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1 The Hilbert scheme of points as a set

There are several objects in mathematics which have the magical property of appearing in
various areas and which are, therefore, of the greatest interest for mathematicians. One of
those, of which we shall discuss in these notes, is the Hilbert scheme of points on a surface.
Hilbert schemes were first introduced, in their broadest generality, by A. Grothendieck in his
EGA, although we will only discuss a special case in these notes. The setting is the following.

Let X be any quasi-projective surface. Let us remind that, given any zero-dimensional sub-
scheme Z ⊂ X, the length of Z is `(Z) := h0(X,OZ). Then the Hilbert scheme of n points
on X, denoted by Hilbn(X) or X [n] is, as a set:

Hilbn(X) = {Z ⊂ X | Z is a zero-dimensional subscheme with `(Z) = n}

Now, the question is whether it is possible to introduce a natural scheme structure on the
set Hilbn(X) , i.e. whether there exists a moduli space parametrizing such data. We will
really only be interested in the case where X the complex plane, and in that case, it will
turn out that the corresponding scheme will be smooth and symplectic. If we look carefully
at the definition, we realize immediately that the support of any zero dimensional, length n
subscheme consists of just n points, not necessarily distinct.
So there is a natural map:

Hilbn(A2) −→ Symn(A2) , Z 7→
∑
x∈A2

(multxZ) · x,

where we write multxZ for the multiplicity of Z at the point x ∈ X, the summation sign
should be understood formally.
This map is called Hilbert-Chow morphism, we will see that it is indeed a morphism of alge-
braic varieties and, moreover, is a birational equivalence between the Hilbert scheme and the
symmetric product of A2.

Let us start with an easy example.
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Example 1.1. Take X = A2 and n = 2. 1 Since everything is affine, the space we want to
construct and study becomes:

Hilbn(A2) = {I ⊂ C[x, y] | I is an ideal with `(I) = dimC(C[x, y]/I) = n}

We want to get a grasp on how the subschemes corresponding to such ideals look like. If
I = mx1 ⊗ mx2 for some distinct points x1 and x2, then its zero locus corresponds to the
subscheme {x1, x2} ⊂ A2, which will be then in the Hilbert scheme. What happens if the two
points collide? For each point x ∈ X and a vector v 6= 0 ∈ TxA2, we can define a length 2
ideal by setting I = {f ∈ C[x, y] | f(x) = 0, dfx(v) = 0}. Hence any two points infinitesimally
attached look like a point with the choice of a direction in the tangent space. Consider the
product A2 ×A2. Moreover, we do not care about their order, therefore we take the quotient
Sym2(A2)) := (A2 × A2)/S2 by the symmetric group of order 2. What we get, though, will
have singularities precisely along the locus which is stabilized by the action of S2, namely
the diagonal ∆ = {(x, y) | x = y}. Therefore we blow up along the diagonal, and we obtain
a nice, smooth variety

Hilb2(A2) := Bl∆((A2 × A2)/S2).

The variety Hilb2(A2)) is called Hilbert scheme of two points on the plane. Its points look like
figures (1a) and (1b): if the two points were not coincident, they actually look like a pair of
distinct points, while if they were, by blowing up we have attached a P1 to each point in the
diagonal, therefore we want to add an arrow, to remind ourselves that in some sense, they
have been infinitesimally attached in some direction.

(a) A reduced,
length 2 subscheme

(b) A nonreduced,
length 2 subscheme

The Hilbert- Chow morphism Hilb2(A2) −→ Sym2(A2), in this case, sends (x, y) with x 6= y
to the corresponding cycle {x, y}, and a point as in figure (1b) to the cycle corresponding to
the point with multiplicity two, namely (x, direction) 7→ {x, x}.

Now, if we allow n > 2 the picture becomes a little more complicated, but the space Hilbn(A2)
can still be constructed, as we will see later. One also has a universal (flat) family

1Let us remind, for those who have never seen this notation, that by A2 = A2
C we mean the complex plane

C2 seen as an algebraic variety.
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Fn ⊂ Hilbn(A2)× A2

π

��
Hilbn(A2)

which has the following property: for each point Z = V (I) ∈ Hilbn(A2), the corresponding
fiber is precisely Z seen as a subscheme of A2. It also satisfies a universal property: any
family Y ⊂ T ×A2, finite, flat of degree n over a scheme T , is the pullback of Fn via a unique
morphism T −→ Hilbn(A2). For n > 2, we still have that the generic point in Hilbn(A2) is a
subscheme consisting on n distinct points. An opposite, in a sense, case is that of subschemes
defined by monomial ideals, i.e. ideals I spanned by monomials xiyj . Each monomial xiyj

that does not belong to I corresponds to a box (i, j) in the diagram of a partition ν of n.
We will index the monomial ideals I = Iν with the corresponding partitions. Now, there is a
natural torus action on C[x, y], given by

(C∗)2 3
(
t 0
0 q

)
· x = tx,

(C∗)2 3
(
t 0
0 q

)
· y = qy,

which lift to the Hilbert scheme Hilbn(A2) and to the universal family. We have the following

Proposition 1.2. The fixed points of the torus action on Hilbn(A2) are the monomial ideals
Iν .

