Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

H.-J. Lehmler ${ }^{\text {a* }}$ and S. Parkin ${ }^{\text {b }}$
${ }^{\text {a }}$ The University of lowa, Department of Occupational and Environmental Health, 100 Oakdale Campus, 124 IREH, lowa City, IA 52242-5000, USA, and ${ }^{\text {b }}$ University of Kentucky, Department of Chemistry, Lexington, KY 405060055, USA

Correspondence e-mail:
hans-joachim-lehmler@uiowa.edu

Key indicators

Single-crystal X-ray study
$T=90 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.022$
$w R$ factor $=0.048$
Data-to-parameter ratio $=16.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

3,3',5,5'-Tetrabromo-4,4'-dihydroxybiphenyl

The dihedral angle between the benzene rings in the title compound, $\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{Cl}_{6} \mathrm{O}$, is $49.06(8)^{\circ}$. The molecule has crystallographic twofold rotation symmetry.

Comment

Brominated flame retardants (BFRs), which are used in a wide range of electrical and electronic equipment, are regarded as some of the most highly effective flame retardants used in the plastics industry today (Tange \& Drohmann, 2005). Environmental studies have detected BFRs, such as polybrominated diphenylethers (PBDEs) or hexabromocyclododecane (HBCD), in a wide range of environmental matrixes and in human blood and tissue samples, thus raising human health concerns (Birnbaum \& Staskal, 2004; de Boer, 2004; Domingo, 2004). To reduce the environmental risk associated with conventional BFRs, there is an interest in reactive BFRs, which are incorporated into the polymer, thus reducing their potential to leach out of the plastic and enter the environment (Borms \& Georlette, 2004). The title compound, (I), is one example of such a reactive BFR.

(I)

The toxicity of (I) has been poorly investigated. Similar to other biphenyls of environmental relevance, such as polybrominated and polychlorinated biphenyls, the three-dimensional structure of the title compound will be one important determinant of its mechanisms of toxicity (Kania-Korwel et al., 2004; Lehmler, Parkin \& Robertson, 2002; Lehmler, Parkin \& Robertson, 2001; Lehmler, Robertson \& Parkin, 2001; Lehmler, Robertson et al., 2002; McKinney \& Singh, 1988). In particular, binding to molecular target sites will be determined by the dihedral angle between the two benzene rings. The crystal structure of (I) presented here provides an accurate depiction of its three-dimensional structure, thus adding to our understanding of its interactions with potential target sites in biological systems.

The molecule of (I) has crystallographic twofold rotation symmetry in the solid state. The dihedral angle between the benzene rings is $49.06(8)^{\circ}$, which is surprisingly large compared with the calculated value of 38° in an aqueous solution [calculated with MM2 using GB/SA water solvent

Received 25 July 2005
Accepted 1 August 2005
Online 6 August 2005

Figure 1
View of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. Unlabeled atoms are at the symmetry position $(2-x,-y,-z)$.
continuum as implemented by MACROMODEL 5.0 (Still et al., 1990)]. This is in contrast with other non-ortho-substituted brominated biphenyls, which typically display dihedral angles near or below the calculated angle in solution. For example, the two independent molecules in 4-bromobiphenyl have dihedral angles of 20.4 and 17.8° (Brock, 1980), whereas the two independent molecules in 4,4'-dibromobiphenyl have dihedral angles of 38 and 42° (Kronebusch et al., 1976). The chloro analog of (I), 3, $3^{\prime}, 5,5^{\prime}$-tetrachloro-4,4'-dihydroxybiphenyl, is even planar in the crystalline form (McKinney \& Singh, 1988). This tendency of non-ortho-substituted biphenyl derivatives to adopt a more planar conformation in the crystal structure is due to stabilizing intermolecular interactions resulting from a stacking arrangement of the benzene rings (McKinney \& Singh, 1988).

