued.

Highlight 1: flow of control governing the authorization flow.

PARTHENOS – D6.6

 23

Key Features

Open and extensible accounting

model

The underlying accounting model is flexible to adapt to

diverse provider needs.

Highly modular and extensible

architecture

The entire subsystem comprise a large number of

components clearly separating the functional constituents.

Multiple options for storage The subsystem can rely on an array of diverse solutions for

actually storing records.

Architecture

 The gCube Accounting architecture is logically divided in four different layers:

• Accounting Consumer Layer

• Accounting Enabling layer

• Accounting Backend layer

• Accounting Storage layer

Figure 9. Accounting Architecture

 24

All the component respect a set of common rules adopted to ensure high-availability, fully-

distributed operations, low-operation costs:

• Each enabling layer has its own correspondent back-end implementation;

• Each back-end implementation is dynamically discovered at run-time. This allows to

decouple the deployment of a different back-end from the development of the

enabling layer. In other words, each component on the enabling layer must not

have any dependency on a certain back-end implementation.

Accounting Enabling Layer

• The Accounting Lib collects, harmonizes and stores accounting data. It is mainly

based and developed exploiting the facilities provided by the Document Store Lib.

• The Accounting Analytics exposes a common access point interface to query the

collected accounting data.

• The Accounting Aggregator aggregates the collected Accounting data according

to dynamically defined policies. The PARTHENOS e-infrastructure accounting

policies have been defined to incrementally aggregate past accounting data without

loss of information

Accounting Storage Layer

This layer is not developed by gCube. Rather it relies on technologies guaranteeing HA

(High Availability). In the current settings, it is implemented by relying on CouchBase. Other

supported backend technologies are CouchDB and MongoDB.

Accounting Backend Layer

Each component in this layer has been explicitly developed over a certain storage

technology. They rely on the Resource Registry to discover the information needed to

connect to the underlying storage. In other words, each component does not have hard-

coded connection information or local configuration files. This approach allows retrieval of

the storage connection information by specifying the underlying storage technology and the

enabling component to use.

The first filter allows switching to a different storage backend at runtime and it supports the

co-existence of different storage backends – particularly useful to migrate from one storage

type to another without any downtime.

PARTHENOS – D6.6

 25

The second filter allows the connection information for each component to be kept separate.

This allows the support of tailored access policies for each component, e.g. write-only for

accounting-lib connection and read-only for accounting-analytics.

The document-store-lib-BACKEND supports the connection to and the storage of

accounting data to the technology selected as the persistence layer. It has been

implemented to support the three underlying technologies: document-store-lib-couchdb,

document-store-lib-couchbase, document-store-lib-mongodb;

The accounting-analytics-persistence-BACKEND supports the connection to and the

discovery and access of accounting data to the technology selected as the persistence layer.

It has been implemented to support the three underlying technologies: accounting-analytics-

persistence-couchdb, accounting-analytics-persistence-couchbase;

The accounting-aggregator-persistence-BACKEND supports the connection to and the

aggregation of accounting data to the technology selected as the persistence layer. It has

been implemented to support the three underlying technologies: accounting-aggregator-

persistence-couchdb, accounting-aggregator-persistence-couchbase;

Accounting Consumer Layer

Each component in this layer allows either producing or consuming accounting information.

It does not include only a graphical interface designed for managers, i.e. Accounting

Portlet. Rather, it includes all the components that collect accounting data as the Quota

Manager, currently in development stage.

2.3. Storage Framework

2.3.1. Overview

The Storage framework is realized by a combination of services and libraries powered by

the gCube System open-source project. It is composed of three main systems: File-Based

System, Metadata Store System, and Spatial Data Repository System. These act as main

drivers for clients that interface the storage resources managed by the system or accessible

through facilities available within the system.

 26

• The File-Based System supports functions for standards-based and structured

access and storage of files of arbitrary size.

• The Metadata Store System supports functions for the storage of metadata

objects in XML format.

• The Spatial Data Repository System is composed by a number of different spatial

data repositories for storing spatial data in different (standard) formats (e.g.

NetCDF, vector data, raster data etc.).

2.3.2. Key Features

Standards compliancy Support for standard communication protocols /

interfaces and data / metadata formats.

Economy of scale Services constituting one aggregative infrastructure

may be hosted over servers maintained at different

sites

Failover Management Automatically transfers control to a duplicate

computational node when faults or failures are

detected

Support of geospatial dataset

lifecycle

Support for generation, revision, publishing, access,

visualization and sharing of geospatial data.

Support for analysis and processing Support for high performance operations over datasets

Geo-referencing datasets Provide analysis tools to create standard spatial

representation of datasets

2.3.3. Subsystems

2.3.3.1. File-Based Store System

The File-Based Store system includes services providing clients functions for standards-

based and structured access and storage of files of arbitrary size. This is a fundamental

requirement for a wide range of system processes, including indexing, transfer,

transformation, and presentation. Equally, it is a main driver for clients that interface the

resources managed by the PARTHENOS infrastructure or accessible through facilities

available within the same infrastructure.

The File-Based System is composed of a service abstracting over the physical storage and

capable of mounting several different store implementations, (by default clients can make

PARTHENOS – D6.6

 27

use of the MongoDB store) presenting a unified interface to the clients and allowing them to

download, upload, remove, add and list files or unstructured byte-streams (binary objects).

The binary objects must have owners and owners may define access rights to files, allowing

private, public, or shared (group-based) access.

