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Abstract

Analyzing combinatorial regulation of transcription in
mammalian cells

During development and differentiation of an organism, accurate gene regulation
is central for cells to maintain and balance their differentiation processes. Tran-
scriptional interactions between cis-acting DNA-elements such as promoters and
enhancers are the basis for precise and balanced transcriptional regulation. In this
thesis, proximal and distal regulatory regions upstream of all transcription start
sites were considered in silico to identify regulatory modules consisting of combina-
tions of transcription factors (TFs) with binding sites at promoters and enhancers.
Applying these modules to a broad variety of gene expression profiles demonstrated
that the identified modules regulate gene expression during mouse embryonic de-
velopment and human stem cell differentiation in a tissue- and temporal-specific
manner. Whereas tissue-specific regulation is mainly controlled by combinations of
TFs binding at promoters, the combination of TFs binding at promoters together
with TFs binding at the respective enhancers determines the regulation of tem-
poral progression during development. The identified regulatory modules showed
considerably good predictive power to discriminate genes being differentially reg-
ulated at a specific time interval. In addition, TF binding sites are immanently
different for promoter and enhancer regions.

One example for combinatorial regulation of transcription in mammals is
cholesterol biosynthesis. Cholesterol biosynthesis is regulated by the family of
sterol regulatory element binding proteins (SREBPs) that control the expression
of genes involved in the uptake and synthesis of cholesterol and lipids. However,
SREBPs are weak transcriptional activators themselves and have been shown to
work in co-operation with other transcription factors such as Spl transcription fac-
tor (SP1) and nuclear transcription factor Y (NF-Y). Although the metabolism for
cholesterol biosynthesis is well described, it is assumed that many other proteins
contribute to cholesterol homeostasis and cholesterol mediated homeostasis of the
cell. In this thesis, an integrative approach was applied that allowed systematic
identification of potential SREBP target genes. Candidate genes were identified
by gene expression profiling of sterol-depleted cells and in silico prediction of
SREBP, SP1, and NF-Y binding sites. With this, 99 putative SREBP target
genes were identified among which a major portion of genes (21 genes) known
to regulate cholesterol biosynthesis and 78 novel potential SREBP target genes
were retrieved. Ten of the putative novel 78 SREBP target genes were selected
for experimental validation and slc2a6, cl7orf59, hes6, and tmemb5b showed
reduced mRNA expression after SREBP knockdown, indicating a regulatory role
by SREBP in combination with SP1 and NF-Y.

Combinations of transcription factors are substantial to the understanding of
regulation of transcription and enhancer function, can yield generic insights into
tissue- and temporal regulation of gene expression, and can elucidate novel target
genes involved in a specific pathway.






Zusammenfassung

Analyse kombinatorischer Regulation der Transkription in
Saugetierzellen

Prizise Genregulation ist wiahrend der Entwicklung und Differenzierung eines Or-
ganismus duflerst wichtig, um die notwendige Homeostase wihrend der Zellent-
wicklung und -differenzierung zu erméglichen. Dabei bilden Interaktionen zwischen
cis-wirkenden DNA-Elementen wie Promotern und Enhancern die Basis fiir eine
abgestimmte Regulation der Transkription. In dieser Arbeit wurden proximale und
weiter entfernte Regionen stromaufwérts aller Transkriptionsstartpunkte in silico
betrachtet, um regulatorische Module vorherzusagen, die aus Transkriptionsfak-
torkombinationen mit Bindestellen an Promotern und Enhancern bestehen. Die
Anwendung auf verschiedene Genexpressionsprofile zeigte eine gewebe- und zeits-
pezifische Regulation der identifizierten Module in der embryonischen Entwicklung
der Maus und in der menschlichen Stammzelldifferenzierung. Zusétzlich zur gewe-
bespezifischen Regulation von Transkriptionsfaktorkombinationen am Promoter
bestimmen Kombinationen von Transkriptionsfaktoren an Promotern und Enhan-
cern zeitspezifische Regulation wihrend des Entwicklungsprozesses. Die identifi-
zierten regulatorischen Module zeigten eine gute Vorhersagefihigkeit, differenziell
exprimierte Gene unterschiedlicher Zeitpunkte zu unterscheiden. Auflerdem wurde
gezeigt, dass Transkriptionsfaktorbindestellen unterschiedliche Eigenschaften an
Promoter- und Enhancerregionen aufzeigen.

Fin Beispiel fiir kombinatorische Regulation der Transkription in S&ugetier-
zellen ist die Cholesterinbiosynthese. Die Cholesterinbiosynthese wird durch die
SREBP (sterol requlatory element binding protein) Proteinfamilie kontrolliert, die
die Expression von Genen regulieren, die in der Aufnahme und Synthese von Cho-
lesterin und Lipiden involviert sind. SREBPs sind nur schwache transkriptionelle
Aktivatoren und kooperieren mit anderen Transkriptionsfaktoren wie SP1 (Spl
transcription factor) und NF-Y (nuclear transcription factor Y). Obwohl der Me-
tabolismus der Cholesterinbiosynthese gut beschrieben ist, wird angenommen, dass
viele weitere noch unbekannte Proteine an der Cholesterinhomeostase der Zelle be-
teiligt sind. Daher wurde in dieser Arbeit ein integrativer Ansatz verfolgt, um neue
Zielgene von SREBP zu identifizieren. Dazu wurden Genexpressionsprofile von
sterol-depletierten Zellen mit in silico Vorhersagen von SREBP, SP1, und NF-Y
Bindestellen kombiniert. Insgesamt wurden 99 mogliche SREBP Zielgene identifi-
ziert, von denen 21 Gene bereits im Zusammenhang mit Cholesterin beschrieben
wurden und 78 Gene potentiell neue SREBP Zielgene darstellen. Zehn der poten-
ziell neuen Zielgene wurden fiir eine experimentelle Valdierung ausgewéhlt, wovon
slc2ab, c17orf59, hes6, and tmemb5b niedrigere mRNA Expression nach SREBP
Knockdowns zeigten und damit potentiell regulatorisch von SREBP abhéngig sind.

Kombinationen von Transkriptionsfaktoren sind duflerst wichtig, um sowohl
Regulationsmechanismen der Transkription als auch die Funktion von Enhancern
zu verstehen. Sie kénnen neue Erkenntnisse {iber die gewebe- und zeitspezifische
Regulation der Genexpression bringen und die Identifizierung neuer Zielgene in
bestimmten Prozessen ermdoglichen.
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Chapter 1

Introduction

1.1 Motivation

There exist about 20,000-25,000 protein-coding genes in human [66]. How-
ever, the number of DNA-binding factors is estimated to be ~1850 [179].
Multiple regulatory elements within promoters allow combinatorial control
of transcriptional regulation, which increases the potential number of expres-
sion profiles notably [179]. Transcription factors (TFs) cooperate with other
regulatory co-factors and the complex combinations of multiple cooperative
interactions give the necessary specificity for spatio-temporal transcriptional
regulation [174]. The combinatorial and temporal binding of TFs is crucial
for metazoan development [310] and for the establishment of tissue specific
gene expression [229].

Specifically in higher organisms, proximal versus distal regulation needs
to be well balanced [147]. Whereas promoters are proximal to transcription
start sites (T'SS), enhancers can be quite distant from their target genes.
Transcription factors bound at an enhancer interact with co-activators and
transcription factors bound at the promoter. Hence, they increase the con-
centration of activators at promoters. The large distance between long-range
enhancers and proximal promoters can be overcome by chromatin loops,
bringing these elements in close proximity [118, 196]. Thus, enhancers can
increase the activity of a promoter considerably, even when located several
kilo bases away.

Promoter-enhancer interactions depend on regulatory factors binding at
promoter-proximal regions. In turn, these factors may recruit specific distal
enhancers [49, 267] depending on the combination of regulatory factors
at the proximal promoter [164]. Levine and Tjian [164] suggested that a
combination of different complexes are needed for a temporal- and tissue-
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specific regulation of cis-DNA elements, allowing a vast variety of distinct
gene expression patterns. One of the main challenges is now to understand
how different combinations of transcription factors establish gene expression
under specific conditions [179)].

One example of combinatorial regulation in mammals is the transcrip-
tional regulation of cholesterol biosynthesis. Cholesterol biosynthesis in
mammals is regulated by the family of sterol regulatory element binding
proteins (SREBPs) that control the expression of genes involved in the
uptake and synthesis of cholesterol and lipids. However, SREBPs are weak
transcriptional activators themselves and work in co-operation with other
transcription factors such as Spl transcription factor (SP1) and nuclear
transcription factor Y (NF-Y) [72, 134, 234, 241]. Although the metabolism
for cholesterol biosynthesis is well described, it is assumed that many other
proteins contribute to cholesterol homeostasis and cholesterol mediated
homeostasis of the cell [121]. In addition, dysfunction of cholesterol has been
implicated in a number of diseases such as cardiac diseases, dementia, dia-
betes, and cancer [127, 185]. Furthermore, diseases caused by dysfunctional
cholesterol uptake and synthesis like Familial Hypercholesterolemia and
Niemann-Pick Disease Type C are poorly understood and open questions
remain concerning the regulation of cholesterol metabolism and molecular
interactions of known cholesterol-regulating factors [22].

The focus of this thesis is twofold. First, combinations of transcription
factors at promoter and enhancer regions were analyzed and immanent dif-
ferences of enhancers and promoters affecting the regulation of genes during
critical developmental stages of different tissues and cell types identified.
Differentially expressed genes at specific time intervals of the development
of each analyzed tissue were associated to their regulating TFs. The system-
atic comparison of temporal and tissue specificity of TFs and combinations
of TFs binding at promoters and enhancers revealed a major role of the
combinations of TFs in promoter regions together with TFs in enhancer
regions for temporal specificity in development and differentiation. Second,
an integrated approach was applied to identify novel putative SREBP target
genes by combining gene expression profiling and in silico predictions of
binding sites for SREBP and its known co-factors SP1, NF-Y, and LXR.
This approach allowed the identification of 78 genes that have not yet been
described to be involved in cholesterol biosynthesis. We picked ten genes
for experimental validation out of which four genes showed lower mRNA
expression after knockdown of SREBP, indicating their regulatory role
depending on SREBP.
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1.1.1 Publications

The main work presented in this thesis is currently in review and the
manuscript is entitled “Enhancers regulate progression of development in
mammalian cells”. A manuscript covering the second part of the thesis
(“Identification of novel putative SREBP target genes”) is currently in
preparation. I was also involved in a publication “PathWave: discover-
ing patterns of differentially regulated enzymes in metabolic pathways”
published in Bioinformatics [247].

1.1.2 Thesis outline

The first chapter introduces the biological background, existing computa-
tional methods, and basic topics covered in this thesis. The focus lies on
transcriptional regulation in eukaryotes and the computational identification
of transcription factor binding sites. Additionally, basic concepts in machine
learning and network analysis are presented. In chapter 2, the methods
applied in this thesis are presented, specifically the developed approach to
identify regulatory modules and successive analyses as well as the integrated
approach for the identification of novel putative SREBP target genes. Chap-
ter 3 depicts the results of this thesis and presents regulatory modules that
control gene expression during development and differentiation in a time-
and tissue-specific manner as well as potential new SREBP target genes.
The results are discussed and an outlook is given in chapter 4.

1.2 Organization and regulation of eukaryotic
genomes

The genome, the complete set of information in the DNA of a cell or an
organism, not only encodes all genes, but also contains the information to
express these genes in a spatio-temporal manner [260]. The central dogma in
science regarding gene expression is that genes encode mRNA, which in turn
encodes proteins [285]. The genetic information is encoded in its deoxyri-
bonucleic acid (DNA) sequence. DNA is a large polymer composed of four
different nucleotide subunits, each consisting of a five-carbon sugar (deoxyri-
bose) attached to a single phosphate group and a nitrogen-containing base.
The four different bases are called adenine (A), cytosine (C), guanine (G),
and thymine (T). These bases are connected via a sugar phosphate backbone
through the 3’-hydroxyl group of a sugar to the 5’-phosphate group of an-
other sugar. Therefore, one end of the DNA carries an unlinked hydroxyl
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Transcription
(RNA synthesis)

Translation
. (protein synthesis)
Protein

Figure 1.1. From DINA to protein. Genetic information is passed from
DNA to RNA in a process called transcription and from RNA to protein in a
process called translation.

group to the 3’ position on the sugar ring (3’ end) and the other end carries
a free phosphate group at the 5’ position on the sugar ring (5" end). It is
the order of the base pairs from its 5’ end to its 3’ end that encodes the ge-
netic information of a cell. Each DNA strand is paired with a complementary
DNA strand which are held together via hydrogen bonds formed between the
bases. This pairing is specific with an adenine forming two hydrogen bonds
with a thymine and a guanine forming three hydrogen bonds with a cytosine.
Chemical and structural features of the DNA chains force the DNA into the
typical DNA double helix, the predominant form in the cell. [3]

Genomes of higher eukaryotes can be up to several billion base pairs
long, e.g. the human genome has a length of around 3 billion base pairs [65].
Nowadays, a large number of genomes has been successfully sequenced and
the number of available DNA sequences is rapidly increasing due to new
high throughput sequencing techniques. The challenge now is to decipher
the genetic code embedded in the genomic sequence [65].

A large number of genes, information containing-elements of DNA that
determine characteristics of an organism by encoding functional cellular
components such as proteins [3], have been already identified. The se-
quence of a gene is used as a template to synthesize ribonucleic acid (RNA)
molecules in a process called transcription. RNA is chemically similar to
DNA but contains a sugar ribose instead of a deoxyribose and the base uracil
(U) instead of thymine. In addition, RNA is a single-stranded molecule.
The RNA molecule copied from protein-coding genes is called messenger
RNA (mRNA). It is used as a messenger molecule for the production of
proteins by being translated into a chain of amino acids. Genes can be
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separated into distinct protein-coding regions (exons) and intervening non-
coding regions (introns). The mRNA is formed by joining different exons
whereas introns get excised from the primary transcript. Alternative splicing
adds another layer of complexity of gene expression regulation by allowing
the incorporation of different exons from the same primary transcript [194].
Once the mRNA has been formed, a poly-A tail is added to the 3’ end of
the mRNA and a cap structure is added to its 5’ end. The mature mRNA
is then transported out of the nucleus into the cytosol where it is translated
into a protein, a long polymer chain of monomeric building blocks called
amino acids. [3] The information flow from DNA to proteins is shown in
Figure 1.1.

In higher eukaryotes, genes are embedded into large regions of non-coding
DNA, e.g. only 1-2% of the DNA encodes for genes while most of the genome
does not and has yet mostly unknown function [156]. It may be involved
in regulatory processes [65, 164, 181]. Identifying regulatory regions and in
particular transcription factor binding sites located many kilo bases away
from their corresponding genes in the vast stretches of non-coding DNA
remains a major challenge.

1.2.1 Measuring gene expression with microarrays

Expression microarrays allow the simultaneous measurement of transcription
levels for every known gene in an organism [142] and have been used to iden-
tify disease specific gene signatures (for cancer e.g. [62, 279, 294]). Most
microarray platforms are designed to address a specific set of questions in
a specific organism [117]. The term microarray analysis is usually used for
transcript analysis [117] and microarrays are commonly used to compare lev-
els of expression of genes from samples from two different tissues or at two
distinct experimental conditions (e.g. normal vs diseased tissue, treated vs
untreated samples) [41]. However, microarrays can also be used for geno-
typing, epigenetic studies, structural variation, splice-variant analysis, and
protein binding [117]. Although transcriptional profiling is the most widely
used application, it focuses on a biological intermediate [117] with transcrip-
tion being the first step in gene regulation. Still, the correlation between
mRNA and protein abundance in the cell is not straightforward [8, 56, 109].

Microarrays are glass slides with artificially constructed grids of DNA [47].
One array can contain up to hundreds of thousands of spots which consist
of what are known as probe sequences. The probes can be single-stranded
cDNA (complementary DNA, the reverse transcribed product of mRNA)
and long oligonucleotides (60-70 bp) or short oligonucleotides (25 bp as
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with Affymetrix® arrays) [11]. There are other differences between oligonu-
cleotide microarrays and spotted cDNA microarrays. Affymetrix\¥ arrays
contain between 11 and 20 pairs of oligonucleotide probes per target RNA.
One of each pair is the reverse complement to an ideally unique 25mer in
the RNA and the other contains a single mutation [5]. In contrast, cDNA
microarrays contain a single probe for each target RNA and the two different
biological samples are represented by different colors. After hybridization,
each color is scanned separately and relative expression levels are achieved
by comparing the intensities [47]. For oligonucleotide microarrays, each mi-
croarray represents a single sample and provides an absolute measurement
level for each RNA molecule, whereas for cDNA microarrays each microar-
ray measures two samples and provides a relative measurement level for each
RNA molecule [47].

A microarray experiment involves a number of distinct stages. First, RNA
is extracted from biological samples, amplified and labeled with a fluorescent
dye. It can then be hybridized to the arrays and the microarrays are pro-
cessed to get intensities by scanning the arrays [257]. Following, the target
quantity is measured indirectly by measuring the intensity of fluorescence of
the spots on the array for each fluorescent dye [5]. The raw data produced
by microarray experiments are monochrome images, that need to be trans-
formed into gene expression matrices. The intensity is read by a camera and
transformed into gray level values using image processing [61, 76, 244, 262].
In the end, one gets 4,000-50,000 measurements per biological sample [47].

Microarray analysis

Biological replicates are essential to estimate and reduce measurement vari-
ability and biological differences between the cases [5]. However, technical
replicates estimate and reduce only effects of measurement variability and
are not required when making inferences about populations from samples [5].
To analyze differentially expressed genes under two conditions, at least five
biological cases per group should be analyzed but larger numbers are prefer-
able [215].

To make microarrays comparable and to reduce noise, the intensities must
be quality-controlled and normalized to adjust for dye-bias and for any sys-
tematic variation in the technology. Intra- and inter-microarray variations
can skew the interpretation of such expression data [47]. In addition, hy-
bridization images can contain artifacts, such as bubbles and scratches [245].
A first quality assessment is done by a visual inspection of the images and
plots of the raw data [11]. So called MA-plots are commonly used to plot



1.2. REGULATION OF EUKARYOTIC GENOMES 7

the log ratios M with
R
M = log, — 1.1
089 G ( )

against the average intensity values A with
1
A= §log2(R-G) (1.2)

where R and G represent the intensity levels for a given spot. MA-plots give
a good impression of the distribution of the raw data. As most genes are not
expected to be differentially expressed, the majority of points should lie in a
cloud around M = 0.

Results from individual experiments need to be normalized with respect
to each other to account for experimental variation in RNA amounts, specific
activity of probe labels, and standard handling errors [59] and is an impor-
tant step of the preprocessing of microarray data. Individual intensities are
adjusted to be able to make comparisons both within the array as well as be-
tween arrays in the experiment. These adjustments are necessary to remove
purely technical differences that do not represent biological variation and to
be able to identify true differentially expressed genes [11]. Normalization can
include the adjustment of the overall brightness of each scanned microarray
image [300], using expression levels of housekeeping genes [75] or assuming
that most genes are not differentially expressed [309]. Various normalization
approaches have been developed [75, 122, 222, 256, 309]. After normalization
is completed, differentially expressed genes or functional groups classifying
the samples into meaningful groups can be identified [47, 257].

