
Technical Report
CMU/SEI-87-TR-25
ESD-TR-87-192

Final Evaluation of MIPS M/500
Daniel V. Klein

Robert Firth

November 1987

Final Evaluation of MIPS M/500

��

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Technical Report
CMU/SEI-87-TR-25

ESD/TR-87-192
November 1987

Daniel V. Klein
Robert Firth

Software for Reduced Instruction Set Computers (RISC) Project

Unlimited distribution subject to the copyright.

This report was prepared for the SEI Joint Program Office HQ ESC/AXS

5 Eglin Street

Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is
published in the interest of scientific and technical information exchange.

FOR THE COMMANDER

(signature on file)

Thomas R. Miller, Lt Col, USAF, SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright 1987 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is granted, provided the copyright and \‘No Warranty\’

statements are included with all reproductions and derivative works. Requests for permission to reproduce this document or to prepare derivative works of this

document for external and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN \‘AS-IS\’ BASIS. CARNEGIE MELLON

UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,

WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTIBILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE

MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT

INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with Carnegie Mellon University for the operation of the

Software Engineering Institute, a federally funded research and development center. The Government of the United States has a royalty-free government-purpose

license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the

copyright license under the clause at 52.227-7013.

This document is available through Research Access, Inc. / 800 Vinial Street / Pittsburgh, PA 15212. Phone: 1-800-685-6510. FAX: (412) 321-2994. RAI also

maintains a World Wide Web home page at http://www.rai.com

Copies of this document are available through the National Technical Information Service (NTIS). For information on ordering, please contact NTIS directly: National

Technical Information Service / U.S. Department of Commerce / Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides acess to and transfer of scientific and technical information for

DoD personnel, DoD contractors and potential con tractors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact DTIC

directly: Defense Technical Information Center / 8725 John J. Kingman Road / Suite 0944 / Ft. Belvoir, VA 22060-6218. Phone: 1-800-225-3842 or 703-767-8222.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

CMU/SEI-87-TR-29 1

Final Evaluation of MIPS M/500
Abstract: In response to a request from the DoD, an analysis of a Reduced Instruction Set
Computer (RISC) processor, the MIPS M/500, was performed. All aspects of processor
capabilities and support software were evaluated, tested, and compared to familiar Com-
plex Instruction Set Computer (CISC) architectures. In all cases, the RISC computer and
its support software performed better than a comparable CISC computer. This report
provides the general and specific results of these analyses, along with the recommen-
dation that the DoD and other government agencies seriously consider this or other RISC
architectures as a highly viable and attractive alternative to the more familiar but less
efficient CISC architectures.

1. Introduction

This report describes our evaluation of the MIPS M/500 RISC processor1 as part of our ongoing
research into RISC class architectures. Our intention was to review the general class of RISC
architectures using the MIPS M/500 as an example of this type of machine, rather than to specifically
evaluate the MIPS M/500. Although it is difficult to generalize about the behavior of all RISC proces-
sors from the performance of a single example, we have tried to point out the strengths and
weaknesses of the MIPS M/500 in relation to other architectures, and we have tried to demonstrate
how the shortcomings and positive aspects of the MIPS M/500 can be extrapolated to other RISC
class machines.

This report covers our findings, offering insights into the strong and weak points of the MIPS M/500,
often by comparing it to the VAX (for both hardware evaluation and compiler evaluation purposes). In
analyzing the shortcomings of the MIPS M/500, we try to offer possible solutions and present com-
parisons to the general RISC class of architectures.

I entered into the RISC assessment project with a strong bias toward CISC architectures. I looked at
this project as an interesting exercise in which I would have my suspicions about RISC processors
confirmed, and one in which quite consistently I would find vindication for the CISC side in the great
"RISC versus CISC" debate.

I have, however, come to the opposite conclusion. My research on this project has convinced me
(quite consistently, I might add) that, if there is a "right" side of the debate to be on, it is the RISC
side. In all features – execution speed, compiler efficiency, language consistency, and code size –
the concept of a reduced instruction set computer has proven to be the correct architectural choice.
The term reduced has in no way implied restricted, nor has it caused the horrific increases in code
size that CISC proponents tout to support their cause. In fact, comparing the MIPS M/500 instruction
set usage versus the VAX instruction set usage, we found that the instructions used by the MIPS

M/500 compilers closely paralleled those used by the VAX. The main deviation was in the area of

1The MIPS M/500 is produced by MIPS, Incorporated, Sunnyvale, CA. It is one implementation of the R2000 processor
architecture. All references in this report to the MIPS M/500 architecture refer to the R2000, while all performance statistics
refer to the MIPS M/500. MIPS, Incorporated also manufactures faster versions of the R2000 – the MIPS M/800 and the MIPS

M/1000. These processors were not evaluated for this report.

2 CMU/SEI-87-TR-25

addressing modes, but, by and large, the VAX compilers poorly used the complex modes provided by
the VAX hardware.

Daniel V. Klein
Principal Investigator

CMU/SEI-87-TR-29 3

2. Evaluation Methodology

Our studies concentrated on three areas:

1. instruction set conformance

2. benchmark performance

3. compiler and assembler effectiveness

The results obtained in these three areas of research are elaborated in their respective chapters.
Here we describe the methodology used to evaluate the MIPS M/500.

2.1. Compliance with DoD CORE MIPS ISA

MIPS Incorporated had previously enrolled in the DoD CORE ISA standard.2 In brief, this standard
allows a hardware manufacturer to specify its own RISC class architecture as long as the architec-
ture either conforms directly to the standard, or can provide assembly language translators from the
manufacturer ISA to the CORE ISA and the manufacturer’s ISA. Technically speaking, even the VAX

satisfies these requirements, but the extra features provided by the VAX are considered detrimental
by the standard.

To determine whether the MIPS M/500 satisfies the requirements of the CORE ISA, we evaluated the
architecture with these evaluation criteria:

1. Justification for extra instructions – Are the instructions that MIPS added to the CORE
in their implementation reasonable? That is, can they be generated by a compiler, are
they needed to perform special operating system functions, or are they reasonable for
use in specialized high level applications?

2. Justification for removed instructions – Did MIPS exercise reasonable judgement in
eliding instructions from the CORE in their implementation? That is, can the functions
of the missing instructions be carried out with other instructions or combinations of
instructions? Can an automatic translator perform this translation?

3. Number and classes of registers – Does the number of registers meet or exceed the
requirements of the CORE? Are the registers general, or are there special case
registers which must be used in special ways? How do special case registers affect
the overall design?

4. Is it RISC? This is a very difficult question to answer since we have not yet established
what "RISC" means. We did, however, attempt to classify the MIPS M/500.

2CORE set of Assembly Language Instructions for MIPS Based MicroProcessors, Version 3.2, January 1987; originally
written by Thomas Gross, Carnegie Mellon University; maintained by Robert Firth, Software Engineering Institute.

4 CMU/SEI-87-TR-25

2.2. Benchmark Performance

We ran many standard and non-standard benchmarks on the MIPS M/500 (and on the VAX for com-
parison purposes). Some of the results are presented in chapter 4, although not all of our tests are
reported. We have not withheld any useful information; however, some of the benchmarks were
inconclusive or inapplicable. The benchmark suite consisted of:

1. BYTE Benchmarks – the benchmark suite from BYTE magazine, August 1983 and
August 1984.

2. Whetstones – the quintessential floating point benchmark (although we show how this
is an inadequate benchmark to use).

3. Dhrystones – an integer benchmark similar in functionality to the Whetstone
benchmark.

4. EUUG Workstation Performance – a set of simple programs released by the European
UNIX Users Group to test a computer’s performance under varying loads.

5. LinPak – Jack Dongarra’s matrix manipulation benchmarks, written at Argonne Na-
tional Laboratories.

6. Spice – a circuit simulator often used to measure processor efficiency. This
benchmark heavily loads the floating point hardware.

7. LLNL Loops – a set of FORTRAN kernels, released through Lawrence Livermore Na-
tional Laboratories, designed to exercise the floating point system.

8. Buchholz – an artificial benchmark designed at IBM to measure system load handling
capabilities.

9. FORTRAN FP – a simplistic benchmark for measuring the time to execute various
FORTRAN floating point operations. This was deemed too simplistic to report on.

10. FFT – a simple FFT algorithm, analyzed to compare compiler efficiency.

11. 20 Queens – an extension of the 8 queens placement problem, analyzed to compare
compiler efficiency.

12. UNIX lex – a lexer generator for which a number of degenerate lexical specifications
exist. These specifications heavily load the lexer generator, and provide a reasonable
"natural" benchmark.

13. Ackermann’s Function – a test devised to evaluate the efficiency of a compiler’s recur-
sive code analysis and generation.

2.3. Compiler Performance

The MIPS compilers were carefully examined for a number of characteristics. Many of these charac-
teristics are specific to the MIPS M/500, but some of our findings can easily be generalized to other
compilers. The areas of compiler performance that we examined are:

1. Compiler speed – that is, speed of compilation during the parsing, code generation,
and optimization phases, as well as time spent on assembly and assembly level code
reorganization. This phase of analysis looked at how long a user would have to wait
for a compilation to run, regardless of the optimality of the generated code.

2. Speed of generated code – that is, how fast the compiled code would run. This test

CMU/SEI-87-TR-29 5

was varied over different levels of compiler optimization and was tested with many of
the benchmarks described above in section 2.2.

3. Optimizer efficiency – that is, how good is the code that is generated by the compiler
and assembler. To evaluate this, we looked at four aspects of optimization:

a. Optimization techniques used – which methods are used, and which are not
used. The optimization techniques we looked for were include: α-motion,
ρ-motion, ω-motion, routine hoisting, loop-invariant code motion, common sub-
expression elimination, arithmetic expression reorganization, branch optimiza-
tion, multi-way branch evaluation, etc.

b. Register usage – how well the registers are allocated. We examined register
tracking, register re-use, and type of register use (i.e.,, addressing mode inter-
actions with register use), as well as register usage in parameter passing.

c. Instruction utilization – how well the instruction set of the native machine is
used, including evaluations on the efficiency of code idioms used, and on the
optimality of the generated code. We also examined the code that was
generated for algorithms that could be written in the three languages available
on the MIPS M/500: FORTRAN, C, Pascal.

d. Instruction coverage – how completely the instruction set of the native machine
is used, including percentages of used versus unused instruction.

These topics are all discussed in chapter 6.

4. Assembly reorganization and pipelining – that is, how well the assembler reorganizer
kept the pipeline filled, how efficiently nop instructions were eliminated, and what the
reorganizer was able to accomplish in final stage peephole optimization. We also
looked at code idioms that would enhance reorganization, and at those we found that
hindered reorganization. This topic is discussed in chapters 3 and 7, and again in
appendix A.

2.4. Applicability

We also examined the applicability of the MIPS M/500 (and of RISC architectures in general) in
common environments. The problem areas that we considered were:

1. Usable in a workstation environment – a single user (or small number of users)
development station, either for general software, or software targeted for an embedded
application.

2. Usable in embedded applications – placing the MIPS M/500 processor chip on board a
platform for real-time analysis and control.

3. Usable in included applications – using the MIPS M/500 in a network (either as a stand
alone chip or as a workstation) with other, potentially different, processors.

6 CMU/SEI-87-TR-25

CMU/SEI-87-TR-29 7

3. Analysis of MIPS Assembler Reorganizer

The MIPS assembler reorganizer is the system program that takes MIPS assembly language instruc-
tions and translates them into the MIPS M/500 native machine code. As one of its side functions, it
also reorganizes the machine code to eliminate the nop instructions that must follow instructions
such as branches and jumps may be eliminated. This reorganization takes advantage of the pipeline
nature of the MIPS M/500 hardware. That is, once an instruction is loaded in the pipeline, it will be
executed. This unconditional execution occurs in spite of any jumps or branches that may be taken.

3.1. Assembly Reorganization

As a simple example of assembly reorganization, consider the instruction sequence shown in figure
3-1. In this simple example, the numbers in registers $5 and $6 are subtracted and the result is
placed into register $4.3 If the result of the subtraction is non-zero, branch to the label foo other-
wise, increment register $4 by 1 and continue.

sub $4,$5,$6
bne $4,$0,foo
add $4,1

Figure 3-1: Sample Assembler Input

The first and last instructions take one clock cycle each. However, the branch instruction takes two
clock cycles – one to determine whether the condition is true or not, and another to load the program
counter with the address of the new instruction if the condition is true.4 Thus, given the assembler
input in figure 3-1, the assembler would generate the machine language code seen in figure 3-2.

sub a0,a1,a2
bne a0,zero,foo
nop
addi a0,1

Figure 3-2: Sample Machine Language Output

The assembler reorganizer has added a nop instruction following the conditional branch. Since the
cycle following the branch instruction can be filled with an instruction, the assembler reorganizer
must take care to ensure that the addi instruction5 is executed only if the branch is not taken. Since
the destination of the subtract instruction is the source operand of the comparison, the reorganizer
cannot perform any assembly reorganization. However, consider the sample assembler source in
figure 3-3.

In this case, we have changed the source of the conditional branch to register $5, which is not a

3These register names will be changed to the logical names a1, a2, and a0, respectively, by the disassembler. However,
the location of the registers is the same, regardless of their names. The list of register number to register name mappings is
found in table A-1 in appendix A.

4The second cycle is expended whether or not the branch is taken. Additionally, it is worth mentioning that the new
program counter is loaded at the end of the second cycle, so that the whole cycle may be filled with an instruction execution.

5Note the change of instruction name between the MIPS assembler input and the MIPS M/500 machine language output.

8 CMU/SEI-87-TR-25

sub $4,$5,$6
bne $5,$0,foo
add $4,1

Figure 3-3: Sample Assembler Input

direct result of the subtract instruction. What the assembler reorganizer will produce, given this
input, is shown in figure 3-4.

bne a1,zero,foo
sub a0,a1,a2
addi a0,1

Figure 3-4: Sample Reorganizer Output

Notice that the order of the MIPS M/500 machine instructions is no longer the same as that of the
MIPS assembly language input. In fact, it would appear that the subtraction occurs only after the
branch is rejected. This is not the case, however. Recall that the branch instruction always takes
two cycles to execute, and that the instruction following the branch is always executed regardless of
whether or not the branch is taken. Therefore, even though the instruction stream does not look
correct, it is correct. The subtract instruction is always executed, whether or not the branch is taken.
Thus, register $4 (that is, a0) will always have the correct result in it, and the addi instruction is only
executed if the branch is not taken.

3.2. Translation of MIPS Assembly Instructions

As mentioned earlier, the assembler reorganizer will change the name of an assembler instruction to
match the MIPS M/500 native machine language. It is not the case, however, that every MIPS as-
sembly instruction has a corresponding MIPS M/500 native machine language instruction. Some-
times (as is the case for conditional branches), the inverse condition is tested with reversed ar-
guments, at no extra instruction count expense. Often, however, multiple MIPS M/500 native instruc-
tions are substituted for a single MIPS assembler instruction. Consider the example shown in figure
3-5. In this case, we have substituted the the mulo (multiply with overflow) instruction for sub
instruction.

mulo $4,$5,$6
bge $4,$0,foo
add $4,1

Figure 3-5: Sample Assembler Input

What happens in this case (as shown in figure 3-6) is that the assembler reorganizer translates the
single mulo instruction into a sequence of 8 MIPS M/500 native machine language instructions. The
additional instructions are required to effect the overflow checking that the documentation for the
mulo instruction advertises (as being part of a single instruction). The net effect of this legerdemain
is that what appears to be a single instruction (taking a single machine cycle) is instead a sequence
of 8 instructions taking 24 cycles to execute.

Compilers (such as those for strongly typed languages like AdaTM) are not required to use the mulo

instruction and may implement their own overflow checking software (see section 3.2.1). In general,
however, the instruction counts obtained from the assembler output of compilers is not to be trusted

CMU/SEI-87-TR-29 9

mult a1,a2
mflo a0
sra a0,a0,31
mfhi at
beq a0,at,0x1c
mflo a0
break 6
nop
bne a0,zero,foo
nop
add a0,1

Figure 3-6: Machine Language Output

as a measure of execution cycles (see section 4.1 on Ackermann’s function for a discussion of this
subject). Instead, the actual executable image must must be examined to determine exactly what
instructions will be executed.6 A comprehensive table of all instruction translations (and accom-
panying commentary) is in appendix A. The reader is strongly encouraged to read this appendix to
correctly understand the translation from the MIPS high level instruction set to the MIPS M/500 native
instruction set.

3.2.1. Interesting Effects of Multiplication
The MIPS instruction set provides a number of different multiply and divide instructions. Although
most instructions on the MIPS M/500 take only a single cycle to execute, the multiply and divide
instructions take far longer. Thus, it is in the best interest of the execution speed for the
assembler/reorganizer to change multiply instructions into sequences of shifts and adds or subtracts.
The only time this is valid is when the value of one of the multiplicands is known (i.e., it is a constant
value). The assembler/reorganizer will substitute the appropriate sequence of simpler instructions
only when the execution time of a multiply exceeds that of a sequence of shifts and adds. When
neither of the multiplicands is a constant value, the assembler/reorganizer uses the appropriate MIPS

M/500 multiplication instruction.7

In the worst case, the number of instructions that will be generated for a multiply are n-1 adds and n
shifts, where n is the number of 1 bits that are present in the constant multiplier. Thus, to multiply by
the constant value 42, the instruction

mul $15,$14,42

is converted to the sequence shown in figure 3-7. The number 42 (or 2#101010) has three 1 bits,
and so the number of instructions is 3 shifts and 2 adds.

Where there are runs of 1’s with no intervening 0’s, the number of instructions is reduced. Multiply-
ing by 79, for example, produces only 2 shifts and two adds (one of the adds is a subtraction), even
though 79 (or 2#1001111) contains 5 bits that are 1. The MIPS M/500 code is shown in figure 3-8.

6Altering a single instruction may subtly change the actions of the assembler reorganizer, and critical sections of code must
be examined with great care following any modification.

7Shifts and adds can always be used for multiplication. The problem is that there is a large chance that the time it takes to
execute these instructions is greater than the multiply instruction. When both the multiplier and the multiplicand are constant
values, the compiler precalculates the value instead of generating runtime code to perform the function.

10 CMU/SEI-87-TR-25

0x0: 000e7880 sll t7,t6,2
0x4: 01ee7821 addu t7,t7,t6
0x8: 000f7880 sll t7,t7,2
0xc: 01ee7821 addu t7,t7,t6
0x10: 000f7840 sll t7,t7,1

Figure 3-7: MIPS M/500 Code for Multiplication by 42

0x0: 000e7880 sll t7,t6,2
0x4: 01ee7821 addu t7,t7,t6
0x8: 000f7900 sll t7,t7,4
0xc: 01ee7823 subu t7,t7,t6

Figure 3-8: MIPS M/500 Code for Multiplication by 79

Figure 3-9 shows a worst case expansion – a multiplication by 2730 (or 2#101010101010), which
contains 6 discontiguous 1 bits. In this example, n = 6, and a single multiply is expanded to 6 shifts
and 5 adds.

0x0: 000e7880 sll t7,t6,2
0x4: 01ee7821 addu t7,t7,t6
0x8: 000f7880 sll t7,t7,2
0xc: 01ee7821 addu t7,t7,t6
0x10: 000f7880 sll t7,t7,2
0x14: 01ee7821 addu t7,t7,t6
0x18: 000f7880 sll t7,t7,2
0x1c: 01ee7821 addu t7,t7,t6
0x20: 000f7880 sll t7,t7,2
0x24: 01ee7821 addu t7,t7,t6
0x28: 000f7840 sll t7,t7,1

Figure 3-9: MIPS M/500 Code for Multiplication by 2730

For many users of the MIPS M/500, however, this scheme presents an interesting set of problems.

1. Obviously, when minimizing code size is a paramount consideration, multiplications
can cause image code size to grow. Since the speed/space tradeoff of the
assembler/reorganizer is weighted on speed, multiply instructions are allowed to grow
to 14 times their original size.

2. Algorithms written in different languages may run at vastly different speeds. Lan-
guages may implement constant values in different ways; thus, multiplications may be
implemented in different ways. Multiplying by the constant value 2 takes substantially
less time than multiplication by a variable containing the value 2.

3. A good compiler may actually generate code that runs slower than a bad compiler. A
compiler that compresses arithmetic expressions to eliminate spurious multiplies may
create code that expands into a larger sequence of shifts and adds than a compiler
that does not do compression (see section 7.7).

4. Altering a constant value (e.g., a C #define constant) may change the size and
speed of a program, even though the variable does not affect the number of iterations
in loops.

Users of the MIPS assembler/reorganizer must therefore be very careful when generating space-
critical or speed-critical code. Figure 3-10 shows the time required to perform a multiply by a con-
stant value and by a variable using the mul instruction (the timing will be different for the mulo

instruction).

CMU/SEI-87-TR-29 11

Figure 3-10: Relative Multiplication Speeds

Notice the widely varying times required to perform the multiplications. The two curves represent
constant values ranging from 0 to 100 for the solid curve, and from 2700 to 2800 for the stippled
curve. The solid line at the top of the graph is the time required to perform a multiply using the actual
mul instruction. Note that the time required to execute the shifts and adds never exceeds this time.

MIPS therefore has taken pains to correctly weight the mul instruction expansion by the
assembler/reorganizer. This will usually result in faster program execution (except in cases similar to
that shown in section 7.7), although predicting actual execution time can be difficult. When this is of
critical importance, actual instruction counting must be done.

3.2.2. Retargeting of Branch Instructions
One interesting effect of the assembler/reorganizer is that it will occasionally re-target a branch
instruction. This re-targeting will occur when at least the following three conditions are true:

1. The delay slot that must follow the branch cannot be filled with an instruction from
immediately before the branch.

2. The original target of the branch is not relatively relocatable – that is, the target must
be within the same module. Jump instructions that refer to addresses outside of the
local scope are ineligible.

3. The targeted instruction must not cause an exception.

When these conditions are met, the assembler/reorganizer will fill the delay slot following the branch
instruction with the instruction that was originally targeted by the branch, and will move the target of
the branch to the next instruction following the original branch target. Consider the example source
code shown in figure 3-11.

12 CMU/SEI-87-TR-25

.ent foo 2
foo:

bge $2, 0, $41
negu $2, $2

$41:
subu $24, $18, $17
beq $24, $2, $43
negu $3, $3

$43:
jal foo
.end foo

Figure 3-11: Example of Branch Target Relocation – Assembler Source

In this example, the negation of register $2 is only performed if $2 is less than 0. Otherwise, a
branch is executed to label $41, which subtracts registers $17 and $18. This is then followed by
another conditional branch and another negation. One might expect that this code fragment would
yield two nop instructions, one following each of the branch instructions.8 However, as can be seen
in figure 3-12, this is not the case.

foo:
0x0: 04410003 bgez v0,0x10
0x4: 0251c023 subu t8,s2,s1
0x8: 00021023 subu v0,zero,v0
0xc: 0251c023 subu t8,s2,s1
0x10: 13020002 beq t8,v0,0x1c
0x14: 00000000 nop
0x18: 00031823 subu v1,zero,v1
0x1c: 0c000000 jal 0
0x20: 00000000 nop

Figure 3-12: Example of Branch Target Relocation – MIPS M/500 Output

The anticipated second nop instruction is present at address 0x18, but the first delay slot has been
filled with the original target of the branch instruction, and the branch target has been moved from
0xc to 0x10. The reader is encouraged to trace the control flow of this fragment (remembering the
rules of reorganization around branch instructions) to verify that the output of the
assembler/reorganizer is correct. Notice that location 0x4 contains the same instruction as location
0xc (the original target). However, only one of these instructions is ever executed.

Notice that this reorganization technique does not reduce the size of the program at all (nor does it
increase it). It does, however, speed up program execution by substituting nop instructions with
other "real" instructions; this is especially effective when the delay slot following a branch back to the
top of a loop can be filled with the first instruction of the loop (ρ-motion). The assembler/reorganizer
could also decrease program size with this technique. All of the "come from" points of an instruction
are known to the assembler.9 If an instruction has no "come from" points (that is, no instruction will
"fall through" to the instruction, and all branches have been retargeted), then that instruction may be

8The first would be seen because the negate follows the branch in the original instruction stream. The second would be
present because the branch is contingent on the result of the subtraction, so the subtract can not be moved after the branch.

9A "come from" point is either a branch instruction that executes a "go to" an instruction, or a prior instruction that "falls
through" to that instruction.

CMU/SEI-87-TR-29 13

removed. In this case, the instruction at address 0xc will never be executed, and thus it could be
elided by the assembler/reorganizer.

3.3. Local Conclusions

The MIPS user-level instruction set and the MIPS M/500 native instruction set are inherently similar,
though radically different in some cases. Evaluating a compiler on the basis of the MIPS assembly
code that it produces would therefore be a mistake. It is necessary to examine the reorganized
native machine code produced by the assembler reorganizer. This has the disadvantage of present-
ing to the reader a somewhat confusing picture, because some instructions (such as branches and
jumps) do not take effect immediately upon being scanned.

Also, although most instructions take a single cycle to execute, some instructions (notably the mul

and div instructions, and co-processor instructions) take more than a single cycle. Evaluating the
predicted worst case runtime of a section of code can therefore be tricky, even without considering
the effects of the instruction cache (as discussed in section 5.3). Measurement is the only reliable
guide, and even measurements need careful interpretation.

It also appears that, wherever the assembler writers thought it appropriate, special case code has
been introduced to handle operands of zero. Since the assembler reorganizer is taking the liberty of
effectively rewriting the assembly program into a functionally equivalent, though structurally different
form, it is perfectly acceptable to interpret the constant value 0 and the zero register as identical.
Unfortunately, it is all too often the case that the two are not treated equivalently. This, combined
with the absence of many other special case tests (such as checking for an addend or dividend of 0),
suggests a non-uniform approach to the assembler reorganizer. It seems that the assembler writers
have considered each special test in line, rather than developing a rigorous solution to all of the
special conditions.10 The code that is generated by the assembler reorganizer is correct, although it
is sometimes suboptimal.11

10It could be argued that a "good" compiler would never generate code that uses many of these special cases (i.e.,
generating code that has a divisor or dividend of zero). It is usually on assumptions like these that catastrophes, and theses
on catastrophe theory, are based. We discovered a number of examples of this type of failure in the course of our
investigations.

11See, for example, the differences in code expansion for the seq instruction on page 174. For this instruction, a different
set of instructions are generated for a source of the zero register and for the constant value 0, even though the two are
identical values.

14 CMU/SEI-87-TR-25

CMU/SEI-87-TR-29 15

4. Analysis of Benchmarks

In general, benchmarks set out to do two things:

1. Produce some gross determination on the suitability of using given compiler generated
code for a given processor by providing some measure of it’s efficiency.

2. Determine the relative performance of various processors.

Regrettably, most published benchmarks fail to achieve these goals, and instead only report on a
given processor’s ability to run a specific benchmark. The people who publish benchmark statistics
for a given machine are generally concentrating on the second factor only. By claiming that their
machine can execute "273 deka-Floppystones," they divulge almost no useful information. Yet the
notion of benchmarks as measures of performance is that we felt compelled to present some statis-
tics, in spite of our feelings about their inapplicability.

The "art" of benchmarking is still in the stone age – the Whetstone and Dhrystone benchmarks were
written with a specified mix of instructions in mind (as well as a specific compiler technology), and
they test only that instruction mix. The Dhrystone benchmark even requires that certain optimiza-
tions not be used when compiling the benchmark to most effectively test the features for which it was
designed.

A benchmark really tests two things:

1. A compiler’s effectiveness in generating machine code from source language.

2. The hardware’s speed in executing that code.

These two parts are inseparable halves of the whole – one may not eliminate either part, but must
examine both the generated machine code and the speed at which it is executed. In restricting the
level of optimization that may be used, the Dhrystone benchmark considers only one half of the
compiler/machine couplet. If a given compiler has features which enable it to process source lan-
guage in an efficient way, those features should be tested in the benchmark since they will also be
used in real life. On the MIPS M/500, these features include:

• cross-module optimization

• interprocedure register allocation

• routine in lining (hoisting).12

We believe that these are valuable compiler functions and therefore have gathered all of our
benchmark statistics with these features enabled.

12Routine inlining is the process of removing a routine call and substituting it with the body of the routine. This action is
also called routine hoisting and increases the speed of a program by removing the overhead of parameter passing and routine
calling. When a routine is called from only one place in a program, routine inlining almost always results in a performance
improvement. However, as the number of call sites for a routine increases, the performance improvement begins to be offset
by an increased program image size. The decision to inline a routine is usually based on the number of call sites, the size of
the routine body versus the size of the call and return sequence, and on various specifics of register allocation.

16 CMU/SEI-87-TR-25

We present in this chapter the results and analyzes of four benchmarks.

1. Ackermann’s Function [Wichmann 76] – this deceptively simple function is used to ex-
amine the behavior of the compiler on a well-known fundamental problem.
Ackermann’s Function is a highly recursive function that serves no "useful" purpose in
that it does not calculate anything of importance. However, the way in which a com-
piler generates code for this function can be fairly easily reduced to a pair of mean-
ingful numbers. We evaluate these numbers and comment on their significance.

2. Whetstones [Curnow 76] – one of the numbers that hardware manufacturers like to
publicize to show off their computer’s efficiency. In our opinion, all that this benchmark
measures is how efficiently a compiler/computer pair can execute the Whetstone
benchmark (and not how fast they can execute a real floating-point program).
However, since it is customary to measure this aspect of a computer’s performance,
we provide (again, with a careful analysis) the results of the MIPS M/500’s performance
in this benchmark.

3. Dhrystones [Weicker 84] – another of the numbers that is produced to tout a
computer’s performance. The Dhrystone measure concentrates on integer operations
of a mix calculated to simulate average integer programs. Unfortunately, it presents an
artificial picture of routine loading and parameter passing.

4. 20 Queens – a small integer-based program that calculates a mutually non-threatening
placement of twenty queens on a 20 x 20 chessboard. This benchmark was chosen
because it, too, was small enough to analyze in detail. The relative run times at the
various levels of optimization are presented to give a feel for optimizer efficiency on
this small scale.

We examined numerous other benchmarks. Some of the standard ones that we rejected are:

• The CMU MCF benchmark suite [Barbacci 78] – these benchmarks are designed to test
the efficiency of numerous military processors by having humans write the most efficient
assembly code they could to perform a number of functions, including:

• character string search

• integer array manipulation

• linked list insertion

• character to floating-point conversion.

• record packing and unpacking

These benchmarks were never executed in the original tests, but they measured the
applicability of different instruction sets to these tasks. The results of the evaluation
consisted of measuring the memory and register usage based on a high-level simulation
of the machines on real hardware and not execution speed. These benchmarks are
much too small to consider alone.

• Quicksort – While this is a reasonable function to test for, the Quicksort algorithm is so
small that it does not really test the efficiency of the compiler. Also, it is somewhat data
dependent, so that even a machine-independent set of data does not really test the
algorithm.

• FFT – Rejected for the same reason as Quicksort.

• BYTE benchmarks – Rejected for the same reason as Quicksort.

• EUUG benchmarks – These benchmarks showed that the MIPS M/500 is useful as a
workstation, but the statistics that they are of little significance.

CMU/SEI-87-TR-29 17

In all cases, it should be remembered that benchmarks are useless unless a detailed analysis of the
reasons for their performance is conducted. Simply presenting a set of unrelated numbers tells
nothing about a machine. A benchmark’s behavior on a given machine is also highly correlated with
the efficiency of the compiler that is generating code for it, and ignoring the compiler’s effect ignores
the truth.

Readers are also cautioned to first read section 5.3 before attempting to generate or execute
benchmarks on their own. It is insufficient to run a benchmark once or twice to determine its execu-
tion speed. The graphs shown in figures 5-1 and 5-2 are the distillation of data acquired from
running 768 different programs a total of 4608 times. The graphs shown in figures 5-3 and 5-4 are
pictures of the data collected from 520 individual programs executed over 6000 times. The primary
reason for this huge collection of data was to eliminate any special factors which could influence the
run time of the test programs. Many factors influence the execution speed of a benchmark; simply
asking all other users to log off is insufficient. As with the results of a benchmark, the ancillary
influencing factors must also be analyzed before any meaningful results can be extracted from the
mass of data.

4.1. Ackermann’s Function

Ackermann’s Function is a reasonable measure of the efficiency of a compiler’s treatment of routine
calls and the associated integer arithmetic. It is a useful benchmark in that it can be used to simply
quantify (without running the program) the performance of a compiler.

4.1.1. Method of Analysis
The first number that can be derived from the output of a compiler is the size (in bytes) of the
generated code. This number gives a reasonable handle on the overall efficiency of a compiler,
particularly compared to other compilers for machines with similar instruction set complexity.

The second number is a fair indicator of the speed of the generated code. This number is the
average of the number of instructions needed to execute either the first or third leg of the conditional
expression comprising Ackermann’s function (see figure 4-1 for a statement of the function). The
average of the first and third legs of the conditional is used because these comprise the predominant
run-time load of the function.13

Ideally, the lower the numbers for both measures, the better the compiler. This generalization,
however, can be misleading. For example, the VAX calls instruction is very expensive, yet clever
usage of it can reduce the second measure considerably, at very little improvement in run-time
performance. We will attempt to objectively evaluate the performance of the MIPS C and Pascal

13The first and third legs are executed nearly the same number of times, which are disproportionately frequent compared to
the second leg. For acker(3,8), the first leg is executed 1,391,982 times and the third leg is executed 1,391,981 times, while
the second leg is executed only 2,036 times. Since the second leg accounts for only 0.073% of the total function load, it may
be ignored.

18 CMU/SEI-87-TR-25

acker(n,m)
{

if (n == 0)
return m+1;

else if (m == 0)
return acker(n-1,1);

else
return acker(n-1,acker(n,m-1));

}

Figure 4-1: C Source Code for Ackermann’s Function

compilers and contrast them to comparable compilers on comparable architectures.14

function acker(n,m : integer) : integer;
begin

if n = 0 then
acker := m+1

else if m = 0 then
acker := acker(n-1,1)

else
acker := acker(n-1,acker(n,m-1));

end;

Figure 4-2: Pascal Source Code for Ackermann’s Function

4.1.2. Analysis of C and Pascal
The C and Pascal source code for Ackermann’s Function is shown in figures 4-1 and 4-2, respec-
tively. The assembly language output of the C compiler15 (seen in figure 4-3) shows a total byte
count of 92 (23 instructions of 4 bytes each), with a mean instruction count of 14.16 To show how
this latter number is arrived at, we have added the tag "[1]" for instructions that are executed when
the first leg of the conditional is executed, and the tag "[3]" for those that are executed when the
third leg is executed.

The numbers for C compare quite favorably with the other architectures and compilers evaluated by
Wichmann. Given that the architecture of the MIPS M/500 is RISC in nature, these values are very
good (in fact, they are quite respectable for CISC architectures, too). However, these accolades
must be held in abeyance for a little while. As discussed in section 3.2, the instructions that are
emitted by the code generator are not necessarily the instructions that are executed by the MIPS

M/500. Since the MIPS M/500 native instruction set is not identical to the MIPS assembly language,
we must use the disassembler to look at the actual machine language image before we can come up
with accurate values for the Ackermann Function analysis.

Figure 4-4 shows the actual MIPS M/500 native machine code that is executed for Ackermann’s
Function when compiled with the C compiler at optimization level 2.

14Brian Wichmann has accumulated many measurements of the code generated for Ackermann’s function in [Wichmann
82]. References to other compilers are from that report.

15This example was compiled with the -O switch, which selects optimization level 2. There is no extra benefit for
optimization levels 3 or 4 for a simple function like this.

16There are 11 instructions in the first leg, 17 in the third, with an average of (11+17)/2=14.

CMU/SEI-87-TR-29 19

1 acker(n,m)
2 {
acker: subu $sp, 24 [1][3]

sw $31, 20($sp) [1][3]
sw $16, 16($sp) [1][3]
move $16, $4 [1][3]
move $3, $5 [1][3]

3 if (n == 0)
bne $16, 0, $32 [1][3]

4 return m+1;
addu $2, $3, 1 [1]
b $34 [1]

5 else if (m == 0)
$32: bne $3, 0, $33 [3]
6 return acker(n-1,1);

addu $4, $16, -1
li $5, 1
jal acker
b $34

7 else
8 return acker(n-1,acker(n,m-1));
$33: move $4, $16 [3]

addu $5, $3, -1 [3]
jal acker [3]
addu $4, $16, -1 [3]
move $5, $2 [3]
jal acker [3]

$34: lw $16, 16($sp) [1][3]
lw $31, 20($sp) [1][3]
addu $sp, 24 [1][3]
j $31 [1][3]

Figure 4-3: Assembly Output from the C Compiler

acker:
0x0: 27bdffe8 addiu sp,sp,-24 [1] [3]
0x4: afbf0014 sw ra,20(sp) [1] [3]
0x8: afb00010 sw s0,16(sp) [1] [3]
0xc: 00808021 move s0,a0 [1] [3]
0x10: 16000003 bne s0,zero,0x20 [1] [3]
0x14: 00a01821 move v1,a1 [1] [3]
0x18: 1000000e b 0x54 [1]
0x1c: 24620001 addiu v0,v1,1 [1]
0x20: 14600007 bne v1,zero,0x40 [3]
0x24: 02002021 move a0,s0 [3]
0x28: 2604ffff addiu a0,s0,-1
0x2c: 0c000000 jal acker
0x30: 24050001 li a1,1
0x34: 10000008 b 0x58
0x38: 8fbf0014 lw ra,20(sp)
0x3c: 02002021 move a0,s0
0x40: 0c000000 jal acker [3]
0x44: 2465ffff addiu a1,v1,-1 [3]
0x48: 2604ffff addiu a0,s0,-1 [3]
0x4c: 0c000000 jal acker [3]
0x50: 00402821 move a1,v0 [3]
0x54: 8fbf0014 lw ra,20(sp) [1] [3]
0x58: 8fb00010 lw s0,16(sp) [1] [3]
0x5c: 03e00008 jr ra [1] [3]
0x60: 27bd0018 addiu sp,sp,24 [1] [3]

Figure 4-4: MIPS M/500 Native Machine Code for Ackermann’s Function

20 CMU/SEI-87-TR-25

In this case, we come up with a total byte count of 96 (24 instructions of 4 bytes each), with a mean
instruction count of 14.5.17 To show how this latter number is arrived at, we have again added the
tag "[1]" for instructions that are executed when the first leg of the conditional is executed, and the
tag "[3]" for those that are executed when the third leg is executed.18 The counts have increased
somewhat, although not markedly. Still, because the instructions that are actually executed by the
MIPS M/500 are different from those emitted by the code generator, one must be careful when
evaluating the expected run-time of any program. In this case, the time increase is a little more than
3.5%, but there are cases in which a single MIPS assembly language instruction will be expanded to
12 or more times its original size when converted to MIPS M/500 native instructions. (See the table of
instruction conversions starting on page 144 for more details on this feature of the assembler reor-
ganizer.)

Optimization Level

-O0 -O1 -O2 -O3 -O4

Byte Count 192 176 100 100 100

Instruction Average 27 18.5 14.5 14.5 14.5

Table 4-1: C Compiler Efficiency Measures Using Ackermann’s Function

The values shown in tables 4-1 and 4-2 show the code size and average number of instructions
executed for the C and Pascal versions of Ackermann’s Function at varying levels of optimization.

Optimization Level

-O0 -O1 -O2 -O3 -O4

Byte Count 200 152 108 108 108

Instruction Average 29 21 16 16 16

Table 4-2: Pascal Compiler Efficiency Measures Using Ackermann’s Function

17There are 12 instructions in the first leg, 17 in the third, with an average of (12+17)/2=14.5

18See section 3.1 for an explanation as to why the instructions after the branches are still considered in the instruction
counts.

CMU/SEI-87-TR-29 21

The marked improvement for both compilers for optimization level 2 over optimization 0
demonstrates conclusively the positive effects of an optimizer for even simple programs like this. In
fact, even optimization level 1 causes a noticeable shrinkage in code size and execution count.19

Optimization levels 3 and 4 (which are fairly sophisticated) do not have any effect on programs that
are this simple.20

acker:
0x0: 27bdffe0 addiu sp,sp,-32
0x4: afbf001c sw ra,28(sp)
0x8: afb00014 sw s0,20(sp)
0xc: afb10018 sw s1,24(sp)
0x10: 00808021 move s0,a0
0x14: 00a03021 move a2,a1
0x18: 16000003 bne s0,zero,0x28
0x1c: 00408821 move s1,v0
0x20: 10000012 b 0x6c
0x24: 24c30001 addiu v1,a2,1
0x28: 14c00008 bne a2,zero,0x4c
0x2c: 02002021 move a0,s0
0x30: 2604ffff addiu a0,s0,-1
0x34: 24050001 li a1,1
0x38: 0c000000 jal acker
0x3c: 02201021 move v0,s1
0x40: 1000000a b 0x6c
0x44: 00401821 move v1,v0
0x48: 02002021 move a0,s0
0x4c: 24c5ffff addiu a1,a2,-1
0x50: 0c000000 jal acker
0x54: 02201021 move v0,s1
0x58: 2604ffff addiu a0,s0,-1
0x5c: 00402821 move a1,v0
0x60: 0c000000 jal acker
0x64: 02201021 move v0,s1
0x68: 00401821 move v1,v0
0x6c: 00601021 move v0,v1
0x70: 8fb00014 lw s0,20(sp)
0x74: 8fbf001c lw ra,28(sp)
0x78: 8fb10018 lw s1,24(sp)
0x7c: 03e00008 jr ra
0x80: 27bd0020 addiu sp,sp,32

Figure 4-5: MIPS M/500 Machine Language Output from Figure 4-2

19Optimization level 1 is performed by default, unless explicitly switched off.

20One optimization that would have an effect on this program is tail recursion elimination. The MIPS optimizer does not do
this particular type of optimization. When this and other hand optimizations are performed on this module (specifically,
improving the calling convention used by this routine and reducing the entry/exit protocol), the byte count can be reduced to
72, and the average instruction count to 9 (see section 4.1.4).

22 CMU/SEI-87-TR-25

The values for C are noticeably better than those for Pascal,21 even though we would predict that at
level 4 optimization, there should be no difference between the two. The C code generator is
apparently able to take advantage of the fact that the values returned do not need to be assigned to
intermediate storage locations, while the Pascal compiler, being constrained to always store the
return value of a function, does not. The Pascal compiler could have achieved equally good results
by not making the mistake of using two registers (specifically v0 and v1) to hold return values and
intermediate results, and then needing to perform a register shuffle. This shortcoming can be cor-
rected by a better register tracking and assignment algorithm in the Pascal compiler.

4.1.3. Analysis of BCPL
The same analysis was performed for the BCPL version of Ackermann’s Function. The BCPL
source code is shown in figure 4-6.

LET acker(m,n) =

m=0 -> n+1,
n=0 -> acker(m-1,1),

acker(m-1,acker(m,n-1))

Figure 4-6: BCPL Source for Ackermann’s Function

The output of the BCPL compiler is shown in figure 4-7, with the same tagging notation used in the
earlier examples. The front end of the compiler has performed code hoisting of the function return
sequence so that each of the three arms ends with a direct return (instead of branching to the return
sequence as is done with C and Pascal).

A total of 27 instructions is needed to implement the function. The average number of instructions
per call is (6+17)/2 or 11.5. The compiler has only one (fairly low) level of optimization. Even so,
these numbers are fairly good. However, figure 4-7 shows the unreorganized, high-level MIPS code.
The reorganizer changes it to what is shown in figure 4-8.

The actual MIPS M/500 native code uses 32 instructions, or 128 bytes of code to implement the
routine. The mean number of instructions per call is (8+20)/2 or 14. Note that the code could be
improved by α-motion of the code at 0x28 and 0x48, and by eliminating the nop at 0x24.

21When the C compiler is coerced into recognizing common subexpressions by changing the code to read:

acker(n,m)
{

if (n == 0)
return m+1;

else
return acker(n-1, m==0 ? 1 : acker(n,m-1));

}

the total code size measure improves even more (reducing it to 88 bytes of code). While this last optimization does nothing to
improve the execution speed of the routines (in fact, it hinders it somewhat, raising the average number of instructions
executed to 15), it does reduce the overall size of the routine. This optimization, carried out over larger programs, will have
the effect of reducing overall program size, and, hence, the amount of paging the system needs to perform. Since run-time
may be increased, however, it is up to the program implementors to decide where the tradeoff is to be made. Ideally, both the
C and Pascal compilers should recognize this inherent commonality, and should produce somewhat smaller code with no
increase in execution speed. The results shown here, however, are still very favorable.

CMU/SEI-87-TR-29 23

#define u0 $2
#define u1 $3
#define rz $0
#define ru $16 # holds 1
#define rp $22 # Ocode stack pointer
#define rl $31

LA1:
sw rl,0(rp) [1] [3]
sd u0,8(rp) [1] [3]
bne u0,rz,LA3 [1] [3]
add u0,u1,ru [1]
lw rl,0(rp) [1]
j rl [1]
LA3:
bne u1,rz,LA5 [3]
sub u0,u0,ru
move u1,ru
add rp,16
bal LA1
lw rl,(0-16)(rp)
sub rp,16
j rl
LA5:
sub u0,u0,ru [3]
sw u0,24(rp) [3]
sub u1,u1,ru [3]
lw u0,8(rp) [3]
add rp,28 [3]
bal LA1 [3]
move u1,u0 [3]
lw u0,(24-28)(rp) [3]
sub rp,12 [3]
bal LA1 [3]
lw rl,(0-16)(rp) [3]
sub rp,16 [3]
j rl [3]

Figure 4-7: Assembly Language Output from BCPL Compiler

4.1.4. Results of Hand Coding in MIPS Assembly Language
The hand coded version, which is the best we can currently come up with, is seen in figure 4-9. This
is reorganized into what we see in figure 4-10.

The hand optimized code results in 18 instructions (or 72 bytes), and the mean number of instruc-
tions per call is (4+14)/2 or 9. This is a substantial improvement over the MIPS C compiler and the
BCPL compiler, and reflects the power that a compiler could achieve with the proper optimizations.
The special optimizations that were done are:

• Tail recursion elimination

• Procedure call protocol elimination

• Writing the MIPS assembly language to eliminate all possible nop instructions. It would
have been easier to write directly in the MIPS M/500 native instruction set, but this option
was not available to us.

24 CMU/SEI-87-TR-25

0x0: aedf0000 sw ra,0(s6) [1] [3]
0x4: aec20008 sw v0,8(s6) [1] [3]
0x8: 14400005 bne v0,zero,0x20 [1] [3]
0xc: aec3000c sw v1,12(s6) [1] [3]
0x10: 8edf0000 lw ra,0(s6) [1]
0x14: 00701020 add v0,v1,s0 [1]
0x18: 03e00008 jr ra [1]
0x1c: 00000000 nop [1]
0x20: 14600009 bne v1,zero,0x48 [3]
0x24: 00000000 nop [3]
0x28: 00501022 sub v0,v0,s0
0x2c: 02001821 move v1,s0
0x30: 0411fff3 bgezal zero,0x0
0x34: 22d60010 addi s6,s6,16
0x38: 8edffff0 lw ra,-16(s6)
0x3c: 22d6fff0 addi s6,s6,-16
0x40: 03e00008 jr ra
0x44: 00000000 nop
0x48: 00501022 sub v0,v0,s0 [3]
0x4c: aec20018 sw v0,24(s6) [3]
0x50: 00701822 sub v1,v1,s0 [3]
0x54: 8ec20008 lw v0,8(s6) [3]
0x58: 0411ffe9 bgezal zero,0x0 [3]
0x5c: 22d6001c addi s6,s6,28 [3]
0x60: 00401821 move v1,v0 [3]
0x64: 8ec2fffc lw v0,-4(s6) [3]
0x68: 0411ffe5 bgezal zero,0x0 [3]
0x6c: 22d6fff4 addi s6,s6,-12 [3]
0x70: 8edffff0 lw ra,-16(s6) [3]
0x74: 22d6fff0 addi s6,s6,-16 [3]
0x78: 03e00008 jr ra [3]
0x7c: 00000000 nop [3]

Figure 4-8: Machine Language Output from Figure 4-7

LA1:
sw $31,0($22) # no need to store parameters yet
bne $2,$0,LA3
add $2,$3,$16
j $31 # Return
LA3:
sub $2,$2,$16 # moved up to fill branch slot
bne $3,$0,LA4
move $3,$16
b LA1 # Call (tail recursion elimination)
LA4:
sw $2,8($22) # save across inner call
sub $3,$3,$16
add $2,$2,$16
add $22,12 # true call follows - must move stack
bal LA1
move $3,$2
lw $2,(8-12)($22)
lw $31,(0-12)($22)
sub $22,12 # should fill branch slot
b LA1 # tail recursion elimination

Figure 4-9: Hand Optimized Version of Ackermann’s Function

CMU/SEI-87-TR-29 25

0x0: 14400003 bne v0,zero,0x10 [1] [3]
0x4: aedf0000 sw ra,0(s6) [1] [3]
0x8: 03e00008 jr ra [1]
0xc: 00701020 add v0,v1,s0 [1]
0x10: 14600003 bne v1,zero,0x20 [3]
0x14: 00501022 sub v0,v0,s0 [3]
0x18: 1000fff9 b 0x0
0x1c: 02001821 move v1,s0
0x20: 00701822 sub v1,v1,s0 [3]
0x24: aec20008 sw v0,8(s6) [3]
0x28: 00501020 add v0,v0,s0 [3]
0x2c: 0411fff4 bgezal zero,0x0 [3]
0x30: 22d6000c addi s6,s6,12 [3]
0x34: 00401821 move v1,v0 [3]
0x38: 8ec2fffc lw v0,-4(s6) [3]
0x3c: 8edffff4 lw ra,-12(s6) [3]
0x40: 1000ffef b 0x0 [3]
0x44: 22d6fff4 addi s6,s6,-12 [3]

Figure 4-10: Machine Language Output for Figure 4-9

4.1.5. Comparison
Table 4-3 gives the results for each language analyzed. It shows the total size of the function in
bytes, the average number of instructions per call, and the time to execute acker(3,8). In all
cases, the figures are for the reorganized code (i.e., the native MIPS M/500 code), not the high level
assembly language.