All the operations of this service are provided through a standards-based, POSIX-like API

which supports the organization and operations normally associated with local file systems

whilst offering scalable and fault-tolerant remote storage

Figure 10. File-Based System Architecture

As shown in Figure 10, the core of the Storage Manager service is a software component

named Storage Manager Core that offers APIs allowing abstractsion over the physical

storage. The Storage Manager Wrapper, instead, is a software component used to discover

back-end information from the Resource Registry service of the PARTHENOS

Infrastructure. The separation between these two components is necessary to allow the

usage of the service in different contexts other than the PARTHENOS Infrastructure.

 28

2.3.3.2. Metadata Store System

The Metadata Store system includes services for the storage of metadata objects in XML

format. The core service is the MDStore Sevice, a web service that implements the factory

pattern for the management of MDStore units.

A MDStore unit is a metadata store capable of storing metadata objects of a given metadata

data model. Consumers can create and delete units, and add, remove, update, fetch, get

statistics on metadata objects from/to a given unit via the MDStore Service. The Service is

implemented as an abstraction over the document-oriented storage MongoDB in order to

exploit its high-scalability and replica management features, but also to take advantage of

out-of-the-box support with the Hadoop Map-Reduce framework, if necessary.

2.3.3.3. Spatial Data Repositories

The Spatial Data Repositories include services, technology, policies and practices designed

in order to provide the following features:

• Data Discovery: the ability to browse, query and access metadata files about

accessible geospatial datasets. This feature is obtained exploiting GeoNetwork

webservice, the Open Source catalogue for geospatial metadata compliant with

standards mandated by Open Geospatial Consortium (OGC).

• External Repository Federation: transparently extend the Data Discovery

capabilities by including output from registered external catalogues and repositories

in order to give users global result from a single point.

• Data Access & Storage: provide users and applications to access/store geospatial

data in standard formats. Due to the heterogeneity of spatial data representation and

formats, the following technologies have been adopted:

o PostGIS: Geospatial extension of PostgreSQL relational DBMS;

o GeoServer: Open Source application for management and dissemination of

geospatial data through standards mandated by OGC;

o Thredds Data Server: Unidata's Thematic Real-time Environmental Distributed

Data Services (THREDDS) is a web server that provides data access for scientific

geospatial dataset formats (i.e. NetCDF).

• Data Processing: the Data Processing framework includes services designed to

perform analysis and transformations over geospatial datasets. The adoption of

PARTHENOS – D6.6

 29

52°North Web Processing Service (WPS) grants users a standardized way to

interact with Data Processing facilities. This framework is fully described in section

2.4 of this document.

• Data Visualization: Web application, named GeoExplorer, designed to render views

of overlapped geospatial datasets on a specific Earth projection, with the ability to

query / inspect and export selected data and rendered images.

The set of spatial data repositories and the comprehensive set of integrated technologies

for their management, discovery, and exploitation is fully integrated with both infrastructure's

enabling technology and layers (c.f. Sections 2.1 and 2.2) in order to exploits provisioning,

monitoring, accounting, authentication and storage facilities of the infrastructure.

Key Features

Support of geospatial dataset

lifecycle

Support for generation, revision, publishing, access,

visualization and sharing of geospatial data.

Support for analysis and

processing

Support for high performance operations over geospatial

datasets

Dataset enrichment and

harmonization

Provide tools to harmonize and add information on existing

data

Georeferencing datasets Provide analysis tools to create standard spatial

representation of datasets

Standards compliancy Support for standard communication protocols / interfaces

and data / metadata formats.

External repository federation Gather all available information in one single point.

Policies adoption assurance

over third-party technologies

Configuration/orchestration of third party technologies in

order to ensure access policy compliancy.

Horizontal scalability Ability to expand / contract the SDI resource pool in order to

accommodate heavier or lighter loads.

 30

Architecture

Figure 11. Spatial Data Repositories Architecture

The set of Spatial Data Repositories technologies selected and integrated are not only fully

compliant with the Open Geospatial Consortium (OGC) standards, i.e. Web Map Service

(WMS), Web Coverage Service (WCS), and Web Feature Service (WFS). Rather, specific

mediators and validators have been designed and implemented to respect the INSPIRE

Directive, the EU initiative geared to help to make spatial or geographical information more

accessible and interoperable for a wide range of purposes supporting sustainable

development.

The Data Discovery components allow the discovery at runtime of all available datasets

independently of their locations and it is indifferent to the technology used to persist them.

It also indifferent to the fact that the data are maintained by a repository managed by the

PARTHENOS Cloud Infrastructure or by an independent provider. The same applies also to

the Data Processing components that first discover the datasets to process and then are

able to process them independently of the technology used to persist them and the provider

entitled to manage them.

PARTHENOS – D6.6

 31

2.4. Analytics Framework

2.4.1. Overview

The Analytics Framework includes a set of features, services and methods for performing

data processing and mining on information sets. These features face several aspects of data

processing ranging from modelling to clustering, from identification of anomalies to detection

of hidden series. This set of services and libraries is used by the e-infrastructure to manage

data mining problems even from a computational complexity point of view. Algorithms are

executed in parallel and possibly distributed fashion, using the same e-infrastructure nodes

as working nodes. Furthermore, Services performing Data Mining operations are deployed

according to a distributed architecture, in order to balance the load of those procedures

requiring local resources.

