

Applying Goal-Oriented Action Planning to Games 1

Applying Goal-Oriented Action Planning to Games
Jeff Orkin – Monolith Productions
http://www.jorkin.com

A number of games have implemented characters with goal directed decision-making
capabilities. A goal-directed character displays some measure of intelligence by
autonomously deciding to activate the behavior that will satisfy the most relevant goal at
any instance. Goal-Oriented Action Planning (GOAP) is a decision-making architecture
that takes the next step, and allows characters to decide not only what to do, but how to
do it. But why would we want to empower our characters with so much freedom?

A character that formulates his own plan to satisfy his goals exhibits less repetitive,
predictable behavior, and can adapt his actions to custom fit his current situation. In
addition, the structured nature of a GOAP architecture facilitates authoring, maintaining,
and re-using behaviors.

No One Lives Forever 2: A Spy in H.A.R.M.’s Way (NOLF2) [Monolith02] is one
example of a game that contains goal-directed autonomous characters, but no planning
capabilities. Characters in NOLF2 constantly re-evaluate their goals, and select the most
relevant goal to control their behavior. The active goal determines the character’s
behavior through a hard-coded sequence of state transitions.

This article explores how games can benefit from the addition of a real-time planning
system, using problems encountered during the development of NOLF2 to illustrate these
points.

Defining Terms

Before we can discuss the benefits of GOAP, we first need to define some terminology.
An agent uses a planner to formulate a sequence of actions that will satisfy some goal.
We need to define what we mean by the terms goal, action, plan, and formulate.

Goal

A goal is any condition that an agent wants to satisfy. An agent may have any number of
goals. Characters in NOLF2 typically have about 25 goals. At any instant, one goal is
active, controlling the character’s behavior. A goal knows how to calculate its current
relevance, and knows when it has been satisfied.

Goals in NOLF2 fall into three categories: relaxed goals, investigative goals, and
aggressive goals. Relaxed goals include passive goals such as Sleep, Work, and
Patrol. Investigative goals include the more suspicious Investigate and Search.
Aggressive goals are used for combat situations, like Chase, Charge, and
AttackFromCover.

Applying Goal-Oriented Action Planning to Games 2

While conceptually similar, there is one key difference between the goals employed by
NOLF2 and the goals referred to by GOAP. NOLF2’s goals include an embedded plan.
Once a goal is activated, the character runs through a pre-determined sequence of steps,
hard-coded into the goal. The embedded plan can contain conditional branches, but these
branches are predetermined at the time the goal is authored. Goals in GOAP do not
include a plan. Instead, they simply define what conditions need to be met to satisfy the
goal. The steps used to reach these satisfaction conditions are determined in real-time.

Plan

The plan is simply the name for a sequence of actions. A plan that satisfies a goal refers
to the valid sequence of actions that will take a character from some starting state to some
state that satisfies the goal.

Action

An action is a single, atomic step within a plan that makes a character do something.
Some possible actions include GotoPoint, ActivateObject, DrawWeapon,
ReloadWeapon, and Attack. The duration of an action may be short or infinitely
long. The ReloadWeapon action will complete as soon as the character finishes a
reload animation. The Attack action may continue infinitely, until the target is dead.

Each action knows when it is valid to run, and what it will do to the game world. In other
words, an action knows its preconditions and effects. Preconditions and effects provide a
mechanism for chaining actions into a valid sequence. For example, Attack has a
precondition that the character’s weapon is loaded. The effect of ReloadWeapon is that
the weapon is loaded. It is east to see that ReloadWeapon followed by Attack is a
valid sequence of actions. Each action may have any number of preconditions and
effects.

A GOAP system does not replace the need for a finite-state machine (FSM) [Fu03], but
greatly simplifies the required FSM. A plan is a sequence of actions, where each action
represents a state transition. By separating the state transition logic from the states
themselves, the underlying FSM can be much simpler. For instance, Dodge and
ReloadWeapon are different actions that both set the character’s state to Animate,
and specify an animation to play. Rather than having a Patrol or Wander state, a
GOAP system can formulate a plan that instructs the character to use to the Goto state to
move between a number of patrol points. Ultimately, the Goto and Animate states
cover most of things that characters do; they just do them for different reasons. Actions
define when to transition into and out of a state, and what happens to the game world as a
result of this transition.