The earliest approach to identify genes whose expression is significantly
different between the two conditions is a simple fold-change criterion to
detect genes of interest. However, it is perceived as an inadequate test
statistic [190] as it does not incorporate variance. More sophisticated sta-
tistical tests achieve more reliable identification of differentially expressed
genes [41]. Significance has been evaluated in many different ways, including
parametric [274] and non-parametric tests [214], analysis of variance [139],
and many others [47]. Common statistics for differential expression are the
t-statistic and its non-parametric counterpart the Wilcoxon statistics [11].
Another method to identify differentially expressed genes is based on cal-
culating rank products which is similar to the fold-change but overcomes
its most significant limitations [41]. It is based on the assumption that the
probability of gene being differentially expressed increases with the number
of times a gene is differentially expressed in replicate experiments.
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The rank product is defined as

k

RPy = (H Tig)

1=1

==

(1.3)

where r; , is the position of gene g in the list of genes in the 7th replicate
sorted by decreasing fold change for an experiment examining n genes in
k replicates [41]. Significance is then assessed by permuting the expression
values of the genes for each single array.

Testing thousand of genes of transcripts for differential expression simul-
taneously produces a large amount of false-positives. This testing of many
hypotheses within a single study is called multiple testing and different mul-
tiple testing correction approaches have been developed [5]. One of the most
popular multiple testing corrections includes the Bonferroni correction [35]
where the p-value of each gene is multiplied with the total number of genes.
A less stringent correction is the Benjamini-Hochberg correction [26] where
the p-value of each gene is multiplied by the total number of all genes divided
by the rank of the p-value compared to all p-values.

An interesting development is the testing of groups of genes instead of
single genes where one is interested in a group-wise effect (e.g. [99, 247])
which leads to an increase of power [11]. These genes usually share common
features, such as all genes from a pathway.

1.2.2 Regulation of gene expression

Spatial and temporal expression of genes is crucial for development, differen-
tiation, and all biological processes [179]. There exist various different mecha-
nisms to regulate eukaryotic gene expression at various steps, including tran-
scription, mRNA splicing and processing, transport, translation, stability,
post-translational modification of proteins, and degradation [179]. However,
transcription initiation is believed to be the most regulated step [179]. Tran-
scription is regulated by cis-regulatory elements, such as promoters and distal
regulatory elements, e.g. enhancers, silencers, insulators, and locus control
regions [179]. These elements contain recognition sites for trans-acting pro-
teins binding to these elements [158, 243] that either repress or enhance tran-
scription [179]. The genetic information encoded in the DNA of eukaryotic
genes requires the regulated synthesis of specific RNAs by molecular machines
called RNA polymerases. The protein-coding genes are transcribed by RNA
polymerase 1T [90, 243] and transcription initiation requires, in addition to
RNA polymerase II, the binding of regulatory elements and co-factors to cis-
regulatory sequences [239]. It is the interplay between promoters, proximal
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Figure 1.2. Overview of transcriptional regulatory elements in the
genome. The promoter is composed of a core and proximal promoter. Gen-
eral transcription factors bind to core promoter regions through recognition of
common elements such as TATA boxes and initiators (INR). Promoter activ-
ity can be increased by site-specific transcription factors binding to proximal
promoter regions. Distal regulatory elements can include enhancers, silencers,
insulators and locus control regions. Promoter activity can be further stimu-
lated by site-specific factors binding to enhancers. In contrast, transcriptional
activity can be repressed by transcription factors binding to silencers. En-
hancer blocking insulators ensure enhancer interaction with the promoter of
the right gene.

and distal regulatory elements as well as their binding factors and cofactors
that contribute to the precise nature of the transcriptional output of any pro-
moter [179]. Figure 1.2 gives an overview of all regulatory elements involved
in transcription.

Promoter Core and nearby proximal promoters are the basic elements
that regulate transcription [239]. They contain binding sites for transcrip-
tion factors and common sequence elements that recruit the general tran-
scriptional machinery to the transcription start site (T'SS) [81] as well as ad-
ditional chromatin-modifying factors [81, 158]. The region around the TSS
is referred to as the core promoter and is approximately 100 bp in length.
It is sufficient for directing transcription initiation by the basal transcrip-
tional machinery [158] and defines the position of the transcription initiation
site and direction of transcription [255]. It contains an AT-rich site called
the TATA box [158] which is located 25 to 30 bp upstream of the TSS in
higher eukaryotes [265] and serves as the binding site for the TATA-binding
protein (TBP) [158]. The core promoter can also contain an initiator ele-
ment (Inr) [254]. Factors binding to Inr may facilitate the recruitment of
the transcriptional machinery [50, 137]. Promoters in higher eukaryotes are
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highly diverse. Core promoters can contain either element, Inr or TATA box,
both elements or neither element [158]. Core promoters of many genes do not
contain any of the known core promoter elements [102] and TATA-containing
promoters are rather the exception than the rule [65]. So called null promot-
ers often have multiple TSS [96, 170] that are in close proximity to each other
[243] and most human genes have alternative promoters [52, 143] which are
thought to be used in different contexts and tissues. In mammals, promoters
containing a TATA box are usually associated with tissue- or context-specific
genes [248] and require a finer regulation [53]. However, the majority of hu-
man genes (80-90%) have promoters close to CpG islands [141], stretches of
DNA 500-2kb in length with high C+G content [179]. Methylation of these
islands is associated with transcriptional silencing and blocks transcription
factor binding to their recognition sequences [179]. Promoters containing
CpG islands are thought to be involved in the regulation of ubiquitously ex-
pressed genes [114]. The proximal promoter lies immediately upstream from
the core promoter (up to a few hundred bais pairs) and contains multiple
binding sites for activators [179]. However, the distinction between proximal
and core promoter elements may be blurred in mammals [206], as sequence-
specific TFs might also contribute to the positioning of RNA Polymerase II
at the TSS [187].

Enhancer Similar to promoters, enhancers contain binding sites for
transcription factors but can be located far upstream from the TSS [81].
An enhancer is sometimes also referred to as any regulatory element with
binding sites for sequence-specific transcription factors [13] but the term
is mostly used for distal regulatory regions. Enhancers usually contain
clusters of DNA-binding sites for more than one type of transcriptional
activators [13, 158]. They influence transcription independent of their ori-
entation and distance from the TSS, which can be upstream (as great as
85 kb), downstream of the promoter in an intron, or even beyond the 3’ end
of a gene [32]. Enhancers are highly modular and a single promoter can
be acted upon various enhancers in a time- and tissue-specific manner [15].
Enhancers can increase transcriptional activity indirectly through chromatin
remodeling or directly through interactions with the general transcriptional
machinery [32].

There exist several enhancer models. In one model, binding of multiple
transcriptional regulators to the enhancer can lead to the formation of en-
hanceosomes [158]. The stability and function of an enhanceosome is depen-
dent on the arrangement of binding sites, the interaction of the activators
and the addition of architectural proteins [51]. In contrast, the billboard
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enhancer model is more flexible with independent interactions of each bind-
ing factor with the basal machinery and exact binding site locations are less
critical [14].

Interaction of enhancers with the promoter occur by looping out the in-
tervening DNA between these elements [179].

Silencer Silencers are similar to enhancers but repress promoter activity
in an orientation- and position-independent manner instead of enhancing
transcription [204]. Repressors binding to silencers can inhibit transcrip-
tion through different mechanisms, e.g. interfering with activator binding,
preventing recruitment of the transcriptional machinery, and modifying the
chromatin structure [81, 204]. Methylation of a CpG dinucleotide motif has
been implicated in silencing in higher eukaryotes [149].

Insulator Enhancer blocking insulators are negative regulatory elements
lying between an enhancer and the promoter [239]. They can also block genes
from being affected by the transcriptional activity of neighboring genes and
prevent spreading of repressive chromatin [179].

Locus control regions Similar to enhancers, locus control regions (LCRs)
contain multiple binding sites for activators [158]. Whereas enhancer func-
tion can be diminished by the chromatin structure of the site of integration,
LCRs can stimulate transcription independent of the chromatin structure
but are limited by orientation and distance [84]. LCRs consists of groups of
regulatory elements involved in regulating an entire gene cluster [179)].

Chromatin structure To fit DNA into the nucleus, DNA is packaged
into a nucleoprotein complex known as chromatin [158]. The repeating unit
of chromatin is the nucleosome which contains 146 bp of DNA wrapped
1.65 turns around an octamer of histone molecules [158]. Higher-order
chromatin structure is composed of nucleosomes coiled into chromatin
fibers [312]. Histones can be modified in various ways, including acetylation,
methylation, and phosphorylation [239]. These modifications can epige-
netically control the expression of genes by controlling the accessibility of
chromatin [239]. Transcriptionally active chromatin (euchromatin) contains
many sites which are hypersensitive to DNases open for transcription [104].
Nucleosomes can prevent transcription initiation by restricting access of
transcriptional regulators to the DNA [158]. Removing nucleosomes can
enhance binding of activators and the transcriptional machinery [151, 130].
The actual T'SS region has been shown to be free of nucleosomes [17].
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Binding of general transcription factors to the core promoter results
usually just in low transcriptional activity. The basal machinery can be
defined as those factors that are essential for basal transcription in wvitro
from an isolated core promoter [255]. Tissue-specific and developmentally
regulated expression of genes requires a finer tuning, and the recruitment
of additional transcriptional elements located in upstream, intronic, or
downstream regions [299]. Site-specific factors binding to the proximal pro-
moter can support the recruitment or stabilization of interactions of general
factors at the core promoter, thereby increasing transcriptional activity [81].
Binding of regulatory factors to distal enhancer regions and recruitment of
histone-modifying enzymes such as Swi/Snf and SAGA (PCAF) to promot-
ers [126, 218] can generate a more favorable environment for transcription
which leads to a further increase in promoter activity [81]. The general tran-
scriptional machinery includes subunits of RNA polymerases and complexes
such as TFIID [81] and co-activators. An RNA polymerase II-holoenzyme
consisting of general transcription factors and a multi protein complex called
the Srb/Mediator is recruited by transcriptional activators [175]. The media-
tor complex provides activator targets and can integrate multiple regulatory
signals [158]. RNA polymerase II has been shown to contain 10-12 subunits
with diverse functions including start site selection, transcriptional elon-
gation rates, and interactions with activators [10]. RNA polymerase II is
associated with elongation factors [232] and protein complexes involved in
RNA capping, polyadenylation and splicing [28].

Co-activators may support the action of activators by protein-protein
interactions with DNA-bound activators [258]. These co-activators can play
a crucial role in regulation and can switch activators to repressors [160].
Multiple copies of the same factor or different factors can act synergistically
to increase transcription greater than the sum of individual activity [179].

Transcriptional regulation is a balanced process of positive and nega-
tive regulators [158]. Transcriptional activators and repressors modify the
chromatin structure to make it accessible to the transcriptional machinery
and recruit the initiation apparatus to promoters [158]. The transcriptional
apparatus can be recruited in multiple steps or in a single step if already
fully assembled [158]. Activators can also increase the elongation rate for
polymerase by stimulating the rate of promoter escape, its processivity, or
facilitate reinitiation of transcription [305]. Repressors can compete with
activators for binding sites or can interact with components of the transcrip-
tional machinery and chromatin [204]. Transcription consists of a series of
steps, including promoter melting, clearance, and escape, before a fully func-
tional RNA polymerase II elongation complex is formed. After the formation
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Figure 1.3. Transcription initiation by RNA polymerase II. RNA
polymerase II and various general transcription factors (GTF), e.g. TFIID,
form the pre-initiation complex around the transcription start site. Other
regulatory proteins, such as Mediator, chromatin remodelers, coactivators, and
sequence-specific transcription factors (TFs), are involved in transcriptional
regulation.

of a stable transcription initiation complex (Figure 1.3), the promoter is
cleared and elongation is induced to produce an RNA transcript [158]. RNA
polymerase II is phosphorylated to switch from initiation to elongation and
cofactors associated with the polymerase are exchanged [158].

After primary transcripts are produced by RNA polymerase II, they are
modified at both ends and are subjected to splicing [158]. 5" end modifi-
cation is crucial for further processing, localization, and translation [281].
5" ends are capped with a methylated guanosin triphosphate [158]. In con-
trast, 3’ ends are cleaved and polyadenylated [158]. This modification is
essential for transcript termination, transport, translation, and stability of
the transcript [307]. mRNA is proofread and aberrant RNA molecules are
degraded [116]. Mature mRNA is then exported to the cytoplasm [198].

Regulatory factors located in promoter proximal regions do not always
activate or repress transcription in the classical sense but serve as tethering
elements recruiting distal enhancers to the core promoter [49]. It is possible
that some regulatory factors recruit some enhancers, while other combina-
tions recruit other enhancers [164]. Different complexes of regulatory ele-
ments are necessary for temporal- and tissue-specific regulation of distinct
cis-DNA elements [164]. These different complexes binding at promoter and
enhancer elements offer a variety of combinations of distinct gene expression
patterns [164].
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1.2.3 Transcription factors

Transcription factors can be described as proteins that regulate the produc-
tion of RNA in different modes of action [182]. They regulate the expression
of genes by binding to sequence-specific binding sites that can occur genome-
wide [182]. Transcription factors rarely work alone but cooperate with each
other either by direct interaction or through co-activators or co-repressors [81]
and transcription factor bindings sites were identified to cluster together to
regulate transcription cooperatively [29]. Tt is yet unknown what determines
the set of binding sites bound in a particular context but the influence of
chromatin accessibility is assumed to play a major role [48].

There exist approximately 200-300 transcription factors that bind to core
promoter elements and 1400 sequence-specific transcription factors. Tran-
scription factors consist of two functional domains, a DNA-binding and
an activation domain that is crucial for the TF to stimulate transcription
(179, 192]. There exist various classes of transcription factors with more than
100 known DNA-binding domains and specific DNA binding sequences [179]
and approximately 12 to 15 structurally distinct DNA-binding domains are
known from eukaryotic TFs [112]. Grouping of TFs according to their bind-
ing domain can provide insights into their function, e.g. homeodomain con-
taining TFs are often involved in developmental processes [173]. The DNA-
binding domain can be composed of contiguous amino acids (e.g. home-
odomain, MADS box) or dispersed within the primary sequence (e.g. Zn-
fingers) [299]. Three types of TF domains account for 80% of the repertoire
in the human and mouse genome: the CyHyzine-finger, homeodomain and
helix-loop-helix [103, 280].

The binding sequence is a rather short and degenerate sequence of 6-12 bp
which is described in a consensus sequence whereas the binding specificity
is dictated by just 4-6 bp [179]. Differences in the binding sequence can
affect the strength of the activator binding which can have implications for
crucial situations such as embryonic development when transcription factors
are distributed in a concentration gradient [179]. Specific factors determine
the set of genes to be transcribed and are either ubiquitously expressed or
are rather tissue-specific [280].

Transcription factors can bind close or far away from regulated genes,
upstream, downstream or in the introns of the genes they regulate [45].
Transcription factors binding in close proximity to the TSS are thought to
stabilize general transcription factors at core promoter elements, whereas
transcription factors binding to distal regions of a gene induce interactions
between distal elements and the general transcriptional machinery bound
at the TSS [81]. The analysis of 1% of the human genome has shown
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that transcription factors binding primarily at proximal promoter regions
are rather the exception than the rule [65, 54, 55] as less than 10% of the
analyzed factors had the majority of their binding sites within 2.5kb of a
TSS [65], e.g. YY1 [114] and E2F1 [31]. Distal sites have been shown to
be involved in tissue-specific regulation [239]. Transcription factors binding
rather at distal positions include p53 [55], ER [54], NFxB [178], CREBP [80],
and STAT1,2 [113]. The genomic distribution patterns of these factors re-
semble distal regulatory elements such as enhancers [114].

General transcription factors required for promoter binding by RNA poly-
merase I in vitro include TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH [211].
The mediator provides targets for transcriptional activators and by pass-
ing signals to RNA polymerase II and components of the initiation appara-
tus [158].

1.3 Identification of transcription factor
binding sites

One of the challenges in genomic research is the identification of all func-
tional elements, including those factors that regulate gene expression. The
identification of these elements will help to uncover mechanisms in various
diseases [179]. The availability of genome sequences of various organisms,
microarrays and the development of computational methods have facilitated
the identification of cis-regulatory sites on a genome-wide scale [52, 53, 55]
and allow the analysis of transcription factors under various conditions [202].

1.3.1 Experimental techniques

The identification of transcription factor binding sites using experimental
approaches is crucial for a better understanding of biological function of TFs,
for the analysis of tissue- and temporal-specific effects on gene expression
[164], and for an improvement of computational predictions [77].

If the regulatory factors are unknown, alterations of chromatin struc-
ture and experimental manipulation of defined DNA segments can lead to
the identification of the location of a functional element [77]. Direct mea-
surements of interactions of a regulatory factor with the DNA provide more
precise information when the TF involved has been identified [77].

Traditionally, TF binding specificity has been determined using footprint-
ing methods that identify the DNA region protected by a bound protein,
nitrocellulose binding assays, gel-shift analysis, or reporter constructs [45].
Several sequencing-based high-throughput methods on a genome-wide scale
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require the isolation of cDNAs, sequencing of their 5’ ends and mapping of
these fragments to a genomic DNA sequence [243]. Chromosome confor-
mation capture can be used to identify interactions between chromosomal
regions such as regulatory elements to their corresponding transcript [301].

Reporter assays Reporter assays are the classical experimental approach
to characterize regulatory elements. The candidate transcriptional regulatory
element, a promoter, and a reporter gene are tested in vitro or in vivo in a
synthetic construct [138, 146] and the change in production of the reporter
protein in response to the candidate regulatory element is measured [77].

EMSA Electrophoretic mobility shift assay (EMSA) is a traditional
approach for the identification of interactions between DNA and pro-
teins [87, 93]. This ’gel-shift’ assay can be used to verify the ability of a
protein to recognize and bind a target DNA sequence [77].

DNasel hypersensitivity DNase hypersensitive sites, nucleosome-
depleted regions digested by DNAsel, are markers for functional regions in
non-coding sequences [57, 104]. DNase hypersensitivity assays map changes
in chromatin structure [77] and detect sites of open chromatin likely to con-
tain functional transcription factor binding sites by sequencing the flanking
sites of DNasel cleavage sites [111, 239].

ChIP Chromatin immunoprecipitation is one of the most powerful experi-
mental techniques for the in vivo mapping of DNA-associated proteins when
the regulatory factor is known [77, 153]. Binding sites for a specific TF
can be isolated by antibodies that recognize the specific TF bound to their
target DNA [239]. A large number of binding regions can be identified at
the same time in living cells [239]. This assay captures in vivo interactions
between DNA and a protein by cross-linking proteins to their DNA recogni-
tion site [77]. The cells are lyzed and DNA is fragmented into small pieces
followed by immunoprecipitation using a TF-specific antibody [77]. Rever-
sal of the cross-linking releases the DNA for subsequent detection by PCR
amplification [77]. ChIP is used to identify DNA-bound factors on a ge-
nomic scale by hybridizing DNA sequence segments to promoter or tiling
microarray (ChIP-chip) [233, 250]. The identified ChIP products can also be
identified by ultra-high-throughput sequencing (ChIP-seq) [21].