Proof. An ideal I ⊂ C[x, y] is fixed if and only if it is doubly homogeneous, i,e, if and only if
it is monomial.

If one wants to formally construct moduli spaces like the Hilbert scheme, one can use some
GIT techniques, which is precisely what we are going to do next.

2 GIT and categorical quotients

We want to give a couple of reminders what it means to take a quotient of an algebraic variety
(or, more in general, an algebraic scheme) by a group acting on it. First of all, let us remind
what a reductive group is.

Definition 2.1. A reductive group over C is an affine algebraic group G such that any rational
representation of G is completely reducible.

Any semisimple algebraic group is reductive, as is any algebraic torus (C∗)n and any general
linear group. Of course, any finite group is reductive.

Now, let G be a reductive group acting on an affine algebraic variety X. We want to produce
a well-behaved quotient, more precisely, to give an algebraic variety structure to the space of
closed orbits of G. In other words, we want to find a variety Y whose closed points are in
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one-to-one correspondence with the closed G-orbits, and such that there exists a G-invariant
surjective morphism π : X −→ Y . The idea is the following: consider the ring C[X] of regular
functions on X and its subring of G-invariant functions C[X]G. Clearly, there is an inclusion

i : C[X]G ↪→ C[X]

which induces a morphism of the respective spectra:

π : SpecC[X]︸ ︷︷ ︸
=X

−→ SpecC[X]G

A theorem by Hilbert tells us that the ring C[X]G is finitely generated as an algebra over C.

Definition 2.2. In the above setting, we define

X//G := SpecC[X]G

to be the categorical quotient or affine algebro-geometric quotient of X with respect to the
G-action.

The quotient morphismπ : X −→ X//G has some good properties proved by Hilbert:

Theorem 2.3. Let X be an affine algebraic variety, G be a reductive algebraic group acting
on X and π : X −→ X//G denote the quotient morphism. Then the following is true:

(i) π is surjective.

(ii) Every fiber of π contains a single closed orbit.

(iii) Let X1 ⊂ X be a closed subvariety (or, more generally, a closed subscheme). Then
π(X1) ⊂ X//G is closed and a natural morphism X1//G→ π(X1) is an isomorphism.

We also have that the closure of any orbit of a reductive group action in an affine variety
contains a single closed orbit, since the closure G · x obviously contains a closed orbit, and it
is contained in a single fiber.
Let us give a trivial example of a categorical quotient:

Example 2.4. Let X = Cn and G = C∗ be the one-dimensional torus acting diagonally, i.e.
(t, (x1, ..., xn)) 7→ (tx1, ..., txn). Then C[X] = C[x1, ..., xn] and C[X]G = C, since there are no
non-constant invariant polynomials. Therefore Cn//C∗ = SpecC[X]G = SpecC ∼= pt.

This example, as well as many others, show that categorical quotients are not always the
best that can be done: sometimes parametrizing closed orbits is useless, and we may want
to parametrize other kinds of orbits. A more refined and, usually, effective construction is a
slight modification of the one we just saw.

The first, intuitive idea would be to take some affine, G-stable open affine subsets X1, ..., Xn

of X, take their categorical quotients with respect to the G-action and then glue the quotients
together. However, the space we obtain is not always a nice space, but it turns out that if we
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carefully choose which affine open subsets to consider, then the object we get is a well-behaved
geometrical object.

First, we choose a character χ : G −→ C∗. Then, a function f ∈ C[X] is called χn-
semiinvariant if it satisfies f(g · x) = χ(g)n · f(x) for some non-negative power n. The
χn-semiinvariant functions span a ring,⊕

n≥0

C[X]G,χ
n
,

which is a finitely generated graded algebra.

Definition 2.5. A point x ∈ X is called χ-semistable if there exists a χn-semi invariant f
such that f(x) 6= 0. A point which is not semistable is called unstable.

Call Xss the locus of semistable points in X (we write Xχ−ss when we want to indicate the
dependence on χ). By definition, Xss can be covered by open sets of the form Xf := {x ∈
X|f(x) 6= 0} with f ∈ C[X]G,χ

n for some n, and each of this open sets is acted on by G.

Definition 2.6. The GIT quotient2 of X with respect to G and χ is

X//χG := Proj

⊕
n≥0

C[X]G,χ
n

 .

