
a study of
eXtensible Markup Language

(XML)
Author: Pontus Norman d94-pno@nada.kth.se

Date: 25 February 1999

2

Abstract
The attention paid by the Internet community to Extensible Markup Language (XML) is impressive. XML
has been heralded as the next important Internet technology, the next step following the HyperText Markup
Language (HTML), and the natural and worthy companion to the Java programming language.

HTML defines a single, fixed type of document with markups that let you describe a common class of
simple office-style reports. As Web documents have become larger and more complex, Web content
providers have begun to experience the limitations of a medium that does not provide the extensibility,
structure, and data checking needed for large-scale commercial applications. The ability of Java applets to
embed powerful data manipulation capabilities in Web clients makes even clearer the limitations of current
methods for the transmittal of document data.

XML takes document markup to the next level, offering a human-readable, self-explaining, well-structured,
extendable and consistent way to describe and transfer data. XML promises to be as big a revolution to the
Web as HTML was.

This paper describes the XML effort, makes a survey of most of the associated specifications and discusses
new kinds of Java-based Web applications made possible by XML. The paper also discusses the impact
that XML will have on some of the existing technologies, like Electronic Data Interchange (EDI) and the
exchange of industrial data (STEP). The end of this paper describes in detail one of the first efforts made to
use XML in an industrial application.

3

Table of Contents
A STUDY OF EXTENSIBLE MARKUP LANGUAGE (XML)

ABSTRACT... 2
TABLE OF CONTENTS .. 3
ABOUT THIS DOCUMENT.. 6
INTRODUCTION.. 7

PART 1: INTRODUCTION TO XML... 8

1.1 WHERE HAS XML COME FROM? ... 8
1.1.1 World Wide Web Consortium (W3C)... 8
1.1.2 XML Background... 8

1.2 WHY XML? .. 8
1.3 BASIC XML .. 10

Example: Car register in HTML ..10
Example: Car register in XML...10

1.3.1 Elements .. 11
1.3.1.1 Attributes..11

Example: An element with attributes ...12
1.3.1.2 Elements versus Attributes ...12

1.3.2 Entities... 12
Examples: Internal entities...12
Examples: External entities..13

1.3.3 Document Type Declaration (DTD) .. 14
Example: A DTD ...14

1.3.3.1 Valid or Well-Structured? ..14
Example: A well-structured XML document ...14
Example: A valid and well-structured XML document. ..15

1.3.3.2 DTDs and Modularity...15
Example: Combining several DTDs into one document ..15

1.3.4 XML and Datatypes ... 15
More complex datatypes...16

Example: A binary tree in XML ..16
1.4 XML AND JAVA – FRIENDS OR ENEMIES? ... 17

PART 2: RELATED SPECIFICATIONS.. 19

2.1 W3C SPECIFICATIONS AND LEVELS .. 19
2.2 DOCUMENT OBJECT MODEL (DOM)... 19
2.3 STYLESHEET LANGUAGES ... 20
2.4 CASCADING STYLE SHEETS (CSS) .. 21

2.4.1 Cascading Style Sheets Level 2 (CSS2) ... 21
2.4.2 Viewing XML using CSS2 (An Example)... 21

2.4.2.1 Creating the CSS2 stylesheet..22
2.4.2.2 Associating the CSS stylesheet...22

2.5 EXTENSIBLE STYLESHEET LANGUAGE (XSL) ... 22
2.5.1 Origin .. 23
2.5.2 How does XSL work?... 23

2.5.2.1 Patterns ...24
2.5.2.2 Actions ...25
2.5.2.3 Flow Objects...25

Microsoft – XSL and CSS ... 25
2.6 EXTENSIBLE LINKING LANGUAGE (XLL).. 26

2.6.1 Origin .. 26
2.6.2 XLink ... 26

2.6.2.1 How does XLink work?..27
2.6.3 XPointer... 27

2.7 XML – NAMESPACES.. 28
2.7.1 Using Namespaces – XML Syntax ... 28

Example 1: ...28
Example 2: ...29
Example 3: ...29

4

Example 4: ...29
2.8 XML-DATA .. 30

Example: Using the dt:dt attribute...30
2.8.1 Current Support... 30

Data Type ..30
2.9 XML QUERY LANGUAGE (XML-QL)... 31

2.9.1 Using XML-QL .. 32
Example: An XML-QL query..32

2.10 SCHEMA FOR OBJECT-ORIENTED XML (SOX).. 32
2.10.1 Goals and Requirements.. 33
2.10.2 Features... 34

2.10.2.1 Base element types ...34
2.10.2.2 Datatypes ..34
2.10.2.3 Documentation ...34
2.10.2.4 Inheritance..34
2.10.2.5 Namespace support...34
2.10.2.6 XML syntax and validation ..34

2.10.3 SOX – A Detailed Example.. 35
Annotated Example..35

2.11 VECTOR MARKUP LANGUAGE (VML) .. 36
2.11.1 Requirements ... 37
2.11.2 Structure .. 37
2.11.3 Use of CSS ... 38
2.11.4 Future Support... 38

PART 3: USING XML... 39

3.1 A COMMON XML COMMUNICATION ARCHITECTURE... 39
3.1.1 Three-Tier Application Architecture ... 39

3.2 SUPPORT FOR XML (AND ASSOCIATED STANDARDS) .. 40
3.2.1 XML Parsers.. 41

Lightweight ..41
3.2.2 Future Support... 41

3.3 AN EXAMPLE OF XML AND XSL.. 43
3.4 XML AND ELECTRONIC TRANSACTIONS... 43

3.4.1 EDI .. 44
3.4.2 EDI using XML.. 44

3.4.2.1 EDI using XML – Example..45
Listing 1: Plain purchase order ..45
Listing 2: Fragment of ANSI X12 transaction set corresponding to Listing 1 ...46
Listing 3: XML document analog to the X12 transaction set in Listing 2..46

3.4.2.2 XML-EDI Tags ..47
3.4.2.3 Repositories..47

Example: An XML-EDI transaction using a global repository ..48
3.4.2.4 Current and future support..48

3.5 PRODUCT DATA... 49
3.5.1 STEP.. 49

3.5.1.1 EXPRESS...50
Example: Car data as EXPRESS code ...50
Example: Car data as an EXPRESS-G graphical representation..50

3.5.1.2 Data Models ...50
3.5.1.3 Implementation Forms..51

Example: A car data instance, stored using STEP Part 21 ...51
3.5.2 STEP or XML? .. 51

3.5.2.1 Conclusion..52
3.5.3 STEP and XML? .. 52
3.5.4 STEP or SOX? ... 52

PART 4: TRYING OUT XML.. 54

4.1 THE APPLICATION – PASTILL... 54
4.1.1 What should Pastill do?... 54

4.1.1.1 Functionality...54
4.1.1.2 Other requirements ...54

4.1.2 Design.. 55
4.1.2.1 Database ...55

5

4.1.2.2 Server ...56
4.1.2.3 Client ..56
4.1.2.4 Where does XML fit? ...56

4.1.3 How Pastill works - Flowcharts .. 57
4.1.3.1 The Client Requests Data ...57

4.1.3.1.1 Client Transaction ...57
4.1.3.1.2 Server Transaction ..58

4.1.3.2 The Client wants to store data ..59
4.1.3.2.1 Client Transaction ...59
4.1.3.2.2 Server Transaction ..60

4.1.4 At the Heart of Pastill – an XML Parser ... 61
4.1.5 Walkthrough of Pastill... 61

4.1.5.1 Layout ..61
4.1.5.2 Entering Pastill ...62
4.1.5.3 Retrieving Journals...63
4.1.5.4 Working with Journals ...63
4.1.5.5 Working with patient visits...64

4.1.6 Experiences learned by using XML in Pastill..64
4.1.6.1 Advantages of using XML ...64

4.1.6.1.1 Very easy communication...64
4.1.6.1.2 Bandwidth Usage ..64
4.1.6.1.3 No need to have a real-time connection with the Server ...65

4.1.6.2 Problems with using XML ...65
4.1.6.2.1 It’s hard to write a good structure ...65
4.1.6.2.3 Tags take up lots of space ...65
4.1.6.2.4 Too much string handling slows down the application ...66
4.1.2.6.5 Problems with the XML4J Parser - Bugs ..66

4.1.3 Pastill as a project... 66
4.1.3.1 Working in a team ..67
4.1.3.2 Time planning...67

4.1.4 Summary – Pastill.. 67
4.2 FUTURE WORK... 68

4.2.1 New Specifications pop-up all the time...68
4.2.2 Continued follow-up as Specifications evolve...68
4.2.3 Continued follow-up of software companies’ XML efforts...68
4.2.4 Continued follow-up of XML-EDI effort ..68
4.2.5 Continued follow-up of XML-STEP effort ...68
4.2.6 Trying out more Specifications ...68

4.3 SUMMARY ... 68

PART 5: ASSORTED INFORMATION.. 70

5.1 ABBREVIATIONS.. 70
5.2 BIBLIOGRAPHY.. 71

6

About this document
This thesis is a part of the requirements for my (Pontus Norman’s) Master of Science degree in Computer
Science at the Department of Teleinformatics, Royal Institute of Technology in Sweden. The work behind
this document was conducted at Decerno AB in Sweden.

Since the specifications that this document is based on are still subject to change, the statements made in
this document are only valid for the specification versions specified in the bibliography. I take no
responsibility about the correctness of this document as the specifications evolve.

I would like to take this opportunity to thank my supervisors at Decerno - Leif Pettersson and Wilhelm
Arnör, my fellow programmers in the Pastill project - Leif Pettersson (again) and Daniel Lekberg, as well
as my supervisor and examiner at the Royal Institute of Technology, Prof. Gerald Q. Maguire Jr, for their
help and support with this work.

In my thesis, excerpts from the following World Wide Web Consortium documents are included in
accordance with the W3C IPR Document Notice, http://www.w3.org/Consortium/Legal/copyright-
documents.html. Copyright © World Wide Web Consortium (Massachusetts Institute of Technology,
Institut National de Recherche en Informatique et en Automatique, Keio University). All Rights Reserved.

Extensible Markup Language (XML) Version 1.0, World Wide Web Consortium Recommendation 10-February-1998
http://www.w3.org/TR/1998/REC-XML-19980210

Cascading Style Sheets Level 1 (CSS1), World Wide Web Consortium Recommendation 17-December-1996
http://www.w3.org/TR/REC-CSS1

Cascading Style Sheets Level 2 (CSS2), World Wide Web Consortium Recommendation 12-May-1998
http://www.w3.org/TR/1998/REC-CSS2-19980512/

Namespaces in XML, World Wide Web Consortium Recommendation 14-January-1999
http://www.w3.org/TR/1999/REC-xml-names-19990114

Extensible Stylesheet Language (XSL) Version 1.0, World Wide Web Consortium Working Draft 18-August-1998
http://www.w3.org/TR/1998/WD-xsl-19980818

Extensible Linking Language (XLink), World Wide Web Consortium Working Draft 3-March-1998
http://www.w3.org/TR/1998/WD-xlink-19980303

XML Pointer Language (XPointer), World Wide Web Consortium Working Draft 3-March-1998
http://www.w3.org/TR/1998/WD-xptr-19980303

Document Object Model (DOM) Level 1 Specification Version 1.0, World Wide Web Consortium Recommendation
1-October-1998
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/

Schema for Object-oriented XML (SOX), World Wide Web Consortium Note 15-September-1998
http://www.w3.org/TR/1998/NOTE-SOX-19980930

XML-QL: A query language for XML, World Wide Web Consortium Note 19-August-1998
http://www.w3.org/TR/1998/NOTE-xml-ql-19980819/

Vector Markup Language (VML), World Wide Web Consortium Note 13-May-1998
http://www.w3.org/TR/1998/NOTE-VML-19980513

Pontus Norman
February 1999
Decerno AB, Näsby Park, Sweden

7

Introduction
The World Wide Web (WWW) is today an enormous market and it will continue to grow in the future as
more and more people are being connected to it. This global market has attracted companies and Web
publishers to create applications and Web pages in ever-larger numbers. This in turn has led to a growing
development of standards and structures to assist their efforts. The developers are being overwhelmed by
the continuous flow of new standards that promises much but do they deliver?

Decerno AB is a Swedish company that has dedicated much of its recent work to creating interactive
applications on the Web. One of the company’s strongest fields is in the development of business
supporting, administrative systems based on database solutions and with a user interface on the Internet.
The structure of these systems is quite typical of many of the applications being developed around the
world today.
• A client, that is downloaded to the user’s computer over the Internet, present the graphical interface of

the application.
• A server located somewhere in the Internet provides the client with the data that it requests.
• A database to store the data used by the application.
The key that makes these applications work is communication. Communication is needed between the
client and the server; communication is also needed between the server and the database. Another very
important part of any application is the Graphical User Interface (GUI), “to the user the GUI is the
application” as the saying goes.

The need for good communication is what makes or breaks many applications in development. For many
years the only standard that was publicly available was the HyperText Markup Language (HTML) [13].
Now there is a multitude of other standards: Dynamic HTML (DHTML) [38], Common Object Request
Broker Architecture (CORBA) [39], DCOM (Distributed Component Object Model) [37,41] and Active
Server Pages (ASP) [50], to mention only a few. The problem facing developers today are what to choose;
what are the limitations, possibilities, advantages and disadvantages of the different technologies. So
therefore there is a need to understand and have knowledge of as many such architectures as possible.

One such new and exciting standard in development right now is the World Wide Web Consortium’s
(W3C’s) Extensible Markup Language (XML). This standard promises to be THE standard for Web
development and structured data transfer. This paper is a thorough examination of this standard to
determine if it keeps its promises.

This study of XML consists of four parts.
1. An introduction of XML, including syntax and examples.
2. A brief examination of the associated standards as they are described in their drafts and in the available

literature.
3. An examination of what uses XML will have in reality and what support is currently available.
4. An implementation and evaluation of XML in one of the applications (Pastill) currently under

construction at Decerno.

The general questions that Decerno wants answered are:
• What is XML?
• What can XML be used for?
• Does XML have a future?

And more specifically:
• In Internet applications there can be problems with maintaining real-time connections with the server

(the connection may not always exist). Does XML in any way provide an alternative to this with, for
instance, necessity-driven delayed communication with the server? This means holding off any client –
server communication until a connection can be established and meanwhile cashing all transactions on
the client.

• Communication between applications is often handled using different file-based standards for the
syntax. By file-based communications I mean that one application creates a file with a certain format
and transfers it to another application that interprets the file. For example, this procedure is used for
Electronic Data Interchange (EDI) and the file based-standards used are everything from homemade
in-house formats to application standards such as the ANSI X12 format [32] and EDIFACT [30]. Can
XML be a concrete alternative to these and in what extent?

8

Part 1: Introduction to XML

1.1 Where has XML come from?
XML stands for Extensible Markup Language [1], and is defined by the World Wide Web Consortium
(W3C) [http://www.w3.org], the same people who has constructed the more well known HyperText
Markup Language (HTML) [13].

������:RUOG�:LGH�:HE�&RQVRUWLXP��:�&�
W3C had at last count 275 member organizations, including companies, nonprofit organizations, industry
groups and government agencies from all over the world [http://www.w3c.org/Consortium/Member/List.html].
This power-packed assemblage is the closest thing the famously decentralized Web has to a governing
body. More than the U.S. government, whose funding created the Internet, and more than the telephone
companies whose wires and fibers carry the net’s digital traffic, it is the W3C that will largely determine
the Web’s structure in the 21st century.

For a group with this much clout, W3C isn’t well known. Nor does it court fame. Its meetings are closed to
outsiders. Although the consortium, based at MIT, has brought some order to the unruly thickets of the
Web, it has plenty of critics who say the group has become a significant maker of public policy - and ought
to start acting like one. They argue that the W3C should open its membership and meetings to broader,
more democratic participation.

The W3C is not a standards organization in the mold of such traditional outfits as the American National
Standards Institute (ANSI) or the International Standards Organization (ISO). Think, instead, of W3C as a
group of technologists who issues recommendations. Legally W3C recommendations have no teeth; even
consortium members are under no obligation to implement them. In practice, however, W3C’s
recommendations carry a moral authority that is the closest thing the Internet has to law. Microsoft,
Netscape and a host of other companies have pledged to implement the standards in their products. And
this moral authority has given rise to the W3C’s technical work - which is almost universally praised - as
well as its policy-making activities, which have generated considerable controversy.

������;0/�%DFNJURXQG
XML is a subset of the Standard Generalized Markup Language (SGML) [43]. SGML is a way to express
structure and content in different types of electronic documents, it has been around for more than a decade.
A better known and more limited sibling to XML is HTML. Today HTML is very popular and is used for
creating Web pages that can be viewed all around the world. Because these two languages are related they
share some of the same characteristics such as similar syntax and the usage of tags inside of brackets. One
important difference is however the fact that HTML is an application format based on SGML, unlike XML
which is a subset of SGML. This distinction between the two is important because HTML can not be used
to define new applications as easily as XML can.

Since XML is a subset of SGML, applications that can read SGML can also read XML, however the
opposite is not true. One of the reasons SGML has never reached widespread public usage is that it has
been considered to be too complex. XML was developed to be less complex than SGML and to be able to
work in limited bandwidth networks such as the Internet. W3C predicts that HTML, SGML and XML will
all be used in the future, none makes the others obsolete. HTML will continue to be the easiest and fastest
way to publish information on the Web. More advanced Web pages and applications will increasingly use
XML. SGML will live on in high-end, highly structured publishing applications.

It should be noted that XML and associated specifications are still under development and new drafts are
still being posted [http://www.w3.org/TR/]. In other words it is not certain that this paper is 100% correct
about all the details in the different specifications since these are still subject to change. It should also be
noted that new specifications based on XML are popping up almost every month.

1.2 Why XML?
The remarkable growth of the WWW in recent years has been enabled by the possibility to cheaply and
easily distribute information and applications to users all over the world. As the information on the Web

9

gets more complex and the number of users keeps growing, more people become aware of the limitations in
current technologies and standards. Add to that the growing popularity of Java clients with powerful data
processing capabilities and the absence of suitable standards to transfer structured data is obvious.

The limitations when constructing Web pages stems from the fact that HTML uses a fixed number of
predefined tags to construct the appearance of a Web page. It is this inability to extend the functionality of
the language that has made the development of a new standard for Web publishing desirable. Already some
Web publishers have switched to using SGML for more advanced publications, but this standard is
considered too large and complex to gain public acceptance and widespread usage.

Distributed applications in general and Java in particular has in recent years shown problems caused by the
absence of a uniform standard to transfer structured data. Despite the fact that large efforts and huge
amounts of money have been put into this area, no publicly approved and used standard has been
developed. The problems occur when different applications want to talk to each other, because they almost
always use their own incompatible in-house standards for communicating data.

XML was developed to solve these problems. It offers a structured and consistent way to describe and
transfer data. The power and beauty of XML is that it maintains the separation of the user interface from
the actual data. This distinction makes XML not only a language for creating advanced Web pages but it
can also be used in a more general sense to transfer data. Applications using XML can read data from each
other, without having prior knowledge of incoming data formats, because the data contained in the XML
documents are self-describing.

W3C has set up some goals for the development of XML; here is a list of these goals and comments on
them:

1. XML shall be straightforwardly usable over the Internet. Users must be able to view XML
documents as quickly and easily as HTML documents. In practice, this will only be possible when
XML browsers are as robust and widely available as HTML browsers, but the principle remains.

2. XML shall support a wide variety of applications. XML should be beneficial to a wide variety
of diverse applications: authoring, browsing, content analysis, etc. Although the initial focus is on
serving structured documents over the Web, it is not meant to narrowly define XML.

3. XML shall be compatible with SGML. Most of the people involved in the XML effort come
from organizations that have a large, in some cases staggering, amount of material in SGML.
XML was designed pragmatically, to be compatible with existing standards while solving the
relatively new problem of sending richly structured documents over the Web.

4. It shall be easy to write programs which process XML documents. The colloquial way of
expressing this goal while the specification was being developed was that it ought to take about
two weeks for a competent computer science graduate student to build a program that can process
XML documents.

5. The number of optional features in XML is to be kept to the absolute minimum, ideally zero.
Optional features inevitably raise compatibility problems when users want to share documents and
sometimes lead to confusion and frustration.

6. XML documents should be human-legible and reasonably clear. If you don’t have an XML
browser and you’ve received a hunk of XML from somewhere, you ought to be able to look at it in
your favorite text editor and actually figure out what the content means.

7. The XML design should be prepared quickly. Standards efforts are notoriously slow. XML was
needed immediately and was developed as quickly as possible.

8. The design of XML shall be formal and concise. In many ways a corollary to rule 4, it
essentially means that XML must be expressed in Extended Bachus-Naur Notation (EBNF) and
must be amenable to modern compiler tools and techniques. There are a number of technical
reasons why the SGML grammar cannot be expressed in EBNF. Writing a proper SGML parser
requires handling a variety of rarely used and difficult to parse language features. XML does not.

9. XML documents shall be easy to create. Although there will eventually be sophisticated editors
to create and edit XML content, they will not appear immediately. In the interim, it must be
possible to create XML documents in other ways: directly in a text editor, with simple shell and
Perl scripts, etc.

10. Terseness in XML markup is of minimal importance. Several SGML language features were
designed to minimize the amount of typing required to manually key in SGML documents. These
features are not supported in XML. From an abstract point of view, these documents are
indistinguishable from their more fully specified forms, but supporting these features adds a

10

considerable burden to the SGML parser (or the person writing it, anyway). In addition, most
modern editors offer better facilities to define shortcuts when entering text.

It is clear that XML has a broad support among leading companies:

“I think XML is really a breakthrough, because it brings the database and the publishing world into
having an abstract way of describing properties."
-- Bill Gates

Sun Microsystems Scientific Office director John Gage predicts that XML will emerge as the glue to bind
electronic commerce applications and turn the computer into "an extensible linked document and
database."

1.3 Basic XML
W3C has called XML “a common syntax for expressing structure in data”. To put structure in data means:
structuring the document depending on the content, meaning, or usage of the data. XML documents contain
character data and markup. The character data is often referred to simply as content, while the markup
provides structures for that content. The distinction between data and markup is drawn more sharply and
more visibly in XML than it is in many other systems.