2.4.2. Key Features

Parallel Processing Support for the execution of algorithms on multi-cores

computational nodes.

Distributed Processing Transparent distribution of the execution on sets of

computational nodes.

Failover Management Automatically transfers control to a duplicate computational

node when faults or failures are detected.

State-of-the-art data mining

algorithms

General purpose algorithms (e.g. Clustering, Principal

Component Analysis, Artificial Neural Networks, Maximum

Entropy, etc.) supplied as-a-service.

Data trends generation and

analysis

Identification of trends; inspection of time series to

automatically identify anomalies; basic signal processing

techniques to explore periodicities in trends.

2.4.3. Subsystems

2.4.3.1. Data Miner System

The Data Miner System’s goal is to offer a unique access for performing data mining or

statistical operations on heterogeneous data. These data can reside on the client side in the

form of CSV files or they can be remotely hosted, as SDMX documents or, furthermore, they

can be stored in a database.

 32

The Data Miner System is composed by a service, namely Data Miner service, able to take

such inputs and execute the operation requested by a client interface, by invoking the most

suited computational infrastructure, choosing among a set of available possibilities:

executions can run on multi-core machines, or on different computational infrastructures,

like the PARTHENOS, Windows Azure, CompSs and other options. Algorithms are

implemented as plug-ins which makes the injection mechanism of new functionalities easy

to deploy.

Key Features

Openness Interaction with external software supporting Standard

protocols.

Parallel Processing Support for the execution of algorithms on multi-core

computational nodes.

Distributed Processing Transparent distribution of the execution on sets of

computational nodes .

State-of-the-art data mining

algorithms

General purpose algorithms (e.g. Clustering, Principal

Component Analysis, Artificial Neural Networks, Maximum

Entropy, etc.) supplied as-a-service.

Architecture

Figure 12. Data Miner System Architecture

PARTHENOS – D6.6

 33

According to Figure 12, the Data Miner System comprises the following components:

• Computational Infrastructure Occupancy Tree service: a service which monitors

the occupancy of the resources to choose among when launching an algorithm;

• Data Miner Service: a service executing all the computations asked by a single

user\service. It is composed of two components:

1. Algorithms Thread: an internal process which puts in connection the

algorithm to execute with the most unloaded infrastructure resource which is

able to execute it. Infrastructures are weighted even according to the

computational speed; the internal logic will choose the fastest available;

2. Algorithms Engine Library: a container for several data mining algorithms

as well as evaluation procedures for the quality assessment of the modelling

procedures. Algorithms follow a plug-in implementation and deployment;

• Object Factory Service: a service acting as a broker for Data Miner Service and a

link between the users' computations and the Occupancy Tree service;

It is worth noticing that, thanks to the support of HTTP-REST and WPS protocols, the Data

Miner System is capable of interacting with different external software supporting such

standards (e.g. QGIS, OpenCPU) and different programming languages, in particular

Javascript, R, and Java.

2.4.3.2. Smart Executor System

The SmartExecutor service allows execution of "gCube Tasks" and monitoring of their

execution status. Each instance of the SmartExecutor service can run the "gCube Tasks"

related to the plugins available on such an instance. Each instance of the SmartExecutor

service publishes descriptive information about the co-deployed plugins.

Key Features

Repetitive Tasks Task can be scheduled to be periodically repeated.

Tasks take over Task can be taken in charge from new instances in case of

instance failure or instance overload.

 34

Architecture

Figure 13. Smart Executor System Architecture

Clients may interact with the SmartExecutor service through a library (SmartExecutor Client)

of high-level facilities to simplify the discovery of available plugins in those instances. Each

client can request to execute a "gCube Tasks" or getting information about the state of their

execution.

The SmartExecutor service allows tasks execution through the use of co-deployed plugins.

The service allows inputs parameter to be passed to the plugin requested to run. The

execution is invoked every time it matches the scheduling parameters. The way to schedule

the plugin execution is indicated by the scheduling parameter. There are two different ways

to schedule an execution:

• run and die: the plugin is launched just for one time and after this execution it won't

be repeated;

• scheduled: the plugin repeats its execution over time according to a delay interval

or to a “cron” expression.

SmartExecutor instances can take care of a scheduled run when the node where it was

previously allocated crashes or is overloaded. To achieve this goal, a scheduled task

description is registered in the Information System through the Resource Manager.

PARTHENOS – D6.6

 35

2.5. Content Cloud Framework

2.5.1. Overview

The PARTHENOS Content Cloud is a digital space that acts as container of resources and

metadata of resources aggregated from RI registries registered in the PARTHENOS

registry.

The Content Cloud Framework (CCF) groups the services needed to (i) populate the

Content Cloud, and (ii) make the Content Cloud accessible to human and machines

according to different standard protocols. The CCF is based on the D-Net Software toolkit,

a service-oriented framework specifically designed to support developers at constructing

custom aggregative infrastructures in a cost-effective way.

The D-Net Software Toolkit 5 is an open source (Apache licence) service-oriented

framework, fully developed in Java. Its first software release was designed and developed

within the DRIVER and DRIVER-II EC projects (2006-2008). The scenario motivating its

realization was that for constructing the European repository infrastructure for Open Access

repositories. The infrastructure had to harvest (tens of) millions of Dublin Core metadata

records from hundreds of OAI-PMH repository data sources, harmonize the structure and

values of such records to form a uniform information space.