Plan Formulation

Applying Goal-Oriented Action Planning to Games 3

A character generates a plan in real-time by supplying some goal to satisfy to a system
called a planner. The planner searches the space of actions for a sequence that will take
the character from his starting state to his goal state. This process is referred to as
formulating a plan. If the planner is successful, it returns a plan for the character to follow
to direct his behavior. The character follows this plan to completion, invalidation, or until
another goal becomes more relevant. If another goal activates, or the plan in-progress
becomes invalid for any reason, the character aborts the current plan and formulates a
new one.

Starting State

Draw
Weapon

Goto
Point

Reload
Weapon

Attack

Activate
Object

Dodge

Goto
Cover

Sleep

Idle

Goal State

Figure 1. The plan formulation process.

Figure 1 depicts an abstract illustration of the planning process. The rectangles represent
the start and goal states, and each circle represents an action. The goal in Figure 1 is to
kill an enemy. Therefore, the goal state is the state of the world in which the enemy is
dead. The planner needs to find a sequence of actions for the character that will take the
world from a state in which is the enemy is alive to a state in which the enemy is dead.

This process looks suspiciously like pathfinding! In a sense that’s exactly what it is. The
planner needs to find a path through the space of actions that will take the character from
his starting state to some goal state. Each action is a step on that path that changes the
state of the world in some way. Preconditions of the actions determine when it is valid to
move from one action to the next.

In many cases, more than one valid plan exists. The planner only needs to find one of
them. Similar to navigational pathfinding, the planner’s search algorithm can be provided
with hints to guide the search. For example, costs can be associated with actions, leading
the planner to find the least costly sequence of actions, rather than any arbitrary sequence.

Applying Goal-Oriented Action Planning to Games 4

All of this searching sounds like a lot of work. Is it worth it? Now that we have defined
our terms, we can discuss the benefits of this decision-making process.

The Benefits of GOAP

There are benefits at both development and runtime. Characters in the game can exhibit
more varied, complex, and interesting behaviors using GOAP. The code behind the
behaviors is more structured, re-usable, and maintainable.

Benefits to Runtime Behavior

A character that determines his own plan at runtime can custom fit his actions to his
current surroundings, and dynamically finds alternate solutions to problems. This is best
illustrated with an example.

Imagine that character X detects an enemy who he wants to eliminate. Ordinarily, the
best course of action would be to draw a loaded weapon and fire it at the enemy. In this
case however, X has no weapon, or maybe no ammunition, so he needs to find an
alternate solution. Luckily, there is a mounted laser nearby that X can use to blast the
enemy. X can formulate a plan to go to the laser, activate it, and use it to zap someone.
The plan might look like:

GotoPoint(laser)
ActivateObject(laser)
MountedAttack(laser)

Problem solved! Character X fed the planner his KillEnemy goal, and the planner
formulated a valid plan to satisfy it. The planner hit a dead-end when it tried to include
the action DrawWeapon in its sequence, because DrawWeapon has a precondition that
the character has a weapon. Instead it found an alternate plan that does not require the
character to have a weapon.

But wait! What if the mounted laser requires power, and the generator is turned off? The
planner can handle this situation just as well. The valid plan for this situation involves
first going to the generator and turning it on, and then using the laser. The plan might
look like:

GotoPoint(generator)
ActivateObject(generator)
GotoPoint(laser)
ActivateObject(laser)
MountedAttack(laser)

The GOAP decision-making architecture allows character X to handle dependencies that
may not have been anticipated at the time of the behavior development.

Applying Goal-Oriented Action Planning to Games 5

Benefits to Development

Handling every possible situation in hand-authored code or scripts gets hairy fast.
Imagine the code for a KillEnemy goal with an embedded plan that handles the
situation described previously. The goal’s embedded plan needs to handle characters with
or without weapons, plus finding, navigating to, and activating alternate means of
destruction.

It might be tempting to break down the KillEnemy goal into smaller goals, such as
KillEnemyArmed, KillEnemyMounted. This is essentially what we did for
NOLF2, but the proliferation of goals has its own problems. More goals means more code
to maintain, and revisit with each design change.