The simplest way to describe the structure of XML is to compare it to HTML which most people are
already familiar with. As in HTML, the structure in XML is built up using markup tags. There is however a
very important difference between tags in HTML and tags in XML; unlike HTML tags, XML tags have no
predefined meaning. In addition XML is extensible, structured, and can be validated. XML separates data
and the presentation of data. This means that the same XML document can be displayed in a number of
ways depending on the media of the presentation without changing the underlying structure of the data.

These two examples clearly show the similarities and differences between HTML and XML.

([DPSOH��&DU�UHJLVWHU�LQ�+70/
<H1> Car Register </H1>
<H2> Registration number: ABC123 </H2>
<H2> Make: Saab 9000 </H2>
<H2> Model: 1995 </H2>
<H2> Owner: </H2>
<p> Kalle Karlsson
 Götgatan 1
 11111 Stockholm
</p>

All tags say something about how the data will be displayed. No other information about structure or
relation between the data is saved in the document. As a result little can be done with the data other than
displaying it.

([DPSOH��&DU�UHJLVWHU�LQ�;0/
<Car Register>

<Car>
<Registration Number> ABC123 </Registration Number>
<Make> Saab 9000 </Make>
<Model> 1995 </Model>
<Owner>

<Name> Kalle Karlsson </Name>
<Address> Götgatan 1 </Address>
<Zip code> 11111 </Zip code>
<City> Stockholm </City>

</Owner>
</Car>

</Car Register>
As can be seen none of the tags hold any information about the view of the data they contain. They only
contain information about the structure and content of the document. The appearance of the data is left for
the application reading the document to decide. In the example we clearly see that it is the markup tags that
build up the formal structure of the document. The labels in the tags can be freely chosen by the author of
the document, the only restriction is that each tag in some way should describe the data that is stored within

11

it. It should also be noted that unlike HTML tags, tag names in XML are case sensitive, which mean that
<Name> is not the same as <name>.

������(OHPHQWV
As has been previously shown, the structure in XML is built up by markup tags and character data in
groups that are normally called elements. Each element represents a logic component of the XML
document. All elements consist of one of the following constructs:
• A tag together with the character data that the tag describes.

Example: <Make> Saab 9000 </Make>.
• A tag together with other elements (which in turn can consist of other tags and elements and so on)

Example:
<Owner>

<Name> Kalle Karlsson </Name>
<Address> Götgatan 1 </Address>
<Zip code> 11111 </Zip code>
<City> Stockholm </City>

</Owner>

Every XML document therefore consists of elements hanging together in a logical tree structure. There is
always one element that contains all the other elements; this element is called the root element. The tree
structure of the elements is a vital part of XML and is used when an application wants to read and interpret
an XML document.

Figure 1: The structure of the XML source tree; the root node and the connected elements.

The values stored within the elements can basically be of three different types, parsed character data
(PCDATA), unparsed character data (CDATA), or processing instructions (PI).
• PCDATA – Is used to store marked-up text that will be evaluated by the XML parser.
• CDATA – Is used to store marked-up text so that the markup is not evaluated, i.e. CDATA sections

provide a way of making sure specific markup is not interpreted as markup. CDATA sections begin
with the string <![CDATA, and end with the string]]>.

• PI – Holds processing directions and information passed to XML parsers and programs. PI instructions
always start with <?, and end with ?>. An example of a PI is the code at the beginning of every XML
document that tells the parser which version of XML the document contains <?XML version =
“1.0” ?> .

��������$WWULEXWHV
Elements can also have other information attached to them called attributes. Attributes describe properties
of elements. For instance it is sometimes useful to have an attribute containing the security demands on the
person or application that wants to access that element. Attributes in XML look very similar to attributes in
HTML.

12

([DPSOH��$Q�HOHPHQW�ZLWK�DWWULEXWHV
<Employees>

<!- The Person elements has three attributes, email, phone, and fax ->
<Person email = “any@where” phone = “111111” fax = “111112”>

<Name> Kalle Andersson </Name>
</Person>
<Person email = “some@where” phone = “222222” fax = “222223”>

<Name> Johan Olsson </Name>
</Person>

</Employees>

��������(OHPHQWV�YHUVXV�$WWULEXWHV
One very interesting and much debated issue is when to save the data content in an element and when to
save it as an attribute. The general principle seems to be that metadata (information about information)
should be saved in attributes and the actual information should be stored in elements.

“Determine if the data in question is fundamentally metadata or content. Metadata is information that
describes the container while content is the information the container conveys. For example, an ID
attribute is clearly metadata because it describes the containing element (by giving it a unique) name.
The author of a document is also metadata, as is the title (in my view). One way to distinguish metadata
from content is to ask the question:
-If I removed this data, would my understanding of, or ability to comprehend, the content change?
If the answer is no, it's metadata, if the answer is yes, it's content (or annotation, which is the third
fundamental class of information). For example, knowing or not knowing the author of some
information doesn't affect your ability to understand the content in normal practice (you can always
think of weird cases where knowledge of the author is required, but these are games, not workaday
information objects).”
-- W. Eliot Kimber, Senior Consulting SGML Engineer, ISOGEN International Corp.

������(QWLWLHV
An XML document can be defined as a linear series of characters and references to other objects. An XML
processor starts at the beginning of the document and works down to the end. XML provides a mechanism
for allowing the text and objects in the document to be organized non-linearly. The parser then reorganizes
it to the linear structure. The mechanisms that make this possible are called entities. An entity can be as
small as a single character or as large as an entire XML document. An XML document can be broken up
into many files on a hard disk or objects in a database and each of them is called an entity in XML
terminology. Entities can even be spread across the Internet. Whereas XML elements describe the XML
documents logical structure, entities keep track of the location of the chunks of bytes that make up the
document.

Very simplified an entity consists of a name and a content. The content is the actual stored data and the
name is used to refer to that data. There are several different kinds of entities used for different purposes.

If an entity is defined without any separate storage file, and the content is given in its declaration, the entity
is called an internal entity. All internal entities are parsed entities. This means that the XML processor
parses them like any other XML text. The name parsed is somewhat badly chosen since the entities are in-
fact unparsed until they are actually used.

([DPSOHV��,QWHUQDO�HQWLWLHV
- Internal entities used as an abbreviation

<!ENTITY dtd “document type definition”>

Whenever the parser comes across a reference (%dtd) to this entity it will replace that reference with
the text: document type definition.

- Internal entities with markup
<!ENTITY dtd “<term>document type definition</term>”>

The internal entity can also contain markup.

External entities get their contents from somewhere else in the system. The location of the content is
identified using an external identifier; usually this is just the world SYSTEM followed by a Uniform
Resource Identifier (URI) [46,47,51]. External entities are either parsed or unparsed depending on their

13

content. Imagine the number of error messages that would occur if an XML processor tried to parse a
graphic image as if it was made up of XML text!

Syntactically, declarations of unparsed entities are differentiated from those of other external entities by the
keyword NDATA followed by a notation name.

([DPSOHV��([WHUQDO�HQWLWLHV
- External parsed entities

<!ENTITY external_chapter SYSTEM “http://www.book.com/chapter1.xml”>

The content of the entity named external_chapter will be the entire XML document
chapter1.xml .

- External unparsed entities
<!ENTITY front_page SYSTEM “http://www.book.com/frontpage.gif” NDATA GIF>

The entity front_page will contain the GIF-picture frontpage.gif . The keyword NDATA shows
that it is an unparsed entity with notation name GIF .

;0/�'RFXPHQW

<!ENTITY dtd “document type description”>

.

.

%dtd

<!ENTITY external_chapter SYSTEM

“http://www.book.com/chapter1.xml”>

%external_chapter

<!ENTITY front_page SYSTEM

“http://www.book.com/frontpage.gif” NDATA GIF>

%front_page

will b
e replaced by

will be replaced by

.

.

.

.

.

.

;0/�'RFXPHQW

.

.

.

.

will be replaced by

Figure 3: Shows how the entities will be replaced with their content by the XML parser.

There are many interesting things that can be done using entities.
- You can store every chapter of a book in a separate file and link them together as entities.
- You can insert often-used text, such as a product name, into an entity so that it is consistently spelled

and displayed throughout the document. When the product name entity is updated to reflect a new
version, the change would be instantly visible anywhere the entity was used.

- You can create an entity that would represent “legal boilerplate” text (such as software license) and
reuse that entity in many different documents.

- You can integrate pictures and multimedia objects into the XML documents.
- You can develop “document type definition components” that can be used in many document type

definitions. These would allow you to reuse the declaration for common element types across several
documents.

- And much more…

14

������'RFXPHQW�7\SH�'HFODUDWLRQ��'7'�
An important part of XML is the ability to at the beginning of an XML document store information about
what the rest of the document will contain; this information is called the Document Type Declaration
(DTD). The DTD defines what markup tags can be used in the document, what order they can appear in,
what other tags they can contain and so on. In XML it isn’t strictly necessary to have a DTD associated
with each XML document but it is considered bad manners not to have one. Also a DTD is necessary to be
able to check if an XML document is valid and/or well-structured. These two terms will be defined below.
The following example shows the DTD for the previous employee example.

([DPSOH��$�'7'
The DTD consists of a number of <!ELEMENT> and <!ATTLIST> tags that are used to define the structure
of the rest of the XML document. This is the DTD for the previous employee example.

<DOCTYPE Employees [
<!ELEMENT Employees (Person)>
<!ELEMENT Person(Name)>
<!ATTLIST Person

email PCDATA #IMPLIED
phone PCDATA #IMPLIED
fax PCDATA #IMPLIED>

<!ELEMENT Name #PCDATA>
]>

The DTD is used to define the model that the rest of the data in the document must follow. The DTD can be
fetched from an external source or be imbedded in the XML document itself. Today there exist big efforts
to develop standardized DTDs for different areas. One such standardization is the official DTD-
specification for XML [26], in this specification there are standardized DTDs for lists, references,
illustrations, and more.

��������9DOLG�RU�:HOO�6WUXFWXUHG"
In any language it is necessary to have a mechanism that checks if a written code conforms to the grammar
and specifications of that language.

The earliest versions of HTML browsers validated, but there's this evil thing called "bad HTML" that
quickly reared its ugly head. No HTML browser today can possibly afford to validate. Instead, they
compete on how many violations of HTML syntax they can "add value to". This is another reason why
XML is needed; to make one solution that works everywhere.

“I want to build one Web site and have it work everywhere. That's something we could do in 1994, and
not today. That's not progress.”
-- Glenn Davis, Web Standards Project.

To avoid such problem in XML, there are two such structural and grammatical checks: is an XML
document valid and/or well-structured (also called well-formed in some documentation).

An XML document is considered well-structured IFF:
- it contains one or more elements;
- there is precisely one element (the root element) for which neither the start nor the end tag is inside any

other element;
- all other tags must nest within each other correctly, and
- all entities used in the document must either be predefined in XML or in the DTD. (Think of an entity

as a part of the data that makes up the XML document.)

An XML document is considered valid IFF there is a DTD associated with it, and the document complies
with that DTD.

([DPSOH��$�ZHOO�VWUXFWXUHG�;0/�GRFXPHQW
<?XML version = "1.0" ?>
<Name> Kalle Karlsson </Name>
That’s all it takes to make a well-structured XML document.

15

([DPSOH��$�YDOLG�DQG�ZHOO�VWUXFWXUHG�;0/�GRFXPHQW�
To create a well-structured and valid XML document I simply add a DTD to the previous car register
example.

<?XML version = "1.0" ?>
<DOCTYPE Car Register [
<!ELEMENT Car Register (Car)*>
<!ELEMENT Car (Registration Number, Make, Model, Owner)>
<!ELEMENT Registration Number (#PCDATA)>
<!ELEMENT Make (#PCDATA)>
<!ELEMENT Model (#PCDATA)>
<!ELEMENT Owner (Name, Address, Zip Code, City)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Address (#PCDATA)>
<!ELEMENT Zip Code (#PCDATA)>
<!ELEMENT City (#PCDATA)>
]>

 <Car Register>
<Car>

<Registration Number> ABC123 </Registration Number>
<Make> Saab 9000 </Make>
<Model> 1995 </Model>
<Owner>

<Name> Kalle Karlsson </Name>
<Address> Götgatan 1 </Address>
<Zip Code> 11111 </Zip Code>
<City> Stockholm </City>

</Owner>
</Car>

</Car Register>

First in the XML document a DTD named Car Register is first defined. After follow the XML elements
in a structure that follow that DTD.

��������'7'V�DQG�0RGXODULW\
XML provides the powerful possibility to combine several DTDs in a single XML document through the
use of entities. This is important because it enables development using a modular approach. Developers
will in the future be able to combine standardized, well-known and trusted DTDs to get the desired
structure of their XML documents. Available together with these standard DTDs could be the software
modules that process them.

([DPSOH��&RPELQLQJ�VHYHUDO�'7'V�LQWR�RQH�GRFXPHQW
<?XML version = "1.0" ?>
<DOCTYPE Document[
<!ENTITY header SYSTEM header.dtd>
<!ENTITY body SYSTEM body.dtd>
<!ENTITY footer SYSTEM footer.dtd>
<!ELEMENT Document (%header, %body, %footer)>
]>

������;0/�DQG�'DWDW\SHV
One of the first reactions a programmer has when confronted with a new language is to find out what
datatypes it supports. With datatypes I mean integers, characters, strings, lists, and so on. The beauty of
XML is that it supports all datatypes and none. It is up to the application parsing the XML source file to
determine what datatype that a certain element has. XML will not make any type checking of the data
stored. The only checks that will be performed are against the structure (valid and well-structured) of the
document.

However there is a need to be able to describe datatypes in XML documents in a standardized and
consistent way. Therefore an extension specification to XML has been proposed called XML-Data. This
specification has been accepted as a W3C Note and is described later.

16

0RUH�FRPSOH[�GDWDW\SHV
Since XML treats all elements the same it is very easy to define and implement more complex datatypes as
well. Here is an example of an XML document describing a binary tree

([DPSOH��$�ELQDU\�WUHH�LQ�;0/

Mammals

Animals

Reptiles

Snakes LizardsWhales Monkeys

Baboon Chimpanzee

Figure 2: Shows a graphical representation of the binary tree (containing animals).

<?XML version = “1.0” ?>
<!DOCTYPE BINARY_TREE [
<!ELEMENT BINARY_TREE (ROOT)>
<!ELEMENT ROOT (VALUE,CHILDREN)>
<!ELEMENT CHILDREN(LEFT_CHILD?,RIGHT_CHILD?)>
<!ELEMENT LEFT_CHILD(VALUE?, CHILDREN?)>
<!ELEMENT RIGHT_CHILD(VALUE?, CHILDREN?)>
<!ELEMENT VALUE(#PCDATA)>]>

 <BINARY_TREE>
<ROOT>

<VALUE>Animals</VALUE>
<CHILDREN>

<LEFT_CHILD>
<VALUE>Mammals</VALUE>
<CHILDREN>

<LEFT_CHILD>
<VALUE>Whales</VALUE>

</LEFT_CHILD>
<RIGHT_CHILD>

<VALUE>Monkeys</VALUE>
<CHILDREN>

<LEFT_CHILD>
<VALUE>

Baboon
</VALUE>

</LEFT_CHILD>
<RIGHT_CHILD>

<VALUE>
Chimpanzee

</VALUE>
</RIGHT_CHILD>

17

</CHILDREN>
</RIGHT_CHILD>

</CHILDREN>
</LEFT_CHILD>
<RIGHT_CHILD>

<VALUE>Reptiles</VALUE>
<CHILDREN>

<LEFT_CHILD>
<VALUE>Snakes</VALUE>

</LEFT_CHILD>
<RIGHT_CHILD>

<VALUE>Lizards</VALUE>
</RIGHT_CHILD>

</CHILDREN>
</RIGHT_CHILD>

</CHILDREN>
</ROOT>

</BINARY_TREE>

This concludes my very brief introduction to XML syntax. If you want to read more about the XML syntax
there are many good books on the subject, I can particularly recommend XML Complete by Steven Holzner
[16].

1.4 XML and Java – friends or enemies?
XML in many ways augments Java; however, XML is also evolving into an object transport protocol that
could undermine Java’s claim as a does-all platform. XML tags Web-based information for recognition by
developers and computers, which is necessary because HTML lacks a way to add meaning to content aside
from cryptic URLs. XML aims to add that meaning to Web objects, a task once assigned to Java.

“XML lets developers choose between building Web applications or Java systems.”
-- Adam Berrey, product marketing director at Allaire, a maker of Web application servers.

All that now is needed to make advanced Web applications is a client that renders XML information
directly into the client-side browser. No longer are Java virtual machine (JVM)-based clients the only
choice.

"Ultimately, XML will obviate the need for a JVM on the client.”
-- Doug Pollack, vice president of marketing at GemStone Systems, in Beaverton, Ore.

Sun Microsystems, the company behind Java, acknowledges that XML can communicate to clients without
JVMs, but it claims XML needs Java to reach its full potential.

"XML is not useful alone; it is a complement to Java. Java provides the portable code to XML, and XML
offers the data for Java."
-- Nancy Lee, product manager for XML at Sun Microsystems.

XML can create open data that is not dependent on a platform, language, or restrictive formatting
convention. If widely adopted, XML could become a de facto standard for communicating content and
objects down to clients. That sounds a lot like what Java does, at least as a content platform. It is just such a
role for XML that appeals to Microsoft, which disdains Java’s use for purposes other than programming.

"XML lets you exchange information across platforms, not to be confused with writing cross-platform
applications."
-- Dave Wascha, XML product manager at Microsoft.

But for many, it is not a matter of choosing between Java and XML. Many Web developers have come to
the conclusion that XML and Java is the perfect pair because they complement each other so well. XML
contributes platform-independent data - portable documents and data. Java contributes platform-
independent processing - portable object oriented software solutions.

The applications that will drive the acceptance of XML are those that cannot be accomplished within the
limitations of HTML. These applications can be divided into four broad categories:

18

• Applications that require the Web client to mediate between two or more heterogeneous databases.
• Applications that attempt to distribute a significant proportion of the processing load from the Web

server to the Web client.
• Applications that require the Web client to present different views of the same data to different users.
• Applications in which intelligent Web agents attempt to tailor information discovery to the needs of

individual users.

"We’re doing XML and Java, and see them as wonderfully complementary."
-- David Skok, chairman and founder of SilverStream Software.

"A Java strategy without an XML strategy is incomplete."
-- Eric Brown, an analyst at Forrester Research, in Cambridge.

This corresponds well with what IBM, a driving force behind both Java and XML, seems to have in mind.

"XML and Java are parallel and symbiotic. Both are crucial to computing in the new millennium"
-- Simon Phipps, head of XML marketing and Java evangelist at IBM.

19

Part 2: Related Specifications

2.1 W3C Specifications and Levels
The specifications described in this paper are still under development by the W3C and are more or less
subject to change. Depending on how far a specification has progressed, it is placed different W3C
specification levels. I will here give a listing of the different levels and which specifications are currently
on what level. All specifications listed here will be described later.

There exist four different levels of the W3C specifications:
• Recommendations - signifying that the specifications are stable, contribute to Web interoperability,

and are supported for industry-wide adoption by the W3C Membership.
- Extensible Markup Language (XML) 1.0 specification [1].
- Document Object Model (DOM) Level 1 specification [8].
- Cascading Style Sheets Level 1 (CSS1) specification [2].
- Cascading Style Sheets Level 2 (CSS2) specification [3].
- Namespaces in XML (XML Namespace) specification [5].

• Proposed Recommendations - signifying that the specifications are under review by W3C Members.
- Currently there are no XML related proposed recommendations.

• Working Drafts - signifying that the specifications may be updated, replaced or obsoleted by other
documents at any time. It is inappropriate to use W3C working drafts as reference material or to cite
them as other than "work in progress".
- Extensible Stylesheet Language (XSL) specification [4].
- XML Linking Language (XLink) specification [6].
- XML Pointer Language (XPointer) specification [7].

• Notes - the W3C may make available on the Web information, ideas or commentary from W3C staff,
Members, or the general public. Such information may be released, at the discretion of the W3C
Director, as a Note.
- XML Query Language (XML-QL) specification [10].
- XML Data (XML-Data) specification [52].
- Schema for Object-oriented XML (SOX) specification [9].
- Vector Markup Language (VML) specification [12].

2.2 Document Object Model (DOM)
The W3C Document Object Model (DOM) [8] is a platform- and language-neutral program interface that
will allow programs and scripts to access and update the content, structure, and style of documents in a
standard way. This standard interface will make reliable scripting across platforms a reality. The DOM is
designed with both HTML and XML in mind. Interoperability is a necessity for documents sent over the
Internet, but this is not the only benefit of having a standard Applications Programming Interface (API). A
standard API will also make it easier to develop modules that can be re-used in different applications.

“ XML on its own is really this stream of internationalized characters that follows certain rules. But you
can’t actually do anything with this stream of characters with pointy brackets and question marks in it.
But, for example, if you have used XML to define items in a catalog, you need some way of getting
ordering information out of the catalog and inside an order form, inside that commerce application.
That's the DOM.”
--Lauren Wood, chairperson of the W3C DOM working group

The Document Object Model is, despite its name, not an object model in the same way as the Component
Object Model (COM) [20,37,40]. The COM, like CORBA [37,39], is a language-independent way to
specify interfaces and objects; the DOM is a set of interfaces and objects designed for managing HTML
and XML documents.

There will be three ways of using the DOM to access XML documents:
- Using JavaScript or VBScript in the Web page.

20

- Using an external application such as a plug-in, or ActiveX control, that accesses the document
through the browser.

- Using an external XML parser that implements the DOM.
Both Netscape Navigator and Microsoft Internet Explorer have their own proprietary DOMs, but both
companies say they will support the W3C standard DOM in the next versions of their browsers.

The W3C DOM consists of different levels, each new level is based on the previous and extends the API to
make it more usable. These levels together are usually referred to as the DOM Specification.

• Level zero: Functionality equivalent to that evident in Netscape Navigator 3.0 and Microsoft
Internet Explorer 3.0. The W3C DOM builds on this existing technology.

• Level one: This level concentrates on the actual core, HTML, and XML document models. It
contains functionality for document navigation and manipulation. It has recently been approved as
a W3C Recommendation [8].