ChIP-chip High-throughput variations of the ChIP technique amplify all
genomic sequences with binding sites for the given protein [77]. These se-
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quence fragments are then hybridized to a genome-wide tiling or promoter
microarray [77, 153]. Whereas tiling arrays cover the whole genome se-
quence, promoter microarrays cover the upstream regions of the TSS for
every gene (1-10 kb) [142, 153]. One of the key issues is the identification
of the best binding sites among all identified potential sites which requires
computational methods [77]. In addition, the microarray design and probe
density dictates the ability to identify binding regions [239].

ChIP-Seq Chromatin-immunoprecipitated DNA can also be sequenced us-
ing massively parallel sequencing, often referred to as next-generation se-
quencing [153]. The sequence reads are mapped to a reference genome [153]
and a peak-finding algorithm is used to determine binding site locations [213].
Unfortunately, due to repetitive DNA sequences, not all sequence reads can
be mapped unambiguously [153]. ChIP-Seq has a finer resolution than ChIP-
chip in large genomes (25-200 bp compared to 200 bp) [153].

SELEX ChIP and subsequent motif discovery may miss binding sites due
to partial occupancy or low resolution [153]. The identification of all bind-
ing sites under all possible biological conditions for each TF remains also
elusive [153]. However, in vitro proteins bind to DNA probes regardless of
the condition [153]. Systematic evolution of ligands by exponential enrich-
ment (SELEX) [263] is a high-throughput approach to screen short, random
oligonucleotide probes for recognition by a specific protein in vitro [77]. This
way, short DNA sequences with a high affinity to the transcription factor of
interest are selected from randomized short double-stranded DNAs from a
genome-wide library [208].

1.3.2 Computational approaches

A number of bioinformatics approaches have been developed for the identifi-
cation of both known and unknown transcriptional regulatory elements [179].
Upstream sequences can be scanned for motifs of known transcription factor
binding sites extracted from databases such as TRANSFAC [183]. It is also
possible to analyze sets of coexpressed genes and identify common sequence
motifs in their upstream region [179] under the assumption that co-expressed
genes are also co-regulated [169]. If the set of genes is coexpressed, the expres-
sion might be mediated by common regulatory elements [284]. Coexpressed
genes can be identified by e.g. microarray expression experiments. These
sequences can not only be used to identify binding sites for known transcrip-
tion factors but also for the de novo identification of binding motifs which
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are overrepresented in the set of upstream sequences of the genes of interest.

Description of binding motifs are built from experimentally determined
transcription factor binding sites in DNA and can be used to form a consensus
sequence or a position weight matrix (PWM), also called position specific
score matrix (PSSM), [259] which can in turn be used to scan a putative
regulatory region for motif occurrences [284]. Consensus sequences are simple
strings over the 4-letter alphabet [A,C,G,T] that forms DNA sequences [107].
The degenerate IUPAC nucleic acid code [132] also describes variation in a
specific position [107]. However, degenerate consensus sequences contain
little information about the actual nucleotide frequencies at the different
positions of the binding profile [45]. Thus, PWMs or PSSMs are used to
describe the nucleotide preferences for a specific factor [45].

PWDMs

To construct a PWM, identified binding sites are aligned and the distribution
of each base in each position of the binding motif is used as the weight in
the PWM (see Figure 1.4). Hence, the elements of a PWM describe the
likelihood of a nucleotide at a certain position [45]. The observed number
of occurrences of each nucleotide at each position is represented in a count
matriz [227]. This number is divided by the number of total sequences so all
rows sum up to one [227]. A constant is often added to the matrix to avoid
the occurrence of zero counts. This allows a minimal chance of a nucleotide at
that position to occur rather than no chance at all [227]. For computational
purposes the matrix is then transferred into a PWM using a logarithmic
scale [290]. The PWM is slid over a sequence and in each sequence window
a score is determined that captures the overlap between the sequence region
and the PWM [111, 227]. There are a number of ways to use the determined
score to decide if a match is an actual predicted binding site [111]. If the
score exceeds a pre-determined threshold, the match is counted as a hit
of the PWM at the identified sequence region [227]. A score threshold is
often chosen in a way that the probability of finding a false hit by chance
is at most 0.05 which limits false positive detections [227]. Rahmann and
colleagues [227] developed a method that also accounts for the probability
of detecting a true hit when there is a binding site present in the sequence
(called the power).

A drawback of PWMs is the assumption that each position in the binding
motif is independent towards the binding of the TF [27, 107], although this
has been proven wrong in a number of situations [46, 176].

TRANSFAC [183] and JASPAR [287] are two major databases for eukary-
otic PWMs [284]. Although these PWM libraries are incomplete, the search
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Figure 1.4. Representation of transcription factor binding sites.
A An example of six aligned sequences. B A position weight matrix for
the given sequences and the consensus sequence derived from the matrix. S
represents G or C. The score for each nucleotide at each position is obtained
from the observed occurrence of that nucleotide at the corresponding position
in the given sequences. C Sequence logo of the given sequences. The higher a
letter the higher the probability of that nucleotide at the given position.

for occurrences of known motifs is less complex than the de novo identifi-
cation of motifs [273]. A major drawback of scanning long sequences using
PWNMs is the inevitable large number of false positive hits due to the low
information content of the binding sites [284].

Furthermore, predicted binding sites may not be functional binding sites
and may not be bound in wvivo due to various reasons such as the chro-
matin structure [45]. In addition to better motif descriptions, clustering of
binding sites, evolutionary conservation of binding sites, and enrichment of
regulatory sites in co-regulated genes can help to improve binding site pre-
dictions [283, 284].

Phylogenetic footprinting The term phylogenetic footprinting refers to
the identification of conserved regulatory patterns in orthologous sequences
using phylogenetic comparisons [45, 284]. The availability of a large number
of genome sequences has enabled the comparison among different organisms.
It is assumed that cis-regulatory elements are more conserved than non-
coding sequences [284] and that orthologous genes are regulated by the same
mechanisms in different species [290].
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cis-regulatory modules Transcriptional regulation occurs through the
combined action of multiple transcription factors [174]. Thus, transcrip-
tional regulatory sequences often comprise multiple binding sites for multiple
regulatory factors in close proximity to each other [169]. Elements with
a large number of binding sites are called cis-regulatory modules (CRM).
Clustering of transcription factor binding sites is often used for the iden-
tification of CRMs [284]. These clusters can contain multiple binding
site for the same TF (homotypic) or multiple binding sites for multiple
TFs (heterotypic) [288]. CRMs can also be identified in conserved sequences
when the sequences are aligned [284]. Searching for clusters of co-occurrences
of binding sites has been shown to increase prediction specificity without
loosing sensitivity [29].

Detection of CRMs can be performed following three different approaches
[169]. To identify CRMs in a specific and well-studied process, genome-wide
binding sites for a predetermined set of transcription factors are detected,
often using a combination of PWMs;, e.g. [110, 228]. A second approach
identifies regulatory elements in a set of co-expressed genes, e.g. [272, 278].
The last approach yields at identifying genome-wide binding sites for any
combination of transcription factors without any assumptions on a specific
set of TFs or any specific process. This approach is more general and
does not assume specific sets of transcription factors working cooperatively.
However, only a few methods have been developed to identify sets of in-
teracting transcription factors without prior knowledge on a genome-wide
scale. One example is PReMod [33] where statistically significant clusters of
up to five transcription factors were searched in whole-genome alignments.
The method is based on the assumption that regulatory regions consist
frequently of clusters of binding sites for a few different transcription factors
and that these clusters are more conserved than their flanking intergenic
sequences. Transcription factor binding sites were predicted in the human
genome within a human-mouse-rat alignment block using vertebrate PWMs
obtained from TRANSFAC [183]. To reduce false positive hits, the devel-
oped scoring method favors simultaneous matches in all three species. In
a second step, clusters of putative transcription factor binding sites were
identified. For this, regions of at most 2 kilobases (kb) were determined
that were significantly enriched with binding sites for one up to five different
transcription factors.
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1.4 Regulation in development

Animal development is a fascinating process. Out of a single fertilized egg an
embryo develops and embryonic cells differentiate into distinct cell types and
organs building the adult body. All these processes are driven by an intrinsic
blueprint of development written in the four-letter alphabet of the genomic
DNA sequence [260] and depend on the precise control of gene expression at
the level of transcription [206]. Multiple cells in an organism must develop
in a coordinated fashion. For this, multiple genes must be activated at the
same time in response to the same stimulus [291]. Interaction and commu-
nication of cells through signals and signal transduction pathways, which in
turn induces a particular combination of TFs, is crucial for accurate pat-
tern formation [306]. The precise patterns of gene expression are crucial for
development which are controlled by transcription factors binding to cis-
regulatory modules [310]. Thereby, TFs determine the rate of transcription
and mediate the accurate activation or repression of a particular gene in a
time- and tissue-specific manner, e.g. in the appropriate cell types or regions
of the developing organism [12].

The importance of TFs in development and differentiation has been
demonstrated in a number of cases [306] as they initiate specific develop-
mental programs [306]. One example are the hox genes, which are involved
in the correct formation of specific body segments and the anterior-posterior
patterning of most metazoans [124, 148]. These genes are generally located
within tightly regulated clusters and their complex expression patterns
during development are regulated by local and long-range cis-regulatory
DNA elements. The expression of Hoxb1 in the mouse hind brain is the best
characterized example of a vertebrate Hox enhancer [82]. Other examples
include Pax6, which controls eye development [18] and MyoD, which is cru-
cial for muscle formation [210]. Recently, a specific combination of TFs has
been shown to be sufficient to reprogram differentiated cells into pluripotent
embryonic stem cells by a specific combination of TFs [135, 165, 269].

A specific spatio-temporal output of expression is achieved by integrating
the input of multiple transcription factors in CRMs [14]. Numerous cis-
regulatory elements direct the expression of a particular gene, each in a
different pattern [199].

A detailed knowledge of the location of all developmental CRMs, a com-
prehensive map of their combinatorial and temporal binding profiles and the
ability to predict their spatio-temporal activity is necessary to understand
global cis-regulatory networks [310]. A central role in the regulation of de-
velopmental transcription has been attributed to DNA enhancer elements
and transcription factors binding to these regions [206]. Although the role of
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distant acting regulatory sequences directing spatial and temporal expression
patterns has been established in development, the identification of these se-
quences is still limited [261]. To predict spatio-temporal activity of enhancers,
a number of sequence-based models has been applied [249, 311]. However,
these methods are only accurate when tailored to individual CRMs [311]
or small numbers of regulatory modules [249]. Besides this, genome-wide
ChIP studies revealed extensive patterns of TF occupancy in a number of
developmental contexts in different organisms, including Drosophila [310],
mouse [154], and fish [195]. However, a static map of TF binding does not
reflect the dynamic nature of gene expression and dynamic properties of
cis-regulatory networks are crucial to understand temporal expression pat-
terns [295]. A number of computational methods attempted to infer temporal
regulation of gene expression mainly by testing enrichment of TF motifs in
differentially expressed groups of genes [67, 92, 296|. Zinzen and cowork-
ers [310] constructed a high-resolution atlas of cis-regulatory modules per-
forming ChIP-chip experiments for five transcription factors at consecutive
time-points describing their temporal and combinatorial occupancy during
Drosophila mesoderm development [310]. As many biological processes are
spatially and temporally controlled at the level of transcription, understand-
ing the mechanisms of transcriptional regulation of gene expression will help
to understand the molecular mechanisms of differentiation and development.

Alterations in cis-regulatory sequences responsible for proper transcrip-
tion are essential for morphological diversification and evolution of develop-
mental mechanisms [270]. As many developmental enhancers have a more
flexible arrangement of binding sites than enhanceosomes, they are described
more accurately by the billboard enhancer model. The exact composition of
billboard enhancers are subject to rapid change in evolution, keeping the
overall output constant [172]. The position of individual binding sites within
CRMs involved in embryonic patterning is highly flexible [202]. Enhancers
directing similar expression patterns can have different binding site arrange-
ments [203]. Whereas regulation of terminal differentiation seems to be very
simple, regulatory sequences for early patterning can be quite long and con-
tain various different binding sites [202]. This can be explained by the fact
that in early patterning events, multiple binding sites are necessary for sens-
ing small differences in the concentrations and combinations of regulatory
factors. However, only after cells express the relevant TFs, terminal differ-
entiation can occur [202].

Although many genes involved in specific developmental processes have
been identified, genes encoding transcription factors and cell signaling compo-
nents need to be further characterized to elucidated extensive gene regulatory
networks [163]. Regulation of development has been extensively analyzed in
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the sea urchin embryo [68, 209], frog [144], worm [131], and Drosophila [310].
However, little work has been done in mammals with few exceptions [253].
The comparison of sequences between different organisms has led to the iden-
tification of many thousands of conserved non-coding elements (CNEs) also
between distantly related species (such as human and puffer fish) [166]. Ex-
perimental testing of randomly selected CNEs in mice [216, 286] and ze-
bra fish [251, 298] has identified CNEs as potential enhancers and many
CNEs show spatial- or temporal-specific enhancer activity [166]. One exam-
ple is the identification of vertebrate brain region-specific enhancers through
a high throughput analysis of expression-pattern associated CNEs in zebra
fish [166]. Highly conserved non-coding sequences have also been shown to
be associated with vertebrate development when comparing orthologous se-
quences between human and puffer fish [298]. Most of the identified sequences
are located upstream of genes involved in developmental regulation [298]
and a number of these sequences have been shown to have some function
in vivo (e.g. [201]). In addition, ultraconserved elements (perfectly conserved
regions of at least 200 bp) between human, mouse, and rat [25] as well as
between human, mouse, and puffer fish [242] have also been shown to be lo-
cated nearby genes encoding key regulators of development and transcription
[25, 34, 298]. Furthermore, these ultraconserved elements have been shown
to serve as long-range enhancers during mouse development [216]. There-
fore, extreme evolutionary non-coding conservation can serve as a powerful
predictor for mammalian tissue-specific enhancers [216].

Most developmental enhancers (irrespective of the size of the genome) are
typically between 200 bp to 1 kb in length [162] and contain multiple bind-
ing sites for different classes of sequence-specific TFs [12]. Additionally, these
enhancers often contain binding sites for repressors that inhibit expression
in inappropriate tissues [188]. The combination of computational and ex-
perimental approaches has greatly improved the collection of developmental
enhancers and has allowed investigating the exact arrangements of binding
sites of developmental enhancers [162].

Although the textbook view of developmental transcription is that regula-
tion is mediated by TFs and enhancer sequences, recent reports have also im-
plicated TFII complexes and core promoter elements in the precise regulation
of developmental transcription [206]. So far no universal eukaryotic promoter
elements have been identified, e.g. the TATA box occurs only in ~10-20% of
eukaryotic genes [23, 205]. Furthermore, core promoter elements and TFIID
complexes can be highly diverse. Hence, it was suggested that core promoter
elements may be adapted to the transcription initiation machinery of spe-
cific cells [206]. In addition, enhancer elements were shown to interact with
different core promoters during distinct stages of development [206].
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1.5 Regulation of cholesterol biosynthesis

Cholesterol is central in human metabolism as cholesterol and its derivates,
steroids and bile acids, act as signal transducers and solubilizers of other
lipids [128]. In addition, cholesterol is a substantial component of cellular
membranes modulating the function of membrane proteins and it participates
in several membrane trafficking and transmembrane signaling processes [128].
Dysfunction of cholesterol metabolism has been implicated in various diseases
such as cardiac diseases, dementia, diabetes, and cancer [127, 185].

Mammalian cells acquire cholesterol by de novo synthesis (see Figure 1.5)
in the endoplasmic reticulum (ER) and by endocytosis of lipoproteins [184].
Cholesterol esters in the core of lipoproteins (of which ~70% are low-density
lipoproteins [22]) are hydrolyzed in late endosomes and lysosomes, and free
cholesterol is released into the cell [184]. Feedback control mechanism of
cholesterol is mediated by a cell surface receptor for a plasma cholesterol
transport protein called low density lipoprotein receptor (LDLR) [100].
These receptors bind LDL and carry it into the cell by receptor-mediated
endocytosis [43]. The internalized lipoprotein is delivered to lysosomes
where its cholesterol esters are hydrolyzed [43].

The sterol regulatory element binding proteins (SREBPs) are key reg-
ulators of cholesterol and fatty acid metabolism [120] by regulating mul-
tiple genes involved in cholesterol biosynthesis and uptake [44]. SREBPs
belong to a large class of TFs containing basic-helix-loop-helix-leucine zip-
per (bHLH-Zip) domains [240] and are synthesized as inactive precursors
bound to the membranes of the ER [44, 101]. A two-step proteolytic process
of cleavage is required in order to release their amino-terminal bHLH-Zip
containing domain into the nucleus. SREBPs bind like all bHLH proteins to
E-boxes (5'-CANNTG-3’, with N representing any base) and a specific DNA
sequence, the sterol regulatory element (SRE) (5-TCACNCCAC-3’) [140].
SCAP (SREBP cleavage activating protein) is a required activator of SREBP
cleavage and the activity is abolished by sterols [44]. SCAP contains a
sterol-sensing domain regulating the transport of SREBP from the ER to
the Golgi [252]. In the Golgi the cleavage is initiated by a membrane-bound
serine protease termed Site-1 protease (S1P) that clips SREBP at site 1. This
cleavage breaks the covalent bond between the two transmembrane domains
of SREBP but both halves remain attached to the membrane. A second
membrane-bound zinc metalloproteinase termed Site-2 protease (S2P) clips
the first transmembrane fragment at site 2, which releases the active domain
into the cytosol from where it enters the nucleus [44].

Three isoforms have been identified in mammals, SREBP1a, SREBPIc,
and SREBP2 [101] which are encoded by two different genes (SREBF-1
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Figure 1.5. Human cholesterol biosynthesis. Key intermediate metabo-
lites of the pathway are represented as circles. Arrows indicate the cholesterol
pathway. CoA: coenzyme A.

and SREBF-2) [44]. SREBP1la is involved in the regulation of cholesterol
and fatty acid biosynthesis, whereas SREBP1c and SREBP2 regulate fatty
acid metabolism and cholesterol biosynthesis, respectively [120]. SREBPs
are weak transcriptional regulators themselves and act in combination with
other transcription factors, i.e. Spl transcription factor (SP1) and nuclear
transcription factor-Y (NF-Y) [72, 134, 234, 241]. Although many SREBP-
responsive genes involved in the uptake and synthesis of cholesterol and
fatty acids have been described [22, 121, 231], it is suggested that only a
smaller fraction of SREBP target genes have been discovered so far [121].
Furthermore, little is known about interactions and simultaneous binding of
SREBP with other transcription factors [231]. Diseases caused by dysfunc-
tional cholesterol uptake and synthesis like Familial Hypercholesterolemia
and Niemann-Pick Disease Type C are not fully understood and open ques-
tions remain concerning the regulation of cholesterol metabolism and molec-
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ular interactions of known cholesterol-regulating factors [22].

1.6 Machine learning

Machine learning emerged from the subfield of computer science known as
artificial intelligence (AI). Machine learning systems “learn” from previous
experience. Accumulated experience (e.g. through experimental data) allows
a machine to develop new knowledge which leads to a better performance on
a specific task over time. Learning from experience is the central idea to
the different types of problems encountered in machine learning, especially
problems involved in classification. The general goal of all problems is the
identification of a systematic way of classifying a new example. Classification
is based on knowledge obtained from learning (or training) samples together
with measurements obtained from a similar new example. The number of
classes needs to be finite and known and the class of each example needs to
be determined and known. [133]

Machine learning can be divided into supervised learning and unsupervised
learning.