Seemingly innocent design additions caused headaches during the development of
NOLF2. Examples of these additions included drawing and holstering weapons, turning
on lights when entering dark rooms, and activating security keypads before opening
doors. Each one of these additions required revisiting the code of every goal to ensure
that the embedded plan could handle the new requirements.

GOAP offers a much more elegant structure that better accommodates change. The
addition of design requirements is handled by adding actions, and preconditions to related
actions. This is more intuitive, and touches less code than revisiting every goal. For
example, requiring characters to turn on lights in dark rooms before entering can be
handled by adding a precondition to the GotoPoint action that requires the lights to be
on in the destination. Due to this precondition, every goal that results in moving the
character transparently handles turning on the lights in dark rooms before entering.

Furthermore, GOAP provides the guarantee of valid plans. Hand-coded embedded plans
can contain mistakes. A developer might code a sequence of actions that cannot follow
each other. For example, a character might be instructed to fire a weapon, without ever
being told to first draw a weapon. This situation cannot arise in a plan dynamically
generated through a GOAP system, because the preconditions on the actions prevent the
planner from formulating an invalid plan.

Benefits to Variety

The structure imposed by GOAP is ideal for creating a variety of character types who
exhibit different behaviors, and even share behaviors across multiple projects. The
planner is provided with a pool of actions from which to search for a plan. This pool does
not necessarily have to be the complete pool of all existing actions. Different character
types may use subsets of the complete pool, leading to a variety of behaviors.

NOLF2 has a number of different character types including Soldiers, Mimes, Ninjas,
Super Soldiers, and Bunnies. We tried to share as much of the AI code as possible
between all of these character types. This sometimes led to undesirable branching in the
code for behaviors. One instance of undesirable branching was related to how characters

Applying Goal-Oriented Action Planning to Games 6

handle closed doors. A human stops at a door, opens it, and walks through, while a
cyborg Super Soldier smashes the door off its hinges and continues walking. The code
that handles going through a door needs a branch to check if this is a character that
smashes doors.

A GOAP system can handle this situation more elegantly, by providing each character
type with a different action to accomplish the same effect. A human character can use the
OpenDoor action, while a Super Soldier uses the SmashDoor action. Both actions
have the same effect. They both open a path that was previously blocked by a door.

There are other solutions to the smashing versus opening the door problem, but none as
flexible as the GOAP solution. For example, OpenDoor and SmashDoor could be
states derived from a base HandleDoor class. Using a state class hierarchy like this, a
designer can assign states to slots, such as the HandleDoor slot, creating character
types that handle doors in different ways. But what if we want a character that opens
doors when relaxed, and smashes doors when agitated? The state class hierarchy solution
needs an external mechanism to swap out the state in HandleDoor slot under certain
conditions. The GOAP solution allows a character to have both the OpenDoor and
SmashDoor actions at all times. An additional precondition on each action for the
required mood allows the character to select the appropriate action to handle the door in
real-time, without any external intervention.

Implementation Considerations

Now that you have seen the benefits, and are excited about the prospect of applying
GOAP to games, you need to be aware of some good and bad news. The bad news is that
there are a couple of challenges involved in implementing a GOAP system. The first
challenge is determining the best method for searching the space of actions. The second
challenge is one of world representation. In order to formulate a plan, the planner must be
able to represent the state of the world in a compact and concise form. Both of these
topics are large areas of research in academia, and a complete discussion of them is
beyond the scope of this article. The good news is that we can stick to simple solutions
for the domain of games. The rest of this article presents some reasonable solutions to
these challenges that make sense for game development.

Planner Search

Earlier we observed that the planning process is remarkably similar to navigational
pathfinding. These processes are so similar, in fact, that we can use the same algorithm
for both of them! The planner’s search can be driven by an algorithm that most game AI
developers are already intimately familiar with; namely A*. Though many game
developers think of A* as a pathfinding algorithm, it is actually a general-purpose search
algorithm. If A* is implemented in a modular fashion, like that described by
[Higgins02a], the bulk of the code for the algorithm can be shared between the navigation

Applying Goal-Oriented Action Planning to Games 7

system and the planner. The planner just needs to implement its own classes for A*’s
node, map, and goal.