• Level two: will include a style sheet object model, and define functionality for manipulating the
style information attached to a document. It will also allow rich queries of the document and
define some event model.

• Further levels: These will specify some interface to the possibly underlying window system,
including some ways to prompt the user. They will also contain functions to manipulate the
document’s DTD. Finally, they will include some security model.

The DOM, however, “ isn’t a silver bullet. Even with it, you won’t necessarily be able to write full-
featured, fully interoperable applications. That's a misconception”
-- Sara Williams, lead product manager for Microsoft’s Internet Explorer browser software.

For one thing, the DOM provides access only to the elements that make up HTML and XML documents, it
does not say how those elements are manipulated. So, for instance, if a JavaScript is used, its syntax must
be equally supported across both major browsers. Complicating the situation, DOM Level 1 does not define
an event model, leaving that matter to the individual browsers.

2.3 Stylesheet Languages
As has been previously stated, one of the most important aspects of XML is that it separates style from
data. This is great because it enables different users to define their own views of how they want the data to
be presented. So if there is no information about presentation in the XML documents, then how is this
information stored?

The answer is that the information is stored separately in a stylesheet document. Stylesheets offer precise
control over the presentation of Web pages. A stylesheet is a set of stylistic rules that describe how Web
documents are presented to users. Using stylesheets you can specify such things as for instance, the size,
color, and spacing of text. It can also specify the placement of text and images on the page, plus a whole lot
more.

W3C continues to work with its members, evolving two such stylesheets languages to use with XML; the
Cascading Style Sheets (CSS) language, and the Extensible Stylesheet Language (XSL). Both are described
in more detail below in their own chapters.

The fact that W3C has started developing XSL in addition to CSS has caused some confusion. Why
develop a second style sheet language when implementers haven’t even finished the first one? The answer
can be found in the table below:

CSS XSL
Can be used with HTML? yes no
Can be used with XML? yes yes
Transformation language? no yes
Syntax CSS XML

The unique features are that CSS can be used to style HTML documents. XSL, on the other hand, is able to
transform documents. For example, XSL can be used to transform XML data into HTML/CSS documents
on the Web server. This way, the two languages complement each other and can be used together. Both
languages can be used to style XML documents.

21

CSS and XSL will use the same underlying formatting model and designers will therefore have access to
the same formatting features in both languages. W3C will work hard to ensure that interoperable
implementations of the formatting model is available.

2.4 Cascading Style Sheets (CSS)
CSS is a simple declarative language that allows authors and users to apply stylistic information
(concerning font, spacing, color, and so on) to structured documents written in HTML or XML. Designers
specify how elements are rendered by associating them with properties and values.

For example -
H1 {

 font-size: 12pt;
 font-weight: bold;
 color: blue;
}

- declares that H1 elements should be 12 point bold blue text. The many other CSS properties allow you to
specify everything from the font and color of individual paragraphs, headings and other text, to the size of
margins, the distance between lines, the type of bullet, "white space" around images, background textures
and a great deal more.

As is the case with the W3C DOM, the CSS specification also consists of different levels.
1. CSS Level 1 (CSS1) [2] - has been a W3C Recommendation for more than two years, it was approved

in December 1996. CSS1 is a simple stylesheet mechanism that allows authors and readers to attach
style (e.g. fonts, colors and spacing) to HTML documents. The CSS1 language is human readable and
writable, and expresses style in common desktop publishing terminology. As the name implies more
than one style sheet can "cascade" together to produce the final look of the document; individual style
sheets from different sources can be combined.

2. CSS Level 2 (CSS2) [3] – became a W3C Recommendation in May 1998. CSS2 builds on CSS1 and,
with very few exceptions, all valid CSS1 style sheets are valid CSS2 style sheets. CSS2 is described in
more detail in the following chapter.

������&DVFDGLQJ�6W\OH�6KHHWV�/HYHO����&66��
CSS2 is a style sheet language that allows authors and users to attach style (e.g., fonts, spacing, and aural
cues) to structured documents (e.g., HTML documents and XML applications). CSS2 includes all the
power of CSS1, and adds enhancements in several areas to make the Web more appealing for both content
providers and users. Although originally developed for HTML, CSS has been designed to allow you to
style XML documents also.

CSS2 has a number of new features including the following:
• CSS now caters for "paged media" - which mainly relates to paper or transparencies. CSS2 uses a

page model, which specifies how a document is formatted within a rectangular area called the page
box to control how, the document will look when printed.

• Style sheets can point to fonts on the Web: in CSS2 you can specify the desired font characteristics
in great detail. A new feature allows designers to specify where to download a part of the font needed
to display a document. This will no doubt become a popular approach.

• CSS gives you the ability to specify rectangular regions on a page. CSS2 provides ways for
defining rectangular regions for displaying different parts of documents, and these can overlap and
show through as required. This idea for positioning elements gives authors the freedom to layout
documents as they want, without using the HTML table element.

• CSS2 allows you to invent style sheets for different "media types". For display on a color computer
screen, for example, a style sheet might concentrate on color and layout. The style sheet for rendering
the document into speech, would instead focus on the pitch of the voice, the volume, and so on. CSS
media types cover speech synthesizers, braille printers, small handheld devices, slide projects, to name
just a few.

������9LHZLQJ�;0/�XVLQJ�&66���$Q�([DPSOH�
CSS can be used with any structured document format; we are interested in using it together with XML.
Here is an example of a simple XML fragment:

22

<ARTICLE>
<HEADLINE>Fredrick the Great meets Bach</HEADLINE>
<AUTHOR>Johann Nikolaus Forkel</AUTHOR>
<PARA>

One evening, just as he was getting his
<INSTRUMENT>flute</INSTRUMENT> ready and his
musicians were assembled, an officer brought him a list of
the strangers who had arrived.

</PARA>
</ARTICLE>

To display this XML fragment in a document-like fashion using CSS2, we have to do two things:
 (i) create an appropriate stylesheet, and
 (ii) associate the XML fragment with that stylesheet.

��������&UHDWLQJ�WKH�&66��VW\OHVKHHW
The stylesheet is simply a text file with the extension .css. For this example I create a text file called
bach.css, in this text file I put my styling instructions.

First I must declare which elements are inline-level (i.e. do not cause line breaks) and which are block-level
(i.e. cause line breaks).

INSTRUMENT {display: inline}
ARTICLE, HEADLINE, AUTHOR, PARA {display: block}

The first rule declares INSTRUMENT to be inline and the second rule, with its comma-separated list of
selectors, declares all the other elements to be block-level.

Thereafter to get the wanted look I insert my styling instructions. For example, the headline font size
should be larger than then rest of the text, and I want to display the author’s name in italic:

INSTRUMENT {display: inline}
ARTICLE, HEADLINE, AUTHOR, PARA {display: block}
HEADLINE {font-size: 1.3em}
AUTHOR {font-style: italic}
ARTICLE, HEADLINE, AUTHOR, PARA {margin: 0.5em}

��������$VVRFLDWLQJ�WKH�&66�VW\OHVKHHW
One proposal for linking a style sheet to an XML document is to use a processing instruction inline in the
document itself :
<?XML:stylesheet type="text/css" href="bach.css"?>

Now, using the two together will produce something like the following result:

For more information about CSS and especially CSS2 I refer to the CSS1 and CSS2 specifications [2,3].

2.5 Extensible Stylesheet Language (XSL)
CSS is a good choice for documents where elements - paragraphs, lists, headings, tables, and so on, are
typically rendered in the same order as they are specified in the source document. Sometimes, however,
you may want to re-order elements. For example, you might want to generate a table of contents by
selecting the text of headings, or generate a report document based on information currently represented in
XML. These sorts of task require a different kind of operation; XSL allows you to do these sorts of things.
Written in XML, the syntax for XSL is still under development and subject to change.

23

������2ULJLQ
XSL stems from two standards, Document Style Semantics and Specification Language (DSSSL) and the
previously described Cascading Style Sheets (CSS) language.

DSSSL is an ISO standard [17] for specifying document transformation and formatting in a platform- and
vendor-neutral manner. DSSSL is used to specify the presentation of documents marked up using the
Standard Generalized Markup Language (SGML) [43]. DSSSL consists of two main components: a
transformation language and a style language. The transformation language is used to specify structural
transformations on SGML source files. For example, a telephone directory structured as a series of entries
ordered by last name could, by applying a transformation specification, be rendered as a series of entries
sorted by first name instead. The transformation language can also be used to specify the merging of two or
more documents, the generation of indexes and tables of contents, and other operations. The style language
provides a standardized, powerful language for describing the formatting of SGML documents.

“It's a mistake to put DSSSL into the same bag as scripting languages. The DSSSL stylesheet is one
giant function whose value is an abstract, device-independent, nonprocedural description of the
formatted document that gets fed as a specification of display areas to downstream rendering processes”
-- Jon Bosak, Chair of the W3C XML Group.

XSL combines these two standards, DSSSL and CSS, and also incorporates the full power of a
programming language to provide advanced style functionality and interactivity. XSL embeds the language
ECMAScript [53], a standardized version of JavaScript, to provide this functionality.

As with XML, W3C has put up some design goals that help us understand the usage of XSL.
1. XSL should support browsing, printing, interactive editing and design tools.
2. XSL should be capable of specifying presentations for traditional and Web environments.
3. XSL should support interaction with structured information, as well as presentation of it.
4. XSL should support all kinds of structured information, including both data and documents.
5. XSL should support both visual and non-visual presentations.
6. XSL should be a declarative language.
7. XSL should be optimized to provide simple specifications for common formatting tasks and not

preclude more sophisticated formatting tasks.
8. XSL should provide an extensibility mechanism.
9. The number of optional features in XSL should be kept to a minimum.
10. XSL should provide the formatting functionality of at least DSSSL and CSS.
11. XSL should leverage other recommendations and standards, including XML, XLL, DOM, HTML

and ECMAScript.
12. XSL should be expressed in XML syntax.
13. XSL stylesheets should be human-readable and reasonably clear.
14. Terseness in XSL markup is of minimal importance.

������+RZ�GRHV�;6/�ZRUN"
XSL is a language for expressing stylesheets. To construct a view of the stored data, a XSL processor uses
the XSL stylesheet to parse an XML source document and construct usable output. At the moment the only
XSL processors available provides output in HTML, but in theory this output could be anything: sound-
files, RTF, raw text, etc. The XSL standard sets no limitations on the output. In the future XSL will
hopefully be supported in the Web browsers directly, but currently there is no such support.

24

Figure 3: Shows how an XSL processor uses the XSL stylesheet to parse an XML source document to
construct HTML output datatypes.

So, how does the XSL processor know which XSL file that contains the stylesheet for a certain XML
document? The answer is that the XSL file in question is named in the XML document, using a
standardized stylesheet-tag (as was also the case with CSS):
<?xml-stylesheet type=”text/xsl” href=”www.book.com/s1.xsl”> .

Each XSL stylesheet contains a set of template rules for presenting a class of XML source documents.
These template rules have two parts, one pattern part that identifies the elements in the XML source
document that this rule applies to, and one action part that defines what should be done with the element.
These patterns and actions are then used to map the source tree (remember that the XML source code
defined a logical tree) to a result tree consisting of flow objects that define the user interface.

pattern

action

rule

;0/�6RXUFH�7UHH ;6/)ORZ�2EMHFW�7UHH

Figure 4: Shows how a template rule maps between the XML source tree and a flow object tree.

��������3DWWHUQV
The patterns are used to identify which rules are applicable for a given source element. A pattern is a
string, which is matched against all elements in the XML source document. The most common pattern
specifies the element tag name of a matching element. For example, the pattern Car matches an element
whose tag name is Car . More complex patterns specify the element tags of ancestors of a matching
element. For example, the pattern Vehicle/Car matches an element whose tag name is Car that has a
parent element with tag name Vehicle . The patterns can be made very complex to single out a specific
element.

25

��������$FWLRQV
When a pattern identifies (or matches) a type of XML source element, the action portion of the rule is used
to create the formatted output. The action describes what the output structure should be, what formatting
properties to apply, and how to process the children of the source element. The formatted output is also
known as flow objects.

��������)ORZ�2EMHFWV
The flow objects are what actually make up the visual output. Think of each item on the user interface as a
flow object. Flow objects can be text paragraphs, images, tables, lists, and so on. Conceptually these
objects form a tree. Paragraphs, tables, sequences and other “container” objects are the branches, and
characters, images and other “atomic” objects are the leaves. The output document is the root of the tree.
The tree of flow objects is simply called the flow object tree.

Every flow object has characteristics. The exact set of characteristics that a flow object has depends on its
class. For example, Web pages have scrollbars, clickable links have destinations, fonts have font sizes and
pictures have heights and widths.

XSL have a special set of flow objects that are called “HTML flow objects” and they correspond to the
element types in the HTML DTD. If they are used to format XML documents it will appear to the user as if
they have been created using HTML directly. This is useful since there are not many browsers available
today that support XSL but HTML is a common standard. Another such set of flow objects are called
“DSSSL flow objects”, they correspond to the DSSSL element types. Currently there is no tool available
that can handle DSSSL flow objects.

0LFURVRIW�²�;6/�DQG�&66
In January 1999, the U.S. Patent Office awarded Microsoft a patent that could have a major impact on Web
standards. The U.S. Patent No. 5,860,073, which broadly covers "the use of style sheets in an electronic
publishing system," appears to describe some of the key concepts used in the W3C’s Cascading Style
Sheets (CSS) and Extensible Stylesheet Language (XSL) standards. The patent could potentially require
these currently open standards to be licensed from Microsoft.

Microsoft claims that this patent could actually protect Web standards by preventing other vendors from
engaging in "standards terrorism" with intellectual property claims of their own. That comment strikes me
as hilarious. While it can't be proven that Microsoft deliberately filed the patent in order to get a proprietary
grip on the standards, the fact that Microsoft didn't reveal the filing during the CSS definition process
shows bad faith toward the W3C and its process.

The Web Standards Project (WSP) [http://www.webstandards.org], an international coalition of Web
developers, has reacted very strongly to the patent and has called on Microsoft and the W3C to clarify
whether a Microsoft patent gives the company control over two key Web standards (CSS and XSL)
developed by W3C.

If the CSS and XSL standards are in fact covered by the patent, WSP believes Microsoft, which
participated in W3C's development of these standards, should immediately take legal steps to ensure these
Web standards remain openly available on a nondiscriminatory basis. This could include turning over the
patent to the W3C, or other legal licensing agreements that irrevocably protect these open standards. WSP
also called on any other companies that may be pursuing other patents that affect W3C standards to take
similar measures.

WSP also questioned whether the U.S. Patent Office should have granted Microsoft’s patent on “style
sheets”. WSP’s reasons are that there already exist a number of prior examples of similar technology,
including the original proposal for CSS. Microsoft's patent claims its innovation is to apply style sheets to
text on-the-fly when the document is displayed on a user's computer. However, that same technology has
been used on several different batch pagination systems, dating back to the 1960s, which have been used
for book, directory, and database publishing.

"We’d be opposed to any private company holding control over an open standard. There are inherent
conflicts of interest there when you’re asking a company to license this open standard to potential
competitors. The best way we see to resolve that situation is to hand over that license to the W3C”
-- George Olsen, project leader for the Web Standards Project (WSP).

26

2.6 Extensible Linking Language (XLL)
One of the most popular features of HTML today is the ability to insert links in a Web page to other related
Web pages and thus creating the World Wide Web. XML fully incorporates this idea and extends it beyond
its current limitations. XLL is a broad term for XML hyperlinking (linking and addressing) and it has two
major components: XLink and XPointer.

XML Source Document

XLink

XPointer

Figure 5: Shows how the XLink and XPointer work together in XLL. The XLink specification locates
the resources and the XPointer specification points within that resource.

������2ULJLQ
Three standards have been especially influential when constructing XLL:

• HTML: Defines several SGML element types that represent links.
• HyTime [44]: Defines inline and out-of-line link structures and some semantic features including

traversal control and presentation of objects.
• Text Encoding Initiative Guidelines [45]: Provide structures for creating links, aggregate

objects, and link collections.

������;/LQN
The XLink draft [6] specifies constructs that may be inserted into XML source documents to describe links
between objects. A link, as the term is used here, is an explicit relationship between two or more data
objects. XLink uses XML syntax to create structures that can describe the simple unidirectional hyperlinks
of today’s HTML as well as more sophisticated multi-ended and typed links.

Following is a summary of the design principles governing XLink:
1. XLink shall be straightforwardly usable over the Internet.
2. XLink shall be usable by a wide variety of link usage domains and of classes of linking

application software.
3. The XLink expression language shall be XML.
4. The XLink design shall be prepared quickly.

27

5. The XLink design shall be formal and concise.
6. XLinks shall be human-readable.
7. XLinks may reside outside the documents in which the participating resources reside.
8. XLink shall represent the abstract structure and significance of links.
9. XLink must be feasible to implement.

��������+RZ�GRHV�;/LQN�ZRUN"
XLink’s unidirectional hyperlinks work precisely like HTML links work today:

• The link is expressed at one of its ends (similar to the
element in HTML documents) .

• Users can only initiate travel from that end to the other.
• The links effect on windows, frames, go-back lists, stylesheets in use, and so on, is mainly

determined by browsers, not by the link itself. For example, traversal of A links normally replaces
the current view, perhaps with a user option to open a new window.

• The link goes to only one destination (although a server may have great freedom in finding or
dynamically creating that destination).

While this set of characteristics already is very powerful and obviously has proven itself highly useful and
effective, each of these assumptions also limits the range of hypertext functionality. XLink provides ways
to create links that go beyond each of these specific characteristics, thus providing features previously
available mostly in dedicated hypermedia systems.

• Multi-directional links - HTML only provides for one-way links. XLink provides multi-directional
links (note that "go back" is not at all the same thing; a multi-directional links can be traversed in either
direction regardless of whether you went the other way first).

• Links with multiple destinations - Users may be able to choose between different destinations from a
single link.

• Links with types - Users can define links to be of a certain type. The link-types can then be used to
identify links that should be processed similarly.

• Databases for organizing link locations - Currently HTML links rely upon fixed machine and file
system addresses to find information. XLink provides the framework for link databases to store these
addresses. When kept up-to-date, link databases will free HTML publishers from maintaining
frequently changing link locations.

• Links that annotate read-only documents - That is, XLink provides the possibility for users to add
links to a page even though they don’t own that page. Of course, this involves a process of deciding
whose links you want to display; but this also makes it possible to build a valuable infrastructure of
annotation, commentary, and communal evaluation and discussion on the Web.

������;3RLQWHU
The XPointer draft [7] specifies constructs that support addressing into the internal structures of XML
documents. In particular, it provides for specific reference to elements, character strings, and other parts of
XML documents, whether or not they bear an explicit ID attribute. This differs from the HTML links that
can only point to elements in a document if they have been anchored.

Following is a summary of the design principles governing XPointer:
1. XPointers are addressed into XML documents.
2. XPointers shall be straightforwardly usable over the Internet.
3. XPointers shall be straightforwardly usable in URIs.
4. The XPointer design shall be prepared quickly.
5. The XPointer design shall be formal and concise.
6. The XPointer syntax shall be reasonably compact and human readable.
7. XPointers shall be optimized for usability.
8. XPointers must be feasible to implement.

XPointer provides better locations specifications than HTML:
• Pointers without anchors - Links that point to specific places inside of documents, even when the

author of those documents didn't already provide an ID at just the right place.
• Better addressing - Fine-grained addressing to elements, character strings, and spans inside

documents.

28

• Clear syntax - A clear syntax for talking about locations and relationships in hierarchies (such as the
structure of XML documents), so that locations are human-readable and writable, rather than mere
hash.

2.7 XML – Namespaces
One of the advantages with XML is the ability for the programmer to create their own tag labels and
elements for the data they want to transfer. One potential problem with this is that name collisions can
occur when many XML documents are going to be combined into one. To avoid this problem W3C has
proposed the usage of namespaces within XML.

[Definition:] An XML namespace [5] is a collection of names, identified by a URI, which are used in
XML documents as element types and attribute names.

"One of the interesting things you can do with XML is get information from multiple data sources and
put it in one document, Namespaces lets you know which information came from which site."
-- Dave Wascha, XML product manager at Microsoft.

Quite a few people, after reading earlier drafts of the Namespace Recommendation, decided that
namespaces were actually a facility for modular DTDs, or were trying to duplicate the function of SGML’s
"Architectural Forms". None of these theories are true. The only reason namespaces exist is to give
elements and attributes programmer-friendly names that will be unique across the whole Internet.

Namespaces are a simple and straightforward way to distinguish names used in XML documents, no matter
where they come from. However, the concepts are a bit abstract, and this specification has been causing
some mental indigestion among those who read it.

An XML document contains a tree of elements. Each element has an element type name (sometimes called
the tag name) and a set of attributes; each attribute consists of a name and a value. Applications typically
make use of the element type name and attributes of an element in determining how to process the element.
In XML 1.0 without namespaces, element type names and attribute names are unstructured strings using a
restricted set of characters, similar to identifiers in programming languages. I will call these names local
names. This is problematic in a distributed environment like the Web. One XML document may use
<part> elements to describe parts of books, another may use <part> elements to describe parts of cars.
An XML application has no way of knowing how to process a <part> element unless it has some
additional information external to the document.

The XML Namespaces Recommendation tries to improve this situation by extending the data model to
allow element type names and attribute names to be qualified with a URI. Thus a document that describes
parts of cars can use <part> qualified by one URI; and a document that describes parts of books can use
<part> qualified by another URI. I will call the combination of a local name and a qualifying URI a
universal name. The role of the URI in a universal name is purely to allow applications to recognize the
name. There are no guarantees about the resource identified by the URI.

������8VLQJ�1DPHVSDFHV�²�;0/�6\QWD[
A namespace is declared using an attribute whose prefix is xmlns. The namespace is located by a URI
which functions as a location combined with a global namespace name to identify the namespace. The
namespace name, to serve its intended purpose, should have the characteristics of uniqueness and
persistence. The namespace can be given a local name. If no local name is given for the namespace it is
assumed that the namespace is the default namespace in the scope of the element to which the declaration
is attached.

The best way to understand namespaces, as with many other things on the Web, is by example. One
important detail to look at and understand is the scope of the namespace in the different kinds of
declarations.