Unsupervised learning The goal of unsupervised learning is the explo-
ration of characteristics of the input variable when there is no appropriate
information about an output variable available. This approach was not fol-
lowed in this thesis.

Supervised learning The goal of supervised learning is to find a function
of the input variables to approximate the known output variables. For
this, the learning algorithm receives a set of continuous or categorical input
variables and a correct output variable. This way, the relationships between
the input variables and the output variable can be analyzed. If the output
variable is continuous a regression problem is faced, whereas a categorical
output variable faces a classification problem.

The concept of generalization aims at making good predictions when
applied to a data set that is independent of the data used to fit the model.
Not using an independent data set will result in overestimating the model’s
predictive accuracy. One way of creating an independent data set is to
hold back a proportion of the data set from the model fitting and use it for
prediction. Usually, the data set is separated into three non-overlapping and
independent data sets. [133]



1.6. MACHINE LEARNING 27

Training set The training set is used for the assessment of the data, pre-
liminary testing, looking for patterns, trying different models, and eliminat-
ing outliers.

Validation set The validation set is used to assess the different models
and to select the best model possible.

Test set The test set is used to assess the performance of the specified
final model.

To assess the performance of a particular model, the prediction error
can be used as a measure of prediction accuracy. In classification, a classifier
is built from the training set and used to predict the classes of the test set.
The proportion of all misclassified samples in the test set is then defined as
the prediction error. Other methods to assess the test error are based on
cross-validation [264] and bootstraping [74] and are used when limited data
samples are available.

V-fold cross-validation During cross-validation, the entire data set is
divided randomly into equally sized V non-overlapping groups with V be-
ing any number between 2 and the overall sample size. One group is then
successfully removed from the entire set and the other V-1 groups are used
as the training set to fit the model. The omitted group serves as the test set
and its output variable is predicted using the fitted model to determine the
prediction error of the omitted group. This procedure is repeated V' times,
each time removing a different group. The overall test error is estimated by
averaging over the obtained V prediction errors. This way, the entire data
set is used in a more efficient manner than the mere division into a training
and an independent test set.

Bootstrapping A bootstrap sample is randomly drawn from the entire set
with replacement. Using this sample, a model is fitted and the prediction
error assessed with the remaining data. This procedure is repeated at least
~1000 times, each time assessing the prediction error. The test error is then
estimated by averaging all the prediction errors.

When learning a model one has to be careful not to overfit the model.
Overfitting occurs when the model is too large or complicated, or when the
data set contains too many parameters relative to the size of the training
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set. It usually estimates well the training set but results in a large prediction
error on the test set. [133]

1.6.1 Decision trees

Decision tree learning is one of the most extensively used methods for in-
ductive inference. Tree-based methods have been used in a variety of fields
such as biomedical and genetic research, marketing, political science, speech
recognition, and other applied sciences. Decision trees are intuitive and easy
to interpret as the sequences of decisions made to assign a class label to an
input is easy to follow [145]. Furthermore, they can be easily extended to cat-
egorical rather than numerical variables. Furthermore, decision tree learning
methods are robust to errors and can cope with missing values [193]. How-
ever, a challenge in decision trees remains the induction of decision tress of
small size and depth [145].

Examples are classified by sorting them down the decision tree from the
root to some leaf node. At each node a test of some variable is specified
and the example is moved down the branch from that node corresponding
to the value of the variable in the given example. An example for a decision
tree is given in Figure 1.6. Decision trees are best suited to problems where
instances are represented by a fixed set of variables and their values with a
discrete output variable [193].

A simple and powerful method to infer classification rules from a set of
labeled examples is the top-down induction of decision trees [223]. One of the
earlier approaches are Friedman and Breiman’s work resulting in the CART
system [40, 88] and the ID3 algorithm [223] with its successor C4.5 [225].
The central idea of the nonparametric statistical method of classification
and regression trees (CART) [40] is an algorithm known as recursive parti-
tioning. This involves a step-by-step procedure to construct a decision tree
by either splitting or non splitting each node in the tree into two daughter
nodes. The CART algorithm (or the related C4.5 methodology) asks a se-
quence of boolean questions and the results are therefore relatively easy to
understand and to interpret. In the CART methodology, the input space is
partitioned into a number of non-overlapping rectangular or cuboid regions.
Each region is viewed homogeneous to predict the output. Classes are as-
signed to the regions with sides parallel to the input space. This kind of
partition corresponds to a classification tree. Similar to classification trees,
regression trees are constructed by recursive-partitioning, generally referred
to as recursive-partitioning regression. [133]
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Sunny T —— Rainy
Go forarun Play tennis Take an umbrella Stay inside

and go for a walk

Figure 1.6. A decision tree for the concept of Saturday afternoon
activity. An example is classified by passing it down the tree to the appro-
priate leaf note. This tree classifies Saturday afternoon according to what
activity is suitable for the given weather, e.g. if it is rainy and cold outside
the appropriate activity is staying inside.

Classification Trees

A classification tree is the outcome of asking an ordered sequence of questions
that terminates with the prediction of a class. Each question depends on the
answer to the previous question in the process.

At each node in the tree a decision rule is implemented splitting the ex-
amples into two or more partitions. The starting point of a classification tree
at the top of the tree is called the root node. It consists of the entire training
set that is successively passed down the tree. A terminal or nonterminal
node consists of a subset of the set of variables. A nonterminal node is also
called a parent node and a binary split divides the node into two daughter
nodes. The binary split is determined by a Boolean condition on the value of
a single variable. The observed value of a variable can either satisfy (“yes”)
or not satisfy (“no”) the condition at that split. Observations satisfying the
condition for the variable at a particular node are passed down to one of
the daughter nodes, all other observations not satisfying the condition drop
down to the other daughter node. A terminal node or leaf node does not
split and is assigned a class label depending on the class of the majority of
the observations at that node (called the plurality rule). Each observation
is passed down the tree until it falls into one of the terminal nodes where
it is assigned a class label. The set of all terminal nodes of a tree is called
a partition of the data. If a tree has only a single split with two terminal
nodes, it is called a stump.

To grow a classification tree, one has to determine how to choose the
Boolean conditions for splitting at each node, which criterion should be used
to split a parent node into its daughter nodes, how to determine a node to
be terminal, and how to assign a class to a terminal node. [133]
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Tree growing procedure

The tree growing algorithm needs to decide at each node which variable is
split “best”. All variables present at the node need to be considered for the
split and each one needs to be evaluated to determine the best variable for the
split. However, for each given variable the best split needs to be determined
first. To determine the best possible split, a measure for the goodness of
a split is needed which is defined by the node impurity function. The two
most commonly used impurity functions are the entropy function [223] and
the Gini diversity index [40]. The entropy function is defined as

K

i(N) == p(kIN)log(p(k|X)) (1.4)

k=1

where p(k|A) is the probability that an observation is correctly classified as
class k at node A. The Gini diverstiy index is defined as

i) =1= p(kN)?* (1.5)
k

where p(k|)) is also the probability that an observation is correctly classified
as class k at node A\. The Gini index is often the default function in tree
growing software as it is frequently the best splitting rule. It focuses on
separating one class at a time from the remaining data and thereby tries to
produce pure nodes, whereas entropy aims at equalizing sample sizes in the
generated subsets at each split [38]. The reduction in impurity gained by
splitting the parent node into its daughter nodes gives the goodness-of-split
at a particular node.

The sequential splitting process of growing a tree is called recursive
partitioning. Each tree growing procedure starts with the root node, which
consists of the entire training set. The tree algorithm determines the best
split at the root node for each variable using the chosen “goodness-of-split”
criterion. The split with the largest value over the best splits of all single
variables is chosen as the best split at the root node. According to the deter-
mined split, the root node is split into two daughter nodes. Each daughter
node is then split in the same way as the root node and the subsequent
nodes are split accordingly. This results in a greedy search for an acceptable
decision tree where earlier choices are never reconsidered [193]. In a binary
tree every node has exactly two daughter nodes. A tree is saturated if the
procedure is conducted until none of the nodes can be split any further. A
terminal node can also be determined based on a defined stopping criteria.
To restrict the growth of a tree, a node can be declared terminal if it is smaller
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than a predefined threshold. The growing procedure can also be restricted
by setting a minimal value for the improvement of the goodness-of-split value
at a node. However, it is usually better to grow a saturated tree and then
“prune” it back [40]. The idea of pruning is to let the tree grow “large” and
then successively remove branches with little statistical validity [91, 191, 224]
until the tree has obtained the “right size” using a bottom up approach [40].
Therefore, a pruned tree is a subtree of the original saturated tree.

A good estimate of the misclassification rate can be computed by using an
independent test set or cross-validation to determine the best subtree. [133]

1.6.2 Ensemble learning

How to lower the generalization error of a learning algorithm by reducing the
bias or the variance is one of the most important research topics in machine
learning. This is related to the idea of “instability” of a prediction or classifi-
cation method. A classification is unstable if small perturbations of the train-
ing set lead to major changes in the resulting classifier. Due to overfitting,
unstable classifiers have high variance and low bias. In contrast, underfitting
leads to a high bias. By this definition, decision trees are unstable. However,
instability of a classifier can be used to improve the accuracy of the learn-
ing algorithm. By perturbing the training set, an ensemble of different base
classifiers is generated. Using these combined classifiers is called ensemble
learning or committee-based learning and their success often depends on the
degree of instability of the base classifier. Ensemble learning algorithms gen-
erate many classifiers and aggregate their results [167]. Growing an ensemble
of trees and determining the most popular class has significantly improved
classification accuracy [39]. Two methods for ensemble learning are bagging
[37] and boosting [86] which differ in the way perturbations are generated.
Whereas bagging was designed to reduce variance, boosting appears to rather
reduce bias. Another example for ensemble learning is random forest [39].

Bagging

Bagging is an acronym for “bootstrap aggregating” [37]. Perturbations of
the training set are generated by random and independent drawings from
the training set. It was the first procedure successfully combining an en-
semble of learning algorithms that improved the performance over a single
learning algorithm. Bagging starts by drawing B bootstrap samples from
the training set where each bootstrap sample is gained by repeating sam-
pling with replacement from the training set. For each bootstrap sample a
classification tree is grown independently of earlier trees and each sample
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is dropped down each of the bootstrap trees. The class of each sample is
determined by class which was predicted by the majority of trees. This clas-
sification procedure is called the majority-vote rule. Those observations not
included in the bootstrap sample are called out-of-bag (OOB) observations.
These OOB observations serve as an independent test set. The OOB mis-
classification rate is then determined by the proportion of classes where the
predicted class differs from the actual class for all observations in the training
set. [133]

Boosting

In contrast to bagging, boosting [86] is an iterative process where each clas-
sifier is dependent on the performance of those built before [297]. Thereby,
the performance on previously misclassified samples is improved. Whereas
in bagging all single classifiers are equally weighted, boosting weights clas-
sifiers according to their contribution in performance. In terms of decision
trees, successive trees give extra weights to incorrect predictions by earlier
trees [167]. Boosting aims at enhancing the accuracy of samples that are dif-
ficult to predict using a “weak” binary classification learning algorithm. A
“weak” classifier is only marginally better than random guessing and classi-
fies correctly barely more than 50% of the time. The term “boosting” derives
from the idea of creating a “strong” classifier by improving (“boosting”) the
performance of a single classifier. This improvement is achieved by combining
classification votes from an ensemble of similar “weak” classifiers. [133]

Random forest

Random forest is one of the most effective ensemble methods available and is
an extension of the idea of bagging [39]. Whereas in bagging randomization
is only used in choosing the data set to grow the tree on, in random forest
randomization is also a crucial part of constructing each tree, thereby adding
another layer of randomization to bagging. Random forest follows the bag-
ging procedure by drawing n bootstrap samples from the original data set.
However, these approaches differ in the way the trees are grown from the
bootstrap samples. An unpruned classification tree is grown for each boot-
strap sample. Whereas in single decision trees each node is split according
to the best split among all variables, in random forest the best split at each
node is determined among a randomly chosen subset of all variables. Bag-
ging constitutes a special case of random forest when all variables are used at
each node instead of a subset. New data is then predicted by a majority vote
of all trees in the forest. The error is estimated using the OOB observations
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of each bootstrap sample. Using the additional layer of randomization, the
correlation between the different tree-structured classifiers is reduced.

Random forest is easy to use as there are only two tuning parameters,
the number of bootstrap samples and the number of variables randomly cho-
sen as a subset at each node. In addition, random forest cannot overfit as
the generalization error converges to a limit when the number of trees in
the forest is increased. Furthermore, random forest can be used to evaluate
the variables in a data set and assess the importance of each variable. This
is achieved by classifying the OOB observations and compute the OOB er-
ror rate. The OOB values for the specific variable are then permuted while
all other variables remain unchanged and the altered OOB observations are
re-classified. If a variable is important, the altered data leads to a poorer
classification. The difference between the two computed error rates averaged
over all trees in the forest serves as a measure for the importance of that
variable. To identify structure in the data or for unsupervised learning, a
prozimity measure can be estimated. Proximity between two instances is
given as the number of trees where both instances fall in the same termi-
nal node under the assumption that “similar” observations fall in the same
terminal node more often than dissimilar ones. [133]

1.7 Network analysis

To understand cellular processes, it is necessary to analyze cellular molecules
in the framework of pathways and networks. Experimental studies and large-
scale screens have provided interaction data that can be assembled into a
network format. The network can then be analyzed for significant biological
properties through its topological structure [308]. The relationships between
the different biological entities, e.g. interactions between proteins, can be
described with the language of graph theory which offers a mathematical
abstraction [122]. A graph consists of a set of nodes and a set of edges.
The edges connect the nodes, representing the relationship between them.
For example, nodes could represent different proteins and the edges physi-
cal interactions between the proteins. Examples of biological graphs include
regulatory networks, signal transduction networks, protein-protein interac-
tion networks, and metabolic networks. Depending on the characteristics of
the biological data, networks can be directed or undirected [308]. In case of
transcriptional regulatory networks, edges within a graph can be directed to
represent the direction of regulation [122].
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Metabolic networks One well-established type of biological networks
are metabolic networks. It can be easily constructed when key bio-
chemical relationships between key metabolic genes are known. It repre-
sents biochemical reactions between the different substrates facilitated by
metabolic enzymes and can represent certain pathways such as cholesterol
biosynthesis (see section 1.5).

Signaling networks Extracellular signals are connected to the control of
transcription factors via signal transduction pathways. These networks de-
scribe the interactions between signaling molecules within the cell from the
extracellular input to the specific transcription factors involved in the distinct
process.

Regulatory networks Large-scale identification of transcription factor
binding sites by ChIP-chip or ChIP-Seq has allowed the construction of
transcriptional regulatory networks, e.g. [292]. These networks represent the
regulation between transcription factors and their respective genes.

Protein-protein interaction networks Interactions between proteins
can be assembled into a protein-protein interaction (PPI) network. These
networks represent the largest and most diverse biological data sets available
to date [308]. Tightly connected proteins are often involved in similar
processes.  Functional annotations of interacting proteins may indicate
potential roles for unannotated genes and improve our understanding of true
pathological mechanism of a disease [308]. PPI network models are often
used as a simplification of more elaborated signaling networks [246].

1.7.1 Graph theory

A graph G = (V, E) is specified by its set of nodes V' and its set of edges
E. Each element of E consists of a pair u, v of elements of V' and edges can
be assigned weights, directions, and types. Two nodes are adjacent to each
other if they are connected by an edge. Likewise, two edges are adjacent if
they are joined by a node. If all nodes in a graph are connected with an
edge, the graph is called a complete graph. [122]

A graph can be represented by its adjacency matriz which is a square
matrix A whose rows and columns correspond to nodes. Its elements A;;
denote the presence of an edge from node ¢ to node j and possibly the weight
of the edge. The adjacency matrix is symmetric for undirected graphs. [122]
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The first step in understanding network architecture and performance is
the analysis of its network topology. The most important and commonly
used topological features in cell biology include degree, clustering coefficient,
shortest path length, and betweenness centrality [308].

The simplest measure to characterize the role of a node in a network is
the node degree or connectivity [6]. The degree or connectivity of a node
v is equal to the number of edges incident at node v. A node with many
connections has a higher node degree, which reflects its importance in the
network [308]. The degree for directed networks can be divided into in-degree
and out-degree that represent the number of incoming and outgoing edges,
respectively. One example are transcriptional regulatory networks, where
the in-degree can represent the number of transcription factors regulating
a target genes whereas the out-degree reflects the number of target genes
regulated by transcription factors [142]. Most target genes have only a small
number of transcriptional regulators, whereas just a small set of transcription
factors has a high number of connections [106].

The clustering coefficient of a node measures the degree to which the
neighborhood of a node resembles a completely connected subgraph (clique).
It is defined as the ratio of the number of actual edges between the node’s
neighbors to all possible edges between them. The clustering coefficient is
given by
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(1.6)
where F is the number of edges connecting the immediate neighbors of node v
and k, is the degree of node v. The clustering coefficient measures the
cliquishness, or transitivity, of the local neighborhood [6] and quantifies the
probability of two nodes that are both neighbors of the same third node also
being connected to each other [98].

The shortest path length between two nodes represent the shortest
distance between the two nodes. The maximal length of the shortest path in
a network is called the graph diameter [308].

The betweenness centrality is defined as the fraction of shortest paths
between all pairs of nodes passing through a node or edge. The betweenness
centrality is given by

Coy= Y Sai(v) (1.7)
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where s4(v) denotes the number of shortest paths between node s to node
t and node v lying on a shortest path between s and ¢ and sy denotes
the number of all shortest paths from s to ¢t. Betweenness centrality is an
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estimator of the traffic load through a node and the rate at which signals
pass along the edges [85, 200, 308].

There exist three distinct models of networks according to their topology,
random networks, scale-free networks, and hierarchical networks [20]. These
network models are distinguished by their distribution of node degree [142].
The connectivity distribution given by

Ny

Pk ~

(1.8)
where Ny is the number of nodes with £ neighbors. It offers a more detailed
insight into the structure of a graph. Erdos and Rény [78] showed that the
connectivity of simple random graphs follows a Poisson distribution. How-
ever, in many real networks the degree distribution P(k) follows a power-law
distribution

P(k) ~ k™7 (1.9)

where ~ is a constant depending on the network usually in the range of
2 < v < 31, 19]. In these network, the majority of nodes only have a few
connections whereas only a small number of nodes are highly connected [6].
These networks are called scale-free. Nodes with many connections are also
called hubs which often play a crucial role in cellular networks [20, 136, 220).
Another common property of many networks is the community structure,
the division of nodes into highly connected groups in the network with only
sparse connections between them [200].
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Figure 1.7. Random and scale-free networks. A A random network with
a Poisson connectivity distribution. B A scale-free network with a power-law
connectivity distribution where most nodes are scarcely connected and only
few nodes, called hubs, have many connections (shown in dark gray).
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The majority of cellular (e.g. metabolic networks, protein-protein-
interaction networks) as well as non-cellular networks (e.g. social world
networks, the World Wide Web) seem to approximate a scale free topol-
ogy [20]. In scale-free networks, the nodes usually are highly connected
such that each node can be reached from every other node in a minimal
number of steps (called the small world property) [64]. These networks have
therefore a small graph diameter [189] and a high clustering coefficient [308].
The scale-free topology provides robustness to the network with increased
flexibility to random perturbations where the loss of individual nodes usually
has no effect on the overall network topology. Nevertheless, it is susceptible
to targeted attacks at heavily connected critical hubs [2, 6] and mutations
affecting hubs are more likely to cause a defect [308].