Notice that if χ = 0, then the functions we consider are just the invariant functions. Therefore
the GIT quotient is a generalization of the categorical quotient.
We remark that, for f ∈ C[X]G,χ

n , the subvariety Xf is affine and G-stable so we can take
the categorical quotient Xf//G. For f1 ∈ C[X]G,χ

n1 , f2 ∈ C[X]G,χ
n2 , we have G-equivariant

inclusions Xfi
⊂ Xf1f2 = Xf1 ∩Xf2 that give rise to morphisms Xfi

//G→ Xf1f2//G. By the
very definition of Proj, the variety X//χG is glued from the open subsets Xf//G along the
gluing morphisms of the form Xf1//G → Xf1f2//G. The Proj construction guarantees that
the result of the gluing is an algebraic variety. Also we would like to point out that there is
a natural quotient morphism Xχ−ss → X//χG.
The inclusion j : C[X]G ↪→

⊕
n≥0 C[X]G,χ

n induces a natural projective morphism

Ψ : X//χG // X//G

Proj
(⊕

n≥0 C[X]G,χ
n
)

// SpecC[X]G

This morphism makes the following diagram commutative

Xχ−ss

��

// X

��
X//χG // X//G

2Here GIT is an acronym for “Geometric Invariant Theory”. Please do not consult the English dictionary
for this word
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The top horizontal map is the inclusion and the vertical maps are quotient morphisms. This
morphism will be very important to us later on.

Example 2.7 (P1). We can consider the diagonal action of C∗ on A2 by t·(x1, x2) = (tx1, tx2).
So for f ∈ C[x1, x2], we have (t · f)(x1, x2) = f(t−1x1, t

−1
2 x2). If χ(t) = t−1, then C[X]G,χ

n
=

C[x1, x2]n and X//χG = P1. If χ(t) = t, then C[X]G,χ
n

= 0, and Xχ−ss = ∅.

3 The Hilbert scheme of points on A2 as a GIT quotient

3.1 Hilbn(A2) as a GIT quotient

Let us now focus on the case where X = A2. It turns out that the Hilbert scheme of points
A2[n] has a natural and handy description.

Theorem 3.1. Let

H̄ := {(B1, B2, i) ∈ End(Cn)⊕2 ⊕ Cn|[B1, B2] = 0},
H̃ := {(B1, B2, i) ∈ H̄|C[B1, B2]i = Cn}.

Consider the natural action of GLn(C) over H̃ given by g · (B1, B2, i) = (gB1g
−1, gB2g

−1, gi).
Then H̃ = H̄det−1−ss, the GLn(C)-action on H̃ is free and the GIT quotient

H := H̄//det−1

GLn(C)

is in a natural bijection with Hilbn(A2).

It is easy to see the action of GLn(C) is free: if gB1g
−1 = B1, gB2g

−1 = B2 and gi = i, then
g acts by the identity on C[B1, B2]i that coincides with the whole space Cn. On the other
hand, the action of GLn(C) on H̄ is no longer free, because (0, 0, 0) ∈ H̄.

Let us make a couple of remarks.

1) First, let us try to understand what is H̃. As a subset,

H̃ ⊂ End(Cn)× End(Cn)× Cn

∼= Cn2 × Cn2 × Cn

∼= C2n2+n.

Now, the condition [B1, B2] = 0 is clearly a closed condition of rank at most n2, which
makes the set H̄ into an algebraic subvariety of C2n2+n of dimension at least n2 +n (in
fact, we will see that it has dimension n2 + 2n). The condition specifying H̃ inside of
H̄ (to be referred to as the cyclicity condition), on the other hand, is clearly open: it
can be easily translated into a condition of linear independence, which is open because
it is given by the non-vanishing of some determinant of the form

det(Ba1
1 Bb1

2 i, B
a2
1 Bb2

2 i, . . . , B
an
1 Ban

2 i). (1)

6



2) Now let us establish a bijection between the set of the GLn(C)-orbits in H̃ and Hilbn(A2).
As we noticed above, a point in Hilbn(A2) is given by an ideal I ⊂ C[x, y] such that
dimC (C[x, y]/I) = n. On C[x, y]/I ∼=V ectC Cn we have two natural endomorphisms
given by the multiplication by each of the two variables modulo I:

B1 : C[x, y]/I −→ C[x, y]/I ; f(x, y) 7→ mx(f(x, y)) := x · f(x, y) mod I

B2 : C[x, y]/I −→ C[x, y]/I ; f(x, y) 7→ my(f(x, y)) := y · f(x, y) mod I

The condition [B1, B2] = 0 obviously holds. Finally, define i : C −→ C[x, y]/I by
i(1) = 1 mod I. It is then clear that the cyclicity condition holds: the only subspace
which is invariant under multiplication by x and y and which contains the constants is
C[x, y]/I itself.

Vice versa, consider a triple (B1, B2, i) ∈ H̃. We need to produce an ideal I ⊂ C[x, y].
Consider the homomorphism

φ : C[x, y] −→ Cn

given by f 7→ f(B1, B2)i. It is clear that φ is surjective, by the definition of H̃. The ideal
we are looking for will be now given by Kerφ, which satisfies all the required conditions.
In fact, due to the cyclicity condition, Kerφ = {f |f(B1, B2) = 0}, it is an exercise to
check this.

We now have a correspondence:

{I ⊂ C[x, y] | `(I) = n} −→

(B1, B2, i)

∣∣∣∣∣∣
B1 = mx mod I
B2 = my mod I
i such that i = 1 mod I


{Kerφ where φ(f) = f(B1, B2)i} ←− {(B1, B2, i) | as above}.