Language
Function Size

(bytes)
Instructions

per Call

Execution Time
of acker(3,8)

(seconds)

C 100 14.5 5.6

Pascal 108 16 9.0

BCPL 128 14 6.1

Assembler 72 9 3.8

Table 4-3: Summary of Statistics For Ackermann’s Function

4.1.6. Local Conclusions
All things considered, the measures obtained by analyzing the compilers’ treatment of Ackermann’s
Function are quite favorable, especially for a RISC-style architecture. Clearly, the MIPS compilers
and hardware are on to something. However, the hand optimizations shown in section 4.1.4 in-
dicates that there is still a large degree of improvement that can be obtained. RISC architectures,
especially when pipelined, can be tricky machines to generate code by. MIPS has done a very
reasonable first pass at the development of a set of good compilers, (especially for a system that has
been developed ex nihilo) and has demonstrated that a RISC architecture is a good choice. While
the measure of Ackermann’s Function is only one indication of the efficiency of a compiler and
hardware combination, the results shown here are very promising. Nonetheless, MIPS needs to
apply additional effort in their compiler team. %!PS-Adobe-1.0 md begin

F T -37 -34 873 669 87 72 72 1320 psu (Daniel V. Klein; document: Whetstone Chart)jn 0 mf od op 0

26 CMU/SEI-87-TR-25

0 xl 1 1 pen 183 70 gm (nc 27 70 235 395 6 rc)kp 48 gr 183 394 lin 132 70 gm 132 394 lin 81 70 gm
81 394 lin 30 70 gm 30 394 lin 234 70 gm (nc 14 16 271 496 6 rc)kp 0 gr 29 70 lin 234 67 gm 234 72
lin 183 67 gm 183 72 lin 132 67 gm 132 72 lin 81 67 gm 81 72 lin 30 67 gm 30 72 lin 234 70 gm 234
394 lin 237 70 gm 232 70 lin 237 151 gm 232 151 lin 237 232 gm 232 232 lin 237 313 gm 232 313
lin 237 394 gm 232 394 lin 189 70 gm (nc 28 70 237 395 6 rc)kp 181 151 lin 180 151 gm 178 232 lin
175 313 lin 174 313 gm 144 394 lin 229 70 gm 217 151 lin 216 151 gm 200 232 lin 197 313 lin 196
313 gm 184 394 lin 207 70 gm 187 151 lin 186 151 gm 168 232 lin 170 313 lin 164 394 lin 102 70
gm 63 151 lin 62 151 gm 31 232 lin 35 313 lin 29 394 lin 205 70 gm 194 151 lin 193 151 gm 175 232
lin 171 313 lin 170 313 gm 143 394 lin 172 70 gm 160 151 lin 159 151 gm 140 232 lin 139 232 gm
137 313 lin 113 394 lin 202 70 gm 202 151 lin 203 151 gm 191 232 lin 190 232 gm 188 313 lin 187
313 gm 174 394 lin 189 70 gm (nc 24 66 238 399 6 rc)kp 64 gr 185 66 193 74 1 ov 0 gr 186 67 192
73 1 ov 180 151 gm 64 gr 176 147 184 155 1 ov 0 gr 177 148 183 154 1 ov 178 232 gm 64 gr 174
228 182 236 1 ov 0 gr 175 229 181 235 1 ov 174 313 gm 64 gr 170 309 178 317 1 ov 0 gr 171 310
177 316 1 ov 144 395 gm 64 gr 140 391 148 399 1 ov 0 gr 141 392 147 398 1 ov 229 70 gm 64 gr
225 66 233 74 1 ov 0 gr 226.5 67.5 231.5 72.5 0 ov 217 151 gm 64 gr 213 147 221 155 1 ov 0 gr
214.5 148.5 219.5 153.5 0 ov 200 232 gm 64 gr 196 228 204 236 1 ov 0 gr 197.5 229.5 202.5 234.5
0 ov 197 313 gm 64 gr 193 309 201 317 1 ov 0 gr 194.5 310.5 199.5 315.5 0 ov 184 395 gm 64 gr
180 391 188 399 1 ov 0 gr 181.5 392.5 186.5 397.5 0 ov 207 70 gm 64 gr 203 66 211 74 1 rc 0 gr
204 67 210 73 1 rc 187 151 gm 64 gr 183 147 191 155 1 rc 0 gr 184 148 190 154 1 rc 168 232 gm
64 gr 164 228 172 236 1 rc 0 gr 165 229 171 235 1 rc 170 313 gm 64 gr 166 309 174 317 1 rc 0 gr
167 310 173 316 1 rc 164 395 gm 64 gr 160 391 168 399 1 rc 0 gr 161 392 167 398 1 rc 102 70 gm
64 gr 98 66 106 74 1 rc 0 gr 99.5 67.5 104.5 72.5 0 rc 62 151 gm 64 gr 58 147 66 155 1 rc 0 gr 59.5
148.5 64.5 153.5 0 rc 31 232 gm 64 gr 27 228 35 236 1 rc 0 gr 28.5 229.5 33.5 234.5 0 rc 35 313 gm
64 gr 31 309 39 317 1 rc 0 gr 32.5 310.5 37.5 315.5 0 rc 29 395 gm 64 gr 25 391 33 399 1 rc 0 gr
26.5 392.5 31.5 397.5 0 rc 202 70 gm 64 gr pr 202 70 pl 210 74 pl 210 66 pl 202 70 pl 1 ep 203 70
gm 0 gr pr 203 70 pl 209 73 pl 209 67 pl 203 70 pl 1 ep 190 151 gm 64 gr pr 190 151 pl 198 155 pl
198 147 pl 190 151 pl 1 ep 191 151 gm 0 gr pr 191 151 pl 197 154 pl 197 148 pl 191 151 pl 1 ep 172
232 gm 64 gr pr 172 232 pl 180 236 pl 180 228 pl 172 232 pl 1 ep 173 232 gm 0 gr pr 173 232 pl
179 235 pl 179 229 pl 173 232 pl 1 ep 167 313 gm 64 gr pr 167 313 pl 175 317 pl 175 309 pl 167
313 pl 1 ep 168 313 gm 0 gr pr 168 313 pl 174 316 pl 174 310 pl 168 313 pl 1 ep 139 395 gm 64 gr
pr 139 395 pl 147 399 pl 147 391 pl 139 395 pl 1 ep 140 395 gm 0 gr pr 140 395 pl 146 398 pl 146
392 pl 140 395 pl 1 ep 169 70 gm 64 gr pr 169 70 pl 177 74 pl 177 66 pl 169 70 pl 1 ep 170 70 gm 0
gr pr 170 70 pl 176 73 pl 176 67 pl 170 70 pl 1 ep 172 70 gm 64 gr pr 172 70 pl 175 71 pl 175 69 pl
172 70 pl 1 ep 156 151 gm pr 156 151 pl 164 155 pl 164 147 pl 156 151 pl 1 ep 157 151 gm 0 gr pr
157 151 pl 163 154 pl 163 148 pl 157 151 pl 1 ep 159 151 gm 64 gr pr 159 151 pl 162 152 pl 162
150 pl 159 151 pl 1 ep 136 232 gm pr 136 232 pl 144 236 pl 144 228 pl 136 232 pl 1 ep 137 232 gm
0 gr pr 137 232 pl 143 235 pl 143 229 pl 137 232 pl 1 ep 139 232 gm 64 gr pr 139 232 pl 142 233 pl
142 231 pl 139 232 pl 1 ep 133 313 gm pr 133 313 pl 141 317 pl 141 309 pl 133 313 pl 1 ep 134 313
gm 0 gr pr 134 313 pl 140 316 pl 140 310 pl 134 313 pl 1 ep 136 313 gm 64 gr pr 136 313 pl 139
314 pl 139 312 pl 136 313 pl 1 ep 109 395 gm pr 109 395 pl 117 399 pl 117 391 pl 109 395 pl 1 ep
110 395 gm 0 gr pr 110 395 pl 116 398 pl 116 392 pl 110 395 pl 1 ep 112 395 gm 64 gr pr 112 395
pl 115 396 pl 115 394 pl 112 395 pl 1 ep 202 70 gm 198 66 206 74 1 rc 199 67 gm 0 gr 204 72 lin
204 67 gm 199 72 lin 203 151 gm 64 gr 199 147 207 155 1 rc 200 148 gm 0 gr 205 153 lin 205 148
gm 200 153 lin 190 232 gm 64 gr 186 228 194 236 1 rc 187 229 gm 0 gr 192 234 lin 192 229 gm 187

CMU/SEI-87-TR-29 27

234 lin 188 313 gm 64 gr 184 309 192 317 1 rc 185 310 gm 0 gr 190 315 lin 190 310 gm 185 315 lin
175 395 gm 64 gr 171 391 179 399 1 rc 172 392 gm 0 gr 177 397 lin 177 392 gm 172 397 lin 175
395 gm (nc 227 22 241 63 6 rc)kp 64 gr 228 22 241 62 4 rc 238 23 gm 0 gr 0 0[1 dtb 0 dfs 1.04 9
mul dfz bu fc 2 F /|______Helvetica fnt bn pw dgf (1200.00)39 dam dkb (nc 176 22 190 63 6 rc)kp 64
gr 177 22 190 62 4 rc 187 23 gm 0 gr 0 0[1 dtb dgf (1500.00)39 dam dkb (nc 125 22 139 63 6 rc)kp
64 gr 126 22 139 62 4 rc 136 23 gm 0 gr 0 0[1 dtb dgf (1800.00)39 dam dkb (nc 74 22 88 63 6 rc)kp
64 gr 75 22 88 62 4 rc 85 23 gm 0 gr 0 0[1 dtb dgf (2100.00)39 dam dkb (nc 23 22 37 63 6 rc)kp 64
gr 24 22 37 62 4 rc 34 23 gm 0 gr 0 0[1 dtb dgf (2400.00)39 dam dkb (nc 241 61 255 80 6 rc)kp 64
gr 243 61 256 79 4 rc 253 62 gm 0 gr 0 0[1 dtb dgf (-O0)17 dam dkb (nc 241 142 255 161 6 rc)kp 64
gr 243 142 256 160 4 rc 253 143 gm 0 gr 0 0[1 dtb dgf (-O1)17 dam dkb (nc 241 223 255 242 6 rc)kp
64 gr 243 223 256 241 4 rc 253 224 gm 0 gr 0 0[1 dtb dgf (-O2)17 dam dkb (nc 241 304 255 323 6
rc)kp 64 gr 243 304 256 322 4 rc 253 305 gm 0 gr 0 0[1 dtb dgf (-O3)17 dam dkb (nc 241 385 255
404 6 rc)kp 64 gr 243 385 256 403 4 rc 253 386 gm 0 gr 0 0[1 dtb dgf (-O4)17 dam dkb (nc 0 0 701
622 6 rc)kp 76 418 198 495 4 rc 64 gr 70 412 192 489 4 rc 0 gr 70.5 412.5 191.5 488.5 0 rc (nc 71
413 191 488 6 rc)kp 64 gr 77 418 87 457 4 rc 80 419 gm (nc 77 418 87 457 6 rc)kp 0 gr 80 425 lin
80 422 gm 64 gr 76 418 84 426 1 ov 0 gr 77 419 83 425 1 ov 83 429 gm 0 0[1 dtb 6 dfz bu fc 2 F
/|______Helvetica fnt bn pw dgf (C Double)26 dam dkb (nc 71 413 191 488 6 rc)kp 64 gr 93 418 103
455 4 rc 96 419 gm (nc 93 418 103 455 6 rc)kp 0 gr 96 425 lin 96 422 gm 64 gr 92 418 100 426 1 ov
0 gr 93.5 419.5 98.5 424.5 0 ov 99 429 gm 0 0[1 dtb dgf (C Single)24 dam dkb (nc 71 413 191 488 6
rc)kp 64 gr 109 418 119 480 4 rc 112 419 gm (nc 109 418 119 480 6 rc)kp 0 gr 112 425 lin 112 422
gm 64 gr 108 418 116 426 1 rc 0 gr 109 419 115 425 1 rc 115 429 gm 0 0[1 dtb dgf (FORTRAN
Double)49 dam dkb (nc 71 413 191 488 6 rc)kp 64 gr 126 418 136 478 4 rc 129 419 gm (nc 126 418
136 478 6 rc)kp 0 gr 129 425 lin 129 422 gm 64 gr 125 418 133 426 1 rc 0 gr 126.5 419.5 131.5
424.5 0 rc 132 429 gm 0 0[1 dtb dgf (FORTRAN Single)47 dam dkb (nc 71 413 191 488 6 rc)kp 64
gr 142 418 152 471 4 rc 145 419 gm (nc 142 418 152 471 6 rc)kp 0 gr 145 425 lin 141 422 gm 64 gr
pr 141 422 pl 149 426 pl 149 418 pl 141 422 pl 1 ep 142 422 gm 0 gr pr 142 422 pl 148 425 pl 148
419 pl 142 422 pl 1 ep 148 429 gm 0 0[1 dtb dgf (Pascal Double)40 dam dkb (nc 71 413 191 488 6
rc)kp 64 gr 158 418 168 469 4 rc 161 419 gm (nc 158 418 168 469 6 rc)kp 0 gr 161 425 lin 157 422
gm 64 gr pr 157 422 pl 165 426 pl 165 418 pl 157 422 pl 1 ep 158 422 gm 0 gr pr 158 422 pl 164
425 pl 164 419 pl 158 422 pl 1 ep 160 422 gm 64 gr pr 160 422 pl 163 423 pl 163 421 pl 160 422 pl
1 ep 164 429 gm 0 gr 0 0[1 dtb dgf (Pascal Single)38 dam dkb (nc 71 413 191 488 6 rc)kp 64 gr 174
418 184 475 4 rc 177 419 gm (nc 174 418 184 475 6 rc)kp 0 gr 177 425 lin 177 422 gm 64 gr 173
418 181 426 1 rc 174 419 gm 0 gr 179 424 lin 179 419 gm 174 424 lin 180 429 gm 0 0[1 dtb dgf (C
Forced Single)44 dam dkb (nc 256 190 270 275 6 rc)kp 64 gr 257 190 270 274 4 rc 267 191 gm 0 gr
0 0[1 dtb 1.04 9 mul dfz bu fc 2 F /|______Helvetica fnt bn pw dgf (Optimization Level)83 dam dkb F
T cp cd end

4.2. Dhrystone Benchmark

The Dhrystone benchmark is another artificial benchmark, constructed to measure the integer perfor-
mance of a machine. Since it is an artificial benchmark, the results of this benchmark are of ques-
tionable value in analyzing the true performance of the MIPS M/500. As artificial benchmarks go,
however, the Dhrystone benchmark appears to be a fairly reasonable test. One argument against it
is that it has a fairly high percentage of routine calls, which unfairly biases the results against those

28 CMU/SEI-87-TR-25

machines with an expensive procedure call interface. However, since practically all machine com-
parisons include the results of the Dhrystone benchmark, we felt it would be appropriate to include it
in our analysis. The actual source code of the benchmark is not reproduced here.

4.2.1. Method of Analysis
The analysis of the data generated by the Dhrystone benchmark is usually interpreted as a
straightforward measure of the hardware’s efficiency in performing integer calculations. However, in
truth there is a much more subtle interaction with the source language and the compiler’s optimizing
capabilities than most sources would admit. One feature of the MIPS compilers that serves it in good
stead with this benchmark (and, of course, with real-life applications programs), is its ability to do
routine hoisting (see page 15). This is especially true for this benchmark, which has a high percent-
age of procedure calls relative to actual computation.

To portray the MIPS M/500 as accurately as possible, the Dhrystone benchmark was executed in C
at all levels of optimization.

4.2.2. Results
Table 4-4 shows the results obtained for the three languages at the highest level of optimization
(along with the values for the VAX with the Berkeley 4.3 compiler for comparison purposes). The
larger the value for the Dhrystone benchmark, the greater the machine/compiler performance.

MIPS C (Register) 14184

MIPS C (Non-Register) 14167

VAX C (Register) 1394

VAX C (Non-Register) 1380

Table 4-4: Dhrystone Numbers for MIPS and VAX

Again, the benchmark results demonstrate that the MIPS M/500 is a fast machine, clocking in at over
10 times faster than the MicroVAX. However, a lot of the MIPS speed (or actually, the VAX’s lack of
speed) is attributable to the high percentage of routine calls used in this benchmark. The Berkeley
compiler uses the calls linkage exclusively, even though it is a very expensive subroutine linkage.

The most interesting aspect of this benchmark is the performance as the level of optimization is
increased. As shown in figure 4-11, as the level of optimization is increased from level 0 (i.e., no
optimization) to level 4 (the highest level). The optimizer nearly doubles the performance of the
non-register Dhrystone benchmark.22

It is also interesting to note that the C compiler is faithfully observing the benchmark’s request to put
certain variables in registers. This is reflected in the fact that the register version of the benchmark
runs faster than the non-register version with low level optimization. However, when the optimization
level rises to level 2 (the first serious set of optimizations that are performed), the compiler ignores

22It is also worthy of note that even with all optimizations turned off, the MIPS M/500 is still able to execute the Dhrystone
benchmark over 5 times faster than the optimized register version on the MicroVAX.

CMU/SEI-87-TR-29 29

Figure 4-11: Dhrystone Benchmark Performance

the benchmark’s requests, and decides for itself which variables belong in registers. The net effect
is to immediately bring the non-register version of the benchmark up to par with the register version.
This effectively proves that an automatic register allocator can be just as good (or better) a judge of
which variables belong in registers.

The code size of the MIPS M/500 is only 25% larger than on the MicroVAX when at optimization level
2. This sort of code size expansion due to the more reduced instruction set complexity of the MIPS

M/500 is predicted. However, when optimization level 4 is used (i.e., routine hoisting), the size of the
MIPS M/500 executable image is 3% smaller than that of the VAX! This is a clear example of the
desirability of a powerful compiler, and further exemplifies the applicability of a RISC architecture in
any area.

4.2.3. Local Conclusions
Although the Whetstone benchmark leaves some room for improvement, the Dhrystone benchmark
results show unequivocally that the concept of a RISC architecture is a viable one. The use of
routine hoisting is a very valuable optimization, and the increase in performance obtained by
simplifying the routine interface is substantial.

4.3. The Eight Queens Problem

In order to introduce some non-artificial benchmark statistics into the test suite for the MIPS machine,
the classic problem of the Eight Queens was generated. In its pure form, the Eight Queens problem
is to find a placement for eight queens on an 8 x 8 chessboard such that no piece threatens any
other in a static placement. The problem may be generalized for the placement of n queens on an
n x n chessboard. Although there are no solutions for n = 2 or n = 3, there exist solutions for n = 4

30 CMU/SEI-87-TR-25

through at least n = 26. To bring execution time to a reasonable level (the complexity of the algo-
rithm is O(n3)), we chose n = 20 as our board size for running this benchmark.

#ifdef ABS
int abs(i) int i;
{

return (i<0?-i:i);
}
#endif

main()
{

register int r, i, j, low, high;
int row[20];

for (i = 0; i < 20; i++)
row[i] = -1;

r = 0;
while (r < 20) { /* Main loop */

if (++row[r] == 20) /* Nothing can go on this row */
if (r == 0)

break; /* Failure - no solution */
else {

row[r--] = -1; /* Reset current row (for later) */
continue; /* Back up and try again */
}

for (i = r-1; i >= 0; i--) {
if (row[i] == row[r])

break; /* Test vertical */
#ifdef ABS

if (abs(row[r]-row[i]) == r-i)
break; /* Test both diagonals */

#else
if (row[r]-row[i] == r-i)

break; /* Test left diagonal */
if (row[i]-row[r] == r-i)

break; /* Test right diagonal */
#endif

}
if (i < 0) /* Loop completed, no collisions */

r++;
}

}

Figure 4-12: Source Code to 20 Queens Problem

The problem was solved using two similar algorithms, seen in the same body of code in figure 4-12.
The conditional compilation bounded by the compile time constant ABS selects which method of
examining the squares diagonal to the location are to be tested. If the constant expression ABS is
FALSE, the diagonals are examined directly, first the left side, and then the right. If the constant
expression ABS is TRUE, the diagonals are examined simultaneously through the use of the abs()

routine. While the latter method shortcuts some evaluation, we would expect this version of the
program to run slightly slower because of the additional overhead of a routine call. The actual values
of the run-times in this test are unimportant, since we are not interested in using this test as a
benchmark against other processors. What is important is the relative speeds of the two algorithms
at the various optimization levels.

CMU/SEI-87-TR-29 31

Figure 4-13: Runtime of 20 Queens Placement at Differing Optimization Levels

As shown in figure 4-13, the direct examination of the diagonals generally runs faster then the
routine call examination. The slight anomaly at optimization level 1 can be attributed to the fact that
level 1 optimizations are quite simple, and do very little by way of flow analysis. In any case, since
optimization level 1 is billed as "all the optimizations that can be done quickly", the optimizer cannot
be faulted for inadequately optimizing one version of the program. In fact, the only difference be-
tween the level 0 and level 1 optimizations for this example is the removal of extraneous assembler
labels. This removal allows the assembler reorganizer to better manipulate the assembly output,23

and causes the major influence on program run-time to evidence itself.24 When more substantial
optimizations are performed at level 2 (specifically, the elimination of redundant code), the direct
examination once again performs better than the routine call examination.

For this simple test, there is no difference in execution speed between optimization levels 2, 3, and 4
for the direct examination of the diagonals (the extra optimization simply has no effect on a program
that is this simply and tightly coded). However, a noticeable difference occurs at optimization level 4
for the absolute value routine-call examination of the diagonals. At this level, the optimizer hoists the
absolute value routine into the main body of code, which results in a faster run-time performance.

23The assembler reorganizer does not (or cannot) consider two adjacent labels as being identical. Consequently, it is
unable to move instructions around a pair of labels, and the resulting executable image is larger.

24In this case, it is the four array accesses for direct examination of the diagonals versus two array accesses for the routine
call examination of the diagonals. Without any common subexpression elimination, this results in four multiplies and four adds
for direct examination versus two multiplies, two adds, and a routine call for the routine call examination. The latter code is
faster in this case, since multiply instructions are very expensive (see section 3.2.1).

32 CMU/SEI-87-TR-25

The hoisted code that examines the diagonals with an absolute value routine still runs slower than
the direct examination of the diagonals because the optimizer (and the assembly reorganizer) still
have some troubles with register tracking.

49 if (row[r]-row[i] == r-i) /* Test left diagonal */
subu $3, $18, $17
subu $24, $4, $2
beq $24, $3, $41

50 break;
51 if (row[i]-row[r] == r-i) /* Test right diagonal */

subu $25, $2, $4
beq $25, $3, $41

52 break;

Figure 4-14: Direct Examination of Diagonals

As shown in figure 4-14, the direct examination of the diagonals results in 20 bytes of code being
generated. However, as figure 4-15 shows, the hoisted code uses 32 bytes of code.25 Since the
remainder of the code generated for these two cases is identical, the extra bytes of code are directly
responsible for the performance difference.

46 if (abs(row[r]-row[i]) == r-i)
subu $2, $4, $3
bge $2, 0, $41
negu $3, $2
b $42

$41:
move $3, $2

$42:
move $2, $3
subu $24, $18, $17
beq $24, $3, $43

47 break; /* Test both diagonals */

Figure 4-15: Hoisted Routine Examination of Diagonals

The optimizer is having some difficulty in tracking the usage of registers 2 and 3, especially since the
move instruction immediately following the label $42 serves no purpose (since the value in register 2
is not used anywhere else in the routine). A more efficient extraction of this routine shown in figure

25These code size values are somewhat misleading, since they measure the size of the assembly code, and not the size of
the actual executable image. The assembler reorganizer must occasionally insert nop instructions into the code stream. The
actual size of the code in figure 4-14 is 28 bytes, while the size of the code in figure 4-15 is 36 bytes.

subu v1,s2,s1
subu t8,a0,v0
beq t8,v1,0x4002b0
nop
subu t9,v0,a0
beq t9,v1,0x4002b0
nop

Machine code for direct
examination (28 bytes)

subu v0,a0,v1
bgez v0,0x4002a8
move v1,v0
b 0x4002a8
subu v1,zero,v0
move v1,v0
subu t8,s2,s1
beq t8,v1,0x4002c0
move v0,v1

Machine code for hoisted
routine (36 bytes)

CMU/SEI-87-TR-29 33

4-16. In the latter case, the size of the assembly language routine is again 20 bytes of code.26

46 if (abs(row[r]-row[i]) == r-i)
subu $2, $4, $3
bge $2, 0, $41
negu $2, $2

$41:
subu $24, $18, $17
beq $24, $2, $43

47 break; /* Test both diagonals */

Figure 4-16: Hand Optimized Hoisted Routine Examination of Diagonals

4.3.1. Influence of Assembler Reorganizer
Although routine hoisting is a valuable optimization, the combination of the code generator and the
assembly reorganizer has, in this case as in others, deleteriously affected the quality of the ex-
ecutable image.

0x400290: 00831023 subu v0,a0,v1
0x400294: 04410003 bgez v0,0x4002a4
0x400298: 0251c023 subu t8,s2,s1
0x40029c: 00021023 subu v0,zero,v0
0x4002a0: 0251c023 subu t8,s2,s1
0x4002a4: 13020004 beq t8,v0,0x4002b8
0x4002a8: 00000000 nop

Figure 4-17: Machine Language Output for Hand Optimized Code in Figure 4-16

Figure 4-17 shows the actual machine instructions generated for the code in figure 4-16. Notice that
the instructions at location 0x400298 and 0x4002a0 are identical. As outlined in section 3.2.2, the
assembly reorganizer has filled in the nop instruction that follows the bgez with the instruction that
was originally targeted by the branch (the subu instruction at 0x4002a0 calculating r-i), and has
moved the target of the branch to the next instruction that follows the original target (to 0x4002a4).
While this behavior is entirely correct, the reorganizer has missed the fact that the moved instruction
may be removed from its original location, reducing the size of and increasing the speed of the final
executable image. It could be argued that the the subu instruction cannot be deleted because it
immediately follows a label. However, because the assembler knows of all the jumps and branches
that target the label, it can easily determine that the instruction is removable. In this case, only a
single branch targets that label. (See chapter 7 for further discussion on this and other reorganizer
drawbacks).

When the assembly language output (shown in figure 4-16) is modified again so that the calculation
of r-i is moved before the branch (effectively forcing a different reorganization strategy), the result-
ing executable image is generated more intelligently with a size of only 24 bytes (not all of which are
always executed) and a concomitant speed improvement (seen figures 4-18 and 4-19.

26The actual executable image size is now really 28 bytes. This means that by eliminating the needless register shuffle, the
hoisted code is now slightly faster than the original inline evaluation of the diagonals, which is what we would expect. This is
due to the fact that roughly half of the time row[r]-row[i] is positive, so not all 28 bytes of code are executed at each
pass.

34 CMU/SEI-87-TR-25

46 if (abs(row[r]-row[i]) == r-i)
subu $2, $4, $3
subu $24, $18, $17
bge $2, 0, $41
negu $2, $2

$41:
beq $24, $2, $43

47 break; /* Test both diagonals */

Figure 4-18: Further Modification of Hoisted Code

0x400290: 00831023 subu v0,a0,v1
0x400294: 04410002 bgez v0,0x4002a0
0x400298: 0251c023 subu t8,s2,s1
0x40029c: 00021023 subu v0,zero,v0
0x4002a0: 13020004 beq t8,v0,0x4002b4
0x4002a4: 00000000 nop

Figure 4-19: Machine Language Output of Further Optimization in Figure 4-18

4.3.2. Local Conclusions
The routine hoisting optimization performed by the MIPS compiler back end can be tremendously
effective in reducing the overall execution time of programs. However, as shown in the simple
example above, some work still needs to be done on the register tracking algorithms in the code
generator, and in the expression tracking algorithms in the assembly reorganizer. The ability to
consider two adjacent labels as being identical targets for jumps and branches would also be a
desirable feature.

CMU/SEI-87-TR-29 35

5. Hardware Effects on Program Performance

In this chapter, we describe our measurements of the hardware’s interaction with simple software
constructs. Initially, we set out to ask what would be the time required to perform a routine call.
However, as our work progressed, we discovered that there was not a straightforward answer to the
question. Rather, it was dependent on the instruction cache (which on our version of the hardware is
16 K bytes) and how the host operating system (UNIX) places programs in virtual memory. In the
following sections, we describe the compiler’s interaction with these features and interpret our
results.

5.1. Routine Call Overhead

One tidbit of information about a machine and its compilers is how fast it can execute a routine call.
On the VAX, the answer depends on the type of routine linkage that is used (i.e., jsb or callx), the
number of local registers used by the routine, how many parameters it is passed, and the instruc-
tions that are used to pass them (i.e., pushr, pushax, pushx, or movx). If one uses the callx

routine linkage, the answer is "very expensive", no matter what the other factors. This is due to the
fact that while the callx linkage is very easy to use from an assembly language standpoint (and
also from a compiler standpoint), it is a complex instruction that incurs a great deal of overhead,
whether or not any of the special features are used.

The MIPS machine has three instructions for subroutine calls: bgezal, jal, and jalr. The last two
are the most commonly used (in fact, as discussed in section 6.1.1.2 the MIPS compiler suite does
not generate the bgezal instruction27). These two instructions are relatively simple. They store the
return address in register 31 and jump to the specified address (jal is a jump to an address, while
jalr is a jump indirectly through a register). We were interested in discovering how long a simple
routine call would take, given a specified number of parameters. In our test cases, the target routine
was a dummy routine that did nothing (although the compiler still generated code to save the actual
parameters on the stack).

Our test cases were broken up into a number of classes. First, we subdivided the test programs into
the number of parameters that we would pass into a routine. This number was varied from 0 through
15 parameters. Next, we tested for the type of parameter. Since our examples were constructed
using C, we used all of the types available to the language (which corresponded nicely to the types
available in the MIPS M/500 hardware): char, short, int, long, float, and double. We also
used pointers to each of these types of variables. Finally, to round out the problems, we examined
the compiler’s behavior with each of the four possible variable allocation classes: local, global,
local-own (i.e., local scope declared static), and global-own (i.e., global scope declared static).
We generated 768 different programs (using an automatic program generation test bed) and ex-
ecuted each one a number of times.

Each program consisted of a loop, executed 2048 times, surrounding 512 calls to a routine. We

27The proposed MIPS LISP implementation will use it.

36 CMU/SEI-87-TR-25

used a large high number of routine calls so that they would substantially outweigh the overhead of
the loop. When multiple parameters were passed to a routine, the actual parameters were rotated
through the set of formal parameters to eliminate the possibility of any special optimizations that the
compiler might have for detecting common subexpressions.28

Initially, our study discovered the following items:

1. The first four parameters to a routine are passed in registers 4 through 7 (or register
a0 through a3; see table A-1). The remaining parameters are passed on the stack
(the reorganizer has an interesting part to play in this convention; see figures 5-1 and
5-2). Passing 4 parameters in registers is wise. Most routines are called with 3
parameters or fewer.29

2. All integer data types (i.e., char, short, int, and long) took the same amount of
time to pass as parameters to the test routine. This is because the lb, lh, and lw
instructions all execute in a single cycle (plus a single delay slot).

3. All address data types (i.e., a pointer to any of char, short, int, long, float, or
double) took the same amount of time to pass as parameters to the test routine. This
is because all addresses are loaded using the la instruction.

4. Passing floating-point parameters took longer than passing integer parameters. This is
due to the interactions and synchronization between the MIPS M/500 CPU and the
floating-point co-processor. Although no nop instructions are in evidence in the object
code, there are implicit delays whenever data is passed from one processor to another.

5. Double precision floating-point parameters took less time to pass than single precision
floating-point parameters. This was an artifact of the C language calling convention,
which requires that single precision numbers be converted to double precision in
routine calls. This effect is also discussed in section WHETSTONE.CC.

6. Passing local variables took less time than passing global or statically allocated vari-
ables. Local variables are usually stored in registers, and passing them as parameters
requires a register move (i.e., 1 CPU cycle). Global and statically allocated variables
are stored in main memory and must be loaded into a register (i.e., 1 CPU cycle plus a
delay slot). Multiple loads can be overlapped, but the last load required one extra
cycle to fill the delay slot.30

7. In our test cases, passing an address as a parameter took less time than passing a
value. This result is misleading, though, since the optimizer was able to recognize the
addresses we were passing as common sub-expressions and translate that knowledge
into a reduced complexity program. In actual practice, passing an address takes the

28When the number of parameters was 15, the optimizer used over 14 M bytes of memory while trying to optimize the code.
This resulted in literally millions of page faults for each separate compilation, and a flurry of complaints directed towards MIPS

Inc. When main memory was increased from 4 Mb to 8 Mb, the number of page faults (and the compilation time) decreased
markedly. However, for a compiler to use 14 Mb of data space to optimize 35 Kb of code is uncalled for. This translates to a
data expansion of 400 : 1, or over 26 Kb of optimizer memory for each line of source code. We admit that this example is an
unusual one, and that typical optimizer memory usage is not this high. However, this is one example that we hold in disfavor
when evaluating the MIPS compiler suite.

29Of the nearly 1000 individual routines declared in the three integer applications in section 6.3.1, only half a dozen (less
than 1%) of them had more than 4 formal parameters. The vast majority of them had 2 or less parameters. This finding
closely correlates with the results in [Cook 82], [DePrycker 82], [Tannenbaum 78], and [Zeigler 83], who report 0.9, 2.1,
1.5/2.0, and 1.3 average parameters per routine, respectively.

30The delay slot could be filled with the jal instruction, but then the delay slot for that instruction could not be filled. See
section 3 for more information on delay slots.

CMU/SEI-87-TR-29 37

same amount of time as (for statically allocated variables) or longer (for register vari-
ables) than passing a value parameter. Compare the expansions of the la instruction
on page 144 with that of the lw instruction on page 146 and recall that, to construct the
address of a register variable, the value of that variable must first be stored in a
memory location on the stack, requiring an extra sw instruction.

We discuss a number of other interesting phenomena in the following sections.

5.2. Reorganizer Effects on Parameter Passing

When passing local parameters to a routine, the MIPS compilers generate move or li instructions to
move the first four parameters into the argument registers, and store instructions to push the remain-
ing parameters on the stack. Thus, one would expect there to be two breakpoints in the time versus
number of parameters graph – between 0 and 1 parameter, and between 4 and 5 parameters.
However, as can be shown in figure 5-1, it takes the same amount of time to call a routine with one
integer parameter as it does to call it with none.31

Figure 5-1: Routine Overhead for Local Integer Parameters

The predicted breakpoint in the curve occurs between 4 and 5 parameters. Yet 1 parameter takes
no longer to pass than zero. The reason for this lies in the assembler reorganizer. A simple routine
with no parameters is called with a jal instruction, which, according to the MIPS M/500 hardware
constraints, has a single delay slot following it. Thus, a simple call takes two CPU cycles to execute.
However, a local value class parameter is passed by executing a move into argument register a0,
and this instruction can be moved into the delay slot of the jal.

31The high/low bars on the graph indicate the maximum variance between different runs of the test programs, while the line
indicates the average. We are concentrating on the average time now, and will discuss the variance in section 5.3. The
actual times are irrelevant, since our test programs are contrived examples and do not represent real-life examples.

38 CMU/SEI-87-TR-25

Thus, a routine call with a single parameter takes no longer than a call with none. Both require 2
CPU cycles to execute, but, in the former case, the second cycle is spent executing a nop, while in
the latter, it is spent executing a move.

When global (or statically allocated) variables are passed as parameters, another discrepancy be-
tween predicted and actual results occurs. As shown in figure 5-2, the second breakpoint in the
curve occurs between 5 and 6 parameters not between 4 and 5 parameters as predicted.

Figure 5-2: Routine Overhead for Global Integer Parameters

The reason for this effect is similar to that seen in figure 5-1, except that in this case, the effect is
delayed. The first four global value parameters are loaded into registers with the lb, lh, or lw
instructions. Each load instruction takes one cycle plus one delay slot. However, each delay slot
except the last is filled with the next load instruction, and the delay slot for the last load instruction is
filled by the jal instruction (the delay slot of the jal instruction is then of necessity a nop instruc-
tion). Thus, when there are from 0 through 4 global value parameters passed into a routine, each
extra parameter requires one extra instruction cycle to pass it. Note that the jal delay slot cannot
be by a parameter load (which has its own delay slot), since the first instruction of the called routine
might access that parameter.

Unlike the first four parameters, which are simply loaded into registers, the fifth and following
parameters must also be pushed onto the stack with an sw instruction. Thus each extra parameter
past 4 requires two instructions to pass it, and the slope of the curve for these instructions should be
twice what it is for the first 4 parameters. However, when we examine the object code for 5
parameters, we notice that the delay slot for the jal is filled with the sw for the fifth parameter.
Since this delay slot was previously a nop instruction, passing a fifth parameter has effectively taken
only a single instruction more than passing four parameters (even though two extra instructions are
actually executed). When the sixth parameter is passed, two instructions are required, and since the

CMU/SEI-87-TR-29 39

delay slot of the jal is already filled, twice the work needs be done to load this and subsequent
parameters.

Thus, the assembly reorganization needed to satisfy the MIPS M/500 pipeline actually benefits sub-
routine parameter passing by delaying the effects of adding extra parameters to subroutines. In
general, these benefits will manifest themselves regardless of the type of parameter that is passed,
since the benefits are derived for both local and global value parameters, and at the low and high
end of the number of variables.

5.3. Effects of Instruction Caching

As we said in the previous section, figures 5-1 and 5-2 show not only the average run-time for
various procedure call overheads, but also the variance across different runs of the same program.
The fact that the run-times varied at all was discovered accidentally. We ran each program 6 times
and generated a graph from the results because there were some wild aberrations in the graph.
When we re-ran the tests, we got a very different graph with different abnormalities.

At first we thought that the discrepancies were due to glitches in the CPU time accounting of the
MIPS UNIX system. We rejected this idea when we observed the following:

1. Successive runs of the same program gave almost perfectly consistent run times, but if
other programs were run in between tests, the CPU time varied.

2. The actual amounts of CPU time required to run a given test case did not fluctuate in a
continuous spectrum, but fell into a limited set of quanta.

3. The run-times of the very large and very small tests cases did not vary much, but
run-times of the the medium sized test cases varied considerably.

Figure 5-3 shows the distribution of the run-times needed by the various programs. Each curve on
the graph represents a different number of parameters being fed to the test routine. The X axis is the
CPU time required to execute the program, and the Y axis is the frequency of occurrence of that time
value.

Notice that the individual programs, when run at different times, exhibit different run-times, and that
these run-times fall into well defined quantile points. There are three reasons for this:

1. The MIPS M/500 has a 16 K byte hardware instruction cache. Programs smaller than
one page (i.e., 4 K bytes) will reside either wholly within the cache or wholly outside of
it. Programs larger than one page but less than 4 pages will reside wholly or partially
in the cache, or they may not be in the cache at all. Programs larger than 16 K bytes
will have some variable percentage of their code in the instruction cache. The fraction
of a program that is in the cache will, to a large degree, determine how fast that
program runs.

2. Whether a page resides in the instruction cache depends on a number of factors, one
of which is the physical address of the start of the page. On any single run of a
program, the UNIX operating system will place successive pages of a program image
into the first available pages from the memory pool. These pages are not necessarily
contiguous, so there may be collisions between two or more pages in a program in the

40 CMU/SEI-87-TR-25

Figure 5-3: Distribution of Execution Times for Similar Programs

instruction cache hash table.32 The fewer collisions there are within a given program,
the more effective the cache is at speeding up the execution time of that program.

3. The file access mechanism on UNIX relies on an i-node which points at the pages of a
program when it is on disk, and also serves to reference the program’s pages when it
is in main memory. Once a program has been executed, it remains in memory (even if
it is not presently being executed) until its pages need to be reclaimed. If a program is
run a number of times in succession, the pages that comprise the program will remain
at the same virtual and physical address across each run. If, however, other programs
are run in between executions, then the pages for the program may be reclaimed, and
on subsequent execution may have to be reloaded from disk at potentially different
addresses in memory. Additionally, if a copy of the program is made (effectively creat-
ing a new i-node), then the program (now referenced by a different, non-resident
i-node) must be loaded into memory, probably at different page addresses. Each time
the addresses of the pages of a program change, the program may run at a different
speed, due to the reasons cited in the first two items.

The net effect of all of this is that, in general, no single number can be quoted as the "run-time" of a
program. We can in general speak of best case, worst case, or average run-times. However, for
any processor that has an instruction cache, the hit rate on the cache is determined by a number of
factors – all of which are out of the control of the user in the case of the MIPS M/500 running UNIX.
Ergo, the actual run-time of a program is non-deterministic and unpredictable, although the range of
values in which the run-time will fall is predictable. Figure 5-4 shows the ranges of execution times
for a set of similar programs. In this case, the program that was used was one of our routine-call test
cases, except that here we simply varied the size of the loop being executed, rather than varying the
number of parameters.

32A later release of the MIPS system software has fixed this problem.

CMU/SEI-87-TR-29 41

Figure 5-4: Variance of Execution Times of Similar Programs

In figure 5-4, the solid line represents the average execution time as the program size increases.
The high-low bars indicate the minimum and maximum execution times, and the dotted lines
represent the extrapolation of the extremes. The distance between the extremes is probably highly
correlated to the size of the instruction cache, but we cannot verify this predication because we could
not change the hardware cache size. We do know, however, that without an instruction cache, the
average execution time would probably be at the same level as the extrapolated maximum, with very
little variation between runs.

In figure 5-4, the average run-time is close to the minimum for small programs and climbs toward the
maximum for larger programs. The larger the program, the less likely it will be wholly cache resident.
Large programs (i.e., larger than 16 Kb) will never be wholly cache resident, although they can still
reap the benefits of an instruction cache by grouping like procedures together (MIPS has a program
called cord to aid in this process). Further benefits could be derived with a more robust linker.

Floating-point programs exhibit a much smaller range between the minimum and maximum values.
We suspect that this is due to the fact that although instructions for the floating-point co-processor
may be kept in the instruction cache, they are executed in the co-processor – effectively obviating
the cache.33 We feel (although we have not tested this hypothesis) that programs with a greater
percentage of floating-point instructions will demonstrate a reduced variability in execution speeds.
Of course, regardless of program content, the larger the program, the lower the variability when the
program counter is not kept within a 1 page boundary.

33MIPS Inc. doubts this hypothesis.

42 CMU/SEI-87-TR-25

CMU/SEI-87-TR-29 43

6. Instruction Set Usage by the Compilers

This chapter covers a three part analysis of the use of the machine instruction set by the MIPS

compilers. The first part is a static analysis in which we examined the source code for the compilers
to determine what instructions could possibly be generated from a source program. The purpose of
this test was to get a feel for the utility of the instructions in the instruction set. If an instruction is
never used by the compiler, then perhaps it is because it is too difficult for the compiler detect a use
for the instruction (or perhaps it is a special instruction that was never expected to be used, such as
the translation lookaside buffer instructions on the MIPS M/500, or the context switch instructions on
the VAX).

The second part is a thorough analysis of a specific compiler written for the MIPS. The compiler is for
BCPL, a simple, easy-to-implement systems programming language.34 The purpose of this exercise
was to get an instrumented view of the instruction set in relation to a known compiler, and to
evaluate patterns of register use. instruction use , instruction mix, addressing mode use, and ad-
dressing mode effectiveness.

The third part is an analysis of instruction and register use across a number of large programs. In
contrast to the static analysis, this "brute force" overview examines the actual instructions and
registers that are used for a set of programs. This analysis does not provide specific insights; we
can make some general statements about the compilers’ effectiveness and efficiency.

However, in all three sections we compare the MIPS compilers with the VAX Berkeley UNIX compilers.
The purpose of the comparison is to provide to:

• Give some feel for the use of a RISC versus a CISC architecture from a compiler
standpoint. We hope to quantify our assertion that many instructions in a CISC architec-
ture are not used by the compiler, and thus show that a reduced instruction set is
reasonable.

• Provide a basis of comparison that most of our readers will be familiar with.

• Highlight the differences between optimizing compilers (on the MIPS) and less sophis-
ticated compilers (on the VAX).

This information is provided to deliver insights, not tables of raw figures.

6.1. Static Analysis of Compilers

This section examines the set of instructions that the compiler can generate (but not necessarily
those instructions that it will generate). We collected this information by reading through the source
code of the compilers. Through this exercise we hope to shed some light on two aspects of compiler
and processor technology:

1. What subset of the instruction set can be effectively used by a compiler (and from this
information, what an effective minimum instruction set is).

34BCPL is one of the ancestors of the C language.

44 CMU/SEI-87-TR-25

2. What subset of the instruction set cannot be used by a compiler (and from this, which
instructions are too specialized or too complex to be effectively fitted to a source code
idiom).

To adequately address these questions, we looked at the compilers for both the MIPS and the VAX,
the latter being included in our investigation as a CISC architecture, and hence a possible coun-
terexample to our pro-RISC argument. As shall be seen, we show conclusively that a RISC architec-
ture is a much better choice from a compiler standpoint.

6.1.1. MIPS C, FORTRAN, and Pascal Compilers
The MIPS compiler suite currently consists of three different language front end parsers (C, FORTRAN,
and Pascal) and a common optimizer and code generator. To analyze the use of the MIPS instruc-
tion set by the compilers, we were forced to look at the MIPS compilers from two levels – the high-
level instruction set use generated by the compiler, and the low level instruction set executed by the
MIPS M/500 hardware. Ultimately, only the low-level instructions get executed, so the most sig-
nificant tables are in section 6.1.1.2. However, comparing the low-level coverage with the high-level
coverage, argues in favor of a reduced instruction set. In spite of the large number of conditional
instructions provided by the high level assembler (26 set and branch), all of the instructions are
easily emulated with less than one third as many real instructions (8 branch and set, plus xor).

6.1.1.1. MIPS High-Level Instruction Use
The following table lists the full (high-level) instruction set of the MIPS architecture. The MIPS com-
pilers use many of these instructions. If an instruction is used by the compiler,35 it is shown in
boldface. Wherever justifiable, instructions that are not generated by the compiler/optimizer are
shown in plain text. Instructions that are unjustifiably ignored by the compiler are shown in
(italics). Superscripted numbers refer to notes at the end of the table.

abs add addu and b
bal1 bc0f2 bc0t2 bc1f bc1t
bc2f2 bc2t2 bc3f2 bc3t2 beq
beqz4 bge bgeu bgez4 (bgezal)
bgt bgtu bgtz4 ble bleu
blez4 blt bltu bltz4 (bltzal)
bne bnez4 break c02 c13

c22 c32 cfc02 cfc13 cfc22

cfc32 ctc02 ctc13 ctc22 ctc32

div divu j jal la
lb lbu ld lh lhu
li lui5 lw lwc02 lwc13

lwc22 lwc32 lwl6 lwr6 mfc02

mfc1 mfc1.d mfc22 mfc32 (mfhi)
(mflo) move mtc02 mtc1 mtc1.d
mtc22 mtc32 (mthi) (mtlo) mul
(mulo) (mulou) (mult) (multu) (neg)
negu nop nor8 not or

35In this case, by "compiler" we mean the combination of the language-specific frontend, and the common back end. In
analyzing which instructions are generated, we examined only the back end (i.e., the code generator) and assumed that if
there was code in the back end, some compiler would support it.