Although the analysis of cellular networks has given details into the bi-
ological system of interest, they usually represent a static representation of
the biological system. However, the cell is far from a static environment and
new approaches are needed to incorporate the dynamic nature of biological
systems [6].






Chapter 2

Methods

2.1 Identification of spatio-temporal specific
regulatory modules

The complete workflow of the analysis is shown in Figure 2.1.

2.1.1 Identification of transcription factor binding
sites

Sequences from 10,000 base pairs (bp) upstream to 100 bp downstream of the
transcription start site (T'SS) for 32,290 human genes (Build 36.3) as well as
for 33,063 genes for mouse (Build 37.1) and 27,110 genes for rat (Build 4.1)
were retrieved from the National Center for Biotechnology Information
(NCBI, ftp://ftp.ncbi.nlm.nih.gov/). Transcription factor (TF) anno-
tations and associated position weight matrices (PWMs) were obtained from
TRANSFAC (Release 12.1) [183] yielding 549 human transcription factors
(455 PWMs), 407 transcription factors (TFs) for mouse (410 PWMs), and
366 TFs for rat (471 PWMs). Each PWM binding site was mapped to the
corresponding binding site of its associated TFs. TFs sharing the same
PWM were grouped together. The grouping resulted in 152 TF-groups
for human (see Table A.1), 139 for mouse, and 141 TF-groups for rat
which were used for further analysis. The detection of TF binding sites
based on the respective PWMs was performed with the software package R
(www.r-project.org) as described previously [227, 294]. Predicted binding
sites with a p-value above P = 0.05 were discarded.
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Figure 2.1. Workflow for the identification of tissue- and temporal-
specific regulatory modules in development and differentiation.
A Motifs (position weight matrices) for transcription factor binding sites were
collected from a database. B Upstream sequences were gathered for each tran-
script. Promoters (+/- 100 base pairs of the transcription start site, TSS) and
enhancers (defined by accumulation of binding motifs and phylogenetic conser-
vation, 2,000-10,000 base pairs upstream of the TSS) were selected. C Statisti-
cal and combinatorial analysis of transcription factor binding sites of promot-
ers and enhancers. D Characterization of single motifs with respect to their
distributions in the observed sequences (0-10,000 bases upstream of the TSS).
E Assembly of regulatory modules. A regulatory module consisted of a pair of
transcription factors binding at the promoter region and a pair of transcrip-
tion factors binding at the enhancer region. F Network analysis. G Gene
expression data was taken from microarray studies of the development of sev-
eral mouse tissues and of the differentiation of human stem cells. H A time
series analysis was performed to identify genes being differentially expressed
at distinct (developmental) time intervals and tissues/cell types. I The regu-
latory modules were used to predict differential expression of developmental
time intervals.
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2.1.2 Identification of combinations of transcription
factors

Predicted TF binding sites were combined into pairs of TFs. Regions 100
base pairs (bp) upstream and downstream of the transcription start site
(TSS) were used as promoters, and regions starting 2,000 bp and ending
10,000 bp upstream of the TSS were used as potential enhancer regions.
Combinations of TFs for promoters were obtained by pairing non-overlapping
TF binding sites co-occurring in the promoter region of a gene using a sliding
window of 20 bp. Only pairs occurring in at least 10 genes were taken into
further consideration. To decrease false positives of predicted transcription
factor binding sites, only conserved binding sites were analyzed in enhancer
regions. To determine the conservation of human, mouse and rat binding
sites, we analyzed pair-wise alignments between human and chimp, mouse
and rat, and rat and mouse, respectively. Chained and netted pair-wise align-
ments of human (UCSC version hgl8) and chimp (UCSC version panTro2),
of mouse (UCSC version mm9) and rat (UCSC version rn4), and of rat
(UCSC version rn4) and mouse (UCSC version mm9) were downloaded from
UCSC [235] in the axtNet format (ftp://hgdownload.cse.ucsc.edu/).
Conserved regions between human and chimp, mouse and rat, and rat and
mouse were determined by the given aligned regions in the alignment files.
Predicted binding sites were compared to the identified conserved regions
and taken if binding sites occurred in these conserved regions. Pairs of
non-overlapping co-occurring transcription factors in enhancer regions were
determined using a sliding window of 20 bp (same size as for promoter
regions). To analyze enhancer regions with a comparable size to promoter
regions, we regarded sequences of a 200 bp sliding window. As enhancer
were shown to consist of clusters of TFs [13, 158], only regions in which at
least 10 binding sites occurred were considered as enhancer regions and TF
pairs occurring in at least 10 genes were considered further.

2.1.3 Identification of regulatory modules

Regulatory modules were constructed by combining two TF pairs occurring
at the respective promoter and enhancer regions of a gene. Regulatory mod-
ules occurring in at least 10 genes were taken for further analysis. Hence,
regulatory modules consisted of a combination of a pair of co-occurring tran-
scription factors at the promoter and the enhancer region. To show that
combinations of TF pairs of enhancers and promoters show better specificity
than combining only TF pairs binding at the promoter, we also constructed
the latter combinations. For this, two pairs of co-occurring transcription
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factors in the promoter region were combined for each gene and taken for
further analyses if the regulatory module occurred in at least 10 genes.

2.1.4 Gene expression analyses of mouse embryonic
development and human stem cell differentiation

Gene expression data of mouse embryonic development and differen-
tiation of human stem cells were retrieved from the Gene Expression
Omnibus (http://www.ncbi.nlm.nih.gov/geo/). For mouse embryonic
development, gene expression data was analyzed comprising early cardiac
development (GSE1479), the developing prefrontal cortex (GSE4675), fa-
cial prominences (GSE7759), early development of the brain (GSE8091),
development of the liver (GSE13149), ovary development (GSE5334), and
development of testis (GSE4818). Quality was assessed by manual inspec-
tion of probe intensity distributions of each array and discarded if the
MA-plots showed abnormal distributions. Figure 2.2A shows an MA-plot
of a good quality array with an expected distribution where most genes
show no differential expression. In contrast, Figure 2.2B demonstrated
an MA-plot of a bad quality array with a skewed distribution that was
discarded from the analysis. This quality control was also applied in
Schramm and coworkers [247]. We discarded three samples from the dataset
of early brain development, four samples from ovary development and one
sample from testis development. For differentiation of human stem cells,
we analyzed gene expression data of cardiomyocytes (GSE13834), chon-
drogenic differentiation (GSE10315), myoblast differentiation (GSE3780),
myelopoiesis (GSE12837), and neural differentiation (GSE9940). Similar to
the data sets for mouse, we discarded data with low quality. We discarded
one sample from the cadiomyocytes, four samples from differentiation of
chondrogenesis, 24 samples from differentiation of myoblasts, 11 samples
from myelopoiesis and four samples from neural differentiation. The data
was analyzed using the affymetrix package [94] of R (www.r-project.org)
and normalized with VSN normalization [123]. For better comparability, for
each gene expression study, time points were grouped into three time inter-
vals: early, mid, and late expression, e.g. in the human myelopoiesis data set
(GSE12837), the haematopoietic stem/progenitor cells (HSC) were grouped
at the early time interval, myeloid precursors at the mid time interval and
terminally differentiated cells at the late time interval. Each dataset was
tested for differentially expressed genes between the different time intervals
using the Rank Product Test [41]. Significant genes were determined using
a cutoff for false positives smaller than 5% (false discovery rate < 0.05).
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Figure 2.2. MA-plots for quality control. A MA-plot of a good quality
array with an expected distribution. B MA-plot of a bad quality array with
a skewed distribution.

2.1.5 Estimating tissue and time specificity for TF's,
combinations of TFs and regulatory modules

For each TF we determined genes with binding sites for the TF identified by
our PWM-scans and regarded them as potentially regulated by the specific
TF. Using Fisher’s Exact tests, we tested if these regulated genes were sig-
nificantly enriched in the list of differentially expressed genes of each time
interval for each gene expression study (tissue). We defined this TF to be
tissue-specific if such an enrichment occurred only for one tissue (number
of tissues = one), otherwise we specified this TF to regulate two or more
tissues (number of tissues > 1). Similarly, we defined the TF to be time
interval-specific if we determined an enrichment of its regulated genes in the
list of differentially expressed genes of a tissue at one time interval (number
of time intervals = one), and more than one time interval otherwise (number
of time intervals > 1). This enrichment analysis was conducted for all TF's.
The results were summarized for all TFs and the percentage of TFs per time
interval and tissue identified, yielding the results shown in Figure 3.1A and
Figure 3.3A. The same procedure was carried out for pairs of TFs at promot-
ers (Figure 3.1B and Figure 3.3B), pairs of TFs at enhancers (Figure 3.1C
and Figure 3.3C), and regulatory modules (Figure 3.1D and Figure 3.3D).
To assess the signifcance of temporal specificity of regulatory modules com-
pared to pairs of TFs at promoters, a Fisher’s Exact test was conducted to
test if the number of regulatory modules specific for a single time interval
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was enriched compared to the number of TF pairs at promoters specific at a
single time interval.

2.1.6 Prediction of time intervals using regulatory
modules

To identify relevant regulatory modules for temporal regulation of gene ex-
pression during development and differentiation and to estimate their po-
tential power to regulate distinct gene groups for the progression of devel-
opment, we employed the method of random forest as a machine learning
method (classifier). We set up a classification task for two classes. For this,
we identified all genes that were differentially expressed at only one time
interval. As little data was available for the mid time interval (n = 7) and
to simplify classification, we used only two time intervals (early and late).
The early time interval constituted the first class and the late time in-
terval the second class. The classifiers were trained to predict the cor-
rect time interval for each gene, using the information which specific reg-
ulatory modules were regulating the respective gene (regulatory modules
served as features for the classifier). We trained 10,000 decision trees yield-
ing an ensemble classifier (random forest) using the package randomFor-
est [167] (http://cran.r-project.org/web/packages/randomForest) in
R (www.r-project.org) with 80 variables randomly selected at each node
(parameter my.,), a maximum node size of 2 (parameter maznodes), and
enabling the assessment of variable importance (parameter importance). To
identify regulatory modules with the best discriminative behavior, we applied
the Gini criterion which minimizes the impurity of the children nodes at each
split in the tree. To focus on the best descriptors, we used the top 5% of the
features for classification. A 10 times 10-fold cross-validation was applied to
determine the performance of the classifier (yielding accuracy, sensitivity and
specificity for the classifier). For comparison, we also trained a random for-
est using pairs of co-occurring transcription factors at promoters as features
with the same parameters as for regulatory modules. Similar to regulatory
modules, the most important pairs of transcription factors at promoters were
identified according to the Gini criterion. The top 5% of the features were
used for predictions and the performance of the classifier was determined
employing a 10 times 10-fold cross-validation.
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2.1.7 Definition of TFs with TSS-enriched, TSS-
depleted and uniformly distributed binding sites

For each transcription factor, the distribution of binding sites was de-
termined with respect to the annotated transcription start site (TSS)
for all genes. Transcription factors were grouped into three categories:
transcription factors with binding sites predominantly around the TSS
(TSS-enriched-BS), transcription factors with a depletion of binding sites
at the TSS (TSS-depleted-BS), and transcription factors showing a uniform
distribution of binding sites (uniformly-distributed-BS). For this grouping,
a Wilcoxon signed-rank test was conducted for each transcription factor to
test if the distribution of binding sites at the TSS (4-/- 100 bp around TSS)
follows the distribution of the remaining binding sites. To correct for multi-
ple testing, a Benjamini-Hochberg correction [26] was applied. Transcription
factors with P < 0.05 and a difference of the medians of the distributions of
at least four bp were classified as transcription factors preferentially binding
at the TSS (TSS-enriched-BS) or as transcription factors with binding sites
depleted around the TSS (TSS-depleted-BS) depending on the sign of the
difference of the medians of the distributions. All other transcription factors
were termed transcription factors with a uniform distribution of binding
sites (uniformly-distributed-BS).

To further distinguish TFs with TSS-enriched-BS from TFs with
TSS-depleted-BS, we determined the ratio (log-ratio) of the number of
binding sites at promoters and enhancers per transcription factor. Binding
sites at the promoter region and the enhancer region were counted per
transcription factor for all genes. The number of binding sites was then
normalized according to the width of the binding region (200 bp for the pro-
moter region and 8,000 bp for the enhancer region). The log ratio of binding
sites at promoters and enhancers was determined and compared between
transcription factors preferentially binding at the TSS (TSS-enriched-BS)
and transcription factors with a depletion of binding sites close to the T'SS
(TSS-depleted-BS). The difference of the log ratios between the two classes
of TFs was determined using a Wilcoxon test.

2.1.8 Constructing the networks

Using the identified co-occurring transcription factor pairs as links (see sec-
tion 2.1.2), two networks were constructed, one for promoters and one for en-
hancers. To assess if pairs of TFs of the same group (TSS-enriched-BS, T'SS-
depleted-BS, uniformly-distributed-BS) occurred more often than expected
by chance, we performed a permutation test with 10,000 permutations of the
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class labels. Connectivity and betweenness centrality were determined for
each node in the network and their maxima were identified for both networks
for transcription factors of the categories T'SS-enriched-BS and TSS-depleted-
BS. In addition, a protein-protein-interaction network of TFs was constructed
using physical binding information from a public repository (BIND [16]) and
each transcription factor was associated to its corresponding protein in the
network. This network was analyzed for the same properties as the described
promoter and enhancer networks.

2.2 Identification of novel putative SREBP
target genes

The complete workflow is shown in Figure 2.3. Whereas I conducted all bioin-
formatics analyses, all experimental procedures were carried out by Jessica
Schilde and Heiko Runz at the Institute of Human Genetics of the Univer-
sity Hospital Heidelberg in the group of Heiko Runz “Regulation of cellular
cholesterol metabolism”.

2.2.1 Gene expression analysis of HeLa cells and pa-
tient fibroblast cell lines

Gene expression data of HeLa cells were taken from Bartz and Kern and
co-workers [22] and were downloaded from the public microarray database
ArrayExpress (Acc.No. E-TABM-599). The raw data was normalized with
VSN normalization [123]. Of the original cDNA probe set, 40,847 cDNA-
clones (Unigene Build 215) were mapped to 17,848 human genes (NCBI
Build 36.3) for further analysis. Median values were taken if a gene was
represented by multiple probes on the array. The fibroblasts were cultivated
under similar cell culture conditions as the HeLa cells as described in [22]
and mRNA of three biological replicates each was hybridized against Illu-
mina Human Sentrix-8 chips. Labeling, hybridization and scanning of the
[llumina chips was performed in the Genomics and Proteomics Core Facil-
ity of the German Cancer Research Center according to Illumina’s recom-
mended protocols. The raw data of the fibroblasts was analyzed using the
lumi package [73] of R (www.r-project.org) and normalized with RSN nor-
malization [168]. Both datasets were tested for differentially expressed genes
of normal and sterol-depleted conditions using the Rank Product Test [41].
Significant genes were determined using a cutoff of false positives smaller than
5% (false discovery rate < 5%). Differentially regulated genes were compared
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Figure 2.3. Workflow of data integration and identification of
SREBP target genes. Differentially expressed genes in sterol-depleted
medium were identified in fibroblasts and HeLa cells. Promoter regions of dif-
ferentially expressed genes were screened in silico for SREBP binding sites and
genes selected with binding motifs for SREBP. This yielded putative SREBP
target genes which were compared to genes coding for enzymes in cholesterol
biosynthesis and any known relationships to SREBP. Identified binding sites
were compared to ChIP-Seq data from the ENCODE project [65] for SREBP
and NF-Y (ChIP-Seq data for SREBP1a and SREBP2 were taken from a study
by the lab of Michael Snyder at Yale University and NF-YA and NF-YB from
a study by the lab of Kevin Struhl at Harvard and the data was downloaded
from UCSC [236]) and their conservation to chimp and mouse was assessed.
Selected genes were validated experimentally using qRT-PCR and SREBP
knockdown experiments.

to already known genes associated to cholesterol and fatty acid biosynthe-
sis using Gene Ontology terms (www.geneontology.org). The mapping of
associated Gene Ontology terms for each gene was downloaded from NCBI
(Build 36.3) and parsed for the terms sterol, steroid, lipid and fatty acid.
In addition, enrichment of genes encoding for the 22 enzymes necessary for
cholesterol biosynthesis (acly, acas2, acat2, hmgesl, hmger, mok, pmuk, muvd,
idil, fdftl, sqle, lss, cypdlal, tm7sf2, sc4mol, h105e3, hsd17b7, ebp, schdl,
dher?, dher24; see [22]) was tested using a Fisher’s exact test.



48 CHAPTER 2. METHODS

2.2.2 Genome-wide n silico promoter screen and
identification of genes with SREBP binding sites

Sequences from 10,000 bp upstream to 1,000 bp downstream of the tran-
scription start site for 32,121 human genes were retrieved from NCBI (Build
36.3) (ftp://ftp.ncbi.nlm.nih.gov/). We used a total of 21 position
weight matrices (PWMs) for SREBP1 and its isoforms a and ¢ as well as
7 for SREBP2, 6 for SP1, 5 for NF-Y and its isoforms alpha and beta,
and 4 PWMs for the LXR isoforms LXR-alpha and LXR-beta which were
taken from TRANSFAC (Release 12.1) [183]. The promoter screen using
these position-weight matrices was conducted as described in [227, 294] with
R (http://www.r-project.org). Predicted binding sites with a p-value
below 0.05 were used for our analysis where each PWM binding site corre-
sponds to a binding site of its associated transcription factors. For genes
with predicted SREBP binding sites, binding sites for SP1, NF-Y, and LXR
were determined. Predicted SREBP target genes were compared to already
known genes associated to cholesterol and fatty acid biosynthesis in the same
way as described for differentially expressed genes (see section 2.2.1). Gene
Ontology enrichment analysis for the identified SREBP target genes was
conducted using topGO [4] with R (http://www.r-project.org) using the
classic algorithm for scoring significance of GO terms. To correct for multiple
testing, a Benjamini-Hochberg correction [26] was applied. GOterms with a
p-value < 0.05 were taken for further considerations. Additional biological
roles of identified SREBP target genes were also identified using topGO [4]
with R (http://www.r-project.org) using the weight algorithm for scor-
ing significance of GO terms. GOterms with a p-value < 0.05 were taken for
further considerations.