It is an exercise that these two maps are mutually inverse bijections between the set of
ideals in C[x, y] of codimension n and the set of G-orbits in H̃.

What remains to do to prove the theorem above is to establish the equality H̄det−1−ss =
H̃. The inclusion H̃ ⊂ H̄det−1−ss follows from the observation that the functions in (1)
actually belong to C[H̄]G,det−1

. The other inclusion is more subtle. One can show that⊕
n>0 C[H̄]G,det−n

is generated by C[H̄]G,det−1
as a C[H̄]G-algebra, this follows from the 1st

and 2nd fundamental theorems of Invariant theory, see [PV, Section 9]. This claim easily
implies the required inclusion.
We are going to use a different approach based on the Hilbert-Mumford theorem (no, this
wasn’t a joint work).

7



Theorem 3.2. Let a reductive group G act on an affine algebraic variety X. Pick x ∈ X.
Then there is a one-parametric subgroup γ : C∗ → G such that limt→0 γ(t) · x exists and lies
in a unique closed orbit in Gx.

This theorem is very useful because actions of one-dimensional tori are much easier than of
general reductive groups.
There is also the following useful but easy observation that gives an alternative description of
Xχ−ss. Namely, let Cχ be the 1-dimensional representation of G with action given by χ.

Lemma 3.3. Xχ−ss coincides with the set of all points x ∈ X such that the closure of the
G-orbit of (x, 1) ∈ X × Cχ (with diagonal G-action) does not intersect X × {0} ⊂ X × Cχ.

The proof is pretty basic and is left as an exercise.

Proposition 3.4. We have H̄χ−ss ⊂ H̃.

Proof. We just need to show that G(x, 1) ∩ (H̄ × {0}) = ∅ for any x = (B1, B2, i) ∈ H̃.
Assume the converse. The Hilbert-Mumford theorem implies that there is a one-parametric
subgroup γ : C∗ → G such that limt→0 γ(t) · (B1, B2, i, 1) exists and lies in H̄ × {0}. This
means that the limits as t→ 0 of γ(t)B1γ(t)−1, γ(t)B2γ(t)−1, γ(t)i exist while det(γ(t)) = tm

with m < 0. One can diagonalize γ(t): in some basis γ(t) = diag(tm1 , . . . , tmn). Let V>0

denote the span of eigenvectors corresponding to non-negative degrees mi. Then it is an
exercise to check that B1, B2 map V>0 to V>0, while i ∈ V>0. The cyclicity condition then
implies that V>0 = Cn, which contradicts det(γ(t)) = tm with m < 0.

This completes the proof of Theorem 3.1.

3.2 Symn(A2) as a categorical quotient

We also can realize the symmetric product Symn(A2) as a categorical quotient.

Theorem 3.5. There exists a bijection

Symn(A2) ∼= H̄//GLn(C).

Proof. The proof follows from the fact that an orbit is closed if and only if it contains an
element of the form (B1, B2, 0) such that both B1 and B2 are simulataneously diagonalizable.
Knowing this, by associating the orbit with the set of simultaneous eigenvalues of (B1, B2)
we will have the claimed bijection. To prove this fact, we first observe that for closed orbits,
we must have i = 0 because of the actions of constant matrices. It is a well-known fact from
linear algebra that commuting matrices can be simultaneously conjugated to the triangular
form. Then we can take a suitable one-parametric subgroup of diagonal matrices and act on
B1 and B2 such that the limit is a pair of diagonal matrices. Since the orbit of (B1, B2) is
closed, the limit lies in the orbit, and hence B1, B2 are simulataneously diagonalizable.
Now let us show that the orbit G(B1, B2, 0) is closed provided B1, B2 are diagonal. As we have
seen above, G(B1, B2) contains a pair (B′1, B

′
2) of diagonal matrices. But the simultaneous

eigenvalues of (B1, B2) and (B′1, B
′
2) have to coincide and hence (B1, B2) is conjugate to

(B′1, B
′
2).
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One can actually show that the map above is an isomorphism of algebraic varieties. A key
ingredient is the fact that C[H̄]G is generated by polynomials of the form tr(Ba

1B
b
2). To deduce

the claim about an isomorphism from here is an exercise.
Now we can interpret the Hilbert-Chow map.

Proposition 3.6. Under the identifications H̄//det−1
G ∼= Hilbn(A2), H̄//G ∼= Symn(A2) as

above, the Hilbert-Chow morphism is identified with the natural projective morphism H̄//det−1
G→

H̄//G.