CMU/SEI-87-TR-29 45

rem remu rfe7 rol9 ror9

sb sd seq sge sgeu
sgt sgtu sh sle sleu
sll slt sltu sne sra
srl (sub) subu sw swc02

swc13 swc22 swc32 swl6 swr6

syscall7 tlbp10 tlbr10 tlbwi10 tlbwr10

(ulh) (ulhu) (ulw) (ush) (usw)
xor

abs.d abs.s add.d add.s c.eq.d
c.eq.s c.f.d11 c.f.s11 c.le.d c.le.s
c.lt.d c.lt.s c.nge.d11 c.nge.s11 c.ngl.d11

c.ngl.s11 c.ngle.d11 c.ngle.s11 c.ngt.d11 c.ngt.s11

c.ole.d11 c.ole.s11 c.olt.d11 c.olt.s11 c.seq.d11

c.seq.s11 c.sf.d11 c.sf.s11 c.ueq.d11 c.ueq.s11

c.ule.d11 c.ule.s11 c.ult.d11 c.ult.s11 c.un.d11

c.un.s11 cvt.d.s cvt.d.w cvt.s.d cvt.s.w
cvt.w.d cvt.w.s div.d div.s l.d
l.s mov.s mov.d mul.d mul.s
neg.d neg.s round.w.d round.w.s s.d
s.s sub.d sub.s trunc.w.d trunc.w.s

Notes

1. The MIPS compilers suffer from a common problem. The bal instruction is not used
because the compiler has no facility for determining at compile time the address of the
target, and hence no knowledge whether the target will be out of range of a branch.
The target will usually be in range when recursion is used, although the MIPS compiler
does not take advantage of this knowledge.

2. The MIPS M/500 provides instruction set support for 4 co-processors. However, only
co-processor 1 (the floating point co-processor) is presently supported in hardware. Of
course, the extra co-processor instructions will not be generated for non-existent
hardware.

3. Certain co-processor instructions do not make any sense for the floating point co-
processor, since their functions are not supported by a floating point unit.

4. Although instructions are provided in the high level assembly language for conditional
branches relative to zero, the compiler simply generates an ordinary conditional branch
relative to the zero register. In the end, these instructions are functionally equivalent.

5. The lui instruction is available to the high-level assembler, but it is not really needed.
It is used primarily to load an immediate value of larger than 16 bits on the real MIPS
M/500 hardware (while the high level assembler allows a full 32 bit operand).

6. These special load instructions could conceivably be used in C to load structure com-
ponents stored in registers, but their primary function is to be used in the unaligned
load and store instructions.

7. The syscall and rfe instructions are used to perform system calls, a function
handled by the subroutine libraries.

8. None of the high-level languages on the MIPS has a nor function, hence the nor
instruction is not used.

9. None of the high-level languages on the MIPS has a rotate function, hence the rol and
ror instructions are not used.

46 CMU/SEI-87-TR-25

10. These instructions reference the translation lookaside buffer and are used primarily in
the kernel, and then only in assembly language.

11. These instructions are provided by the floating-point co-processor to supply complete
IEEE floating-point compatibility. They are not all necessary for the languages avail-
able on the MIPS.

6.1.1.2. MIPS M/500 Low Level Instruction Use
The following table lists the full (native) instruction set of the MIPS M/500 architecture. Since the
MIPS compilers do not generate these instructions directly, but rely on the assembler reorganizer, it is
only partially true that the compilers use these instructions. If an instruction is used by the
compiler,36 it is shown in boldface. Wherever justifiable, instructions that are not generated by the
compiler/optimizer are shown in plain text. Instructions that are unjustifiably ignored by the com-
piler are shown in (italics). The superscripted numbers refer to notes at the end of the table.

add addi addiu addu and andi
b bc0f1 bc0t1 bc1f2 bc1t2 beq
bgez (bgezal) bgtz blez bltz (bltzal)
bne break c01 c21 c31 cfc1
ctc1 div divu j jal jalr
jr lb lbu lh lhu li
lui lw lwc01 lwc1 lwc21 lwc31

lwl5 lwr5 mfc01 mfc1 mfhi mflo
move mtc01 mtc1 mthi3 mtlo3 mult
multu nop nor or ori sb
sh sll sllv slt slti sltiu
sltu sra srav srl srlv sub
subu sw swc01 swc1 swc21 swc31

swl5 swr5 syscall4 xor xori

abs.d abs.s add.d add.s c.eq.d c.eq.s
c.f.d6 c.f.s6 c.le.d c.le.s c.lt.d c.lt.s
c.nge.d6 c.nge.s6 c.ngl.d6 c.ngl.s6 c.ngle.d6 c.ngle.s6

c.ngt.d6 c.ngt.s6 c.ole.d6 c.ole.s6 c.olt.d6 c.olt.s6

c.seq.d6 c.seq.s6 c.sf.d6 c.sf.s6 c.ueq.d6 c.ueq.s6

c.ule.d6 c.ule.s6 c.ult.d6 c.ult.s6 c.un.d6 c.un.s6

cvt.d.s cvt.d.w cvt.s.d cvt.s.w cvt.w.d cvt.w.s
div.d div.s mov.d mov.s mul.d mul.s
neg.d neg.s sub.d sub.s

Notes

1. The MIPS M/500 provides instruction set support for 4 co-processors. However, only
co-processor 1 (the floating-point co-processor) is presently supported in hardware. Of
course, the extra co-processor instructions will not be generated for non-existent
hardware.

2. Certain co-processor instructions do not make any sense for the floating point co-
processor, since their functions are not supported by a floating-point unit.

3. The hi (lo) registers are documented to "hold the most (least) significant 32 bits of

36In this case, by "compiler" we mean the combination of the language-specific frontend and the common back end and the
assembler reorganizer.

CMU/SEI-87-TR-29 47

multiply, quotient, or divide." Since these are result registers, we do not expect that a
compiler would have any reason to load them explicitly.

4. The syscall instruction is used to perform system calls, a function handled by the
subroutine libraries.

5. These special load instructions could conceivably be used in C to load structure com-
ponents stored in registers, but their primary function is to be used in the unaligned
load and store instructions, none of which are generated by the compiler.

6. These instructions are provided by the floating-point co-processor to supply complete
IEEE floating-point compatibility. They are not all necessary for the languages avail-
able on the MIPS.

6.1.2. Berkeley C and FORTRAN Compilers
By way of comparison, we examined the Berkeley C and FORTRAN compilers and the way they use
the VAX assembly instruction suite. The following table lists the full instruction set of the VAX ar-
chitecture. The Berkeley C and FORTRAN compilers use many of these instructions. If an instruction
is used by the compiler,37 it is shown in boldface. Wherever justifiable, instructions that are not
generated by the compiler/optimizer are shown in plain text. Instructions that are unjustifiably
ignored by the compiler are shown in (italics). Superscripted numbers refer to notes at the end
of the table.

(acbb) (acbd) (acbf) acbg10 acbh10

acbl2 (acbw) adawi13 addb24 (addb3)
addd2 addd3 addf2 addf3 addg210

addg310 addh210 addh310 addl2 addl3
addp411 addp611 addw24 (addw3) (adwc)
aobleq2 aoblss2 ashl ashp11 (ashq)
bbc1 (bbcc) bbcci13 (bbcs) bbs1

bbsc1 (bbss) bbssi13 (bcc) (bcs)
beql1 beqlu1 bgeq1 bgequ1 bgtr1

bgtru1 bicb24 (bicb3) bicl2 bicl3
(bicpsw) bicw24 (bicw3) bisb24 (bisb3)
bisl2 bisl3 (bispsw) bisw24 (bisw3)
bitb bitl bitw blbc1 blbs1

bleq1 blequ1 blss1 blssu1 bneq1

bnequ1 bpt9 (brb) brw (bsbb)
(bsbw) bugl9 bugw9 (bvc) (bvs)
(callg) 12 calls (caseb) casel (casew)
chme7 chmk7 chms7 chmu7 clrb
clrd clrf clrg10 clrh10 clrl
(clro) (clrq) clrw cmpb cmpc314

cmpc514 cmpd cmpf cmpg10 cmph10

cmpl cmpp311 cmpp411 (cmpv) cmpw
(cmpzv) crc14 cvtbd cvtbf cvtbg10

37In this case, by "compiler" we mean the combination of the code generator and optimizer, since the Berkeley compiler
suite splits these two tasks into two separate programs (which, instead of operating on a common intermediate form, share
information in assembler source code format). Some instructions are therefore not generated directly by the compiler, but are
inserted by the optimizer to match certain code idioms. The origin of the instruction is unimportant. Rather, it is more
important that it is used at all. The C and FORTRAN compilers differ only in the front end – the code generator is shared by both
languages.

48 CMU/SEI-87-TR-25

cvtbh10 cvtbl cvtbw cvtdb cvtdf
cvtdh10 cvtdl cvtdw cvtfb cvtfd
cvtfg10 cvtfh10 cvtfl cvtfw cvtgb10

cvtgf10 cvtgh10 cvtgl10 cvtgw10 cvthb10

cvthd10 cvthf10 cvthg10 cvthl10 cvthw10

cvtlb cvtld cvtlf cvtlg10 cvtlh10

cvtlp11 cvtlw cvtpl11 cvtps11 cvtpt11

(cvtrdl) (cvtrfl) cvtrgl10 cvtrhl10 cvtsp11

cvttp11 cvtwb cvtwd cvtwf cvtwg10

cvtwh10 cvtwl decb decl decw
divb24 (divb3) divd2 divd3 divf2
divf3 divg210 divg310 divh210 divh310

divl2 divl3 divp11 divw24 (divw3)
editpc11 (ediv) (emodd) (emodf) emodg10

emodh10 (emul) escd esce escf
extv extzv ffc14 ffs14 halt8

incb incl incw index14 insqhi14

insqti14 insque14 insv jbc1,2 (jbcc)
(jbcs) jbr1 jbs1,2 jbsc3 (jbss)
jeql1 jeqlu1 jgeq1 jgequ1 jgtr1

jgtru1 jlbc1,2 jlbs1,2 jleq1 jlequ1

jlss1 jlssu1 jmp1 jneq1 jnequ1

jsb5 ldpctx8 locc14 matchc14 (mcomb)
mcoml (mcomw) mfpr8 mnegb mnegd
mnegf mnegg10 mnegh10 mnegl mnegw
movab (movad) (movaf) movag10 movah10

moval (movao) movaq2 movaw2 movb
movc36 movc514 movd movf movg10

movh10 movl (movo) movp11 (movpsl)
movq movtc14 movtuc14 movw movzbl
movzbw movzwl mtpr8 mulb24 (mulb3)
muld2 muld3 mulf2 mulf3 mulg210

mulg310 mulh210 mulh310 mull2 mull3
mulp11 mulw24 (mulw3) nop polyd14

polyf14 polyg10,14 polyh10,14 (popr) prober8

probew8 pushab2 (pushad) (pushaf) pushag10

pushah10 pushal2 (pushao) (pushaq) (pushaw)
pushl (pushr) rei8 remqhi14 remqti14

remque14 ret (rotl) (rsb) (sbwc)
scanc14 skpc14 sobgeq2 sobgtr2 spanc14

subb24 (subb3) subd2 subd3 subf2
subf3 subg210 subg310 subh210 subh310

subl2 subl3 subp411 subp611 subw24

(subw3) svpctx8 tstb tstd tstf
tstg10 tsth10 tstl tstw xfc9

xorb24 (xorb3) xorl2 xorl3 xorw24

(xorw3)

CMU/SEI-87-TR-29 49

Notes

1. The jbxxx instructions are pseudo-instructions that are converted to either the cor-
responding branch instruction or an inverse-sense branch/jump instruction pair by the
assembler. Correspondingly, the bxxx are only generated by the assembler, the brw
instruction, which is also generated directly by the compiler. The beqlu instruction is
identical to the beql instruction (since an unsigned test for equality is the same as a
signed test for equality); the VAX ISA simply provides two mnemonics for the same
instruction. The same is true for bnequ and bneq.

2. These instructions are generated only by the common optimizer pass, not by the com-
piler. While this is not bad, it indicates a weakness of the common code generator that
the optimizer must compensate for.

3. This instruction is used exclusively in the conversion from unsigned longword integers
to floating or double variables, not for the intended function of intra-processor
semaphore interlocks.

4. The add, sub, mul, div, bis, bic, and xor instructions for byte and word operands
are produced only in the two-operand form, while the corresponding instructions for
long, floating, and double formats are produced in both two- and three-operand form.

5. The jsb instruction is not generated in any normal code sequence, but only as an
interface mechanism to the run-time profiler. No subroutines are ever called with any-
thing except the calls linkage.

6. The movc3 instruction is used to copy C structures, not to copy character strings. This
is because the instruction takes as its first operand the number of bytes to be moved,
but the C representation of strings is such that this datum is not readily available.

7. The chmx instructions are intended to be used to switch between processor modes,
and are of questionable utility to a compiler. The chmk instruction is used by the UNIX
libraries (written directly in assembly language) to effect kernel calls.

8. These instructions are designed for use in an operating system context and cannot be
expected to be generated by a compiler. Additionally, some of them are privileged
instructions and can only be executed in kernel mode.

9. These are very special case instructions (for use in debuggers and other applications)
that cannot reasonably be generated by a compiler.

10. The g and h floating-point types are not supported by UNIX languages and are not
available on all versions of the VAX. Consequently, it is reasonable to allow a portable
compiler to not generate them.

11. The packed decimal instructions are in the VAX ISA primarily for DEC’s version of PL/1
(which the Berkeley compilers do not support).

12. The callg instruction is designed for FORTRAN static call frames, although Berkeley
FORTRAN does not take advantage of it.

13. The adawi, bbssi, and bbcci instructions are designed for multiprocessor applica-
tions.

14. The polynomial and crc instructions are designed to make assembly language pro-
gramming easier. The character manipulation instructions support complex character
comparison, matching, and insertion. All of these instructions provide support for high-
level functions not present in C or Fortran. It would be unreasonable to expect most
compilers to generate these instructions without the corresponding higher level lan-
guage primitives.

50 CMU/SEI-87-TR-25

6.1.3. Comparison of Compiler Coverage
The MIPS high-level instruction set contains 192 instructions,38 of which 94 (or almost 49%) are
unused by the compilers. This, however, is a somewhat unfair measure. If we exclude the instruc-
tions that are used for non-existent co-processor functions and the extraneous floating-point instruc-
tions that are present to satisfy the IEEE standard, then of the remaining 134 instructions, only 36 (or
slightly less than 26%) are unused by the compilers. To be still fairer to the MIPS compiler, we count
only those instructions that we considered "unjustifiably ignored by the compiler", then only 17 in-
structions (or approximately 12%) of the instructions are unused.

Because the MIPS assembler/reorganizer is really a macro assembler, we must also look at the
coverage of the native instruction set by the compilers, even if this coverage is through one level of
indirection. Of the 135 actual instructions (including the floating-point co-processor instructions39),
50 instructions (or 37%) are unused by the compiler. However, if we exclude superfluous floating-
point and co-processor instructions then of the remaining 92 instructions, only 7 (a mere 7.5%) are
unused. Of these, only 2 fall under the category of "unjustifiably ignored" instructions. Clearly, the
MIPS M/500 instruction set is sufficiently small to be manageable by the compiler, but sufficiently
large to handle the programming tasks it is designed to handle.

By way of comparison, the VAX native instruction set contains a total of 323 instructions,40 of which
179 (or 55%) are unused by the compiler. This could lead us to believe that either the compiler is
terribly inefficient, or, a more likely conclusion, that the instruction set is far too complex. Even when
we exclude the "special" instructions for G and H floating-point formats (which are not supported by
all VAX processors), then of the remaining 267 instructions, 121 (or 45%) are unused. To be ab-
solutely fair, if we count only those instructions which, in the previous analysis, we felt were "unjus-
tifiably ignored by the compiler", we still find that over 23% of the instruction repertoire of the VAX is
used by the compiler, and that another 22% are of a complex or systems programming nature.

By looking at these numbers, it is clear from a compiler standpoint at least that a RISC architecture is
better used by a compiler than a CISC architecture. One of the bottlenecks of a CISC computer is
instruction decoding. Removing unneeded instructions can speed up a CISC processor (and at the
same time, convert it to a RISC processor). The later analysis of instruction set coverage shows that

38Remember that the number of instructions in the high level assembly language for the MIPS does not reflect the number of
instructions found on the MIPS M/500 native instruction set. Many of the high level instructions are simply macros that are
expanded by the assembler reorganizer. See chapter 3 for details.

39According to the source code for the disassembler program dis, there is the potential for many more instructions available
on the MIPS M/500. However, it is unclear how many of these are actually present in the hardware, and how many were
planned but never inscribed in silicon. We will use as our instruction count the number of instructions that can be created by
the assembler reorganizer, given the set of instructions documented in the "Assembly Language Programmer’s Guide" and
revealed by the translation table in appendix 3.

We note also that a slightly different measurement criterion has been used on the MIPS M/500 than on the VAX. On the
MIPS M/500, "add" and "add immediate" are considered two different instructions, while on the VAX, they are considered to be
one instruction with two different addressing modes. If we follow the VAX metric, the MIPS M/500 has 14 fewer instructions—a
figure which better shows off the RISC nature of the architecture.

40This is a count of real instructions and does not include the 21 jbxx pseudo-instructions provided by the Berkeley
assembler.

CMU/SEI-87-TR-29 51

this is a wise move to make, since a large fraction of a "standard" CISC architecture is never used by
the compiler (nor, we suspect, by a human programmer).

6.2. Assessment of BCPL/MIPS

This section contains a brief description and assessment of the BCPL/MIPS compiler created at the
SEI. It contains numbers specific to the MIPS RISC-based workstation and some comparisons with
the DEC MicroVAX II.

The compiler consists of a front end that translates BCPL into an intermediate form called Ocode,
and a back end that translates Ocode into symbolic assembly language, which is then assembled by
the target machine assembler program.

The front end, called bcpl, is common. The back ends for MIPS and VAX, are called cgmips and
cgvax, respectively. The structure of the two back ends is very similar; cgvax performs a few extra
peephole optimizations, but otherwise the generated code is of similar quality. This allows us to
make a direct comparison between the two machines.

The vehicle for comparison is the cgmips code generator itself, which is a BCPL program with about
4400 lines of source, of which about 50% are white space or comment. It is divided into four
modules numbered 1 through 4.

The purpose of this assessment is to:

1. Obtain comparative performance measurements in a manner that, as far as possible,
reflects the hardware rather than the combination of hardware and compiler.

2. Test the claims that CISC architectures are too complicated and embody expensive
but unused features, whereas RISC machines are sufficient for most purposes and
more efficient overall.

It is possible to approach such a task in two ways. One can run very large amounts of code through
the two compiling systems and accumulate statistics (section 6.3 describes this approach). Or one
can use a small amount of code only and try to understand and explain the results. This section
follows the latter course.

The host systems on which the analysis was performed were:

• DEC MicroVAX II running Mach (4.3 BSD UNIX). This is considered to be a machine of
about 0.9 "mips".

• MIPS M/500 workstation running 4.3 BSD UNIX, with a 16K byte I-cache and an 8K byte
D-cache. This is claimed to be a "4 to 5 mips" machine.

6.2.1. Performance Analysis
We collected the following data for both VAX and MIPS:

• code size

• code density

52 CMU/SEI-87-TR-25

• bcpl execution speed

• cgmips execution speed

• assembler execution speed.

These figures and appropriate totals and ratios are given below, along with explanatory text.

6.2.1.1. Code Size

Module 1 2 3 4 Total

Bytes 4234 4293 4894 2482 15903

Instructions 1025 1192 1304 642 4163

Bytes/Instr 3.80

Table 6-1: Results of cgmips Compiled on the VAX

The code size in table 6-1 includes case statement jump tables; without them the average bytes per
instruction is 3.64. Note that each entry in such a table occupies 2 bytes on the VAX but 4 bytes on
the MIPS.

Module 1 2 3 4 Total

Bytes 6420 6112 7480 3756 23768

Instructions 1448 1502 1818 837 5605

Bytes/Instr 4.24

Table 6-2: Results of cgmips Compiled on the MIPS

The code size in table 6-2 includes case statement jump tables; without them, the average bytes per
instruction is 4.00. However, this figure excludes any code expansion in the assembler reorganizer.
Initial measurements showed this expansion to be considerable (over 40%; see section 3.2);
however, much of this expansion was due to assembler decisions that were not entirely appropriate.
After making changes in the Assembler source, and minor changes in the order in which the code
generator emitted instructions, we were able to reduce the expansion to 25%, and we believe that
further work could reduce it to about 9%. This is discussed below.

6.2.1.2. Code Density

by bytes. 1.50 (1.90 after assembly)

by instructions. 1.35 (1.70 after assembly)

Table 6-3: Code Expansion MIPS / VAX

Note that the VAX code density is very high because the code generation strategy uses, wherever
possible, address modes with short offsets. The density of the output of pcc, for example, is sub-
stantially lower.41 On the average, execution of each VAX instruction required about eight cycles.
Execution of each MIPS instruction required a little more than one cycle.

41An average of 5.66 bytes per instruction for our benchmarks.

CMU/SEI-87-TR-29 53

6.2.1.3. BCPL Execution Speed
Execution speed is given in terms of user process time as measured by UNIX. Since both machines
were workstations with a single user, this correlates quite closely with elapsed time.

cgmips compiled from source to Ocode, on VAX

Module 1 2 3 4 Total

Time (sec.) 15.2 15.8 17.5 7.8 56.3

This is approximately 5000 lines/min.

cgmips compiled from source to Ocode, on MIPS

Module 1 2 3 4 Total

Time (sec.) 3.0 3.0 3.6 1.4 11.0

This is approximately 25000 lines/min. Overall, this program executes 5.1 times as fast on MIPS.

6.2.1.4. Cgmips Execution Speed

cgmips compiled from Ocode to Assembler, on VAX

Module 1 2 3 4 Total

Time (sec.) 9.7 10.8 15.8 5.5 41.8

This is approximately 6000 lines/min.

cgmips compiled from Ocode to Assembler, on MIPS

Module 1 2 3 4 Total

Time (sec.) 2.1 2.6 3.2 1.3 9.2

This is approximately 28000 lines/min. Overall, this program executes 4.5 times faster on MIPS.

6.2.1.5. Combined Execution Speed

cgmips compiled from source to Assembler, on VAX

Module 1 2 3 4 Total

Time (sec.) 24.9 26.6 32.3 13.3 97.1

This is approximately 2600 lines/min.

cgmips compiled from source to Assembler, on MIPS

Module 1 2 3 4 Total

Time (sec.) 5.1 5.6 6.8 2.7 20.2

This is approximately 13000 lines/min. Overall, the compiler and code generator execute 4.8 times

54 CMU/SEI-87-TR-25

faster on the MIPS. For small programs (less than 32k bytes), this is probably an accurate reflection
of the intrinsic speed of the machine.

6.2.1.6. Assembler Execution Speed
This comparison is different from the previous tests. We measured the time taken to assemble
cgmips on both VAX and MIPS, using in each case the native Assembler program. There are several
points to note:

1. Both programs had to have several bugs fixed, which should not have affected their
speed.

2. The two programs are assembling different input files, and the VAX input is about 25%
smaller. However, the files contain functionally equivalent programs.

3. We are measuring the combined effect of the hardware speed and the software perfor-
mance.

cgmips assembled from Assembler to Object, on VAX

Module 1 2 3 4 Total

Time (sec.) 4.6 4.1 4.9 3.0 16.6

This corresponds to a rate of assembly of approximately 14000 lines/min.

cgmips assembled from Assembler to Object, on MIPS

Module 1 2 3 4 Total

Time (sec.) 14.1 12.1 14.5 8.7 49.4

This corresponds to a rate of assembly of is approximately 6700 lines/min. Overall, the MIPS as-
sembler takes three times as long as the VAX assembler for the same program, or more than twice
as long for the same number of instructions. Since it is executing on a machine intrinsically almost
five times faster, this represents a difference in software performance of more than an order of
magnitude.

Granted, the MIPS Assembler is doing more – for example, it is performing the code reorganization
required by the target. Nevertheless, the above data represent an example of how software can
degrade objective performance faster than hardware can enhance it.
The full compilation times are:

• cgmips compiled from Source to Object, on VAX: 113.7 sec

• cgmips compiled from Source to Object, on MIPS: 69.6 sec

On VAX, the assembler pass takes less than 15% of the time; on MIPS, it takes more than 70% of the
time.42

42According to Larry Weber at MIPS, the reason that this pass takes so long is due to the assembler front end. With MIPS

compilers, this stage is bypassed altogether, with the compiler back ends calling the assembler middle end directly. If BCPL
took this approach, these times would be appreciably reduced.

CMU/SEI-87-TR-29 55

6.2.2. Instruction Reorganization on MIPS

When the generated MIPS code of cgmips was first submitted to the reorganizer, the number of
instructions increased from 5605 to 8116 (by 44.8%). This was a far greater expansion than we had
expected, and reasons were sought.

Our first observation was that the reorganizer was generating the full 32-bit addressing idiom for all
static operands, even though the code generator was following the rules for generating only
gp-relative static data. The error was traced to a bug in the assembler; when this was fixed, the
number of lui instructions generated was reduced from 1086 to 136.

A further reduction could be made by observing that the assembler, though now generating single
instructions for loads and stores of most static data, still accessed local static data using two instruc-
tions. This was traced to an interesting feature: the assembler correctly handled gp-relative ad-
dresses only for operands declared before the operation referencing them (see section 9). Making
this fix replaced 125 lui/addi pairs with 125 simple li instructions.

This left the reorganized code count at 7041, an expansion of 1435 instructions (25.6%). These
extra instructions exhibit the pattern shown in figure 6-1:

Figure 6-1: Extra Instructions - Pattern of Use

However, even these figures are too high. For reasons explained in section 3.2, the reorganizer
must make very pessimistic assumptions about whether it is safe to rearrange load and store instruc-
tions. Accordingly, it often generates a nop to fill a load delay, when in fact another instruction could
be placed there. It also has some problems filling branch delays.

We did not perform a full analysis, but a study of a sample of the 1209 nop instructions generated
suggests that about 70% could be removed by a reorganizer that had more information about
aliasing and block structure, reducing the count to about 360.

Of the 226 other extra instructions, several could be removed by combining reorganization with code
generation. For example, the reorganizer always loads a constant operand of a conditional branch
into register at; the code generator could track this value and/or use more than one temporary
register. A sampling suggests that about 40% of these instructions could be removed, leaving about
135.

56 CMU/SEI-87-TR-25

Taken together, all these changes would reduce the reorganization penalty to about 500 instructions,
or a little less than 9%.

6.2.3. Instruction Set Usage – MIPS

The usage pattern for MIPS instructions, address modes, and registers is given in the following
tables. These figures are for code compiled from a simple systems implementation language. Su-
perscripted numbers refer to notes at the end of these tables.

lbu 6 0.1%

lw 1799 25.6%

li 415 5.9%

lui 11 0.2%

Load 2231 31.7%

sb 9 0.1%

sw 902 12.8%

Store 911 12.9%

move 262 3.7%1

Move 3404 48.3%

add 125 1.8%

addi 536 7.6%

addiu 9 0.1%

addu 7 0.1%

sub 69 1.0%

multu 5 0.1%

sll 84 1.5%2

div 7 0.1%

mflo 10 0.2%3

mfhi 2 0.0%

Arithmetic 854 12.1%

nor 8 0.1%

and 5 0.1%

andi 10 0.2%

or 1 0.0%

ori 1 0.0%

xor 15 0.2%

sllv 3 0.1%2

srl 6 0.1%

srlv 2 0.0%

Logical 51 0.7%

slt 8 0.1%

sltiu 11 0.2%

Boolean 19 0.3%4

Compute 924 13.1%

slt 49 0.7%

slti 33 0.5%

beq 184 2.6%

bne 201 2.9%

bltz 31 0.4%

blez 2 0.0%

bgtz 0 0%

bgez 14 0.2%

Cbranch 514 7.3%

b 320 4.5%

jr 130 1.8%5

Ubranch 450 6.4%

bgezal 1 0.0%

jalr 539 7.7%

Call 540 7.7%6

Control 1504 21.4%

Noop 1209 17.2%

Total 7041 100%

Table 6-4: Instruction Counts – MIPS

CMU/SEI-87-TR-29 57

Notes

1. A move from one register to another is suspect, since it might be due to inadequate
targeting. These instructions were checked by hand, and 38 were found to be remov-
able by arbitrarily better code generation (14% of the moves or 0.5% of the code). The
remainder were genuine.

2. Most left shifts are optimizations of multiplication and are counted as arithmetic; only a
few are true logical shifts.

3. Every mul or div must be followed by a mflo or mfhi to collect the results of the
product, quotient, or remainder.

4. This is a false picture. In several places, the source code uses a conditional statement
returning TRUE or FALSE instead of a pure Boolean expression. Hand checking shows
that there should be about three times as many uses of these instructions (about 1%
overall).

5. This is 121 procedure returns, 2 true jumps, and 7 case statements implemented as
jump tables. Each procedure has exactly one return jump: in order to improve com-
parability with cgvax, we inhibited code hoisting.

6. This is 540 calls in 121 procedures.

If the nop instructions are excluded, the instruction mix is as shown in figure 6-2:

Figure 6-2: BCPL / MIPS M/500 Instruction Mix

This figure shows a fairly typical pattern for a load/store machine. The approximate breakdown of
60% load/store, 15% compute, and 25% control is not unfamiliar. However, it underlines the need
for good data caching and wide bandwidth to memory. The high proportion of control instructions is
typical of systems code; it shows that a good branch cache or instruction cache is desirable.

The proportion of stores to loads is about 2 : 5, and stores are about 27% of all moves. This is a little
higher than one would expect; the reason is that register tracking is eliminating a lot of loads. In
detail, we save:

• 570 loads of 0,+1,-1

• 2 loads of other values

• 425 loads from memory

for a total of 997. This is a saving of over 30%.

58 CMU/SEI-87-TR-25

The very small number of byte loads and stores seems surprising, since the program being analyzed
reads and writes text files. However, almost all the code treats strings as atomic objects passed by
reference; only in a few primitive routines are the individual characters accessed.

Overall, the only instructions that seem underused are the Boolean seq group. As noted, this is
partly an artificial result; but at best they would be used only 1% of the time. However, in the true
MIPS architecture, they are used to implement some of the branch macro-instructions, so they prob-
ably come for free. Moreover, if they were absent, the code sequence that the compiler would have
to generate would be quite expensive.

The nor instruction was never generated by cgmips even though a specific optimization was added
to look for a chance to use it. It appears in the reorganized code only as the translation of not.

Address Mode Usage

Conceptual Physical

Constant 2689 21.2% Immediate 2119 16.7%

Local 1461 11.5%1 Absolute 0 0.0%4

Protocol 865 6.8%2 Register 7822 61.8%

Static 1105 8.7% Based 2716 21.5%6

Indirect 297 2.3%3

Temporary 6240 49.3%

Total 10166 100% Total 10166 100%

Table 6-5: Address Mode Usage – MIPS

In addition, there were 753 branch targets.

CMU/SEI-87-TR-29 59

Offset and Constant Sizes

Constant, 0 358

Constant, +1 152

Constant, -1 605

Immediate, 16 bits 2115

Immediate, 32 bits 4

All Numbers 2689

Stack-based, 16 bits 1467

Stack-based, 32 bits 0

pointer-based, no offset 120

pointer-based, 16 bits 177

pointer-based, 32 bits 0

Table 6-6: Offset and Constant Sizes – MIPS

Notes

1. The distribution between value moves and address loads is:

Value Address Total

Local 1455 6 1461

Static 968 137 1105

2. This refers to operations implementing the procedure entry/exit protocol.

3. This includes all pointer, structure, and array references.

4. The Absolute address mode cannot be generated by this language.

5. Recall that -1 is the BCPL representation of TRUE.

6. Based address mode is of the form displacement (register).

This data is a compelling vindication of the RISC design. The machine has just three data address
modes, and they are used in the ratio 17% : 62% : 21%. In fact, register tracking, and the use of
three registers to hold constants, inflates the middle figure – for unoptimized code the pattern would
be closer to 21% : 53% : 26%. Note that 50% register operands is the minimum possible, since a
simple assignment generates two memory references and two register references, while any more
complicated expression generates more register references than memory references.

The li instruction adds a 16-bit immediate value to the contents of a register and loads the result.
This allows it to serve as a load address instruction, and it appears in the high level instruction set as
la. This is clearly a good idea: over 6% of references to based addresses use this idiom.

Inspection of the generated code shows just two places where some further economy could be
achieved:

60 CMU/SEI-87-TR-25

1. The only way to access static tables with a short address mode was to put them in the
.sdata segment, even though they were conceptually read-only. This could be
ameliorated by having a PC-relative address mode, or by allowing the user to set up
global base registers.

2. The majority of the conditional branches were of the form "compare register and small
constant". A true MIPS instruction that implemented

<conditional-branch> <register> <immed> <destination>

would be very useful, though we agree it would be hard to fit into 32 bits. With the
present machine, this expands into two true instructions (8 bytes); by contrast, the
same idiom on the VAX usually takes 5 bytes.

The pattern found for immediate values and offsets confirms that a mode with a 32-bit offset is
unnecessary. However, it would be helpful if the MIPS assembler allowed the programmer to use
general registers as global base registers, instead of keeping this ability strictly to itself (and not
using it to best advantage).

6.2.4. Register Usage – MIPS

The Ocode code generator uses u0 through u13 as accumulators and for parameter passing. Up to
14 parameters are passed in registers; any additional parameters are passed on the stack. Results
are returned in u0. The same registers are used in round-robin fashion for temporaries, starting with
u0 for the first temporary of each basic block. All registers are tracked across linear code and
non-looping control structures. All accumulators are assumed destroyed by a procedure call. (This
is not the protocol of the other MIPS compilers.)

The registers rz, ru, and rm always hold the values 0, +1, and -1, respectively. Register rp is the
Ocode stack pointer rl is the return link register, and rw is a work register.

The accumulator pattern is, as expected, very close to a negative-binomial distribution. It illustrates
well the way benefits rapidly diminish with this allocation strategy. Interprocedural register allocation
would be a better (but harder) strategy.

There are 2409 references to the Ocode stack pointer, rp. Of these, 1461 are accesses to local
variables, and 942 are generated by 471 instructions to raise or lower the stack. The stack is moved
by the caller before and after every procedure call; canonically that would be 2*540 = 1080 moves,
but optimizations remove 609 of them (56.8%), giving a much faster protocol than the conventional
one in which the called procedure moves the stack.

The temporary register rw is used during a procedure call. This is necessary because BCPL calls
procedures indirectly through a transfer vector, so the call sequence is:

lw rw, procoffset(vector)
jalr rw

giving 2*539 = 1078 uses of rw for 539 calls of external procedures.

CMU/SEI-87-TR-29 61

Register Usage

Accumulators Special Registers

u0 1778 rz 358 (holds 0)

u1 912 ru 152 (holds +1)

u2 542 rm 60 (holds -1
or TRUE)

u3 366 rp 2409 (stack pointer)

u4 250 rw 1078 (temporary)

u5 157 rl 363 (return link)

u6 120 gp 1096 (MIPS sdata
base register)

u7 79

u8 66

u9 50

u10 38

u11 24

u12 21

u13 15

Total 4418 Total 5516

Table 6-7: Register Usage – MIPS

6.2.5. Instruction Set Usage – VAX

Here are the same data for the VAX, using the same source program, but compiled by bcpl and
cgvax. It is much harder to understand these tables, since there are many special idioms that
perform actions that are not obvious. For example, a constant can be loaded into a register by any
of the following:

clrl r0
movl #1,r0
mcoml #63,r0
movzbl #200,r0
cvtbl #-100,r0
movzwl #300,r0
cvtwl #-200,r0

and a constant can be added to a register by:
incl r0
decl r0
addl2 #2,r0
subl2 #2,r0
moval 100(r0),r0

Although there are other methods for achieving these results, the reader is assured that each ex-
ample is indeed the shortest way to accomplish that operation with that specific constant.

62 CMU/SEI-87-TR-25

The Ocode code generator uses jsb exclusively for calls, and builds its own stack on r12. There
are therefore no occurrences of callx, pushx, ret, or rsb.

movb 1 0.0%

clrb 1 0.0%

clrl 137 3.3%

clrq 1 0.0%

movl 1194 28.7%

movq 107 2.6%

mcoml 58 1.4%1

cvtbl 0 0.0%

cvtwl 0 0.0%

cvtlb 7 0.2%

movzbl 21 0.5%2

movzwl 5 0.1%

moval 132 3.1%3

Move 1664 40.0%

mnegl 9 0.2%

incl 32 0.8%

addl 300 7.2%

decl 28 0.7%

subl 212 5.1%

moval 28 0.7%3

tstl 44 1.1%4

mull 21 0.5%

divl 5 0.1%

emul 2 0.0%

ediv 2 0.0%

Arithmetic 683 16.4%

mcoml 8 0.2%1

bisl 1 0.0%

bicl 14 0.3%

xorl 4 0.1%

rotl 0 0.0%

ashl 3 0.1%

ashq 1 0.0%

extv 0 0.0%

extzv 7 0.2%

insv 0 0.0%

Logical 38 0.9%

Compute 721 17.3%

tstl 105 2.5%4

cmpl 266 6.4%

bitl 0 0.0%

cmpv 0 0.0%

cmpzv 0 0.0%

Compare 371 8.9%

beql 99 2.4%

bneq 182 4.4%

blss 38 0.9%

bgtr 28 0.7%

bleq 32 0.8%

bgeq 24 0.6%

blssu 0 0.0%5

bgtru 0 0.0%

blequ 0 0.0%

bgequ 0 0.0%

casel 12 0.3%6

Cbranch 415 10.0%

brb 257 6.2%

brw 74 1.8%

jmp 121 2.9%7

Ubranch 452 10.9%

bsbb 0 0.0%

bsbw 1 0.0%

jsb 539 13.0%

Call 540 13.0%8

Control 1778 42.7%

Total 4163 100%

Table 6-8: Instruction Usage – VAX

CMU/SEI-87-TR-29 63

Notes

1. Most uses of mcoml are to load a small negative number, and these are considered
moves. A few are genuine bitwise complement operations, and so are considered
logical.

2. Most uses of movzbl, and all uses of movzwl, are to load medium-sized constants.

3. Some uses of moval were to add a constant to a register, and these are considered
adds. The remainder are genuine moves of addresses.

4. The idiom tstl (r12)+ is sometimes used to add 4 to the Ocode stack pointer.
These are considered additions; the other occurrences of tstl are true tests.

5. This language cannot generate unsigned comparisons.

6. That is, one for each case statement implemented as a jump table. The code gener-
ator algorithm for choosing between a table and a sequence of tests depends on the
number of cases and their sparsity. Since the VAX form of the jump table is half the
size of the MIPS form, this algorithm chooses jump tables more often on the VAX.

7. The jmp instruction is used only to implement a procedure return. This version of
cgvax did not support any code hoisting; there are therefore 121 returns in 121
procedures.

8. This is 540 calls in 121 procedures.

This is a different pattern from that found on the MIPS. The main differences of interest are dis-
cussed in the next section.

64 CMU/SEI-87-TR-25

Address Mode Usage

Conceptual Physical

Constant 1380 22.5%1 Literal 982 16.4%

Local 1181 19.2%2 Indexed 68 1.1%

Protocol 363 6.0% Register 1946 32.5%

Static 1094 17.8%3 Reg deferred 47 0.8%5

Indirect 245 4.0% AutoDecrement 124 2.1%6

Indexed 68 1.1%4 AutoIncrement 143 2.4%6

Temporary 1808 29.4% AutoInc deferred 121 2.0%6

Displacement 1798 30.0%

Disp deferred 539 9.0%7

Immediate 93 1.6%

Absolute 0

Relative 126 2.1%

Rel deferred 0

Total 6139 100% Total 5987 100%

Table 6-9: Address Mode Usage – VAX

In addition, there are 720 branch addresses.

CMU/SEI-87-TR-29 65

Offset and Constant Sizes

Constant, 0 (clr/tst) 245

Constant, +1 (inc/dec) 608

Literal, 6 bits 982

Immediate, 8 bits 84

Immediate, 16 bits 5

Immediate, 32 bits 4

Stack-based, 8 bits 1146

Stack-based, 16 bits 35

Stack-based, 32 bits 0

Pointer-based, no offset 47

Pointer-based, 8 bits 175

Pointer-based, 16 bits 23

Pointer-based, 32 bits 0

Table 6-10: Offset and Constant Sizes – VAX

Notes

1. Of these, 245 zeros are elided into clr or tst instructions, and 60 occurrences of
unity are elided into inc or dec, leaving 1075 explicit constant operands.

2. Of these, 1172 are to load or store plain values, 6 are to generate the address of local
variables, and 3 are indirect accesses through a local pointer.

3. Of these, 422 are plain loads and stores, 126 are to generate addresses, and 536 are
indirect accesses through a pointer.

4. An indexed operand also has a base address that is a second logical operand. The
base operands are distributed thus:

• Temporary – 2

• Static pointer – 35

• Local pointer – 31.

5. Plus 2 that are base addresses of index mode.

6. These modes are never generated for true operand access. They occur only as part of
the procedure entry/exit protocol and as special idioms.

7. Plus 66 that are base addresses of index mode.

8. It is advantageous on the VAX to avoid small negative numbers, e.g.,:

addl #-1,r0 → subl #1,r0
movl #-1,x → mcoml #0,x

Hence, the constant -1 rarely occurs in the generated code.

66 CMU/SEI-87-TR-25

These statistics are very confusing. However, two things seem clear. First, the 8-bit offset mode,
and the 6- and 8-bit literal modes, amply justify themselves. They account for 96% of all offsets and
99% of all literals.

Secondly, the majority of the address modes are hardly ever used. If we exclude the modes
generated only by hand-crafted protocol sequences, then just three modes – literal, register, and
displacement – account for almost 80% of all operands. The most significant remaining mode –
displacement deferred – is generated only by the BCPL calling sequence for external procedures.

6.2.6. Register Usage – VAX

The Ocode code generator uses r0 through r7 as accumulators and for parameter passing. Up to 8
parameters are passed in registers; any additional parameters are passed on the stack. Results are
returned in r0. The same registers are used in round-robin fashion for temporaries, with the exact
same conventions as on the MIPS. The register pair <r7,r8> is used as a special accumulator for
instructions that require two registers, such as ashq or ediv.

Register r12 is the Ocode stack pointer, used to address local variables. Register r10 is the static
database pointer, which has much the same purpose as gp on the MIPS. The hardware stack
pointed to by sp is never used, but the return link must be popped off it on entry to every procedure,
hence there are 121 references.

Register Usage

Accumulators Special Registers

r0 1187 r10 993

r1 369 r12 1941

r2 141 sp 121

r3 56

r4 29

r5 15

r6 0

r7 8

r8 3

Total 1808 Total 3055

Table 6-11: Register Usage – VAX

Once again, the pattern of accumulator usage is typical. VAX code generation seems to require far
fewer registers than MIPS code generation, but this is largely a figment of the round-robin strategy
which tries to avoid reusing registers when fresh ones are available. Further analysis shows that 6
registers on VAX, or 8 on MIPS, would be enough to allow both good register tracking and efficient
expression evaluation. Note, however, that the code generator does not bind local variables to
registers.

CMU/SEI-87-TR-29 67

There are 1941 references to the Ocode stack pointer, r12. Of these, 1181 are references to local
variables, 242 are part of the procedure entry/exit protocol, and the rest are generated by 475 in-
structions to move the stack. The strategy on the VAX is the same as on MIPS: the caller moves the
stack, and of the canonical 1080 moves required by 540 calls, the code generator can remove 605
(56.2%). This optimization leaves the stack pointer biased between two successive procedure calls;
access to local variables then uses a negative offset from it. The possibility of this optimization is
one reason for preferring offsets from a base register to be signed.

6.2.7. Architectural Comparison

6.2.7.1. Move Versus Load/Store
The VAX instruction breakdown shows far fewer move instructions. This is, of course, because the
MIPS is a load/store machine, whereas the VAX may be used as a multi-address machine. Thus, a
simple copy

a := b

is two instructions on MIPS

lw reg,a
sw reg,b

but one instruction on the VAX

movl a,b

And a simple addition
a := a+b

is four instructions on MIPS

lw r1,a
lw r2,b
add r2,r2,r1
sw r2,a

but again only one instruction on the VAX

addl2 b,a

The effect of this is to inflate the number of moves. However, this effect is mitigated by optimization.
If the value in A is to be used again, it is often better to compute that value in a register:

addl3 a,b,r0
movl r0,a

A sampling of the code shows that about one-half of the "extra" MIPS moves were used to load the
right operand of an operation, confirming the popular view that a general-register one-address or-
ganization is the best compromise between instruction density and simplicity. A load/store machine
generates more instructions but can perform better overall because, since the fetch of an operand is
not tightly coupled to its use, the fetch delay can be overlapped with useful work.

68 CMU/SEI-87-TR-25

6.2.7.2. Three-Address Idiom
Another feature of the VAX is the "three-address" instructions that allow one, for example, to translate

a := b + c

as
addl3 b,c,a

These are available for most dyadic operations, and their pattern of use is shown in table 6-12.

Instruction 3-address Total

addl 38 300

subl 38 212

mull 8 21

divl 5 5

bisl 0 1

bicl 11 14

xorl 2 4

Total 102 (18.3%) 557

Table 6-12: Three Address Mode Usage

The code generator tries very hard to generate the three-address form to save register traffic.
However, on the basis of these figures, it is barely worth having: it saved about 6% of the move
instructions.

6.2.7.3. Condition Codes and Branches
The pattern of conditional branches is slightly different between MIPS and VAX. This is because
cgvax looks for idioms such as:

• x ≥ 1 → x > 0 (saves 1 byte)

• x ≥ 64 → x > 63 (saves 4 bytes)

There are fewer branches overall because the VAX code implements more case statements as jump
tables, and because the VAX case instruction includes a range check.

However, the VAX code has a far higher proportion of control instructions. One reason is that there
are fewer instructions overall, so the same number of control transfers is a larger proportion. But
there are also absolutely more such instructions: 1778 versus 1504.

This difference is almost entirely because of the tstl and cmpl instructions. The code generator
slaves the condition codes religiously, both through linear code and across control transfers.
Nevertheless, of 415 conditional branches, 371 (almost 90%) required a prior test or compare to set
the condition codes; of 2169 normal instructions that set the condition codes, only 44 (about 2%) did
so to any purpose. It is hard to avoid the conclusion that condition codes are a waste of time, effort,
and silicon.

CMU/SEI-87-TR-29 69

The MIPS machine is not perfect, however. First, because a full set of conditional branches is not
available, 82 "set" instructions had to be generated to prepare for 432 branches. There is another,
more difficult, problem. The most common kind of test in the program being analyzed is:

IF <component-of-structure> = <small-constant> THEN...

where the small constant represents a value of a scalar type. If we assume that a pointer to the
structure is already in a register, then the VAX code looks like:

cmpl offset(r1), #constant
bneq else

which is 2 instructions and 6 bytes. The MIPS code looks like:
lw u2, offset(u1)
li at, constant
bneq u2, at, else

which is 3 instructions and 12 bytes. The first instruction is a consequence of the load/store architec-
ture, and can sometimes be optimized out. The second instruction is necessary because the branch
operations do not take an immediate operand. Note also that it might be necessary to append a
no-op after the branch.

The MIPS instructions have room for a 16-bit relative branch, or a 16-bit immediate operand, but not
both. The VAX code is much denser, in part because it uses an 8-bit field for both the relative branch
and the immediate operand; for the MIPS to achieve a density it would have to either abandon the
fixed 32-bit instruction format or use smaller field sizes in this special case.

It seems that smaller field sizes would improve code density: over 95% of constants would fit, and
over 90% of branch destinations (in fact, 12% of the branches on the VAX are not within 8-bit range,
but that is with a relative byte address; MIPS uses a relative word address). These branch instruc-
tions are perhaps the part of the MIPS order code that suffers most from the simplification of the
RISC design.

6.2.7.4. Index Mode
The number of adds and left shifts is much lower on the VAX because of the scaled-index mode. For
a simple language, where nearly all arrays have word-sized components, this mode can be used for
most array references. For example, to load the value of ary[i] into a register:

VAX:
movl i, rx
movl @ary[rx],r0

Mips:
lw rx,I
sll rx,rx,2
add rx,rx,ary
lw u0,0(rx)

There are in fact 68 occurrences of this mode in a total of 3930 operand references (1.7%).

The existence of a scaled-index mode cannot be justified by these figures. But this is systems code,
which has few arrays references. However, compilers for scientific languages implement very

70 CMU/SEI-87-TR-25

sophisticated loop induction optimizations, which tend to eliminate the need for index scaling.
Moreover, the mode is useless for arrays whose components are size other than 1,2,4, or 8 bytes.

6.2.8. Local Conclusions
We can draw the following tentative conclusions:

1. For simple systems programming, a RISC machine is as effective as a CISC machine,
and potentially a lot faster.

2. Leaving aside code reorganization, it is certainly no harder to generate code for a
RISC machine, and in many respects it is easier. Moreover, a preliminary study of the
problem suggests that reasonable code reorganization can be added with little extra
effort.