Molecules of the title compound form stacks along the b axis (Fig. 2). Within these stacks, the distance between the planes (defined by the C atoms in the benzene rings) is 3.526 (3) \AA. This value is close to the distance of $3.49-3.54 \AA$ between $3,3^{\prime}, 5,5^{\prime}$-tetrachloro-4,4'-dihydroxybiphenyl molecules (McKinney \& Singh, 1988) and of 3.54 A between the planes in layered aromatic hydrocarbons (Czikkely et al., 1970), thus suggesting the presence of π interactions between $3,3^{\prime}, 5,5^{\prime}$-tetrabromo-4,4'-dihydroxybiphenyl molecules. Despite these intermolecular interactions, (I) does not adopt a planar conformation in the crystalline form. This observation suggests that, in comparison with related compounds such as 3,3',5,5'-tetrachloro-4,4'-dihydroxybiphenyl, (I) may interact differently with molecular targets sites and, thus, may have different mechanism(s) of toxicity.

Experimental

The title compound was synthesized by bromination of $4,4^{\prime}$-dihydroxybiphenyl (5 g) with a slight excess of bromine in warm glacial acetic acid $(150 \mathrm{ml})$. The reaction mixture was allowed to cool to ambient temperature and the crude product was filtered off. Colorless crystals were obtained upon crystallization from ethanol at 277 K .

Figure 2
The crystal packing of (I), viewed approximately down the b axis, illustrating the stacking of the molecules along the b axis. H atoms have been omitted.

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{6} \mathrm{Br}_{4} \mathrm{O}_{2}$
$M_{r}=501.77$
Monoclinic, C2
$a=23.4583$ (9) £
$b=3.8928$ (2) \AA
$c=7.5495$ (3) \AA
$\beta=108.376$ (2) ${ }^{\circ}$
$V=654.26(5) \AA^{3}$
$Z=2$

Data collection

Nonius KappaCCD diffractometer
ω scans at fixed $\chi=90^{\circ}$
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
$T_{\text {min }}=0.183, T_{\text {max }}=0.541$
3668 measured reflections
1403 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.048$
$S=1.07$
1403 reflections
84 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0142 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$D_{x}=2.547 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3354 reflections
$\theta=1.0-27.5^{\circ}$
$\mu=12.29 \mathrm{~mm}^{-1}$
$T=90.0$ (2) K
Flattened rod, colorless
$0.38 \times 0.15 \times 0.05 \mathrm{~mm}$

1341 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.037$
$\theta_{\text {max }}=27.4^{\circ}$
$h=-27 \rightarrow 30$
$k=-5 \rightarrow 4$
$l=-9 \rightarrow 9$
$(\Delta / \sigma)_{\max }=0.005$
$\Delta \rho_{\max }=0.55 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.56 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0014 (4)
Absolute structure: Flack (1983),
with 554 Friedel pairs
Flack parameter: 0.055 (17)

organic papers

H atoms were found in difference Fourier maps and subsequently refined using a riding model, in which the H -atom coordinates were either determined geometrically $\left(\mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right)$ or placed in the maximum electron density calculated in a toroid beyond the parent atom ($\mathrm{O}-$ H). Bond distances for H were fixed at $\mathrm{C}_{\mathrm{ar}}-\mathrm{H}=0.95 \AA$ and $\mathrm{O}-\mathrm{H}=$ $0.84 \AA$, while $U_{\text {iso }}(\mathrm{H})$ values were defined as either $1.2 U_{\text {eq }}$ or $1.5 U_{\text {eq }}$ of the atom to which they were connected, respectively.

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: $D E N Z O-S M N$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1994); software used to prepare material for publication: SHELX97-2 (Sheldrick, 1997) and local procedures.

This research was supported by grant No. ES012475 from the National Institute of Environmental Health Sciences, NIH.

References

Birnbaum, L. S. \& Staskal, D. F. (2004). Environ. Health Perspect. 112, 9-17. Boer, J. de (2004). Environ. Chem. 1, 81-85.
Borms, R. \& Georlette, P. (2004). Kunstst.-Plast. Eur. 94, 256-260.