Proof. As above, we can simultaneously conjugateB1, B2 to triangular matrices, let (λ1, . . . , λn),
(µ1, . . . , µn) be the eigenvalues. By the commutative diagram describing the morphism
H̄//detG → H̄//G, it maps the orbit of (B1, B2, i) to the closed orbit in its closure, meaning
to that of (diag(λ1, . . . , λn), diag(µ1, . . . , µn), 0).
Now let I be the ideal corresponding to (B1, B2, i), i.e., consisting of all polynomials f with
f(B1, B2) = 0. Take a composition series of C[x, y]/I, with constituents S1, ..., Sn. By Null-
stellensatz, simple modules over C[x, y] are one-dimensional and correspond to points in A2,
and the image of C[x, y]/I under the Hilbert-Chow morhism are precisely the points appear-
ing in the composition series. By putting the matrices B1, B2 into upper triangular form,
it is easy to see that this constituents correspond to the (λi, µi)’s. Now we are done by the
definition of the Hilbert-Chow map.

3.3 Tautological bundle and the universal property

Above, we had the universal property for Hilbn(C2). Let us show why the variety we have
constructed satisfies the universal property.
We have a tautological bundle on the Hilbert scheme of points. Take the trivial, rank n bundle
on H̃:

H̃ × Cn

π

��

H̃

The action of G = GLn(C) on H̃ lifts to the diagonal action on H̃×Cn, so that the projection
π is G-equivariant. Therefore we can take the quotient:

(H̃ × Cn)//G

π

��

H̃//G ∼= Hilbn(A2)

The rank n vector bundle we obtain on Hilbn(A2) has a distinguished section, namely σ :
Hilbn(A2) −→ (H̃ ×Cn)//G, i.e. σ(B1, B2, i) = (B1, B2, i, i). We can repeat the construction
by imposing
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H̃ × End(Cn)

π

��

H̃

where now G acts on End(Cn) by conjugation. Again, the projection is equivariant and again
we have two distinguished sections, i.e. σ′(B1, B2, i) = (B1, B2, i, B1) and σ′′(B1, B2, i) =
(B1, B2, i, B2), that are equivariant, as well. Therefore we can take the quotient, and we have
thus produced a rank n vector bundle T on H with a distinguished section, say i, and two
distinguished endomorphisms, say B1,B2.
We remark that the bundle we have constructed is actually a bundle of algebras. Indeed,
by the construction we have an epimorphism C[x, y] ×H → T of vector bundles on H that
maps a section f to f(B1,B2)i. By the construction, the kernel is the sheaf of ideals, and so
T becomes a sheaf of algebras. Let H be the relative spectrum of T . By the construction,
this is a subscheme in H × C2, flat, finite of degree n over H.
Let us show that H → H satisfies the universal property from Section 1. Namely, let T
be a scheme and Y ⊂ T × C2 be flat, finite of degree n over T . Let F be the sheaf on T
obtained by pushing forward OY . This bundle comes equipped with a distinguished section i′

corresponding to 1 and with two distinguished endomorphisms, B′1,B
′
2. Consider the principal

G-bundle, say G, on T of frames in F . There is a natural map G → H̃ that to a frame assigns
the matrices of B′1,B

′
2, i
′ in that basis. This map upgrades to a morphism of schemes, this is,

try to guess, an exercise. Taking the quotient by the G-action, we get a morphism T → H
such that Y is the pull-back of H .

4 Hamiltonian reductions

4.1 Moment maps

Now we are going to show that Hilbn(A2) is a smooth and symplectic variety. For this, we
will realize Hilbn(A2) as a GIT Hamiltonian reduction.

4.2 Moment maps

Before realizing the Hilbert scheme as a Hamiltonian reduction, we want to remind the basics
of Symplectic geometry and Hamiltonian reductions. It only makes sense to speak about
Hamiltonian reductions for symplectic varieties equipped with Hamiltonian G-actions.
Let M be an algebraic variety. Recall that a symplectic form on M will be any closed, non-
degenerate 2-form ω. The existence of such a form surprisingly makes the geometry of M
extremely rigid but, on the other hand, it implies a certain number of good properties.
Here is our main starting example of symplectic varieties.

Example 4.1 (Cotangent bundles). Take any n-dimensional variety Z and consider its cotan-
gent bundle M = T ∗Z. We claim that M always has a symplectic structure. First, consider a
canonical 1-form α defined as follows. Any point in M can be thought of as a pair p = (x, y)
where x ∈ Z and y is a vector in T ∗xZ. Consider the projection
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π : M −→ Z , p = (x, y) 7→ x

and define α point-wise via

αp = (dπp)∗y

or, equivalently,

αp(v) = y((dπp)(v)).

Now define

ω = −dα.

Now we want to compute the form in coordinates. If we worked in the C∞ or analytic
setting, we could use the usual coordinates, while in our present setting we want everything
to be algebraic, so we need to use étale coordinates, instead. Namely, we can introduce étale
coordinates in a neighborhood of each point x ∈ Z. It is an easy exercise to show that, if
{x1, ..., xn} are étale coordinates and {y1, ..., yn} are their corresponding fiberwise coordinates,
then α =

∑n
i=1 yidxi and ω =

∑n
i=1 dxi ∧ dyi.