2.2.3 Identification of putative SREBP target genes
and comparison to existing sequence data of
chromatin immunopreciptation screens (ChIP-

Seq)

We compared predicted SREBP target genes to ChIP-Seq data from the EN-
CODE project [65] for SREBP and NF-Y. ChIP-Seq data for SREBP1a and
SREBP2 were taken from a study in HepG2 cells by the lab of Michael Sny-
der at Yale University and NF-YA and NF-YB from a study in K-562 cells by
the lab of Kevin Struhl at Harvard. For sterol deprivation, HepG2 cells were
cultured with pravastatin (2 uM; Sigma) in DMEM with 0.5% BSA for 16 h.
The data was downloaded from UCSC [236]. Genome coordinates of peak hits
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were compared to gene annotations (NCBI Build 36.3) and target genes were
determined using the same settings as for the in silico promoter screen. Bind-
ing sites occurring within a range of -10kb and +1kb of the annotated tran-
scription start site of a gene were included in the analysis. The determined
genes were then compared to the list of identified putative SREBP target
genes. Predicted target sites were also analyzed for evolutionary conserva-
tion. To determine the conservation of binding sites of the predicted SREBP
target genes, we analyzed pair-wise alignments between human and mouse,
and human and chimp, respectively. Chained and netted pair-wise align-
ments of human (UCSC version hgl8) with chimp (UCSC version panTro2)
and mouse (UCSC version mm9) were downloaded from UCSC [236] in the
axtNet format (ftp://hgdownload.cse.ucsc.edu/). Conserved regions be-
tween human-chimp and human-mouse were determined by the given aligned
regions in the alignment files. Predicted binding sites for SREBP were com-
pared to the identified conserved regions and taken as conserved if binding
sites occurred in conserved regions. To compare the conservation of SREBP
binding sites to the conservation of all TF binding sites in the promoter
sequences of the predicted SREBP target genes, the number of conserved
bindings sites for all transcription factors in chimp and mouse was deter-
mined in the same way as described for SREBP. A one-sided Wilcoxon test
was conducted to assess the signifcance level of the conservation of SREBP
binding sites compared to the number of conserved binding sites for all tran-
scription factors.

2.2.4 Cell culture and sterol depletion

HeLa kyoto cells and human fibroblasts (KOA-1) were plated onto 100
mm cell culture dishes (SPL life sciences) and cultivated at 37°C, 5%
CO, in either DMEM/ 1g/1 Glucose/with L-Glutamine (PAA), 1%
(v/v) Penicillin/Streptomycin (100x) (PAA) and 5% FBS (Biochrom)
(HeLa cells) or DMEM/ 1g/1 Glucose/ with L-Glutamine, 1% (v/v)
Penicillin/Streptomycin (100x), 1% (v/v) Amphotericin B (250 ug/ml)
(PAA) and 10% FBS (KOA1). After reaching a cell density of ~60%,
cells were either cultivated in control media or sterol depleted media
without FBS but 0.5 % LDS (Pan Biotech) (HeLa cells) or 5% LDS
(KOA-1). After 96 hours sterol depleted cells were additionally treated with
1% (w/v) (2-Hydroxypropyl)-g-cyclodextrin (HPCD, Sigma) for 3 hours
and afterwards cultivated for additional 3 hours in sterol depleted media.
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2.2.5 siRNA treatment

For SREBP knockdown experiments HelLa cells were plated onto 100 mm
cell culture dishes and cultivated at 37°C, 5% CO, in DMEM/ 1g/1 Glu-
cose/ with L-Glutamine and 5% FBS one day before siRNA treatment.
Transfection was performed with Oligofectamine™ Reagent (Invitrogen) us-
ing a negative control siRNA (Silencer® Select 4390843, Ambion), siRNA
against srebf1 (Silencer® Select 4392420, Ambion), srebf2 (Sllencer® Select
4390824, Ambion) or both. Medium was changed 24 hours after transfection
and cells were either cultivated in control or sterol depleted media, respec-
tively. 48 hours after transfection sterol depleted cells were treated with
1% HPCD as described in section 2.2.4.

2.2.6 RNA isolation and quantitative real-time PCR

For gene expression experiments via qRT-PCR RNA was isolated with the
InviTrap® Spin Cell RNA Mini Kit (Invitek). RNA was then reverse tran-
scribed by RevertAid™H Minus m-MulL. V Reverse Transcriptase (200 u/pul)
(Fermentas) using random primers (Invitrogen). QRT-PCR was performed
with Power SYBR®Green (Applied Biosystems) using a 7500 Fast Real-
Time PCR System (Applied Biosystems). Three or four independent RNA
samples were analyzed for each gene and differential expression was calcu-
lated in relation to housekeeping gene rpl19.
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Results

3.1 Identification of spatio-temporal specific
regulatory modules

3.1.1 Identifying regulatory modules

To identify regulatory modules, we performed a genome-wide screen for tran-
scription factor binding sites using position weight matrices (PWM-scans) for
all annotated human genes and transcription factors [227, 294]. Figure 2.1
depicts the workflow of the method. The sequence upstream and down-
stream (+/- 100 base pairs) of the annotated transcription start site (T'SS)
was termed promoter region whereas the studied enhancer region was further
upstream of the T'SS (2,000-10,000 base pairs upstream). To identify inter-
acting transcription factors at promoters and enhancers, we selected pairs
of co-occurring transcription factor binding sites in a defined window at the
promoter and enhancer region for each gene, respectively. We then com-
bined identified pairs of co-occurring transcription factors at the promoter
and enhancer region for each gene to analyze combinations of promoter and
enhancer interactions. These combinations were termed regulatory modules.
After filtering (see section 2.1.3), we identified 129 regulatory modules bind-
ing at 340 genes. To generalize our investigations, we repeated the analysis
and identified regulatory modules also for mouse and rat. Regulatory mod-
ules for mouse and rat showed similar results when applying the same settings
as for human (see Table 3.1).
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Table 3.1. Overview of the number of identified transcriptional reg-
ulators for different organisms.

Human Mouse Rat
Regulatory Genes Regulatory Genes Regulatory Genes
elements elements elements
Transcription .
factors (TFs) 132 32121 123 33033 132 27110
TF pairs at 111 3007 7 1931 74 1891
promoters
TF pairs at 579 11172 418 10985 585 8326
enhancers
Regulatory 129 340 113 311 28 134
modules

3.1.2 Identified regulatory modules regulate spatio-
temporal gene expression in development

To investigate time- and tissue-specific regulatory roles of the identified reg-
ulatory modules in development, we analyzed time series of gene expression
profiles of embryonic development in mouse and embryonic stem cell differ-
entiation in human cells.

Human stem cell differentiation

We selected gene expression studies from a broad range of different human
stem cells of different origin. Each study was regarded as tissue-specific. For
better comparison among the different studies, we grouped time points for
each gene expression study into three distinct time intervals we termed early,
mid, and late expression. For each gene expression study, we identified differ-
entially expressed genes at these time intervals and determined their respec-
tive regulation by transcription factors, pairs of co-occurring transcription
factors and regulatory modules employing enrichment analyses (see chapter
2). We compared the number of enriched tissues and time intervals for single
transcription factors, pairs of co-occurring transcription factors and regula-
tory modules. Strikingly, regulatory modules showed the highest tissue and
temporal specificity. Figure 3.1 shows the results for human stem cells. Only
16% of transcription factors were specific for a single tissue whereas 76% of
pairs of co-occurring transcription factors in promoter regions, 77% of pairs of
co-occurring transcription factors in enhancer regions and 79% of regulatory
modules showed specificity for a single tissue. Temporal specificity was even
more distinctive. Whereas only 40% of the studied transcription factors were
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Figure 3.1. Tissue and temporal specificity for each regulatory el-
ement during differentiation of human stem cells. The number of tis-
sues versus the number of time intervals is plotted for A transcription factors,
B pairs of co-occurring transcription factors in promoter regions, C pairs of
co-occurring transcription factors in enhancer regions, and D regulatory mod-
ules. The percentage of the different regulatory elements is indicated at each
entry in the grid (i.e. 9% of transcription factors are specific for a single tissue
and a single time interval). The color also represents the percentage of regula-
tory elements at each point in the grid; bright red indicates a high amount of
regulatory elements whereas light pink indicates a low amount of regulatory
elements at the respective entry.
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specific for a single time interval, 79% of pairs of co-occurring transcription
factors in promoter regions and 85% in enhancer regions and even 97% of the
regulatory modules showed specificity for a single time interval in the data
sets of human stem cells (Figure 3.2). Ravasi and coworkers [229] showed
that pairs of transcription factors rather than single transcription factors de-

termine tissue specificity. Surprisingly, the additional temporal specificity of

regulatory modules is obtained by pairs of co-occurring transcription factors
at enhancers (97% for regulatory modules versus 85% for pairs of co-occurring
transcription factors, significance of the difference: P = 0.01).
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Figure 3.2. Frequency distribution of the number of time inter-
vals for human stem cell differentiation. The histograms show the fre-
quency distribution of the number of time intervals for A transcription factors,
B pairs of co-occurring transcription factors in promoter regions, C pairs of
co-occurring transcription factors in enhancer regions, and D regulatory mod-
ules.

Mouse embryonic development

Similar results to the human stem cell differentiation data sets were ob-
tained for mouse embryonic development. The analysis was conducted in
the same manner as for human stem cell differentiation. As described in
section 2.1.4, we selected gene expression studies from a broad range of dif-
ferent embryonic mouse tissues of different origin. Each study was regarded
as tissue-specific. For better comparison among the different studies, we also
grouped time points for each gene expression study into three distinct time
intervals we termed early, mid, and late expression. For each gene expres-
sion study, we identified differentially expressed genes at these time intervals
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Figure 3.3. Tissue and temporal specificity for each regulatory ele-
ment in the embryonic development of mouse. The number of tissues
versus the number of time intervals is plotted for A transcription factors,
B pairs of co-occurring transcription factors in promoter regions, C pairs of
co-occurring transcription factors in enhancer regions, and D regulatory mod-
ules. The percentage of the different regulatory elements is indicated at each
entry in the grid (i.e. 9% of transcription factors are specific for a single tissue
and a single time interval). The color also represents the percentage of regula-
tory elements at each point in the grid; bright red indicates a high amount of
regulatory elements whereas light pink indicates a low amount of regulatory
elements at the respective entry.

and determined their respective regulation by transcription factors, pairs of
co-occurring transcription factors and regulatory modules employing enrich-
ment analyses (see chapter 2). We compared the number of enriched tissues
and time intervals for single transcription factors, pairs of co-occurring tran-
scription factors and regulatory modules. Similarly to the results of human
stem cell differentiation, regulatory modules showed the highest tissue and
temporal specificity. Figure 3.3 and Figure 3.4 show the results for mouse em-
bryonic development. Whereas 34% of the transcription factors were specific
for a single time interval and 11% for a single tissue, 77% and 52% of pairs
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Figure 3.4. Frequency distribution of the number of time inter-
vals for mouse embryonic development. The histograms show the fre-
quency distribution of the number of time intervals for A transcription factors,
B pairs of co-occurring transcription factors in promoter regions, C pairs of
co-occurring transcription factors in enhancer regions, and D regulatory mod-
ules.

of co-occurring transcription factors at promoters, 79% and 58% of pairs at
enhancers, and 89% and 69% of regulatory modules showed specificity for a
single time interval and tissue, respectively.

Enhancers determine temporal specificity

As seen for both mouse embryonic development and human stem cell differ-
entiation, the combinations of regulatory factors at promoters and enhancers
resulted in higher specificity of tissue and temporal regulation during de-
velopment and differentiation. Concluding, transcription factors binding
at promoters contributed significantly to tissue-specific regulation whereas
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regulatory factors at enhancers rather accounted for temporal specificity.

To cross-check the specificity of these regulatory modules, we constructed
regulatory modules consisting of combinations of pairs of co-occurring
transcription factors at promoters only and repeated the analysis. Using
the same parameter settings, we identified a limited number of regulatory
modules (n = 12) that did not allow any conclusion about tissue and
temporal specificity. Even increasing the promoter region by a factor of ten
(which resulted in a sufficient number of regulatory modules) revealed 83%
of regulatory modules as tissue-specific but only 61% as time-specific. These
results further support the fact that the combinations of promoter-enhancer
interactions establish temporal specificity of gene expression.

3.1.3 Regulatory modules predict temporal gene ex-
pression in development

To identify regulatory modules (combinations of transcription factors) for
temporal specificity, we further analyzed the active regulatory modules dur-
ing human stem cell differentiation. We learned a classifier (of a random
forest) to predict the time interval (now simplified for two categories, early
and late) of differential expression for each gene based on its regulatory mod-
ules. This way, we were able to predict temporal differential expression based
on the profile of regulatory modules. Specifically, we predicted the combina-
tion of pairs of co-occurring transcription factors in promoter and enhancer
regions, which determine the temporal regulation observed during develop-
ment. The top 10 regulatory modules explaining best temporal specificity are
shown in Table 3.2. TF-groups SP1 (Spl transcription factor), EGR1 (early
growth response 1) and E2F1 (E2F transcription factor 1) were the most ob-
served transcription factors occurring in promoter regions, whereas members
of the forkhead box family of transcription factors (FOXI1, FOXJ1, FOXD3,
FOXF1, FOXL1, and FOXA1) and CDX1 (caudal type homeobox 1) were
mostly found at enhancer regions. To validate our results, we performed
a stratified 10 times 10-fold cross-validation and trained with the top 5%
of regulatory modules yielding a considerably good prediction performance
(70% accuracy, 73% sensitivity, 69% specificity). In comparison, pairs of
co-occurring transcription factors at promoters were not sufficient to pre-
dict temporal gene expression and failed to detect differences between the
time intervals (43% accuracy, 21% sensitivity, 76% specificity). These results
support the specificity of the identified regulated modules for temporal gene
expression.
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Table 3.2. Top ten of the list of identified regulatory modules ex-
plaining temporal specificity for the differentiation of human stem

cells.

Regulatory modules”

Additional members of the
TF-group

Binding preference®

SP1 SP1 - FOXI1 FOXJ1

SP2, SP3, SP4 (SP1)
FOXD3, FOXF1, FOXF2 (FOXJ1)

TSS-enriched-BS
(SP1)
TSS-depleted-BS
(FOXI1,FOXJ1)

SP1 SP1 - FOXJ1 FOXJ1

SP2, SP3, SP4 (SP1)
FOXD3, FOXF1, FOXF2 (FOXJ1)

TSS-enriched-BS
(SP1)
TSS-depleted-BS
(FOXJ1)

SP1 SP1 - CDX1 FOXA1

SP2, SP3, SP4 (SP1)
CDX2 (CDX1)
FOXA2, FOXA3 (FOXA1)

TSS-enriched-BS
(SP1)
TSS-depleted-BS
(CDX1,FOXA1)

SP1 SP1 - FOXI1 FOXA1

SP2, SP3, SP4 (SP1)
FOXA2, FOXA3 (FOXA1)

TSS-enriched-BS
(SP1)
TSS-depleted-BS
(FOXI1,FOXA1)

EGRI1 SP1 - FOXI1 FOXA1

EGR2, EGR3, EGR4 (EGR1)
SP2, SP3, SP4 (SP1)
FOXA2, FOXA3 (FOXA1)

TSS-enriched-BS
(EGR1,SP1)
TSS-depleted-BS
(FOXI1,FOXA1)

SP1 SP1 - FOXJ1 FOXJ2

SP2, SP3, SP4 (SP1)
FOXD3, FOXF1, FOXF2 (FOXJ1)

TSS-enriched-BS
(SP1)
TSS-depleted-BS
(FOXJ1,FOXJ2)

TSS-enriched-BS

(SP1)
SP1 SP1 - FOXL1 FOXL1 SP2, SP3, SP4 (SP1) TSS-depleted-BS
(FOXL1)
T'SS-enriched-BS
E2F2, E2F3, E2F4, E2F5, E2F7, (E2F1)

E2F1 E2F1 - FOXL1 FOXA1

TFDP1 (E2F1)
FOXA2, FOXA3 (FOXAL)

TSS-depleted-BS
(FOXL1,FOXA1)

E2F1 EGR1 - FOXJ2 FOXL1

E2F2, E2F3, E2F4, E2F5, E2F7,
TFDP1 (E2F1)
EGR2, EGR3, EGR4 (EGR1)

TSS-enriched-BS
(E2F1,EGR1)
TSS-depleted-BS
(FOXJ1,FOXL1)

EGR1 SP1 - CDX1 FOXI1

EGR2, EGR3, EGR4 (EGR1)
SP2, SP3, SP4 (SP1)
CDX2 (CDX1)

TSS-enriched-BS
(EGR1,SP1)
TSS-depleted-BS
(CDX1,FOXI1)

* The first two transcription factors were identified at promoters, the last two at enhancers.

+ TSS-enriched-BS: Transcription factors with binding sites predominantly around the TSS;

TSS-depleted-BS: transcription factors with a depletion of binding sites at the TSS.
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3.1.4 Transcription factors show distinct binding site
distributions for promoter and enhancer regions

To identify differences among transcription factors binding preferentially ei-
ther at promoter or enhancer regions of the identified regulatory modules,
we analyzed the distributions of binding sites for all transcription factors
with respect to the annotated transcription start site (TSS). Interestingly,
we identified three different binding site distributions for the analyzed tran-
scription factors. Figure 3.5 shows exemplarily the distributions for the TF-
groups SP1, FOXA1 and TP53 (tumor protein p53). The distribution of
SP1 showed an enrichment of binding sites close to the TSS (Figure 3.5A).
Binding sites with these distributions were termed TSS-enriched-BS, whereas
FOXAT1 exhibited a depletion of binding sites at the TSS (TSS-depleted-BS,
Figure 3.5B). We also observed rather uniform distributions for e.g. TP53
(uniformly-distributed-BS, Figure 3.5C). We investigated the motifs of these
three groups and found that transcription factors with TSS-enriched-BS had
binding sites with a higher GC content compared to the other transcrip-
tion factors (P = 8.22E-14). This is consistent with reports that sequences
at TSS are often GC rich [83, 114, 147]. All transcription factors occur-
ring at promoters of the identified regulatory modules had T'SS-enriched-BS,
and 91% of the transcription factors at enhancers had TSS-depleted-BS. No-
tably, this tendency was even stronger for the regulatory modules selected by
the classification algorithm (100% TSS-enriched-BS for the promoter pairs
and 100% TSS-depleted-BS for the enhancer pairs of regulatory modules).
When applying the analysis to all transcription factors analyzed, the major-
ity of transcription factors (53%) showed a uniform distribution of binding
sites with no preferential binding position (uniformly-distributed-BS). 21% of
transcription factors were determined to preferentially bind close to the TSS
(TSS-enriched-BS), whereas 26% transcription factors showed a depletion of
binding sites around the T'SS (T'SS-depleted-BS). Binding preferences for all
transcription factors are shown in Table A.1. It is to note that although pre-
vious studies identified transcription factors with preferential binding close
to the T'SS [83, 147, 271, 282, 302, 304], transcription factors showing a de-
pletion of binding sites around the TSS or a uniform binding site distribution
have been noted [83] but have not been quantified so far.

To further distinguish TFs with TSS-enriched-BS from TFs with
TSS-depleted-BS, we determined the ratio (log-ratio) of the number of bind-
ing sites at promoters and enhancers per transcription factor. Binding sites
at the promoter region (4/- 100 bp around the TSS) and the enhancer re-
gion (2,000 bp to 10,000 bp upstream of the T'SS) were counted per transcrip-
tion factor for all genes. The number of binding sites was then normalized
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Figure 3.5. Distribution of binding sites for different groups of tran-
scription factors. For different groups of transcription factors the distri-
bution of binding sites with respect to the transcription start site is shown
exemplarily for the transcription factors SP1, FOXA1, and TP53: A The dis-
tribution for SP1 which represents the distribution of binding sites for tran-
scription factors preferentially binding at the transcription start site (TSS-
enriched-BS), B the distribution of FOXA1 which represents the distribution
of binding sites for transcription factors with a depletion of binding sites at
the TSS (TSS-depleted-BS), and C the distribution for TP53 representing
uniformly distributed binding sites (uniformly-distributed-BS).
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according to the width of the binding region. The log ratio of binding
sites at promoters and enhancers was determined and compared between
transcription factors preferentially binding at the TSS (TSS-enriched-BS)
and transcription factors with a depletion of binding sites close to the T'SS
(TSS-depleted-BS). We identified a major difference between the ratios for
the two classes of transcription factors using a Wilcoxon test. Transcrip-
tion factors with TSS-enriched-BS had significantly more binding sites at
promoters whereas transcription factors with TSS-depleted-BS had more
binding sites at enhancer regions (P < 2.2e-16, Figure 3.6).