A D-Net data infrastructure is a run-time distributed environment, inspired by Service-

Oriented Architecture paradigms, where administrators can dynamically construct, refine,

and monitor aggregation and data management workflows for information space

construction.

5 D-Net Software Toolkit: http://www.d-net.research-infrastructures.eu

 36

Key Features

Economy of scale Services constituting one aggregative infrastructure may be

hosted over servers maintained at different sites.

Robustness Service replicas, i.e. clones of functionality and content, can

be kept at different sites. This strategy, in combination with

dynamic discovery of resources, makes the system more

robust to network failures and system crashes (availability of

service) as well as to concurrent accesses (scalability by

workload distribution).

Autonomy Manager Services can autonomously orchestrate and

monitor the status of services in the aggregative

infrastructure.

Elasticity Thanks to dynamic discovery, services can join or leave the

infrastructure anytime without administrators having to re-

configure application workflows.

Modularity Services provide “functionality in isolation”, that is

functionality “factored out as much as possible”, in order to

maximize re-use in different workflows.

Customizability Services managing metadata objects should be

customizable at run-time to operate according to a given

data model. This feature makes service instances

dynamically programmable and promotes their re-use to

serve different goals.

Metadata Interoperability Services are able to manage metadata records in different

formats. Different standard exchange protocols are

supported both in import and export phases. In the import

phase (data collection) idiosyncratic protocols can also be

supported by integrating dedicated plugins.

2.5.2. Subsystems

The D-Net framework is composed of services that can be grouped in layers and categories

based on the functionality they provide. The enabling layer includes component for the

correct operation of the aggregative infrastructure and are available in every instance of D-

Net. Components and services in the data management layer are, instead, selected and

PARTHENOS – D6.6

 37

configured to address specific requirements. It is possible to group services and components

in four main categories, as depicted in Figure 14:

• Mediation area: services and components that support and implement data

collection processes.

• Storage area: services and components for storing data and metadata. Different

storage options are available out-of-the-box. For PARTHENOS, the selected

services are the MDStore, a storage service based on the MongoDB technology, for

the storage of metadata records, and the Index, used by the D-Net curation tool

called “Metadata Inspector” (see Figure 22 and Deliverable 6.4 “Report on Services

and Tools” for details on the curation tool).

• Manipulation area: services and components that implement data manipulation

such as transformation, harmonisation, de-duplication, and validation. For

PARTHENOS the Transformator service was selected and enhanced to support the

execution of mappings in X3ML format.

• Provision area: services and components that interface external applications, e.g.

end-user portals, third-party services to the aggregated content. For PARTHENOS,

the SPARQL endpoint offered by a Virtuoso server, and the OAI-PMH Publisher,

based on the MongoDB technology, have been selected and configured.

•

In the next subsections, some of the most D-Net relevant services and components are

described, highlighting the configuration and extensions that have been applied during the

PARTHENOS project.

Figure 14. D-NET Aggregative Infrastructure Architecture

 38

2.5.2.1. Workflow Management

The Workflow Management System (WMS) addresses service orchestration and

monitoring, hence “autonomic behaviour”. One or more WMSs can be configured by

developers to autonomously execute workflows. D-Net workflows are resources describing

sequences of steps, where each step may consist of business logic (i.e. Java code), remote

service invocations, workflow forks (i.e. parallel sub-workflows), and workflow conjunctions

(confluence of parallel workflows). Typically, service invocations are preceded by a look-up

into the Information System (IS) to discover the “best” service of the needed kind and

available to execute the call. Workflows can be fired manually or as a consequence of the

notification of a resource-related event from the IS or because of time-events, i.e. cron jobs.

Workflows are commonly used to automatically schedule data aggregation (i.e. collection

and transformation of metadata records into a common format) from data sources.

Workflows can implement long-term transactions by exploiting subscription and notification

of events in the IS. When a time-consuming step is to be fired (e.g. indexing a large set of

metadata objects), the invocation is accompanied by a subscription request to the event

“conclusion of the step”. The WMS waits for the relative notification before moving on to the

next step. Workflows can also be used as monitoring threads, checking for consistency and

availability of resources or consistency and Quality of Service of the aggregative

infrastructure. For example, aggregative infrastructure policies may require that a given

collection of information objects be replicated K times; monitoring workflows may, at given

time intervals, check that this is really the case and possibly take corrective actions, e.g.

creating a missing replica. When corrective actions are not possible, warning emails can be

sent to administrators.

The WMS user interface offers a graphical overview of the ongoing workflows and allows

administrators to interact with such workflows, for example to manually re-execute them or

to redefine their configuration parameters. In the current D-Net implementation, workflows

are not treated as infrastructure resources, i.e. cannot be shared by different instances of

the Manager Service, and are preserved in the local status of the service.

The data flow devised for PARTHENOS is depicted in Figure 15. For each data source, the

aggregation workflow automatically collects input metadata records, transforms them

according to a defined X3ML mapping, and makes the resulting RDF records available to

PARTHENOS – D6.6

 39

metadata experts for inspection. The publishing workflow is executed in order to officially

publish the records, making them available via an OAI-PMH Publisher (in RDF/XML

according to the PARTHENOS Entities model and Dublin Core) a SPARQL endpoint and in

the PARTHENOS Joint Resource Registry.