Suppose now that the variety M is acted on by a reductive group G. Then we have that
there is a natural map that takes an element is the Lie algebra g of G and to it associates a
complete vector field on M , namely g −→ Vect(M) , ξ 7→ ξM , where ξM is the derivation on
C[M ] corresponding to ξ under the induced representation of g. An important special case:
if V is a vector space and the G-action is linear, then ξVv = ξ · v, the image of v under the
operator corresponding to ξ. Also, by the nondegeneracy of ω, we get an isomorphism

TM −→ T ∗M , X 7→ iXω

where iXω denotes the contraction of the 2-form ω via the vector field X. This implies that
for every one form β, there exists a unique vector field X such that iXω = β. In particular,
for any f ∈ C[M ], there exists a unique vector field, which we call Xf , such that iXf

ω = df .
It is an easy computation to show that, in the Darboux coordinates,

Xf =
n∑
i=1

(
∂f

∂xi

∂

∂yi
− ∂f

∂yi

∂

∂xi

)
.

We thus get, for free, a Poisson bracket on the algebra C∞(M) by setting

{f, g} := ω(Xf , Xg).

4.3 Hamiltonian reductions

Let us give the following

Definition 4.2. Let G be a reductive group and (M,ω) a symplectic G-variety. Then the
action of G is called Hamiltonian (and the variety (M,ω,G, µ) is called Hamiltonian G-space)
if there exists a map µ : M −→ g∗ such that
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1. For every ξ ∈ g, if µξ : M → C is defined by µξ(p) := 〈µ(p), ξ〉, then

iξMω = dµξ.

2. µ is equivariant with respect to the action of G on M and the co-adjoint action of G on
g∗.

It is easy to see that the form in the l.h.s. in (1) is closed. Then (1) says that it is exact. In
our case, this is the only additional condition: since we require that G is reductive, we can
always achieve (2) (by averaging µ with respect to the G-action).
The morphism µ above is called a moment map.

Example 4.3. Consider the example above, namely M = T ∗Z for some smooth variety Z.
We have a chain of maps:

g −→ Vect(Z) ↪→ C[M ], ξ 7→ ξZ 7→ HξM

where HξZ is the function HξZ
(x, y) = 〈y, ξZx 〉. Then we can construct a moment map by

setting:

〈µ(p), ξ〉 = HξZ
(p). (2)

It is a useful exercise to check that this map indeed satisfies required axioms.

The map µ∗ : g→ C[M ] , ξ 7→ HξZ , dual to µ in the sense of (2), is called a comoment map.
The following is the main result of this subsection.

Theorem 4.4. Let M be a smooth affine algebraic variety equipped with an action of a
reductive group G such that the action on µ−1(0) is free. Then the following is true:

1. µ−1(0) is a smooth subvariety of codimension dimG.

2. Every fiber of the quotient morphism π : µ−1(0)→Mred := µ−1(0)//G is a single orbit.

3. Mred is a smooth variety of dimension dimM − 2 dimG.

4. Let ι : µ−1(0) ↪→ M denote the inclusion. Then there is a unique 2-form ωred on Mred

such that π∗ωred = ι∗ω. The form ωred is symplectic.

To prove the theorem we need the following lemma describing the image and the kernel of
dxµ : TxM → g∗. We write gx for {ξ ∈ g|ξMx = 0}, this is the tangent algebra of the stabilizer
Gx.

Lemma 4.5. We have im dxµ = g⊥x and ker dxµ = (TxGx)⊥ (the first ⊥ means the annihilator
in the dual space, the second is a skew-orthogonal complement w.r.t. the symplectic form).

The proof is an exercise.
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Proof of the theorem. Since the G-action on µ−1(0) is free, we see that gx = {0} for all
x ∈ µ−1(0). It follows that µ is a submersion at all points of µ−1(0). (1) follows.
To prove (2) recall that every fiber of π contains a unique closed orbit. But since the action
is free, all orbits have the same dimension (equal dimG) and hence are closed.
To show (3) we will show that Mred is smooth of required dimension as a complex analytic
manifold. For this we take a small transversal slice to an orbit. Shrinking it, we can assume
that π embeds it into Mred as an open complex submanifold. This slice will be a coordinate
chart in Mred. Our claim follows.
Let us prove (4). The form ι∗ω vanishes on TxGx for any x ∈ µ−1(0), this is an exercise, and
is G-invariant. The existence (and uniqueness) of ωred follows. The claim that this form is
symplectic is an exercise.

The variety Mred is called Hamiltonian reduction of M . Its ring of function is given by
(C[M ]/µ∗(g)C[M ])G: this also allows us to give a Poisson bracket to the quotient Mred, as
well. Indeed, we define {f + µ∗(g)C[M ], g + µ∗(g)C[M ]} := {f, g} + µ∗(g)C[M ]. It can be
checked that the bracket is well defined, and that this gives a Poisson structure to the quotient.
We remark that in order to define this bracket we do not need to assume that the G-action
on µ−1(0) is free (and that M is symplectic, it is enough to assume that M is Poisson).
The theorem above carries to the setting of GIT quotients in a straightforward way. Namely,
we need to assume that G acts freely on µ−1(0)χ−ss//G. Then straightforward analogs of
(1)-(4) for µ−1(0)χ−ss instead of µ−1(0) and µ−1(0)//χG instead of µ−1(0)//G still hold.