([DPSOH���
<x xmlns:edi=’http://ecommerce.org/schema’>
<!-- the "edi" prefix is bound to http://ecommerce.org/schema for the "x"

29

element and contents -->
</x>

This example shows how namespaces are declared and what scope they get as standard.
<x xmlns:edi=”http//ecommerce.org/schema”>

- x is the markup tag name for this element.
- xmlns (abbreviation for XML NameSpace) is an attribute name signifying that a namespace is used

inside of the element x if nothing else is said later.
- The HTTP-address locates where on the Internet the specific schema namespace is defined. The local

name for that namespace is set to edi .

([DPSOH���
<x xmlns:edi='http://ecommerce.org/schema'>
<!-- the 'price' element's namespace is http://ecommerce.org/schema -->
<edi:price units='Euro'>32.18</edi:price>
</x>

Shows how a namespace is used in element declarations. Using the namespace defined in the previous
example uniquely identifies the price element. We also see the usage of an attribute named units within
the price tag.

([DPSOH���
<?xml version="1.0"?>
<!-- all elements here are explicitly in the HTML namespace -->
<html:html xmlns:html='http://www.w3.org/TR/REC-html40'>
 <html:head>
 <html:title>Frobnostication</html:title>

</html:head>
 <html:body>

<html:p>Moved to
<html:a href='http://frob.com'>here.</html:a>

</html:p>
</html:body>

</html:html>
 This more complex example shows how to specify in which namespace a certain tag name is defined.
<html:html xmlns:html-def=”http//www.w3.org/TR/REC-html40”>

- html:html sets the tag name for this element to html and at the same time says that this tag name is
predefined in the local namespace html .

- Remaining definitions are the same as in the above example.

([DPSOH���
<?xml version="1.0"?>
<!-- initially, the default namespace is "books" -->
<book xmlns='urn:loc.gov:books' xmlns:isbn='urn:ISBN:0-395-36341-6'>
 <title>Cheaper by the Dozen</title>
 <isbn:number>1568491379</isbn:number>
 <notes>
 <!-- make HTML the default namespace for some commentary -->
 <p xmlns='urn:w3-org-ns:HTML'>
 This is a <i>funny</i> book!
 </p>
 </notes>
</book>
This example shows the scope of different types of definitions.
book xmlns='urn:loc.gov:books'

- Defines the standard namespace within the element book to be urn:loc.gov:books . All the tag
labels within book will automatically be assumed to be inside this namespace if nothing else is said
further down in the hierarchy.

xmlns:isbn='urn:ISBN:0-395-36341-6'

- Defines and names isbn as the local name for an additional namespace ISBN that can be used within
the element book . It is later used in <isbn:number>1568491379</isbn:number> .

<p xmlns='urn:w3-org-ns:HTML'>

- Defines the standard namespace within the element p.

30

These examples show the usefulness of the XML Namespace Recommendation, it is an important
extension of XML.

2.8 XML-Data
In the XML specification, the contents of the tagged elements are always interpreted as a string. This is not
satisfactory for all purposes since many applications need to be able to specify rigid constraints on the data
they handle. They need to know if a certain data is an integer, float or a string. Some applications also need
to specify within what range a certain value is allowed to be. The typical example is databases, which have
very stringent constraints on their field-values.

In recognition of these needs, Microsoft, ArborText, DataChannel, Inso, and the University of Edinburgh in
a joint proposal to the W3C suggested the XML-Data specification [52]. It was accepted as a W3C Note.
The XML-Data specification provides a standardized way to describe datatypes, ranges, default values, and
other information concerning XML elements.

In the specification, the datatype of an element is defined using a standardized datatype-namespace and a
specific datatype attribute. Together this construct is referred to as the dt:dt attribute (the first dt is for the
datatype–namespace and the second dt names the datatype-attribute). The value of the dt:dt attribute is a
URI giving the datatype of a specific element. The URI can be explicitly in URI format or can rely on the
namespace facility for resolution.

([DPSOH��8VLQJ�WKH�dt:dt�DWWULEXWH
<?xml version="1.0"?>
<!ELEMENT Book xmlns:dt="urn:uuid:C2F41010-65B3-11D1-A29F-00AA00C14882/”

(Author, Title, Edition, Price)>
<!ELEMENT Author (#PCDATA)>
<!ELEMENT Title (#PCDATA)>
<!ELEMENT Edition (#PCDATA)>
<!ELEMENT Price (#PCDATA)>
<!ATTLIST Price dt:dt “fixed.14.4” #FIXED>
<!—Sets the datatype of all Price Elements to be of type “fixed.14.4” -->

<BOOK>
 <AUTHOR>Bjarne Stroustrup</AUTHOR>
 <TITLE>The C++ Programming Language</TITLE>
 <EDITION>Second Edition</EDITION>
 <PRICE>19.95</PRICE> <!-- Will automatically be of datatype: ”fixed.14.4” -->
</BOOK>

The dt:dt attribute is used to specify that the value in the price tag is of datatype “fixed.14.4” which
is predefined in the namespace.

������&XUUHQW�6XSSRUW
Since Microsoft is one of the co-authors of the standard, there is already support for XML-Data in the
Internet Explorer 5.0 (IE5.0) beta DOM. This does not mean that it will be incorporated in the W3C DOM.
Neither does it mean that W3C-Data will be approved as a W3C Recommendation.

Here is a listing of the datatypes that IE5.0 supports.
Data Type Parse Type
string Pcdata
number A number, with no limit on digits, can potentially have a leading sign,

fractional digits, and, optionally, an exponent. Punctuate using U.S. English
rules.

int A number, with no optional sign, no fractions, no exponent
float Same as for "number"
fixed.14.4 Same as for "number," but no more than 14 digits to the left of the decimal

point and no more than 4 to the right
boolean "1" or "0"
dateTime.iso8601 A date in a subset ISO 8601 format, with optional time and no optional

zone. Fractional seconds can be as precise as nanoseconds.
dateTime.iso8601tz A date in a subset ISO 8601 format, with optional time and optional zone.

31

Fractional seconds can be as precise as nanoseconds.
date.iso8601 A date in a subset ISO 8601 format (no time)
time.iso8601 A time in a subset ISO 8601 format, with no date and no time zone
time.iso8601tz A time in a subset ISO 8601 format, with no date but an optional time zone
i1 A number, with optional sign, no fractions, no exponent
i2 A number, with optional sign, no fractions, no exponent
i4 A number, with optional sign, no fractions, no exponent
i8 A number, with optional sign, no fractions, no exponent
ui1 A number, unsigned, no fractions, no exponents
ui2 A number, unsigned, no fractions, no exponents
ui4 A number, unsigned, no fractions, no exponents
ui8 A number, unsigned, no fractions, no exponents
r4 Same as "number"
r8 Same as "number"
float.IEEE.754.32 Same as "number"
float.IEEE.754.64 Same as "number"
uuid Hexadecimal digits representing octets, optional embedded hyphens that

should be ignored
uri Universal Resource Identifier
bin.hex Hexadecimal digits representing octets
char String
string.ansi String containing only ASCII characters <= 0xFF

2.9 XML Query Language (XML-QL)
Given its flexibility, its likely that XML in the future will be used to exchange huge amounts of data on the
Web, just as HTML now enables exchange of a vast number of documents. However, the availability of
huge amounts of XML data poses several technical questions that the XML standard does not address. In
particular:

- How will data be extracted from large XML documents?
- How will XML data be exchanged, e.g., by shipping XML documents or by shipping queries?
- How will XML data be exchanged between user communities using different but related DTDs?
- How will XML data from multiple XML sources be integrated?

Data extraction, transformation, and integration are all well-understood database problems. Their solutions
often rely on a query language, either relational (SQL) or object-oriented (OQL). These query languages do
not apply immediately to XML, because the XML data differs from traditional relational or object-oriented
data. XML data, however, is very similar to a data model recently studied in the research community: the
semi-structured data model [27].

Semi-structured data may include both structured and unstructured portions and is hence termed "semi-
structured". Roughly speaking, semi-structured data is data that is neither raw data, nor very strictly typed
as in conventional relational- or object-orientated database systems. The need for semi-structured data
arises naturally in the context of data integration, even when the data sources are themselves well-
structured.

The WWW provides numerous examples of semi-structured data. An HTML-page contains structuring
primitives such as tags and anchors. But there is no or little restrictions about how these can be used. A
typical example is a data source about restaurants in the Bay Area (from the Palo Alto Weekly newspaper)
called Guide. It consists of an HTML file with one entry per restaurant and provides some information on
prices, addresses, style, and reviews. Data in Guide resides in groups of text with some implicit structure.
One can write a parser to extract the underlying structure. However, there is a large degree of irregularity in
the structure since:
(i) restaurants are not all treated in a uniform manner (i.e., much less information is given for fast-

food joints) and
(ii) information is entered as plain text by human beings that do not present the standard rigidity of

your favorite data loader. Therefore, the parser will have to be tolerant and accept that it fails to
parse portions of text, these will remain as plain text.

32

Generally, semi-structured data lacks or don’t conform to an a-priori given schema, and is self-describing.
Several research query languages [28,60,61,62] have been designed and implemented for semi-structured
data.

To address the questions about data extraction and transformation from semi-structured XML documents.
AT&T and Inria have sent a proposal to W3C for an XML Query Language (XML-QL) [10]. XML-QL can
express queries, which extract pieces of data from XML documents, as well as transformations. These
transformations can, for example, map XML data between different DTDs and integrate XML data from
different sources.

The difference between the proposed XML-QL and XSL, which also is used to extract data from XML
documents, is that XSL is intended primarily for specifying style and layout of XML documents. XML-QL
supports more data-intensive operations, such as joins and aggregates, and has better support for
constructing new XML data, which is required by transformations.

������8VLQJ�;0/�4/
The XML-QL queries have been proposed to consist of two main constructs, a pattern and a construction
rule. The pattern is used similarly to XSL’s patterns to identify the elements that the rule applies to. The
construction rule defines what should happen with the element.

([DPSOH��$Q�;0/�4/�TXHU\
WHERE <book>
 <publisher><name>Addison-Wesley</></>
 <title> $t</>
 <author> $a</>
 </> IN "www.a.b.c/bib.xml"
CONSTRUCT <result>
 <author> $a</>
 <title> $t</>
 </>

The WHERE-part of the query is the pattern that the XML-QL processor tries to match to elements in the
XML source document. The CONSTRUCT-part defines what the output XML-code will look like.

Since XML-QL hasn’t even yet been approved as a W3C working draft it is at this time hard to determine
if it will be used.

;0/�4/

SURFHVVRU

;0/

;0/�4/

;0/

Figure 6: Shows how an XML-QL processor uses an XML-QL query to parse an XML source file
and construct XML output.

2.10 Schema for Object-oriented XML (SOX)
In SGML the DTD defines for each SGML element, what possible other elements may be nested inside it.
For example, in an invoice it may specify that the signing authority must be either Tom or Joe. It may
specify that an item can be any part number or any accessory number or any book number. Checking the
SGML validity of a document is a process that can be done automatically from the DTD. This is a check
that do not verify semantic correctness, only structural correctness. But the structural constraints alone are

33

useful in many ways. For example, a user interface for constructing a document can be generated
automatically from the structural constraints.

XML offers the Document Type Declaration (DTD) as formalism for defining the syntax and structure of
XML documents. However, experience has shown that XML DTDs are not sufficient to specify content or
semantics as in the above examples.

In recognition of this problem the Schema for Object-oriented XML (SOX) specification has been
submitted to W3C as a Note [9]. SOX is used for defining the structure, content and semantics of XML
documents to enable XML validation and higher levels of automated content checking. The SOX proposal
has taken advantage of the XML 1.0 specification [1] as well as the XML-Data submission [52], the
Document Content Description (DCD) submission [14] and the EXPRESS language reference manual [24].

SOX is proposed not only as an XML instance replacement syntax for SGML and XML document type
definitions, but a modeling language for information modeling itself. SOX provides intrinsic datatypes, an
extensible datatyping mechanism, content model and attribute interface inheritance, a powerful namespace
mechanism, and embedded documentation.

SOX documents can be operated on by a SOX processor to produce many different types of output targets.
Transformation of SOX documents will yield XML DTDs and object-oriented language classes to facilitate
the development of intelligent applications, such as those needed to perform electronic commerce, for
example. Other output targets of a schema include documentation derived from the documentation-based
elements in SOX itself, and user interface components. Further output targets are yet to be defined, but the
inherent flexibility of this schema language allows for many other options.

A SOX document, also known as a schema, is a valid XML document instance according to the SOX DTD,
which represents a complete XML DTD-like structure. It has a document root element, and a representation
of syntax that one would expect from a complete DTD, symbolically generated through the XML document
instance.

�������*RDOV�DQG�5HTXLUHPHQWV
The goals of SOX are:
1. Schema language declaration constructs should be useful for the purpose of modeling markup

relationships.
2. SOX documents, as compared with XML DTDs, should enable more efficient software development

processes for distributed applications and dramatically decrease the complexity of supporting
interoperation among heterogenous applications.
• SOX should enable software mapping from SOX documents into data structures in relational

databases, common programming languages, and interface definition languages (such as Java,
COM, C and C++), resulting in usable code.

• SOX should enable reuse at the document design and the application programming levels.
• SOX should be able to express domain abstractions and common relationships among them

directly and explicitly. (e.g., subtype/supertype, etc.)
• SOX should support the generation of common application components (marshal/unmarshal,

programming data structures) directly from SOX documents.

The requirements for SOX are:
1. SOX shall use XML syntax and be expressed in valid instances according to a valid XML DTD.
2. SOX and SOX documents shall be interoperable with XML software and conventions.
3. SOX shall enable a software mapping from SOX documents into an XML DTD, and from an XML

DTD into a SOX document without losing the grammatical structure of the original DTD.
4. SOX shall provide an extensible datatyping mechanism.
5. SOX shall comply with and be compatible with applicable W3C recommendations, Internet

Engineering Task Force (IETF) Request for Comments (RFCs) and ISO Standards, and Proposed
Standards.

6. SOX documents shall provide support for embedded documentation.
7. SOX documents shall be human-readable.

34

�������)HDWXUHV
SOX is more expressive than the XML DTD in some of the following areas:

���������%DVH�HOHPHQW�W\SHV
SOX provide for parameterized base element types that can be used to build a foundation of regular
patterns in SOX documents. You can define patterns such as tuples and triples, tabular and columnar data,
business documents, indexes, bibliographies. Parameterization allows you to reuse the structure with
different content model atoms in another document. Extending base element types allows you to add
attributes or further specialize the attribute datatype, enumeration and presence. Code reuse on extended
base element types is much higher than without.

���������'DWDW\SHV
SOX offer an extensive and extensible set of datatypes that may be applied to data content elements and
attribute types. The purpose of datatypes is to provide a contract between parties as to the constraints that
are applicable to data content in elements and attribute values. These constraints may be used by a content
validation engine, prior to dispatch or upon receipt of an XML document or by user interface methods.

There are three varieties of datatypes in SOX documents: scalar datatypes, enumerated datatypes, and
format datatypes. Scalar datatypes are derived from the basic number datatype, and support specification of
the number of digits and decimal places, minimum and maximum value range, and a mask. An enumerated
datatype may be derived from any of the intrinsic datatypes, and may specify an enumeration of valid
values. A format datatype may be derived from any of the intrinsic datatypes, and must specify a mask.

SOX provide an extended list of intrinsic datatypes for attributes. Datatype extensibility is built upon a
basic set of datatypes (binary, boolean, char, date, number, string, time) commonly used in many
programming environments. An extensive list of intrinsic datatypes includes derivations of the intrinsic
datatypes, including specializations of numbers, dates, and strings. User-defined datatypes may be defined
by specifying a base datatype, scale parameters or an enumeration of values, and a lexical format.

���������'RFXPHQWDWLRQ
Definitions provide for accompanying documentation through the intro and explain elements. Permitted
within these two element types is a collection of familiar and easy to use HTML element types. Anybody
who writes HTML today will be able to write SOX documentation. The importance of the embedded
documentation technique, or Literate Programming [63], must not be overlooked. In the right hands, this
technique can be used for design, implementation, and testing in both rapid prototyping and large-scale
development projects.

���������,QKHULWDQFH
In SOX, element types may inherit their content models and attribute definitions directly from another
named element type. An element type may also inherit and extend an attribute list. Specialization of
attribute definitions allows refinement and restriction of attribute datatype, enumeration list and default
value. Additionally, an attribute value may be defined to be inherited from the identically named attribute
of a parent or older ancestor element. Thus, for example, namespaces can be inherited from superordinate
elements.

���������1DPHVSDFH�VXSSRUW
The SOX namespace is fully and precisely defined. Objects from any identifiable namespace may be used
in building a SOX document. That is, any element, attribute, datatype, enumeration, entity, interface,
notation, parameter, or processing instruction may be imported from any namespace.

���������;0/�V\QWD[�DQG�YDOLGDWLRQ
A SOX document is a valid XML document, according to the SOX DTD. The designer of a schema, or
schemographer, is free to employ the same XML tools used for traditional XML documents. This means
that a SOX document can be processed by a validating XML parser, formatted according to an XSL
stylesheet, and managed by any DOM-compliant application.

35

�������62;�²�$�'HWDLOHG�([DPSOH
The example presented here is the SOX version of the previously used car register example (see chapter
1.3.3.1). In this example I will particularly show how accompanying documentation is provided in the SOX
documents. The rules for including documentation in SOX documents are fairly simple:

• h1 element at top of document is required.
• h2 and h3 elements may appear as children of schema elements.
• intro elements may appear immediately following an h2 or h3.
• h4, h5, h6, and very large subset of HTML element types may appear as children of intro

elements.
• An explain element may appear inside any defining element.
• title, synopsis, help and very large subset of HTML element types may appear as children

of explain.

$QQRWDWHG�([DPSOH
<schema name=”Car Register”
namespace=”http://www.dummysite.com/carregister.xml”>
<h1>Car Register Document Type</h1>

Every SOX document begins with the root element schema , and a top-level heading (h1) that provides a
title for the SOX document. The schema element may be used to establish the namespace identifier for a
SOX document.

<h2>Definitions</h2>
<intro>

<p>This is a SOX document describing a simple Car Register</p>
</intro>

Lower-order headings with intro elements may be interspersed among the SOX document’s defining
elements to provide bridging titles and an introduction.

<elementtype name="Car">
I define an element type whose name is "Car".

<explain>
<title>Car Description</title>
<synopsis>A simple description of a car</synopsis>
<help>

<p>
Each instance of this element represent a Car that is stored
in the Car Registrer.

</p>
</help>
<p>A Car consists of four required fields including the Owner.</p>

</explain>

I provide an explanation of this Car element type.

<model>
<sequence>

 <element name="Registration Number"/>
 <element name="Make"/>
 <element name="Model"/>
 <element name="Owner"/>

</sequence>
</model>

</elementtype>
The Cars content model is a sequence of four subordinate elements. As can be seen in the following
fragment, the model of the first two of these elements simply contain text strings.

<h3>Car fields</h3>

<elementtype name="Registration Number">
<model> <string/> </model>

</elementtype>
<elementtype name="Make">

<model> <string/> </model>
</elementtype>

36

<elementtype name="Model">
<model> <string datatype="number"/>< /model>

</elementtype>

The Model element’s string content specifies its datatype attribute to be number. That means that the
element value must be a number.

The Owner element follows precisely the same principles as the Car element.
<elementtype name="Owner">

<explain>
<title>Owner Description</title>
<synopsis>A simple description of the owner of a car</synopsis>
<help>

<p>
Each instance of this element represent the person that owns a
car.

</p>
</help>
<p>An Owner consists of four required fields.</p>

</explain>
 <model>
 <sequence>
 <element name="Name"/>
 <element name="Address"/>
 <element name="Zip Code"/>
 <element name="City"/>
 </sequence>
 </model>
</elementtype>
<elementtype name="Name">

<model> <string/> </model>
</elementtype>
<elementtype name="Address">

<model> <string/> </model>
</elementtype>
<elementtype name="Zip Code">

<model> <string datatype="number"/> </model>
</elementtype>
<elementtype name="City">

<model> <string/> </model>
</elementtype>
</schema>

2.11 Vector Markup Language (VML)
Unlike the other specifications listed in this section, the Vector Markup Language (VML) specification
does not try to extend the XML specification by adding new “functionality”, but instead tries to use it to
build an XML application language. Two other XML application languages have previously been
constructed: the Mathematical Markup Language (Math-ML) [29] and the Chemical Markup Language
[54].

The VML specification is a joint Autodesk, Hewlett-Packard, Macromedia, Microsoft, and Visio
submission to the W3C.

VML defines a format for the encoding of vector information together with additional markup to describe
how that information may be displayed and edited. VML supports the markup of vector graphic
information in the same way that HTML supports the markup of textual information. Within VML the
content is composed of paths described using connected lines and curves. The markup gives semantic and
presentation information for the paths. VML uses Cascading Style Sheets Level 2 (CSS2) [3], in the same
way as HTML to determine the layout of the vector graphics that it contains.

“The Web community has been asking for a high-quality, easy-to-use 2-D vector graphics standard for
some time. VML meets their needs with faster graphics downloading for end users and easier graphics
editing and manipulation for HTML authors and designers. VML will be a key specification in our
future platforms and applications."

37

-- David Cole, vice president of the Web client and consumer experience division at Microsoft.

�������5HTXLUHPHQWV
Many requirements guided the design of VML. The most crucial are listed below in order of importance.
1. Retain the information required for further editing of VML. This requirement has the important

consequence that VML must be extensible - it is inconceivable that VML meets the requirements of
all editing applications, therefore it must be possible for every application to add the required editing
data specific to that application.

2. Support interchange of data between applications. One application must be able to read and edit the
data of another application, even though the first requirement means that, potentially, both
applications will add application specific data.

3. Use the existing mechanisms of HTML and CSS - this facilitates implementation of VML and ensures
that implementations can reuse existing code and techniques.

4. Be backward compatible with existing user agents. VML adoption will be inhibited unless it is
possible to produce VML, which works with existing Web browsers. VML has special provisions to
allow alternate bitmap representations of graphics for backward compatibility.

5. Provide efficient representations of vector graphics. Textual representations tend to be verbose. VML
addresses this by defining a compact representation of path elements and by following a design
principle of using concise names for frequently used attributes and more verbose names for less
frequently used attributes.