401 m Tss—enriched—Bs
= B TSS-depleted—-BS
S 301
>
&

Q 20'
-}
o
o 10 |
0_ - ////////;{%’V////

-3 -1 1 3 5
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Figure 3.6. Log ratio of binding sites at promoters and enhancers.
The distribution of the log-ratios of binding sites at promoters and enhancers
is shown in red for transcription factors with preferential binding around the
transcription start site (T'SS-enriched-BS) and in blue for transcription factors
with a depletion of binding sites at the T'SS (TSS-depleted-BS).

3.1.5 Network analysis of transcription factors

To further analyze characteristics of transcription factors with different
binding site distributions in promoter and enhancer regions, we constructed
two networks. A link in the networks was set for each pair of co-occurring
transcription factors identified at promoters for the promoter network
and enhancer regions for the enhancer network. Interestingly, in both
networks, the majority of transcription factors with TSS-enriched-BS was
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Figure 3.7. Networks of transcription factor pairs (human). The
network of pairs of co-occurring transcription factors are shown for A the
promoter regions and B the enhancer regions. C A network of transcrip-
tion factors mapped onto a PPI network [16]. Transcription factors showing
preferential binding around the transcription start site (T'SS-enriched-BS) are
marked in red, transcription factors with a depletion of binding sites around
the TSS (TSS-depleted-BS) in blue and transcription factors showing no pref-
erential binding (uniformly-distributed-BS) in green. In the promoter network,
transcription factors with TSS-depleted-BS formed a small cluster, including
FOXA1, FOXI1, FOXJ1A, FOXJ2, FOXL1, and CDX2.

adjacent to transcription factors of the same entity (TSS-enriched-BS)
(significant (P = 0.002) for the promoter network and tendency (P = 0.1)
for the enhancer network). Similarly, transcription factors with TSS-
depleted-BS were preferentially adjacent to transcription factors with
TSS-depleted-BS (P = 0.002 for the promoter network and P = 0.001 for
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Figure 3.8. Distribution of binding site preferences of pairs of co-
occurring transcription factors in the promoter and the enhancer
networks. The number of pairs with specific binding site preferences is
shown in dark gray. To get a null distribution, node labels were permuted
10,000 times and the mean number of TFs pairs with specific binding prefer-
ences determined (light gray). TSS-enriched-BS represent transcription factors
showing preferential binding around the transcription start site, TSS-depleted-
BS transcription factors with a depletion of binding sites at the TSS, and
uniformly-distributed-BS transcription factors showing no preferential bind-
ing. The results for the promoter network are shown in A, the results for the
enhancer network in B.

the enhancer network). In the promoter network, transcription factors
with TSS-depleted-BS formed a small cluster and were not connected to
transcription factors with TSS-enriched-BS. These TSS-enriched-BS tran-
scription factors include FOXA1, FOXI1, FOXJ1A, FOXJ2, FOXL1, and
CDX2. Figure 3.7 shows the networks and Figure 3.8 the distributions of
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Table 3.3. Overview of network properties.

Promoter network Enhancer network PPI network
TSS- TSS- TSS- TSS- TSS- TSS-
enriched depleted enriched depleted enriched depleted
Quantity 17 8 23 34 19 19
Connectivity* 50 12 124 64 62 20
Betweenness 351.5 0 349.4 1062.4 2055.2 401.3

centrality”

* . . . .
For each transcription factor group, the maximum is shown.

transcription factors in the promoter and enhancer networks.

As shown in Table 3.3, most transcription factors in the promoter network
had TSS-enriched-BS (65%), whereas only 24% of transcription factors had
TSS-depleted-BS. To further characterize distinct roles for transcription
factors with different binding site distributions, we determined connectivity
and betweenness centrality for each node in the networks. The transcription
factor SP1 with TSS-enriched-BS had the highest connectivity and highest
centrality in the promoter network with a connectivity of 50 and betweenness
centrality of 351.5. In contrast, the highest connectivity of a transcription
factor with TSS-depleted-BS was 12 and the betweenness centrality was zero
for all transcription factors with T'SS-depleted-BS. These results supported
the fact that transcription factors with TSS-enriched-BS played a central
role in the promoter network. These transcription factors constituted the
main component of the network (Figure 5A) while transcription factors
with T'SS-depleted-BS formed a rather small and separated component. In
contrast, transcription factors with T'SS-depleted-BS played a central role
in the enhancer network. These transcription factors constituted the core
of the enhancer network (Figure 5B) with other transcription factors at
its periphery. 44% of the transcription factors in the enhancer network
had TSS-depleted-BS whereas only 29% of the transcription factors had
TSS-enriched-BS. The fork head transcription factor FOXA1 (forkhead
box Al) with TSS-depleted-BS had the highest connectivity (124) and
centrality (1062.4) in the enhancer network. In contrast, the highest connec-
tivity of a transcription factor with TSS-enriched-BS was 64 and the highest
betweenness centrality was 349.4. In addition, we constructed a network of
known transcription factor interactions (physical binding of pairs of tran-
scription factors, obtained from a public repository [16]). Interestingly, the
number of transcription factors with TSS-enriched-BS and TSS-depleted-BS
was balanced (both 23%) and these transcription factors were located rather
at the core of the network (Figure 5C). TBP (TATA box binding protein)
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with T'SS-enriched-BS showed the highest connectivity (62) and betweenness
centrality (2055.2) in the network compared to transcription factors with
TSS-depleted-BS which had a maximum connectivity of 20 and a maximum
centrality of 401.3.

3.2 Identification of novel putative SREBP
target genes

The regulation of cholesterol biosynthesis is one example where transcrip-
tional activation is achieved by the combined action of several transcrip-
tion factors. The key regulator, the sterol regulatory element binding pro-
tein (SREBP), is a weak transcription factor itself and has been shown to
work in co-operation with SP1 and NF-Y [72, 134, 234, 241]. Therefore, we
aimed at identifying novel putative SREBP target genes by integrating in
silico predictions of SREBP target genes with gene expression profiling of
cholesterol-depleted cells when SREBP is induced.

3.2.1 Prediction of new putative SREBP target genes
by integrating binding site predictions and gene
expression profiling

To determine SREBP target genes we integrated gene expression data of
cholesterol depleted cells and in silico predictions of SREBP target genes.
The workflow is shown in Figure 2.3. We conducted gene expression analysis
of two different cell lines cultured under control and sterol-depleted condi-
tions. In addition to genome-wide gene expression analysis in HeLa cells [22],
we analyzed a primary human skin fibroblast cell line from a healthy indi-
vidual. In total, we yielded 189 significantly differentially expressed genes,
of which 73 were up- and 116 down-regulated (see Table B.1). Among the
differentially expressed genes, 42 genes have been described previously to
be functionally relevant for cholesterol biosynthesis and lipid homeostasis.
Of these, 16 genes encode cholesterol biosynthetic enzymes (all genes neces-
sary for cholesterol biosynthesis in human: 22 (see [22])). For example, the
rate-limiting enzyme for cholesterol synthesis is 3-hydroxy-3-methylglutaryl-
coenzyme A reductase (HMGCR) and it was up-regulated in both studies
(P < 2.2e-16 for both studies), with a mean fold change of 4.3 in the HeLa-
cell experiments and 3.5 in the fibroblast experiments. To refine this list
and to select genes with SREBP binding sites we performed a genome-wide
in silico promoter screen for all human genes with annotated transcription
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start sites (TSS). As SREBP1 and 2 typically cooperate with the transcrip-
tional co-factors SP1 and NF-Y [72, 134, 234, 241], we also screened for bind-
ing motifs of SP1 and NF-Y in the promoter region of the predicted SREBP
target genes. In addition, we considered LXR which is known to regulate
cellular cholesterol and is involved in its efflux [234]. Of the 22 human genes
necessary for cholesterol biosynthesis we identified SREBP binding sites for
10 genes, SP1 binding sites for 19 genes, NF-Y binding sites for 15 genes,
and LXR binding sites for 14 genes.

The integration of differentially expressed genes upon cellular cholesterol de-
pletion and in silico predicted SREBP target genes yielded a total of 99 genes
which are shown in Table 3.4.

Table 3.4. Putative SREBP target genes determined by gene ex-
pression analysis and binding site prediction.

A Genes up-regulated under sterol-depleted conditions

Fibroblasts HeLa cells

Symbol Name pfpt FC? pfp’ FC? SREBP?® sP1® NF-Y® LXR3

hairy and
HES6 enhancer of split 0 3.7806 x x X
6 (Drosophila)

cleavage and
polyadenylation
specific factor 1,
160kDa

CPSF1 0 2.5922 x x x x

CCNG2 cyclin G2 1.00E-04 2.3832 X x X

solute carrier
organic anion
SLCO2A1 transporter 3.00E-04 2.1154 X x x
family, member
2A1

basic
helix-loop-helix
family, member
e40

BHLHE40 3.00E-04 2.6160 X x

feline leukemia
virus subgroup C
cellular receptor
1

FLVCR1 7.00E-04 2.0854 X x x

TMEM97 transmembrane 0.0014 2.6274 0.0017 2.0197 x x x
protein 97

hydroxysteroid
HSD17B7 (17-beta) 0.0018 1.9727 X x x
dehydrogenase 7

INSIG1 ‘“S“légnl:‘i“ced 0.0019 2.8316 0 3.2167 x x x

mevalonate
MVD (diphospho) 0.0023 2.3226 x x x x
decarboxylase

v-maf muscu-
loaponeurotic
MAFB fibrosarcoma 0.0024 2.3337 x x x
oncogene
homolog B

(avian)

1 Percentage of false positives (false discovery rate) in fibroblasts or HeLa-cells

2 Fold change in fibroblasts or HeLa-cells
x in columns 3-6 indicates predicted binding sites for SREBP, NF-Y, Spl, and LXR.
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Fibroblasts

HeLa cells

Symbol

Name

pfp!

FC?

pfp1 FC?

SREBP?

sp13

NF-Y3

LXR3

STC1

stanniocalcin 1

0.0028

2.3742

IDI1

isopentenyl-
diphosphate
delta isomerase 1

0.0028

2.2995

0.0013 2.1098

FABP3

fatty acid
binding protein
3, muscle and
heart (mammary-
derived growth
inhibitor)

0.003

2.3738

KLF6

Kruppel-like
factor 6

0.0031

3.1659

PDGFRB

platelet-derived
growth factor
receptor, beta
polypeptide

0.0035

2.3345

SCD

stearoyl-CoA
desaturase
(delta-9-
desaturase)

0.0038

2.1175

0.0011 1.9835

LPIN1

lipin 1

0.004

2.0214

0.049 1.7186

PFKFB4

6-phosphofructo-
kinase/fructose-
2,6-
biphosphatase
4

0.004

2.0521

DHCR7

dehydrocholesterol
reductase

0.0043

1.9957

0.0034 1.883

RGS4

regulator of
G-protein
signaling 4

0.0043

2.2216

C170rf59

chromosome 17
open reading
frame 59

0.0045

2.0269

FDFT1

farnesyl-
diphosphate
farnesyltrans-
ferase
1

0.0072 1.8615

MXRAS5

matrix-
remodelling
associated 5

0.0086

2.1595

LDLR

low density
lipoprotein
receptor

0.0089

1.8743

C200rf20

chromosome 20
open reading
frame 20

0.0095 1.0461

GAS1

growth
arrest-specific 1

0.0096

2.0526

TP53INP2

tumor protein
p53 inducible
nuclear protein 2

0.0101

1.8091

RASD1

RAS,
dexamethasone-
induced
1

0.0117 1.0021

DBC1

deleted in
bladder cancer 1

0.0128

1.906

1 Percentage of false positives (false discovery rate) in fibroblasts or HeLa-cells
2 Fold change in fibroblasts or HeLa-cells
3 x in columns 3-6 indicates predicted binding sites for SREBP, NF-Y, Spl, and LXR.
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Fibroblasts

HeLa cells

Symbol

Name

pfp1 FC?

SREBP3

sp13

NF-Y3

LXR3

SLC2A6

solute carrier
family 2
(facilitated
glucose
transporter),
member 6

0.0132

1.8013

TMEMS55B

transmembrane
protein 55B

0.0133

1.7783

TP53INP1

tumor protein
p53 inducible
nuclear protein 1

0.015

1.7629

KCNJ2

potassium
inwardly-
rectifying
channel,
subfamily J,
member 2

0.0151

1.8601

ANGPTL2

angiopoietin-like

0.0151

1.7884

HSD17B12

hydroxysteroid
(17-beta)
dehydrogenase 12

0.0155

1.7475

PDGFRA

platelet-derived
growth factor
receptor, alpha
polypeptide

0.0155

1.8534

SQLE

squalene
epoxidase

0.0157

1.7449

0 2.4489

FBLN1

fibulin 1

0.0167

2.4985

PCYT2

phosphate
cytidylyltrans-
ferase 2,
ethanolamine

0.017 1.1331

C3orf54

chromosome 3
open reading
frame 54

0.0175

1.7694

KLF13

Kruppel-like
factor 13

0.0183

1.669

FASN

fatty acid
synthase

0.0185

1.7046

1.00E-04

1.8882

MNT

MAX binding
protein

0.0185

1.678

TOB1

transducer of
ERBB2, 1

0.0218

1.7352

MYO1D

myosin ID

0.0224

1.7072

EPR1

effector cell
peptidase
receptor 1
(non-protein
coding)

0.0275 1.0634

BIRCS5

baculoviral TAP
repeat-containing
5

0.0275 1.0634

ELOVL6

ELOVL family
member 6,
elongation of
long chain fatty
acids
(FEN1/Elo2,
SURA4/Elo3-like,
yeast)

0.0306

1.6842

1 Percentage of false positives (false discovery rate) in fibroblasts or HeLa-cells
2 Fold change in fibroblasts or HeLa-cells
3 x in columns 3-6 indicates predicted binding sites for SREBP, NF-Y, Spl, and LXR.
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Fibroblasts

HeLa cells

Symbol

Name

pfp1 FC?

SREBP?

sp13

NF-Y3

LXR3

DNAJB9

DnaJ (Hsp40)
homolog,
subfamily B,
member 9

0.0309

.6304

RORB

RAR-related
orphan receptor
B

0.0325 1.6022

ZCCHC14

zinc finger,
CCHC domain
containing 14

0.0349

.6118

FAM189B

family with
sequence
similarity 189,
member B

0.0364 1.6427

MYO10

myosin X

0.0377

Jun

.5884

SLIT3

slit homolog 3
(Drosophila)

0.038

.6017

SAT1

spermidine/spermine

N1-
acetyltransferase
1

0.0381

.4897

FRMDS8

FERM domain
containing 8

0.0392

.6735

MVK

mevalonate
kinase

0.0399 1.6572

ZC3H12A

zinc finger
CCCH-type
containing 12A

0.0415

.5342

SLC26A6

solute carrier
family 26,
member 6

0.0415

Jun

.5668

IERS5L

immediate early
response 5-like

0.0419

.5482

SLC2A3P1

solute carrier
family 2
(facilitated
glucose
transporter),
member 3
pseudogene 1

0.0426 1.6067

DDIT4

DNA-damage-
inducible
transcript 4

0.0444

.1515

HCFCI1R1

host cell factor
C1 regulator 1
(XPO1
dependent)

0.0458

.5468

GP1BB

glycoprotein Ib
(platelet), beta
polypeptide

0.0462

.5687

SNAI1l

snail homolog 1
(Drosophila)

0.0474

.5163

MSX1

msh homeobox 1

0.0485

.4492

CXXC5

CXXC finger
protein 5

0.0495

Jun

.5027

1 Percentage of false positives (false discovery rate) in fibroblasts or HeLa-cells

2 Fold change in fibroblasts or HeLa-cells
3 x in columns 3-6 indicates predicted binding sites for SREBP, NF-Y, Spl, and LXR.
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B Genes down-regulated under sterol-depleted conditions

Fibroblasts

HeLa cells

Symbol

Name

pfp!

FC?

pfp1 FC?

SREBP?

sp13

NF-Y3

LXR3

CDC20

cell division cycle
20 homolog (S.
cerevisiae)

0

0.3398

LOC285556

hypothetical
protein LOC285556

0 0.6027

PTGES3

prostaglandin E
synthase 3
(cytosolic)

5.00E-04 0.9244

CXCR2

chemokine (C-X-C
motif) receptor 2

0.0117 0.6894

1ID2

inhibitor of DNA
binding 2,
dominant negative
helix-loop-helix
protein

0.0142

0.4843

0 0.463

MAML2

mastermind-like 2
(Drosophila)

0.0157 0.5794

ACTC1

actin, alpha,
cardiac muscle 1

0.0167

0.4843

F3

coagulation factor
111
(thromboplastin,
tissue factor)

0.0192

0.4966

SPOCD1

SPOC domain
containing 1

0.0194

0.4696

EDN2

endothelin 2

0.0195 0.5874

S100P

S100 calcium
binding protein P

0.0207

0.4455

CRIP1

cysteine-rich
protein 1
(intestinal)

0.0208

0.5225

TSC22D2

TSC22 domain
family, member 2

0.0209

0.5632

NTF3

neurotrophin 3

0.0218

0.5795

TRIP13

thyroid hormone
receptor interactor
13

0.0226

0.5103

KLF2

Kruppel-like factor
2 (lung)

0.0228

0.5312

IQGAP3

IQ motif
containing GTPase
activating protein

3

0.0236

0.531

AXL

AXL receptor
tyrosine kinase

0.0239

0.5541

PRC1

protein regulator
of cytokinesis 1

0.0242

0.5529

PMP22

peripheral myelin
protein 22

0.0274

0.4008

GBP3

guanylate binding
protein 3

0.0276 0.5946

CDC42EP3

CDC42 effector
protein (Rho
GTPase binding) 3

0.0303

0.614

0.0457 0.5798

1 Percentage of false positives (false discovery rate) in fibroblasts or HeLa-cells
2 Fold change in fibroblasts or HeLa-cells
3 x in columns 3-6 indicates predicted binding sites for SREBP, NF-Y, Spl, and LXR.
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Fibroblasts HeLa cells
Symbol Name pfpt FC? pfpt FC? SREBP® SP1® NF-Y3 LXR3
asp (abnormal
spindle) homolog,
ASPM microcephaly 0.0329 0.6177 x x
associated
(Drosophila)
centrosomal - .
CEP55 protein 55kDa 0.0334 0.6256 x x x b'q
DUSP1 dual specificity 0.0336  0.5624 x x x
phosphatase 1
OXTR oxytocin receptor 0.0336 0.6168 X X
TCDD-inducible
TIPARP poly(ADP-ribose) 0.034 0.5414 X x
polymerase
CA12 Carbomcx‘}rfhydmse 0.0345 0.6156 x x x x
RPL29 “boso“ggpmtem 0.0428 0.6387 x x x
UBXN1 UBX domain 0.0442 0.7756 x x x
protein 1
growth arrest and
GADD45B DNA-damage- 0.0465 0.6555 x x x

inducible,
beta

1 Percentage of false positives (false discovery rate) in fibroblasts or HeLa-cells
2 Fold change in fibroblasts or HeLa-cells
x in columns 3-6 indicates predicted binding sites for SREBP, NF-Y, Spl, and LXR.