4.4 The Hilbert scheme and the symmetric product as Hamiltonian re-
ductions

Let us now start working in the setting we are interested in. Consider the vector space Cn,
and let g = gln(C) be the Lie algebra of G := GLn(C). Define the following space:

M := {(B1, B2, i, j) ∈ g× g× Cn × (Cn)∗ | [B1, B2] + ij = 0}

Via the perfect pairing g×g→ C, (A,B) 7→ Tr(AB), we can see the space g×g×Cn× (Cn)∗

as the cotangent bundle T ∗B, where B := g×Cn, which has a natural symplectic structure.
The group G acts diagonally on T ∗B via

g · (B1, B2, i, j) = (gB1g
−1, gB2g

−1, gi, jg−1)

for each g ∈ G.
We want to do the following three things:

1. Show that the action is Hamiltonian (which is equivalent, as we saw, to produce a
moment map µ);

2. Study the quotients µ−1(0)//G and µ−1(0)//χG for some character χ;

3. Deduce properties of the above quotients from the properties of µ and of µ−1(0).
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1) The G-action is Hamiltonian. Indeed, we have shown that actions of reductive groups
on cotangent bundles admit a natural comoment map, namely

µ∗g→ C[T ∗Z] , ξ 7→ HξZ

where HξZ
(x, y) = 〈y, ξZx 〉. Moreover, since in our case the group G acts diagonally on

vector spaces, we have that ξZx = ξ · x. Hence we defined µ via

〈µ(x, y), ξ〉 = µ∗(ξ)(x, y) = 〈y, ξ · x〈.

Claim: The moment map associated to the diagonal action described above on T ∗B
is:

µ : T ∗B −→ g ∼= g∗ , µ(B1, B2, i, j) = [B1, B2] + ij .

Proof. We just use a straightforward property of the moment map (whose proof follows
from the definition and, in any case, is left as an exercise):

Lemma 4.6. If any algebraic group G acts diagonally on the variety M ×N , then we
can write the moment map as µG(m,n) = µG(m) + µG(n).

We have that:

〈µ(B1, B2, i, j), ξ〉 = 〈(B2, j), ξ · (B1, i)〉
= 〈(B2, j), [ξ,B1] + ξi〉
= Tr(B2[ξ,B1] + jξi)
= Tr([B1, B2]ξ + ijξ)
= 〈[B1, B2] + ij, ξ〉

so indeed we have that µ(B1, B2, i, j) = [B1, B2] + ij.

We can thus write M = µ−1(0).

2) Now that we have explicitly produce a moment map, we want to realize the Hilbert
scheme of point and the symmetric quotient as Hamiltonian reductions.

(a) Symn(A2) as a categorical quotient. We need the following:

Lemma 4.7. Let B1, B2 be any two linear operators in g such that [B1, B2] is a
nilpotent rank one operator. Then B1 and B2 are simultaneously triangularizable.
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Hence if B1, B2 ∈M , then they can be put into their triangular forms simultane-
ously. Then by sending an element (B1, B2, i, j) to the joint spectrum (SpecB1, SpecB2) ∈
An × An, we get a well-defined morphism

M //G −→ (An × An)/Sn

where the symmetric group Sn acts diagonally. The map is clearly surjective,
hence dominant. Therefore, we have an induced morphism on the level of rings of
functions C[An×An]Sn −→ C[M ]G which turns out to be an algebra isomorphism.
Therefore, we conclude that the morphism M //G −→ (An×An)/Sn is actually an
isomorphism. But now (An ×An)/Sn, where Sn acts diagonally, is isomorphic to
(A2 × ...× A2︸ ︷︷ ︸

n times

)/Sn where now the symmetric groups acts by permuting the pairs

in the n copies A2; this is just the symmetric product Sym n(A2), therefore we
conclude that:

M //G ∼= Sym n(A2).

(b) Hilbn(A2) as a GIT quotient. Now we fix the same stability condition as before,
i.e. the one corresponding to the character χ = det. We have already seen that
this stability condition is equivalent to the condition of i being cyclic. Actually,
something more happens:

Lemma 4.8. If (B1, B2, i, j) ∈M , then j vanishes on C[B1, B2]i.

Proof. It is known that since the rank of the matrix [B1, B2 is at most 1, then B1

and B2 can be simultaneously conjugated into upper triangular matrices. There-
fore, let us assume that B1 and B2 are both upper triangular. Hence, for any
A ∈ C[B1, B2] we have:

jAi = Tr(Aij) = −Tr(A[B1, B2]) = 0

since we can assume A to be upper triangular and [B1, B2] is strictly upper trian-
gular.