6. Allow the implementation of subsets where an application does not require the full functionality of
VML. Normally a viewer will implement the full specification, however editors should be able to
implement only the subset required for their own data.

7. Support hand editing. This leads to a design principle that the structure of the graphic be obvious and
that the syntax be familiar to HTML programmers - effectively the same as requirement (3).

8. VML should support scripting, including the requirements of animation. This, again, leads to a desire
for the structure of VML to match the structure of the graphics. It also leads to the use of types within
VML attributes which are appropriate to animation - for example 2D coordinates are defined as single
attributes "x, y" rather than pairs of attributes.

�������6WUXFWXUH
The overall structure of VML may be summarized by the XML definitions of the two primary elements -
shape and group.

A shape element is used to define a visible vector graphic element. Most shapes have a path definition; a
sequence of straight lines and cubic Bézier curves which defines an outline. The outline may be stroked, as
specified by attributes on the shape and the stroke sub-element. It may also be filled, under the control of
shape attributes and the fill sub-element. Additional sub-elements support raster (bitmap) images, more
advanced transformations of the path and text drawn on top of the shape.

Below is an example of a simple shape and its VML representation. I will not go into detail about how to
interpret the VML code, instead I refer the interested reader to the VML specification [12].

<v:shape style=’top: 0; left: 0; width: 250; height: 250’
stroke="true" strokecolor="red" strokeweight="2" fill="true"
fillcolor="green" coordorigin="0 0" coordsize="175 175">
<v:path v="m 8,65
l 72,65,92,11,112,65,174,65,122,100,142,155,92,121,42,155,60,100
x e"/>
</v:shape>

Figure 7: A simple shape and its VML representation.

A group element is used to group together several shapes so that they may be transformed together as one
unit. In addition VML defines several auxiliary top-level elements to help make the editing and
representation of complex graphical information more compact and convenient. The shapetype element is
used to define a prototype definition of a shape. A shape element may reference a shapetype in order to
instantiate several copies of the same shape. Several predefined shapes may be used as convenient

38

alternatives to explicitly declaring a shape element with a path. These predefined shapes are line,
polyline, curve, rect, roundrect, oval, arc, and image.

�������8VH�RI�&66
The style attribute in the shapes uses the syntax described in “Visual rendering model” in CSS2. The
positioning may be absolute or relative unless the shape is within a group, in which case it must be absolute
(relative to the top left of the parent group). The z order of the elements within the group is from the first
(lowest) to the last (highest); i.e., later elements obscure earlier elements. The elements establish no relative
position, hence the restriction to use of absolute positioning.

The VML shape and group elements participate fully in the CSS2 visual rendering model. In addition to
standard CSS layout the VML elements may also be rotated or flipped. Each element also establishes a
coordinate space for its content, this allows scaling of the content with respect to the containing elements.

�������)XWXUH�6XSSRUW
VML will be supported broadly by Autodesk, Hewlett-Packard, Macromedia, Microsoft, and Visio in
future versions of their products. Microsoft plans support of VML in Microsoft Internet Explorer 5.0, the
Windows operating system and the next version of Microsoft Office. VML support in the next version of
Office will allow users to save Office Art graphics as editable elements in their HTML pages for delivery
via the Web. VML will preserve the full fidelity of Office Art objects and allow "round tripping"; that is,
the HTML file can be opened and edited back in an Office application with no loss of quality.

39

Part 3: Using XML

3.1 A Common XML Communication Architecture
Now that we have a basic understanding of XML and associated standards, how are they supposed to work
in reality? The basic structure of future XML applications will often be developed using a three-tier
architecture. This approach has in recent years become very popular when developing Web applications. It
consists of three components (hence the name three-tier); one or more data sources, a server located
somewhere in the Internet, and clients connecting to that server.

Many companies have been closely following announcements from Microsoft and Netscape about the
XML capabilities in their next-generation browsers. Using Internet Explorer 4.0 or 5.0’s built-in XML
parser, they have prototyped building very "thin", highly dynamic user interfaces leveraging Dynamic
HTML. To minimize the number of trips to the Web server and to avoid refreshing the entire browser page
on each request, these developers use JavaScript to request new XML "datagrams" from the middle-tier via
HTTP. The browser’s built-in XML parser receives the stream of tagged data from the middle-tier and
exposes the Document Object Model interface on the resulting "tree of data" so that the developers’
JavaScript can inspect what data has "arrived" and update the user interface to reflect any changes.

������7KUHH�7LHU�$SSOLFDWLRQ�$UFKLWHFWXUH

Figure 8: Three-Tier Application Architecture

All the components in the architecture are described below:

å The data used in the application can be stored using different media, formats, and platforms. What
they all have in common is that they all are accessed through specific data-managers (database
managers, application servers, and so on).

� The communication with the data-managers are today handled using several different techniques;
ActiveX components, DCOM, COM, CORBA, JDBC, to only mention a few. The problem is that
the big variety of communication techniques makes it hard for different data-managers to interact,
not to mention the problems for the developers trying to make it all work. It would be much better

40

if they all could “talk the same language”. Work is currently being done to enable the different
data managers to communicate using XML directly.

➌ The data is gathered from the different data managers in a server that is often referred to as the
“middleware” of the application. This middleware can among many other things consist of; Active
Server Pages (ASP), Java, Java-Scripts, and the list goes on. The purpose of the middleware is to
collect data, process it, and send it to the client in an appropriate format.

� Today that format is often HTML but XML would in the future be a better choice because the data
can then be further processed on the client. The protocol used between the browser and the server
is in most cases HTTP.

� The clients receive the data and present it in a Web browser. Soon the major Web browsers will
support XML directly, but currently they only handle HTML and DHTML.

3.2 Support for XML (and associated standards)
In a few short months XML has attracted more than its share of industry backing and media hype, but XML
browsing and editing tools are still few, and many XML developers predict that they will not appear on the
market for some time. This is a big problem when trying to evaluate, test, and use the standards.

Low-level tools, parsers that read in XML documents and present them to an application in standardized
form, have now been available for some time and many of these tools are free. The many parsers available
include efforts from corporate workshops like IBM alphaWorks, Microsoft, DataChannel, and Microstar,
and from independent XML and SGML developers like James Clark and Tim Bray. Parsers are available in
a number of programming languages, including Java, C, and C++, and many are capable of validating
XML documents.

Browsers that support specific XML applications, like MathML (the Amaya browser [33]) and Chemical
Markup Language (the Jumbo browser [55]) are also available. A limited amount of support, requiring
scripting, is also available in Microsoft's Internet Explorer 4.0. A variety of tools for creating XML,
transforming it into other markup (typically SGML or HTML), and using it for specific applications are
also arriving slowly.

Most of the tools available today are very limited and don’t exploit all the possibilities in the standards that
they support. Neither do they provide much transparency for XML. If users have the bad fortune to receive
an XML document in the current mainstream (Netscape or Microsoft) browsers, they may see the markup
in all of its glory spread across their browser window, they may get a blank screen, or they may be asked if
they want to save the file to their hard drives, depending on how the browser is configured. XML
documents cannot be rendered with the existing Cascading Style Sheets (CSS) functionality already,
though incompletely, built into the browsers. As a result, XML is not yet a reasonable choice for sending
information to end users, thus they need either a transformation to HTML or a separate viewing
application.

This may be acceptable for a narrow range of applications that need a separate viewing application anyway,
and some organizations may not mind incurring the processing costs of transforming XML documents to
HTML. It is not acceptable for organizations or individuals that expect to be able to publish in the
traditional style of the Web, uploading files (the document plus possibly a style sheet) to a server without
the need for transformations. Applications that publish information from programs are also unlikely to
switch their output to XML if the XML will still need to undergo additional transformation before
becoming usable to the average Web browser.

This is one of biggest current problems that is holding back widespread usage of XML. Until there exist
browsers that fully incorporate the major parts of XML (and XSL) it is unlikely that it will be used.
There is however much development going on to create such products. Both Microsoft and Netscape have
expressed a desire to incorporate XML and XSL in their Web Browsers. Netscape's Mozilla open-source
project with its community of developers is adding XML support, including the W3C DOM to
Communicator 5.0. Microsoft, meanwhile, made its first try at a DOM implementation, based on the W3C's
work, in the Internet Explorer 5.0 beta 1 release.

Although both Microsoft and Netscape have agreed to adopt XML, each company seems to be
maneuvering to make XML suit its own proprietary needs. Microsoft is using XML for its new Channel
Definition Format for "push" media. Netscape will integrate the new language into its upcoming Web-

41

design software suite, code-named Gemini, hoping XML and Gemini will form the centerpiece of the
network computer that Apple and Sun are building as an alternative to today’s dominant Intel and Microsoft
Windows PC standard.

The trend to “companify” the standards is made even clearer by the different companies presenting their
own XML-to-HTML formatting engines that completely ignore CSS and XSL. The common justification
for these products is that they can integrate data from databases into Web pages.

The pricing of these products is another limiting factor; Interleaf and WebMethods have document
management tools in the five-figure dollar range. Most of the other XML products are in the four-figure
region. By contrast, most new HTML products lie between $100 and $300. Clearly, these companies don't
see XML as a mass-market technology. If XML is going to take off, the freeware community is going to
have to do the heavy lifting. Otherwise, at these prices XML is limited to the same markets as SGML.

������;0/�3DUVHUV
As I previously mentioned, there are now a number of XML parsers available. An XML parser is software
solely dedicated to reading and interpreting XML documents to enable further processing by other
applications. They do this by giving the developer access to classes that can process XML documents.
These classes can then be called by other classes in an application through a common interface (almost all
parsers support the DOM Level 1 interface).

The most popular language to write XML parsers in is Java even though there are also parsers available in
other languages.

Two pairs of traits distinguish the different XML Parsers:
• Whether they are validating (checks DTD) or non-validating (checks for well-formedness, no

DTD checking).
• Whether they are lightweight and therefore intended for use in applets or whether they are best

suited for full-fledged applications.

Here is a small list of Java XML parsers that are available from different companies or independent
developers. A most interesting comparison between different XML parser can be found in [58].

Name Company/Developer Validating Lightweight URL
Aelfred Microstar No Yes http://www.microstar.com/aelfred.html
XP James Clark No No http://www.jclark.com/xml/xp/index.html
Larval Tim Bray Yes Yes http://www.textuality.com/Lark/
Microsoft XML
Parser for Java (XJ2)

Microsoft And
DataChannel

Yes Yes http://www.datachannel.com/xml/developers/parser.shtml

Java Project X ParserJavaSoft Yes Unknown http://developer.javasoft.com/developer/earlyAccess/xml/
XML Parser for Java
(XML4J)

IBM AlphaWorks Yes No http://www.alphaworks.ibm.com/formula/xml

������)XWXUH�6XSSRUW
As I have previously stated, the only thing that holds back XML is the lack of support and tools available
from the leading software companies. However this will soon change with Microsoft leading the charge.
Microsoft is actively involved in defining the emerging XML standard and will continue to implement
XML as defined by the W3C. As a co-founder of the W3C's XML Working Group, Microsoft enjoys broad
support for its efforts from many participants in the W3C process.

Microsoft wants to use XML to obviate some of the advantages sought by their competitors through the
emerging Enterprise JavaBeans (EJB) standard [48]. EJB allows the sharing of applications and
components across distributed, heterogeneous environments.

“ XML holds great promise for customers who need universal data communications with anyone,
anywhere."
-- J. Allard, general manager of Windows DNA infrastructure at Microsoft

42

Right now, Microsoft is aiming to prime the programmer pump on XML; they have gathered 6,000
developers to support the development of XML within their product line. Microsoft has announced that
they will support the following key features in the next update to the Windows operating system and its
Internet Explorer browsing software:
• Direct viewing of XML. The Microsoft XML implementation lets users view XML using XSL or

Cascading Style Sheets with their Web browser, just as they view HTML documents.
• High-performance, validating XML engine. The XML engine first encountered in Internet Explorer

4.0 will be substantially enhanced and fully support W3C XML 1.0 and XML Namespaces, which lets
developers qualify element names uniquely on the Web and thus avoid conflicts between elements
with the same name. Native XML support in Windows means that developers can count on the full
XML processing capabilities being present to read and manipulate the data they move between their
applications and components.

• Extensible Style Language (XSL) support. With the Microsoft XSL processor, based on the latest
W3C Working Draft, developers can apply style sheets to XML data and display the data in a dynamic
and flexible way that can be easily customized. The querying capabilities of the Microsoft XSL
processor also allow developers to programmatically find and extract information within an XML data
set on the client or the server.

• XML Schemas. Schemas, as previously described, define the rules of an XML document, including
element names and data types, which elements can appear in combination, and which attributes are
available for each element. In order to enable multitier applications, Microsoft will be releasing a
technology preview for XML Schema based on the Schema for Object-oriented XML (SOX)
submission to the W3C XML working group.

• Server-side XML. Server-side XML processing allows XML to be used as a standard means of
passing data between multiple distributed application servers - even across operating system
boundaries.

• XML document object model (DOM). The DOM is a standard object application-programming
interface that gives developers programmatic control of XML document content, structure, formats and
more. The Microsoft XML implementation includes full support for the W3C XML DOM
Recommendation and is accessible from Visual Basic- or Java-script, the Visual Basic development
system, C++, and other languages.

In addition to these innovations, Microsoft is using XML in its applications software. For example, the next
major release of the Microsoft productivity suite, Microsoft Office 2000 (Office 2K), elevates HTML to a
companion file format and uses XML to store additional document information. By using XML in this way,
Office 2K users can save documents as Web pages and then later return these documents to their original
Office state for editing.

Microsoft will also include support for VML in IE5.0. The advisability of this can be questioned, since
VML has received nobody’s blessing and in fact the W3C plans to combine several proposals into a "Single
Vector Graphics" (SVG) facility. Microsoft’s position is that VML is going to be the Office 2K vector
graphics format (nobody disputes that Office needs such a thing) and thus the IE5.0 browser needs to
support it so that it can display Office documents.

Looking at the Microsoft Office 2K implementation, though, it’s basically Microsoft saving its own
relevant information through XML data, rather than creating a vendor neutral solution. This is a deliberate
approach by Microsoft; sure you can save into HTML/XML, but there’s only going to be one browser on
the planet that will be able to open it up and do anything useful with it. Microsoft does not see XML as an
interchange format for vendor neutral solutions; they see it as a database format to augment their current
products.

With Microsoft so fully embracing XML there is no risk of the standard falling into oblivion. As stated
above, there is however a danger that Microsoft will try to make the standard “their own” and thus severely
limiting the openness of the standard.

Another trend that is becoming more and more apparent is that the traditional database companies (Oracle,
Sybase, and more) are working to incorporate XML into their database engines. Oracle will have their first
implementation of XML services available in their Oracle8i database manager, and the others are not far
behind.

43

3.3 An Example of XML and XSL
To show a small example of what currently can be done with XML and XSL I have constructed a small
application that implements a car record. The application consists of two parts, an XML document and a
XSL stylesheet.

The XML file [http://www.student.nada.kth.se/~d94-pno/exjobb/carregister/Car.xml] is the “database” of
the application; here is all the information about different cars stored using the XML v1.0 format. The XSL
file [http://www.student.nada.kth.se/~d94-pno/exjobb/carregister/car.xsl] describes rules to present the data
stored in the XML file using the XSL v1.0 format. This XSL-file is parsed using the Microsoft XSL
Command-Line parser to construct a dynamic HTML page. The dynamic HTML page uses the Microsoft
Internet Explorer 4.0 (IE4.0) XML Object Model and JavaScript to make the page interactive. A strange
fact is that even though the application uses the IE4 Object Model, it only works under Internet Explorer
5.0 (IE5.0). Obviously IE4.0 isn’t quite as compatible with XML as Microsoft claims. Another limitation is
that the IE4.0 XML Object Model don’t allow changes to be written to disk, so all changes are only stored
locally and disappear if you press the refresh button in your browser.

The application itself can be found at:
[http://www.student.nada.kth.se/~d94-pno/exjobb/carregister/xmlexample.html].
Observe that it only works with IE5.0. The application itself is very simple, you can view all the records by
clicking on the Next and Previous buttons. You can delete records, except when there is only one record
left; this is due to the fact that the IE4.0 object model don’t seem to handle an empty XML document very
well. You can also add records; the information currently in the input textboxes is stored as the new record.

Figure 9: This is a picture of the GUI in the XML example, the real application can be found at:
http://www.student.nada.kth.se/~d94-pno/exjobb/carregister/xmlexample.html

3.4 XML and Electronic Transactions
Companies have today put great effort into constructing computer applications to help them in their
business processes. While this has resulted in significant improvements in efficiency, that efficiency has
not been extended to external processes. By external processes I mean processes that involve interchange
between applications or business processes at different companies. Companies have in many cases created
islands of automation that are isolated from their suppliers, trading partners, and customers. Electronic Data

44

Interchange (EDI) has been heralded as the solution to this problem. EDI is the standardization of data-
exchange between heterogeneous systems to support transactions.

������(',
EDI is commonly defined as the application-to-application transfer of business documents between
computers. Many businesses choose EDI as a fast, inexpensive, and safe method of sending purchase
orders, invoices, shipping notices, and other frequently used business documents.

EDI is quite different from sending electronic mail messages or sharing files through a network, a modem,
or a bulletin board. The straight transfer of computer files requires that the computer applications of both
the sender and receiver (referred to as "trading partners") agree upon the format of the document. The
sender must use an application that creates a file format identical to the receiver’s computer application.

When you use EDI, it's not necessary for the trading partners to have identical document processing
systems. When the sender sends a document, EDI translation software can convert the proprietary format
into an agreed upon standard. When the receiver receives the document, his EDI translation software
automatically changes the standard format into the proprietary format of his document processing software.

The idea behind EDI is a good one, unfortunately it hasn’t worked out so well in reality. One of the major
problems with the current implementations of EDI is that they often require a unique solution for each pair
of trading partners, making EDI costly and time-consuming to implement.

Another problem with traditional EDI is that it is based on the use of rigid transaction sets with business
rules embedded in them. These transaction sets are defined by standards bodies such as the United Nations
Standards Messages Directory for Electronic Data Interchange for Administration, Commerce, and
Transport (UN/EDIFACT) [30] and American National Standards Institute’s Accredited Standards
Committee X12 sub-group (ANSI X12) [32]. Transaction sets define the fields, the order of these fields,
and the length of the fields. Along with these transactions sets are business rules, which in EDI-language
are referred to as “implementation guidelines”. So why is a rigid set of transaction sets not such a good
idea?

“It is not the strongest species that survive, nor the most intelligent, but the one most responsive to
change.”
-- Charles Darwin

A fixed transaction set prevents companies from evolving by adding new services and products or changing
business processes. The bodies that make the standard transaction sets are ill equipped to keep up with the
rapid pace of change in the various business environments they impact. It is also very hard, if not
impossible, to develop a one-size-fits-all solution.

“The big problem is that the formal EDI standards that exist today, such as UN/EDIFACT and ANSI
X12, were developed twenty-five years ago. New business practices, the development of global
economies, and advancements in computer technologies are just several of the factors that have made
those standards unworkable and unimplementable for many organizations (only 100,000 companies
worldwide today use EDI, which is rather surprising for standards and technologies that have been in
play for a quarter of a century). For one thing, the existing EDI standards only accommodate point-to-
point transactions. For another, as with many "standards," actual implementations are typically
customized to suit specific application requirements. With EDI, such customizations are embodied in
Implementation Conventions (ICs). In many instances, ICs have become barriers to effective data
interchange. Different ICs on the buyer and seller sides of the transaction make for data that's not
interoperable without translation or conversion of some sort.”
--Mary Fletcher Laplante, Director, Document Software Strategies Group.

������(',�XVLQJ�;0/
By using XML to implement EDI many of the old problems are eliminated. XML maintains the content
and structure, but separates the business rules from the data. By focusing on exchanging data content and
structure, trading partners can apply their own business rules. Using XML it is also very easy to extend the
communication to support new business processes, EDI will no longer be limited to rigid standards.

45

“XML supports the development of dynamic repositories; no longer do EDI applications have to be
"shoe-horned" into fixed element dictionaries or templates.”
--Mary Fletcher Laplante, Director, Document Software Strategies Group.

When I say that EDI using XML is not limited to rigid standards that doesn’t mean that it doesn’t have to
conform to ANY standards. Trading partners still need to agree upon the format and contents of the
messages to be able to interpret them. What XML provides is primarily:
• Self-explaining syntax: Since the elements in XML are discoverable using document type definitions,

the elements used to describe a supplier's product, its pricing, or other attributes can be gleaned without
first having to agree upon a single format beforehand. Previous visions of EDI could not use this kind
of ad hoc partnership approach. At best, an industry might define a set of EDI templates or forms for
specific transaction types. Generally, these would be established by the largest company in a supply
chain as a de facto set of transaction standards and datatypes.

• Modularity: The XML – EDI messages can be constructed using a combination of several
standardized modules. It is possible to provide a number of standardized and publicly accepted
building blocks that can be used to construct more complex EDI messages. This is quite different from
the current implementations where all the functionally has to be included in the messages from the
beginning, resulting in that people are adding all kinds of messages in the standards because they
MAY be used in the future.

• Extendibility: Since the EDI standard using XML is no longer under the eye of standardization
committees, such as UN/EDIFACT and ANSI X12, it is much easier to add new support and
functionality in the EDI messages.

• Presentation: The XML – EDI messages can be presented directly to the user using the XSL
specification (when and if such support becomes available in the browsers).

• Transformation: The XML – EDI messages can be processed, transformed and analyzed using the
proposed XML-QL standardization.

The fact that XML documents can easily be distributed using the Internet is another major advantage. This
combined with the fact that XML is self-explaining provides the entire framework for what the XML/EDI
group calls a new “supply web”. Earlier many EDI implementations only worked within their own
Intranets. With XML this is no longer the case since XML provides connectivity through the Internet. All
applications are then able to communicate and exchange data, thus the old point-to-point solutions are
history. To many people XML-EDI is also what they call a ‘politically correct’ way to merge ANSI X12
(the US standard) and EDIFACT (the world standard).

“ The goal is to establish the standard for future EDI that is open and accessible to all vendors and end
users alike. More importantly, it is not only extendible into the future, but also adaptable to incorporate
new technologies.”
--David Webber, a founding member of the Internet-based XML/EDI Group.