3. In the main areas where RISC machines differ from CISC – simpler instructions, fewer
address modes, no side effects – the RISC design is rarely inferior and usually supe-
rior.

4. However, the basic system software of the machine must be fast and efficient.

In addition, the specific claims made about the RISC machine under study are corroborated by this
work.

6.3. Dynamic Analysis of Compilers

In this section we describe a brute-force analysis of the code generated by the MIPS and VAX com-
pilers. This section contrasts the approach taken in section 6.2, which instrumented a compiler and
examined the output. Here, we look at the instruction mix that is output by the compilers in response
to two sets of input: a set of integer application programs, and a single large floating point applica-
tion.

6.3.1. Instruction Use by Integer Applications
The first test we subjected the compilers to was the compilation of a set of integer application
programs. The three programs we chose were:

1. csh – the UNIX C-Shell. This program is a command interpreter whose function is to
scan user commands and run system and user programs. This program consists of
nearly 16,000 lines of source code and comments.

2. vi – a UNIX visual editor. This program is a terminal-independent screen editor. It
provides all of the standard editor functions in a screen optimal fashion, updating as
each change is made. This program contains over 20,000 lines of source code and
comments.

3. uboat – a proprietary authoring language. This program provides a terminal inde-
pendent foundation for writing computer aided courseware, menu systems, and
demonstration drivers. It contains of almost 10,000 lines of source code and com-
ments.

These three programs were chosen as reasonable representatives of integer-based application
programs. By their very nature, none of them are highly compute intensive, although they do per-
form a great deal of data manipulation. We present the statistics for the three programs together,

CMU/SEI-87-TR-29 71

rather than inundating the reader with individual analyses. In truth, the compiler generated roughly
the same instruction mix for each program, so we present the average mix for each compiler.

6.3.1.1. Analysis of MIPS C Compiler
Table 6-13 shows the instruction mix generated for the three integer applications. We list the actual
MIPS M/500 instructions that were generated instead of the high-level instruction set. The reason for
this is that the low-level instructions are the ones that are actually executed, thus, their frequency of
occurrence is much more significant than the high level macro instructions.43

43The instruction counts shown in table 6-13 correspond to the output of the compiler at optimization level 4 (this includes
cross module register allocation and optimization, and requires that all modules be compiled together). We also did not count
the instructions in the run-time libraries or the C initialization or finalization routines.

72 CMU/SEI-87-TR-25

lb 13 0.02%

lbu 1778 2.32%

lh 2130 2.77%

lhu 159 0.21%

li 3871 5.04%

lui 1259 1.64%

lw 9650 12.57%

lwc1 6 0.01%

Load 18866 24.57%

sb 930 1.21%

sh 1213 1.58%

sw 5656 7.37%

swc1 2 0.00%

Store 7801 10.16%

cvt.d.s 14 0.02%

cvt.s.d 5 0.01%

cvt.w.d 3 0.00%

mfc1 3 0.00%

mfhi 40 0.05%

mflo 103 0.13%

move 6635 8.64%

mtc1 11 0.01%

Shuffle 6814 8.87%

Move 33481 43.61%

add.d 3 0.00%

addiu 7032 9.16%

addu 1098 1.43%

div 85 0.11%

divu 3 0.00%

mul.d 5 0.01%

multu 42 0.05%

sll 1367 1.78%

sllv 10 0.01%

sra 762 0.99%

srav 4 0.01%

srl 5 0.01%

subu 549 0.72%

Arithmetic 10965 14.34%

and 85 0.11%

andi 1003 1.31%

nor 3 0.00%

or 24 0.03%

ori 206 0.27%

xor 32 0.04%

xori 87 0.11%

Logical 1440 1.87%

cfc1 6 0.01%

ctc1 6 0.01%

slt 383 0.50%

slti 286 0.37%

sltiu 282 0.37%

sltu 499 0.65%

Boolean 1462 1.90%

Compute 13889 18.12%

beq 4096 5.34%

bgez 219 0.29%

bgtz 92 0.12%

blez 181 0.24%

bltz 154 0.20%

bne 3325 4.33%

CBranch 8067 10.50%

b 2992 3.90%

break 113 0.15%

jr 1041 1.36%

UBranch 4146 5.40%

jal 6090 7.93%

jalr 37 0.05%

Call 6127 7.98%

Control 18340 23.89%

nop 11074 14.43%

Total 76762 100%

Table 6-13: Integer Application Instruction Usage – MIPS

The first observation we make is that there is a distressingly large number of nop instructions in the
final executable code – over 14% of the total instruction count are nops. Figure 6-3 displays the
instruction mix in graphical form.

Although the MIPS compiler is generating fairly good code, a more sophisticated code generator
could create programs that run another 10% faster (based on the work described in section 6.2.2,
page 55).44

44It should be noted that while the instruction mix shown in figure 6-13 represents the instruction frequencies that are
present in the executable image, and not necessarily the frequency of instructions that are executed, we have found that the
concurrence between these two figures is usually very high.

CMU/SEI-87-TR-29 73

Figure 6-3: Instruction Distribution – Integer Applications

When the nop instructions are excluded, the resulting instruction mix follows the pattern shown in
figure 6-4.

Figure 6-4: Instruction Distribution – Integer Applications (Minus nops)

This instruction breakdown correlates roughly with the mix shown in figure 6-2 on page 57. In these
examples, however, the ratio of compute instructions to move instructions is somewhat higher than
the standard 15 : 25 mix of a load/store architecture. This is attributable to three factors:

1. The applications use more dynamic (i.e., local or register) variables than static vari-
ables; thus, fewer load/store operations are necessary.

2. The applications themselves are performing more computational actions than the stan-
dard program.

3. Perhaps more likely the MIPS compilers are sufficiently well tuned to efficiently reduce
the total number of load/store operations that need to be performed, and instead turn
the major effort more towards actual computation. We feel that this is a more likely
explanation, since the level 4 optimizer has an interprocedural optimizer and register
allocation mechanism (a feature that is lacking in the BCPL compiler discussed in
section 6.2).

The address mode usage by these integer applications is shown in table 6-14. These figures cor-
respond very closely to those in table 6-5 on page 58. This is not surprising, since all the application
programs are similar in their general nature.

74 CMU/SEI-87-TR-25

Address Mode Usage

Immediate 27333 19.2%

Absolute 6089 4.2%

Register 87085 61.2%

Displacement 21537 15.1%

Floating-point 102 <0.1%

Total 142146 100%

Table 6-14: Address Mode Usage – Integer Applications on MIPS

Examining the register usage pattern shown in table 6-15 shows a number of interesting things:

• The large number of direct references to the stack pointer sp is caused by every routine
moving the stack at entry and exit with an addiu instruction. There are two references
to sp per instruction, and if the number of references is divided by 4, the result is
3660 / 4 = 915, the number of procedures defined in the three applications.

• The even larger number of indirect references to sp are caused by saving and restoring
local registers per procedure.

• Because the compiler partitions registers into classes (rather than considering them
identical), some observations about register usage are muddied. However, we may
make the following general statements:

• Temporary registers are allocated on a round-robin basis, and so show a fairly
uniform distribution of use. Registers t6, t7, and t8 are usually allocated first,
and thus their reference count is a fraction higher than the other temporaries.

• The saved registers s0 through s9 are used for local variables and must be
saved across procedure calls. They are allocated in order and show a steadily
decreasing frequency of reference from s0 through s9, indicating that there are
more procedures with a small number of local variables than there are with a
large number of them.

• The number of references to the argument registers follows a pattern that sup-
ports our statements in footnote 29 on page 36, to the effect that most procedures
are called with four or less parameters. The number of references to a3 (the
fourth parameter register) account for less than 3% of the total references to the
argument registers.

• The assembler temporary register at is used in 8% of all direct register references,
indicating a fairly high percentage of interaction with the assembler reorganizer. It is
likely that a large fraction of these references (and their instructions) could be eliminated
were the compilers to deal directly with the low level instruction set, instead of the high-
level macro instruction set.

• The kernel registers k0 and k1 are never referenced (not surprisingly). They are used
exclusively by the MIPS UNIX kernel.

CMU/SEI-87-TR-29 75

Integer Floating Point

Register Value Offset Register Total

zero 7431 0 f0 2

at 7164 514 f1 0

v0 8732 419 f2 0

v1 4015 241 f3 0

a0 7668 290 f4 10

a1 3870 110 f5 0

a2 1634 57 f6 10

a3 372 16 f7 2

t0 1681 99 f8 8

t1 1526 136 f9 0

t2 1355 79 f10 8

t3 1310 62 f11 0

t4 1283 65 f12 0

t5 1168 73 f13 0

t6 2659 142 f14 0

t7 2377 116 f15 0

s0 6329 977 f16 14

s1 4196 759 f17 2

s2 3150 265 f18 8

s3 2193 149 f19 2

s4 1417 83 f20 20

s5 1166 58 f21 4

s6 875 19 f22 0

s7 708 13 f23 0

t8 2070 114 f24 0

t9 1891 112 f25 0

k0 0 0 f26 0

k1 0 0 f27 0

gp 1745 7705 f28 0

sp 3660 8853 f29 0

fp/s8 577 11 f30 0

ra 2823 0 f31 12

hi 40 0

lo 0 0

Total 87075 21537 Total 102

Table 6-15: Register Usage – Integer Applications on MIPS

76 CMU/SEI-87-TR-25

6.3.1.2. Comparison with VAX UNIX C Compiler
When the same integer application programs were fed through the Berkeley VAX C compiler, the
instruction mix that was observed is shown in table 6-16.

clrb 342 0.8%
clrl 830 1.8%
clrw 293 0.6%
cvtbl 566 1.2%
cvtbw 9 0.0%
cvtdf 2 0.0%
cvtdl 2 0.0%
cvtfd 7 0.0%
cvtlb 361 0.8%
cvtld 6 0.0%
cvtlw 521 1.1%
cvtwb 5 0.0%
cvtwl 1296 2.8%
mcoml 13 0.0%
mnegb 8 0.0%
mnegl 93 0.2%
mnegw 32 0.1%
movab 118 0.3%
moval 649 1.4%
movaq 2 0.0%
movb 219 0.5%
movc3 15 0.0%
movd 5 0.0%
movl 4689 10.3%
movq 2 0.0%
movw 137 0.3%
movzbl 107 0.2%
movzbw 3 0.0%
movzwl 26 0.1%
pushab 6 0.0%
pushal 2238 4.9%
pushl 4986 10.9%

Move 17588 38.6%

addd2 4 0.0%
addl2 638 1.4%
addl3 486 1.1%
decb 1 0.0%
decl 366 0.8%
decw 29 0.1%
divd2 2 0.0%
divd3 1 0.0%
divl2 73 0.2%
divl3 104 0.2%
incb 33 0.1%
incl 640 1.4%
incw 81 0.2%
muld2 5 0.0%
muld3 2 0.0%
mull2 154 0.3%
mull3 158 0.3%
subd3 2 0.0%
subl2 459 1.0%
subl3 530 1.2%

Arithmetic 3768 8.2%

ashl 226 0.5%
bicb2 4 0.0%
bicl2 49 0.1%
bicl3 61 0.1%
bicw2 24 0.1%
bisb2 2 0.0%
bisl2 33 0.1%
bisl3 16 0.0%
bisw2 40 0.1%
extzv 25 0.1%
xorb2 2 0.0%
xorl2 6 0.0%
xorl3 3 0.0%

Logical 491 1.0%

Compute 4259 9.3%

bitb 25 0.1%
bitl 22 0.0%
bitw 71 0.2%
cmpb 420 0.9%
cmpl 2428 5.3%
cmpw 252 0.6%
tstb 641 1.4%
tstl 1756 3.9%
tstw 691 1.5%

Compare 6306 13.8%

acbl 7 0.0%
aobleq 5 0.0%
aoblss 14 0.0%
casel 30 0.1%
jbc 181 0.4%
jbcc 9 0.0%
jbs 83 0.2%
jbss 42 0.1%
jeql 2862 6.3%
jgeq 344 0.8%
jgequ 3 0.0%
jgtr 349 0.8%
jgtru 5 0.0%
jlbc 39 0.1%
jlbs 13 0.0%
jleq 383 0.8%
jlequ 1 0.0%
jlss 422 0.9%
jneq 2684 5.9%
sobgeq 12 0.0%
sobgtr 7 0.0%

Cbranch 7495 16.4%

jbr 2559 5.6%
ret 1412 3.1%

UBranch 3971 8.7%

calls 5930 13.0%

Control 23702 52.0%

Total 45549 100%

Table 6-16: Integer Application Instruction Usage – VAX

CMU/SEI-87-TR-29 77

The slightly lower percentage of move class instructions on the VAX is predictable, since the VAX is
not a load/store architecture. However, the 38.6% figure is still higher than expected. What is most
surprising is the markedly decreased number of compute instructions – a figure we expected to see
increase when the move instructions decreased. The two fractions can be brought more at a par
with each other when it is remembered that many of the addiu instructions on the MIPS M/500 are
used to calculate addresses, not actual numeric results.

The number of call instructions is roughly the same on the VAX and the MIPS M/500, although due to
the decreased number of instructions required on the CISC VAX, they comprise a larger percentage
of the total. The larger fraction of conditional branches on the VAX is compensated somewhat on the
MIPS M/500 by breaking conditionals into two parts, half of which are considered under booleans.

What is most interesting, however, is the under-use of the VAX instruction set. Many instructions are
used only 0.1% or 0.2% of the time, indicating that a large amount of hardware effort is being spent
for a very small software gain. When one considers the frequency with which the three operand
address mode is used (shown in figure 6-5), we see that many features of the CISC instruction set
are simply not used effectively at all.

Figure 6-5: Operand Type – Integer Applications on VAX

To further demonstrate this point, examine table 6-17, which shows the frequency of use of the
various modes available on the VAX. When the VAX was first produced, the indexed addressing
modes were claimed to be highly beneficial in array accessing. However, the indexed addressing
modes are used little more than 0.6% of the time. Other addressing modes are similarly underused.

78 CMU/SEI-87-TR-25

Address mode coverage

Address Mode Example Count Percentage

Immediate $270 3701 5.4%

Literal $24 (n < 64) 9518 14.0%

Absolute $*label 0 0.0%

Absolute Indexed $*label[r4] 0 0.0%

Relative label 26367 38.9%

Relative Indexed label[r4] 392 0.5%

Relative Deferred *label 202 0.2%

Relative Deferred Indexed *label[r4] 0 0.0%

Register r3 16619 24.5%

Deferred (r3) 1365 2.0%

Deferred Indexed (r3)[r4] 78 0.1%

Autoincrement (r3)+ 394 0.5%

Autoincrement Indexed (r3)+[r4] 0 0.0%

Deferred Autoincrement *(r3)+ 0 0.0%

Deferred Autoincrement Indexed *(r3)+[r4] 0 0.0%

AutoDecrement -(r3) 776 1.1%

AutoDecrement Indexed -(r3)[r4] 0 0.0%

Displacement 24(r3) 7894 11.6%

Displacement Indexed 24(r3)[r4] 25 0.0%

Displacement Deferred *24(r3) 419 0.6%

Displacement Deferred Indexed *24(r3)[r4] 11 0.0%

Total 67761 100%

Table 6-17: Address Mode Usage – Integer Applications on VAX

In fact, when the use of the address modes is displayed graphically (as in figure 6-6), we see that
94.6% of the address modes used on the VAX are filled by immediate (literal being a subset of
immediate), relative, register, and displacement modes – exactly the modes provided by the MIPS

M/500 instruction set. Yet on the VAX each instruction must go through the effort of decoding which
addressing mode is used, even though (for the most part) only 5 of the possible 16 VAX address
modes are ever really used.

Table 6-18 shows another interesting artifact of the Berkeley C compiler (that serves to show off the
MIPS compiler as a better example of compiler writing).

In the Berkeley compiler, local registers which are explicitly declared to be of type register are

CMU/SEI-87-TR-29 79

Figure 6-6: Addressing Mode Usage – Integer Applications on VAX

Register Usage by Class

Value Pointer Index Total

r0 8564 1014 314 9892

r1 1360 167 50 1577

r2 173 12 1 186

r3 5 0 0 5

r4 0 0 0 0

r5 0 0 0 0

r6 62 4 3 69

r7 95 21 6 122

r8 419 122 5 546

r9 1083 258 18 1359

r10 1939 687 39 2655

r11 2559 1337 70 3966

r12 8 2304 0 2312

r13 0 4192 0 4192

r14 352 844 0 1196

r15 0 0 0 0

Total 16619 10962 506 28087

Table 6-18: Register Usage – Integer Applications on VAX

allocated starting at register r11, working downwards. If a variable is not declared register, it is
allocated on the stack. This explains the decreasing frequency of register references from r11 to
r6.

80 CMU/SEI-87-TR-25

As an additional artifact, r0 (and r1) are the function return registers, while registers r4 and r5 are
rarely allocated, due to their interaction with the movc instructions.45

Registers r12 and r13 are the frame and argument pointers and are referenced almost exclusively
as a pointer to the stack. The stack pointer r14 is referenced both indirectly and directly.

6.3.2. Instruction Use by Floating-Point Applications
In this next test case, we gave the compiler a large floating-point application. We used the SPICE
program, a large circuit-simulation program written in FORTRAN, consisting of over 18,000 lines of
dense, ugly code and comments. We regret that only a single program was used in this test,
however the instruction count generated by this program nearly equaled that of the combined integer
applications, so we feel our choice was not a bad one. We realize that it is difficult to compare
FORTRAN and C compilers, since the semantics of the source languages differ so greatly. However,
since the code generator and optimizer in both the VAX and the MIPS programming environment are
common to both languages, we feel that there is sufficient similarity between the two compilers to
warrant a broad comparison.

6.3.2.1. Analysis of MIPS FORTRAN Compiler
Table 6-19 shows the instruction mix generated by the MIPS compiler for the SPICE program. As in
section 6.3.1.1, we have listed only the low-level MIPS M/500 instructions that were generated by the
level 4 optimizer. We have not counted the FORTRAN run-time library routines, or the FORTRAN

initialization or finalization code.

45The DEC compilers do not suffer from these aberrations of register allocation behavior.

CMU/SEI-87-TR-29 81

lb 1 0.0%

lbu 12 0.0%

lh 1 0.0%

li 1928 2.5%

lui 6270 8.2%

lw 7142 9.4%

lwc1 10582 13.9%

Load 25936 34.1%

sb 7 0.0%

sh 10 0.0%

sw 3573 4.7%

swc1 6273 8.3%

Store 9863 12.9%

cvt.d.s 192 0.3%

cvt.d.w 69 0.1%

cvt.s.d 184 0.2%

cvt.w.d 37 0.0%

mfc1 37 0.0%

mfhi 4 0.0%

mflo 58 0.1%

mov.d 634 0.8%

mov.s 46 0.1%

move 2675 3.5%

mtc1 2108 2.8%

Move 6044 8.0%

Shuffle 41361 54.3%

add.d 943 1.2%

add.s 138 0.2%

addiu 5934 7.8%

addu 4812 6.3%

div 33 0.0%

div.d 726 1.0%

mul.d 1977 2.6%

mul.s 218 0.3%

multu 30 0.0%

neg.d 288 0.4%

neg.s 12 0.0%

sll 2617 3.4%

sra 16 0.0%

sub.d 912 1.2%

sub.s 126 0.2%

subu 110 0.1%

Arithmetic 18892 24.8%

ori 42 0.1%

xori 39 0.1%

Logical 81 0.2%

c.eq.d 269 0.4%

c.le.d 416 0.5%

c.lt.d 163 0.2%

cfc1 74 0.1%

ctc1 74 0.1%

slt 381 0.5%

slti 148 0.2%

sltiu 64 0.1%

sltu 40 0.1%

Boolean 1629 2.1%

Compute 20602 27.0%

bc1f 510 0.7%

bc1t 335 0.4%

beq 1147 1.5%

bgez 32 0.0%

bgtz 27 0.0%

blez 45 0.1%

bltz 60 0.1%

bne 811 1.1%

CBranch 2967 3.9%

b 1555 2.0%

break 40 0.1%

jr 179 0.2%

UBranch 1774 2.3%

jal 3120 4.1%

Call 3120 4.1%

Control 5053 6.6%

nop 5718 7.5%

Total 76024 100%

Table 6-19: Floating-Point Application Instruction Usage – MIPS

The table of values for the floating-point performance of the compiler differs from the integer perfor-
mance (shown in figures 6-3 and 6-4) in a number of ways. First, there are fewer nop instructions
and a higher percentage of move instructions. This is shown graphically in figure 6-7.

82 CMU/SEI-87-TR-25

Figure 6-7: Instruction Distribution – Floating-Point Application

The decreased number of nop instructions is somewhat surprising, given the increased number of
load class instructions. The substantially decreased control operations, however, may offset this
statistic.46

The decreased number of nop instructions does not imply that floating-point applications generate
better code than integer applications, nor that FORTRAN generates better code than C. It is simply the
nature of this particular program, which has a control structure that did not require the insertion of
many nop instructions. On the other hand, though, the reader should be aware of "hidden" delays in
the floating-point computations. While most MIPS M/500 instructions are executed in a single clock
cycle, the floating-point instructions are not, and they require synchronization between the MIPS

M/500 and the floating-point co-processor. In truth, then, the number of null operations that the MIPS

M/500 is executing during floating-point operations is much higher than these tables of statistics
would suggest.

Removing the nop instructions from consideration, we see the instruction mix shown in figure 6-8.

Figure 6-8: Instruction Distribution – Floating-Point Applications (Minus nops)

This chart shows a much higher percentage of move class instructions than seen in figure 6-4, only a

46The load and jump/branch instructions have a delay slot following them that must be filled. If the assembler reorganizer is
unable to move instructions around the load or jump/branch, it fills the delay slot with a nop instruction.

CMU/SEI-87-TR-29 83

small fraction of which (8.5% of the total) are actual register-to-register movement. The dominating
factor is load instructions. We suspect that this is a language and application dependency – the
program makes heavy use of FORTRAN COMMON, a factor which effectively defeats interprocedural
register allocation by making register slaving of the values of COMMON variables very difficult. Thus,
the compiler is forced to load variables before each use. This is not a fault of the compiler, or of
RISC architectures, but is a result of the antiquated nature of the FORTRAN language. The heavy use
of global variables, a practice highly discouraged by most modern software engineering dogmas,
extracts its price in program performance. This would also be the case if Pascal or another modular
language used global variables with the frequency of FORTRAN. The MIPS FORTRAN compiler could
be strengthened somewhat by placing the addresses of COMMON variables, or the address of the start
of COMMON blocks into globally allocated registers. This would eliminate some of the lui and addiu

instructions, which are currently used for accessing COMMON and passing parameters by reference.

Figure 6-8 chart also shows a much higher percentage of compute instructions, with a decreased
percentage of control operations. We feel that this is another language and application artifact –
FORTRAN is basically a "straight-line" language, with few deviations from the top-to-bottom execution
model. The SPICE circuit simulator similarly has few decisions to make – most of the calculations,
though elaborate, are rather straightforward.

The list of the frequency of address mode usage is shown in table 6-20. The pattern of usage is very
similar to that shown for integer applications in table 6-14. The differences are that (obviously) a
larger fraction of floating-point registers are used in the SPICE benchmark, and there is a slight
increase in the use of displacement mode. This latter effect is probably caused by two factors – the
large number of variables stored in common, and the fact that FORTRAN passes parameters to
routines by reference instead of by value. Other than this, the addressing mode patterns are fairly
consistent.

Address Mode Usage

Immediate 21662 13.9%

Absolute 3078 1.9%

Register 64787 41.7%

Displacement 27601 17.7%

Floating-point 39188 25.2%

Total 155316 100%

Table 6-20: Address Mode Usage – Floating-Point Application on MIPS

The register usage patterns are shown in table 6-21. The frequency of use of many of the registers
differs greatly from that of for the integer applications shown in table 6-15. This is caused by a
number of factors:

• The assembler/reorganizer temporary register at is used more frequently in offset
mode. This is due largely to the fact that COMMON variables are addressed relative to
the base of their respective COMMON regions, and global address references translate to
an offset from at by the assembler reorganizer.

84 CMU/SEI-87-TR-25

Integer Floating Point

Register Value Offset Register Total

zero 3306 0 f0 2860

at 9825 5655 f1 636

v0 3179 1093 f2 1772

v1 1549 1077 f3 411

a0 3607 382 f4 4285

a1 2431 339 f5 1495

a2 1885 201 f6 4175

a3 1010 152 f7 1473

t0 1147 119 f8 4042

t1 1426 151 f9 1373

t2 1410 183 f10 4293

t3 1409 174 f11 1493

t4 1667 144 f12 1405

t5 1565 152 f13 260

t6 3334 422 f14 961

t7 3254 440 f15 171

s0 2671 940 f16 882

s1 2438 820 f17 215

s2 1709 455 f18 1059

s3 1439 287 f19 304

s4 1093 207 f20 1140

s5 905 433 f21 383

s6 930 114 f22 863

s7 978 21 f23 256

t8 3251 387 f24 751

t9 3126 436 f25 233

k0 0 0 f26 556

k1 0 0 f27 156

gp 1026 708 f28 494

sp 2018 12005 f29 140

fp 701 102 f30 406

ra 494 2 f31 245

hi 4 0

lo 0 0

Total 64787 27601 Total 39188

Table 6-21: Register Usage – Floating-Point Application on MIPS

CMU/SEI-87-TR-29 85

• Temporary registers are allocated on a round-robin basis, and so show a fairly uniform
distribution of use. Registers t6, t7, and t8 are usually allocated first, and thus their
reference count is a fraction higher than the other temporaries.

• Floating-point registers are used with much greater frequency (the SPICE circuit
simulator is a floating-point program. The registers show an interesting pattern of use,
though:

• The odd numbered registers are used much less frequently than are the even
numbered ones. This is because double precision floating-point numbers are
stored in two registers (and referenced by the low order register of the pair). The
vast majority of floating-point variables in SPICE are double precision variables.

• The register allocation algorithm for floating-point variables does not appear to be
the same round-robin scheme that is used for temporary registers. Instead,
floating-point registers show a roughly exponentially decreasing frequency of use
from register f4 to f30.

• Subroutine parameters are passed in registers a0 through a4, but the pattern seen in
table 6-15 does not show up here. This is because double-precision floating-point vari-
ables are passed in two argument registers (instead of one for integer variables), and so
the usage curve decays more slowly.

• The kernel registers k0 and k1 are never referenced (not surprisingly). They are used
exclusively by the MIPS UNIX kernel.

• The saved registers s0 through s9 are used for local variables and must be saved
across procedure calls. They are allocated in order, and show a steadily decreasing
frequency of reference from s0 through s9, indicating that there are more procedures
with a small number of local variables than there are with large numbers of them.

6.3.3. Comparison with VAX UNIX FORTRAN Compiler
The SPICE benchmark was also given to the VAX FORTRAN compiler for comparison purposes. The
data on instruction usage is shown in table 6-22.

86 CMU/SEI-87-TR-25

clrd 248 0.7%

clrf 2 0.0%

clrl 281 0.7%

cvtbl 5 0.0%

cvtdf 190 0.5%

cvtdl 37 0.1%

cvtfd 362 1.0%

cvtld 75 0.2%

cvtlw 12 0.0%

cvtwl 16 0.0%

mnegd 298 0.8%

mnegf 12 0.0%

mnegl 14 0.0%

movab 82 0.2%

moval 117 0.3%

movb 1 0.0%

movd 2774 7.3%

movf 166 0.4%

movl 9172 24.1%

movw 2 0.0%

movzbl 2 0.0%

pushab 1742 4.6%

pushal 2460 6.5%

pushaq 308 0.8%

pushaw 2 0.0%

pushl 898 2.4%

Move 19278 50.6%

addd2 379 1.0%

addd3 602 1.6%

addf3 142 0.4%

addl2 381 1.0%

addl3 2826 7.4%

divd2 170 0.4%

divd3 505 1.3%

divl2 12 0.0%

divl3 33 0.1%

incl 4 0.0%

muld2 520 1.4%

muld3 1540 4.0%

mulf3 222 0.6%

mull2 11 0.0%

mull3 52 0.1%

subd2 174 0.5%

subd3 732 1.9%

subf3 126 0.3%

subl2 231 0.6%

subl3 263 0.7%

Arithmetic 8925 23.4%

ashl 313 0.8%

Logical 313 0.8%

Compute 9238 24.2%

cmpd 606 1.6%

cmpl 652 1.7%

tstd 236 0.6%

tstl 937 2.5%

Compare 2431 6.3%

acbl 130 0.3%

aobleq 217 0.6%

casel 31 0.1%

jeql 632 1.7%

jgeq 192 0.5%

jgtr 333 0.9%

jleq 251 0.7%

jlss 163 0.4%

jneq 974 2.6%

Cbranch 2923 7.6%

jbr 1191 3.1%

ret 130 0.3%

Ubranch 1321 3.4%

calls 2904 7.6%

Control 9579 25.1%

Total 38095 100%

Table 6-22: Floating-Point Application Instruction Usage – VAX

As with the MIPS instruction mix in table 6-19, we see a decrease in the number of control type
instructions, and an increase in the number of arithmetic instructions. Again, we see the unusually
high number of move instructions, even though the VAX is not a load/store architecture.

What is most interesting is the number of compare instructions in the VAX instruction mix. There are
no compare instructions on the MIPS; instead, the instructions used to perform conditional branches
contain the operands to be compared. On the VAX, two instructions need to be executed to perform
most conditional branches: a compare and a branch. Rarely, if ever, are the condition codes used.
Thus, even though the VAX has a more complex instruction set, the MIPS M/500 has the mechanism

CMU/SEI-87-TR-29 87

for performing a conditional branch in a single instruction.47

Also as before, many instructions are underused. Instructions such as mnegl which moves the
negative of a number into a register (saving 3 bytes of instruction), are used less than one-tenth of
one percent of the time. It would be better to load a negative number directly, or to load a positive
one and then negate it, than to waste the processor floorspace to implement the function in a single
instruction that is rarely used.

The address mode usage on the VAX by the SPICE simulator is shown in table 6-23. With the
exception of the 10% use of the Relative indexed mode, the distribution of address modes is similar
to that shown in table 6-17.

Address Mode Example Count Percentage

Immediate $270 870 1.1%

Literal $24 (n < 64) 5873 8.0%

Absolute $*label 0 0.0%

Absolute Indexed $*label[r4] 0 0.0%

Relative label 16323 22.3%

Relative Indexed label[r4] 7339 10.0%

Relative Deferred *label 0 0.0%

Relative Deferred Indexed *label[r4] 0 0.0%

Register r3 18394 25.2%

Deferred (r3) 233 0.3%

Deferred Indexed (r3)[r4] 14 0.0%

Autoincrement (r3)+ 0 0.0%

Autoincrement Indexed (r3)+[r4] 0 0.0%

Deferred Autoincrement *(r3)+ 0 0.0%

Deferred Autoincrement Indexed *(r3)+[r4] 0 0.0%

AutoDecrement -(r3) 431 0.5%

AutoDecrement Indexed -(r3)[r4] 0 0.0%

Displacement 24(r3) 22217 30.4%

Displacement Indexed 24(r3)[r4] 284 0.3%

Displacement Deferred *24(r3) 944 1.2%

Displacement Deferred Indexed *24(r3)[r4] 18 0.0%

Total 72930 100%

Table 6-23: Address Mode Usage – Floating-Point Application on VAX

47On those occasions when the MIPS assembler reorganizer must expand a conditional to two or three instructions, the
sltx and xor instructions are used. The total of these instructions does not come close to the amount of compare
instructions used on the VAX. Apparently, then, the MIPS M/500 does conditional branches more efficiently than the VAX.

88 CMU/SEI-87-TR-25

The extra high use of the Relative Indexed mode is either because of FORTRAN’s parameter passing
mechanism or its access to common arrays. Other than this, we make the same observation that we
made for the integer applications: of the 16 addressing modes available on the VAX, only 5 are ever
really used (basically the same addressing modes that are available on the MIPS M/500). The CPU
could thus be substantially simplified without any major loss in efficiency of compiled code.

Looking at table 6-24, we see the same symptoms as we found in table 6-18, except that in this
case, register allocation is even worse. Of the registers r6 to r11, only r11 is ever really used.

Register Usage by Class

Value Pointer Index Total

r0 11351 127 4383 15861

r1 1228 91 555 1874

r2 2087 2 487 2576

r3 1 0 1 2

r4 87 0 0 87

r5 0 0 0 0

r6 227 4 16 247

r7 280 8 18 306

r8 391 11 45 447

r9 839 14 65 918

r10 1580 6 261 1847

r11 193 17150 1824 19167

r12 0 1277 0 1277

r13 0 5020 0 5020

r14 130 431 0 561

r15 0 0 0 0

Total 18394 24143 7655 50192

Table 6-24: Register Usage – Floating-Point Application on VAX

This underuse is predominantly a failing in the Berkeley FORTRAN compiler, and not inherent to the
VAX. If the Berkeley compiler had an adequate register allocation algorithm, we would see a much
better pattern of register use. As it is, however, some registers are over used, and some are badly
underused.

CMU/SEI-87-TR-29 89

6.3.4. Local Conclusions
It is interesting to note that the MIPS compilers generated 73 out of the 85 possible instructions48 for
the MIPS M/500 on these four programs. The use of 85% of the possible instructions attests to the
validity of this test as a fair coverage of the instruction spectrum of a machine. When we look at the
Berkeley VAX compilers, we find that of the 146 possible instructions, 111 (75%) were generated for
our test programs.

If we examine instead the use of the entire instruction set by the compilers, we find that the MIPS

compilers use 54% of the total MIPS M/500 instruction repertoire (73 out of 135 instructions), while
the Berkeley compilers could only use 34% of the VAX instruction set (111 out of 323 instructions).
The fact that, in both comparisons, a lower percentage of instructions was used by the VAX attests to
the overcomplicated nature of the VAX CISC architecture.

If we compare the number of instructions that were generated, we find that the MIPS program (with
152786 instructions) used only 1.82 times more instructions than the VAX (with 83644 instructions).
When the byte count is compared (a much more valid measure), the MIPS uses 611144 bytes versus
the VAX’s use of 474224 bytes, the code size increase is actually only 1.29 : 1. This is because MIPS

instructions are always 4 bytes long, while VAX instructions vary in length depending on the address-
ing modes used. Since the MIPS M/500 is far more than 1.29 times faster than the VAX, we may
assume that the penalty of more instructions being required to perform a task which is incurred by
moving to a RISC architecture, is more than offset by the increased performance a RISC architecture
provides.

From the three analyses that we have performed (static compiler analysis, an instrumented example,
and dynamic compiler performance), the choice of a RISC architecture has won out over a CISC
architecture. Each of the analyses, considered independently or collectively, shows that it is easier
for a compiler to generate code for a RISC architecture, and that that code executes more efficiently.
One might be tempted to look at the results from the VAX and conclude that the VAX compilers need
to be made more robust. A better conclusion, however, is that the instructions and addressing
modes that are not used by the VAX compilers are simply not needed.

48The possible instructions are those that the compiler can generate, not those that the MIPS M/500 can execute (see
section 6.1.1.2)

90 CMU/SEI-87-TR-25

CMU/SEI-87-TR-29 91

7. General Drawbacks of Assembler-only Code
Reorganization

The MIPS compiler suite uses an assembler reorganizer (described in chapter 3) to translate from a
high-level assembly language to the MIPS M/500 native machine code. The assembler reorganizer
also serves the function of making sure that the restrictions of the instruction pipeline are observed.
These restrictions include a one-cycle delay following:

• a branch or jump instruction

• a load from memory before the value is available

• a double precision move operation

• a co-processor control operation

and a two-cycle delay following:

• a move from the lo or hi register.

It is possible, without knowing the semantics of a program, to use value tracking to determine when
an instruction will modify the source of a subsequent instruction. The MIPS assembler reorganizer
uses this information to move instructions forward in the execution order to fill in the delay slots
required by the pipeline (see section 3.1 for details). This eliminates a large number of delay slots
that would otherwise have to be filled with nop instructions. However, it is our contention that a
reorganizer belongs in the compiler, not in the assembler.

Clearly, the assembler must verify that the pipeline constraints are satisfied. However, the MIPS

assembler also translates the high-level instructions into the MIPS M/500 native machine-level in-
structions, sometimes expanding simple instructions into a sequence of instructions. While this
makes it easier to write code in assembly language by hand, it has deleterious effects on compilers.
We therefore assert that the proper place for a reorganizer is in the compiler, and not in a post-
processing assembler.

To support our claim, we cite the following seven issues (which will be explained in greater detail in
later sections):

1. The code generator knows a lot more about aliasing49 than the assembler. Although it
is difficult to detect aliasing in a compiler, it is even more difficult to detect it in the
language-context free environment that is presented to the assembler. Since a reor-
ganizer must consider aliasing effects, it is better to put a reorganizer in the compiler.

2. The compiler understands about the alignment of variables. It can know when it is not
necessary to reload the top 16 bits of an address50 by ensuring that the top 16 bits are
the same for two variable components (i.e., a FORTRAN complex type). The as-
sembler could make similar deductions from carefully placed .align directives, but

49Aliasing is the condition under which two address expressions reference the same memory location.

50The MIPS M/500 can only store the low 16 bits of an address in an instruction. If a 32 bit address must be generated, it
must be done in two instructions.

92 CMU/SEI-87-TR-25

seems not to do so – and anyway, the compilers do not generate .align directives
other than for word alignment.

3. Since the assembler reorganizer may need to perform some intermediate calculations
in the MIPS M/500 native instruction set to implement the high-level instructions that
are given to it, the assembler must reserve a temporary register for this purpose (i.e.,
at). This leaves one less register for the compiler to use, and often results in the
needless recalculation or reloading of temporary values that a compiler could store in
one of its registers.

4. The assembler assumes only a single base register (i.e., gp). However, it is often
much more efficient to allow the compiler to allocate multiple base registers – for ex-
ample, one for a given routine, or one for read-only data, etc.

5. With a knowledge of the reorganization requirements of the hardware, a compiler can
make intelligent decisions about delaying arithmetic calculations. The assembler reor-
ganizer must be very pessimistic about moving arithmetic instructions forward or back-
ward, for fear of affecting numeric results. With the expression semantics available to
it, the compiler is much more able to move instructions to avoid nop delays.

6. The assembler cannot easily reverse the effects of code hoisting (either α-motion or
ω-motion). In this case, compiler optimization effectively reduces the strength of the
final assembly code.

7. Since the MIPS assembler is, in effect, a macro-assembler, the final peephole optimiza-
tion performed by the compilers is defeated by the macro expansion performed by the
assembler. The assembler reorganizer must then supplement the compilers’ optimiza-
tion with a peephole optimization of its own, but this is less efficient than doing all
optimization in the compiler.

We will now present a number of simple examples that demonstrate the problems cited above.
These examples are all somewhat contrived, and are designed to illustrate the problem in as small a
space as possible. Thus, the code fragments themselves may look somewhat unreasonable. The
reader is assured, however, that real-life examples that trigger these same symptoms exist in profu-
sion.

7.1. Alignment Problems in the Reorganizer

On the MIPS M/500, all addresses are stored as 32-bit quantities. However, an instruction that
references a global variable must first load the upper 16 bits of the address of the variable with an
lui instruction, followed by an instruction that references the low 16-bits of the address. Very often,
the assembler cannot know the alignment of two variables relative to each other. Consequently, it
must load the upper 16-bits of the address of each global variable each time it references one of
them (since it is unable to determine whether the variables are in the same 16-bit address space – a
fact which may change between assembly and link time, especially if the variables are declared in
different modules).

When the components of a variable that is larger than a single word (i.e., a FORTRAN complex

variable, or a C structure), the compiler can align the variable on a known boundary in such a way
that it is guaranteed that the upper 16 bits of the address of all of the components of the variable are
the same. Then the upper 16 bits need only be loaded once for a sequence of accesses.

CMU/SEI-87-TR-29 93

.data

.align 3 # align on 2**3 byte boundary
cmplx: .word 0,0

.text
align:

lb $2,cmplx
lb $3,cmplx+1
lh $4,cmplx+2
lw $5,cmplx+4

Figure 7-1: Alignment Problem - Assembler Source Code

Examine figure 7-1. Note that the variable cmplx is a double-word quantity aligned on a double-
word boundary. The top 16 bits should be the same for all of the above operand addresses (cmplx,
cmplx+1, etc.). Even if the assembler/reorganizer cannot recognize the alignment of the two words
comprising the double word, at least the first three instructions can share one load of $at.

align:
0x0: 3c010000 lui at,0x0
0x4: 80220028 lb v0,40(at)
0x8: 3c010000 lui at,0x0
0xc: 80230029 lb v1,41(at)
0x10: 3c010000 lui at,0x0
0x14: 8424002a lh a0,42(at)
0x18: 3c010000 lui at,0x0
0x1c: 8c25002c lw a1,44(at)
0x20: 00000000 nop

Figure 7-2: Alignment Problem - MIPS M/500 Code

As shown in figure 7-2, the register $at is loaded afresh for every operand, quite needlessly.51 The
excuse that the individual loads might reference words that are in different 64Kb segments is fal-
lacious, since the .align directive ensures that this is not the case. A compiler would be aware of
the alignment of every object, while the assembler reorganizer is not. For unaligned objects, a
compiler could load the true start address into a base register. For aligned objects (such as that
shown in figure 7-1), it could load the top 16 bits into a base register once, and not reload it each
time. In this example, the code could be reduced to a little more than half of its original size.

7.2. Problems with Aliasing

The MIPS M/500 assembler reorganizer knows nothing about the sources or targets of load and store
operations. Thus, when it is dealing with registers that are pointing to data (i.e., based address
mode), it must assume that the registers are aliased – that is, it must assume that since two registers
may contain the same value, they may point at the same data item. Therefore, the assembler
reorganizer must avoid reorganizing around load/stores that involve based address mode.52

51The lui will not necessarily load the value 0. Instead, the linker will fill in this value at link time with the correct base
address.

52In fact, for addresses that are declared external, the assembler/reorganizer must not reorganize around load/stores that
involve relocatable or absolute addresses. This is because it has no guarantee that the two addresses will not be the same at
link time (i.e., two labels referring to the same data location).

94 CMU/SEI-87-TR-25

*ptr1 = *ptr2;
lw $12, 0($8)
sw $12, 0($9)

*ptr3 = *ptr4;
lw $13, 0($10)
sw $13, 0($11)

Figure 7-3: Aliasing Problem - Assembly Source

When faced with the problem of generating code for a copy from one set of pointers to another, a
compiler might generate the code shown in figure 7-3. The code is straightforward and concise – the
variables are loaded using based address mode and stored the same way. However, consider the
MIPS M/500 code that the assembler reorganizer generates.

0x0: 8dcf0000 lw t4,0(t0)
0x4: 00000000 nop
0x8: af0f0000 sw t4,0(t1)
0xc: 8f280000 lw t5,0(t2)
0x10: 00000000 nop
0x14: ad280000 sw t5,0(t3)

Figure 7-4: Aliasing Problem - MIPS M/500 Code

As shown in figure 7-4, the MIPS M/500 code that is generated contains a nop instruction between
each load and store. This satisfies the pipeline delay that is required before the values become valid
in the registers. If the compiler is given the true instruction set of the machine to operate with,
instead of a high-level assembly language, these nop instructions can be avoided.

The assembler reorganizer is not filling in these nop slots because it cannot tell whether the target of
the store operation is the same as (i.e., if it is aliased to) the source of the second load. A compiler
could determine whether aliasing was a concern, and if it determined that it was not, it could rewrite
the code as in figure 7-5.

0x0: 8dcf0000 lw t4,0(t0)
0x4: 8f280000 lw t5,0(t2)
0x8: af0f0000 sw t4,0(t1)
0xc: ad280000 sw t5,0(t3)

Figure 7-5: Aliasing Problem Corrected

Notice that the delay slots have been filled by reorganizing the code. Since the first store does not
affect the second load, that load may be moved in front of the second store. Since the
assembler/reorganizer is unaware of the presence or absence of any aliasing, it is unable to perform
this function – a strong argument in favor of putting the reorganizer function in the compiler, which
can do much stronger analysis of aliasing. For example, in a strongly typed language, two pointers
with different base types cannot be aliases. A compiler would know this, since it knows the types;
the assembler cannot know this, since it has no type information.

We would like to note that the reorganizer is pretty good about moving code that is unaffected by
aliasing. For example, had a set or arithmetic operations followed the load/stores, using different
registers as sources and destinations, the assembler reorganizer would have moved them upward to
fill in the delay slots. There are numerous cases, however, where this sort of action will be
precluded.

CMU/SEI-87-TR-29 95

7.3. Delaying Calculations to Avoid No-Ops

Because the MIPS M/500 assembler reorganizer cannot know the code generators intent when scan-
ning a piece of assembly code, it be must very pessimistic about reorganizing code. Even when it
knows all of the "come-from" locations, it will not reorganize around a label. We assert that a
compiler, armed with the semantics of the source language (and thus mindful of the programmer’s
intentions) can, with much greater confidence, rearrange the assembly language that it produces.

int g1,g2,g3;
int h1,h2,h3;

delay()
{

g1 = g2 + g3;
h1 = h2 + h3;

}

Figure 7-6: Example of Assembly Rearrangement - C Source

Figure 7-6 shows a simple example of a routine that adds two pairs of global variables and places
the results in a third pair. The assembly language that is generated (figure 7-7) is perfectly reason-
able – the values g2 and g3 are loaded into memory, added together, and stored in g1. Then the
values h2 and h3 are loaded into memory, added together, and stored in h1.

delay:
7 g1 = g2 + g3;

lw $14, g2
lw $15, g3
addu $24, $14, $15
sw $24, g1

8 h1 = h2 sf+ h3;
lw $25, h2
lw $8, h3
adduu $9, $25, $8
sw $9, h1

Figure 7-7: Example of Assembly Rearrangement - Assembly Output

For a machine that is not pipelined, this is perfectly reasonable behavior on behalf of the compiler.
However, recalling the pipeline restrictions, the assembler must provide a one-cycle delay following
each load (the lw instructions) before the value in the register becomes valid. Thus, the delay slot of
the first load is filled with the second load, but the delay slot for the second load must be observed
before the addu instructions can be executed.

As shown in figure 7-8, the assembler reorganizer is unable to move any instructions downward to fill
either of these delay slots. Examining either the assembly code or the MIPS M/500 code, however,
shows that the code can be reorganized in a better way. Instructions can be moved forward and
backward to fill in the delay slots. Figure 7-9 shows this hand-optimized reorganization.

Notice that the load of h2 has been moved backward to fill the delay slot required after the load of
g3. The store to g1 has been moved forward to fill in the delay slot after the load of h3. The net
result is that, while the code in figure 7-9 performs exactly the same function as the code in figure

96 CMU/SEI-87-TR-25

delay:
0x0: 8f8e0000 lw t6,0(gp)
0x4: 8f8f0000 lw t7,0(gp)
0x8: 00000000 nop
0xc: 01cfc021 addu t8,t6,t7
0x10: af980000 sw t8,0(gp)
0x14: 8f990000 lw t9,0(gp)
0x18: 8f880000 lw t0,0(gp)
0x1c: 00000000 nop
0x20: 03284821 addu t1,t9,t0
0x24: af890000 sw t1,0(gp)

Figure 7-8: Example of Assembly Rearrangement - MIPS M/500 Code

delay:
0x0: 8f8e0000 lw t6,0(gp)
0x4: 8f8f0000 lw t7,0(gp)
0x8: 8f990000 lw t9,0(gp)
0xc: 01cfc021 addu t8,t6,t7
0x10: 8f880000 lw t0,0(gp)
0x14: af980000 sw t8,0(gp)
0x18: 03284821 addu t1,t9,t0
0x1c: af890000 sw t1,0(gp)

Figure 7-9: Example of Assembly Rearrangement - Optimized MIPS M/500 Code

7-8, it is 20% smaller. We do not claim that a 20% increase in speed can be obtained with this
optimization technique. However, as was explained in section 6.3.1.1, over 14% of the code
generated by the MIPS C compiler were nop instructions – a figure which could be substantially
reduced with this and other optimizations.53

7.4. Macro Expansion Defeating Peephole Optimization

It was often observed in the Berkeley compilers that the so-called optimization phase was not a true
optimizer, but rather a neatener. This is basically all that a peephole optimizer is able to do – neaten
the generated code somewhat. The MIPS M/500 assembler reorganizer suffers from this same
problem. After the compiler has done a good job of optimizing for the MIPS virtual machine,54 the
assembler reorganizer expands each of these instructions into the corresponding MIPS M/500 in-
structions, effectively messing up the optimization. The peephole optimizer in the assembler reor-
ganizer can then only "neaten up" after it has rumpled the previously elegant code.

Consider that a compiler has the conditional expression
((a <= b) and (c > 5)) or ((a > b) and (c == 0))

for which to generate code. It would certainly be reasonable for the compiler to calculate a <= b

and negate the result (and thus have the result of both a <= b and a > b). One reasonable way of
doing this on the MIPS would be as shown in figure 7-10.