The A* algorithm requires the calculation of the cost of a node, and the heuristic distance
from a node to the goal. Nodes in the planner’s search represent states of the world, with
edges representing actions between them. The cost of a node can be calculated as the sum
of the costs of the actions that take the world to the state represented by the node. The
cost of each action may vary, where lower cost actions are more preferable. The heuristic
distance can be calculated as the sum of the unsatisfied properties of the goal state.

We have two choices when searching with A*. We can search forward, starting at our
current state and searching for a path to the goal state, or we can search backwards from
the goal to the starting state. Let’s first examine how a forward search would work for the
previously described situation where an unarmed character wants to eliminate an enemy
with a mounted laser that requires power. The forward search will first tell the character
to go to the laser with the GotoPoint action, and then tell the character to use the laser
with the AttackMounted action. The precondition on AttackMounted will fail if
the power is off. It will take an exhaustive brute force search to come up with the valid
plan that will first send the character to turn on the generator, and then use the laser.

A regressive search is more efficient and intuitive. Searching backwards will start at the
goal, and find that the AttackMounted action will satisfy the goal. From there, the
search will continue for actions that will satisfy the preconditions of the
AttackMounted action. The preconditions will lead the character step-by-step to the
final plan of first activating the generator, and then using the laser.

World Representation

In order to search the space of actions, the planner needs to represent the state of the
world in some way that lets it easily apply the preconditions and effects of actions, and
recognize when it has reached the goal state. One compact way to represent the state of
the world is with a list of world property structures that contain an enumerated attribute
key, a value, and a handle to a subject.

struct SWorldProperty
{
 GAME_OBJECT_ID hSubjectID;
 WORLD_PROP_KEY eKey;

 union value
 {
 bool bValue;
 float fValue;
 int nValue;
 ...
 };

Applying Goal-Oriented Action Planning to Games 8

};

So, if we wanted to describe the state of the world that will satisfy the KillEnemy goal,
we would supply the goal state with a property that looks like this:

SWorldProperty Prop;
Prop.hSubjectID = hShooterID;
Prop.eKey = kTargetIsDead;
Prop.bValue = true;

Representing every aspect of the world in this way would be an overwhelming and
impractical task, but this is unnecessary. We only need to represent the minimal set of
properties of the world state that are relevant to the goal that the planner is trying to
satisfy. If the planner is trying to satisfy the KillEnemy goal, it does not need to know
the shooter’s health, current location, or anything else. The planner does not even need to
know whom the shooter is trying to kill! It just needs to find a sequence of actions that
will lead to this shooter’s target getting killed, whomever that target may be.

As the planner adds actions, the goal state grows as preconditions of the actions are
appended to the goal’s satisfaction state. Figure 2 illustrates a planner’s regressive search
to satisfy the KillEnemy goal. The search successfully completes when the current
state matches the goal state. The goal state grows as actions add their preconditions. The
current state grows accordingly as the planner searches for additional actions that will
satisfy the additional goal properties.

Applying Goal-Oriented Action Planning to Games 9

Key:

kTargetIsDead

Cur Value: Goal Value:

truefalse

Attack

Key:

kTargetIsDead

kWeaponIsLoaded

Cur Value: Goal Value:

true !

true

true !

false

Key:

kTargetIsDead

kWeaponIsLoaded

kWeaponIsArmed

Cur Value: Goal Value:

true !

true !

true

true !

true !

false

Load
Weapon

Key:

kTargetIsDead

kWeaponIsLoaded

kWeaponIsArmed

Cur Value: Goal Value:

true !

true !

true !

true !

true !

true !

Draw
Weapon

Key: Value:

kTargetIsDead

kWeaponIsLoaded

Effect:

Precond:
true

true

Key: Value:

kWeaponIsLoaded

kWeaponIsArmed

Effect:

Precond:
true

true

Key: Value:

kWeaponIsArmed

None

Effect:

Precond:
true

--

Figure 2. The planner’s regressive search.