Brock, C. P. (1980). Acta Cryst. B36, 968-971.
Czikkely, V., Foersterling, H. D. \& Kuhn, H. (1970). Chem. Phys. Lett. 6, 207210.

Domingo, J. L. (2004). J. Chromatogr. A, 1054, 321-326.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Kania-Korwel, I., Parkin, S., Robertson, L. W. \& Lehmler, H.-J. (2004). Acta Cryst. E60, o1652-o1653.
Kronebusch, P., Gleason, W. B. \& Britton, D. (1976). Cryst. Struct. Commun. 5, 839-842.
Lehmler, H.-J., Parkin, S. \& Robertson, L. W. (2001). Acta Cryst. E57, o1110112.

Lehmler, H.-J., Parkin, S. \& Robertson, L. W. (2002). Chemosphere, 46, 485488.

Lehmler, H.-J., Robertson, L. W. \& Parkin, S. (2001). Acta Cryst. E57, o5900591.

Lehmler, H.-J., Robertson, L. W., Parkin, S. \& Brock, C. P. (2002). Acta Cryst. B58, 140-147
McKinney, J. D. \& Singh, P. (1988). Acta Cryst. C44, 558-562.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1994). SHELXT/PC. Version 5. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SADABS, SHELXL97, SHELXS97 and SHELX97-2. University of Göttingen, Germany.
Still, W. C., Tempczyk, A., Hawley, R. C. \& Hendrickson, T. (1990). J. Am. Chem. Soc. 112, 6127-6129.
Tange, L. \& Drohmann, D. (2005). Polym. Degrad. Stab. 88, 35-40.

supporting information

Acta Cryst. (2005). E61, o2828-o2830 [https://doi.org/10.1107/S160053680502458X]
3,3',5,5'-Tetrabromo-4,4'-dihydroxybiphenyl

H.-J. Lehmler and S. Parkin

3,3',5,5'-Tetrabromo-4,4'-dihydroxybiphenyl

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{6} \mathrm{Br}_{4} \mathrm{O}_{2}$
$M_{r}=501.77$
Monoclinic, C2
Hall symbol: C 2 y
$a=23.4583$ (9) \AA
$b=3.8928$ (2) \AA
$c=7.5495$ (3) \AA
$\beta=108.376(2)^{\circ}$
$V=654.26(5) \AA^{3}$
$Z=2$

Data collection

Nonius KappaCCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 18 pixels mm^{-1}
ω scans at fixed $\chi=90^{\circ}$
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
$T_{\text {min }}=0.183, T_{\text {max }}=0.541$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.048$
$S=1.07$
1403 reflections
84 parameters
1 restraint
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
$F(000)=468$
$D_{\mathrm{x}}=2.547 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3354 reflections
$\theta=1.0-27.5^{\circ}$
$\mu=12.29 \mathrm{~mm}^{-1}$
$T=90 \mathrm{~K}$
Flattened rod, colourless
$0.38 \times 0.15 \times 0.05 \mathrm{~mm}$

3668 measured reflections
1403 independent reflections
1341 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.037$
$\theta_{\text {max }}=27.4^{\circ}, \theta_{\text {min }}=1.8^{\circ}$
$h=-27 \rightarrow 30$
$k=-5 \rightarrow 4$
$l=-9 \rightarrow 9$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0142 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.005$
$\Delta \rho_{\text {max }}=0.55 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.56$ e \AA^{-3}
Extinction correction: SHELXL97,