53A random sampling of nop instructions (shown in section 6.2.2, page 55) found that over 70% of the nops in a given
system application could be eliminated. There is probably room, therefore, for approximately another 10% increase in speed
in program execution by performing better nop elimination.

54The assembly language that is available to the user and to the compilers is not the actual machine language used by the
MIPS M/500. The assembler reorganizer translates high-level instructions into low-level MIPS M/500 machine instructions.

CMU/SEI-87-TR-29 97

sle $8,$4,$5
not $9,$8

Figure 7-10: Assembler Reorganizer Defeating Optimization - Assembler Source

When this code is presented to the assembler reorganizer, the code that it generates is changed
somewhat, as in figure 7-11. Instead of the sle that the compiler requested, the
assembler/reorganizer has changed it into an slt (with reversed operands), followed by an xori.
This is then followed by the compiler-requested not.

0x0: 00a4402a slt t0,a1,a0
0x4: 39080001 xori t0,t0,0x1
0x8: 01004827 nor t1,t0,zero

Figure 7-11: Assembler Reorganizer Defeating Optimization - MIPS M/500 Code

Since the slt instruction just sets the lower bit of t0, the exclusive xor with the constant 1 is a
complementation (i.e., a not), which is immediately complemented again by the nor instruction.
What results is that the compiler has generated what it believes to be good code, but the final effect
of the assembler reorganizer is to generate poor code, because the macro expansion follows the
low-level optimization.

7.5. Drawbacks of Reserving a Temporary Register for the
Assembler

Because the assembler reorganizer must rewrite the code that is given to it by the compiler, it often
must add instructions into the assembly stream to overcome the shortcomings of the MIPS M/500
native instruction set. Very often it needs to use a temporary register to hold some intermediate
values. This register is at, and is reserved by the assembler reorganizer for its own use.

We assert that this use of a register unavailable to the compiler is a mistake for at least two reasons:

1. The compiler is denied the use of this register, and so has fewer registers to allocate.
Although this is a minor point with 25 other registers to use,55 it does reduce the
efficiency of the machine somewhat.

2. There are times when it is more efficient to store two temporary values, but the as-
sembler is constrained to building work-arounds.

We feel the latter reason is the more important, and we demonstrate our reasons in the following
example. Consider the source code shown in figure 7-12. All that the code is doing is incrementing
two (global) variables by 1.

x := x + 1;
y := y + 1;

Figure 7-12: Temporary Register Problem - High Level Source

A compiler that is somewhat aware of the reorganization requirements of the target machine might

55Although the MIPS M/500 has 32 registers, 7 are reserved. These are the zero register, at, k0, k1, gp, sp, and ra.

98 CMU/SEI-87-TR-25

generate code of the form shown in figure 7-13. The code is interleaving the loads and adds to avoid
the delay following a load from memory required by the pipeline.

.data

.align 2
x: .word 0
y: .word 0

.text
tempreg:

lw $2,x
lw $3,y
add $2,$2,1
add $3,$3,1
sw $2,x
sw $3,y

Figure 7-13: Temporary Register Problem - Assembly Code

As shown in figure 7-14, the assembler reorganizer takes the interleaved code and messes it up
somewhat. Because x and y are not directly addressable, the assembler reorganizer must build the
addresses of each 16 bits at a time. Because of the interleaving generated by the compiler, it cannot
use one register for both x and y. But because it has only one register available to it (i.e at), it must
load and reload that one register.

tempreg:
0x0: 3c010000 lui at,0x0
0x4: 8c220028 lw v0,40(at)
0x8: 3c010000 lui at,0x0
0xc: 8c23002c lw v1,44(at)
0x10: 20420001 addi v0,v0,1
0x14: 20630001 addi v1,v1,1
0x18: 3c010000 lui at,0x0
0x1c: ac220028 sw v0,40(at)
0x20: 3c010000 lui at,0x0
0x24: ac23002c sw v1,44(at)

Figure 7-14: Temporary Register Problem - MIPS M/500 Code

A code generator could use two temporary registers, one each for the top 16 bits of the address of x
and y, and so save the second two lui instructions.56 Once again, macro expansion is inhibiting or
defeating other optimizations.

7.6. Shortcomings of Using a Single Global Pointer

In the current implementation, the MIPS compilers load global registers using relocatable or indexed-
relocatable address modes. On the MIPS M/500, this is translated by the assembler reorganizer to a
sequence of instructions that always performs a lui instruction. This is required, since the linker
may have relocated the target address so that the upper 16 bits are significant.

56Note that the assembler reorganizer could certainly save one lui by reversing the order of the stores. This is safe, since
it is evident that x and y do not overlap (i.e., there is no aliasing problem to be reckoned with here, so the ordering can be
altered).

CMU/SEI-87-TR-29 99

To circumvent this problem somewhat, the assembler reorganizer provides two data segments in
addition to the UNIX standard of .data and .bss segments.57 These are the .sdata and .sbss

segments, which are equivalent to the .data and .bss segments, respectively, except that they are
addressed via the global pointer gp.

The gp register is loaded by the program prelude, and the initial value is specified by the linker. The
problem with this scheme is that it limits the compilers somewhat. It would be better to allow the
compilers to make intelligent decisions on register allocation based on variable usage rather than
restricting them by the requirements of the assembler. Two specific examples of how compiler
performance could be increased are:

• In FORTRAN, the compiler could allocate a global pointer to point at the beginning of a
common block. Currently, the compiler must always use relocatable address expres-
sions, which require two MIPS M/500 instructions to fetch an address. Using based
address mode (with the compiler allocated register) requires only one native instruction.

• In C, array accesses are performed using the indexed relocatable address mode, which
requires three MIPS M/500 instructions. Array accesses could be simplified into two
native instructions by allocating a base register at compile time for those arrays which
are accessed heavily in a routine.

The problem with these optimizations is that currently, they are "difficult." The compiler views as its
target architecture the MIPS pseudo-machine, when in fact it should be generating code for the MIPS

M/500 native machine. On the pseudo-machine, based address mode is no more complicated than
relocatable mode (whereas on the real machine, they are quite different). For this and other op-
timizations to be feasible, the assembler reorganizer should be eliminated (or at least simplified), and
the compilers should target the native MIPS M/500, not the MIPS pseudo-machine.

7.7. Arithmetic Optimizations on Native Hardware

To save execution time, the assembler reorganizer will substitute a multiply with a sequence of shifts
and adds whenever possible (see section 3.2.1). This "optimization," however, has a strictly pee-
phole effect in that it can sometimes cause a program to run slower overall.

extern w,x,y,z;

mult()
{

x = 465*y + 1890*z;
}

Figure 7-15: Optimistic Approach to Multiplication - C Source

Consider the source code fragment shown in figure 7-15. In this simplistic example, a variable is
loaded with the sum of two products. Since the compiler only knows about the instruction set of the
MIPS pseudo-machine, it generates the instruction sequence shown in figure 7-16.

57The .bss segment is for uninitialized data, which, under UNIX, defaults to being initialized to zero. The .data segment is
for all explicitly initialized data.

100 CMU/SEI-87-TR-25

5 x = 465*y + 1890*z;
lw $14, y
mul $15, $14, 465
lw $24, z
mul $25, $24, 1890
addu $8, $15, $25
sw $8, x

Figure 7-16: Optimistic Approach to Multiplication - Assembler Source

This is an entirely reasonable thing for the compiler to do, since it has been told that a multiply is a
single instruction. As shown in section 3.2.1, however, a single multiply can be expanded to a large
sequence of shifts and adds. In this case, both multiplications are by constant values, so this is
exactly what happens. As shown in figure 7-17, the first multiply is translated into 6 instructions, and
the second into 7 instructions.

0x0: 8f8e0000 lw t6,0(gp)
0x4: 8f980000 lw t8,0(gp)
0x8: 000e78c0 sll t7,t6,3
0xc: 01ee7823 subu t7,t7,t6
0x10: 000f7880 sll t7,t7,2
0x14: 01ee7821 addu t7,t7,t6
0x18: 000f7900 sll t7,t7,4
0x1c: 01ee7821 addu t7,t7,t6
0x20: 0018c900 sll t9,t8,4
0x24: 0338c823 subu t9,t9,t8
0x28: 0019c880 sll t9,t9,2
0x2c: 0338c823 subu t9,t9,t8
0x30: 0019c900 sll t9,t9,4
0x34: 0338c821 addu t9,t9,t8
0x38: 0019c840 sll t9,t9,1
0x3c: 01f94021 addu t0,t7,t9
0x40: 03e00008 jr ra
0x44: af880000 sw t0,0(gp)

Figure 7-17: Optimistic Approach to Multiplication - MIPS M/500 Code

Since the assembler reorganizer is trying to discourage the use of the actual MIPS M/500 multiply
instruction, it has taken efficient code and translated it into code that is far less efficient than it could
be. The algorithm to convert a multiply into shifts and adds is quite simple, and could be placed in
the compiler instead of the assembler reorganizer. The extra information needed to make this a
worthwhile investment (i.e., the semantics of the arithmetic operations and their interactions with
other variables) also resides in the compiler.

5 x = 31*(15*y + 63*z);
lw $14, y
mul $15, $14, 15
lw $24, z
mul $25, $24, 63
addu $8, $15, $25
mul $9, $8, 31
sw $9, x

Figure 7-18: A Better Approach to Multiplication - Assembler Source

Since the compiler knows the semantics of the expression, it can calculate the least common
denominators of the multiplicands and rewrite the expression into what at first appears to be a less

CMU/SEI-87-TR-29 101

optimal form, as shown in figure 7-18. This form includes not two, but three, multiplications, which
seems to be a worse implementation. However, when this code is fed to the assembler reorganizer
(which will convert the multiplications by constant values to shifts and adds), we get what is shown in
figure 7-19.

0x0: 8f8e0000 lw t6,0(gp)
0x4: 8f980000 lw t8,0(gp)
0x8: 000e7900 sll t7,t6,4
0xc: 01ee7823 subu t7,t7,t6
0x10: 0018c980 sll t9,t8,6
0x14: 0338c823 subu t9,t9,t8
0x18: 01f94021 addu t0,t7,t9
0x1c: 00084900 sll t1,t0,4
0x20: 01284823 subu t1,t1,t0
0x24: 03e00008 jr ra
0x28: af890000 sw t1,0(gp)

Figure 7-19: A Better Approach to Multiplication - MIPS M/500 Code

In this case, the multiplication by 15 is translated into 2 instructions, the multiplication by 63 into 2
instructions, and the multiplication by 31 into 2 instructions. The net result is that, by writing a more
"pessimistic" assembly source, we can reduce the actual instruction count of the arithmetic from 14
instructions to 7 – a reduction of 50%.

While the results may not always be this spectacular, if the compiler were armed with knowledge of
the real MIPS M/500 assembly language, instead of relying on the assembler reorganizer to translate
from the MIPS pseudo instruction set, the compiler could generate more efficient code. In general,
reducing arithmetic expressions to their simplest factored form can allow the compiler to generate
tighter code. For most architectures, this is a pessimization, not an optimization. Due to the ex-
pense of the multiply instruction, however, reducing the number of true multiplies by increasing the
number of shifts and adds pays off.

102 CMU/SEI-87-TR-25

CMU/SEI-87-TR-29 103

8. Validation of MIPS Pascal Compiler

This chapter describes the results of the Pascal validation suite58 as applied to the MIPS M/500. The
validation suite tests the Pascal compiler against the BS 6192:1982 "Specification for Computer
Programming Language Pascal"59 and reports any discrepancies. In this chapter, we list those
discrepancies, along with our evaluation of the ramifications. The discrepancies are listed under four
categories: portability, conformance, incorrectly generated code, and extensions. In all cases, the
section number listed to in the discrepancy reports reference the section number in BS 6192:1982.
Please note that this chapter refers only to those failures which the validation set was able to dis-
cover; it does not report on those tests which passed correctly. It should also be noted that the MIPS

Pascal compiler is a level 0 implementation of Pascal, which is to say that it does not support
conformant arrays. According to the Standard, this is an acceptable reduction in compiler strength,
although we feel that conformant array support is still desirable.

According to MIPS Inc., their Pascal compiler is an implementation of ANSI standard Pascal
(ASNI/IEEE 770X3.97-1983). As such, there will be slight differences between it and the BS
6192:1982 Pascal. The differences, however, are far fewer in number than we found as dis-
crepancies in the following sections.

8.1. Portability

This section lists those features under which the MIPS Pascal compiler deviates from the standard in
a way that may affect program portability. Generally, these deviations are expressed as extensions
to the language.

Section Symptom and Comments

6.1.2-2 The unrestricted words otherwise, return, separate, subtype, double, and cobol are
reserved words in MIPS Pascal.

- -

In the case of double, return and otherwise, MIPS Pascal is providing what we feel to be
needed extra functionality to the language. The other additional reserved words serve other
functions. In any event, this is a legal language extension, provided it is documented.

6.1.6-5 The MIPS Pascal compiler allows labels to exceed the range of 1..9999.

- -

The Pascal standard states that labels must be restricted to the range of 1..9999. By allowing
labels to exceed that limitation, programs developed on the MIPS Pascal compiler may have
portability problems. In practice, however, it is unlikely that a programmer would use a
sufficient number of labels to make a simple translation unfeasible.

58The Pascal validation suite was obtained from Software Consulting Services, 3162 Bath Pike, Nazareth, PA 18046. All
test programs from the validation suite are copyrighted by A. H. J. Sale and the British Standards Institution, 1982.

59Also known as ISO 7185, and available from the British Standards Institute, 2 Park Street, London W1A 2BS, England.

104 CMU/SEI-87-TR-25

Section Symptom and Comments

6.1.6-6 The MIPS Pascal compiler allows labels to contain alphabetic characters.

- -

The Pascal standard states that labels must be numeric. By allowing a label to contain
alphabetic characters, the MIPS Pascal compiler presents a possible portability problem.

CMU/SEI-87-TR-29 105

Section Symptom and Comments

6.1.7-5 The MIPS Pascal compiler allows string variables to be stored in ordinary (unpacked) arrays.

- -

The Pascal standard specifically states that character strings are of type packed
array[1..n] of char. By allowing unpacked arrays to hold strings, the MIPS Pascal com-
piler presents a possible portability problem. In general, however, this is a rather simple
addition to the language, and can be worked around easily enough.

6.1.7-11 The MIPS Pascal compiler allows for the null string.

- -

The Pascal standard states that a character string is a sequence of characters surrounded by
apostrophes – hence there can be no null string. Although this introduces a portability
problem, we do not feel that it presents any real issue.

6.1.8-5 The MIPS Pascal compiler allows the expression
i := 10div j;

to pass without error.

- -

The expression (notice the missing space character) is clearly unambiguous, even though it is
in violation of the standard. We do not expect this deviation to be of any consequence.

6.2.1-8
6.2.1-9
6.2.1-10

The MIPS Pascal compiler allows for declarations outside of the standard-specified order, and
for multiple declarations of any given type.

- -

The Standard requires that declarations be in the order:
1. label
2. type
3. const
4. var
5. procedure/function

Since many Pascal compilers allow these deviations, we feel that this is of little consequence.

6.2.2-8 This program fragment compiles successfully, even though it is in violation of the Standard:
const

red = 1;
violet = 2;

procedure ouch;
const

m = red;
n = violet;

type
a = array[m..n] of integer;

var
v : a;
color : (blue,red,indigo,violet);

begin
v[1]:=1;
color:=red

end;

- -

The Pascal Standard requires that the defining-point of an identifier shall precede all applied
occurrences of that identifier, with the exception of pointer-type declarations. The scope of an
identifier is its whole region, which, in most cases, is a block. The rules prohibit a reference to

106 CMU/SEI-87-TR-25

Section Symptom and Comments

(continued) an outer identifier of the same spelling preceding the defining-point. The test includes two
exactly similar violations of the rules in the use of the identifiers red and violet in the
declarations of m and n. The MIPS Pascal compiler is treating the declarations in a top-down
manner, instead of considering them in a block-oriented manner. This particular error is very
hard for a 1-pass front end to get right.

6.2.2-12 The MIPS Pascal compiler allows an applied occurrence of a type to be in the same scope as a
field designator of the same name:

type
rec = record

ptr : ^fred;
fred : integer

end;
fred = rec;

- -

This deviation from the standard presents a significant portability problem. Should a program-
mer take advantage of this "feature", it could be rather difficult to undo its use when attempting
to port a program written on the MIPS M/500.

6.3-2
6.3-4
6.3-5
6.7.2.2-5

The MIPS Pascal compiler allows characters and booleans to be signed, for example:
const

dot = ’.’;
plusdot = + dot;

or:
const

truth = true;
plustruth = + truth;

- -

While it is not anticipated that a programmer would use this feature, the failure of the MIPS

Pascal compiler to catch this error suggests that hidden program flaws may pass through the
compiler undetected.

6.3-6 This program deviates because constants must not appear in their own definition:
const

ten = 10;

procedure p;
const

ten = ten;
begin
end;

- -

The Standard explicitly forbids a constant to appear in its own definition. In this program, the
definition ten = ten is in the scope of the second use of ten and, accordingly, is in error.
While it is not anticipated that a programmer would use this feature, the failure of the MIPS

Pascal compiler to catch this error suggests that hidden program flaws may pass through the
compiler undetected.

6.3-7 The MIPS Pascal compiler allows the value nil to be used in the constant definition part:
const

nothing = nil;

- -

This deviation allows the programmer to define a synonym for nil. For portability purposes,
this presents only a small problem, since a global textual substitution will solve the compilation
problems.

CMU/SEI-87-TR-29 107

Section Symptom and Comments

6.3-9 By allowing this example to compile, the MIPS Pascal compiler deviates from the Standard
since expressions cannot appear in a constant-definition:

const
linelength=80;
lineoflo=linelength+1;

- -

The const-part contains definitions of identifiers in terms of simple constants. Standard Pascal
does not permit expressions to be used, even if their values are compile-time determinable.
The authors have opposing viewpoints on this restriction. Should it present a portability
problem, however, it is easily worked around.

6.4.1-3 The MIPS Pascal compiler allows the use of a type in the same scope as its definition:
type

x = integer;

procedure p;
type

x = record
y : x

end;
begin
end;

- -

In this case, the definition of the component y in the record x is of type integer, although the
scope of the type x is the same as the declaration. Because the MIPS Pascal compiler allows
this to compile, it suggests that the compiler does not place a type in the symbol table until it is
fully defined. While it is not anticipated that a programmer would use this feature, the failure of
the MIPS Pascal compiler to catch this error suggests that hidden program flaws may pass
through the compiler undetected. It will also present a nasty portability problem if this feature
is used.

6.4.3.2-5 Strings must have a subrange of integers as an index-type. The following fragment compiles
without error.

type
color = (red,blue,yellow,green);
cl1 = blue..green;

var
s: packed array[cl1] of char;

begin
s:=’ABC’;

end.

- -

It is incorrect to have a subrange of an enumerated-type as the index-type, even if the ord of
the lower bound is one. As with other examples of this type, we feel it unlikely that a Pascal
programmer will use this feature of the MIPS Pascal compiler. However, in this case we feel
that by allowing this code to pass through without error, the MIPS Pascal compiler is allowing
other, perhaps undetected, errors to pass through by equating some instances of sets with
integers.

108 CMU/SEI-87-TR-25

Section Symptom and Comments

6.4.3.3-18 This test deviates, since all values of a tag-type of a record must appear as case-constants.
type

color=(pink,red,green,blue,yellow);
colored=record

case c:color of
pink:(p:array [1..2] of color);
red:(r:array [1..3] of color);
blue,yellow:(b:array [1..5] of color);
end;

- -

This deviation is another of little consequence. The requirement that all of the values of the
tag-type appear as case-constants is primarily for completeness. The actual value of the tag
(in this case c) is not used to access the variant part, so assigning green to c will not cause a
range violation error on the variant part.

6.4.3.5-13 This test deviates, since the component-type of a file-type should not include a file-type.
var

f1 : file of text;

- -

The Pascal predeclared entity text is a file-type. By allowing this program fragment to
compile, the MIPS Pascal compiler is introducing a possible portability problem. It appears
easy enough to change in the source program, however, to merit little concern.

6.4.3.5-14 This test deviates for the same reason as 6.4.3.5-13.
type

rec = record
f1 : text;
f2 : file of char;

end;
var

f3 : file of rec;

- -

In this example, the compiler is essentially allowing a file of file of char to be a legal
type. This will generally not compile on other Pascal compilers.

6.4.5-12 The following fragment compiles without error:
if ’CAT’ < ’HOUND’ then

- -

The Pascal Standard permits compatibility only between string-types having the same number
of components, while the MIPS Pascal compiler allows compatibility between different string
types. This is a nice extension to the language, although finding and correcting all such
instances in a program to be ported could prove to be a difficult venture.

CMU/SEI-87-TR-29 109

Section Symptom and Comments

6.4.5-16 This test violates the type rules for relational-operators using sets as operands.
type

BType = set of boolean;
PType = packed set of false..true;

var
flag:boolean; B:BType; P:PType;

begin
B:=[true,false];
P:=[true];
flag:=(B >= P); { B,P, incompatible }

- -

A relational-operator between values of a set type can either have compatible operands or be
of the same canonical set-of-T type. In this instance, the T is not the same (one packed, the
other unpacked). The MIPS Pascal compiler makes no distinction between packed and un-
packed datatypes, so this is of little consequence on the MIPS machine. However, serious
difficulties could arise in porting.

6.4.6-4 This test deviates, since assignment of reals to integers is not permitted.
var

r : real;
i : integer;

begin
r:=6.0;
i:=r;

end.

- -

The Pascal Standard allows assignment of integers to reals, but not reals to integers. To
perform this latter assignment, the program writer must use the explicit built-in functions trunc
or round (the MIPS Pascal compiler is performing an implicit trunc operation). While this
feature is of little consequence on the MIPS, chasing down all instances of this feature in a
program to be ported could prove harrowing.

6.4.6-6 The MIPS Pascal compiler allows this program to compile and execute without error:
type

rekord = record
f : text;
a : integer

end;
var

record1 : rekord;
record2 : rekord;

begin
record1.a:=1;
rewrite(record1.f);
rewrite(record2.f);
record2:=record1;
writeln(’ DEVIATES...6.4.6-6’)

end.

- -

Structured-types containing a file component should not be assigned to each other. The
Pascal Standard states that the two types T1 and T2 (in determining assignment compatibility)
must not be a structured-type with a file component. This feature of the MIPS Pascal compiler
seems to be a little more threatening regarding the portability issue.

110 CMU/SEI-87-TR-25

Section Symptom and Comments

6.5.4-4 This program deviates because a function-identifier cannot be used as a pointer-variable.
type

ptr = ^integer;
var

p : ptr;

function f : ptr;
var

p : ptr;
begin
new(p);
f := p;
f^ := 10
end;

begin
p := f;
writeln(p^);

end.

- -

The MIPS Pascal compiler takes a short-cut and treats a function-identifier as a local variable
when it appears on the left-hand side of an assignment. This is illegal according to the
Standard, and presents a noticeable portability problem.

6.6.1-3 This program shows that a procedure call is incorrectly bound to the wrong defining occur-
rence.

procedure p;
begin
writeln(’ OUTER PROCEDURE’)
end;

procedure q;
procedure qq;

begin
p
end;

procedure p;
begin
writeln(’ INNER PROCEDURE’)
end;

begin
qq
end;

begin
q;
end.

- -

Since the applied occurrence is before the defining occurrence (in qq), the program deviates.
The MIPS Pascal compiler should issue a compile time error indicating that the procedure p is
not declared at the time of its use. Instead, it uses the outer procedure, even though the scope
of the inner procedure overrides it. If, within the procedure q, the procedure p is declared to be
of type forward, the inner procedure is called, alluding to the linear creation of the symbol
reference table within the compiler.

CMU/SEI-87-TR-29 111

Section Symptom and Comments

6.6.1-4 This program shows another example of a procedure binding to the wrong occurrence:
var

i:integer;
procedure p;

begin
i := ord(’A’)
end;

function ord(c:char): integer;
begin
ord := - maxint
end;

begin
p;
end.

- -

This test uses a standard function rather than nested procedures. We feel that it is unlikely
that a programmer will redefine a built-in function in this manner. However, the MIPS Pascal
compiler should nonetheless issue an error message for this program.

6.6.3.2-1 The assignment compatibility rules prohibit a type with a file component being used as a value
parameter.

type
f = record

x: integer;
y: text
end;

var
v: f;

procedure p(q: f);
begin
rewrite(q.y)
end;

begin
v.x := 1;
p(v);

end.

- -

Since a file is conceptually an area on a secondary storage medium, it cannot have a
"value". By allowing a file to be passed as a value parameter, the MIPS Pascal compiler
introduces a severe portability problem.

6.6.3.3-4 This test deviates, since an actual variable parameter shall not denote a field which is the
selector of a variant-part.

type
shape = (triangle,rectangle);
figure = record

area :real;
case s :shape of

triangle : (base,height :real);
rectangle: (side1,side2 :real)

end;
var

ptr : ^figure;

112 CMU/SEI-87-TR-25

Section Symptom and Comments

(continued) procedure findarea(var s : shape);
begin
case s of

triangle :
ptr^.area := (ptr^.base*ptr^.height)/2;

rectangle:
ptr^.area := ptr^.side1*ptr^.side2

end
end;

begin
new(ptr);
ptr^.s := rectangle;
ptr^.side1 := 3;
ptr^.side2 := 4;
findarea(ptr^.s); {illegal}
if ptr^.area = 12 then

writeln(’ VAR PARAMETER PASSING’)
else

writeln(’ VAR PARAMETER DEVIANCE’)
end.

- -

This deviation opens the door to some major problems. What the MIPS Pascal compiler is
allowing the user to do is the following: A variant record is used with one part of the variant in
one place in the program. While this variant part is in use, the variant is passed by reference
to another routine, which then has the liberty to change the selector field – without "advising"
the caller of the routine. Although the MIPS Pascal compiler is getting the value of area right
(i.e., it is 12), it is providing a major loophole in the Pascal type checking rules (effectively
permitting FORTRAN equivalencing or the unconstrained C union operator in a language which
forbids this type of construct).

6.6.3.3-5 This program deviates from the standard, since an actual variable parameter may not denote a
component of a packed variable.

type
card = packed array[1..80] of char;

var
image : card;

function headercard(var col1 :char) : boolean;
begin

if col1 = ’H’ then
headercard := true

else
headercard := false

end;
begin

image[1] := ’ ’;
if headercard(image[1]) then

writeln(’ VAR PARAMETER PASSING(1)’)
else

writeln(’ VAR PARAMETER PASSING(2)’)
end.

- -

The MIPS Pascal compiler considers packed and unpacked arrays and records to be equiv-
alent, thus, for the MIPS, this deviation from the standard is of little consequence. However, for
portability’s sake, this feature should be changed.

CMU/SEI-87-TR-29 113

Section Symptom and Comments

6.6.3.6-10 The MIPS Pascal compiler does not adhere to standard parameter list congruity rules:
var

aa,bb : integer;

procedure p(procedure formal(var a,b : integer));
begin
formal(aa,bb)
end;

procedure actual(var a : integer; var b : integer);
begin
writeln(’ DEVIATES’)
end;

begin
p(actual)

end.

- -

This example merely points out a simple extension to Pascal (and thus, a small portability
problem), since the declaration parts of formal and actual are essentially identical.

6.7.1-10 Although the compiler should generate errors for each of the three string assignments, it
generates errors only for the last two:

var
string1 : packed array[1..4] of char;
string2 : packed array[1..6] of char;

begin
string1:=’AB’;
string2:=string1;
string1:=’ABCDEFG’;

end.

- -

The Pascal Standard states that string types are compatible only if they have the same number
of components. The MIPS Pascal compiler is allowing assignment of one string type to
another, padding out with spaces if they are not of the same length, when the source of the
string assignment is a string constant. While this is felt to be a reasonable action, it may pose
portability problems.

6.7.2.5-6 The MIPS Pascal compiler allows assignments and comparisons on records and arrays:
var c,d : record

f1 : integer;
f2 : real

end;
begin

c.f1 := 0;
c.f2 := 3.1;
if (c <> d) then

c := d;
end.

- -

This is a rather nice extension to the Pascal Standard, which, unfortunately will cause some
big headaches in porting. The comparisons are implemented on a component-by-component
basis, as are the assignments (i.e., they are done correctly). However, although this shortcut
is nice to have, it will prove annoying to anyone porting a program originally written under the
MIPS Pascal compiler.

114 CMU/SEI-87-TR-25

Section Symptom and Comments

6.8.1-1
6.8.1-2

The MIPS Pascal compiler allows gotos between alternative arms of a conditional statement
and case statements:

i:=5;
if (i<10) then

goto 1
else

1:write(’ DEVIATES...6.8.1-1,’);
if (i>10) then

2:writeln(’ GOTO ALTERNATE BRANCH OF IF’)
else

goto 2

- -

A conditional (or case) statement is considered a compound statement by the standard. A
goto may only reference a simple statement and may not reference a part of a compound.
One of the reasons for this restriction is to prohibit code that skips over loop initialization code
(see 6.8.1-4 below) or block initialization code (see 6.8.1-7 in section 8.3). In general, the MIPS

Pascal compiler is implementing the semantics of C in allowing this feature. Programs that
utilize this feature will be unportable or may produce unpredictable results on other compilers.

6.8.1-4
6.8.1-5

The MIPS Pascal compiler allows a goto in the middle of a for loop:
j := 0;
for i := 1 to 0 do

begin
100:

writeln(’OOPS’)
end;

i := 0;
if j = 0 then

goto 100

- -

This feature is just asking for trouble in that it allows the initialization code of a loop to be
skipped. A "clever" programmer could use this feature to advantage but would be violating the
Pascal standard. It is interesting to note that, if the goto is coded as in the example, the string
"OOPS" is printed. If, however, the goto is coded as a non-local goto, no message is printed.
We feel that this particular feature is a dangerous one to include in a production language –
especially when it is disallowed by the Pascal Standard. In general, the MIPS Pascal compiler
is implementing the semantics of C in allowing this feature. Programs that use this feature will
be unportable or may produce unpredictable results on other compilers.

6.8.3.5-7 Subrange lists are allowed in case elements:
case foo of

1..4: writeln(’low’);
5: writeln(’high’)
end;

- -

According to the Standard, only lists of case elements (i.e., 1,2,3,4) are allowed in case
elements, and not subranges (i.e., 1..4). This is a simple extension to the language and
should not present too much of a portability problem. Difficulties will arise when a range that
includes elements of a set is used, since it is not as obvious a list as integers.

CMU/SEI-87-TR-29 115

Section Symptom and Comments

6.8.3.9-6
6.8.3.9-7
6.8.3.9-8
6.8.3.9-9
6.8.3.9-10
6.8.3.9-15
6.8.3.9-16
6.8.3.9-21
6.8.3.9-22
6.8.3.9-24

The MIPS Pascal compiler allows a loop control variable to be passed as a var parameter:
var

i:integer;

procedure verynasty (var n:integer);
begin
end;

begin
for i:=1 to 10 do
begin

verynasty(i)
end;
writeln(’OOPS’)

end.

- -

In this example, the procedure verynasty can change the value of the loop control variable.
This threat is prohibited by the Standard, and by allowing it, the MIPS Pascal compiler intro-
duces a nasty portability (and debugging) feature. Other threats that the compiler allows to
pass through undetected are:

• Using a non-local variable as a loop control variable.

• Using a global variable as a loop control variable.

• Using a local variable for loop control, but permitting its use in another local
procedure.

• Modifying the loop control variable with a read statement.

• Using an actual-value parameter as a loop control variable.

• Using the value of the loop control variable after loop execution has completed.

• Allowing the value of the loop control variable to extend past the legal subrange of
the variable.

As in other cases, this implementation follows the unconstrained semantics seen in C, and
should be changed.

6.9.1-11
6.9.3.1-6
6.9.3.6-3

The MIPS Pascal compiler allows values of type other than integer, real, and character to be
read and written from/to a text file:

var
one:boolean;
f1 :text;

begin
rewrite(f1);
one := true;
writeln(f1,one);
reset(f1);
read(f1,one);

end.

- -

Although this is a clear deviation from the standard, other than creating a portability problem,
we feel that this extension is a valid one. Since the MIPS Pascal compiler considers packed
and unpacked arrays of characters to be equivalent, it also allows reads/writes of packed
arrays. This, too, is valid extension.

116 CMU/SEI-87-TR-25

Section Symptom and Comments

6.10-1
6.10-7

In the program specification, declaring output is not required. Also, a file may be a program
parameter but not be declared.

- -

In the former case, the MIPS Pascal compiler is adhering to the standard but deviating from
Jensen and Wirth. In the latter, the type of the variable may be inferred. In both cases, we feel
this is of small consequence.

8.2. Conformance

This section lists those features under which the MIPS Pascal compiler deviates from the standard in
a way that may affect program compilation. Generally, these deviations are expressed as failures of
the language to meet certain minimum requirements.

Section Symptom and Comments

6.1.5-2 A program with a very large floating-point number (i.e., an integer part with 3 digits followed by
a 35 digit fraction) causes the compiler to issue a fatal error in ugen.

const
reel = 123.456789012345678901234567890123456789;

- -

The compiler should allow an arbitrary length floating-point number to be expressed in Pascal.
Whether this value can be accurately represented in an internal form is irrelevant – the
compiler must accept the number as input.

6.2.3.5-1
6.4.3.3-11

The MIPS Pascal compiler does not detect the use of an uninitialized variable:
procedure q;
var

i,j : integer;
begin

i:=2;
j:=3

end;

procedure r;
var

i,j : integer;
begin

j := i-4;
writeln(’ THE VALUE OF I IS ’, i)

end;

begin
q;
r

end.

- -

The value printed out for i is 0, which happens to be the value that was in the register
allocated for i when the program was compiled. The same kind of unpredictable behavior
occurs when an uninitialized portion of a variant record is used. The compiler should report the
use of a variable before it is initialized (as is done with lint for the C compiler). Instead, no
indication is given. We feel that this is a shortcoming of the compiler.

CMU/SEI-87-TR-29 117

Section Symptom and Comments

6.4.2.4-5 Using strings in a subrange declaration crashes the compiler with the error "Fatal error" and no
line number indication.

firstindex = ’AB’ .. ’CD’;

- -

While this program fragment is illegal, the ungraceful error handling of the compiler is un-
acceptable. At least a specific error message should be printed. However, the compiler simply
dumps core and terminates execution.

6.4.3.3-10 The MIPS Pascal compiler does not generate an error when accessing a field of an inactive
variant:

type
two = (a,b);

var
variant : record

case tagfield:two of
a: (m:integer);
b: (n:integer)

end;
i : integer;

begin
variant.tagfield:=a;
variant.m:=1;
i:=variant.n; {illegal}

end.

- -

This deviation is another of little consequence. The requirement that all of the values of the
tag-type match the access type is primarily for completeness. The actual value of the tag (in
this case a) is not used to access the variant part, so accessing n while the variant part is set
to c should not cause any problems (even though, technically, an error message should be
printed).

6.4.4-4 This program, which tests that the domain type of a pointer type may be a file type, generates
a segmentation fault:

type
fileptr = ^text;

var
ptr1,ptr2,ptr4 : fileptr;

procedure copyandadd(var fromfile,tofile:text; ch:char);
begin
while not eoln(fromfile) do

begin
write(tofile,fromfile^);
get(fromfile)
end;

write(tofile,ch);
reset(fromfile); reset(tofile)
end;

procedure swapptr(var first,second:fileptr);
var

helpptr : fileptr;
begin
helpptr := first; first := second; second := helpptr
end;

118 CMU/SEI-87-TR-25

Section Symptom and Comments

(continued) procedure checkcontents(thefile:fileptr; expectedvalue:integer);
var

actualvalue : integer;
begin

readln(thefile^,actualvalue);
end;

begin
new(ptr1); new(ptr2); new(ptr4);
rewrite(ptr1^); rewrite(ptr2^); rewrite(ptr4^);
write(ptr1^,’1’);
reset(ptr1^);
copyandadd(ptr1^,ptr2^,’4’);
swapptr(ptr2,ptr4);
checkcontents(ptr4,1);

end.

- -

This example fails due to some internal consistency error in the run-time library. Whatever the
cause, the Pascal run-time should never dump core, but should issue some reasonable run-
time error message.

6.4.5-15
6.4.6-9
6.4.6-10
6.4.6-12
6.7.2.4-4

The MIPS Pascal compiler does not always detect out-of-range errors correctly, even when the
-C switch is used:

type
subrange = 0..5;

var
i : subrange;

procedure test(a : subrange);
begin

writeln(’ THE VALUE OF A IS ’, a);
end;

begin
i:=5;
test(i*2); { error }

end.

- -

In this specific example, the compiler is able to track the value of i into the procedure test
when the optimizer is enabled and when range checking is enabled. If, however, the optimizer
is not used, or if range checking is not explicitly enabled, no error message is issued. While
the latter is an acceptable constraint, we do not feel that the presence of the optimizer should
influence range checking. In this example, and many others, range checking was only per-
formed at compile time, not at run-time. In addition to parameter passing, range checking also
fails with:

• simple variable assignments

• array indexing

• incompatible (non-overlapping) set assignments

• sets passed as parameters

This is very bad behavior for a Pascal compiler to exhibit, especially since Pascal is supposed
to be a strongly typed, range checking language. Note again that these errors occurred even
when range checking was enabled during compilation.

CMU/SEI-87-TR-29 119

Section Symptom and Comments

6.5.5-2
6.5.5-3

The run-time error in this program is not detected:
var

fyle : text;
procedure naughty(var f : char);

begin
if f=’G’ then

put(fyle)
end;

begin
rewrite(fyle);
fyle^:=’G’;
naughty(fyle^);

end.

- -

This program causes an error by changing the current file position of a file, while the buffer-
variable is an actual variable parameter to a procedure. The error should be detected by the
run-time.

6.6.3.1-9 The following program fragment does not compile:
type

t = 0..10;
function f(t: integer): t;

The error that is given is that t (the second instance) is "Identifier is not of appropriate class".

- -

The problem is that the compiler is not keeping type declarations and variable declarations in
different name spaces. The declaration of a local variable t correctly overrides all other
enclosing declarations. However, the declaration also obscures the declaration of the type t,
which is incorrect.

6.6.3.2-3 The MIPS Pascal compiler passes all arrays by reference, regardless of the presence of a var
qualifier.

- -

This is bad news for portability. It is acceptable for a Pascal compiler to pass a non-var array
by reference, provided it is treated as a read-only array in the called routine. However, the
MIPS Pascal compiler does not even do this check, and simply passes the address of the array
into the routine, allowing full access to the array body. Truly, it is very inefficient to copy the
entire contents of an actual array parameter into a formal array parameter, but if that is the
action desired by the programmer (and demanded by the Standard), then the compiler must
perform this action.

6.6.3.5-2 The MIPS Pascal compiler does not check for function return-type congruity:
type

natural=0..maxint;
var

k:integer;

function actual(i:natural):natural;
begin

actual:=i
end;

procedure p(function formal(i:natural):integer);
begin

k:=formal(10)
end;

120 CMU/SEI-87-TR-25

Section Symptom and Comments

(continued) begin
p(actual);

end.

- -

The return types of the function formal do not match those of the function actual. This is a
severe portability problem because the compiler does not check for an incompatibility that
other compilers will surely complain about. In addition, it violates the strongly typed nature of
Pascal.

6.6.3.6-2
6.6.3.6-4

The MIPS Pascal compiler does not check for parameter list congruity, whether the parameters
are of type var or not:

program failure(output);
type

natural = 0..maxint;

procedure actual(i:integer; n:natural);
begin

i:=n
end;

procedure p(procedure formal(a:integer;b:integer));
var

k,l:integer;
begin

k:=1; l:=2;
formal(k,l)

end;

begin
p(actual);

end.

- -

The parameter types of the procedure formal do not match those of the procedure actual.
This is a severe portability problem. In addition, it violates the strongly typed nature of Pascal.

6.6.5.2-19 Calling the built-in function get with no parameters causes a fatal error in /usr/lib/upas.

- -

This shortcoming in the MIPS Pascal compiler is indicative of the rather sparse error recovery
system built into the compiler. Section 8.5 discusses this shortcoming in more detail.

6.6.2-7 The MIPS Pascal compiler fails to detect when a function assignment is not executed:
function area(a : real) : real;
var

x : real;
begin

if a > 0 then x:=3.1415926*a*a
else area:=0

end;

begin
writeln(area(2.0));

end.

- -

The Pascal Standard states that the result of a function will be the last value assigned to its
identifier. If no assignment occurs, then the result is undefined. The MIPS Pascal compiler is in
error by not detecting this fact.

CMU/SEI-87-TR-29 121

Section Symptom and Comments

6.6.5.2-5
6.6.5.2-6
6.6.5.2-7
6.6.5.2-9
6.6.5.2-10
6.6.5.2-12
6.6.5.2-13
6.6.5.2-14
6.6.5.2-15
6.6.6.5-6
6.6.6.5-7
6.6.6.5-8

This test fails to cause an error by applying ’reset’ to an undefined file:
var

f : file of integer;
begin

reset(f);
end.

- -

This is another example of the MIPS Pascal compiler allowing uninitialized variables to be used
in expressions. Other errors involving files include:

• Allowing a get following a rewrite.

• Allowing a read of a type incompatible with the file type.

• Allowing a write of a type incompatible with the file type.

• Allowing a get of a type incompatible with the file type.

• Allowing a put of a type incompatible with the file type.

• Allowing a get past the end of a file.

• Allowing a put to an undefined buffer variable.

• Allowing an eof to an undefined file variable.

• Allowing an eoln while eof is true.

• Allowing an eoln to an undefined file variable.

The only error that is detected correctly is:

• A put on a file not open for writing.

122 CMU/SEI-87-TR-25

Section Symptom and Comments

6.6.5.3-6
6.6.5.3-7
6.6.5.3-8
6.6.5.3-9
6.6.5.3-10
6.6.5.3-11
6.6.5.3-13
6.6.5.3-14
6.6.5.3-16
6.6.5.3-17
6.6.5.3-21

The following example fails to detect the use of a pointer after it has been disposed:
type

pointer = ^integer;
var

p : pointer;
begin

new(p);
p^ := 10;
dispose(p);
writeln(p^);

end.

- -

The MIPS Pascal compiler and run-time is not performing any checks on the validity of pointers,
including:

• Allowing a dispose on a pointer whose value is currently active as a var
parameter.

• Allowing a dispose on a pointer which is currently being referenced by a with
statement.

• Allowing the use of a pointer after it has been disposed.

• Allowing the use of a pointer that, through assignment, was equal to another
pointer that has been disposed.

• Allowing a generic dispose on a pointer referencing a variant record, or passing
different or the wrong number of parameters to the long form of dispose (this is
merely a portability problem, since the MIPS Pascal compiler uses the generic UNIX

memory allocation mechanism).

CMU/SEI-87-TR-29 123

Section Symptom and Comments

(continued) • Allowing a reference (either left or right-hand side, or parameter) to the pointer p^
when p^ refers to a variant record (i.e., a reference other than to a component of
the record). This results in a potentially illegal copying of differing variant record
components.

• Allowing the activation of a variant part other than that created by a call to
new(p, c1, c2 ...).

All of these failings of the MIPS Pascal compiler are dangerous ones. The first four are classic
problems of the C run-time library that should be fixed in a type and range checking language
such as Pascal. The last failing presents a severe problem, since only the minimum space is
allocated in the call to new, and activating a different variant part may write to other, unrelated
areas of memory. All of these errors should be fixed.

6.6.5.4-2
6.6.5.4-3
6.6.5.4-4
6.6.5.4-5
6.6.5.4-6
6.6.5.4-7

The MIPS Pascal compiler and run-time fail to detect that the ordinal type parameter to the
built-in procedure pack is not assignment compatible with the index type of the unpacked
array parameter:

type
pak = packed array [0 .. 15] of boolean;

var
a: array [1 .. 16] of boolean;
z: pak;
i: 1 .. 16;

begin
for i := 1 to 16 do

a[i] := true;
pack(a, 0, z);

end.

- -

The MIPS Pascal compiler is not performing the following checks on arrays:

• Not detecting that the ordinal type parameter to the built-in procedure pack (or
unpack) is not assignment compatible with the index type of the unpacked
(packed) array parameter:

• Allowing pack (unpack) to be called on an array that contains undefined ele-
ments.

• Allowing the index of the unpacked (packed) array to be exceeded in a call to
pack (unpack).

The last case is especially nasty, since it implies that the array bounds can be exceeded,
writing to an area of memory that may contain other, unrelated information. Since these errors
are not detected, spurious program behavior can result. The second error is very difficult and
expensive to detect, but the other two errors should be corrected.

6.6.6.4-9 The MIPS Pascal compiler allows the ord function to be applied to a pointer.
var

ptr : ^integer;
i : integer;

begin
new(ptr);
i := ord(ptr);

end.

- -

Again, the MIPS Pascal compiler is generally fairly poor at checking for assignment com-
patibility. This is another example of the failure of the compiler to adhere to the Pascal typing
rules.

124 CMU/SEI-87-TR-25

Section Symptom and Comments

6.6.6.2-4
6.6.6.2-5
6.6.6.2-12
6.6.6.2-13
6.6.6.2-14
6.6.6.3-3
6.6.6.3-4
6.6.6.4-5
6.6.6.4-6
6.6.6.4-7

The MIPS Pascal compiler does not check that the parameters to arithmetic functions are of the
correct type:

var
a : real;

begin
a:=sqr(’4’);

end.

- -

The MIPS Pascal compiler is generally fairly poor at checking for assignment and range com-
patibility. This is one example of the failure of the compiler to adhere to the Pascal range and
typing rules. Other failures include:

• Allowing a negative number to be passed to the ln function.

• Allowing a negative number to be passed to the sqrt function.

• Allowing an undetected (integer) overflow of the sqr function.

• Allowing a number larger than maxint to be passed to trunc or round.

• Allowing the succ function on the last value of an ordinal type.

• Allowing the pred function on the first value of an ordinal type.

• Allowing the chr function to be used on ordinal types exceeding the range of
characters.

In all of these cases, no compile time or run-time error is issued. The purpose of the range
and type checking inherent in most Pascal compilers is to detect these types of programming
errors. By failing to detect these errors, the MIPS Pascal compiler is allowing many potential
bugs to creep into programs. It should be noted that these errors pass through even when the
-C switch is used to enable run-time range checking.

6.7.2.2-8
6.7.2.2-9
6.7.2.2-10
6.7.2.2-11
6.7.2.2-12
6.7.2.2-13
6.7.2.2-16
6.7.2.2-19

The MIPS Pascal compiler does not issue a run-time error when a value larger than maxint is
printed:

var
i: integer;

function maxie: integer;
begin
x:= maxint;
end;

begin
i := 100;
writeln(’ MAXINT + 100 = ’,maxie+i);

end.

- -

In those cases, in which the condition can be detected at compile time, the MIPS Pascal
compiler will report on arithmetic overflow. There appears to be no run-time range checking on
any arithmetic operations, including:

• Allowing a negative second operand in the mod operation.

• Allowing a floating-point divide by zero.

• Allowing run-time overflow on addition.

The run-time will report on an integer division or modulo by zero, but it does so by issuing a
break point trap and dumping core. This is unacceptable.

CMU/SEI-87-TR-29 125

Section Symptom and Comments

6.7.2.2-18 The MIPS Pascal compiler allows operands of other than real or integer to be used in a division
operation:

var
c : char;
r, s: real;

c := ’A’;
s := 1.5;
r := c/s;

- -

Since Pascal is a strongly typed language, the MIPS Pascal compiler should check for such
blatant violations of type compatibility. Instead, it is following the semantics of C, and consider-
ing a character type to be the same as an integer type. This is clearly an error.

6.7.2.4-9
6.7.2.5-10

The MIPS Pascal compiler allows a non ordinal type (i.e., strings or sets) to be the left operand
of the in operator:

var
s : set of 0..10;

begin
s := [3];
if (s in []) or (’HI’ in []) then

writeln(’OOPS’);
end.

- -

This is another example of the MIPS Pascal compiler having trouble with type checking and
with set operations. A lot of work needs to be done with both of these to bring the compiler up
to a workable level.

6.7.2.5-7 The MIPS Pascal compiler allows equality and non-equality between different pointer-types:
type

natural = 0..10;
one = ^integer;
two = ^natural;

var
x: one;
y: two;

begin
new(x);
x^ := 2;
new(y);
y^ := 3;
if (x <> y) or not (x = y) then

writeln(’YOW’);
end.

- -

Since the range of integers expressed by type integer and type natural are different,
comparisons across these pointer types should be illegal. However, the MIPS Pascal compiler
allows them which introduces a serious portability problem and demonstrates a dangerous lack
of type checking.

126 CMU/SEI-87-TR-25

Section Symptom and Comments

6.9.3.1-2
6.9.3.1-3
6.9.3.1-7

This program deviates from the Standard because it allows output of a non-positive field width:
var

f:text;
i:integer;

begin
rewrite (f);
for i:=10 downto -1 do

write(f,’ ’,’.’:i, ’REP=’,i);
end.