An enrichment analysis for Gene Ontology terms identified mainly cholesterol
and lipid related biological processes (Table 3.6). 21 of the identified 99 genes
have been previously associated to cholesterol or fatty acid metabolism and
genes encoding cholesterol biosynthetic enzymes were enriched among the
identified SREBP target genes when compared to all genes for cholesterol
biosynthesis (P = 7.542e-11), yielding 78 novel putative SREBP target genes.
Many of the novel identified SREBP target genes are involved in cellular
processes such as cell proliferation (pdgfra, pdgfrb, gas1,mnt, tob1, slit3, msz1,
cdc20, cxrer?, id2, edn2, pmp22) and cell cycle (cecng?2, gasl, dbel, tp53inpl,
mnt, bircs, prel, edc20, id2, ppplrlid, cep55, gadd45b), are involved in the
regulation of transcription or are transcription factors themselves (mafb, kifo,
klf13, mszl, maml2, ntf3).

3.2.2 Comparison of identified target genes to se-

quencing results from chromatin immunoprecip-
itations (ChIP-Seq)

A comparison with ChIP-Seq data from the ENCODE project [65, 235] for
SREBP1a and SREBP2 by the lab of Michael Snyder at Yale University and
NF-YA and NF-YB by the lab of Kevin Struhl at Harvard showed a high
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Table 3.6. Identified Gene Ontology terms for the 99 identified
putative SREBP target genes.

GO ID GO Term Annotated  Significant Expected P-value
GO:0008610 lipid biosynthetic process 188 15 2.43 8.75E-05
GO0O:0016126 sterol biosynthetic process 17 6 0.22 0.0002
GO:0006694 steroid biosynthetic 47 8 0.61 0.0002
process

GO:0008203 cholesterol metabolic a7 8 0.61 0.0002
process

GO:0016125 sterol metabolic process 49 8 0.63 0.0002

co:0006605 ~ cholesterol biosynthetic 14 5 0.18 0.0007
process

G0:0008202 steroid metabolic process 107 10 1.38 0.0010

GO:0008299 isoprenoid biosynthetic 3 4 0.1 0.0015
process

GO:0006629 lipid metabolic process 425 18 5.49 0.0047

platelet-derived growth

G0O:0048008 factor receptor signaling 12 4 0.16 0.0087
pathway

G0:0008283 cell proliferation 575 20 7.43 0.0205

regulation of cell
GO:0042127 414 16 5.35 0.0389

proliferation

overlap with our predicted SREBP target genes. Using the same restrictions
as for our in silico analysis, the ENCODE data set comprised 34 genes of our
identified putative SREBP target genes and 55 NF-Y target genes. Table B.3
indicates all predicted binding sites for the 99 identified SREBP target genes
as well as identified binding sites for SREBP and NF-Y of the ENCODE
data set. Several of the predicted SREBP and NF-Y binding sites showed a
high overlap with the identified ENCODE binding sites.

To analyze the conservation of binding sites of the predicted SREBP tar-
get genes, we employed pair-wise alignments between human, mouse and
chimp, respectively. Interestingly, most of the predicted binding sites were
conserved between human, mouse and chimp. 96% of the predicted SREBP
target sites were conserved between human and chimp (compared to 94% of
binding sites of all TFs), whereas 68% of the SREBP target sites were con-
served between human and mouse (see Table B.4). In comparison, signif-
icantly less binding sites of all transcription factors (58%) were conserved
between human and mouse in the upstream regions of the predicted SREBP
target genes (P = 0.0151).
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3.2.3 Experimental Validation of predicted SREBP
target genes

For validation of our results we selected ten out of the 78 putative new
SREBP target genes which were marginally described in association with
cholesterol in the literature and mainly up-regulated at cholesterol deple-
tion and performed qRT-PCR experiments. First, we analyzed the expres-
sion levels of c¢170rf59, cpsfl, gbp3, hes6, kif6, kif13, mafb, slc2ab, tmembsb,
and tobl in human fibroblasts and HeLa cells at control and sterol-depleted
growth conditions. The LDL receptor was used as a positive control and
was significantly up-regulated under sterol-depleted conditions. Besides this,
also c170rf59, hesb6, slc2ab, tmemb5b, and tobl were up-regulated at sterol-
depleted growing conditions in both cell lines. klf6, mafb, and klf13 were only
up-regulated in human fibroblasts whereas gbp3 showed an up-regulation in
HeLa cells. Only for one (cpsfl) out of the ten genes chosen for valida-
tion, we were not able to see any up-regulating effect under sterol-depleted
growth conditions (see Table 3.7).  c1701f59, slc2a06, tmem55b, hes6, and
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° @ SREBP1 + SREBP2 knockdown
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RPL19 LDLR C170rf59 TMEM55B TOB1 SLC2A6 HES6

Figure 3.9. Gene expression in sterol-depleted HeLa cells upon
siRNA knockdown of SREBP. In addition to the five candidate SREBP
target genes, RPL19 and LDLR were used as negative and positive control,
respectively. Significance of the results after SREBP knockdown are indicated
by * (P < 0.05) and *** (P < 0.001). Knockdown experiments were conducted
by Jessica Schilde.
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Table 3.7. Gene expression levels of ten putative new SREBP target
genes under sterol-depleted growth conditions in human fibroblasts
and HeLa cells.

Fibroblasts HeLa cells
Symbol Name ratio” SE*T  p-value# ratio” SEt  p-value#
LDLR low density lipoprotein 5.9 1.01 . 3.34 1.63 %

receptor

solute carrier family 2
SLC2A6 (facilitated glucose 4.50 2.36 3.73 1.63
transporter), member 6

TMEMS55B transmembrane protein 55 B 3.43 1.00 2.41 1.39
TOB1 transducer of ERBB2, 1 3.36 2.07 2.31 0.98
Cl7ortsg ~ chromosome 17 openreading g5 5 * 1.68  0.49
frame 59
HES6 hairy and enhanc§r of split 6 173 0.49 1.82 1.38
(Drosophila)
KLF6 Kruppel-like factor 6 4.77 1.20 * 1.65 1.93

v-maf musculoaponeurotic
MAFB fibrosarcoma oncogene 4.27 0.94 * 0.78 0.69
homolog B (avian)

KFL13 Kruppel-like factor 13 2.66 0.83 0.98 0.32
GBP3 guanylate binding protein 3 1.18 0.16 2.99 2.75
CPSF1 cleavage and polyadenylation 0.88 0.26 1.03 017

specific factor 1, 160kDa

" ratio between Ct (cycle threshold) values with regard to RPL19
+ standard error
# * povalue < 0.05, *** p-value < 0.001.

tobl (up-regulated in both cell systems) were selected for further analy-
sis. To find out if the expression of these genes was dependent on SREBP,
we analyzed HeLa cells in sterol-depleted conditions and treated them with
interference constructs knocking down SREBP1 and SREBP2, each respec-
tively, and mutually. This was compared to a mock treatment (control)
and the expression of the putative target was quantified (using qRT-PCR).
The results are shown in Figure 3.9. Four out of these five putative new
SREBP target genes showed a much lower mRNA expression level in sterol
depleted cells after SREBP knockdown compared to the control evidencing
their regulatory dependency on SREBP. c170rf57 and slc2a6 showed a re-
duced expression level after SREBP1 as well as SREBP2 knockdown. In turn,
tmemb5b and hes6 expression were only slightly reduced by SREBP1 knock-
down but significantly reduced when SREBP2 was knocked down indicating
tmemb55b and hes6 having been controlled solely by SREBP2 and c170rf59
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and slc2a6 having been regulated by both transcription factors. This evi-
denced tmembbb, c170rf59, hes6, and slc2a6 to be novel potential SREBP
target genes, identified by the integration of transcription factor binding site
predictions and gene expression profiles from cells in conditional cholesterol
media.






Chapter 4

Discussion

4.1 Identification of spatio-temporal specific
regulatory modules

It was suggested previously that combinations of different complexes of tran-
scription factors offer a plethora of specific gene expression profiles [164].
Here, we identified in silico regulatory modules consisting of combinations
of transcription factors binding at promoters and enhancers that determine
specific tissue dependent and temporal regulation of gene expression during
mouse embryonic development and human stem cell differentiation. In addi-
tion to tissue-specific regulation established by pairs of transcription factors
as shown previously [229], we now also demonstrated that regulatory mod-
ules consisting of pairs of transcription factors at promoters and enhancers
regulate the progression of gene expression patterns during development and
differentiation. Furthermore, we found that these enhancer sites were rather
depleted of Guanin-Cytosin (CpG). It was shown recently, that methylation-
modifications of CpG-regions are a major regulation mechanism during de-
velopment [36, 159, 207|. Enhancer regions therefore may contribute to a
more constitutive regulation program during development which is rather
independent from these methylation-modifications.

The identification of in silico transcription factor binding sites using
PWMs can lead to a large number of false positives with no information
about actual functional binding [284]. We addressed this issue by using clus-
tering of binding sites as well as including conservation of binding sites and
dismissed binding sites occurring only in a small number of genes. Addi-
tionally, we incorporated gene expression data into our analysis to identify
transcription factors, combination of transcription factors, and regulatory
modules that are “active” in a specific tissue at a specific time interval.



78 CHAPTER 4. DISCUSSION

Analyzing the identified regulatory modules revealed a number of tran-
scription factors binding preferentially either at promoters or enhancers. For
human stem cell differentiation, we identified SP1 to preferentially bind
at promoters. Although SP1 is ubiquitously expressed and regulates gene
expression of many constitutively expressed genes [97, 129], its expression
was shown to change at different developmental stages and in different cell
types, suggesting specific roles in distinct developmental processes [238]. As
SP1-null mice died prenatal, SP1 was shown to be essential for mouse em-
bryonic development [177].

In contrast, members of the FOX (forkhead box) family of transcription
factors had binding sites preferentially located at enhancers of the identified
regulatory modules providing temporal specificity during human stem cell
differentiation. FOX transcription factors have been identified to bind at
enhancers in a number of studies [58, 63, 71, 105, 186, 303]. FOX proteins
are substantial in a variety of cellular processes including development, dif-
ferentiation, proliferation, apoptosis, and migration [197]. As FOX proteins
are regulators for a multitude of biological processes, their deregulation can
contribute significantly to tumorigenesis and cancer progression [197]. Vari-
ous members of this family have been identified previously to be implicated
in development [9, 30, 42, 60, 89, 125, 152, 155, 157, 217, 275, 289, 293].

The CDX family was another group of transcription factors we identified
at enhancers of our regulatory modules. cdzr genes are closely related to
the Hox cluster and are expressed during embryonic development and gut
morphogenesis [24]. CDX2 is specifically required during early development
and cdz2-null mice are nonviable as the blastocyst fails to implant into the
uterus [266].

Chromatin loops can overcome large distances between long-range en-
hancers and proximal promoters and may lead to false positive hits at pro-
moter regions when screening promoters with ChIP-chip assays [118, 196].
So far, most ChIP sequencing studies neglect to assess indirect binding of
transcription factors. However, it was shown for HNF4A (hepatocyte nu-
clear factor 4, alpha) that identified binding sites at the promoter occurred
mainly at distal regulatory elements [226]. Our results support the fact that
key transcription factors bind preferentially at either promoters or enhancers
and that the interactions between those elements are crucial for specific gene
regulation. Therefore, indirect binding is a central issue that cannot be ne-
glected in prospective transcription factor binding site analyses and specifi-
cally when analyzing ChIP-chip and ChIP-Seq experiments.
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4.2 Identification of novel putative SREBP
target genes

Cholesterol biosynthesis in mammals is one example of combinatorial tran-
scriptional regulation. Prediction of SREBP binding sites and its most com-
mon co-factors SP1 and NF-Y allowed the identification of novel potential
target genes of SREBP and gained new insights into the regulation of choles-
terol biosynthesis. Candidate genes were identified by genome-wide gene
expression analyses of sterol-depleted cultured cells in two very distinct hu-
man cell lines. To further minimize the number of false positives, we selected
genes with in silico predicted binding sites for SREBP and its most commonly
co-occurring transcription factors SP1, NF-Y, and LXR. Genes encoding
cholesterol biosynthetic enzymes were enriched among the identified genes
indicating that our integrated approach suited well to identify also novel
SREBP target genes. In addition, comparisons to binding sites of SREBP
and NF-Y identified by ChIP-Seq experiments revealed a high overlap to our
in silico predictions. We identified a number of genes that may constitute
SREBP target genes and play substantial roles in cholesterol metabolism and
specifically, cholesterol’s control of central cellular decisions. We identified
78 putative SREBP target genes which have not previously been linked to
processes in which cholesterol is involved. Of these, we selected ten genes
for experimental validation. For most of these genes, we validated their up-
regulation in response to cholesterol-depletion. Four of these genes (slc2a6,
tmembsb, hes6, and c170rf59) showed distinct down-regulation in response
to SREBP knockdown indicating their regulatory control by SREBP.

Of the validated genes, slc2a6 showed the highest effect of both SREBP1
and SREBP2 knockdowns. It functions as a sugar-transport facilitator with
glucose-transporter activity, though its specific function and stimulus has
not yet been identified [276]. Glucose supports absorption and transport
of cellular cholesterol [230] and SREBP1c has been shown to be sensitive
to high levels of carbohydrates such as glucose [119]. Ravid and coworkers
showed that high extracellular glucose concentration had a positive effect
on the regulation of cholesterol transport [230]. This treatment caused also
an increase in protein expression of NPC1L1 and CD36 which are involved
in cholesterol uptake [230]. It is to note that NPCI1L1 is similar to NPC1
which loss-of-function causes the NPC disease 1 and is similarly involved in
cholesterol uptake and trafficking [7, 69]. Interestingly, in this study, protein
levels of SREBP2 were decreased whereas LXR levels increased due to high
glucose concentrations [230]. Taken Ravid et al’s, Horten et al’s, and our
findings together comparing SREBP1 and SREBP2, we speculate that two
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distinct mechanisms of cholesterol uptake are regulated by SREBP2 and
SREBP1, respectively, enhancing cholesterol/glucose co-transport (rather
SREBP1 regulated) and direct uptake via the LDL receptor (rather SREBP2
regulated). In any way, SLC2A6 may use the uptake of glucose to support
uptake of cholesterol into the cell.

Chromosome 17 open reading frame 59 (C17orf59) has been previously
identified as a potential regulator of cholesterol [22] and demonstrated a
decrease in expression after SREBP knockdown. It is an uncharacterized
protein coding gene that requires further functional analysis.

tmemb5b also showed a decrease in expression after SREBP knockdown
(predominantly after knockdown of SREBP2). It catalyzes the hydrolysis of
phosphatidylinositol 4,5-bisphosphate (PtdIns-4,5-P2) to phosphatidylinosi-
tol 5-phosphate (PtdIns-5-P) and appears to affect the lysosomal degradation
of internalized plasma membrane receptors [277]. PtdIns-4,5-P2 is involved
in the regulation of signal transduction, exocytosis/endocytosis, actin dy-
namics, and ion channel and transport function [212, 268]. After cholesterol
depletion, PtdIns-4,5-P2 levels were decreased in the plasma membrane [150]
and the organization of PtdIns-4,5-P2 in the plasma membrane were dis-
rupted [219]. It is reasonable that in physiological conditions, high choles-
terol levels are accomplished with high internalization of LDL which needs
to be lysosomal degraded and a regulation of this feedback mechanism is
mediated by SREBP. Interestingly, increasing levels of PtdIns-5-P have been
shown to mediate p53-dependent apoptosis [313]. In this context, choles-
terol depletion causes SREBP induction, which causes PtdIns-5-P and p53
mediated apoptosis. We found further links of our detected SREBP target
genes to the cellular decision of apoptosis/cell cycle arrest and prolifera-
tion. Specifically, HES6, GBP3 and TOB1 showed up-regulation in cells in
cholesterol depleted medium and all have been reported for distinctively anti-
proliferative effects [79, 108, 171, 180, 237]. Reduced cholesterol may result
in a stress response that is mediated by SREBP diminishing proliferation
and inducing apoptosis.

Our integrated approach has revealed new potential SREBP target genes
being functionally relevant to cellular regulation mediated by cholesterol to
control metabolism and signaling in health and disease.

4.3 Outlook

Time- and tissue-specific regulation of gene expression is central not only
during development but in all processes of a cell in an organism. Here, we
identified regulatory modules that determined specific gene regulation during
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development and revealed distinct binding site distributions for transcription
factors binding preferentially at promoter or enhancer regions. The in silico
identification of combinations of transcription factors binding at promoters
and enhancers yielded generic insights into the temporal regulation of gene
expression and improved our understanding of enhancer function.

The identified interactions of transcription factors identified in the reg-
ulatory modules require now experimental validation in a time- and tissue-
specific manner. Knockdown experiments in embryonic mice can demon-
strate the importance of a distinct transcription factor in a specific tissue at
a specific time point. Another option is the use of fluorescent dyes (e.g. by
fluorescence in situ hybridization) to demonstrate the activity of a distinct
transcription factor at a specific time point in a specific tissue.

Although we applied stringent parameters we were able to identify a num-
ber of interesting regulatory modules. These regulatory modules were defined
to consist of four transcription factors in total, with two transcription factors
each binding either at a promoter region or an enhancer region, respectively.
It remains to analyze the interactions between the transcription factors bind-
ing at the promoter and the transcription factor binding at the enhancer
region in more detail and thereby uncover additional co-factors involved in
the regulation of development and differentiation.

Another interesting aspect is the hypothesis that tumorigenesis resembles
embryonic development and many key regulators in development have been
shown to be implicated in tumor progression, see e.g. [70, 95, 161, 221]. It
is therefore intriguing to apply the identified regulatory modules to tumor
samples to uncover key regulators in tumorigenesis that will improve our
understanding of tumor progression.

In addition, it has become clearer that histone modifications play an
important role in transcriptional regulation [115]. The combination of the
predicted regulatory modules together with histone marker maps at promot-
ers and enhancers might elucidate further insights into the regulatory impact
of both mechanisms.

We employed combinatorial promoter analyses of SREBP and known co-
factors, used gene expression data, and identified new putative SREBP target
genes. Further analyses may reveal the exact mechanism by which the iden-
tified SREBP target genes are involved in cholesterol homeostasis. Their
detailed mechanism may improve our understanding of cholesterol related
diseases, such as Familal Hypercholesterolemia and Niemann-Pick Disease
Type C, when cholesterol uptake is impaired. Further experiments are cur-
rently conducted to elucidate the function of C170rf59 and TMEMS55B.

Although we identified putative SREBP target genes that have differential
regulation upon sterol-depletion and were able to validate a small number of
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genes in functional experiments, a direct influence of SREBP remains yet to
be shown. Reporter assays using the upstream sequence of the gene under
consideration upon induction of SREBP might help excluding any indirect
effects of SREBP.

Interestingly, SREBP binding sites were not predicted for all genes known
to be involved in cholesterol biosynthesis. However, these predictions can
only be as good as the existing known binding motifs and SREBP might bind
to additional, yet unknown binding motifs. Scanning upstream sequences of
the identified putative SREBP target genes for over presented short sequences
might identify further binding motifs and transcription factors involved in the
regulation of cholesterol biosynthesis.
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