$$
\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}
$$

Extinction coefficient: 0.0014 (4)
Absolute structure: Flack (1983), with 554
Freidel pairs
Absolute structure parameter: 0.055 (17)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
O1	$0.79585(10)$	$0.0368(7)$	$0.0480(3)$	$0.0136(6)$
H1	0.7755	-0.1217	-0.0177	0.020^{*}
Br1	$0.800271(14)$	$-0.27253(8)$	$-0.32434(4)$	$0.01155(11)$
Br2	$0.882855(15)$	$0.35008(11)$	$0.38611(4)$	$0.01348(11)$
C1	$0.96912(15)$	$0.0543(9)$	$0.0062(5)$	$0.0120(8)$
C2	$0.92158(15)$	$-0.0757(8)$	$-0.1405(5)$	$0.0105(8)$
H2	0.9287	-0.1587	-0.2500	0.013^{*}
C3	$0.86460(15)$	$-0.0841(9)$	$-0.1271(4)$	$0.0095(8)$
C4	$0.85181(14)$	$0.0389(9)$	$0.0304(5)$	$0.0089(7)$
C5	$0.89905(15)$	$0.1718(9)$	$0.1743(4)$	$0.0113(8)$
C6	$0.95698(14)$	$0.1774(9)$	$0.1646(4)$	$0.0101(8)$
H6	0.9888	0.2656	0.2663	0.012^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0103(12)$	$0.0165(16)$	$0.0151(13)$	$-0.0001(11)$	$0.0053(10)$	$-0.0023(11)$
Br1	$0.00859(17)$	$0.01384(18)$	$0.01063(17)$	$-0.00060(15)$	$0.00076(12)$	$-0.00128(15)$
Br2	$0.01527(19)$	$0.01576(19)$	$0.01113(18)$	$-0.00011(14)$	$0.00664(14)$	$-0.00244(14)$
C1	$0.0123(17)$	$0.0126(18)$	$0.019(18)$	$-0.0016(15)$	$0.0048(14)$	$0.0022(15)$
C2	$0.0129(17)$	$0.011(2)$	$0.0065(16)$	$-0.0008(14)$	$0.0020(14)$	$-0.0013(14)$
C3	$0.0095(16)$	$0.008(2)$	$0.0077(16)$	$0.0019(14)$	$-0.0016(13)$	$0.0005(13)$
C4	$0.0055(16)$	$0.0096(19)$	$0.0129(16)$	$0.0023(14)$	$0.0048(13)$	$0.0037(13)$
C5	$0.0161(17)$	$0.012(2)$	$0.0067(15)$	$-0.0002(15)$	$0.0048(13)$	$0.0000(14)$
C6	$0.0082(16)$	$0.009(2)$	$0.0130(17)$	$-0.0008(14)$	$0.0039(13)$	$-0.0005(15)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{O} 1-\mathrm{C} 4$	$1.361(4)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.372(5)$
$\mathrm{O} 1-\mathrm{H} 1$	0.8400	$\mathrm{C} 2-\mathrm{H} 2$	0.9500
$\mathrm{Br} 1-\mathrm{C} 3$	$1.902(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.399(5)$
$\mathrm{Br} 2-\mathrm{C} 5$	$1.888(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.385(5)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.395(5)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.384(4)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.398(4)$	$\mathrm{C} 6-\mathrm{H} 6$	0.9500
$\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	$1.481(7)$		

$\mathrm{C} 4-\mathrm{O} 1-\mathrm{H} 1$	109.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$118.4(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	$120.2(4)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	$121.4(4)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$120.3(3)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.9
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.9
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$121.9(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{Br} 1$	$120.2(2)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{Br} 1$	$117.9(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.6(5)$
$\mathrm{C} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$178.3(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$0.8(5)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{Br} 1$	$-178.3(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 1$	$179.6(3)$
$\mathrm{Br} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 1$	$-1.4(5)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.1(5)$
$\mathrm{Br} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$179.2(3)$

$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5$	$118.9(3)$
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 3$	$123.6(3)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$117.5(3)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$121.4(3)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{Br} 2$	$120.1(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{Br} 2$	$118.5(3)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$120.5(3)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	119.7
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{H} 6$	119.7
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$179.4(3)$
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{Br} 2$	$-1.2(5)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{Br} 2$	$178.5(5)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$1.3(5)$
$\mathrm{Br} 2-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$-178.3(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-0.4(5)$
$\mathrm{C} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-179.3(3)$

[^0]
[^0]: Symmetry code: (i) $-x+2, y,-z$.