- -

The MIPS Pascal compiler allows this illegal program, as well as a program which prints a
floating point number with a zero field width fraction, to compile and run. While this is a small
problem on the MIPS (the program will at least print out something), it presents a large por-
tability problem.

6.10-8 This program deviates from the Standard because the program-parameter f has been sub-
sequently declared as a function.

program t6p10d8(f, output);

function f:boolean;
begin
f := true
end;

begin
writeln(’OOPS’)

end.

- -

In this case, the type of f is initially inferred from the program definition. However, it is later
defined as a function. When it is referenced, what type is it? In this case, it will be a function,
which indicates a lack of the appropriate type checking.

8.3. Bad Code

This section describes samples of incorrect code being generated by the compiler from legal Pascal
source code. These examples are the nightmare of every programmer – debugging them is very
difficult because as far as the programmer can tell, the source code is perfectly reasonable, although
the output of the compiler does not exactly correspond to the input.

These deviations represent serious problems with the compiler. In fact, there may be more ex-
amples than the ones shown here. The only reason these were found is because of specific checks
put in the test programs to look for such errors, or because the compiler exhibits different behavior
with and without the optimizer engaged. In the past, we have been able to generate similar errors by
writing intentionally noxious code, or by misusing Pascal. The primary problem lies in the fact that
compilers are all too often tested only on good code, and not on incorrect code.

CMU/SEI-87-TR-29 127

Section Symptom and Comments

6.1.1-3 The following code fragment (where stv is a set of [0..9]) causes an infinite loop at
optimization level 2 or above:

stv := [1];
repeat

with pkr do;
until (1) in stv;

- -

The compiler generates the following code:
140 stv := [1];
li $14, 1073741824
sw $14, -16($6)
141 repeat
$62:
142 with pkr do;
143 until (1) in stv;
b $62

This plainly loops forever. The reason the compiler generates this code is not obvious,
although examining the code generated at optimization level 1 gives us a clue:

140 stv := [1];
li $9, 1073741824
lw $10, 36($sp)
sw $9, -16($10)
141 repeat
$64:
142 with pkr do;
143 until (1) in stv;
lw $11, 36($sp)
lw $12, -16($11)
sll $13, $12, 1
bge $13, 0, $64

At this lower level of optimization, the compiler is performing the set-inclusion test. Unfor-
tunately, the test is generated incorrectly. Rather than shifting a single bit to the left (and then
comparing the result with the set), the compiler instead is shifting the set left and comparing it
with zero. The compiler can determine this as a compile-time constant (at the higher optimiza-
tion level), and it generates an infinite loop.

6.5.4-1
6.5.4-2

The MIPS Pascal compiler allows a pointer which is undefined, or explicitly initialized to nil, to
be dereferenced, creating a core dump:

type
rekord = record

a : integer;
b : boolean

end;
var

pointer : ^rekord;
begin

pointer:=nil;
pointer^.a := 1;

end.

- -

Even with value tracking, the compiler is unable to detect this blatant error. In the more subtle
case where the value of pointer is left uninitialized, the compiler exhibits similar behavior.
This is another manifestation of the lack of run-time checking by the compiler, and it should be
corrected. At the very least, the run-time should print out a Pascal run-time error message
before performing the core dump.

128 CMU/SEI-87-TR-25

Section Symptom and Comments

6.6.5.2-8
6.6.5.2-11

The following program dumps core on execution:
var

f : file of char;
begin

get(f);
end.

- -

The reason the program dumps core is that the file f is undefined when the get is performed
(i.e., no reset was executed). The run-time library should have detected this fact at run-time.
Instead, it rather ungracefully terminated execution. At the very least, a run-time error mes-
sage should have been issued. The program will also dump core if page is substituted for
get.

6.6.5.3-4
6.6.5.3-5

The following program dumps core on execution:
type

rekord = record
a : integer;
b : boolean
end;

var
ptr : ^rekord;

begin
ptr:=nil;
dispose(ptr);

end.

- -

The reason the core dump occurs is that ptr is nil. The run-time should test for illegal
values of pointers before executing the dispose operation. This program will also dump core if
ptr is left undefined (instead of being explicitly set to nil). In the latter case, if the variable
containing the pointer is uninitialized, but contains (through happenstance) the value of a
different pointer, a different dynamic element could be disposed of – a highly undesirous effect.
These shortcomings should be corrected and have an error issued from the run-time, rather
than have the program dump core.

6.7.1-6 The following example works correctly without the optimizer engaged but fails when optimiza-
tion level 2 is used:

n := 2;
if [1,2,succ(n)]=[1..3] then

c:=c+1;

- -

The reasons for failure result from compile-time value tracking and elimination of redundant
code. Specifically, the optimizer knows the values of all of the conditional expressions at
compile-time and simply increments c for each case where the conditional is true (eliminating
the test code in the process). Unfortunately, the optimizer fails to track and recognize the
expression [1,2,succ(n)]=[1..3] as being true. Examining the assembly output for this
fragment, we see that this is another manifestation of the bad code generated for sets:

CMU/SEI-87-TR-29 129

Section Symptom and Comments

(continued) # 26 if [1,2,succ(n)]=[1..3] then
lw $13, 36($sp)
addu $14, $13, 1
addu $15, $14, -96
sltu $24, $15, 32
not $25, $14
sll $8, $24, $25
addu $9, $14, -64
sltu $10, $9, 32
sll $11, $10, $25
or $12, $8, $11
addu $13, $14, -32
sltu $15, $13, 32
sll $24, $15, $25
or $9, $12, $24
sltu $10, $14, 32
sll $8, $10, $25
or $11, $8, 1610612736
xor $13, $11, 1879048192
or $15, $9, $13
bne $15, 0, $32
.loc 2 27
27 c:=c+1;
lw $12, 32($sp)
addu $24, $12, 1
sw $24, 32($sp)
$32:

The two constants 1610612736 and 1879048192 are 0x60000000 and 0x70000000, respec-
tively (which correspond to the sets [1..2] and [1..3], respectively). The optimizer is performing
a correct optimization, given an incorrect source of assembly instructions.

6.7.2.2-4 The compiler issues the error "uopt: Warning: multiplication overflow" on the following example
when the optimizer is enabled but issues no error if it is disabled. In either case, no run-time
error is issued.

max:=-(-maxint);
if odd(maxint) then

i:=(max-((max div 2)+1))*2

- -

The problem here is that the optimizer is of reorganizing the arithmetic expression (while no
such reorganization is performed without the optimizer). This rearrangement causes the
arithmetic overflow. Since the expression was parenthesized specifically to avoid the math-
ematical overflow, we believe that the compiler is in error.

6.7.2.5-2 This program fragment does not print TRUE as it should:
b := [2,3,4];
c := 3;
if (c in b) then

writeln(’TRUE’);

- -

This is another example of the in operator generating bad code and having it optimized out to
nothingness. When expressions such as b<>c or b<=c are used, the compiler sometimes
also functions incorrectly. The in operator (as well as the equality operator from Example
6.7.1-6) seem to be failing.

130 CMU/SEI-87-TR-25

Section Symptom and Comments

6.8.1-6
6.8.1-7

The MIPS Pascal compiler allows a goto into a with statement, with disastrous results. The
following program dumps core:

type
rec = record

y: integer;
end;

ptrec = ^rec;
var

x: ptrec;
done: boolean;

begin
new(x);
x^.y := 100;
done := false;
if done then

with x^ do
1:
begin
writeln(y);
y := y + 1
end;

if not done then
begin
done := true;
goto 1
end

end.

- -

In this example, the placement of the label is legal, in that it references a simple statement.
The goto is illegal, however, in that it references an illegal target. In this case, the initialization
code for the with statement is skipped, and an indirection through an uninitialized register is
performed in accessing x^.y. This "feature" should be removed from the MIPS Pascal com-
piler, and only the legal set of gotos should be allowed. In general, the MIPS Pascal compiler
is implementing the semantics of C in allowing this feature.

6.10-10 The following program causes a core dump:
var

c : char;
begin

writeln(’Start’);
reset(output);
read(output,c);

end.

- -

This program attempts to reuse output as a regular file that can be read from. This attempt is
perfectly legal according to the Standard because it is implementation-defined as to whether
output actually goes to a terminal (all it need [must] do is treat output as an ordinary file).
The MIPS Pascal compiler implementation of output classes it as the UNIX stdout file using
the standard UNIX file conventions. This breaks the Pascal standard. While few users may
take advantage of this aspect of the Standard, there are other ramifications that must be
considered.

CMU/SEI-87-TR-29 131

Section Symptom and Comments

-none- The following code generates the error from the linker: "Undefined: write_set":
var s : set of 0..10;

begin
s := [1,3,5];
writeln(s);

end.

- -

The implementors of the MIPS Pascal compiler library functions have either not implemented
the write_set operation, or they have failed to include it in the distribution. In any event,
write_set is not in the library file, and programs which attempt to print out the contents of
sets will fail to compile successfully.

8.4. MIPS Extensions to Standard Pascal

According to MIPS, the MIPS Pascal compiler contains the following extensions to the Pascal Stan-
dard:

• Allows the use of underscores (_) in variable names.

• Prints alphabetic labels (see test 6.1.6-6 in Section 8.1).

• Allows numbers in a non-decimal radix. Any radix between base 2 and base 36 is
permitted. write and writeln also support arbitrary radix output.

• Predefines three extra data types in the compiler:

• double – double precision floating-point

• cardinal – unsigned integers in the range of 0..4294967295

• pointer – a pointer to any data type

• The MIPS Pascal compiler always does short-circuit boolean evaluation (this is a per-
mitted extension, but dependency on it guarantees non-portability).

• Automatically pads strings with trailing spaces to fill them <to the required length (see
test 6.7.1-10 in section 8.1).

• Allows non-ASCII characters in strings, following the UNIX convention of escape charac-
ter sequences.

• Permits constant expressions in type or array-bound definitions. It also supports the
following additional built-in functions:

• bitand – bitwise and

• bitor – bitwise or

• bitxor – bitwise xor

• lshift – logical left shift

• rshift – logical right shift

• lbound – the lower bound of an array (this is odd in that this facility is provided
but conformant arrays parameters are not)

• hbound – the higher bound of an array (this is odd in that this facility is provided
but conformant arrays parameters are not)

132 CMU/SEI-87-TR-25

• first – the first value of a scalar type

• last – the last value of a scalar type

• sizeof – the size (in bytes) of a data type

• min – the minimum of a set of scalars

• max – the maximum of a set of scalars

• assert – evaluates a boolean expression and prints a run-time error message

• date – the current date in string form

• time – the current time of day in string form

• clock – the number of milliseconds of CPU time used by the process

• argv – returns a specified program argument as passed in from the shell

• Permits ranges as case statement constants (see test 6.8.3.5-7 in Section 8.1).

• Includes an otherwise clause in the case statement.

• Allows a return statement to exit a subroutine or function.

• Permits a continue and a break statement with semantics similar to the C version.

• Adds the concept of shared variables and the keyword external to facilitate separate
compilation.

• Adds variables to have an initialization clause along with their declaration part. This is
especially useful for initializing arrays.

• Relaxes the declaration ordering rules. See tests 6.2.1-8, through 6.2.1 -9, and -10 in
the section on portability (Section 8.1).

• Allows the rewrite and reset routines to take an optional filename parameter.

• Allows the write and writeln routines to work on enumerated types.

• Employs a preprocessor (namely cpp) before compilation.

8.5. Local Conclusions

In spite of the large number of specific deviations, the MIPS Pascal compiler is a fairly reasonable
compiler which generates very efficient code. The robustness of the compiler is, however, question-
able at best. Even with the compiler option -C, which, according to the on-line manual page entry for
the Pascal compiler pc, is supposed to "generate code for run-time range checking," the range and
type checking of the compiler are fairly specious and need to be made much more robust.

It is possible to assign numbers out of their range, to assign one set to another which has no
overlapping objects, to generate (without detection) arithmetic overflow and underflow, to index
through a deleted pointer, to read past the end of a file, and so on. In short, the MIPS Pascal
compiler implements the simple UNIX and C model of a programming language.

We would not dwell so much on the failings of the Pascal compiler were it not for one simple fact:
the MIPS common code generator, optimizer, assembler/reorganizer, and the MIPS Pascal compiler
itself are all written in this same version of Pascal. Thus, since the compiler does not check for

CMU/SEI-87-TR-29 133

pointer validity, range overflow, and file validity, unless the programmer performs these checks ex-
plicitly, it is entirely possible that all manner of bugs will be lurking in the depths of these programs.
MIPS Incorporated has repeatedly asserted that this is not true, but we do not agree. The tests that
they have run on their compilers are, by their own admission, a set of programs which are known to
function correctly.60 These programs will only detect that the compiler and utilities function correctly
given correct input. They in no way test the compilers’ behavior given incorrect, or for that matter,
merely different input. We are willing to give long odds that adding the full complement of range and
bounds-checking code to the Pascal compiler will likely turn up at least one hitherto undetected
violation of range or boundary limits.

There are numerous examples in the validation suite of the compiler or the run-time crashing while
executing suspicious (or in some cases, correct) Pascal source code. While it is unreasonable for
the run-time to crash, it is unacceptable for the compiler to ever crash, no matter how unreasonable
the input. Regrettably, the MIPS Pascal compiler could stand a bit of strengthening in this area.

60Examples are: the UNIX utility set, their own compilers, the run-time libraries, benchmarks, etc.

134 CMU/SEI-87-TR-25

CMU/SEI-87-TR-29 135

9. Unexpected Program Behavior

Figure 9-1 shows a simple assembly program that has four load instructions from two different ad-
dresses. Both of the addresses are in the sdata psect, and thus all addresses are supposed to be
gp-relative.

.sdata

.align 2
x: .word 1

.text
L:

lw $2,x
la $3,x
lw $4,y
la $5,y

.sdata

.align 2
y: .word 1

Figure 9-1: Assembly Code that Triggers gp-Relative Bug

The MIPS assembler/reorganizer is supposed to take assembly language programs and translate
them into MIPS M/500 native instructions, potentially changing some instruction sequences into
others. One of the instruction sequences that it is supposed to modify is the load-class instruction. If
the source of the load is at a gp-relative address, then the assembler reorganizer should make the
load be gp-relative. If not, then the assembler/reorganizer should make the load be from a 32-bit
address. The advantage to the gp-relative load is that it requires only one instruction, while the
32-bit address load requires two.

In the source code in figure 9-1, all of the address references are properly gp-relative, and each
should be translated into a single MIPS M/500 instruction. However, as can be seen in figure 9-2,
this is not the case.

0x0: 8f828010 lw v0,-32752(gp)
0x4: 27838010 addiu v1,gp,-32752
0x8: 3c010000 lui at,0x0
0xc: 8c24001c lw a0,28(at)
0x10: 2425001c addiu a1,at,28
0x14: 00000000 nop

Figure 9-2: MIPS M/500 Code from Figure 9-1

Both of the references to the variable x are encoded as a gp-relative reference, whereas both
references to the variable y are not. The only difference between x and y is that y is a forward
reference. This behavior is reminiscent of an early 1 or 1.5 pass assembler and should not be
present in a modern 2 pass assembler.

136 CMU/SEI-87-TR-25

CMU/SEI-87-TR-29 137

10. Conclusions

The RISC Evaluation Project set out to answer two questions:

1. Taking hardware and system software together, is a machine built using RISC prin-
ciples a feasible competitor to a CISC machine?

2. How well do the actual hardware and software of a specific RISC system (in this case,
the MIPS M/500) compare with those of a specific CISC system (in this case, the VAX)?

The first question can be answered only qualitatively, in terms of one’s instinct or opinion. The
second question can be addressed quantitatively by analyses of benchmarks, instruction-set usage
patterns, and other data.

This report documents in detail our answer to the second question, presenting both the data them-
selves and, where appropriate, the evaluation methods we employed. Our conclusions, culled from
the body of the report, are:61

• The particular machine studied, the MIPS M/500, conforms closely to the CORE ISA
definition and can fairly be classed as a RISC class machine.

• The overall performance of the hardware is very impressive, about 8 million machine
instructions per second.

• When code in high-level languages is run, this hardware performance yields objective
benchmark and application performance of about five times that of a VAX-11/780 run-
ning UNIX 4.3 BSD, this being the unofficial "one MIP" machine.

• This level of performance was consistent across a wide variety of benchmarks and
applications. Although we stress that benchmark statistics without the accompanying
evaluation are next to useless, we also observed that the MIPS M/500 benchmarked at
2408 Whetstones (FORTRAN single precision), and at 14184 Dhrystones (register and
non-register).

In attempting to answer the first question, we made the following observations, which we again
emphasize are qualitative rather than quantitative:

• Hand coding of small benchmarks can still provide major improvement over compiler-
generated code. Nevertheless, compilers for the RISC machine performed, overall,
much better than those for the CISC machine.

• The compiler-generated code shows substantially more effective usage of the RISC
instructions and addressing modes, with no serious inefficiencies caused by omitted
instructions and addressing modes. This finding, especially, bears out the claims made
on behalf of RISC machines.

• Targeting a compiler to a RISC machine does not seem much harder than targeting one
to a CISC machine. Different tasks have to be done, but the overall amount of work is
about the same. However, we believe that the compiler should also perform any object-
code reorganization that may be required, rather than leaving this to a separate
program.

61More detailed conclusions can be found in the sections entitled Local Conclusions. These are sections 3.3 (assembly
language reorganization), 4.1.6, LC.WHET, 4.2.3, and 4.3.2 (benchmarking), 6.2.8, and 6.3.4 (compiler utilization of the
instruction set), 8.5 (Pascal compiler conformance), and Appendix Section C.7 (conformance to the CORE ISA). The reader
is urged to read these sections for more information.

138 CMU/SEI-87-TR-25

• Fewer actual instructions are required by a CISC machine to perform the same function
as a RISC machine – an expected phenomenon. The ratio of the number of bytes
required to represent these instructions (a much more valid measure) is far closer to one
than is the ratio of instruction counts. With memory costs decreasing as they are, the
greater processing power of the RISC architecture far outweighs the slightly increased
memory use.

We also formed some conclusions about the assessment process itself, which are perhaps of
general applicability:

• It is not easy to disentangle the effects of hardware, operating system, file system,
compilers, and languages. The investigator must be prepared to recognize tiny
anomalies, track down vague clues, run down blind alleys, and perform a large number
of experiments differing only in minute detail.

• One must be very specific about what one is measuring. The same benchmark in two
languages may yield quite different numbers; the same program run twice may give
different timings; two compilers for the same language may show radically different code
patterns for the same idioms.

• The purpose of computing is insight, not numbers. No datum is useful unless it can be
explained; no explanation is useful unless it serves to illuminate an issue or progress an
argument. If there is a "bottom line" in benchmarking, it is that you must understand
what you are doing and why you are doing it.

Finally, it seems appropriate to reiterate the main conclusion of this investigation:

There may not always be a right choice and a wrong choice in the
RISC versus CISC debate. However, in all the areas we examined,
the RISC design was never the wrong architectural choice.

CMU/SEI-87-TR-29 139

Bibliography

[Am2900 87] Am29000 Streamlined Instruction Processor User’s Manual
Advanced Micro Devices, Sunnyvale, CA, 1987.

[Barbacci 78] M. R. Barbacci, W. E. Burr, S. H. Fuller, D. P. Siewiorek.
Evaluation of Alternative Computer Architectures.
Technical Report CMU-CS-77-EACA, Carnegie Mellon University Computer

Science Department, February, 1978.

[Bell 86] C. Gordon Bell.
RISC: Back to the future?
Datamation 32(11), June, 1986.

[Buchholz 69] W. Buchholz.
A Synthetic Job for Measuring System Performance.
IBM System Journal (4), 1969.

[Ciechanowicz 86] Z. J. Ciechanowicz and Brian Wichmann.
A Reader’s Guide to Pascal Compiler Validation Reports.
Technical Report DITC 24/83, National Physics Laboratory, Teddington, Mid-

dlesex TW11 0LW, UK, 1986.

[Cook 82] R.P. Cook and I. Lee.
A Contextual Analysis of Pascal Programs.
Software Practices and Experiences 12(2):195-203, February, 1982.

[CORE 87] Robert Firth.
CORE Set of Assembly Language Instructions for MIPS-Based MicroProcessors.
Technical Report Maintained Under Contract RADC F19628-85-C-0003, Software

Engineering Institute, 1987.
Originally prepared by Thomas Gross of Carnegie Mellon University.

[Curnow 76] H. J. Curnow and B. A. Wichmann.
A Synthetic Benchmark.
Computer Journal 19(1):43-49, February, 1976.

[DEC 72] DecSystem-10 Assembly Language Handbook
Digital Equipment Corporation, Maynard, MA, 1972.

[DePrycker 82] M. DePrycker.
On the Development of a Measurement System for High-Level Language

Program Statistics.
IEEE Transactions on Computing 9:883-891, September, 1982.

[Fleming 86] P. J. Fleming and J. J. Wallace.
How Not To Lie With Statistics: The Correct Way to Summarize Benchmark

Results.
Communications ACM 29(3):218-221, March, 1986.

[Himelstein 87] Mark Himelstein et al.
Cross-Module Optimization: Its Implementations and Benefits.
In Usenix Conference Proceedings. June, 1987.

[Hinnat 84] David F. Hinnat.
Benchmarking UNIX Systems.
BYTE 9(8), August, 1984.

140 CMU/SEI-87-TR-25

[Jensen 85] Kathleen Jensen and Niklaus Wirth.
Pascal - User Manual and Report.
Springer Verlag, New York, 1985.

[Kernighan 70] Brian Kernighan and Dennis Ritchie.
The C Programming Language.
Prentice-Hall, Englewood Cliffs, NJ, 1970.

[McDonell 87] Ken McDonell.
Taking Performance Analysis out of the "Stone" Age.
In Usenix Conference Proceedings. June, 1987.

[Milutinovic 87] Veljko Milutinovic et al.
Architecture/Compiler Synergism in GaAs Computer Systems.
IEEE Computer 20(5):72-93, May, 1987.

[MIPS 86a] Assembly Language Programmer’s Guide.
Mips Computer Systems, Inc., Sunnyvale, CA, 1986.

[MIPS 86b] Language Programmer’s Guide.
Mips Computer Systems, Inc., Sunnyvale, CA, 1986.

[Pascal 82] Specification for Computer Programming Language Pascal.
British Standards Institution, 2 Park Street, London W1A 2BS England, 1982.

[Patterson 85] David Patterson.
Reduced Instruction Set Computers.
Communications ACM 28(1):8-21, January, 1985.

[RISC 86] .
How to recognize a RISC.
Mini-Micro Systems 9(13), November, 1986.

[Serlin 86] Omri Serlin.
MIPS, Dhrystones, and Other Tales.
Datamation 32(11), June, 1986.

[SPARC 87] The SPARCTM Architecture Manual
Sun Microsystems, Inc., Mountain View, CA, 1987.

[Tannenbaum 78] Andrew S. Tannenbaum.
Implications for Structured Programming for Machine Architecture.
Communications ACM 21(3):237-246, March, 1978.

[Tennent 85] R. D. Tennent.
A Comparison of the ANSI and ISO Pascal Standards.
Software - Practice and Experience 15(8):821-822, August, 1985.

[Unix 79] UNIX Assembler Reference Manual
AT&T Bell Laboratories, Holmdale, NJ, 1979.

[Weicker 84] Reinhold P. Weicker.
Dhrystone: A Synthetic Systems Programming Benchmark.
Communications ACM 27(10):1013-1030, October, 1984.

[Wichmann 76] Brian Wichmann.
Ackermann’s Function: A Study in the Efficiency of Calling Procedures.
BIT 16:103-110, 1976.

CMU/SEI-87-TR-29 141

[Wichmann 77] Brian Wichmann.
How To Call Procedures, or Second Thoughts on Ackermann’s Function.
Software Practice and Experience 7, 1977.

[Wichmann 82] Brian Wichmann.
Latest Results from the Procedure Calling Test, Ackermann’s Function.
Technical Report DITC 3/82, National Physics Laboratory, Teddington, Middlesex

TW11 0LW, UK, 1982.

[Wichmann 83] Brian Wichmann and Z. J. Ciechanowicz (editors).
Pascal Compiler Validation.
John Wiley & Sons, Chichester, UK, 1983.

[Zeigler 83] S. F. Zeigler and R. P. Weicker.
Ada Language Statistics for the iMAX 432 Operating System.
Ada Letters 2(6):63-67, May, 1983.

142 CMU/SEI-87-TR-25

CMU/SEI-87-TR-29 143

Appendix A: Overview of MIPS Instruction Set Translation

Table A-1 lists the correspondences between the MIPS high-level instruction set names for the
registers and the MIPS M/500 machine instruction equivalents. Both names can be accessed by the
user (see Chapters 1 and 7 of "The Mips Assembly Language Programmer’s Guide" [MIPS 86a] for
more details).

Register Name(s) Equivalent Name(s)

$0 zero

$at at

$2 v0

$3 v1

$4 a0

$5 a1

$6 a2

$7 a3

$8 t0

$9 t1

$10 t2

$11 t3

$12 t4

$13 t5

$14 t6

$15 t7

Register Name(s) Equivalent Name(s)

$16 s0

$17 s1

$18 s2

$19 s3

$20 s4

$21 s5

$22 s6

$23 s7

$24 t8

$25 t9

$26 or $kt0 k0

$27 or $kt1 k1

$28 or $gp gp

$29 or $sp sp

$30 or $fp fp or s8

$31 ra

Table A-1: MIPS M/500 High- and Low-Level Equivalent Register Names

What follows is a table of all of the MIPS assembly language instructions followed by the correspond-
ing MIPS M/500 native instructions that are generated by the assembler reorganizer. We have at-
tempted to cover all of the possible operand combinations allowed by each instruction. These
modes are typically two operand (dest/src1, src2), three operand (dest, src1, src2), three operand
with one immediate value (including a small integer, a large integer, and a large integer power of
two), and three operand with one zero value (expressed as both an immediate value and as the zero
register).

In all cases, the machine language output has been assembled relative to a base address of 0, so
that all branches are based at the beginning of the code fragment. Each instruction takes up four
bytes, so a branch to address 0x1c will transfer to the eighth instruction (counting from zero). Also,
the large constant value 2097152 is 0x20000 (a convenient large power of two that exceeds the
immediate operand size of the MIPS M/500). The constant values greater than 2097152 are used as
non-even-multiples of two for comparison purposes.

144 CMU/SEI-87-TR-25

The main table is designed to parallel the instruction order listed in Chapter 5 of the MIPS Assembly
Language Programmer’s Guide [MIPS 86a]. An alphabetic cross reference can be found in table A-2
at the end of this appendix section.

Assembler Input Machine Language Output Comments

la $4,($5) addiu a0,a1,0 All of the addressing modes are available
to all of the load instructions, but some
do not make sense, in which case, load-
ing the address of a indexed register is
the same as taking the value of the
register.

la $4,24 li a0,24

la $4,2097156 lui at,0x20
addiu a0,at,4

Since the MIPS M/500 can only store a
16-bit address in a 32-bit instruction, the
upper 16-bits of an address must be
loaded in a separate instruction (the
lui).

la $4,24($5) addiu a0,a1,24 In this case, the address of a based ad-
dress is the value in the base register
plus the value of the offest.

la $4,2097156($5) lui at,0x20
addu at,at,a1
addiu a0,at,4

In this case, too, the address of a based
address is the value in the base register
plus the value of the offset. However, the
addition must be done in two stages, be-
cause of to the limitation of the 16-bit im-
mediate field.

la $4,BEGIN lui at,0
addiu a0,at,0

Loading the address of a global variable
(that is relocatable) requires that the
upper 16-bits always be loaded, with the
linker filling in the correct value (since it
cannot be determined at assembly time
what the value of the upper 16 bits will
be).

la $4,BEGIN+24 lui at,0
addiu a0,at,24

la $4,BEGIN($5) lui at,0
addu at,at,a1
addiu a0,at,0

What appears to be a superfluous addiu
in this sequence is actually needed. The
sequence of events here is to load the
upper 16-bits of the address of BEGIN,
then add in (i.e., index off of) register a1,
then add in the lower 16-bits of the ad-
dress of BEGIN (which will be relocated
to some other address at link time).

la $4,BEGIN+24($5) lui at,0
addu at,at,a1
addiu a0,at,24

CMU/SEI-87-TR-29 145

Assembler Input Machine Language Output Comments

lb $4,($5) lb a0,0(a1)
nop

lb $4,24 lb a0,24(zero) An absolute address is expressed as a
based address off of the zero register.

lb $4,2097156 lui at,0x20
lb a0,4(at)
nop

When the absolute address exceeds 16-
bits, it is calculated in two stages, using
at as a temporary register.

lb $4,24($5) lb a0,24(a1)

lb $4,2097156($5) lui at,0x20
addu at,at,a1
lb a0,4(at)

lb $4,BEGIN lui at,0
lb a0,0(at)

Relocatable addresses are unknown at
assembly time, so their full 32 bits must
be planned for by the assembler.

lb $4,BEGIN+24 lui at,0
lb a0,24(at)

lb $4,BEGIN($5) lui at,0
addu at,at,a1
lb a0,0(at)

lb $4,BEGIN+24($5) lui at,0
addu at,at,a1
lb a0,24(at)
nop

lbu $4,($5) lbu a0,0(a1)
nop

The lbu instruction follows a format
identical to the lb instruction.

lbu $4,24 lbu a0,24(zero)

lbu $4,2097156 lui at,0x20
lbu a0,4(at)
nop

lbu $4,24($5) lbu a0,24(a1)

lbu $4,2097156($5) lui at,0x20
addu at,at,a1
lbu a0,4(at)

lbu $4,BEGIN lui at,0
lbu a0,0(at)

lbu $4,BEGIN+24 lui at,0
lbu a0,24(at)

lbu $4,BEGIN($5) lui at,0
addu at,at,a1
lbu a0,0(at)

lbu $4,BEGIN+24($5) lui at,0
addu at,at,a1
lbu a0,24(at)
nop

146 CMU/SEI-87-TR-25

Assembler Input Machine Language Output Comments

lh $4,($5) lh a0,0(a1)
nop

The lh instruction follows a format iden-
tical to the lb instruction.

lh $4,24 lh a0,24(zero)

lh $4,2097156 lui at,0x20
lh a0,4(at)
nop

lh $4,24($5) lh a0,24(a1)

lh $4,2097156($5) lui at,0x20
addu at,at,a1
lh a0,4(at)

lh $4,BEGIN lui at,0
lh a0,0(at)

lh $4,BEGIN+24 lui at,0
lh a0,24(at)

lh $4,BEGIN($5) lui at,0
addu at,at,a1
lh a0,0(at)

lh $4,BEGIN+24($5) lui at,0
addu at,at,a1
lh a0,24(at)
nop

lhu $4,($5) lhu a0,0(a1)
nop

The lhu instruction follows a format
identical to the lb instruction.

lhu $4,24 lhu a0,24(zero)

lhu $4,2097156 lui at,0x20
lhu a0,4(at)
nop

lhu $4,24($5) lhu a0,24(a1)

lhu $4,2097156($5) lui at,0x20
addu at,at,a1
lhu a0,4(at)

lhu $4,BEGIN lui at,0
lhu a0,0(at)

lhu $4,BEGIN+24 lui at,0
lhu a0,24(at)

lhu $4,BEGIN($5) lui at,0
addu at,at,a1
lhu a0,0(at)

lhu $4,BEGIN+24($5) lui at,0
addu at,at,a1
lhu a0,24(at)
nop

lw $4,($5) lw a0,0(a1)
nop

The lw instruction follows a format iden-
tical to the lb instruction.

CMU/SEI-87-TR-29 147

Assembler Input Machine Language Output Comments

lw $4,24 lw a0,24(zero)

lw $4,2097156 lui at,0x20
lw a0,4(at)
nop

lw $4,24($5) lw a0,24(a1)

lw $4,2097156($5) lui at,0x20
addu at,at,a1
lw a0,4(at)

lw $4,BEGIN lui at,0
lw a0,0(at)

lw $4,BEGIN+24 lui at,0
lw a0,24(at)

lw $4,BEGIN($5) lui at,0
addu at,at,a1
lw a0,0(at)

lw $4,BEGIN+24($5) lui at,0
addu at,at,a1
lw a0,24(at)
nop

lwl $4,($5) lwl a0,a1,0
nop

The lwl instruction follows a format
identical to the lb instruction.

lwl $4,24 lwl a0,zero,24

lwl $4,2097156 lui at,0x20
lwl a0,at,4
nop

lwl $4,24($5) lwl a0,a1,24

lwl $4,2097156($5) lui at,0x20
addu at,at,a1
lwl a0,at,4

lwl $4,BEGIN lui at,0
lwl a0,at,0

lwl $4,BEGIN+24 lui at,0
lwl a0,at,24

lwl $4,BEGIN($5) lui at,0
addu at,at,a1
lwl a0,at,0

lwl $4,BEGIN+24($5) lui at,0
addu at,at,a1
lwl a0,at,24
nop

lwr $4,($5) lwr a0,a1,0
nop

The lwr instruction follows a format
identical to the lb instruction.

lwr $4,24 lwr a0,zero,24

148 CMU/SEI-87-TR-25

Assembler Input Machine Language Output Comments

lwr $4,2097156 lui at,0x20
lwr a0,at,4
nop

lwr $4,24($5) lwr a0,a1,24

lwr $4,2097156($5) lui at,0x20
addu at,at,a1
lwr a0,at,4

lwr $4,BEGIN lui at,0
lwr a0,at,0

lwr $4,BEGIN+24 lui at,0
lwr a0,at,24

lwr $4,BEGIN($5) lui at,0
addu at,at,a1
lwr a0,at,0

lwr $4,BEGIN+24($5) lui at,0
addu at,at,a1
lwr a0,at,24
nop

ld $4,($5) lw a0,0(a1)
lw a1,4(a1)

The ld instruction does not exist on the
MIPS M/500 and is implemented with two
lw instructions.

ld $4,24 The assembler generates no code for
this instruction, and issues no warning
message. We cannot find any reason
why this should be the case.

ld $4,2097160 lui at,0x20
lw a1,12(at)
lw a0,8(at)
nop

The implementation of this instruction is
clever. Since the full 32 bits of the ab-
solute address need to be loaded, the as-
sembler reorganizer loads the high-order
16 bits with the lui instruction, and this
accounts for the low-order 16 bits in the
offsets presented to the lw instructions.

ld $4,24($5) lw a0,24(a1)
lw a1,28(a1)

ld $4,2097156($5) lui at,0x20
addu at,at,a1
lw a1,8(at)
lw a0,4(at)
nop

ld $4,BEGIN lui at,0
lw a1,4(at)
lw a0,0(at)
nop

ld $4,BEGIN+24 lui at,0
lw a1,28(at)
lw a0,24(at)
nop

CMU/SEI-87-TR-29 149

Assembler Input Machine Language Output Comments

ld $4,BEGIN($5) lui at,0
addu at,at,a1
lw a1,4(at)
lw a0,0(at)
nop

ld $4,BEGIN+24($5) lui at,0
addu at,at,a1
lw a1,28(at)
lw a0,24(at)
nop

ulh $4,($5) lb a0,0(a1)
lbu at,1(a1)
sll a0,a0,8
or a0,a0,at

The ulh instruction loads a halfword ir-
respective of the alignment of the source
address. It must therefore load the bytes
of the halfword independently and shift-
and-or the results to the destination.
Thus a simple MIPS instruction is ex-
panded to 400% of its original size.

ulh $4,24 lb a0,24(zero)
lbu at,25(zero)
sll a0,a0,8
or a0,a0,at

This is suboptimal code, since the as-
sembler can determine that the absolute
expression 24 is halfword-aligned. This
should simply emit a lh instruction.

ulh $4,2097156 lui at,0x20
addiu at,at,4
lb a0,0(at)
lbu at,1(at)
sll a0,a0,8
or a0,a0,at

Suboptimal code (see above)

ulh $4,24($5) lb a0,24(a1)
lbu at,25(a1)
sll a0,a0,8
or a0,a0,at

ulh $4,2097156($5) lui at,0x20
addu at,at,a1
addiu at,at,4
lb a0,0(at)
lbu at,1(at)
sll a0,a0,8
or a0,a0,at

ulh $4,BEGIN lui at,0
lb a0,0(at)
lbu at,1(at)
sll a0,a0,8
or a0,a0,at

ulh $4,BEGIN+24 lui at,0
lb a0,24(at)
lbu at,25(at)
sll a0,a0,8
or a0,a0,at

150 CMU/SEI-87-TR-25

Assembler Input Machine Language Output Comments

ulh $4,BEGIN($5) lui at,0
addu at,at,a1
lb a0,0(at)
lbu at,1(at)
sll a0,a0,8
or a0,a0,at

ulh $4,BEGIN+24($5) lui at,0
addu at,at,a1
lb a0,24(at)
lbu at,25(at)
sll a0,a0,8
or a0,a0,at

ulhu $4,($5) lbu a0,0(a1)
lbu at,1(a1)
sll a0,a0,8
or a0,a0,at

The ulhu instruction follows a format
identical to the ulh instruction, except
that is uses lbu instructions instead of
lb instructions.

ulhu $4,24 lbu a0,24(zero)
lbu at,25(zero)
sll a0,a0,8
or a0,a0,at

ulhu $4,2097156 lui at,0x20
addiu at,at,4
lbu a0,0(at)
lbu at,1(at)
sll a0,a0,8
or a0,a0,at

ulhu $4,24($5) lbu a0,24(a1)
lbu at,25(a1)
sll a0,a0,8
or a0,a0,at

ulhu $4,2097156($5) lui at,0x20
addu at,at,a1
addiu at,at,4
lbu a0,0(at)
lbu at,1(at)
sll a0,a0,8
or a0,a0,at

ulhu $4,BEGIN lui at,0
lbu a0,0(at)
lbu at,1(at)
sll a0,a0,8
or a0,a0,at

ulhu $4,BEGIN+24 lui at,0
lbu a0,24(at)
lbu at,25(at)
sll a0,a0,8
or a0,a0,at

CMU/SEI-87-TR-29 151

Assembler Input Machine Language Output Comments

ulhu $4,BEGIN($5) lui at,0
addu at,at,a1
lbu a0,0(at)
lbu at,1(at)
sll a0,a0,8
or a0,a0,at

ulhu $4,BEGIN+24($5) lui at,0
addu at,at,a1
lbu a0,24(at)
lbu at,25(at)
sll a0,a0,8
or a0,a0,at

ulw $4,($5) lwl a0,a1,0
lwr a0,a1,3
nop

Although the expansion for this instruc-
tion appears wrong, it is correct. The
ulw instruction is supposed to load a
word from memory irrespective of its byte
alignment. If the source address is word-
aligned, then the lwl and lwr instruc-
tions will load the same memory address
twice. If, however, the source address is
not word aligned, the two instructions will
each load a part of the source word.

ulw $4,24 lwl a0,zero,24
lwr a0,zero,27

This is suboptimal code, since the as-
sembler can determine that the absolute
expression 24 is word aligned. This
should simply emit an lw instruction.

ulw $4,2097156 lui at,0x20
addiu at,at,4
lwl a0,at,0
lwr a0,at,3
nop

Suboptimal code (see above)

ulw $4,24($5) lwl a0,a1,24
lwr a0,a1,27

ulw $4,2097156($5) lui at,0x20
addu at,at,a1
addiu at,at,4
lwl a0,at,0
lwr a0,at,3

ulw $4,BEGIN lui at,0
lwl a0,at,0
lwr a0,at,3

ulw $4,BEGIN+24 lui at,0
lwl a0,at,24
lwr a0,at,27

ulw $4,BEGIN($5) lui at,0
addu at,at,a1
lwl a0,at,0
lwr a0,at,3

152 CMU/SEI-87-TR-25

Assembler Input Machine Language Output Comments

ulw $4,BEGIN+24($5) lui at,0
addu at,at,a1
lwl a0,at,24
lwr a0,at,27
nop

li $4,24 li a0,24 The li instruction simply loads an im-
mediate value.

li $4,2097156 lui a0,0x20
ori a0,a0,0x4

If the source of the li instruction is
larger than 16 bits, the assembler breaks
it up into two instructions.

lui $4,24 lui a0,0x18 The li instruction simply loads an im-
mediate value.

sb $4,($5) sb a0,0(a1) The sb instruction follows a format iden-
tical to the lb instruction.

sb $4,24 sb a0,24(zero)

sb $4,2097156 lui at,0x20
sb a0,4(at)

sb $4,24($5) sb a0,24(a1)

sb $4,2097156($5) lui at,0x20
addu at,at,a1
sb a0,4(at)

sb $4,BEGIN lui at,0
sb a0,0(at)

sb $4,BEGIN+24 lui at,0
sb a0,24(at)

sb $4,BEGIN($5) lui at,0
addu at,at,a1
sb a0,0(at)

sb $4,BEGIN+24($5) lui at,0
addu at,at,a1
sb a0,24(at)

sd $4,($5) sw a0,0(a1)
sw a1,4(a1)

The sd instruction does not exist on the
MIPS M/500 and is implemented with two
sw instructions. The sd instruction fol-
lows a format identical to the ld instruc-
tion.

sd $4,24 The assembler generates no code for
this instruction and issues no warning
message. We cannot find any reason
why this should be the case.

sd $4,2097160 lui at,0x20
sw a0,8(at)
sw a1,12(at)

sd $4,24($5) sw a0,24(a1)
sw a1,28(a1)

CMU/SEI-87-TR-29 153

Assembler Input Machine Language Output Comments

sd $4,2097156($5) lui at,0x20
addu at,at,a1
sw a0,4(at)
sw a1,8(at)

sd $4,BEGIN lui at,0
sw a0,0(at)
sw a1,4(at)

sd $4,BEGIN+24 lui at,0
sw a0,24(at)
sw a1,28(at)

sd $4,BEGIN($5) lui at,0
addu at,at,a1
sw a0,0(at)
sw a1,4(at)

sd $4,BEGIN+24($5) lui at,0
addu at,at,a1
sw a0,24(at)
sw a1,28(at)

sh $4,($5) sh a0,0(a1) The sh instruction follows a format iden-
tical to the lh instruction.

sh $4,24 sh a0,24(zero)

sh $4,2097156 lui at,0x20
sh a0,4(at)

sh $4,24($5) sh a0,24(a1)

sh $4,2097156($5) lui at,0x20
addu at,at,a1
sh a0,4(at)

sh $4,BEGIN lui at,0
sh a0,0(at)

sh $4,BEGIN+24 lui at,0
sh a0,24(at)

sh $4,BEGIN($5) lui at,0
addu at,at,a1
sh a0,0(at)

sh $4,BEGIN+24($5) lui at,0
addu at,at,a1
sh a0,24(at)

swl $4,($5) swl a0,a1,0 The swl instruction follows a format
identical to the lwl instruction.

swl $4,24 swl a0,zero,24

swl $4,2097156 lui at,0x20
swl a0,at,4

swl $4,24($5) swl a0,a1,24

154 CMU/SEI-87-TR-25

Assembler Input Machine Language Output Comments

swl $4,2097156($5) lui at,0x20
addu at,at,a1
swl a0,at,4

swl $4,BEGIN lui at,0
swl a0,at,0

swl $4,BEGIN+24 lui at,0
swl a0,at,24

swl $4,BEGIN($5) lui at,0
addu at,at,a1
swl a0,at,0

swl $4,BEGIN+24($5) lui at,0
addu at,at,a1
swl a0,at,24

swr $4,($5) swr a0,a1,0 The swr instruction follows a format
identical to the lwl instruction.

swr $4,24 swr a0,zero,24

swr $4,2097156 lui at,0x20
swr a0,at,4

swr $4,24($5) swr a0,a1,24

swr $4,2097156($5) lui at,0x20
addu at,at,a1
swr a0,at,4

swr $4,BEGIN lui at,0
swr a0,at,0

swr $4,BEGIN+24 lui at,0
swr a0,at,24

swr $4,BEGIN($5) lui at,0
addu at,at,a1
swr a0,at,0

swr $4,BEGIN+24($5) lui at,0
addu at,at,a1
swr a0,at,24

sw $4,($5) sw a0,0(a1) The sw instruction follows a format iden-
tical to the lw instruction.

sw $4,24 sw a0,24(zero)

sw $4,2097156 lui at,0x20
sw a0,4(at)

sw $4,24($5) sw a0,24(a1)

sw $4,2097156($5) lui at,0x20
addu at,at,a1
sw a0,4(at)

sw $4,BEGIN lui at,0
sw a0,0(at)

CMU/SEI-87-TR-29 155

Assembler Input Machine Language Output Comments

sw $4,BEGIN+24 lui at,0
sw a0,24(at)

sw $4,BEGIN($5) lui at,0
addu at,at,a1
sw a0,0(at)

sw $4,BEGIN+24($5) lui at,0
addu at,at,a1
sw a0,24(at)

ush $4,($5) sb a0,1(a1)
srl at,a0,8
sb at,0(a1)

The ush instruction follows a format
identical to the ulh instruction, except
that the ush instruction uses the store-
shift-store method.

ush $4,24 sb a0,25(zero)
srl at,a0,8
sb at,24(zero)

This is suboptimal code, since the as-
sembler can determine that the absolute
expression 24 is halfword-aligned. This
should simply emit an sh instruction.

ush $4,2097156 lui at,0x20
addiu at,at,4
sb a0,1(at)
srl a0,a0,8
sb at,0(at)
lbu at,1(at)
sll a0,a0,8
or a0,a0,at

Suboptimal code (see above and below)

ush $4,24($5) sb a0,25(a1)
srl at,a0,8
sb at,24(a1)

ush $4,2097156($5) lui at,0x20
addu at,at,a1
addiu at,at,4
sb a0,1(at)
srl a0,a0,8
sb at,0(at)
lbu at,1(at)
sll a0,a0,8
or a0,a0,at

This code is a classic example of a
reason not to dedicate a single temporary
register to an assembler/reorganizer, and
an argument for putting reorganization
into the compiler. This instruction uses
at as a temporary register in the calcula-
tion of the destination address. However,
since the single temporary register is in
use for that purpose, it must destructively
shift a0 to the right to perform both sb
instructions. It must then re-shift a0 to
the left, and re-load the previously stored
value to reconstruct the original value in
a0. If this value is never used again,
three instructions are wasted (and as it
is, a single MIPS instruction gets ex-
panded to nine times its original size).
For a discussion of this and other
deleterious effects of the reorganizer, see
Chapter 7.