In each step of the regressive search, the planner tries to find an action that has an effect
that will satisfy one of the unsatisfied goal conditions. A property of the world is
considered unsatisfied when the goal state’s property has a different value from the
current state’s property. Often, actions that solve one of the unsatisfied conditions add

Applying Goal-Oriented Action Planning to Games 10

additional preconditions to be satisfied. When the search completes, we can see that a
valid plan to satisfy the KillEnemy goal is:

DrawWeapon
LoadWeapon
Attack

The planning example illustrated in Figure 2 consists of actions that have constant
Boolean values for preconditions and effects, but it is important to point out that
preconditions and effects can also represented by variables. The planner solves for these
variables as it regresses from the goal. Variables add power and flexibility to the planner,
as it can now satisfy more general preconditions. For instance, a Goto action with the
effect of moving a character to a variable destination is far more powerful than a Goto
action that moves to a constant, predetermined location.

Actions can use the previously described world state representation to represent their
preconditions and effects. For example, the constructor for the Attack action defines its
preconditions and effects like this:

CAIActionAttack::CAIActionAttack()
{
 m_nNumPreconditions = 1;
 m_Preconditions[0].eKey = kWeaponIsLoaded;
 m_Preconditions[0].bValue = true;

 m_nNumEffects = 1;
 m_Effects[0].eKey = kTargetIsDead;
 m_Effects[0].bValue = true;
}

Actions only need to specify preconditions in this symbolic manner if they are going to
factor into the planner’s search. There may be additional preconditions that can be called
context preconditions. A context precondition is something that needs to be true, but that
the planner will never try to satisfy. For example, the Attack action may require the
target to be within some distance and field of view. This is a more complex check than
can be represented with an enumerated value, and the planner has no actions that will
make this true if it is not true already.

When the planner is searching for actions, it calls two separate functions. One function
checks the symbolic planner preconditions, and the other checks freeform context
preconditions. The context precondition validation function can contain any arbitrary
piece of code that results in a Boolean value. Since the context preconditions for an
action will be re-evaluated every time the planner attempts to add this action to a plan, it
is important to minimize the processing required for this validation. Possible
optimizations include caching results from previous validations, and looking up values
that are periodically computed outside of the planner.

Applying Goal-Oriented Action Planning to Games 11

Planner Optimization

Some consideration must be given to optimizing the planner’s search. The complexity of
formulating a plan will increase as the number of actions, and preconditions on actions
grow. We can attack this problem with some of the same strategies used to optimize
navigational pathfinding. These strategies include optimizing the search algorithm
[Higgins02b], caching results of previous searches, and distributing plan formulation over
several updates. Context preconditions can also be used to truncate searches that are
heading down unfruitful paths.

The Need for GOAP

With each new game released, the bar is set higher for AI behavior. As expectations for
the complexity of character behavior rises, we need to look toward more structured,
formalized solutions to creating scalable, maintainable, and re-usable decision-making
systems. Goal-oriented action planning is one such solution. By letting go of the reins and
allowing games to formulate plans at runtime, we are handing over key decisions to those
who are in the best position to make them; the characters themselves.

References

[AIPS02] AIPS’02, Conference on AI Planning & Scheduling, information about AIPS

2002 available online at www.laas.fr/aips/, 2002.
[Fu03] Fu, Dan, Houlette, Ryan, “The Ultimate Guide to FSMs in Games,” AI Game

Programming Wisdom 2, Charles River Media, 2003.
[Higgins02a] Higgins, Dan, “Generic A* Pathfinding,” AI Game Programming Wisdom,

Charles River Media, 2002.
[Higgins02b] Higgins, Dan, “How to Achieve Lightning-Fast A*,” AI Game

Programming Wisdom, Charles River Media, 2002.
[IPC02] 2002 IPC, International Planning Competition, information about IPC 2002

available online at www.dur.ac.uk/d.p.long/competition.html, 2002.
[McDermott98] McDermott, Drew, Planning Domain Description Language,

information about PDDL2.1 available online at
www.dur.ac.uk/d.p.long/IPC/pddl.html, 1998.

[Monolith02] No One Lives Forever 2: A Spy in H.A.R.M.’s Way, Monolith
Productions/Sierra Entertainment, Inc., 2002. Toolkit and SDK available at
nolf2.sierra.com/.

[Nilsson98] Nilsson, Nils J., Artificial Intelligence: A New Synthesis, Morgan Kaufmann,
1998.

[Russell95] Russell, Stuart, Norvig, Peter, Artificial Intelligence: A Modern Approach,
Prentice-Hall, Inc., 1995.