��������(',�XVLQJ�;0/�±�([DPSOH
Consider a small, Web-based retailer that stocks inventory from a major manufacturer. For years the
company has been ordering merchandise from the manufacturer using a human-readable purchase order
such as that in Listing 1, for 1000 fuzzy dice. Now the manufacturer is demanding that the retailer begin
using EDI for transactions or else it will add a surcharge to every order to offset the cost of handling
manual transactions. The small retailer can’t find a more lenient supplier, so it has little choice.

/LVWLQJ����3ODLQ�SXUFKDVH�RUGHU
P.O. Number: 003429
Date: 1 December 1998
Order Contact: John Johnson
Company: Internet Retailer Inc.
Address: 123 Via Way, Milwaukee WI, 53202

Qty Part No. Description Unit Price Total
100 CO633 Fuzzy Dice $1.23 $123.00

46

Unfortunately, EDI compliance means the retailer will now have to transmit its purchase orders in a format
specified in one of the several standard sets for EDI format, the most widely used being ANSI X12 and
UN/EDIFACT. Listing 2 shows part of an ANSI X12 version of the purchase order in Listing 1. It’s
possible that the retailer’s current accounting software supports EDI transactions, but not likely. It will
probably have to either convert to software that does, purchase software that can make the translation (if
available), or contract with a third party to convert the data on an ongoing basis.

/LVWLQJ����)UDJPHQW�RI�$16,�;���WUDQVDFWLRQ�VHW�FRUUHVSRQGLQJ�WR�/LVWLQJ��

ST*850*12345
BEG*00*SA*3429**981201
N1*BY*Internet Retailer Inc.*91*RET8999
N1*ST*Internet Retailer Inc.
N3*123 Via Way
N4*Milwaukee*WI*53202
PER*OC*John Johnson
PO1**100*EA*1.23*WE*MG*CO633
SE*9*12345

So, would there be any advantage, for the retailer or the manufacturer, to using an XML format instead?
Perhaps the retailer’s accounting software is tailored to Internet commerce, and already uses XML formats.
In this case, there are utilities for converting one data type definition (DTD) to another, and the conversion
to EDI might be accomplished by a generic tool. The resulting transmission would certainly be more
comprehensible to humans, and perhaps even feasible for an employee with a text editor or XML editor to
generate. An example of how the sample purchase order might look in an XML rendering of X12 is given
in Listing 3. This example is based on the ongoing work of the XML/EDI group. One disadvantage with
using XML, as can be seen below, is that the size of the EDI messages gets a lot bigger than the X12
messages. In this example, the XML message is about 8 times bigger than the X12 message.

/LVWLQJ����;0/�GRFXPHQW�DQDORJ�WR�WKH�;���WUDQVDFWLRQ�VHW�LQ�/LVWLQJ��
<?XML version="1.0" encoding="UTF-8"?>
<PurchaseOrder Version="4010">

<PurchaseOrderHeader>
<TransactionSetHeader X12.ID="850">

<TransactionSetIDCode code="850"/>
<TransactionSetControlNumber>12345</TransactionSetControlNumber>

</TransactionSetHeader>
<BeginningSegment>

<PurposeTypeCode Code="00 Original"/>
<OrderTypeCode Code="SA Stand-alone Order"/>
<PurchaseOrderNumber>RET8999</PurchaseOrderNumber>
<PurchaseOrderDate>19981201</PurchaseOrderDate>

</BeginningSegment>
<AdminCommunicationsContact>

<ContactFunctionCode Code="OC Order Contact"/>
<ContactName>John Johnson</ContactName>

</AdminCommunicationsContact>
</PurchaseOrderHeader>
<PurchaseOrderDetail>

<Name1InformationLOOP>
<Name>

<EntityIdentifierCode Code="BY Buying Party"/>
<EntityName>Internet Retailer Inc.</EntityName>
<IdentificationCodeQualifier Code="91 Assigned by Seller"/>
<IdentificationCode>RET8999</IdentificationCode>

</Name>
<Name>

<EntityIdentifierCode Code="ST Ship To"/>
<EntityName>Internet Retailer Inc.</EntityName>

</Name>
<AddressInformation>123 Via Way</AddressInformation>
<GeographicLocation>

<CityName>Milwaukee</CityName>
<StateProvinceCode>WI</StateProvinceCode>
<PostalCode>53202</PostalCode>

</GeographicLocation>

47

</Name1InformationLOOP>
<BaselineItemData>

<QuantityOrdered>100</QuantityOrdered>
<Unit Code="EA Each"/>
<UnitPrice>1.23</UnitPrice>
<PriceBasis Code="WE Wholesale Price per Each"/>
<ProductIDQualifier Code="MG Manufacturer Part Number"/>
<ProductID Description="Fuzzy Dice">CO633</ProductID>

</BaselineItemData>
</PurchaseOrderDetail>

</PurchaseOrder>

��������;0/�(',�7DJV
Currently a big debate is going on between the different XML-EDI groups on what the structure of the
XML tags should be. Some advocate the use of the full description in the tag and others the use of the
ANSI element number as the tag name. Others want to use a unique number that would include the
standard version of the directory, the segment it resides in and the data-element it represents. In the view of
the European Electronic Messaging Associations (EEMA) EDI work group, there should be a sequential
numbering of the tags for XML-EDI; this would be an identifying code only, starting with a letter. This
would provide a neutral starting point for all old standards and would be most efficient in size.

��������5HSRVLWRULHV
XML-EDI incorporates the concept of a global dynamic repository. The repository is proposed to act like a
dictionary that defines the semantics of terms used in a transaction. That repository would also be used to
hold common Document Type Definitions under the XML/EDI proposal.

“The repository is a location where shared Internet directories are stored and where users can manually
or automatically look up the meaning and definition of XML-EDI Tags. The repository is in fact the
semantic foundation for the business transactions.”
--XML/EDI Group.

XML repositories will provide a means for industries to store on the World Wide Web the document-type
definitions that identify the data elements and their relationships exchanged among parties doing business
electronically. Repositories will also contain logic components, such as Java applets, template scripts,
forms and object definitions needed to process message components.

Figure 10: Shows the global repository of standardized EDI messages that themselves are made up
by standardized XML – EDI building blocks. The building blocks contain both an XML document
containing the structure (DTD) and data, and an XSL stylesheet to display that document.

48

With common registration procedures for these components, repositories will act as global libraries, and
enable industry groups, government agencies, and businesses of all sizes to make their preferred message
formats widely available to current and potential trading partners.

“XML repositories will ultimately redefine not only how companies do business but also how they
implement business applications. The key is in providing an open architecture to facilitate the wholesale
shift of business to the Web.”
--Bruce Peat, chair of the XML/EDI Group.

It is anticipated that fully functional global repositories will evolve in phases:
• Phase 1 - Limited Intranet implementation, proof of concept, with manual Web interface.
• Phase 2 - Definition of basic API allows Extranet implementations between specific partners.
• Phase 3 - Definition of full API and available repository products allows full implementations.
• Phase 4 - DNS style service established and standards bodies adopt support for API and long term

maintenance and alignment.

([DPSOH��$Q�;0/�(',�WUDQVDFWLRQ�XVLQJ�D�JOREDO�UHSRVLWRU\

Organization 1 Organization 22

Global
Repository

1 3

Transaction

Figure 11: XML/EDI Transaction Schematics

❶ A user or agent in Organization 1 queries the Global Repository for the structure (DTD) of those
common business objects that are to be passed to a trading partner - Organization 2.

❷ The business objects are passed to Organization 2, using XML documents structured according to
the DTDs fetched from the Global Repository.

❸ The receiver maps the received data in to the organization’s application system. The mapping is
received from the Global Repository.

The intent of the Global Repository is to be a dynamic mechanism that responds through an open
Application Programming Interface (API).

��������&XUUHQW�DQG�IXWXUH�VXSSRUW
Currently there is much work going on in this area. The XML/EDI group
[http://www.geocities.com/WallStreet/Floor/5815/] is working to define XML namespaces and DTDs equal
to the EDIFACT standard to support commercial usage of EDI over XML. Even though most organizations
agree that EDI using XML is a good idea some are still skeptical. This is due to the fact that they think that
EDI is too complex to be dealt with easily. In the health care industry alone, there are 400 different formats
for a claim. One of the key issues will be how compatible the new implementations of EDI will be to the
old ones; currently there is no answer to this question.

49

Enterprise resource planning (ERP) heavyweights such as PeopleSoft Inc., Oracle Corp., and SAP AG plan
to incorporate XML syntax into products to help companies lower the cost and labor involved in
exchanging data with business partners. Separately, third-party software vendors are pushing XML to
enable data exchange over the Web between separate financial systems.

One such vendor is webMethods who claims to have the first and currently only XML-based e-commerce
solution in their Business to Business (B2B) product. B2B automates the exchange of data between
applications, Web sites, and legacy data sources using XML. At the heart of webMethods B2B is the Web
Interface Definition Language (WIDL) [11]. Introduced in 1996, WIDL was one of the first applications of
XML. WIDL provides a means of describing automated access to Web-enabled resources and enterprise
applications through well-defined interfaces much like COM and CORBA. By abstracting information
about Web and external application resources, applications can be protected from changes in the structure,
appearance, and location of data.

3.5 Product Data
In the world today there is a great need to digitally store information about products. This information is
commonly called product data. The term product has here a very wide range and can be anything from
roads to spoons. One of the key characteristics of product data information is that it is modified (created,
used, and added to) throughout the life cycle of a product. For instance, the basic shape of a building will
be created by an architect (design phase), modified by structural engineers (analysis phase), realized by
constructional engineers (production phase), and used in managing and maintaining the building
(operations and maintenance phase).

Today there exists a number of applications and systems that handle this kind of data, the problem is as
usual how to make them talk to each other. As a solution to the communication problem and to enable the
inter-working of different systems, a product data integration standard has been developed. This standard
has been named STEP.

So, why is there a chapter about product data and STEP in an XML review? Decerno is currently working
closely together with Vägverket on an infrastructure for storing and viewing the road network in Sweden.
The information about the roads will be stored in two systems called GALANT and NVDB (Nationell
VägDataBas).

Decerno has developed the GALANT system to store road information for the Swedish municipalities.
CAP (another Swedish software consulting firm) is currently developing NVDB and it will be used to store
information about roads for all of Sweden. These two systems need to be able to communicate with each
other. It has been decided that NVDB will use STEP part 21 (described below) to transfer information to
and from it. But STEP has some limitations. Decerno is therefore interested in the possibility of in the
future replacing STEP with XML. Is it possible and what will the advantages and disadvantages be of this
possible replacement? To answer this question we first need to understand something of the STEP standard.

������67(3
STEP originally stands for STandard for the Exchange of Product Model Data, however the scope of the
name has recently been broadened to stand for Standard for the Exchange of Industrial data. STEP is the
unofficial name, the official name of the STEP standard is ISO 10303 Industrial Automation Systems –
Product Data Representations and Exchange [23]. The work on the STEP standard was initiated in 1984,
with the following objectives:
• The creation of a single international standard, covering all aspects of CAD/CAM data exchange.
• The implementation and acceptance of this standard in industry, superseding various national and de

facto standards and specifications.
• The standardization of a mechanism for describing product data, throughout the life cycle of a product,

and independent of any particular system.
• The separation of the description of product data from its implementation, such that the standard would

not only be suitable for neutral file exchange, but also provide the basis for shared product databases,
and for long-term archiving.

STEP is a very big standard, but it has three key components:
- The EXPRESS data specification language.
- Data Models

50

- Implementation Forms.

��������(;35(66
One of the key objectives of STEP is to provide an unambiguous and computer interpretable representation
of product data. This is supported through the use of the EXPRESS language [24]. EXPRESS is a data
definition language that is used to represent the structure of data and any constraints that may apply to it.
The structured data is usually divided into separate modules called data information models or simply data
models. Although EXPRESS resembles some programming languages, it can not be used to define
executable programs. It is used to define the data on which programs operate. EXPRESS supports:
• The definition of data entities, attributes, and relationships.
• The specification on local and global constraints on the entities.
• The collection of data definitions and constraints in separate schemata, supporting modular

development of data models.
EXPRESS code can be written as text and viewed using EXPRESS-G, a simplified graphical
representation of the EXPRESS models. Here is an example using both methods.

([DPSOH��&DU�GDWD�DV�(;35(66�FRGH
ENTITY car;

make : STRING
model : STRING
year : INTEGER
owner : person

END_ENTITY

ENTITY person;
first_name : STRING
last_name : STRING

END_ENTITY

([DPSOH��&DU�GDWD�DV�DQ�(;35(66�*�JUDSKLFDO�UHSUHVHQWDWLRQ

Figure 12: An Express-G representation

��������'DWD�0RGHOV
STEP’s data models are extremely generic and can in principle handle any kind of entity, including people,
things, processes, documents and information content. The data models are, as said above, defined using
the EXPRESS language. They are used to exchange and share product data. This is accomplished through
the standardization of usable data models. There exist two types of standardizations:

51

- Generic product data models: That supports the requirements of all product data applications. It has
a modular structure that supports extensibility and phased development. As a result, this generic model
is published in several different parts of the STEP standard known as Integrated Resources.

- Specific product data models: To support the need for more application-specific data models the
generic product models can be constrained and sub-classed to form more specific data models. These
models are standardized in STEP as Application Protocols, which form application-specific “views”
within the standard.

��������,PSOHPHQWDWLRQ�)RUPV
As previously noted, STEP separates the concept of data specification (data model) from implementation
(data values). The Implementation Forms parts of STEP define standard formats for data instances and
values. These formats have mappings between them and the EXPRESS language to enable checks for
consistency and correctness. STEP currently only supports two implementation forms although more has
been designed:
• The “physical file” format (published as ISO 10303-21, a.k.a. STEP Part 21) is an ASCII encoding

form for data that conforms to any EXPRESS schema. There is nothing specified in the standard about
how these files are to be exchanged.

• The Standard Data Access Interface (SDAI, published as ISO 10303-22, a.k.a. STEP Part 22) specifies
standard functions that allow access to data within a database or application. The database or
application needs a special interface to communicate with. The SDAI functions allow programs to
manipulate product data defined by an EXPRESS model within the database or application.

([DPSOH��$�FDU�GDWD�LQVWDQFH��VWRUHG�XVLQJ�67(3�3DUW���
ISO-10303-21
FILE_SCHEMA((‘car’,’person’));
ENDSEC

DATA
#1 = CAR (“Ford” , “Orion” , 1989 , #2)
#2 = PERSON (“Julian”, “Fowler”)
ENDSEC
END-ISO-10303-21

These implementation forms are the big problem with STEP; it has no support for Web and Internet usage:
- STEP part 21 only defines how the files should look; nothing is said about how they should be

distributed.
- STEP part 22 only specifies an API so that a database containing EXPRESS model data can be

manipulated.

������67(3�RU�;0/"
STEP and XML have been developed for much the same reasons, to describe and transfer data in a
structured and standardized way, independent of the applications that are going to use the data. Therefore
they have many similarities:
- Both are used to transfer data between applications.
- Both separate the data models from the actual data, in STEP through an EXPRESS model and in XML

through a DTD.
- Both has support for checking the data instances against predefined models, as above.
- Both support modular development.
- Both supports direct interaction with databases through special interfaces.

With so many similarities what are the key differences that separates the two standards?
• Tools: STEP has been around much longer and has more tools developed to support it. But new tools

are being developed for XML every day.
• Type Checking: STEP incorporates type checking, something that XML does not do (but an

application reading the XML document could do it).
• Data Models: STEP uses the EXPRESS language to define models. The closest thing XML has is the

DTD and it does not have nearly the same functionality as EXPRESS concerning constraints, heritage,
etc.

52

• Predefined models: STEP has predefined generic models that are used to define the specific data
models. No XML DTDs or namespaces have yet been developed to specifically support product data,
but that does not mean that it can’t be done.

• Internet support: XML documents can easily be distributed over the Internet using HTTP, there is no
such support in STEP.

• View: XML has a stylesheet language that can be used to view the data directly.
• Data Manipulation: XML has a proposed query language that could be used to manipulate the

product data stored in the XML documents.
• Links to other documents: XML supports in-line links to other documents so that not all the product

data need to be stored in the same document. In STEP all data needs to be in the same document to be
able to verify that the data conforms to the EXPRESS model.

��������&RQFOXVLRQ
What it all boils down to is this. XML isn’t nearly a complete replacement of STEP; it does not have
support for inheritance and constraints for the data models in the same way as EXPRESS has. XML could
however be used for much the same goals and provide other functionality that STEP does not have, such as
Web support.

������67(3�DQG�;0/"
One really interesting area, that now is being researched, is the possibility of combining the STEP and
XML (or SGML) standards. This would give the developer the best of two technologies:
• STEP's powerful EXPRESS schema language, that offers a well-developed constraint formalism for

defining product data.
• XML’s support for the Web could greatly facilitate the interchange of STEP-conforming product

information. STEP data could, of course, be interchanged using XML, given an appropriate XML-
based information architecture that is widely understood and accepted.

There are currently two views of how this could be done.

One group wants to fully incorporate XML as an interchange format between STEP-compliant databases.
To be used in this way would require a standard means of expressing the entire data model of a STEP-
compliant database, together with a subset of its contents, in the form of valid (or at least well-formed)
XML. The interchange package would presumably need to include appropriate DTDs (if any),
Link files, and a robust universal addressing mechanism. The inclusion of stylesheets would presumably be
optional, depending on whether, in addition to data interchange, the contents of the package were intended
for display.

The other group does not think that XML is up to the task of fully interacting with STEP. This is because
they think it is wildly unlikely that generic XML browsers can usefully support interactions with STEP
source data. There are far too many specialized semantics. And if you can't usefully interact with STEP
source code using a generic XML browser, what's the advantage of using XML to interchange STEP data?
They instead suggest using SGML/HyTime [44] for interacting with STEP source data. XML should be
used separately to providing access to STEP data on the Web.

It is not clear which of these views that is “correct”. They both agree that there definitely is a place for
XML in STEP, but they disagree about how it should be used. W3C hasn’t yet made any comments on the
matter. In the words of Jon Bosak, Chair of the W3C XML Group:
“I don't think that the burden of proof falls on the W3C group to prove that XML can meet the needs of
STEP. I think that it's up to those who believe that XML is incapable of meeting those needs to tell us
where it falls short.”

������67(3�RU�62;"
After I made the above observations, the SOX specification has been submitted to the W3C for review.
This standard seems to be able to take over the responsibilities from STEP since it, unlike the XML 1.0
specification, has support for type checking, inheritance, and constraints.

53

Since it was submitted very recently, little or no feedback has reached the Internet community concerning it
as a possible replacement of STEP. It is known that Microsoft has announced that they will support XML
schemas in IE5, so at least the specification has some support.

54

Part 4: Trying out XML
In theory XML looks really promising, but as all Internet programmers know - theory is one thing and
reality is often another. It is therefore necessary to try the specification out in a real project to find the
advantages and disadvantages compared to earlier techniques and specifications.

“Given that XML was designed for use over the Web (right?) and it has been in gestation for 2 years I
find it incredible that XML has not done anything useful in public view. Lots of hype in the magazines,
etc. but nothing tangible to show for it. Tangible in the sense that I can show a non-XML person
something that will interest them.

XML was effectively launched in spring 1997 at WWW6, Santa Clara. It's 15 months since then and
over a year since the first draft of the XLink spec was released. And as far as I can see there are virtually
no useful applications that have been created. I now find it difficult to convince people that XML is
useful, other than by repeatedly stating it as an act of faith.”
--Peter Murray-Rust on the xml-dev mailing list: September 16, 1998.

There has been an enormous amount of hype surrounding XML since the first working draft was released
back in November 1997. But it is only recently that some members of the Internet community actually have
started doing something with the standard. When Decerno decided to try out XML in a real project (and not
just in a test environment) they put themselves in the absolute forefront of XML developing.

4.1 The application – Pastill
In October 1998 Decerno received an order from Omsorgsnämden in Sweden for an Interned based
application that would be used to view and gather statistics from Stockholm’s many “Psykisk Barn och
Ungdomsvård” (PBU) receptions. The name for this application was decided to be Pastill. The Pastill
project was something of a pioneer project for Decerno and it was decided that we would use it to evaluate
and try out several new technologies and methodologies, including XML.

In the following chapters I will first describe the Pastill application – what it does, how it does it and where
XML is used. After that I will comment about how well XML worked out in Pastill – was it as good in
practice as it looked in theory? Finally, I will make some comments about my experiences concerning
Pastill as a project – time planning, working in a team, satisfying customer demands, and so on.

������:KDW�VKRXOG�3DVWLOO�GR"
Pastill is a Web-based system for gathering patient- and time-statistics. There are two types of demands put
on the application, functionality demands and resources/technology demands.

��������)XQFWLRQDOLW\
The functionality that Omsorgsnämden wanted Pastill to have was to over the Web (Intranet) enable the
user to view, change, input and/or search data concerning:
• Personal data about patients (i.e., date of birth, country of origin, relatives, and so on).
• Data concerning patient visits and the time spent on these visits by the staff at the different sites.
• Other types of statistics (for instance, the average time from the first visit to the last visit for all

patients).

��������2WKHU�UHTXLUHPHQWV
When Decerno received the order for Pastill, there were a number of requirements that the system had to
fulfill besides having the wanted functionality.

• Low bandwidth usage: Since the Intranet at Omsorgsnämden for the most part consists of dial up
modem connections, Pastill couldn’t be allowed to use to much bandwidth because of the limited
bandwidth available on these connections.

• Work on Internet Explorer 4.0 Service Pack 1: The client part of the system had to be able to work
on the Internet Explorer 4.0 Service Pack 1 (IE4.0 SP1) platform from Microsoft. (This demand
automatically disqualified Pastill from making use of the built in support for XML that IE5.0 has).

55

• Automated installation on the clients: The installation of the client components should be automated
so that the system does not require a hands-on installation of each client.

������'HVLJQ
With these requirements in mind we (the team of three people behind Pastill) started the development
process by looking at a suitable design. As all programmers know, the design is one of the most important
parts (if not THE most important part) of any development. If the design is wrong it does not matter how
good you make the implementation, it simply will not work.