156 CMU/SEI-87-TR-25

Assembler Input Machine Language Output Comments

ush $4,BEGIN lui at,0
sb a0,1(at)
srl a0,a0,8
sb at,0(at)
lbu at,1(at)
sll a0,a0,8
or a0,a0,at

Suboptimal, see above.

ush $4,BEGIN+24 lui at,0
sb a0,25(at)
srl a0,a0,8
sb at,24(at)
lbu at,25(at)
sll a0,a0,8
or a0,a0,at

Suboptimal, see above.

ush $4,BEGIN($5) lui at,0
addu at,at,a1
sb a0,1(at)
srl a0,a0,8
sb at,0(at)
lbu at,1(at)
sll a0,a0,8
or a0,a0,at

Suboptimal, see above.

ush $4,BEGIN+24($5) lui at,0
addu at,at,a1
sb a0,25(at)
srl a0,a0,8
sb at,24(at)
lbu at,25(at)
sll a0,a0,8
or a0,a0,at

Suboptimal, see above.

usw $4,($5) swl a0,a1,0
swr a0,a1,3

The usw instruction follows a format
identical to the ulw instruction.

usw $4,24 swl a0,zero,24
swr a0,zero,27

usw $4,2097156 lui at,0x20
addiu at,at,4
swl a0,at,0
swr a0,at,3

usw $4,24($5) swl a0,a1,24
swr a0,a1,27

usw $4,2097156($5) lui at,0x20
addu at,at,a1
addiu at,at,4
swl a0,at,0
swr a0,at,3

usw $4,BEGIN lui at,0
swl a0,at,0
swr a0,at,3

CMU/SEI-87-TR-29 157

Assembler Input Machine Language Output Comments

usw $4,BEGIN+24 lui at,0
swl a0,at,24
swr a0,at,27

usw $4,BEGIN($5) lui at,0
addu at,at,a1
swl a0,at,0
swr a0,at,3

usw $4,BEGIN+24($5) lui at,0
addu at,at,a1
swl a0,at,24
swr a0,at,27
nop

abs $4 bgez a0,0xc
nop
sub a0,zero,a0

The MIPS high-level assembler has an
abs instruction, but there is no cor-
responding instruction in the machine
language. Instead, the assembler reor-
ganizer translates the abs instruction into
a test, branch, and negate triplet. This
causes a 3:1 increase in execution time
for this instruction. Statistically, this in-
crease is of small significance, since the
abs instruction is rarely used in compiled
code.

abs $4,$5 bgez a1,0xc
move a0,a1
sub a0,zero,a1

As shown in Figure 3-4 on page 8, the
move instruction has been shifted down
to fill the nop after the bgez instruction.
The move is always executed, whether or
not the branch is taken.

abs $4,$0 bgez zero,0xc
move a0,zero
sub a0,zero,zero

The absolute value of zero is obviously
zero, so that while this code expansion is
correct, it would be more reasonable to
change it to move a0,zero.

neg $4 sub a0,zero,a0 The MIPS M/500 does not have a negate
instruction but performs this operation by
subtracting the number from zero.
Depending on whether a signed or un-
signed negate is desired, a sub or subu
instruction is used. Since the cycle count
for this operation is still 1, there is no
sacrifice in execution speed.

neg $4,$5 sub a0,zero,a1

neg $4,$0 sub a0,zero,zero The negative of 0 is still 0. This instruc-
tion could be replaced with
move a0,zero, although its current
form is no more expensive to execute.

negu $4 subu a0,zero,a0

negu $4,$5 subu a0,zero,a1

158 CMU/SEI-87-TR-25

Assembler Input Machine Language Output Comments

negu $4,$0 subu a0,zero,zero The negative of 0 is still 0. This instruc-
tion could be replaced with
move a0,zero, although its current
form is no more expensive to execute.

not $4 nor a0,a0,zero The MIPS M/500 does not have a comple-
ment instruction but performs this opera-
tion by executing a nor with 0. Since the
cycle count for this instruction is still 1,
there is no sacrifice in execution speed.

not $4,$5 nor a0,a1,zero

not $0 nor zero,zero,zero The zero register as a destination is
meaningless. This instruction should be
elided or replaced with a nop instruction.

not $4,$0 nor a0,zero,zero This expansion makes sense, especially
when considered as the fastest way to
load a register full of ones.

add $4,$5 add a0,a0,a1

add $4,$5,$6 add a0,a1,a2

add $4,$5,$0 add a0,a1,zero

add $4,$5,0 addi a0,a1,0

add $4,$0 add a0,a0,zero This instruction sequence does nothing,
and should be elided by the assembler
reorganizer.

add $4,0 addi a0,a0,0 This instruction sequence does nothing,
and should be elided by the assembler
reorganizer.

add $4,$0,$5 add a0,zero,a1 This instruction could be replaced by a
move a0,a1. However, performing the
add incurs no extra expense.

add $4,$5,15 addi a0,a1,15

add $4,$5,2097153 lui at,0x20
ori at,at,0x1
add a0,a1,at

The MIPS M/500 native instruction set
limits the size of immediate operands to
16 bits. Therefore, when a large con-
stant value is needed, it is loaded in 16-
bit halves. The lui instruction loads the
upper half of the register (clearing the
lower half), while the ori instruction OR’s
in the lower half.

add $4,$5,2097152 lui at,0x20
add a0,a1,at

When an immediate operand is larger
than 16 bits long, but the bottom 16 bits
are zeroes, the assembler reorganizer
never generates the ori instruction.

addu $4,$5 addu a0,a0,a1

addu $4,$5,$6 addu a0,a1,a2

CMU/SEI-87-TR-29 159

Assembler Input Machine Language Output Comments

addu $4,$5,$0 move a0,a1 There is no actual move instruction on
the MIPS M/500. Instead, the assembler
allows it as a pseudo-instruction, and en-
codes it as an addu with zero. The dis-
assembler also knows of this mapping,
which accounts for the translation shown
here.

addu $4,$5,0 addiu a0,a1,0

addu $4,$0 move a0,a0 This instruction sequence clearly does
nothing and should be elided by the as-
sembler reorganizer.

addu $4,0 addiu a0,a0,0 This instruction sequence does nothing
and should be elided by the assembler
reorganizer.

addu $4,$0,$5 addu a0,zero,a1 This instruction could be replaced by a
move a0,a1. However, performing the
add incurs no extra expense.

addu $4,$5,15 addiu a0,a1,15

addu $4,$5,2097153 lui at,0x20
ori at,at,0x1
addu a0,a1,at

and $4,$5 and a0,a0,a1

and $4,$5,$6 and a0,a1,a2

and $4,$5,$0 and a0,a1,zero

and $4,$5,0 andi a0,a1,0

and $4,$0 and a0,a0,zero This could be replaced by
move a0,zero. Keeping the and in-
struction, however, incurs no extra ex-
pense.

and $4,0 andi a0,a0,0 This could be replaced by
move a0,zero. Keeping the andi in-
struction, however, incurs no extra ex-
pense. Notice, however, how the as-
sembler reorganizer again treats the con-
stant value 0 and the zero register dif-
ferently.

and $4,$0,$5 and a0,zero,a1 This could also be replaced by
move a0,zero. Keeping the and in-
struction, however, incurs no extra ex-
pense.

and $4,$5,15 andi a0,a1,0xf

and $4,$5,2097153 lui at,0x20
ori at,at,0x1
and a0,a1,at

160 CMU/SEI-87-TR-25

Assembler Input Machine Language Output Comments

and $4,$5,2097152 lui at,0x20
and a0,a1,at

div $4,$5 div a0,a1
bne a1,zero,0x10
nop
break 7
li at,-1
bne a1,at,0x28
lui at,0x8000
bne a0,at,0x28
nop
break 6
mflo a0
nop
nop

This expansion is a little complicated in
that the overflow checking advertized in
the documentation is done at run-time by
the software and not by the MIPS M/500
div instruction. The first test is for divi-
sion by zero, with a branch to the
break 7 if this is the case. The second
test is for division of the largest negative
number by -1 (effectively taking the ab-
solute value of the largest negative num-
ber). Since there is one more negative
number than positive number in two’s
complement arithmetic, this would be an
overflow condition, so the code tests for it
and branches to the break 6 if this is
the case.

div $4,$5,$6 div a1,a2
bne a2,zero,0x10
nop
break 7
li at,-1
bne a2,at,0x28
lui at,0x8000
bne a1,at,0x28
nop
break 6
mflo a0
nop
nop

div $4,$5,$0 div a1,zero
bne zero,zero,0x10
nop
break 7
li at,-1
bne zero,at,0x28
lui at,0x8000
bne a1,at,0x28
nop
break 6
mflo a0
nop
nop

Even though this instruction is performing
a divide by zero (by using the zero
register, which always contains the con-
stant value 0), the assembler reorganizer
does not issue an error message. The
error will still be detected at run-time,
though, so this translation is legal, though
suboptimal.

div $4,$5,0 break 7 The assembler reorganizer here correctly
detects a divide by zero and simply
generates a break 7 instruction (which
traps to an error handler at run-time),
rather than actually generating a se-
quence of instructions that will divide by
zero.

CMU/SEI-87-TR-29 161

Assembler Input Machine Language Output Comments

div $4,$0,$5 div zero,a1
bne a1,zero,0x64
nop
break 7
li at,-1
bne a1,at,0x7c
lui at,0x8000
bne zero,at,0x7c
nop
break 6
mflo a0
nop
nop

The assembler reorganizer fails to recog-
nize that a dividend of zero always
results in a quotient of zero, unless the
divisor is also zero. The code here could
be correspondingly shortened and sped
up (through the elimination of the div in-
struction).

div $4,$0 div a0,zero
bne zero,zero,0x98
nop
break 7
li at,-1
bne zero,at,0xb0
lui at,0x8000
bne a0,at,0xb0
nop
break 6
mflo a0
nop
nop

Even though this instruction is performing
a divide by zero (by using the zero
register, which always contains the con-
stant value 0), the assembler reorganizer
does not issue an error message. The
error will still be detected at run-time, so
this translation is legal, though sub-
optimal.

div $4,0 break 7 The assembler reorganizer here correctly
detects a divide by zero and simply
generates a break 7 instruction (which
traps to an error handler at run-time),
rather than actually generating a se-
quence of instructions that will divide by
0.

div $4,$5,15 li at,15
div a1,at
mflo a0
nop
nop

162 CMU/SEI-87-TR-25

Assembler Input Machine Language Output Comments

div $4,$5,2097152 bgez a1,0x10
move at,a1
lui at,0x20
addiu at,a1,-1
sra a0,at,21

Notice that division by a power of two is
accomplished by simply arithmetically
shifting the source register to the right. If
the source register is negative, then it is
decremented by 1 prior to shifting to in-
sure correct results (without the
decrementation, -5 >> 1 yields -3, al-
though -5 / 2 = -2). Notice also that the
effects of the move instruction are can-
celed if the branch is not taken (remem-
ber that the move executes before the
bgez completes), but that the move in-
struction is necessary if the branch is
taken. Contrast this behavior with that of
the divu instruction on page 163.

div $4,$5,2097153 lui at,0x20
ori at,at,0x1
div a1,at
mflo a0
nop
nop

divu $4,$5 divu a0,a1
bne a1,zero,0x10
nop
break 7
mflo a0
nop
nop

divu $4,$5,$6 divu a1,a2
bne a2,zero,0x10
nop
break 7
mflo a0
nop
nop

divu $4,$5,$0 divu a1,zero
bne zero,zero,0x10
nop
break 7
mflo a0
nop
nop

Even though this instruction is performing
a divide by zero (by using the zero
register, which always contains the con-
stant value 0), the assembler reorganizer
does not issue an error message. The
error will still be detected at run-time, so
this translation is legal, though sub-
optimal.

divu $4,$5,0 break 7 The assembler reorganizer here correctly
detects a divide by zero, and simply
generates a break 7 instruction (which
traps to an error handler at run-time),
rather than actually generating a se-
quence of instructions that will divide by
0.

CMU/SEI-87-TR-29 163

Assembler Input Machine Language Output Comments

divu $4,$0,$5 divu zero,a1
bne a1,zero,0xd0
nop
break 7
mflo a0
nop
nop

The assembler reorganizer fails to recog-
nize that a dividend of zero always
results in a quotient of zero, unless the
divisor is also zero. The code here could
be correspondingly shortened and sped
up (through the elimination of the div in-
struction).

divu $4,$0 divu a0,zero
bne zero,zero,0xec
nop
break 7
mflo a0
nop
nop

Even though this instruction is performing
a divide by zero (by using the zero
register, which always contains the con-
stant value 0), the assembler reorganizer
does not issue an error message. The
error will still be detected at run-time, so
this translation is legal, though sub-
optimal.

divu $4,0 break 7 The assembler reorganizer here correctly
detects a divide by zero and simply
generates a break 7 instruction (which
traps to an error handler at run-time),
rather than actually generating a se-
quence of instructions that will divide by
0.

divu $4,$5,15 li at,15
divu a1,at
mflo a0
nop
nop

divu $4,$5,2097152 srl a0,a1,21 Notice that division by a power of two is
accomplished by shifting the source to
the right. There is no check for negative
numbers here as there was with the div
instruction on page 162. This is because
the divu instruction is designed to
operate only on unsigned (i.e., positive)
numbers.

divu $4,$5,2097153 lui at,0x20
ori at,at,0x1
divu a1,at
mflo a0
nop
nop

xor $4,$5 xor a0,a0,a1

xor $4,$5,$6 xor a0,a1,a2

xor $4,$5,$0 xor a0,a1,zero This instruction sequence is equivalent to
move a0,a1. However, since both in-
structions take a single cycle to execute,
there is no penalty at run-time.

164 CMU/SEI-87-TR-25

Assembler Input Machine Language Output Comments

xor $4,$5,0 xori a0,a1,0 This instruction sequence is equivalent to
move a0,a1. However, since both in-
structions take a single cycle to execute,
there is no penalty at run-time.

xor $4,$0,$5 xor a0,zero,a1

xor $4,$0 xor a0,a0,zero This instruction complements a0, and
could also have been written as
nor a0,a0,zero.

xor $4,0 xori a0,a0,0

xor $4,$5,15 xori a0,a1,0xf

xor $4,$5,2097153 lui at,0x20
ori at,at,0x1
xor a0,a1,at

mul $4,$5 multu a0,a1
mflo a0
nop
nop

mul $4,$5,$6 multu a1,a2
mflo a0
nop
nop

mul $4,$5,$0 multu a1,zero
mflo a0
nop
nop

While the assembler reorganizer is smart
enough to recognize that a multiply by a
constant value zero produces a zero
result, it does not correctly handle the
case of multiplication by the zero register,
and instead causes the multiplication to
be needlessly executed. This is the case
for all types of multiply instructions.

mul $4,$5,0 move a0,zero

mul $4,$0,$5 multu zero,a1
mflo a0
nop
nop

The assembler reorganizer should code
this as move a0,zero, instead of con-
suming many cycles performing a mul-
tiplication by zero.

mul $4,$0 multu a0,zero
mflo a0
nop
nop

The assembler reorganizer should code
this as move a0,zero, instead of con-
suming many cycles performing a mul-
tiplication by zero.

mul $4,0 move a0,zero

mul $4,$5,15 sll a0,a1,4
subu a0,a0,a1

Multiplication by a constant is converted
into a sequence of shifts and adds (or
subtracts). See Section 3.2.1 for more
details.

CMU/SEI-87-TR-29 165

Assembler Input Machine Language Output Comments

mul $4,$5,2097152 sll a0,a1,21 The mul instruction is substantially faster
than the mulo instruction (see page 166),
since it does not have to check for over-
flow (the sll instruction used here does
not register a numeric overflow).

mul $4,$5,2097153 sll a0,a1,21
addu a0,a0,a1

The mul instruction is substantially faster
than the mulo instruction (see page 166),
since it does not have to check for over-
flow (the sll instruction used here does
not register a numeric overflow).

mulo $4,$5 mult a0,a1
mflo a0
sra a0,a0,31
mfhi at
beq a0,at,0x1c
mflo a0
break 6
nop

mulo $4,$5,$6 mult a1,a2
mflo a0
sra a0,a0,31
mfhi at
beq a0,at,0x1c
mflo a0
break 6
nop

mulo $4,$5,$0 mult a1,zero
mflo a0
sra a0,a0,31
mfhi at
beq a0,at,0x1c
mflo a0
break 6
nop

While the assembler reorganizer is smart
enough to recognize that a multiply by a
constant value zero produces a zero
result, it does not correctly handle the
case of multiplication by the zero register,
and instead causes the multiplication to
be needlessly executed. This is the case
for all types of multiply instructions.

mulo $4,$5,0 move a0,zero

mulo $4,$0,$5 mult zero,a1
mflo a0
sra a0,a0,31
mfhi at
beq a0,at,0x1c
mflo a0
break 6
nop

The assembler reorganizer should code
this as move a0,zero, instead of con-
suming many cycles performing a mul-
tiplication by zero.

166 CMU/SEI-87-TR-25

Assembler Input Machine Language Output Comments

mulo $4,$5,15 add a0,a1,a1
add a0,a0,a1
add a0,a0,a0
add a0,a0,a1
add a0,a0,a0
add a0,a0,a1

Note that this sequence of instructions al-
lows for the overflow checking described
in the documentation (since the add in-
struction can signal an overflow con-
dition). Contrast this with the multiplica-
tion by a constant using the mul instruc-
tion on page 165. Also, see Section
3.2.1 for a more detailed analysis of mul-
tiplication instruction expansion.

mulo $4,$5,2097153 lui at,0x20
ori at,at,0x1
mult a1,at
mflo a0
sra a0,a0,31
mfhi at
beq a0,at,0x24
mflo a0
break 6
nop

mulou $4,$5 multu a0,a1
mfhi at
beq at,zero,0x14
mflo a0
break 6
nop

mulou $4,$5,$6 multu a1,a2
mfhi at
beq at,zero,0x14
mflo a0
break 6
nop

mulou $4,$5,$0 multu a1,zero
mfhi at
beq at,zero,0x14
mflo a0
break 6
nop

While the assembler reorganizer is smart
enough to recognize that a multiply by a
constant value zero produces a zero
result, it does not correctly handle the
case of multiplication by the zero register,
and instead causes the multiplication to
be needlessly executed. This is the case
for all types of multiply instructions.

mulou $4,$5,0 move a0,zero

mulou $4,$0,$5 multu zero,a1
mfhi at
beq at,zero,0x14
mflo a0
break 6
nop

The assembler reorganizer should code
this as move a0,zero, instead of con-
suming many cycles performing a mul-
tiplication by zero.

CMU/SEI-87-TR-29 167

Assembler Input Machine Language Output Comments

mulou $4,$0 multu a0,zero
mfhi at
beq at,zero,0x14
mflo a0
break 6
nop

The assembler reorganizer should code
this as move a0,zero, instead of con-
suming many cycles performing a mul-
tiplication by zero.

mulou $4,0 move a0,zero

mulou $4,$5,15 li at,15
multu a1,at
mfhi at
beq at,zero,0x18
mflo a0
break 6
nop

mulou $4,$5,2097153 lui at,0x20
ori at,at,0x1
multu a1,at
mfhi at
beq at,zero,0x1c
mflo a0
break 6
nop

nor $4,$5 nor a0,a0,a1

nor $4,$5,$6 nor a0,a1,a2

nor $4,$5,$0 nor a0,a1,zero

nor $4,$5,0 ori a0,a1,0
nor a0,a0,zero

The assembler reorganizer fails to recog-
nize the special case of a nor with a
constant value 0, and generates one
extra instruction here. The correct be-
havior would be to simply perform a nor
a0,a1,zero.

nor $4,$4 nor a0,a0,a0

nor $4,$0,$5 nor a0,zero,a1

nor $4,$0 nor a0,a0,zero

nor $4,0 ori a0,a0,0
nor a0,a0,zero

The assembler reorganizer fails to recog-
nize the special case of a nor with a
constant value 0, and generates one
extra instruction here. The correct be-
havior would be to simply perform a nor
a0,a0,zero.

168 CMU/SEI-87-TR-25

Assembler Input Machine Language Output Comments

nor $4,$5,15 ori a0,a1,0xf
nor a0,a0,zero

The assembler reorganizer breaks the
simple nor instruction into two instruc-
tions (an ori and a nor). Since the
MIPS M/500 native instruction set has a
nor in its repertoire, we can conclude
that either the assembler reorganizer is
making a mistake here or that the native
instruction set is not orthogonal, and that
the nor instruction cannot be executed
with an immediate operand.

nor $4,$5,2097153 lui at,0x20
ori at,at,0x1
nor a0,a1,at

or $4,$5 or a0,a0,a1

or $4,$5,$6 or a0,a1,a2

or $4,$5,$0 or a0,a1,zero An or with zero could easily be be trans-
lated into move a0,a1, but since there
is no additional overhead in not doing
that, the assembler reorganizer is behav-
ing appropriately. Where the source and
destination registers are identical, the or
can be deleted entirely in this case, the
assembler reorganizer fails to recognize
this shortcut.

or $4,$5,0 ori a0,a1,0

or $4,$0,$5 or a0,zero,a1 This could also be translated into
move a0,a1, with no greater or lesser
run-time expense.

or $4,$0 or a0,a0,zero This instruction does nothing and should
be elided by the assembler reorganizer.

or $4,0 ori a0,a0,0 This instruction also does nothing, and
should be elided by the assembler reor-
ganizer.

or $4,$5,15 ori a0,a1,0xf

or $4,$5,2097153 lui at,0x20
ori at,at,0x1
or a0,a1,at

The ori instruction is to load in the lower
half of the constant 2097153. The or
instruction performs the actual work.

CMU/SEI-87-TR-29 169

Assembler Input Machine Language Output Comments

rem $4,$5 div a0,a1
bne a1,zero,0x10
nop
break 7
li at,-1
bne a1,at,0x28
lui at,0x8000
bne a0,at,0x28
nop
break 6
mfhi a0
nop
nop

rem $4,$5,$6 div a1,a2
bne a2,zero,0x10
nop
break 7
li at,-1
bne a2,at,0x28
lui at,0x8000
bne a1,at,0x28
nop
break 6
mfhi a0
nop
nop

rem $4,$5,$0 div a1,zero
bne zero,zero,0x10
nop
break 7
li at,-1
bne zero,at,0x28
lui at,0x8000
bne a1,at,0x28
nop
break 6
mfhi a0 nop
nop

Even though this instruction is performing
a divide by zero (by using the zero
register, which always contains the con-
stant value 0), the assembler reorganizer
does not issue an error message. The
error will still be detected at run-time, so
this translation is legal, though sub-
optimal.

rem $4,$5,0 break 7 The assembler reorganizer here correctly
detects a divide by zero and simply
generates a break 7 instruction (which
traps to an error handler at run-time),
rather than actually generating a se-
quence of instructions that will divide by
0.

170 CMU/SEI-87-TR-25

Assembler Input Machine Language Output Comments

rem $4,$0,$5 div zero,a1
bne a1,zero,0x10
nop
break 7
li at,-1
bne a1,at,0x28
lui at,0x8000
bne zero,at,0x28
nop
break 6
mfhi a0
nop
nop

This instruction should be recoded much
more simply, since a division does not
need to be performed when the dividend
of a remainder operation is zero.

rem $4,$0 div a0,zero
bne zero,zero,0x10
nop
break 7
li at,-1
bne zero,at,0x28
lui at,0x8000
bne a0,at,0x28
nop
break 6
mfhi a0
nop
nop

This instruction should be recoded much
more simply, since a division does not
need to be performed when the dividend
of a remainder operation is zero.

rem $4,0 break 7 The assembler reorganizer here correctly
detects a divide by zero and simply
generates a break 7 instruction (which
traps to an error handler at run-time),
rather than actually generating a se-
quence of instructions that will divide by
0.

rem $4,$5,15 li at,15
div a1,at
mfhi a0
nop
nop

rem $4,$5,2097152 lui at,0x20
addiu at,at,-1
bgez a1,0x1c
and a0,a1,at
beq a0,zero,0x1c
addiu at,at,1
subu a0,a0,at

rem $4,$5,2097153 lui at,0x20
ori at,at,0x1
div a1,at
mfhu a0
nop
nop

CMU/SEI-87-TR-29 171

Assembler Input Machine Language Output Comments

remu $4,$5 divu a0,a1
bne a1,zero,0x10
nop
break 7
mfhi a0
nop
nop

remu $4,$5,$6 divu a1,a2
bne a2,zero,0x10
nop
break 7
mfhi a0
nop
nop

remu $4,$5,$0 divu a1,zero
bne zero,zero,0x10
nop
break 7
mfhi a0
nop
nop

Even though this instruction is performing
a divide by zero (by using the zero
register, which always contains the con-
stant value 0), the assembler reorganizer
does not issue an error message.

remu $4,$5,0 break 7 The assembler reorganizer here correctly
detects a divide by zero and simply
generates a break 7 instruction (which
traps to an error handler at run-time),
rather than actually generating a se-
quence of instructions that will divide by
0.

remu $4,$0,$5 divu zero,a1
bne a1,zero,0x10
nop
break 7
mfhi a0
nop
nop

This instruction should be recoded much
more simply, since a division does not
need to be performed when the dividend
of a remainder operation is zero.

remu $4,$0 divu a0,zero
bne zero,zero,0x10
nop
break 7
mfhi a0
nop
nop

This instruction should be recoded much
more simply, since a division does not
need to be performed when the dividend
of a remainder operation is zero.

remu $4,0 break 7 The assembler reorganizer here correctly
detects a divide by zero and simply
generates a break 7 instruction (which
traps to an error handler at run-time),
rather than actually generating a se-
quence of instructions that will divide by
0.

172 CMU/SEI-87-TR-25

Assembler Input Machine Language Output Comments

remu $4,$5,15 li at,15
divu a1,at
mfhi a0
nop
nop

remu $4,$5,2097152 lui at,0x20
addiu at,at,-1
and a0,a1,at

remu $4,$5,2097153 lui at,0x20
ori at,at,0x1
divu a1,at
mfhi a0
nop
nop

rol $4,$5 subu at,zero,a1
srlv at,a0,at
sllv a0,a0,a1
or a0,a0,at

The MIPS M/500 native instruction set
does not have a rotate instruction. What
the assembler reorganizer does is to
rotate the source register both right and
left and merge the result into the destina-
tion register. For a rol instruction, the
source word is logically (not arithmeti-
cally) rotated right by the negative of the
rotation amount. Since the native in-
struction set specifies that the shift
amount is taken modulo 32, this trans-
lates into a shift right by the correct num-
ber of bits. The same register is then
rotated left by the specified amount, and
the results are merged together with an
or instruction.

rol $4,$5,$6 subu at,zero,a2
srlv at,a1,at
sllv a0,a1,a2
or a0,a0,at

rol $4,$5,$0 subu at,zero,zero
srlv at,a1,at
sllv a0,a1,zero
or a0,a0,at

The assembler reorganizer should trans-
late this instruction to a move $4,$5,
since a rotation by zero bits is no rotation
at all. Instead, it incorrectly generates
the superfluous rotation code.

rol $4,0 This instruction does not assemble at all
and generates the assembler run-time
error "(fimmed >= 0) and (fimmed <= 31)"
from ../as1emit.p, line 588. The correct
action would be to ignore this instruction.
MIPS Inc. claims that this bug is fixed in a
newer release of the assembler.

CMU/SEI-87-TR-29 173

Assembler Input Machine Language Output Comments

rol $4,$5,0 This instruction does not assemble at all
and generates the assembler run-time
error "(fimmed >= 0) and (fimmed <= 31)"
from ../as1emit.p, line 588. The correct
action would be to ignore this instruction.

rol $4,$0,$5 subu at,zero,a1
srlv at,zero,at
sllv a0,zero,a1
or a0,a0,at

This instruction should be recoded as
move a0,zero, since rotating zero by
any number of bits (especially zero bits)
still yields zero.

rol $4,$0 subu at,zero,zero
srlv at,a0,at
sllv a0,a0,zero
or a0,a0,at

This instruction should be recoded as
move a0,zero, since rotating zero by
any number of bits (especially zero bits)
still yields zero.

rol $4,$5,15 sll at,a1,15
srl a0,a1,17
or a0,a0,at

rol $4,$5,2097153 This instruction generates the assembly
error "Shift amount not 0..31". While this
is reasonable enough, the documentation
maintains that shift amounts outside the
range of 0..31 are taken modulo 32 be-
fore shifting, thus implying that this line of
code would be legal.

ror $4,$5 subu at,zero,a1
sllv at,a0,at
srlv a0,a0,a1
or a0,a0,at

See note for rol instruction.

ror $4,$5,$6 subu at,zero,a2
sllv at,a1,at
srlv a0,a1,a2
or a0,a0,at

ror $4,$5,$0 subu at,zero,zero
sllv at,a1,at
srlv a0,a1,zero
or a0,a0,at

The assembler reorganizer should trans-
late this instruction to a move $4,$5,
since a rotation by zero bits is no rotation
at all. Instead it incorrectly generates the
superfluous rotation code.

ror $4,0 This instruction does not assemble at all
and generates the assembler run-time
error "(fimmed >= 0) and (fimmed <= 31)"
from ../as1emit.p, line 588. The correct
action would be to ignore this instruction.

ror $4,$5,0 This instruction does not assemble at all
generates the assembler run-time error
"(fimmed >= 0) and (fimmed <= 31)" from
../as1emit.p, line 588. The correct action
would be to ignore this instruction.

174 CMU/SEI-87-TR-25

Assembler Input Machine Language Output Comments

ror $4,$0,$5 subu at,zero,a1
sllv at,zero,at
srlv a0,zero,a1
or a0,a0,at

This instruction should be recoded as
move a0,zero, since rotating zero by
any number of bits (especially zero bits)
still yields zero.

ror $4,$0 subu at,zero,zero
sllv at,a0,at
srlv a0,a0,zero
or a0,a0,at

This instruction should be recoded as
move a0,zero, since rotating zero by
any number of bits (especially zero bits)
still yields zero.

ror $4,$5,15 srl at,a1,15
sll a0,a1,17
or a0,a0,at

ror $4,$5,2097153 This instruction generates the assembly
error "Shift amount not 0..31." While this
is reasonable enough, the documentation
maintains that shift amounts outside of
the range of 0..31 are taken modulo 32
before shifting, thus implying that this line
of code would be legal.

seq $4,$5 xor a0,a0,a1
sltiu a0,a0,1

The MIPS M/500 native instruction set
does not have an seq instruction, so it is
faked with two other instructions, effec-
tively doubling the execution time of this
opcode.

seq $4,$5,$6 xor a0,a1,a2
sltiu a0,a0,1

seq $4,$5,$0 xor a0,a1,zero
sltiu a0,a0,1

The assembler reorganizer once again
misses the fact that the zero register is
functionally equivalent to the constant
value zero.

seq $4,$5,0 sltiu a0,a1,1

seq $4,$0 xor a0,a0,zero
sltiu a0,a0,1

The assembler reorganizer once again
misses the fact that the zero register is
functionally equivalent to the constant
value zero.

seq $4,0 sltiu a0,a0,1

seq $4,$0,$5 xor a0,zero,a1
sltiu a0,a0,1

seq $4,$5,15 xori a0,a1,0xf
sltiu a0,a0,1

seq $4,$5,2097153 lui at,0x20
ori at,at,0x1
xor a0,a1,at
sltiu a0,a0,1

slt $4,$5 slt a0,a0,a1

slt $4,$5,$6 slt a0,a1,a2

slt $4,$5,$0 slt a0,a1,zero

CMU/SEI-87-TR-29 175

Assembler Input Machine Language Output Comments

slt $4,$5,0 slti a0,a1,0

slt $4,$0 slt a0,a0,zero

slt $4,0 slti a0,a0,0

slt $4,$0,$5 slt a0,zero,a1

slt $4,$5,15 slti a0,a1,15

slt $4,$5,2097153 lui at,0x20
ori at,at,0x1
slt a0,a1,at

sltu $4,$5 sltu a0,a0,a1

sltu $4,$5,$6 sltu a0,a1,a2

sltu $4,$5,$0 sltu a0,a1,zero

sltu $4,$5,0 sltiu a0,a1,0

sltu $4,$0 sltu a0,a0,zero

sltu $4,0 sltiu a0,a0,0

sltu $4,$0,$5 sltu a0,zero,a1

sltu $4,$5,15 sltiu a0,a1,15

sltu $4,$5,2097153 lui at,0x20
ori at,at,0x1
sltu a0,a1,at

sle $4,$5 slt a0,a1,a0
xori a0,a0,0x1

The MIPS M/500 native instruction set
does not have an sle instruction, so it is
faked with two other instructions, effec-
tively doubling the execution time of this
opcode. We would like to point out that
other architectures usually require
several instructions to set condition
codes and test them. The scheme that
MIPS uses is actually better, in spite of
the occasional code expansion.

sle $4,$5,$6 slt a0,a2,a1
xori a0,a0,0x1

sle $4,$5,$0 slt a0,zero,a1
xori a0,a0,0x1

The assembler reorganizer once again
misses the fact that the zero register is
functionally equivalent to the constant
value zero.

sle $4,$5,0 slti a0,a1,1

sle $4,$0 slt a0,zero,a0
xori a0,a0,0x1

The assembler reorganizer once again
misses the fact that the zero register is
functionally equivalent to the constant
value zero.

sle $4,0 slti a0,a0,1

sle $4,$0,$5 slt a0,a1,zero
xori a0,a0,0x1

176 CMU/SEI-87-TR-25

Assembler Input Machine Language Output Comments

sle $4,$5,15 slti a0,a1,16

sle $4,$5,2097153 lui at,0x20
ori at,at,0x2
slt a0,a1,at

sleu $4,$5 sltu a0,a1,a0
xori a0,a0,0x1

The MIPS M/500 native instruction set
does not have an sleu instruction, so it
is faked with two other instructions, effec-
tively doubling the execution time of this
opcode.

sleu $4,$5,$6 sltu a0,a2,a1
xori a0,a0,0x1

sleu $4,$5,$0 sltu a0,zero,a1
xori a0,a0,0x1

The assembler reorganizer once again
misses the fact that the zero register is
functionally equivalent to the constant
value zero.

sleu $4,$5,0 sltiu a0,a1,1

sleu $4,$0 sltu a0,zero,a0
xori a0,a0,0x1

The assembler reorganizer once again
misses the fact that the zero register is
functionally equivalent to the constant
value zero.

sleu $4,0 sltiu a0,a0,1

sleu $4,$0,$5 sltu a0,a1,zero
xori a0,a0,0x1

sleu $4,$5,15 sltiu a0,a1,16

sleu $4,$5,2097153 lui at,0x20
ori at,at,0x2
sltu a0,a1,at

sgt $4,$5 slt a0,a1,a0 The MIPS M/500 native instruction set
does not have an sgt instruction, so it is
faked with an slt instruction with
reversed operands at no extra cost.

sgt $4,$5,$6 slt a0,a2,a1

sgt $4,$5,$0 slt a0,zero,a1

sgt $4,$5,0 slt a0,zero,a1

sgt $4,$0 slt a0,zero,a0

sgt $4,0 slt a0,zero,a0

sgt $4,$0,$5 slt a0,a1,zero

sgt $4,$5,15 li at,15
slt a0,at,a1

sgt $4,$5,2097153 lui at,0x20
ori at,at,0x1
slt a0,at,a1

CMU/SEI-87-TR-29 177

Assembler Input Machine Language Output Comments

sgtu $4,$5 sltu a0,a1,a0 The MIPS M/500 native instruction set
does not have an sgtu instruction, so it
is faked with an sltu instruction with
reversed operands at no extra cost.

sgtu $4,$5,$6 sltu a0,a2,a1

sgtu $4,$5,$0 sltu a0,zero,a1

sgtu $4,$5,0 sltu a0,zero,a1

sgtu $4,$0 sltu a0,zero,a0

sgtu $4,0 sltu a0,zero,a0

sgtu $4,$0,$5 sltu a0,a1,zero

sgtu $4,$5,15 li at,15
sltu a0,at,a1

sgtu $4,$5,2097153 lui at,0x20
ori at,at,0x1
sltu a0,at,a1

sge $4,$5 slt a0,a0,a1
xori a0,a0,0x1

The MIPS M/500 native instruction set
does not have an sge instruction, so it is
faked with two other instructions, effec-
tively doubling the execution time of this
opcode.

sge $4,$5,$6 slt a0,a1,a2
xori a0,a0,0x1

sge $4,$5,$0 slt a0,a1,zero
xori a0,a0,0x1

sge $4,$5,0 slti a0,a1,0
xori a0,a0,0x1

sge $4,$0 slt a0,a0,zero
xori a0,a0,0x1

sge $4,0 slti a0,a0,0
xori a0,a0,0x1

sge $4,$0,$5 slt a0,zero,a1
xori a0,a0,0x1

sge $4,$5,15 slti a0,a1,15
xori a0,a0,0x1

sge $4,$5,2097153 lui at,0x20
ori at,at,0x1
slt a0,a1,at
xori a0,a0,0x1

sgeu $4,$5 sltu a0,a0,a1
xori a0,a0,0x1

The MIPS M/500 native instruction set
does not have an sgeu instruction, so it
is faked with two other instructions, effec-
tively doubling the execution time of this
opcode.

178 CMU/SEI-87-TR-25

Assembler Input Machine Language Output Comments

sgeu $4,$5,$6 sltu a0,a1,a2
xori a0,a0,0x1

sgeu $4,$5,$0 sltu a0,a1,zero
xori a0,a0,0x1

All unsigned numbers are greater than 0,
so this instruction should simply expand
to xori a0,a0,0x1. Instead, it is ex-
panded to a code sequence that, while
functionally correct, takes twice as long
to execute.

sgeu $4,$5,0 sltiu a0,a1,0
xori a0,a0,0x1

Suboptimal code (see above).

sgeu $4,$0 sltu a0,a0,zero
xori a0,a0,0x1

Suboptimal code (see above).

sgeu $4,0 sltiu a0,a0,0
xori a0,a0,0x1

Suboptimal code (see above).

sgeu $4,$0,$5 sltu a0,zero,a1
xori a0,a0,0x1

Suboptimal code (see above).

sgeu $4,$5,15 sltiu a0,a1,15
xori a0,a0,0x1

sgeu $4,$5,2097153 lui at,0x20
ori at,at,0x1
sltu a0,a1,at
xori a0,a0,0x1

sne $4,$5 xor a0,a0,a1
sltiu a0,a0,1
xori a0,a0,0x1

Not only does the MIPS M/500 native in-
struction set does not have an sne in-
struction (so that it fakes it with three
other instructions, effectively tripling the
execution time of this opcode) but it
generates the wrong code sequence!
What should be generated is
xor a0,a0,a1 followed by
sltu a0,zero,a0, which takes only
two cycles to execute.

sne $4,$5,$6 xor a0,a1,a2
sltiu a0,a0,1
xori a0,a0,0x1

Suboptimal code (see above).

sne $4,$5,$0 xor a0,a1,zero
sltiu a0,a0,1
xori a0,a0,0x1

The assembler reorganizer once again
misses the fact that the zero register is
functionally equivalent to the constant
value zero. It is also generating sub-
optimal code (see above).

sne $4,$5,0 sltiu a0,a1,1
xori a0,a0,0x1

Suboptimal code (see above).

sne $4,$0 xor a0,a0,zero
sltiu a0,a0,1
xori a0,a0,0x1

Suboptimal code (see above).

sne $4,0 sltiu a0,a0,1
xori a0,a0,0x1

Suboptimal code (see above).

CMU/SEI-87-TR-29 179

Assembler Input Machine Language Output Comments

sne $4,$0,$5 xor a0,zero,a1
sltiu a0,a0,1
xori a0,a0,0x1

Suboptimal code (see above).

sne $4,$5,15 xori a0,a1,0xf
sltiu a0,a0,1
xori a0,a0,0x1

Suboptimal code (see above).

sne $4,$5,2097153 lui at,0x20
ori at,at,0x1
xor a0,a1,at
sltiu a0,a0,1
xori a0,a0,0x1

Suboptimal code (see above).

sll $4,$5 sllv a0,a0,a1

sll $4,$5,$6 sllv a0,a1,a2

sll $4,$5,$0 sllv a0,a1,zero This instruction could be substituted with
a simple move instruction, since a shift of
zero bits is no shift at all. However, since
both instructions take one cycle, there is
no extra incurred expense.

sll $4,$5,0 sll a0,a1,0

sll $4,$0 sllv a0,a0,zero

sll $4,0 sll a0,a0,0

sll $4,$0,$5 sllv a0,zero,a1 This instruction should be recoded as
move a0,zero, since rotating zero by
any number of bits (especially zero) still
yields zero.

sll $4,$5,15 sll a0,a1,15

sll $4,$5,2097153 This instruction generates the assembly
error "Shift amount not 0..31." While this
is reasonable enough, the documentation
maintains that shift amounts outside of
the range of 0..31 are taken modulo 32
before shifting, thus implying that this line
of code would be legal.

sra $4,$5 srav a0,a0,a1

sra $4,$5,$6 srav a0,a1,a2

sra $4,$5,$0 srav a0,a1,zero This instruction could be substituted with
a simple move instruction, since a shift of
zero bits is no shift at all. However, since
both instructions take one cycle, there is
no extra incurred expense.

sra $4,$5,0 sra a0,a1,0

sra $4,$0 srav a0,a0,zero

sra $4,0 sra a0,a0,0

180 CMU/SEI-87-TR-25

Assembler Input Machine Language Output Comments

sra $4,$0,$5 srav a0,zero,a1 This instruction should be recoded as
move a0,zero, since rotating zero by
any number of bits (especially zero) still
yields zero.

sra $4,$5,15 sra a0,a1,15

sra $4,$5,2097153 This instruction generates the assembly
error "Shift amount not 0..31." While this
is reasonable enough, the documentation
maintains that that shift amounts outside
of the range of 0..31 are taken modulo 32
before shifting, thus implying that this line
of code would be legal.

srl $4,$5 srlv a0,a0,a1

srl $4,$5,$6 srlv a0,a1,a2

srl $4,$5,$0 srlv a0,a1,zero This instruction could be substituted with
a simple move instruction, since a shift of
zero bits is no shift at all. However, since
both instructions take one cycle, there is
no extra incurred expense.

srl $4,$5,0 srl a0,a1,0

srl $4,$0 srlv a0,a0,zero

srl $4,0 srl a0,a0,0

srl $4,$0,$5 srlv a0,zero,a1 This instruction should be recoded as
move a0,zero, since rotating zero by
any number of bits (especially zero) still
yields zero.

srl $4,$5,15 srl a0,a1,15

srl $4,$5,2097153 This instruction generates the assembly
error "Shift amount not 0..31." While this
is reasonable enough, the documentation
maintains that that shift amounts outside
of the range of 0..31 are taken modulo 32
before shifting, thus implying that this line
of code would be legal.

sub $4,$5 sub a0,a0,a1

sub $4,$5,$6 sub a0,a1,a2

sub $4,$5,$0 sub a0,a1,zero This instruction could be substituted with
a simple move, since subtracting zero
from a number gives that number as a
result. However, since both instructions
take one cycle, there is no extra incurred
expense.

CMU/SEI-87-TR-29 181

Assembler Input Machine Language Output Comments

sub $4,$5,0 addi a0,a1,0 This instruction could be substituted with
a simple move, since subtracting zero
from a number gives that number as a
result. However, since both instructions
take one cycle, there is no extra incurred
expense.

sub $4,$0 sub a0,a0,zero When both the minuend and the sub-
trahend of the subtraction are the same,
the assembler reorganizer should
remove the instruction when the sub-
trahend is zero. As can be seen, it does
not.

sub $4,0 addi a0,a0,0 When both the minuend and the sub-
trahend of the subtraction are the same,
the assembler reorganizer should
remove the instruction when the sub-
trahend is zero. As can be seen, it does
not.

sub $4,$0,$5 sub a0,zero,a1

sub $4,$5,32767 addi a0,a1,-32767 Subtraction of constant values is im-
plemented as the addition of their nega-
tive value.

sub $4,$5,32768 li at,32768
sub a0,a1,at

Unfortunately, the assembler reorganizer
is not smart enough to recognize that
-32768 would be only 16 bits long. What
should be generated here is
addi a0,a1,-32768.

sub $4,$5,-32767 addi a0,a1,32767 The negatives of the values are used for
both positive and negative constants.

sub $4,$5,-32768 li at,-32768
sub a0,a1,at

The assembler reorganizer is smart
enough to know that 32768 is too big for
an immediate operand though.

sub $4,$5,15 addi a0,a1,-15 The use of the addi instruction instead
of the anticipated subi, while entirely
legal, suggests a lack of orthogonality of
the MIPS M/500 native instruction set. In
this case, this is perfectly reasonable
(since the MIPS M/500 native architecture
is RISC in nature).

sub $4,$5,2097153 lui at,0x20
ori at,at,0x1
sub a0,a1,at

subu $4,$5 subu a0,a0,a1

subu $4,$5,$6 subu a0,a1,a2

subu $4,$5,$0 subu a0,a1,zero

subu $4,$5,0 addiu a0,a1,0

182 CMU/SEI-87-TR-25

Assembler Input Machine Language Output Comments

subu $4,$0 subu a0,a0,zero This instruction does nothing and should
be elided by the assembler reorganizer.

subu $4,0 addiu a0,a0,0 This instruction does nothing and should
be elided by the assembler reorganizer.

subu $4,$0,$5 subu a0,zero,a1

subu $4,$5,15 addiu a0,a1,-15

subu $4,$5,2097153 lui at,0x20
ori at,at,0x1
subu a0,a1,at

move $4,$5 move a0,a1

mult $4,$5 mult a0,a1

mult $4,$0 mult a0,zero This instruction could be replaced with
move a0,zero, but since other instruc-
tions may be counting on the contents of
the hi and lo registers afterward, this
cannot be done. (The mult instruction is
documented as leaving the results of the
multiplication in these registers.)

multu $4,$5 multu a0,a1

multu $4,$0 multu a0,zero This instruction could be replaced with
move a0,zero, but since other instruc-
tions may be counting on the contents of
the hi and lo registers afterwards, this
cannot be done. (The multu instruction
is documented as leaving the results of
the multiplication in these registers.)

b TOP b 0
nop

The trailing nop instructions that follow
each of these condition tests may be
filled with an instruction that the as-
sembler reorganizer can move
downward.

beq $4,$5,TOP beq a0,a1,0
nop

beq $4,0,TOP beq a0,zero,0
nop

In this case, the assembler reorganizer
correctly treats the zero register and the
constant value 0 as identical.

beq $4,$0,TOP beq a0,zero,0
nop

beq $4,15,TOP li at,15
beq a0,at,0
nop

None of the conditional branches sup-
ports an immediate operand, so the as-
sembler reorganizer loads the immediate
operand into the temporary register at.

beq $4,2097153,TOP lui at,0x20
ori at,at,0x1
beq a0,at,0
nop

CMU/SEI-87-TR-29 183

Assembler Input Machine Language Output Comments

bgt $4,$5,TOP slt at,a1,a0
bne at,zero,0
nop

The MIPS M/500 native instruction set
does not have a bgt instruction, so it is
faked with two other instructions, effec-
tively doubling the execution time of this
opcode.

bgt $4,0,TOP bgtz a0,0
nop

In this case, the use of the MIPS M/500
native bgtz instruction keeps the effec-
tive execution time in line with the an-
ticipated time.

bgt $4,$0,TOP bgtz a0,0
nop

In this case, the assembler reorganizer
correctly treats the zero register and the
constant value 0 as identical.

bgt $4,15,TOP slti at,a0,16
beq at,zero,0
nop

None of the conditional branches sup-
ports an immediate operand, so the as-
sembler reorganizer loads the immediate
operand into the temporary register at.

bgt $4,2097153,TOP lui at,0x20
ori at,at,0x2
slt at,a0,at
beq at,zero,0
nop

bge $4,$5,TOP slt at,a0,a1
beq at,zero,0
nop

The MIPS M/500 native instruction set
does not have a bge instruction, so it is
faked with two other instructions, effec-
tively doubling the execution time of this
opcode.

bge $4,0,TOP bgez a0,0
nop

In this case, the use of the MIPS M/500
native bgez instruction keeps the effec-
tive execution time in line with the an-
ticipated time.

bge $4,$0,TOP bgez a0,0
nop

In this case, the assembler reorganizer
correctly treats the zero register and the
constant value 0 as identical.

bge $4,15,TOP slti at,a0,15
beq at,zero,0
nop

None of the conditional branches sup-
ports an immediate operand, so the as-
sembler reorganizer loads the immediate
operand into the temporary register at.

bge $4,2097153,TOP lui at,0x20
ori at,at,0x1
slt at,a0,at
beq at,zero,0
nop

bgeu $4,$5,TOP sltu at,a0,a1
beq at,zero,0
nop

The MIPS M/500 native instruction set
does not have a bgeu instruction, so it is
faked with two other instructions, effec-
tively doubling the execution time of this
opcode.

184 CMU/SEI-87-TR-25

Assembler Input Machine Language Output Comments

bgeu $4,0,TOP b 0
nop

All numbers are greater than or equal to
zero in unsigned comparisons, so the as-
sembler reorganizer has correctly trans-
lated the conditional branch into an un-
conditional branch instruction.

bgeu $4,$0,TOP b 0
nop

In this case, the assembler reorganizer
correctly treats the zero register and the
constant value 0 as identical.

bgeu $4,15,TOP sltiu at,a0,15
beq at,zero,0
nop

None of the conditional branches sup-
ports an immediate operand, so the as-
sembler reorganizer loads the immediate
operand into the temporary register at.

bgeu $4,2097153,TOP lui at,0x20
ori at,at,0x1
sltu at,a0,at
beq at,zero,0
nop

bgtu $4,$5,TOP sltu at,a1,a0
bne at,zero,0
nop

The MIPS M/500 native instruction set
does not have a bgtu instruction, so it is
faked with two other instructions, effec-
tively doubling the execution time of this
opcode.

bgtu $4,0,TOP bne a0,zero,0
nop

In unsigned comparisons, all numbers
are either greater than or equal to zero.
Since we are concerned with numbers
that are greater than zero, the assembler
reorganizer tests for not equal to zero,
which suffices.

bgtu $4,$0,TOP bne a0,zero,0
nop

In this case, the assembler reorganizer
correctly treats the zero register and the
constant value 0 as identical.

bgtu $4,15,TOP sltiu at,a0,16
beq at,zero,0
nop

None of the conditional branches sup-
ports an immediate operand, so the as-
sembler reorganizer loads the immediate
operand into the temporary register at.

bgtu $4,2097153,TOP lui at,0x20
ori at,at,0x2
sltu at,a0,at
beq at,zero,0
nop

blt $4,$5,TOP slt at,a0,a1
bne at,zero,0
nop

The MIPS M/500 native instruction set
does not have a blt instruction, so it is
faked with two other instructions, effec-
tively doubling the execution time of this
opcode.

blt $4,0,TOP bltz a0,0
nop

In this case, the use of the MIPS M/500
native bltz instruction keeps the effec-
tive execution time in line with the an-
ticipated time.