Figure 15. The data flow devised for the PARTHENOS aggregator

The data flow is implemented by a set of D-Net workflows:

• One aggregation workflow per data source endpoint, composed of three steps as

depicted in Figure 16: (a) collection, transform and index. The last step makes the

transformed records available for inspection in the Metadata Record Inspector, one

of the tools used by aggregator administrators and data experts to check the quality

of the aggregated records (more details available in deliverable D6.4 “Report on

services and tools”).

• One workflow per data source endpoint that makes the aggregated records

available via OAI-PMH (Figure 16, item (b)).

• One workflow per data source endpoint that pushes the aggregated records into the

triple store (Virtuoso), making them available via a SPARQL endpoint (Figure 16,

item (c))

• One workflow per data source endpoint for publishing resources into the

PARTHENOS JRR (Figure 16, item (d)). RDF resources are read from Virtuoso and

mapped according to the JRR model. They are then pushed to the JRR and

therefore available via the JRR GUI. Thanks to this workflow, the PARTHENOS URI

that were generated in the transformation step of the aggregation workflow can be

resolved to the relative entry of the JRR.

 40

Figure 16. D-Net workflows for PARTHENOS

2.5.2.2. Data Source Manager

The Data Source Manager provides services and graphical user interfaces (GUIs) for the

registration and administration of data sources to the aggregative infrastructure, meaning

the organization and scheduling of the respective data collection and processing workflows.

Figure 17 illustrates the administrative user interface used to start and monitor the execution

of an aggregation workflow for the metadata records available from the OAI-PMH endpoint

of CulturaItalia. The given workflow collects the metadata records from the remote OAI-PMH

endpoint (sub workflow “collection”), transforms them according to the PARTHENOS

Entities model by applying a dedicated transformation rule (sub workflow “transform”) and

then pushes the transformed records into a Solr index (sub workflow “index”). From the

same interface, the aggregation manager can modify the parameters to use when

connecting to the data source (Figure 18), the mappings to be applied (Figure 19), check

the history of past executions of the workflows (Figure 20), set an automated scheduling of

the workflows and customize notification settings (Figure 21).

Figure 17. GUI for Data Source Management

PARTHENOS – D6.6

 41

Figure 18. Modify connection parameter to a remote data source

Figure 19. Parameters section: configuration of the aggregation workflow

Figure 20. History section: view status of past executions of the same workflow

 42

Figure 21. Other settings section: configure scheduling and email notifications

2.5.2.3. Metadata Collector Service

The Metadata Collector Service is capable of fetching data from external data sources and

imports them into the aggregative infrastructure as information objects conforming to a given

data model. In order to be discovered and accessed for collection, data sources must be

registered with a profile in the registry. The profile can specify on or more access point

interfaces (APIs), that is different ways to access the content of the data source. For

example, a publication repository may provide an OAI-PMH interface as well as an FTP

interface to provide bulk-access to metadata and files of publications, respectively. D-Net

provides so-called “collector plug-ins” that are able to collect files from data sources

implementing the most common (de-facto) standard exchange protocols:

• OAICollectorPlugin: harvests metadata records in XML from an OAI-PMH

Publisher. Parameters:

• baseUrl: base URL of the endpoint (mandatory);

• ID XPath: xpath where the value to be used to forge the D-NET identifier for each

record can be found (mandatory);

• format: OAI metadataPrefix (mandatory);

• set: list of sets to be harvested (optional). When not provided all records are

harvested.

• HttpCollectorPlugin: collects metadata records from one XML file available at a

remote location. The plugin will split the input file into several XML records based

on the splitOnElement parameter. Parameters:

• baseUrl: base URL of the endpoint (mandatory);

• ID XPath: xpath where the value to be used to forge the D-NET identifier for each

record can be found (mandatory);

• splitOnElement: name of the XML field that identifies the root of each records in the

input file (mandatory).

• HttpListCollectorPlugin: Collects metadata records from a remote endpoint when

the path of each record is provided via a text file (one by line). In other words, the

data source has an "index file" where the paths to the metadata records are listed

one per line. The plugin reads each line of the index file and downloads from the

PARTHENOS – D6.6

 43

URL provided in each line. The index line can also contain a partial URL as the

baseURL is used as prefix to each line in the index file. Parameters:

• baseUrl: base URL to construct the final URLs to the metadata records to download

(mandatory);

• ID XPath: xpath where the value to be used to forge the D-NET identifier for each

record can be found (mandatory);

• listUrl: URL to the the index file listing the locations (mandatory).

• FileCollectorPlugin: Collects metadata records from one XML file available at a local

location on the file system. The plugin will split the input file into several XML

records based on the splitOnElement parameter. Parameters:

• baseUrl: base URL of the endpoint (mandatory);

• ID XPath: xpath where the value to be used to forge the D-NET identifier for each

record can be found (mandatory)

• splitOnElement: name of the XML field that identifies the root of each records in the

input file (mandatory).

• FilesystemCollectorPlugin: Collects metadata records from one folder the file

system. Each file must be a single metadata record. In case of json files, they are

collected and transformed in XML. Parameters:

• baseUrl: base URL of the endpoint (mandatory);

• ID XPath: xpath where the value to be used to forge the D-NET identifier for each

record can be found (mandatory). In case of json format, refer to the xpath that is

valid after the conversion from json to xml via the org.json library;

• extensions: comma separated list of extensions. (optional);

• fileFormat: xml or json. Default to xml. (optional).

• setObjIdentifierFromFileName: true if you want the D-NET identifier to be forged

based on the file name instead of the ID XPath.