In Pastill we wanted to do it right the first time and go for a scalable three-tier Web design right from the
beginning. At this stage I also planned to try out two different technologies for the Client-Server
communication but as I will return to later, a broken time-table put a stop to that idea and I only made an
XML implementation.

However, an overview of the design can be seen in figure 13, each part will be more thoroughly described
in the following chapters. Since many of the technologies used in Pastill are beyond the scope of this
document, I will only give the reader a short description of these technologies in order to give a
perspicuous view of the application. The goal is to allow the reader to understand how these technologies
have been used in Pastill together with XML to make it all work together. The interested reader is referred
to the documents given in the bibliography [20,31,40,41,42,49,50,56].

Figure 13: Overview of the three-tier design of Pastill

��������'DWDEDVH
The database in Pastill is a standard Microsoft SQL Server v6.5. It consists of 42 tables with a total of
about 170 columns. It supports an Open Database Connectivity (ODBC) [49] interface that the Server uses
to access the database. The Server uses Microsoft ActiveX Database Objects (ADO) [31] to interact with
this ODBC interface to store and retrieve information from the database.

Open Database Connectivity (ODBC) is a Microsoft established standard [49] that enables software
developers to create applications that can work with a number of SQL-based data sources. With ODBC,
applications needing data from a data source can generate ODBC calls, and these calls are then translated
by an ODBC driver into the native SQL of the data source being accessed.

ActiveX Data Objects (ADO) is a Microsoft established technology [31] that can be used by developers to
add database access to their applications. It’s capable of condensing otherwise complex and lengthy
programming tasks into simple-to-use statements. Using ADO you can connect to databases, issue queries,
and gather responses. ADO lets you step through the records you have queried for, make changes, and send
those changes back to the database. ADO does this without requiring the programmer to know the intricate
details of communicating directly with the database to perform the task set before him.

56

��������6HUYHU
The server in Pastill consists of two parts – a Web Server and a Microsoft Transaction Server (MTS) [42].
The Web Server handles all communication with the client and the Transaction Server handles most of the
communication with the database.

The Transaction Server contains Microsoft Java Component Object Model (COM) objects that are used to
store data in the database. These objects are stored in Transaction Server in order to speed up the
application, and to give the advantages of a component-based solution. The speed-up is achieved through
Transaction Servers ability to reuse components after their release, i.e., the objects only need to be created
once and thus it takes shorter time to reuse them.

The Microsoft Component Object Model (COM) [40] is a way for software components to communicate
with each other. It's a binary and network standard that allows any two components to communicate
regardless of what machine they're running on (as long as the machines are connected), what Operating
System (OS) the machines are running (as long as it supports COM), and what language the components
are written in.

The Web Server is used to store and process Microsoft Active Server Pages (ASP) pages. These ASP pages
make up the framework for the entire application, both on the server and on the client. Each of them is used
to hold the different components together and to pass data between the components. It is important to
understand that the ASP pages are NOT used to pass data between the client and the server, where XML is
used. The ASP pages are however used to create XML documents as will be later described.

Active Server Pages (ASP) technology is a powerful Microsoft Web Server feature [50]. In brief, ASP
allows developers to mix HTML, server- and client-side scripts in a single file. Thus allowing developers to
control both how the server interacts with the client (server-side scripting), and how the user interacts with
the client (client-side scripting).

The Web Server also has a Java COM that handles all the XML traffic on the server. This object and the
corresponding object on the client will be described below.

��������&OLHQW
The client consists of two parts, a GUI and a Java Applet that corresponds to the Java COM object on the
server that I just mentioned. It is held together in the same way as on the server using ASP pages.

The GUI on the client is programmed using Visual Basic 6.0. In the beginning we planned to use Microsoft
Windows Foundation Classes (WFC) [56] to build the GUI. Early tests however showed that in order to
make this work the client would have to download huge runtime libraries, and that was not desirable due to
the limited available bandwidth.

��������:KHUH�GRHV�;0/�ILW"
Pastill uses the XML v1.0 Specification to define XML documents that are transferred between the client
and the server. Both the client and the server have Java objects running that sends and receives XML
documents according to the user’s actions.

The client Java object has two functions; it is used to:
• receive information (XML documents) from the server and to process that information so that it can be

presented to the user.
• collect information from the GUI that it sends (using XML documents) to be saved by the server in the

Database.

The server Java COM object has the corresponding two functions, it is used to:
• send information stored in the database to the client (using XML documents).
• receive information (XML documents) from the client that it should save in the database.

57

������+RZ�3DVWLOO�ZRUNV���)ORZFKDUWV
It is always very hard to try and describe the underlying structure and functionality of an application to
someone who hasn’t been involved in developing it. But in this chapter I will try just that to give an
overview of Pastill, and to try and show just how Pastill uses XML.

The easiest way to understand how any system works (I have found) is often to view a chart that shows the
different transactions that can occur in the system. By transactions I mean how different actions by the user
cause different flows of events and data to stream through the application.

In Pastill, all transactions are initiated by a user action. Depending on the type of the action, two different
but similar types of transactions are initiated. The type of the resulting transaction depends on if the user
action causes data to flow from the client or to the client. In this chapter we will examine both of these two
transactions from two different viewpoints – that of the client’s and the server’s.

��������7KH�&OLHQW�5HTXHVWV�'DWD
This type of transaction was initiated when the client requested some data stored in the database. First I will
look at how this transaction looks from the client’s viewpoint and then how it looks from the server’s. I will
begin with a graphical view and then explain how and in which order things happen in the application.

����������&OLHQW�7UDQVDFWLRQ

Server

Active Server Pages

GUI (VB6)

Events

Events

Java Applet +
XML Parser

HTTP Requests

XML Responses

Client

Figure 14: Client Transaction (data is passed from the server to the client)

➊ The user initiates the transaction by pressing a button in the Visual Basic GUI. For instance, the
user wants to view a list of all patient journals from the Lidingö PBU-Reception.

➋ This results in an event that is sent from the GUI, to the ASP page that the GUI lies in.

➌ The ASP page receives the event and, depending on the event type, runs a method inside a Java
Applet that lies waiting in another ASP page on the client. This Applet can be thought of as the
“engine” of Pastill.

➍ This is where things get interesting. The method in the Applet issues an HTTP request for an ASP
page located on the Web Server. In the HTTP request header, the Applet includes action specific
parameters (for instance, the desired journal number) that are received by the requested ASP page.

58

➎ Exactly what the Server does will be shown later in the next section, but the result is that an XML
document is sent back to the client with the requested data.

➏ The Applet receives the XML document and feeds it to an internal Java XML parser from IBM
AlphaWorks named “XML Parser for Java” (XML4J) v1.1.9 [57] that will be described later. The
XML4J parser parses and validates the XML document. It then constructs Java classes that are
passed on to the Applet to read and manipulate the received XML document. The Applet uses
these classes to process the XML document.

➐ When the Applet has finished processing all the data stored in the XML document, the gathered
data is sent in a number of events to the ASP page.

➑ The ASP page receives the event and passes the data along to the GUI.
➒ The GUI receives the information and presents it to the user.

����������6HUYHU�7UDQVDFWLRQ

Client

Active Server Pages

HTTP Requests

XML Responses

Server

<?xml version="1.0" encoding
= "ISO-8859-1"?>

Get the parameters in the
HTTP header

<Journal>
<Journal_Nummer>

Get data from
the database
using ADO

</Journal_Nummer>
…

</Journal>

DatabaseADO Database

Figure 15: Server Transaction (data is passed from the server to the client)

➊ The client initiates the transaction by sending an HTTP request for an ASP page located on the
Web Server.

➋ The Web Server loads the requested ASP page and prepares to execute the server-side scripts
(marked in italics, in figure 15). The loaded ASP page almost looks like an XML document. But
instead of having values inside of the XML leaf elements, it has server-side script-code,
henceforth referred to as leaf-scripts.

➌ The first thing the server-side script does, is to retrieve the parameters that where passed in the
HTTP header.

➍ Then, in every tag, the leaf-scripts are run to fetch the correct values for this element from the
database depending on the input parameters.

➎ The leaf-scripts uses Microsoft ADO/ODBC to retrieve the data corresponding to the leaf tag
names from the database. For instance, the value inside <Journal_Number>
</Journal_Number> is fetched from the journal_number column in the journal table from the
database.

➏ The data is returned and all the leaf-scripts are replaced by their fetched data.

59

➐ When all the leaf-scripts have been processed, the original ASP page has been transformed into a
XML document containing the requested data!

➑ The ASP/XML document is sent back to the server as a response to the HTTP request.

Connect the described client and server transactions and that is basically how all data gets transferred from
the database to the server.

��������7KH�&OLHQW�ZDQWV�WR�VWRUH�GDWD
The user initiates the second type of transactions in Pastill when he/she wants to store data in the database.
As before I will first show how this transaction looks from the client’s viewpoint and then how it looks
from the server’s.

����������&OLHQW�7UDQVDFWLRQ

Server

Active Server Pages

GUI (VB6)

Event +
 Data

Java Applet +
XML Parser

HTTP Post + XML

ASP Responses

Client

Event +
 Data

Success or
Failure

Figure 16: Client Transaction (data is passed from the client to the server)

➊ The user initiates the transaction by wanting to save some data in the database. For instance, the
user wants to save a new journal for a new patient.

➋ As before this results in an event that is sent from the GUI - to the ASP page that the GUI lies in.
But this time the event contains data that the user wants to save.

➌ The ASP page receives the event and, depending on the event type, runs a method inside the same
Java Applet as before.

➍ The Applet retrieves the data that was sent in the event and passes it to the internal XML4J parser.

➎ This XML parser creates a new XML document based on that data, and returns it to the Applet.

➏ The Applet takes the returned XML document and posts it to the server using an HTTP Post
request.

➐ I will in the next section show exactly what the server does with this HTTP Post request. But it
always results in this: The server returns an ASP page that tells the client-side ASP page, if the
data has been saved correctly or if some errors occurred.

➑ The client-side ASP page passes on the received success/failure to both the GUI (to be presented
to the user) and to the Applet (because it needs to be up-to-date).

60

➒ The GUI receives the success/failure and informs the user accordingly.

����������6HUYHU�7UDQVDFWLRQ

Client

ASPASP

HTTP Post+XML

ASP Responses

Server

Database

Java COM object
+ XML Parser

Get the XML document
from the HTTP Post

Method + Data

Transaction Server

Java
COM

objects

Java
COM

objects

Procedure calls

Return values

Figure 17: Server Transaction (data is passed from the client to the server)

➊ The client initiates the transaction by sending an HTTP Post request to an ASP page located on the
Web Server. The HTTP post contains an XML document embedded in the request.
The ASP page is loaded on the server and the server-side scripts are initiated.

➌ The first thing that these scripts do is to retrieve the XML document from the HTTP post.

➍ Then a method is called in a Java COM object that lies embedded in the ASP page, the retrieved
XML document is sent as an argument to the method.

➎ The method in the COM object takes the XML document that it received and passes it to a server-
side, internal, XML4J parser. The XML4J parser parses and validates the document, it then returns
Java classes to the COM object to read and manipulate the information.

➏ The COM object uses the returned classes as it calls procedures inside other Java COM objects.
These objects are located within the Microsoft Transaction Server (MTS). The sole purpose of
these objects is to store information in the database. They are highly specialized and each is used
to store one little piece of the data. They are located within MTS because MTS has automatic
transaction handling (including rollback if something goes wrong) and connection pooling.

➐ Each object in the MTS takes its little piece of data and tries to store it in the database. If all MTS
objects succeed in saving the data in the database, the ASP page is notified of their success. If one
or more of the MTS objects fail, nothing is saved in the database i.e., rollback occurs, and the ASP
page is notified of their failure.

➑ The ASP page gets the MTS objects success/failure return value. The ASP page reformats itself
according to the return value and is returned to the client to inform it of if the transaction
succeeded or failed.

61

������$W�WKH�+HDUW�RI�3DVWLOO�²�DQ�;0/�3DUVHU
A vital part to make Pastill work is the Java XML parser that is used both on the client and on the server.
As can be seen above, it is used once every time the user wants to retrieve data and twice when the user
wants to save data.

As I have mentioned in an earlier chapter, there are today a number of Java XML parsers available from
different sources. One of the decisions I had to make early in the design process was to choose which XML
parser that we would use in Pastill. I had five requirements that I wanted the parser to fulfill:
• It should not be a beta (i.e., it should not contain too many bugs).
• It should have backing from a major company.
• It should be reasonably fast.
• It should have a license agreement that won’t require Decerno to pay a lot of money to be able to use

it.
• And most important, it should provide the functionality that we needed (i.e., both the ability to parse

AND the ability to create XML documents).

I had some previous experience of an early beta of the X4J parser from Microsoft after trying it out in
several small test applications. But I wasn’t quite happy with the functionality it provided, also I perceived
it as too slow to use in a real application.

The parser I finally choose after reading about several others, was the IBM AlphaWorks XML Parser for
Java (XML4J) version 1.1.9 [57]. This parser is a validating XML parser written in 100% pure Java. The
XML4J package contains classes and methods for parsing, generating, manipulating, and validating XML
documents. XML4J is believed to be the most robust XML processor currently available and conforms
most closely to the XML 1.0 Recommendation. XML4J also supports the DOM Level 1 Specification, the
Namespaces in XML Specification, and the unofficial (not a W3C Specification) SAX Specification.

SAX [36] stands for Simple API for XML and it is an extremely popular (almost ubiquitous) event-based
interface for any XML parser. SAX is somewhat of a grass-roots effort, spearheaded by David Megginson,
of the xml-dev mailing list. SAX is the basis for quite a few Java APIs. The idea behind SAX is to provide
an interface by which any Java application can access any XML parser, provided the parser has a SAX
driver. Virtually every major XML parser either supports the SAX interface directly or indirectly via third-
party drivers. SAX uses an event-driven model: the parser identifies an element, resulting in that element's
event handler being invoked. It is optimized for applet/browser use and can plug-in to any particular parser.

The reason for choosing the XML4J parser was that it fulfills all of my above requirements. Furthermore it
has a well-written documentation that makes it much easier to use than the X4J parser I had previously
worked with, plus all the source code is included with the parser. One disadvantage with this parser is
however that the package is quite large (about 1.2 MB), but I considered all it’s advantages to outweigh this
disadvantage [58].

Pastill interacts with the XML4J parser through methods defined by the W3C DOM Specification that is
implemented by the parser. This makes it (in theory) very easy to simply replace the XML4J parser with
another parser that also implements the DOM Specification, without having to rewrite the entire application
in the process.

������:DONWKURXJK�RI�3DVWLOO
In this chapter I will give a very short overview of what the user will see when using Pastill. I will also very
briefly mention what techniques have been used. The whole client part of the application runs on Internet
Explorer 4.0 SP1, which was also one of the requirements made of the system.

��������/D\RXW
When we designing the GUI in Pastill we wanted all views to be as consistent as possible, hopefully this
shows in the application so that the user will not feel lost. The layout is displayed in figure 18. On the left is
a menubar that is always visible, it shows what options are current available for the user. The rest of the
display is made up of the workspace where the user interacts with the application by viewing or adding
data.

62

In a previous chapter I stated that Pastill was held together by a framework of ASP pages, in figure 18 can
be seen just what I meant by that. More or less all the views in Pastill consist of one or more ASP pages
with Visual Basic components embedded in them. The menubar on the left in figure 18 is a Visual Basic
version 6 (VB6) component; ASP makes up the rest of the view. The Java objects are never visible to the
user, but are hard at work behind the scenes.

Figure 18: The layout in Pastill

Since this layout never changes I will save some space in the following chapters by only showing the
different functions that exists in Pastill and not show the entire layout every time. All the listed components
are VB6 components that are displayed on the workspace.

��������(QWHULQJ�3DVWLOO

Figure 19: Logging in to Pastill.

The first view that the user is confronted with is the login page. The user is required to input a username
and a password. This is compared with the username and password stored in the database. Since there is so
little data do transfer this is all done in ASP scripts, completely without the use of XML or Java.

63

��������5HWULHYLQJ�-RXUQDOV

Figure 20: Retrieving a list of journals.

This function allows the user to retrieve lists of journals that meet certain criteria. The list is fetched using
XML and the technique described in section - 4.1.3.1 The Client Requests Data.

��������:RUNLQJ�ZLWK�-RXUQDOV

Figure 21: Working with journals

This is the view used to work with journals. The user can view existing journals, change information in
existing journals, or create new journals. When the user wants to fetch a journal to view or edit, it’s done
using XML and the technique described in section - 4.1.3.1 The Client Requests Data. When the user has
made some changes to a journal or created a new journal and wants to save that information, it’s also done
using XML, but this time using the technique described in section - 4.1.3.2 The Client wants to store
data.

64

��������:RUNLQJ�ZLWK�SDWLHQW�YLVLWV

Figure 22: Working with patient visits.

This view is used to input and view data concerning patient visits. Behind the scenes it works exactly like
the Working with Journals view.

Basically these two examples present a sample of what kind of views that exists in Pastill. There are some
more views, for example the Report view where the user can see different reports about statistics gathered
by the system, but showing these do not contribute very much to the understanding of what Pastill is used
for.

������([SHULHQFHV�OHDUQHG�E\�XVLQJ�;0/�LQ�3DVWLOO
By reading the Design and Overview chapters you should now at least have a basic understanding of how
XML was used in Pastill. In this chapter I will present the advantages and disadvantages that I have
encountered when using XML in Pastill. The statements are made from a very practical point of view,
based on my experiences while programming and writing the XML documents for Pastill.

As I have mentioned before, and will mention again in the chapters Future Work and Time Planning, I
didn’t have time to make a second implementation of Pastill with a technology other than XML. So
unfortunately I don’t really have something to compare this implementation with. Some of the statements
made are therefore based on my, and my colleague’s, previous experiences of other technologies when
comparing them to XML.

��������$GYDQWDJHV�RI�XVLQJ�;0/
What specific advantages of using XML did I encounter? I will not list the abstract advantages such as that
XML enables easy human reading of the data, or that in the future it will be very easy to do a “look-only”
version of Pastill using XML and XSL or CSS. Instead I will list the advantages that we noticed when
using XML in Pastill.

����������9HU\�HDV\�FRPPXQLFDWLRQ
It is very easy to write the code that handles the communication when using XML, basically because such
code is not needed. All that that is needed to communicate is to use HTTP requests to transfer XML
documents, and this do not require much code in order to work. All other available technologies (Java
Sockets, DCOM, CORBA, and so on) need a lot of code that handles the communication in order to work.
In Pastill, the entire XML communication takes up about 30 lines of code.

����������%DQGZLGWK�8VDJH
One of the requirements made on Pastill was that it shouldn’t need much bandwidth to achieve good
performance. Using XML we have fulfilled that requirement nicely. Almost all data in Pastill is transferred
between the client and the server using XML and HTTP. We have tested Pastill on a number of networks
and discovered that the waiting time is almost independent of the network quality. Instead it is the database
accesses and in a lesser degree the client processing that make up the waiting time.

65

����������1R�QHHG�WR�KDYH�D�UHDO�WLPH�FRQQHFWLRQ�ZLWK�WKH�6HUYHU
In the beginning of this paper I listed some questions that this thesis should answer. One question was if
XML in any way enabled an alternative to having a real-time connection with the server by for instance,
demand-driven delayed communication with the server? This means holding off any client – server
communication until a connection can be established and meanwhile caching all transactions on the client.

When working with Pastill, I have discovered that the answer to that question is yes, XML does not need a
real-time connection. All the important transactions in Pastill are all document (file-) based. Instead of
sending the documents to the server as soon as they are created on the client, there is no problem holding
off the transaction if the client should discover that the connection for some reason is down. This
functionality isn’t currently incorporated in Pastill, put it would be quite easy to implement it.

��������3UREOHPV�ZLWK�XVLQJ�;0/
I did encounter some problems with using XML. Mostly because the available tools still need to mature,
but also because I wasn’t used to handling these types of data structures. I have discovered that making
good XML structures require a lot of practice and hands-on experience, otherwise you just don’t see where
the problems can occur.

����������,W¶V�KDUG�WR�ZULWH�D�JRRG�VWUXFWXUH
It is hard to come up with a good structure for the XML documents right away. I have had to revise the
structure of the XML documents in Pastill a number of times, and each time the XML documents change I
have to change the code that process them to reflect the changes.

It is especially hard if you want a structure that enables you to program general element handling for many
similar elements at the same time. I had to solve this by insert dummy elements as children of the elements
I really wanted to process. These dummy elements all have the same tag names so I can recognize them as
belonging to a group of elements that should be processed in the same way.

([DPSOH
<Journal>

<Journal_Number>
<Text> 23 </Text>

</Journal_Number>
<Sex>

<Text> Male </Text>
</Sex>
<Family>

<Alternative> Real Mother </Alternative>
</Family>
<Treatments>

<Alternative> Child therapy </Alternative>
</Treatments>

</Journal>

Using the above technique I can recognize all <Text> and <Alternative> dummy tags and treat these
elements the same. If I wouldn’t use the dummy tags it would be easier to read the XML document, but
when programming the code I would have to recognize all the different tag names that should be treated the
same. In this example I want to treat <Journal_Number> in the same way as <Sex>.

I also encountered the previously described attribute - element problem. When should I use an element and
when should I use an attribute? I have not found a simple answer to the question but I can say that
programmatically I have found it easier to use elements instead of attributes, especially if you have more
than one attribute.

����������7DJV�WDNH�XS�ORWV�RI�VSDFH
When looking at an XML document, it is easy to see that the tags themselves make up much more of the
document than the actual data that is stored. This stems from the fact that the XML 1.0 specification
encourages the writer to write out full tag names and not use abbreviations. This makes the document easier
to understand for humans, but it also has as the effect that the amount of “useful” data stored in the
document compared to the document size is surprisingly small. So the prize for readability is a very high
amount of overhead in the XML documents.

66

This is not a real problem in Pastill since all the generated XML documents are quite small, but when
handling large quantities of information I think this is definitely something to have in mind. However,
Lempel, Ziff, Welch (LZW) compression [59] would be well suited to reduce the size of large XML
documents because LZW compression is dictionary based. Once a string is in the LZW dictionary the cost
of repeating this string in the document is very small, note that this is the compression used by
Adobe’s Portable Document Format (PDF) standard along with many other applications.