Hence, we have that the set of χ-semistable points in M is

M χ−ss = {(B1, B2, i, j) | [B1, B2] = 0, j = 0, i is a cyclic vector for (B1, B2)} ∼= H̃

where H̃ is the commuting variety we defined at the beginning of Section 3. From
this identification, we get:

M χ−ss//det−1

G ∼= H̃//det−1

G ∼= Hilbn(A2).

Our conclusion is that Hilbn(C2) is a symplectic smooth variety.
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3) Consider now the following spaces:

M ′
k
def
=

(B1, B2, i, j) ∈M

∣∣∣∣∣∣
(i) B2 has pairwise distinct eigenvalues

(ii) dim(C[B1, B2]i) = n− k
(iii) dim(jC[B1, B2]) = k

 .

for k = 0, ..., n and let Mk be the closure of M ′
k in M . We want to prove the following:

Theorem 4.9. (i) M is a complete intersection in g×g×Cn× (Cn)∗, i.e., dim M =
n2 + 2n;

(ii) The irreducible components of M are M0, ...,Mk, they have dimension n2 + 2n;
(iii) M is reduced.

Proof. Our first observation is that µ−1(0) is the union of conormal bundles to the
G-orbits in B. Indeed, µ−1(0) is the set of zeroes of the polynomials Hξ given by
Hξ(x, y) = y(ξB

x ). So the fiber of the projection µ−1(0) over x ∈ B consists of all 1-
forms vanishing on Tx(Gx). Our claim follows. The dimension of each conormal bundle
is dim B = n2 +n. It follows that dimµ−1(0) = n2 +n+d, where, somewhat informally,
d is the number of parameters describing the G-orbits in B. More formally, suppose
that we have a decomposition of B = tkBk into the union locally closed irreducible G-
stable subvarieties Bk such that all G-orbits in Bk have the same codimension, say dk.
Then dimµ−1(0) ∩ p−1(Bi) = n2 + n+ dk, here we write p for the canonical projection
T ∗B→ B.

We decompose B = End(Cn)⊕Cn = {(B1, i)} according to the Jordan type of B1 and
the dimension of ZG(B1)i, where ZG(•) stands for the centralizer in G (and then we
still need to take irreducible components, but that’s a technicality). Here are n + 1
strata that are most important for us: Bk consists of all (B1, i), where B1 has n distinct
eigenvalues and dim C[B1]i = n − k (we remark that in thus case ZG(B1) consists of
all non-degenerate matrices in C[B1]). We will explicitly describe such stratification in
the case when n = 2 in Example (4.11). The stratum Bk, k = 0, . . . , n, is easily seen
to be irreducible, and dk = n. Indeed, one needs n different parameters to describe to
describe the orbit of B1 and the number of ZG(B1)-orbits in Cn is finite.In fact, the
latter is a general result.

Lemma 4.10. For any B1 ∈ End(Cn), the number of ZG(B1)-orbits in Cn is finite.

The proof is an exercise (a hint: do a single Jordan block first).

It follows that for all other strata Bk in our stratification we have dk < n. We remark
that µ−1(0) ∩ p−1(Bk) is precisely M ′

k from above provided 0 6 k 6 n. So dim M 6
n2 + 2n. On the other hand, since M is given by n2 equation, the dimension of each
component is at least n2 + 2n. (i) and (ii) follow.

Also it is easy to see that there is a free G-orbit in each Mk, k = 0, . . . , n (well, yet
again, an exercise). From the properties of dµ, it follows that there is a point in each
component of µ−1(0), where µ is a submersion. It follows that, as a scheme, µ−1(0) is
generically reduced. By a theorem of Serre, a generically reduced complete intersection
is reduced, and we’ve proved (iii).
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Let us give an example of such stratification.

Example 4.11. Take n = 2. Then we have three main strata:

B0 = {(B1, i) | B1 has two distinct eigenvalues and dim C[B1]i = 2},

B1 = {(B1, i) | B1 has two distinct eigenvalues and dim C[B1]i = 1},

B2 = {(B1, i) | B1 has two distinct eigenvalues and dim C[B1]i = 0}.

For instance, we can take the pairs((
λ 0
0 µ

)
with λ 6= µ,

(
1
1

))
∈ B0

((
λ 0
0 µ

)
with λ 6= µ,

(
1
0

))
∈ B1

and ((
λ 0
0 µ

)
with λ 6= µ,

(
0
0

))
∈ B2.

Moreover, Bi, i = 0, 1, 2, are the unions of the orbits of the pairs above.

Plus, we have five more strata given by the other Jordan types, namely the type{(
λ 1
0 λ

)}
and the type

{(
λ 0
0 λ

)}
. Those of type

{(
λ 1
0 λ

)}
define three

different strata: again, take the vector i to be, respectively,
(

0
0

)
,
(

1
0

)
and

(
1
1

)
and see that dimZG(B1)i changes every time. Finally, we have two strata correspond-

ing to the Jordan type
{(

λ 0
0 λ

)}
, since dimZG(B1)i = 0 for i =

(
0
0

)
and

dimZG(B1)i = 1 for i 6= 0.
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