• ClasspathCollectorPlugin: Collects metadata records from one XML file available in

the classpath of the web application. The plugin will split the input file into several

XML records based on the splitOnElement parameter. Parameters:

• baseUrl: base URL of the endpoint (mandatory);

• ID XPath: xpath where the value to be used to forge the D-NET identifier for each

record can be found (mandatory);

• splitOnElement: name of the XML field that identifies the root of each records in the

input file (mandatory).

• HttpCSVCollectorPlugin: Reads one CSV file with header and generate one XML

metadata record per line. Lines with invalid quotes are skipped. Parameters:

• baseUrl: base URL of the endpoint (mandatory);

• ID XPath: xpath where the value to be used to forge the D-NET identifier for each

record can be found (mandatory);

• separator: string used to separate columns (optional). When empty `\t` is assumed.

• identifier: name of the column where the value to be used to forge D-NET identifier

for each record can be found (mandatory);

 44

• quote: char used in the CSV for quoting (optional). When empty, no quotation char

is considered.

• ReadExcelPlugin: Collects metadata records from one sheet of an excel file with

headers. The data is converted from excel to csv;

• FtpCollectorPlugin: Collects XML metadata records with a given extension from an

FTP site with login authentication. The plugin can be configured to: (i) go recursively

into subfolders; (ii) collect files with multiple extensions. Parameters:

• baseUrl: base URL of the endpoint, must include the path on the SFTP site where

to start the collection (mandatory);

• ID XPath: xpath where the value to be used to forge the D-NET identifier for each

record can be found (mandatory);

• username and password: for SFTP authentication (mandatory);

• recursive: set to true to enable recursion. False to only visit the folder identified by

baseUrl. (mandatory);

• extensions: comma separated list of extensions. (mandatory);

• SftpCollectorPlugin: Collects XML metadata records with a given extension from an

SFTP site with login authentication. The plugin can be configured to: (i) go

recursively into subfolders; (ii) collect files with multiple extensions. Parameters:

• baseUrl: base URL of the endpoint, must include the path on the FTP site where to

start the collection (mandatory);

• ID XPath: xpath where the value to be used to forge the D-NET identifier for each

record can be found (mandatory);

• username and password: for FTP authentication (mandatory);

• recursive: set to true to enable recursion. False to only visit the folder identified by

baseUrl. (mandatory);

• extensions: comma separated list of extensions. (mandatory).

• RestCollectorPlugin: Collects metadata records from a REST endpoint. It features a

number of parameters to support its adoption for the collection for almost any REST

API, regardless their peculiarities for handling pagination and returning json or XML.

• TarGzCollectorPlugin and ZipCollectorPlugin: Collect metadata records from a targz

or zip archive located in the local file system. Each file in the archive is assumed to

be one XML metadata record. Parameters:

• baseUrl: path to the archive in the local file system (mandatory);

• ID XPath: xpath where the value to be used to forge the D-NET identifier for each

record can be found (mandatory).

• FileGZipCollectorPlugin: Collects metadata records from a gzipped file located in

the local file system. The plugin will split the input file into several XML records

based on the splitOnElement parameter. Parameters:

• baseUrl: path to the file in the local file system (mandatory);

• ID XPath: xpath where the value to be used to forge the D-NET identifier for each

record can be found (mandatory);

PARTHENOS – D6.6

 45

• splitOnElement: name of the XML field that identifies the root of each records in the

input file (mandatory).

• SchemaOrgPlugin: Collects schema.org/Dataset records published in accessible

html pages. Supported microformats are JSON-LD. Supported Repository

protocols:

• sitemapindex - Given a sitemapindex.xml file, the plugin will access sequentially all

sitemap files and extract the endpoints to later be processed by the transformation

pipeline;

• HTTP API listing - Given a GET URL, the plugin will sequentially retrieve page by

page all listed entries, extract endpoints from the result and provide them for

processing to the transformation pipeline.

In cases when a data source cannot be aggregated by one of the existing plug-ins, new

plug-ins can be easily created to implement the proprietary/idiosyncratic protocol of the data

source. In the context of PARTHENOS, an analysis of the APIs of the research

infrastructures has been carried out to ensure that D-Net could collect metadata records

from all the available sources. A summary of the analysis is available in Table 1. The

analysis revealed that D-Net natively covers the majority of API protocols used by research

infrastructures. The SFTP plugin has been extended to support public key authentication to

support the collection of ARIADNE records, while new dedicated plugins have been

developed for DARIAH-DE, EHRI and Huma-Num.

Plug-in for DARIAH-DE

Metadata records are available in XML from an HTTP endpoint. In order to collect one

record, the base URL must be completed with the identifier of the record. The identifiers of

the records can be found in the collection overview endpoint available at

https://colreg.de.dariah.eu/colreg-ui/api/collections/.

Plug-in for EHRI

Similar to DARIAH-DE, the list of identifiers of EHRI XML records must be fetched from a

specific endpoint. With the identifier it is possible to construct the HTTPS URL from which

the record can be collected. The endpoint to discover the identifiers is, in this case a

GraphQL API (https://portal.ehri-project.eu/api/graphql).

Plug-in for Huma-Num Isidore

A dedicated plug-in has been created as a simplification of the REST plugin, with the added-

value of handling XML processing with a more updated Saxon HE library.

https://colreg.de.dariah.eu/colreg-ui/api/collections/

 46

Table 2. Analysis of the APIs of PARTHENOS research infrastructure with respect to the collection
plugins natively available in D-NET.