CMU/SEI-87-TR-29 185

Assembler Input Machine Language Output Comments

blt $4,$0,TOP bltz a0,0
nop

In this case, the assembler reorganizer
correctly treats the zero register and the
constant value 0 as identical.

blt $4,15,TOP slti at,a0,15
bne at,zero,0
nop

None of the conditional branches sup-
ports an immediate operand, so the as-
sembler reorganizer loads the immediate
operand into the temporary register at.

blt $4,2097153,TOP lui at,0x20
ori at,at,0x1
slt at,a0,at
bne at,zero,0
nop

ble $4,$5,TOP slt at,a1,a0
beq at,zero,0
nop

The MIPS M/500 native instruction set
does not have a ble instruction, so it is
faked with two other instructions, effec-
tively doubling the execution time of this
opcode.

ble $4,0,TOP blez a0,0
nop

In this case, the use of the MIPS M/500
native blez instruction keeps the effec-
tive execution time in line with the an-
ticipated time.

ble $4,$0,TOP blez a0,0
nop

In this case, the assembler reorganizer
correctly treats the zero register and the
constant value 0 as identical.

ble $4,15,TOP slti at,a0,16
bne at,zero,0
nop

None of the conditional branches sup-
ports an immediate operand, so the as-
sembler reorganizer loads the immediate
operand into the temporary register at.

ble $4,2097153,TOP lui at,0x20
ori at,at,0x2
slt at,a0,at
bne at,zero,0
nop

bleu $4,$5,TOP sltu at,a1,a0
beq at,zero,0
nop

The MIPS M/500 native instruction set
does not have a bleu instruction, so it is
faked with two other instructions, effec-
tively doubling the execution time of this
opcode.

bleu $4,0,TOP beq a0,zero,0
nop

In unsigned comparisons, all numbers
are either greater than or equal to zero.
Since we are concerned with numbers
that are less than or equal to zero, the
assembler reorganizer tests for equal to
zero, which suffices.

bleu $4,$0,TOP beq a0,zero,0
nop

In this case, the assembler reorganizer
correctly treats the zero register and the
constant value 0 as identical.

186 CMU/SEI-87-TR-25

Assembler Input Machine Language Output Comments

bleu $4,15,TOP sltiu at,a0,16
bne at,zero,0
nop

None of the conditional branches sup-
ports an immediate operand, so the as-
sembler reorganizer loads the immediate
operand into the temporary register at.

bleu $4,2097153,TOP lui at,0x20
ori at,at,0x2
sltu at,a0,at
bne at,zero,0
nop

bltu $4,$5,TOP sltu at,a0,a1
bne at,zero,0
nop

The MIPS M/500 native instruction set
does not have a bltu instruction, so it is
faked with two other instructions, effec-
tively doubling the execution time of this
opcode.

bltu $4,0,TOP This instruction generates no code at all.
This is correct behavior, since no number
may be less than 0 in an unsigned com-
parison, so the branch can never be
taken. If the branch instruction is ad-
dressed by a label, and hence possibly
the target of a branch, the assembler
reorganizer substitutes a nop instruction
for the bltu.

bltu $4,$0,TOP This instruction generates no code at all.
This is correct behavior, since no number
may be less than 0 in an unsigned com-
parison, so the branch can never be
taken. If the branch instruction is ad-
dressed by a label, and hence possibly
the target of a branch, the assembler
reorganizer substitutes a nop instruction
for the bltu. In this case also, the as-
sembler reorganizer correctly treats the
zero register and the constant value 0 as
identical.

bltu $4,15,TOP sltiu at,a0,15
bne at,zero,0
nop

None of the conditional branches sup-
ports an immediate operand, so the as-
sembler reorganizer loads the immediate
operand into the temporary register at.

bltu $4,2097153,TOP lui at,0x20
ori at,at,0x1
sltu at,a0,at
bne at,zero,0
nop

bne $4,$5,TOP bne a0,a1,0
nop

bne $4,0,TOP bne a0,zero,0
nop

CMU/SEI-87-TR-29 187

Assembler Input Machine Language Output Comments

bne $4,$0,TOP bne a0,zero,0
nop

In this case, the assembler reorganizer
correctly treats the zero register and the
constant value 0 as identical.

bne $4,15,TOP li at,15
bne a0,at,0
nop

None of the conditional branches sup-
ports an immediate operand, so the as-
sembler reorganizer loads the immediate
operand into the temporary register at.

bne $4,2097153,TOP lui at,0x20
ori at,at,0x1
bne a0,at,0
nop

bal TOP bgezal zero,0
nop

Apparently, there is no unconditional
branch and link instruction in the MIPS

M/500 native instruction set, so the as-
sembler reorganizer substitutes the con-
ditional bgezal instruction with an al-
ways TRUE condition.

bltzal TOP According to the documentation, this in-
struction is legal, but when assembled,
generates the error "Register expected:
TOP". It would seem that neither the
bltzal nor the bgezal instruction func-
tions at all.

bgezal $4 According to the documentation, this in-
struction is legal, but when assembled,
generates the error "label expected". It
would seem that neither the bltzal nor
the bgezal instruction functions at all.

beqz $4,TOP beq a0,zero,0
nop

bgez $4,TOP bgez a0,0
nop

bgtz $4,TOP bgtz a0,0
nop

blez $4,TOP blez a0,0
nop

bltz $4,TOP bltz a0,0
nop

bnez $4,TOP bne a0,zero,0
nop

j TOP j 0
nop

j $4 jr a0
nop

jal TOP jal 0
nop

188 CMU/SEI-87-TR-25

Assembler Input Machine Language Output Comments

jal $4 jalr a0
nop

break 0 break 0

rfe c0 rfe

syscall syscall

mfhi $4 mfhi a0
nop
nop

mthi $4 mthi a0

mflo $4 mflo a0
nop
nop

mtlo $4 mtlo a0

lwc0 $4,ADDR lui at,0
lwc0 a0,at,7592

lwc1 $f4,ADDR lui at,0
lwc1 f4,7592(at)

lwc2 $4,ADDR lui at,0
lwc2 a0,at,7592

lwc3 $4,ADDR lui at,0
lwc3 a0,at,7592

swc0 $4,ADDR lui at,0
swc0 a0,at,7592

swc1 $f4,ADDR lui at,0
swc1 f4,7592(at)

swc2 $4,ADDR lui at,0
swc2 a0,at,7592

swc3 $4,ADDR lui at,0
swc3 a0,at,7592

mfc0 $4,$5 mfc0 a0,c0r5
nop

Note that c0r5 refers to coprocessor 0
register 5.

mfc1 $4,$f5 mfc1 a0,f5
nop

mfc1.d $4,$f6 mtc1 a1,f6
mtc1 a0,f7
nop

This instruction is undocumented in the
Mips Assembly Language Programmers
Guide. It serves to store a double-
precision floating-point number from the
floating-point co-processor by performing
two single-word store instructions.

mfc2 $4,$5 c2 a0,zero,10240
nop

mfc3 $4,$5 c3 a0,zero,10240
nop

CMU/SEI-87-TR-29 189

Assembler Input Machine Language Output Comments

mtc0 $4,$5 mtc0 a0,c0r5
nop

mtc1 $4,$f5 mtc1 a0,f5
nop

mtc1.d $4,$f6 mtc1 a1,f6
mtc1 a0,f7
nop

This instruction is undocumented in the
Mips Assembly Language Programmers
Guide, but is generated by the compilers.
It serves to load a double-precision
floating-point number into the floating-
point co-processor by performing two
single-word load instructions.

mtc2 $4,$5 c2 a0,a0,10240
nop

mtc3 $4,$5 c3 a0,a0,10240
nop

bc0f TOP bc0f 0
nop

bc1f TOP bc1f 0
nop

bc2f TOP c2 zero,t0,0
nop

bc3f TOP c3 zero,t0,0
nop

bc0t TOP bc0t 0
nop

bc1t TOP bc1t 0
nop

bc2t TOP c2 at,t0,0
nop

bc3t TOP c3 at,t0,0
nop

c0 15 c0 c0op15

c1 15 fop0f.s f0,f0,f0 The disassembler supplied by MIPS (and
used to extract the machine-language
output) "knows" that co-processor 1 is
the floating-point unit, so it interprets c1
as a floating-point instruction. We are
not sure exactly what this instruction is,
though.

c2 15 c2 zero,s0,15

c3 15 c3 zero,s0,15

cfc0 $4,$5 This instruction, although documented, is
not recognized by the assembler reor-
ganizer as being legal.

190 CMU/SEI-87-TR-25

Assembler Input Machine Language Output Comments

cfc1 $4,$5 cfc1 a0,f5
nop

cfc2 $4,$5 This instruction, although documented, is
not recognized by the assembler reor-
ganizer as being legal.

cfc3 $4,$5 This instruction, although documented, is
not recognized by the assembler reor-
ganizer as being legal.

ctc0 $4,$5 This instruction, although documented, is
not recognized by the assembler reor-
ganizer as being legal.

ctc1 $4,$5 ctc1 a0,f5
nop

ctc2 $4,$5 This instruction, although documented, is
not recognized by the assembler reor-
ganizer as being legal.

ctc3 $4,$5 This instruction, although documented, is
not recognized by the assembler reor-
ganizer as being legal.

tlbp c0 tlbp

tlbr c0 tlbr

tlbwr c0 tlbwr

tlbwi c0 tlbwi

nop nop Although undocumented, this
instruction’s function should be obvious.

l.s $f2,TOP lui at,0
lwc1 f2,0(at)

In this and all floating-point load/store
operations, the instructions that are
generated use the lwc1 and swc1 in-
structions. These instructions use a
general address expression for their
second operand. Therefore, the as-
sembler reorganizer must generate a
load instruction for the at register, even
if the resultant effective address will be a
simple constant value.

l.d $f2,TOP lui at,0
lwc1 f2,4(at)
lwc1 f3,0(at)
nop

Loading a double-precision number re-
quires two lwc1 instructions to load all
64 bits.

s.s $f2,TOP lui at,0
swc1 f2,0(at)

s.d $f2,TOP lui at,0
swc1 f3,0(at)
swc1 f2,4(at)

Storing a double-precision number re-
quires two lwc1 instructions to store all
64 bits.

abs.s $f2,$f4 abs.s f2,f4

CMU/SEI-87-TR-29 191

Assembler Input Machine Language Output Comments

abs.d $f2,$f4 abs.d f2,f4

neg.s $f2,$f4 neg.s f2,f4,f0 The neg instruction appears to need an
extra register.

neg.d $f2,$f4 neg.d f2,f4,f0 The neg instruction appears to need an
extra register.

add.s $f2,$f4,$f6 add.s f2,f4,f6

add.d $f2,$f4,$f6 add.d f2,f4,f6

sub.s $f2,$f4,$f6 sub.s f2,f4,f6

sub.d $f2,$f4,$f6 sub.d f2,f4,f6

mul.s $f2,$f4,$f6 mul.s f2,f4,f6

mul.d $f2,$f4,$f6 mul.d f2,f4,f6

div.s $f2,$f4,$f6 div.s f2,f4,f6

div.d $f2,$f4,$f6 div.d f2,f4,f6

cvt.s.d $f2,$f4 cvt.s.d f2,f4

cvt.d.s $f2,$f4 cvt.d.s f2,f4

cvt.w.d $f2,$f4 cvt.w.d f2,f4

cvt.d.w $f2,$f4 cvt.d.w f2,f4

cvt.s.w $f2,$f4 cvt.s.w f2,f4

cvt.w.s $f2,$f4 cvt.w.s f2,f4

trunc.w.s $f2,$f4,$4 cfc1 a0,f31
cfc1 a0,f31
nop
ori at,a0,0x3
xori at,at,0x2
ctc1 at,f31
nop
cvt.w.s f2,f4
ctc1 a0,f31
nop
nop
nop

Truncation appears to be a rather expen-
sive operation (although the documen-
tation does describe these instructions as
being "macro" instructions).

trunc.w.d $f2,$f4,$4 cfc1 a0,f31
cfc1 a0,f31
nop
ori at,a0,0x3
xori at,at,0x2
ctc1 at,f31
nop
cvt.w.d f2,f4
ctc1 a0,f31
nop
nop
nop

Truncation appears to be a rather expen-
sive operation (although the documen-
tation does describe these instructions as
being "macro" instructions).

192 CMU/SEI-87-TR-25

Assembler Input Machine Language Output Comments

round.w.s $f2,$f4,$4 cfc1 a0,f31
cfc1 a0,f31
li at,-4
and at,at,a0
ctc1 at,f31
nop
cvt.w.s f2,f4
ctc1 a0,f31
nop
nop
nop

Rounding appears to be a rather expen-
sive operation (although the documen-
tation does describe these instructions as
being "macro" instructions).

round.w.d $f2,$f4,$4 cfc1 a0,f31
cfc1 a0,f31
li at,-4
and at,at,a0
ctc1 at,f31
nop
cvt.w.d f2,f4
ctc1 a0,f31
nop
nop
nop

Rounding appears to be a rather expen-
sive operation (although the documen-
tation does describe these instructions as
being "macro" instructions).

c.f.s $f2,$f4 c.f.s f2,f4
nop

The trailing nop instructions that follow
each of these condition tests may be
filled with an instruction that the as-
sembler reorganizer can move
downward. Note that the MIPS M/500 na-
tive instruction set does not have any
floating-point conditional branches per
se, but instead uses the bc1t and bc1f
instructions (page 189) to branch on the
condition codes set by these relational
operations.

c.f.d $f2,$f4 c.f.d f2,f4
nop

c.un.s $f2,$f4 c.un.s f2,f4
nop

c.un.d $f2,$f4 c.un.d f2,f4
nop

c.eq.s $f2,$f4 c.eq.s f2,f4
nop

c.eq.d $f2,$f4 c.eq.d f2,f4
nop

c.ueq.s $f2,$f4 c.ueq.s f2,f4
nop

c.ueq.d $f2,$f4 c.ueq.d f2,f4
nop

c.olt.s $f2,$f4 c.olt.s f2,f4
nop

CMU/SEI-87-TR-29 193

Assembler Input Machine Language Output Comments

c.olt.d $f2,$f4 c.olt.d f2,f4
nop

c.ult.s $f2,$f4 c.ult.s f2,f4
nop

c.ult.d $f2,$f4 c.ult.d f2,f4
nop

c.ole.s $f2,$f4 c.ole.s f2,f4
nop

c.ole.d $f2,$f4 c.ole.d f2,f4
nop

c.ule.s $f2,$f4 c.ule.s f2,f4
nop

c.ule.d $f2,$f4 c.ule.d f2,f4
nop

c.sf.s $f2,$f4 c.sf.s f2,f4
nop

c.sf.d $f2,$f4 c.sf.d f2,f4
nop

c.ngle.s $f2,$f4 c.ngle.s f2,f4
nop

c.ngle.d $f2,$f4 c.ngle.d f2,f4
nop

c.seq.s $f2,$f4 c.seq.s f2,f4
nop

c.seq.d $f2,$f4 c.seq.d f2,f4
nop

c.ngl.s $f2,$f4 c.ngl.s f2,f4
nop

c.ngl.d $f2,$f4 c.ngl.d f2,f4
nop

c.lt.s $f2,$f4 c.lt.s f2,f4
nop

c.lt.d $f2,$f4 c.lt.d f2,f4
nop

c.nge.s $f2,$f4 c.nge.s f2,f4
nop

c.nge.d $f2,$f4 c.nge.d f2,f4
nop

c.le.s $f2,$f4 c.le.s f2,f4
nop

c.le.d $f2,$f4 c.le.d f2,f4
nop

194 CMU/SEI-87-TR-25

Assembler Input Machine Language Output Comments

c.ngt.s $f2,$f4 c.ngt.s f2,f4
nop

c.ngt.d $f2,$f4 c.ngt.d f2,f4
nop

mov.s $f2,$f4 mov.s f2,f4

mov.d $f2,$f4 mov.d f2,f4
nop

Table A-2 (on the following page) provides an alphabetic cross reference of MIPS assembler instruc-
tions. The previous table was listed in the instruction order presented in Chapter 5 of the MIPS

Assembly Language Reference Manual [MIPS 86a]. Table A-2 is supplied to provide an easy
mechanism for locating the page number on which instructions are first referenced.

CMU/SEI-87-TR-29 195

Instruction Page

abs 157
abs.d 191
abs.s 190
add 158
add.d 191
add.s 191
addu 158
and 159
b 182
bal 187
bc0f 189
bc0t 189
bc1f 189
bc1t 189
bc2f 189
bc2t 189
bc3f 189
bc3t 189
beq 182
beqz 187
bge 183
bgeu 183
bgez 187
bgezal 187
bgt 183
bgtu 184
bgtz 187
ble 185
bleu 185
blez 187
blt 184
bltu 186
bltz 187
bltzal 187
bne 186
bnez 187
break 188
c.eq.d 192
c.eq.s 192
c.f.d 192
c.f.s 192
c.le.d 193
c.le.s 193
c.lt.d 193
c.lt.s 193
c.nge.d 193
c.nge.s 193
c.ngl.d 193

Instruction Page

c.ngl.s 193
c.ngle.d 193
c.ngle.s 193
c.ngt.d 194
c.ngt.s 194
c.ole.d 193
c.ole.s 193
c.olt.d 193
c.olt.s 192
c.seq.d 193
c.seq.s 193
c.sf.d 193
c.sf.s 193
c.ueq.d 192
c.ueq.s 192
c.ule.d 193
c.ule.s 193
c.ult.d 193
c.ult.s 193
c.un.d 192
c.un.s 192
c0 189
c1 189
c2 189
c3 189
cfc0 189
cfc1 190
cfc2 190
cfc3 190
ctc0 190
ctc1 190
ctc2 190
ctc3 190
cvt.d.s 191
cvt.d.w 191
cvt.s.d 191
cvt.s.w 191
cvt.w.d 191
cvt.w.s 191
div 160
div.d 191
div.s 191
divu 162
j 187
jal 187
l.d 190
l.s 190
la 144

Instruction Page

lb 145
lbu 145
ld 148
lh 146
lhu 146
li 152
lui 152
lw 146
lwc0 188
lwc1 188
lwc2 188
lwc3 188
lwl 147
lwr 147
mfc0 188
mfc1 188
mfc1.d 188
mfc2 188
mfc3 188
mfhi 188
mflo 188
mov.s 194
mov.d 194
move 182
mtc0 189
mtc1 189
mtc1.d 189
mtc2 189
mtc3 189
mthi 188
mtlo 188
mul 164
mul.d 191
mul.s 191
mulo 165
mulou 166
mult 182
multu 182
neg 157
neg.d 191
neg.s 191
negu 157
nop 190
nor 167
not 158
or 168
rem 169
remu 171

Instruction Page

rfe 188
rol 172
ror 173
round.w.d 192
round.w.s 192
s.d 190
s.s 190
sb 152
sd 152
seq 174
sge 177
sgeu 177
sgt 176
sgtu 177
sh 153
sle 175
sleu 176
sll 179
slt 174
sltu 175
sne 178
sra 179
srl 180
sub 180
sub.d 191
sub.s 191
subu 181
sw 154
swc0 188
swc1 188
swc2 188
swc3 188
swl 153
swr 154
syscall 188
tlbp 190
tlbr 190
tlbwi 190
tlbwr 190
trunc.w.d 191
trunc.w.s 191
ulh 149
ulhu 150
ulw 151
ush 155
usw 156
xor 163

Table A-2: Alphabetic Cross Reference of MIPS Assembler Instructions

196 CMU/SEI-87-TR-25

Tables A-3 and A-4 are a list of the actual hardware instructions supported by the MIPS M/500 and its
floating-point co-processor, respectively. They are provided to give the reader a feel for the real
instruction set architecture, rather than the pseudo-instructions presented by the assembler reor-
ganizer. Please note that the nop and move instructions are really just special cases of the addu

instruction.

add addi addiu addu and andi

b bc0f bc0t bc1f bc1t beq

bgez bgezal bgtz blez bltz bne

break c0 c2 c3 cfc1 ctc1

div divu j jal jalr jr

lb lbu lh lhu li lui

lw lwc0 lwc1 lwc2 lwc3 lwl

lwr mfc0 mfc1 mfhi mflo move

mtc0 mtc1 mthi mtlo mult multu

nop nor or ori sb sh

sll sllv slt slti sltiu sltu

sra srav srl srlv sub subu

sw swc0 swc1 swc2 swc3 swl

swr syscall xor xori

Table A-3: Actual MIPS M/500 Instruction Set

abs.d abs.s add.d add.s c.eq.d c.eq.s

c.f.d c.f.s c.le.d c.le.s c.lt.d c.lt.s

c.nge.d c.nge.s c.ngl.d c.ngl.s c.ngle.d c.ngle.s

c.ngt.d c.ngt.s c.ole.d c.ole.s c.olt.d c.olt.s

c.seq.d c.seq.s c.sf.d c.sf.s c.ueq.d c.ueq.s

c.ule.d c.ule.s c.ult.d c.ult.s c.un.d c.un.s

cvt.d.s cvt.d.w cvt.s.d cvt.s.w cvt.w.d cvt.w.s

div.d div.s mov.d mov.s mul.d mul.s

neg.d neg.s sub.d sub.s

Table A-4: MIPS M/500 Floating-Point Co-Processor Instruction Set

CMU/SEI-87-TR-29 197

Appendix B: Compiler and Assembler Version
Information

The following three tables list the version numbers of the compilers, assembler, and linker used to
generate all of the information in this report. The version information was obtained by running the
three compilers (C, FORTRAN, and Pascal) with the -V switch and no source file. The subcom-
ponents of the compilers and libraries are also listed, and are primarily from Berkeley release
software. The compiler components were created at MIPS on January 29, 1987, and installed at the
Software Engineering Institute on March 20, 1986. All of the test results describe in this document
were obtained after that installation date.

B.1. C Compiler

C Compiler Components

Compiler Component Version Number

/usr/lib/cpp Mips Computer Systems Release 1.10c

/usr/lib/ccom Mips Computer Systems Release 1.10g

/usr/lib/ujoin Mips Computer Systems Release 1.10c

/usr/bin/uld Mips Computer Systems Release 1.10h

/usr/lib/usplit Mips Computer Systems Release 1.10c

/usr/lib/umerge Mips Computer Systems Release 1.10b

ldopen.c 1.3 2/16/83

ldclose.c 1.3 2/16/83

vldldptr.c 1.1 1/8/82

allocldptr.c 1.2 2/16/83

freeldptr.c 1.1 1/7/82

/usr/lib/uopt Mips Computer Systems Release 1.10e

/usr/lib/ugen Mips Computer Systems Release 1.10j

ldopen.c 1.3 2/16/83

ldclose.c 1.3 2/16/83

vldldptr.c 1.1 1/8/82

allocldptr.c 1.2 2/16/83

freeldptr.c 1.1 1/7/82

/usr/lib/as0 Mips Computer Systems Release 1.10f

/usr/lib/as1 Mips Computer Systems Release 1.10f

/usr/lib/crt0.o unknown

198 CMU/SEI-87-TR-25

C Compiler Components (contd.)

/usr/lib/libc.a unknown

/usr/bin/ld Mips Computer Systems Release 1.10h

cc Mips Computer Systems 1.10

B.2. Fortran-77 Compiler

Fortran-77 Compiler Components

Compiler Component Version Number

/usr/lib/cpp Mips Computer Systems Release 1.10c

/usr/lib/fcom Mips Computer Systems Release 1.10h

/usr/lib/ujoin Mips Computer Systems Release 1.10c

/usr/bin/uld Mips Computer Systems Release 1.10h

/usr/lib/usplit Mips Computer Systems Release 1.10c

/usr/lib/umerge Mips Computer Systems Release 1.10b

ldopen.c 1.3 2/16/83

ldclose.c 1.3 2/16/83

vldldptr.c 1.1 1/8/82

allocldptr.c 1.2 2/16/83

freeldptr.c 1.1 1/7/82

/usr/lib/uopt Mips Computer Systems Release 1.10e

/usr/lib/ugen Mips Computer Systems Release 1.10j

ldopen.c 1.3 2/16/83

ldclose.c 1.3 2/16/83

vldldptr.c 1.1 1/8/82

allocldptr.c 1.2 2/16/83

freeldptr.c 1.1 1/7/82

/usr/lib/as0 Mips Computer Systems Release 1.10f

/usr/lib/as1 Mips Computer Systems Release 1.10f

/usr/lib/crt0.o unknown

/usr/lib/libc.a unknown

/usr/lib/libm.a Mips Computer Systems Release 1.10b

pow.c 4.5 (Berkeley) 8/21/85

support.c 1.1 (Berkeley) 5/23/85

CMU/SEI-87-TR-29 199

Fortran-77 Compiler Components (contd.)

cbrt.c 1.1 (Berkeley) 5/23/85

cabs.c 1.2 (Berkeley) 8/21/85

log__L.c 1.2 (Berkeley) 8/21/85

log1p.c 1.3 (Berkeley) 8/21/85

exp__E.c 1.2 (Berkeley) 8/21/85

expm1.c 1.2 (Berkeley) 8/21/85

asinh.c 1.2 (Berkeley) 8/21/85

acosh.c 1.2 (Berkeley) 8/21/85

atanh.c 1.2 (Berkeley) 8/21/85

/usr/lib/libF77.a Mips Computer Systems Release 1.10c

/usr/lib/libI77.a Mips Computer Systems Release 1.10d

/usr/lib/libU77.a unknown

/usr/bin/ld Mips Computer Systems Release 1.10h

f77 Mips Computer Systems 1.10

B.3. Pascal Compiler

Pascal Compiler Components

Compiler Component Version Number

/usr/lib/cpp Mips Computer Systems Release 1.10c

/usr/lib/upas Mips Computer Systems Release 1.10e

/usr/lib/ujoin Mips Computer Systems Release 1.10c

/usr/bin/uld Mips Computer Systems Release 1.10h

/usr/lib/usplit Mips Computer Systems Release 1.10c

/usr/lib/umerge Mips Computer Systems Release 1.10b

ldopen.c 1.3 2/16/83

ldclose.c 1.3 2/16/83

vldldptr.c 1.1 1/8/82

allocldptr.c 1.2 2/16/83

freeldptr.c 1.1 1/7/82

/usr/lib/uopt Mips Computer Systems Release 1.10e

/usr/lib/ugen Mips Computer Systems Release 1.10j

ldopen.c 1.3 2/16/83

200 CMU/SEI-87-TR-25

Pascal Compiler Components (contd.)

ldclose.c 1.3 2/16/83

vldldptr.c 1.1 1/8/82

allocldptr.c 1.2 2/16/83

freeldptr.c 1.1 1/7/82

/usr/lib/as0 Mips Computer Systems Release 1.10f

/usr/lib/as1 Mips Computer Systems Release 1.10f

/usr/lib/crt0.o unknown

/usr/lib/libc.a unknown

/usr/lib/libp.a Mips Computer Systems Release 1.10d

/usr/lib/libm.a Mips Computer Systems Release 1.10b

pow.c 4.5 (Berkeley) 8/21/85

support.c 1.1 (Berkeley) 5/23/85

cbrt.c 1.1 (Berkeley) 5/23/85

cabs.c 1.2 (Berkeley) 8/21/85

log__L.c 1.2 (Berkeley) 8/21/85

log1p.c 1.3 (Berkeley) 8/21/85

exp__E.c 1.2 (Berkeley) 8/21/85

expm1.c 1.2 (Berkeley) 8/21/85

asinh.c 1.2 (Berkeley) 8/21/85

acosh.c 1.2 (Berkeley) 8/21/85

atanh.c 1.2 (Berkeley) 8/21/85

/usr/bin/ld Mips Computer Systems Release 1.10h

pc Mips Computer Systems 1.10

CMU/SEI-87-TR-29 201

Appendix C: Conformance with CORE Instruction Set
Architecture

The key evidence that the MIPS machine conforms to CORE ISA [CORE 87] is the existence of a
translator from the CORE assembler code to the Mips high-level assembler. However, the close-
ness with which the MIPS M/500 conforms can be established only by a feature analysis, which is
given in this appendix. In all cases, MIPS refers to the true instruction set of the MIPS M/500
machine, not to the high-level assembler. The latter is superficially closer to CORE, but we think it
appropriate to measure conformance in terms of what the machine actually executes.

C.1. Registers

The CORE ISA allows the machine registers to be represented in two ways: by absolute names and
by logical resource names.

C.1.1. Absolute Registers
The CORE [Section 2.2.1] requires at least 16 integer registers (0..15) and 4 double-precision
floating-point registers (f0..f3). The MIPS M/500 provides 27 free integer registers and 32
floating-point (or 16 double-precision floating-point) registers, and so conforms.

C.1.2. Logical Registers
The CORE [Figure 2-3] defines sets of logical registers with specific functions. The MIPS assembler
conventions define a very similar set, as shown in the following table:

CORE Mips Comment
.sp sp stack pointer
.fp fp frame pointer
.lr ra procedure return link
.fr v0..v1 function result
.gX v0..v1 expression evaluation
.aX a0..a3 argument transmission
.tX t0..t7 temporaries
.sX s0..s7 locals (saved across calls)
.gp gp global pointer
.fX f0..f31 floating-point registers
.z r0 zero register

In all cases, the MIPS provides at least the minimum required number of each resource type.

C.2. Data Types

The CORE [Section 2.1] specifies byte, halfword, and word integer types, and single- and double-
precision floating types. The MIPS M/500 provides all these, and in addition has unsigned byte and
halfword types.

The CORE [Section 2.1] requires natural alignment62 for all data types. MIPS recommends observ-
ing this requirement, but in fact permits double-word values to be aligned on word boundaries.

62Natural alignment means the address of any variable of that type must be an exact multiple of the size of the type.

202 CMU/SEI-87-TR-25

C.2.1. Integer Operations
The CORE [Section 2.2] requires both overflowing and non-overflowing operations. The MIPS M/500
provides both, except that overflow on division is implemented by a software check. This is a
permissible deviation.

The CORE [Section 3.1] requires the following integer operations:
abs add div mod mul neg rem sub

The MIPS M/500 provides them in the following manner:

• abs is implemented by a conditional branch around a negate.

• div and rem are implemented as one operation yielding both quotient and remainder.

• neg is implemented by subtraction from zero.

• The other instructions are implemented as given in CORE.

C.2.2. Logical Operations
The CORE [Section 3.1.1] requires the following logical operations:

and not or xor

On the MIPS M/500, not is implemented by nor with zero, with the other instructions as in the CORE
specification.

C.2.3. Shift Operations
The CORE [Section 3.2] defines the following shift operations:

• sll (shift left logical)

• srl (shift right logical)

• sra (shift right arithmetic)

• rol (rotate left)

• ror (rotate right)

for single-word operands. The MIPS M/500 implements sll, srl, and sra directly. It expands the
rotate instructions into three-instruction sequences, which is not unreasonable given that no common
high-level language can generate rotates. The CORE [Section 3.2.2] also requires the same opera-
tions with double-word operands. The MIPS assembler does not provide these operations; they must
be constructed out of the single-word forms.

C.3. Load and Store Operations

The CORE [Section 3.3] defines load, store, and load address instructions. The MIPS M/500
provides all these, and in addition two load immediate instructions (lui and li), which together
allow constants of up to 32 bits to be loaded from the instruction stream. The other operand of all
load and store instructions is a register in both CORE and the MIPS M/500.

CMU/SEI-87-TR-29 203

C.3.1. Addressing Modes
The CORE [Section 3.3.1] requires all addressing modes of the following form:

relocatable + absolute (register)

with all three components optional. MIPS provides exactly these modes, but requires the relocated
offset to be representable as a signed 16-bit quantity. Many static addresses must therefore be
constructed by first loading the upper 16 bits into a temporary register; the defects of this process are
discussed in Chapter 7.

The CORE [Section 3.1.1] also requires a register-to-register move, which is provided by the MIPS

M/500 move, mov.s, and mov.d instructions.

C.4. Control Transfers

C.4.1. Branch and Jump Instructions
The CORE [Section 3.4.1] requires an unconditional branch and the full set of conditional branches.
The MIPS M/500 does not provide this. Instead, it uses a combination of the "set" instructions and
the branch on zero/non-zero to construct all possible branch idioms. Defects of this process are
shown in Appendix A.

The CORE says nothing about the possible range of a branch. The MIPS M/500 provides a signed
16-bit word offset, which should be enough for all but the traditional "pathological cases."

The CORE [Section 3.4.2] also requires a general jump instruction to a destination whose value is
held in a register. The MIPS M/500 provides exactly this instruction.

C.4.2. Call Instruction
The CORE [Section 3.4.3] requires a call instruction of the following form:

cal target, link

where the target can be a label or the contents of a register, and the link can be a register or a based
address.

The MIPS M/500 provides three instructions, bal, jal, and jalr, according to whether the target is
a label, a general address, or a value in a register. In all cases, the return link is stored into ra.
However, the next instruction after the call is executed immediately, so that instruction should store
the link if necessary. The MIPS M/500 also provides a conditional call instruction, bgezal.

C.4.3. Trap Instruction
The CORE [Section 3.4.4] requires a trap instruction that transfers control synchronously to an ex-
ception handler with a status code in the range 0..255. The MIPS M/500 provides a break instruction
with equivalent functionality.

204 CMU/SEI-87-TR-25

C.5. Floating-Point Instructions

The CORE [Section 3.5] defines a set of floating-point instructions. The MIPS M/500 defines a set of
general co-processor instructions, which in the special case of a floating-point co-processor become
floating-point instructions.

C.5.1. Floating-Point Load and Store
The CORE [Section 3.5.1] defines load-and-store operations for both floating data types operating
between a general address and a floating register.

MIPS defines all these operations at the higher level. However, the double-precision load and store
expand into two single-precision loads and stores. This can create further problems with addres-
sability, as discussed in Section 7.1.

The CORE [Section 3.5.1] also defines loads and stores that perform various conversions and
roundings. The MIPS M/500 provides all the required conversions, but only with register operands;
these CORE instructions therefore expand into a load and a conversion, or a conversion and a store.
This is a reasonable simplification (and probably improves instruction timing predictability).

C.5.2. Floating Operations
The CORE [Section 3.5.2] requires the full following IEEE set of operations:

add sub mul div abs sqrt

for both single and double precision operands. Mips provides the following:
add sub mul div abs neg

It does not provide sqrt, which must be implemented by a routine call. This is an understandable
simplification, but regrettable.

The CORE [Section 3.5] requires only round to nearest to be provided. The MIPS M/500 provides all
the IEEE rounding modes.

C.5.3. Floating Comparisons
The CORE [Section 3.5.3] requires the usual six conditional branches with floating or double
operands. The MIPS M/500 implements them all, and in addition provides detailed control of the
action to be taken if the operands are unordered. This is a most useful extension.

C.5.4. Floating Exceptions
The CORE [Section 3.5.4] requires that the following exceptions be recognized:

• division by zero

• invalid operation

• overflow

• underflow

The MIPS M/500 recognizes and handles all of them. It also recognizes, and can trap on, invalid
operands, unordered comparisons, and all the interesting errors associated with infinity.

CMU/SEI-87-TR-29 205

Overall, the MIPS floating-point co-processor provides a creditable implementation of the IEEE stan-
dard, which is both more than CORE requires and thoroughly commendable.

C.6. Assembler Directives

The CORE [Appendix I] defines a set of assembler directives that a conforming translator should
support. MIPS provides most of these, though with a UNIX bias.

C.6.1. Segments
The CORE [Section I.2] requires the assembler to support named segments, of any of the types
(instruction, data, common) with any of the attributes (read_only, absolute, relocatable,
based_global).

MIPS supports an extended set of UNIX segments:

• .text – instruction, read_only, relocatable

• .rdata – data, read_only, relocatable

• .sdata – data, relocatable, based_global

• .data – data, relocatable

• .sbss – common, relocatable, based_global

• .bss – common, relocatable

Named common segments are generated by the .lcomm directive and allocated to the .bss or
.sbss regions depending on the size of the segment.

This is clearly an evolution of the UNIX view of segmentation and is understandable for an assembler
intended exclusively for UNIX-based code. However, it is inadequate for code running under other
regimes. In particular, the inability to define several based global areas, or to access read-only data
through a base pointer, is a serious handicap, as has been discussed in Sections 6.2.3 and 7.6.

C.6.2. Data Directives
The CORE [Section I.5] requires the usual set of directives for generating initialized and uninitialized
static data space. Mips provides all of them, as:

CORE Mips Comment
.align .align align next datum
.ascii .ascii ascii string

.asciz zero-terminated ascii string
.block .space reserve uninitialized space
.byte .byte byte data
.double .double double precision data
.float .float single precision data
.half .half halfword data
.word .word word data

Mips also conforms exactly to the syntax of each directive.

206 CMU/SEI-87-TR-25

C.7. Local Conclusions

The MIPS M/500 instruction set architecture conforms very closely to the CORE ISA standard. The
few deviations are small and can be handled by simple macro substitution or peephole translation.
Most of them are justified by the additional simplicity they bring (and hence, one presumes, by cost
or performance advantages).

The high-level MIPS assembler is even closer to CORE and can take on most of the burden of
handling the deviations. The minor problems inherent in this approach have been discussed else-
where, and they do not bear on the issue of conformance.

The MIPS assembler directives are very close to those required by CORE, except for restrictions on
program segmentation that follow from a UNIX bias. We have argued elsewhere that these restric-
tions are undesirable.

Overall, the MIPS system is a reasonable and accurate realization of the CORE ISA.

CMU/SEI-87-TR-29 i

Table of Contents

1. Introduction 1

2. Evaluation Methodology 3
2.1. Compliance with DoD CORE MIPS ISA 3
2.2. Benchmark Performance 4
2.3. Compiler Performance 4
2.4. Applicability 5

3. Analysis of MIPS Assembler Reorganizer 7
3.1. Assembly Reorganization 7
3.2. Translation of MIPS Assembly Instructions 8

3.2.1. Interesting Effects of Multiplication 9
3.2.2. Retargeting of Branch Instructions 11

3.3. Local Conclusions 13

4. Analysis of Benchmarks 15
4.1. Ackermann’s Function 17

4.1.1. Method of Analysis 17
4.1.2. Analysis of C and Pascal 18
4.1.3. Analysis of BCPL 22
4.1.4. Results of Hand Coding in MIPS Assembly Language 23
4.1.5. Comparison 25
4.1.6. Local Conclusions 25

4.2. Dhrystone Benchmark 27
4.2.1. Method of Analysis 28
4.2.2. Results 28
4.2.3. Local Conclusions 29

4.3. The Eight Queens Problem 29
4.3.1. Influence of Assembler Reorganizer 33
4.3.2. Local Conclusions 34

5. Hardware Effects on Program Performance 35
5.1. Routine Call Overhead 35
5.2. Reorganizer Effects on Parameter Passing 37
5.3. Effects of Instruction Caching 39

6. Instruction Set Usage by the Compilers 43
6.1. Static Analysis of Compilers 43

6.1.1. MIPS C, FORTRAN, and Pascal Compilers 44
6.1.1.1. MIPS High-Level Instruction Use 44
6.1.1.2. MIPS M/500 Low Level Instruction Use 46

6.1.2. Berkeley C and FORTRAN Compilers 47
6.1.3. Comparison of Compiler Coverage 50

6.2. Assessment of BCPL/MIPS 51

ii CMU/SEI-87-TR-25

6.2.1. Performance Analysis 51
6.2.1.1. Code Size 52
6.2.1.2. Code Density 52
6.2.1.3. BCPL Execution Speed 53
6.2.1.4. Cgmips Execution Speed 53
6.2.1.5. Combined Execution Speed 53
6.2.1.6. Assembler Execution Speed 54

6.2.2. Instruction Reorganization on MIPS 55
6.2.3. Instruction Set Usage – MIPS 56
6.2.4. Register Usage – MIPS 60
6.2.5. Instruction Set Usage – VAX 61
6.2.6. Register Usage – VAX 66
6.2.7. Architectural Comparison 67

6.2.7.1. Move Versus Load/Store 67
6.2.7.2. Three-Address Idiom 68
6.2.7.3. Condition Codes and Branches 68
6.2.7.4. Index Mode 69

6.2.8. Local Conclusions 70
6.3. Dynamic Analysis of Compilers 70

6.3.1. Instruction Use by Integer Applications 70
6.3.1.1. Analysis of MIPS C Compiler 71
6.3.1.2. Comparison with VAX UNIX C Compiler 76

6.3.2. Instruction Use by Floating-Point Applications 80
6.3.2.1. Analysis of MIPS FORTRAN Compiler 80

6.3.3. Comparison with VAX UNIX FORTRAN Compiler 85
6.3.4. Local Conclusions 89

7. General Drawbacks of Assembler-only Code Reorganization 91
7.1. Alignment Problems in the Reorganizer 92
7.2. Problems with Aliasing 93
7.3. Delaying Calculations to Avoid No-Ops 95
7.4. Macro Expansion Defeating Peephole Optimization 96
7.5. Drawbacks of Reserving a Temporary Register for the Assembler 97
7.6. Shortcomings of Using a Single Global Pointer 98
7.7. Arithmetic Optimizations on Native Hardware 99

8. Validation of MIPS Pascal Compiler 103
8.1. Portability 103
8.2. Conformance 116
8.3. Bad Code 126
8.4. MIPS Extensions to Standard Pascal 131
8.5. Local Conclusions 132

9. Unexpected Program Behavior 135

CMU/SEI-87-TR-29 iii

10. Conclusions 137

Bibliography 139

Appendix A. Overview of MIPS Instruction Set Translation 143

Appendix B. Compiler and Assembler Version Information 197
B.1. C Compiler 197
B.2. Fortran-77 Compiler 198
B.3. Pascal Compiler 199

Appendix C. Conformance with CORE Instruction Set Architecture 201
C.1. Registers 201

C.1.1. Absolute Registers 201
C.1.2. Logical Registers 201

C.2. Data Types 201
C.2.1. Integer Operations 202
C.2.2. Logical Operations 202
C.2.3. Shift Operations 202

C.3. Load and Store Operations 202
C.3.1. Addressing Modes 203

C.4. Control Transfers 203
C.4.1. Branch and Jump Instructions 203
C.4.2. Call Instruction 203
C.4.3. Trap Instruction 203

C.5. Floating-Point Instructions 204
C.5.1. Floating-Point Load and Store 204
C.5.2. Floating Operations 204
C.5.3. Floating Comparisons 204
C.5.4. Floating Exceptions 204

C.6. Assembler Directives 205
C.6.1. Segments 205
C.6.2. Data Directives 205

C.7. Local Conclusions 206

iv CMU/SEI-87-TR-25

CMU/SEI-87-TR-29 v

List of Figures

Figure 3-1: Sample Assembler Input 7
Figure 3-2: Sample Machine Language Output 7
Figure 3-3: Sample Assembler Input 8
Figure 3-4: Sample Reorganizer Output 8
Figure 3-5: Sample Assembler Input 8
Figure 3-6: Machine Language Output 9
Figure 3-7: MIPS M/500 Code for Multiplication by 42 10
Figure 3-8: MIPS M/500 Code for Multiplication by 79 10
Figure 3-9: MIPS M/500 Code for Multiplication by 2730 10
Figure 3-10: Relative Multiplication Speeds 11

Figure 3-11: Example of Branch Target Relocation – Assembler Source 12

Figure 3-12: Example of Branch Target Relocation – MIPS M/500 Output 12
Figure 4-1: C Source Code for Ackermann’s Function 18
Figure 4-2: Pascal Source Code for Ackermann’s Function 18
Figure 4-3: Assembly Output from the C Compiler 19
Figure 4-4: MIPS M/500 Native Machine Code for Ackermann’s Function 19
Figure 4-5: MIPS M/500 Machine Language Output from Figure 4-2 21
Figure 4-6: BCPL Source for Ackermann’s Function 22
Figure 4-7: Assembly Language Output from BCPL Compiler 23
Figure 4-8: Machine Language Output from Figure 4-7 24
Figure 4-9: Hand Optimized Version of Ackermann’s Function 24
Figure 4-10: Machine Language Output for Figure 4-9 25
Figure 4-11: Dhrystone Benchmark Performance 29
Figure 4-12: Source Code to 20 Queens Problem 30
Figure 4-13: Runtime of 20 Queens Placement at Differing Optimization Levels 31
Figure 4-14: Direct Examination of Diagonals 32
Figure 4-15: Hoisted Routine Examination of Diagonals 32
Figure 4-16: Hand Optimized Hoisted Routine Examination of Diagonals 33
Figure 4-17: Machine Language Output for Hand Optimized Code in Figure 33

4-16
Figure 4-18: Further Modification of Hoisted Code 34
Figure 4-19: Machine Language Output of Further Optimization in Figure 4-18 34
Figure 5-1: Routine Overhead for Local Integer Parameters 37
Figure 5-2: Routine Overhead for Global Integer Parameters 38
Figure 5-3: Distribution of Execution Times for Similar Programs 40
Figure 5-4: Variance of Execution Times of Similar Programs 41
Figure 6-1: Extra Instructions - Pattern of Use 55
Figure 6-2: BCPL / MIPS M/500 Instruction Mix 57

Figure 6-3: Instruction Distribution – Integer Applications 73

vi CMU/SEI-87-TR-25

Figure 6-4: Instruction Distribution – Integer Applications (Minus nops) 73

Figure 6-5: Operand Type – Integer Applications on VAX 77

Figure 6-6: Addressing Mode Usage – Integer Applications on VAX 79

Figure 6-7: Instruction Distribution – Floating-Point Application 82

Figure 6-8: Instruction Distribution – Floating-Point Applications (Minus nops) 82
Figure 7-1: Alignment Problem - Assembler Source Code 93
Figure 7-2: Alignment Problem - MIPS M/500 Code 93
Figure 7-3: Aliasing Problem - Assembly Source 94
Figure 7-4: Aliasing Problem - MIPS M/500 Code 94
Figure 7-5: Aliasing Problem Corrected 94
Figure 7-6: Example of Assembly Rearrangement - C Source 95
Figure 7-7: Example of Assembly Rearrangement - Assembly Output 95
Figure 7-8: Example of Assembly Rearrangement - MIPS M/500 Code 96
Figure 7-9: Example of Assembly Rearrangement - Optimized MIPS M/500 96

Code
Figure 7-10: Assembler Reorganizer Defeating Optimization - Assembler 97

Source
Figure 7-11: Assembler Reorganizer Defeating Optimization - MIPS M/500 Code 97
Figure 7-12: Temporary Register Problem - High Level Source 97
Figure 7-13: Temporary Register Problem - Assembly Code 98
Figure 7-14: Temporary Register Problem - MIPS M/500 Code 98
Figure 7-15: Optimistic Approach to Multiplication - C Source 99
Figure 7-16: Optimistic Approach to Multiplication - Assembler Source 100
Figure 7-17: Optimistic Approach to Multiplication - MIPS M/500 Code 100
Figure 7-18: A Better Approach to Multiplication - Assembler Source 100
Figure 7-19: A Better Approach to Multiplication - MIPS M/500 Code 101
Figure 9-1: Assembly Code that Triggers gp-Relative Bug 135
Figure 9-2: MIPS M/500 Code from Figure 9-1 135

CMU/SEI-87-TR-29 vii

List of Tables

Table 4-1: C Compiler Efficiency Measures Using Ackermann’s Function 20
Table 4-2: Pascal Compiler Efficiency Measures Using Ackermann’s Function 20
Table 4-3: Summary of Statistics For Ackermann’s Function 25
Table 4-4: Dhrystone Numbers for MIPS and VAX 28
Table 6-1: Results of cgmips Compiled on the VAX 52
Table 6-2: Results of cgmips Compiled on the MIPS 52
Table 6-3: Code Expansion MIPS / VAX 52

Table 6-4: Instruction Counts – MIPS 56

Table 6-5: Address Mode Usage – MIPS 58

Table 6-6: Offset and Constant Sizes – MIPS 59

Table 6-7: Register Usage – MIPS 61

Table 6-8: Instruction Usage – VAX 62

Table 6-9: Address Mode Usage – VAX 64

Table 6-10: Offset and Constant Sizes – VAX 65

Table 6-11: Register Usage – VAX 66
Table 6-12: Three Address Mode Usage 68

Table 6-13: Integer Application Instruction Usage – MIPS 72

Table 6-14: Address Mode Usage – Integer Applications on MIPS 74

Table 6-15: Register Usage – Integer Applications on MIPS 75

Table 6-16: Integer Application Instruction Usage – VAX 76

Table 6-17: Address Mode Usage – Integer Applications on VAX 78

Table 6-18: Register Usage – Integer Applications on VAX 79

Table 6-19: Floating-Point Application Instruction Usage – MIPS 81

Table 6-20: Address Mode Usage – Floating-Point Application on MIPS 83

Table 6-21: Register Usage – Floating-Point Application on MIPS 84

Table 6-22: Floating-Point Application Instruction Usage – VAX 86

Table 6-23: Address Mode Usage – Floating-Point Application on VAX 87

Table 6-24: Register Usage – Floating-Point Application on VAX 88
Table A-1: MIPS M/500 High- and Low-Level Equivalent Register Names 143
Table A-2: Alphabetic Cross Reference of MIPS Assembler Instructions 195
Table A-3: Actual MIPS M/500 Instruction Set 196
Table A-4: MIPS M/500 Floating-Point Co-Processor Instruction Set 196