����������7RR�PXFK�VWULQJ�KDQGOLQJ�VORZV�GRZQ�WKH�DSSOLFDWLRQ
Any XML document by definition contains textual information; it’s the whole idea. Processing text is
unfortunately something that generally most programming languages are bad at. They have much better
performance when handling for instance integers.

This is a well-known problem and the XML parsers are optimized as much as possible to speed up the
processing. The real problems occur if you programmatically need to alter the XML documents before
sending them to the parser. Then you can have serious performance problems, even with relatively small
XML documents.

We had this problem during the development of Pastill, but not in the release version. This stemmed from a
combination of two things.
• We used Microsoft Visual Studio v6.0 (VS6) to develop Pastill. In order to debug Web pages, VS6

puts debug-information in a <!-- --> comment first in the ASP pages that creates the XML
documents.

• The IBM AlphaWorks XML Parser needs the XML declaration first in the XML documents; otherwise
it will refuse to parse the document.

The result was that we couldn’t run debugging on the ASP pages because this caused the XML parser to
stop working. In order to get around this problem so that we could debug, I put in a little String handling
that removed the comments before feeding the XML document to the parser. This considerably slowed
down the application.

Again, this is not a problem in the release version of Pastill since no debugging is used there. We simply
feed the XML documents to the XML parser directly and we are quite happy with the performance we get
out of the application.

����������3UREOHPV�ZLWK�WKH�;0/�-�3DUVHU���%XJV
As is still the cased with almost all available XML tools, I discovered that the XML4J Parser has some
bugs that were quite hard to detect.
• The XML4J Parser does not allow comments <!-- --> or blank-rows in the beginning of an XML

document. The string <?xml version=“1.0 ”?> has to be the absolutely first thing that the XML
document contains. If it is not first, the parser throws a Java exception and refuses to parse the rest of
the document.

• The XML4J Parser goes into an infinite loop when the parsed XML document has one or more
Swedish letters (åäö) in the XML comments (I have not dared to even try and use Swedish letters in
the tag names).

• The XML4J parser does not allow nested elements on the same row. For instance, the XML fragment

<Journal> <Journal_Number> 4 </Journal_Number> </Journal>

results in the Parser throwing a Java exception and refusing to parse the rest of the document, but the
fragment below works just fine.

<Journal>
<Journal_Number> 4 </Journal_Number>

</Journal>

������3DVWLOO�DV�D�SURMHFW
Pastill was the first real project that I have been involved with a real customer and strict deadlines, and
naturally I learned much from it. There have been several books written about project orientated software
development and I will not attempt to go into any deep analyses of the subject. I will simply present my
experiences from the Pastill project.

67

��������:RUNLQJ�LQ�D�WHDP
A team of three people was involved in developing Pastill:
• Daniel Lekberg was the leader of the project. He also developed the VB6 GUI, most of the ASP pages

and the database design.
• Leif Pettersson was involved in creating the MTS objects and their connection to the database.
• Me myself (Pontus Norman) developed the XML processing Java components and the XML document

structure.

The problem with team development I have found is that there can be a lack of communication between the
team members. This was a problem when developing Pastill since all the components are so tightly
integrated. We have had some problems making all the components work together for this reason. If one
person makes some changes, these changes often directly affect the behavior of another component that is
out of that person’s control.

��������7LPH�SODQQLQJ
Originally I planned to do two versions of Pastill: one that used XML for communication, and another that
used some other standard in order to be able to compare the two. Unfortunately the first implementation has
taken much more time than anticipated so I haven’t had the time to make that second implementation.

Time planning is one of the most difficult things in a project. It turned out that we were overly optimistic in
the time planning of Pastill. The first specification for Pastill was written in July 1998. At that time we
thought that the application would be finished by the end of December the same year. It is now February
1999, and the application still isn’t quite finished. All the major work is done, but it still has some bugs that
need to be fixed.

So why did the project take so much longer than anticipated?

The biggest reason is that the purchaser of Pastill (Omsorgsnämden) kept changing the specification during
the development. This caused us to have to remodel the database a few times, and changes in the database
reflect directly on the code in every level of the application.

The second biggest reason was that we used a large number of different technologies that needed to work
together. As I stated before, Pastill was something of a test project used to try out new technologies, and as
such it served it’s purpose. It proved harder than expected to make the ASP, VB6, Java, and COM
components to be installed correctly and play together and this was an important discovery to make. If we
had to do Pastill all over again from the beginning, I would argue for a simpler solution with fewer
technologies that had to work together - perhaps to write the whole application in Java and XML.

A third reason was that we soon discovered that we used a very unstable development environment. As I
have previously mentioned we used Microsoft Visual Studio v6.0 (VS6) to develop almost all the parts in
Pastill. VS6 is a good development tool as long as it works, but unfortunately this is seldom the case. We
have had a number of problems with this tool and I have personally have had to reinstall it a number of
times because it suddenly stopped being able to perform certain tasks.

������6XPPDU\�²�3DVWLOO
One of the purposes with this thesis was to find out if XML works in reality and not just in theory. The goal
of my involvement in Pastill was to find out if the XML can be used as an alternative to previously existing
client – server communication technologies.

Pastill is a commercial application developed for Omsorgsnämden in Sweden to view and gather statistics.
Pastill uses the XML version 1.0 Specification to create XML documents that are passed between a Web-
server and a Web-client. In order to process these XML documents, Pastill incorporates an XML parser
from IBM AlphaWorks.

The overall impression that everyone involved with Pastill has of XML is a positive one. With Pastill we
have proven to ourselves that XML already is mature enough to use in a commercial application. We found
some problems, but they were never serious enough that we ever considered using a technology other than
XML. We experienced real advantages such as easy development, fast communication, and low bandwidth
usage.

68

The conclusion drawn from Pastill must be that XML not only works, but also works well, as a practical
data communication standard.

4.2 Future work
In this thesis I have scraped at the surface of a dozen specifications and technologies, however there is a lot
left to do.

������1HZ�6SHFLILFDWLRQV�SRS�XS�DOO�WKH�WLPH
I have been following the XML development now for more than 6 months, throughout this time there have
been a continuous flow of new specifications, based on XML v1.0 Specification, that have been sent to the
W3C for review. To be in the front-line of XML development it is necessary to examine these new
specifications as they are presented.

������&RQWLQXHG�IROORZ�XS�DV�6SHFLILFDWLRQV�HYROYH
Most of the specifications described in this document still have a long way to go before becoming W3C
Recommendations. It is plausible that at a lot of them will be changed along the specification process. It is
therefore necessary to continue, and on a regular basis follow up how the standards evolve and what
possible impacts this have on their future usage.

������&RQWLQXHG�IROORZ�XS�RI�VRIWZDUH�FRPSDQLHV¶�;0/�HIIRUWV
The software companies’ XML efforts have only just begun. The current lack of tools holds back
widespread usage of XML. More and more tools are becoming available and it is important to continue and
monitor what tools are developed. Especially interesting will be to follow what Netscape and Microsoft do
with their Internet browsers and what support the database suppliers will present for XML.

������&RQWLQXHG�IROORZ�XS�RI�;0/�(',�HIIRUW
One very interesting proposed usage of XML is as a replacement of EDI. One such effort is currently under
way by the XML/EDI Group. If they succeed in developing a widespread and commonly accepted XML
standard for EDI messages this will have a big impact on the Internet community. It is therefore necessary
to follow-up on these efforts.

������&RQWLQXHG�IROORZ�XS�RI�;0/�67(3�HIIRUW
Using XML as a replacement of STEP does not seem to have a widespread interest in the Internet
community today. To the best of my knowledge, no organized effort is currently made to replace STEP
with XML. Perhaps because the STEP standard is mostly used in specialized environments such as
CAD/CAM development. However it wouldn’t surprise me if such an effort began shortly.

������7U\LQJ�RXW�PRUH�6SHFLILFDWLRQV
As a part of this thesis I, together with Decerno, have tried out the XML v1.0 Specification and the DOM
Specification in an application (Pastill). As more specifications reach the W3C Recommendation status it
will be necessary to try them out as well. XSL and CSS lie closest at hand to try out; for instance in a look-
only version of Pastill.

4.3 Summary
This paper has presented two things, an in-dept overview of emerging XML standards and the ramifications
they will have for using XML in modern software development.

XML is a joint effort to create a genuinely open standard, driven entirely by user needs. These needs
include:
• Extensibility, to define new tags as needed.
• Structure, to model data to any level of complexity.
• Validation, to check data for structural correctness.
• Media independence, to publish content in multiple formats.
• Vendor and platform independence, to process any conforming document using standard commercial

software or even simple text tools.

69

Remember that the HTML concept is one of a markup language consisting of a relatively small set of
standard tags that are associated with some more-or-less standard behaviors. The XML concept is one of an
infinitely large set of possible tags that are associated with no standard behaviors at all. Specification of the
behavior has to come from somewhere else. In publishing, that’s usually a style sheet, but in other domains
it can be something as flexible as JavaBeans or as specialized as an industry-standard protocol around
which programmers write standardized applications (such as Pastill).

XML gives us a single, human-readable syntax for serializing just about any kind of structured data,
including relational data, in a way that lets it be manipulated and displayed using simple, ubiquitous,
standardized tools. The larger implications of a standard, easily processed serial data format are hard to
imagine, but they are obviously going to have a large impact on electronic commerce. And it seems clear
that electronic commerce is eventually going to become synonymous with commerce in general.

XML can do for data what Java has done for programs, which is to make the data both platform-
independent and vendor-independent. This capability is driving a wave of middleware XML applications
that will hopefully begin to wash over us during 1999.

As we have proven with the Pastill project, XML can already today be used in an industrial application.
The only thing that currently is holding back a more widespread public usage of XML is the lack of tools
that support XML. After working with this thesis I am convinced that XML together with Java is the future
for distributed software development.

The key to understanding the revolutionary potential of XML is that it is just one piece of a larger picture.
XML by itself can provide standardized interchange formats for databases, electronic commerce
applications, spreadsheets and much more. This is significant. But XML and XSL together can replace
existing word processing and desktop publishing formats as well. It can give us, in effect, a single,
completely internationalized format of almost unlimited power for both print and online publishing that is
fully interoperable across all products and all platforms. The implications of this go far beyond data
exchange and far beyond the Web.

70

Part 5: Assorted Information

5.1 Abbreviations
ADO ActiveX Data Objects
ANSI American National Standards Institute
ANSI X12 American National Standards Institute’s Accredited Standards Committee X12 sub-group
API Applications Programming Interface
ASP Active Server Pages
CAD Computer Aided Design
CAM Computer Aided Manufacturing
COM Component Object Model
CORBA Common Object Request Broker Architecture
CSS Cascading Style Sheets
CSS1 Cascading Style Sheets Level 1
CSS2 Cascading Style Sheets Level 2
DHTML Dynamic HTML
DOM Document Object Model
DSSSL Document Style Semantics and Specification Language
DTD Document Type Description
EBNF Extended Bachus-Naur Notation
ECMAScript Standardization of JavaScript by the European Computer Manufacturer's Association
EDI Electronic Data Interchange
EEMA European Electronic Messaging Associations
EJB Enterprise Java Beans
GUI Graphical User Interface
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
HyTime Hypermedia/Time-based Structuring Language - ISO/IEC 10744
IETF Internet Engineering Task Force
ISO International Standards Organization
JVM Java Virtual Machine
MATH-ML Mathematical Markup Language
MTS Microsoft Transaction Server
ODBC Open Database Connectivity
OQL Object-orientated Query Language
PDF Portable Document Format
RFC Request For Comments
RTF Rich Text Format
SGML Standard Generalized Markup Language
SQL Structured Query Language
STEP Standard for the Exchange of Product Model Data
UN/EDIFACT United Nations Standards Messages Directory for Electronic Data Interchange for

Administration, Commerce, and Transport
URI Uniform Resource Identifier
URL Uniform Resource Locator
W3C World Wide Web Consortium
WFC Windows Foundation Classes
WIDL Web Interface Definition Language
WSP Web Standards Project

71

WWW World Wide Web
XLink XML Link Language
XLL Extensible Linking Language
XML Extensible Markup Language
XML-QL XML Query Language
XPointer XML Pointer Language
XSL Extensible Stylesheet Language

5.2 Bibliography

[1] Extensible Markup Language (XML) Version 1.0
World Wide Web Consortium Recommendation 10-February-1998
http://www.w3.org/TR/1998/REC-xml-19980210.html

[2] Cascading Style Sheets Level 1 (CSS1)
World Wide Web Consortium Recommendation 17-December-1996
http://www.w3.org/TR/REC-CSS1-961217

 [3] Cascading Style Sheets Level 2 (CSS2)
World Wide Web Consortium Recommendation 12-May-1998
http://www.w3.org/TR/1998/REC-CSS2-19980512/

[4] Extensible Stylesheet Language (XSL) Version 1.0
World Wide Web Consortium Working Draft 18-August-1998
http://www.w3.org/TR/1998/WD-xsl-19980818

[5] Namespaces in XML (XML Namespace)
World Wide Web Consortium Recommendation 14-January-1999
http://www.w3.org/TR/1999/REC-xml-names-19990114/

[6] Extensible Linking Language (XLink)
World Wide Web Consortium Working Draft 3-March-1998:
http://www.w3.org/TR/1998/WD-xlink-19980303

[7] XML Pointer Language (XPointer)
World Wide Web Consortium Working Draft 3-March-1998
http://www.w3.org/TR/1998/WD-xptr-19980303

[8] Level 1 Document Object Model Specification Version 1.0
World Wide Web Consortium Working Draft 20-July-1998
http://www.w3.org/TR/1998/WD-DOM-19980720/

[9] Schema for Object-oriented XML (SOX)
World Wide Web Consortium Note 15-September-1998
http://www.w3.org/TR/1998/NOTE-SOX-19980930/

[10] XML-QL: A query language for XML
World Wide Web Consortium Note 19-August-1998
http://www.w3.org/TR/1998/NOTE-xml-ql-19980819/

[11] Web Interface Definition Language (WIDL)
World Wide Web Consortium Note 22-September-1997
http://www.w3.org/TR/NOTE-widl-970922

[12] Vector Markup Language (VML)
World Wide Web Consortium Note 13-May-1998
http://www.w3.org/TR/1998/NOTE-VML-19980513

[13] HyperText Markup Language Version 4.0 (HTML)

72

World Wide Web Consortium Recommendation 24-Apr-1998
http://www.w3.org/TR/1998/REC-html40-19980424/

[14] Document Content Description for XML (DCD)
World Wide Web Consortium Note 31-July-1998
http://www.w3.org/TR/1998/NOTE-dcd-19980731.html

[15] The XML Handbook
Charles F. Goldfarb and Paul Prescod
ISBN 0-13-081152-1

[16] XML Complete
Steven Holzner
ISBN 0-07-913702-4

[17] Document Style Semantics and Specification Language (DSSSL)
ISO/IEC standard 10179:1996
ftp://ftp.ornl.gov/pub/sgml/wg8/dsssl/dsssl96b.ps.Z

[18] XSL Tutorial
Microsoft
http://www.microsoft.com/workshop/c-frame.htm#/workshop/xml/xsl/tutorial/functions.asp

[19] XML Workshop
Microsoft
http://www.microsoft.com/workshop/c-frame.htm#/xml/default.asp

[20] Component Object Model (COM) technologies Web site
Microsoft
http://www.microsoft.com/com/default.asp

[21] Guidelines for using XML for Electronic Data Interchange Version 0.05
XML/EDI Group 25-January-1998
http://www.geocities.com/WallStreet/Floor/5815/guide.htm

[22] A Way of Integrating STEP & SGML (V0.4)
Reiner Reschke, Hugh Tucker 31-August-1996
http://www.eccnet.com/step/White_Paper/

[23] Product data representation and exchange
ISO 10303 Industrial automation systems and integration

[24] Product Data Representation and Exchange
Part 11: Description methods: The EXPRESS language reference manual
ISO 10303-11 Industrial automation systems and integration

[25] Product data representation and exchange
Part 21: Implementation methods: Clear text encoding of the exchange structure
ISO 10303-21 Industrial automation systems and integration

[26] Data Modeling Report prepared for: W3C XML Specification DTD (“XMLspec”)
World Wide Web Consortium 10-September-1998
http://www.w3.org/XML/1998/06/xmlspec-report-19980910.htm

[27] Querying semi-structured data
S. Abiteboul
Proceedings of the International Conference on Database Theory, Delphi, Greece, January 1997.
http://www-rocq.inria.fr/~abitebou/pub/icdt97.semistructured.talk.ps

[28] Query Optimization for Semi-structured Data
J. McHugh and J. Widom

73

Technical report, November 1997
http://db.stanford.edu/pub/papers/qo.ps

[29] Mathematical Markup Language (MathML) 1.0 Specification
World Wide Web Consortium Recommendation 7-April-1998
http://www.w3.org/TR/1998/REC-MathML-19980407/

[30] Rules for Electronic Data Interchange for Administration, Commerce, and Transport
(EDIFACT)
United Nations
http://www.unece.org/trade/untdid/welcom1.htm

[31] ActiveX Data Objects (ADO)
Microsoft
http://www.microsoft.com/data/ado/sams/ch08.htm

[32] Data International Standards Association (DISA)
Accredited Standards Committee X12 (ASC12)
http://polaris.disa.org/

[33] Amaya - W3C’s Browser/Editor
World Wide Web Consortium
http://www.w3.org/Amaya/

[34] XML Support in Oracle8i and Beyond
An Oracle Technical Whitepaper, 9-November-1998
http://www.oracle.com/xml/documents/xml_twp/

[35] XML: The future of EDI?
Uche Ogbuji
Sunworld – February 1999. Vol. 13 No.2
http://www.sunworld.com/swol-02-1999/swol-02-xmledi.html

[36] SAX 1.0: The Simple API for XML
http://www.megginson.com/SAX/

[37] DCOM and CORBA Side by Side, Step by Step, and Layer by Layer
P.Emerald Chung, Yennun Huang and Shalini Yajnik
Bell Laboratories, Lucent Technologies
http://www.cs.wustl.edu/~schmidt/submit/Paper.html

[38] Dynamic HTML in Action
Willian J. Pardi and Eric M. Schurman
ISBN 1-57231-820-1

[39] CORBA/IIOP 2.2 Specification:
Object Management Group (OMG) 1-July-1998
http://www.omg.org/corba/corbaiiop.html

[40] The Component Object Model: Technical Overview
Microsoft
http://www.microsoft.com/com/wpaper/Com_modl.asp

[41] Distributed Component Object Model Protocol DCOM/1.0
Microsoft
http://premium.microsoft.com/msdn/library/specs/dcom/
distributedcomponentobjectmodelprotocoldcom10.htm

[42] Microsoft Transaction Server White Papers
Microsoft
http://www.microsoft.com/ntserver/appservice/techdetails/techspecs/mtswp.asp

74

[43] The SGML Handbook
Charles F. Goldfarb
ISBN: 0-19-853737-1

[44] Hypermedia/Time-based Structuring Language (HyTime)
ISO/IEC 10744-1992(E)
http://www.ornl.gov/sgml/wg8/docs/n1920/html/n1920.html

[45] Guidelines for Electronic Text Encoding and Interchange
C. M. Sperberg-McQueen and Lou Burnard
Association for Computers and the Humanities (ACH), Association for Computational Linguistics
(ACL), and Association for Literary and Linguistic Computing (ALLC).

[46] Uniform Resource Locators
Internet Engineering Task Force (IETF). RFC 1738 1991.
http://www.w3.org/Addressing/rfc1738.txt

[47] Relative Uniform Resource Locators
Internet Engineering Task Force (IETF). RFC 1808 1995.
http://www.w3.org/Addressing/rfc1808.txt

[48] ENTERPRISE JAVABEANSTM TECHNOLOGY Server Component Model for the Java
Platform
JavaSoft
http://www.javasoft.com/products/ejb/white_paper.html

[49] Accessing the World of Information: Open Database Connectivity (ODBC)
Microsoft
http://premium.microsoft.com/msdn/library/backgrnd/html/msdn_odbcbg.htm

[50] An ASP You Can Grasp: The ABCs of Active Server Pages
Microsoft
http://www.microsoft.com/workshop/c-frame.htm#/workshop/server/default.asp

[51] Uniform Resource Identifiers (URI): Generic Syntax and Semantics
Berners-Lee, T., R. Fielding, and L. Masinter. 1997
(Work in progress; see updates to RFC1738.)

[52] XML-Data
World Wide Web Consortium Note 05-Jan-1998
http://www.w3.org/TR/1998/NOTE-XML-data-0105/

[53] ECMAScript Language Specification
Standard ECMA-262 2nd edition. June 1998
http://www.ecma.ch/stand/ecma-262.htm

[54] Chemical Markup Language
http://ftp.sunet.se/ftp/pub/www/utilities/mapmarker/cml/

[55] The JUMBO browser
The Virtual School of Molecular Science
http://ala.vsms.nottingham.ac.uk/vsms/java/jumbo/

[56] Windows Foundation Classes (WFC)
Microsoft
http://premium.microsoft.com/msdn/library/periodic/period98/html/vji0898c.htm

[57] XML Parser for Java
IBM AlphaWorks

75

http://www.alphaworks.ibm.com/formula/XML

[58] Java XML Parsers – A comparative Evaluation of 7 Free Tools
Juancarlo Añez
Java Report Online
http://www.javareport.com/html/products/prod_rev.shtml

[59] A Technique for High Performance Data Compression
Terry A. Welch
IEEE Computer, Vol. 17, No. 6, 1984, pp. 8-19

[60] The Lorel Query Language for Semistructured Data
S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener
International Journal on Digital Libraries, vol. 1, no. 1, 4/1997

[61] A query language and optimization techniques for unstructured data
Peter Buneman, Susan Davidson, Gerd Hillebrand, and Dan Suciu
Proceedings of ACM-SIGMOD International Conference on Management of Data, 1996.

[62] A Query Language for a Web-Site Management System
Mary Fernandez, Daniela Florescu, Alon Levy, and Dan Suciu
SIGMOD Record, vol. 26, no. 3, 9/1997

[63] Literate Programming
Henrik Turbell
Image Processing Group, Department of Electrical Engineering, Linköping University
March 1997
http://www.isy.liu.se/~turbell/litprog/