PARTHENOS data source D-Net collector

plug-in

Note

ARIADNE SFTP plugin Extended with public key

authentication

CLARIN HTTP plugin

CENDARI Filesystem plugin

CulturaItalia OAI-PMH plugin

DARIAH-DE DARIAH-DE plugin Dedicated plug-in implemented

DARIAH GR/ΔΥΑΣ OAI-PMH plugin

EHRI Dedicated plug-in implemented

Huma-Num Isidore collection

level

HTTP plugin

Huma-Num Isidore item level Isidore-REST plugin Dedicated plug-in implemented

Huma-Num Nakala collection

level

HTTP plugin

Huma-Num Nakala item level OAI-PMH plugin

LRE Map Gzip plugin

METASHARE Targz plugin

2.5.2.4. Transformator

The Transformator leverages services for transforming metadata objects of one metadata

data model into objects of one output metadata data model. User interfaces allow data

managers to specify the logic of the transformation, i.e. the mapping, which can be an XSLT,

a D-Net script or an X3ML mappings generated with the X3M Mapping tool implemented by

the project partner FORTH and available in the PARTHENOS infrastructure. The support of

PARTHENOS – D6.6

 47

X3ML mappings has been realized during the project via the integration into the Data

Transformation System of the X3ML engine, the transformation engine developed by

FORTH capable of processing X3ML mappings. In the specific case of PARTHENOS,

mappings have been prepared with the X3M Mapping tool and registered in the registry in

order to be discoverable by the D-Net Data Transformation System.

2.5.2.5. Provision services

Services in the provision area interface external applications, e.g. end-user portals, third-

party services, with resources and metadata in the Content Cloud in its different

manifestations. Specifically, metadata are made available to third-parties via the following

services:

OAI-PMH Publisher Service An OAI-PMH Publisher Service offers OAI- PMH interfaces to

third-party applications (i.e. harvesters) willing to access metadata objects. The service can

be dynamically configured to expose sets grouping records that satisfy given criteria (e.g.

original data source, value of the subject field). The service is implemented on MongoDB.

Index (search and browse) Service An Index (factory) Service manages a set of Index

units capable of indexing metadata objects of a given data model. Consumers can feed units

with metadata objects, remove objects or query the records. As indexing back-end, the

service supports Apache Solr, a de-facto standard for full-text indexing and content retrieval.

The schema of the Solr index is configured by the Index Service according to a configuration,

that can be changed dynamically at run-time, in terms of indexable and browsable fields.

In PARTHENOS, Solr is configured to index metadata records transformed into the

PARTHENOS Entities model to serve the D-Net Metadata Inspector, a tool that support

aggregation managers and data curators to perform analysis of the quality of the aggregated

metadata records. Figure 22 shows a screenshot of the Metadata Inspector. More

information about the tool are available in Deliverable 6.4 “Report on Services and Tools”.

 48

Figure 22. Screenshot of the D-Net Metadata Inspector

SPARQL Service: The SPARQL endpoint is offered by an OpenLink Virtuoso server

deployed in the PARTHENOS infrastructure and fed by the PARTHENOS Aggregator. The

service is freely available at https://virtuoso.parthenos.d4science.org/sparql and accessible

via the PARTHENOS Registry VRE

(https://parthenos.d4science.org/group/parthenos_registry/virtuoso).

In addition to the aforementioned endpoint, the PARTHENOS Aggregator also feeds the

PARTHENOS Joint Resource Registry available via the PARTHENOS Registry VRE

(https://parthenos.d4science.org/group/parthenos_registry/catalogue). Figure 23 shows a

screenshot of the home page of the Joint Resource Registry, described in more detail in

deliverable 6.5 “Report on the implementation of the Joint Resource Registry”.

https://virtuoso.parthenos.d4science.org/sparql
https://parthenos.d4science.org/group/parthenos_registry/virtuoso
https://parthenos.d4science.org/group/parthenos_registry/catalogue

PARTHENOS – D6.6

 49

Figure 23. Screenshot of the PARTHENOS Joint Resource Registry

2.6. Collaborative Framework

2.6.1. Overview

The Collaborative Framework is realized through a combination of software components

(services and libraries) powered by the gCube System. Three main subsystems

characterise the Collaborative Framework:

• Social Networking System;

• Shared workspace System;

• User Management System.

These systems provide consumers with a homogenous abstraction layer over different

external technologies enabling to operation of the framework. The external technologies

involved comprise Apache Cassandra, Apache Jackrabbit, Elastic Search, MongoDB, and

Liferay Portal. In particular, the Social Networking System exploits an Apache Cassandra

cluster and an Elastic Search cluster, the Shared Workspace System exploits an Apache

Jackrabbit repository (metadata) and a MongoDB cluster (payload) for its backend, the User

Management System exploits Liferay Portal for its backend and to allow users to login for

personalized services or views.

 50

2.6.2. Key Features

Collaboration Users can share posts and have multiple discussions on the

VRE homepage, adding comments and files in line with the

discussion.

Folder Sharing Folder sharing enables the reuse of content and the ease of

creating multiple VREs for different audiences with shared

content.

Custom Notifications Important and personalized alerts appear in each user’s

notification area, and custom applications can add their own

notifications.

Responsive Design support Web Applications are based on Twitter Bootstrap, making it

possible to create responsive pages that look great

regardless of device.

Economy of scale Services constituting one aggregative infrastructure may be

hosted over servers maintained at different sites

2.6.3. Subsystems

2.6.3.1. Social Networking System

The Social Networking System comprises services conceptually close to the common ones

promoted by social networks – e.g., posting news, commenting on posted news, likes,

private messages and notifications; It is composed of two main services, the Social

Networking Service and the Social Indexer Service. The Social Networking Service logic

relies on the Social Networking Model, this Model is used also for the efficient storage of the

Social Networking Data (Posts, Comments, Notifications etc.) in the underlying Apache

Cassandra Cluster. This Cluster is queried by means of a Java client.

PARTHENOS – D6.6

 51

Architecture

Figure 24. Social Networking System Architecture

The Social Networking Service exposes an HTTP REST Interface for the internal and

external services of the infrastructure. The Social Indexer Service uses such interfaces for

the retrieval of the Social Networking Data to index by means of an Elastic Search Cluster.

The Social Indexer Service exposes an HTTP REST Interface for the internal and external

services of the infrastructure needing to perform search operations over the Social

Networking Data.

Both Services rely on the Policy Decision Point (PDP) and the Policy Enforcement Point

(PEP) to intercepts user's access request and evaluate these requests against authorization

policies of the Authorization System of the Infrastructure.

2.6.3.2. Shared Workspace System

The Shared Workspace System provides a remote (Cloud) folder-based file system,

supporting sharing of folders and different item types (ranging from binary files to information

objects representing, for instance, tabular data, workflows, distribution maps, statistical

algorithms).

 52

Architecture

Figure 25. Shared Workspace System Architecture

With respect to the last reporting period (M36), the Shared Workspace System was heavily

redesigned with the aim of increasing its scalability and overall performance. It consists of

one gCube service, named StorageHub Service, relying on two different storage

technologies for the metadata of the items being stored, namely Apache Jackrabbit as a

metadata repository and PostgreSQL as the Apache Jackrabbit Bach-end Database. The

StorageHub Service is replicable and a HAProxy on top is used for proxying requests to the

deployed instances of it. One other distinguished feature of the StorageHub Service is that

the actual payload of the items can be stored on a number of in-house and commercial

storage technologies, for instance in a MongoDB Cluster, but also on other types, including

Cloud Storages solutions (e.g. Amazon S3).

The StorageHub Service identifies a core set of capabilities to work on JackRabbit content.

Together with its model, named StorageHub model, it exposes content in the content

repository as HTTP resources, fostering a RESTful style of application architecture. The

Home RESTFUL interface processes HTTP requests coming from clients. The following

operations are supported:

PARTHENOS – D6.6

 53

• retrieve content;

• create content;

• modify existing content;

• remove existing content;

• move existing content to a new location;

• copy existing content to a new location;

2.6.3.3. User Management System

Users are the fundamental entity managed by this System. As a matter of fact, the User is

an entity that can sign into the PARTHENOS Portal and do something. Users are assigned

a Role which defines the user’s privileges. The User Management System provides

functionality to manage personal profiles and users in the PARTHENOS infrastructure,

supporting user groups (for the purpose of group specific privileges) and roles for application

specific needs related to the user’s role in PARTHENOS.

The following roles are supported:

• VRE Manager: this role is envisaged to manage the VREs Management. Users with

this role can

o create, edit, a VRE;

o manage VRE users (e.g. approve / reject membership requests, assign

roles, create and manage groups);

• VRE Designer: this role is envisaged to manage the VREs Management. Users with

this role can

o Define/request a VRE, also by asking for the list of required applications;

• VRE Member: this role grants basic privileges within a VRE, such as the ability to

visit the VRE’s private pages and use the VRE offering.

https://wiki.gcube-system.org/gcube/VRE_Administration
https://wiki.gcube-system.org/gcube/VRE_Administration

	1. Introduction
	1.1. Structure of this report

	2. Cloud Infrastructure
	2.1. Hardware Layer
	2.1.1. Enabling Technology
	2.1.2. Supporting Technology
	2.1.2.1. Monitoring and Alerting System
	2.1.2.2. Provisioning System

	2.2. Enabling Framework
	2.2.1. Overview
	2.2.2. Key Features
	2.2.3. Subsystems
	2.2.3.1. Resource Registry
	2.2.3.2. Resource Manager
	2.2.3.3. Virtual Research Environment Manager
	2.2.3.4. Authentication and Authorization
	2.2.3.5. Accounting

	2.3. Storage Framework
	2.3.1. Overview
	2.3.2. Key Features
	2.3.3. Subsystems
	2.3.3.1. File-Based Store System
	2.3.3.2. Metadata Store System
	2.3.3.3. Spatial Data Repositories

	2.4. Analytics Framework
	2.4.1. Overview
	2.4.2. Key Features
	2.4.3. Subsystems
	2.4.3.1. Data Miner System
	2.4.3.2. Smart Executor System

	2.5. Content Cloud Framework
	2.5.1. Overview
	Key Features
	2.5.2. Subsystems
	2.5.2.1. Workflow Management
	2.5.2.2. Data Source Manager
	2.5.2.3. Metadata Collector Service
	2.5.2.4. Transformator
	2.5.2.5. Provision services

	2.6. Collaborative Framework
	2.6.1. Overview
	2.6.2. Key Features
	2.6.3. Subsystems
	2.6.3.1. Social Networking System
	2.6.3.2. Shared Workspace System
	2.6.3.3. User Management System

