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ANNALS OF MATHEMATICS 
Vol. 45, No. 2, April, 1945 

A MEAN VALUE THEOREM IN GEOMETRY OF NUMBERS 
By CARL LUDWIG SIEGEL 

(Received December 8, 1944) 

I. Let R be the space of the n-dimensional real vectors x, with n > 1, denote 
by dxj} the euclidean volume element in R and consider a bounded function 
f(x) which is integrable in the Riemann sense and vanishes everywhere outside 
a bounded domain in R. Recently E. Hlawka1 proved the following remarkable 
proposition: 

For any arbitrarily small positive E there exists a real n-rowed matrix A of de- 
terminant ] A = 1 such that 

(1) Z f(Ag) _ f f(x) {dx } + E, 

where the summation is carried over all integral vectors g - 0. 
As a consequence of his theorem Hlawka deduced an assertion of Minkowski 

which had remained unproved for more than fifty years: 
If B is an n-dimensional star domain of volume < t(n), then there exists a lat- 

tice of determinant 1 such that B does not contain any lattice point # 0. 
This statement had been announced by Minkowski on several occasions,2 and 

he observed: "Der Nachweis dieses Satzes erfordert eine arithmetische Theorie 
der Gruppe aus allen linearen Transformationen." Later this arithmetical 
theory was created in the shape of Minkowski's method of reduction of positive 
quadratic forms; but he did not come back to his assertion on star domains, ex- 
cept for the special case connected with the closest packing of spheres. 

Hlawka's proof is as simple and straightforward as one might wish; however, 
it does not make clear the relation to the fundamental domain of the unimodular 
group which was in Minkowski's mind. This relation will become obvious in 
the theorem which we are going to state. 

2. Let % denote the multiplicative group of all real n-rowed A with I A I = 1. 
The (n2 - 1) -dimensional group space Q1 possesses an invariant volume element 
dw, unique up to a constant factor. The proper unimodular group Fi is the sub- 
group consisting of all integral A in U1. We shall define on Ui a fundamental 
region F with respect to P1, and we shall prove, as an immediate consequence 
of Minkowski's reduction theory, that the volume of F is finite. Now we de- 
termine the arbitrary factor in the definition of dco by the condition that F has 
the volume 1. The connection between Hlawka's theorem (1) and Minkowski's 
reduction theory is provided by the following 

1 EDMUND HLAWKA, Zur Geometrie der Zahlen, Math. Zeitschr. 49 (1944), pp. 285-312. 
2 HERMANN MINKOWSKI, Gesammelte Abhandlungen, vol. I, p. 265, p. 270, p. 277. 
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THEOREM: Let g run over all integral vectors - 0, then 

(2) f Jf(Ag) dw = ff(x) {dx}. 

It follows immediately from (2) that (1) holds for a suitably chosen A in F, 
even with e = 0. 

It is worth notice that the proof of (2) also leads to the value of the volume 
of F, in terms of an independently defined volume element on i1. The result 
is closely related to Minkowski's well known formula for the volume of the 
domain of reduced positive quadratic forms with determinant < 1; it seems that 
our method presents the most satisfactory way of proving this formula. 

3. Now consider the group U of all non-singular real n-rowed matrices Y. The 
differential matrix M = (dY)Y-' is invariant under all mappings Y ->+ YC, 
C e Q, of the group space U onto itself, and the positive definite quadratic differ- 
ential form u(M'M) defines on U a right-invariant Riemannian metric. Plainly 
this metric induces on the subgroup space U, a right-invariant (n2 - 1)-dimen- 
sional volume element. It is practical to define a certain constant multiple 
dw, of this volume element in the following way. 

Let G be a subset of %, which is measurable in the Jordan sense, and denote by 
O the cone over the base G consisting of all matrices Y = XA, where 0 < X < 1 
and A 6 G. If {dY} is the volume element in the euclidean metric defined on 
U by ds2 = -(dY'dY), then 

(3) V(G)-L {dY} 

is the euclidean volume of G. Since the linear transformation Y -> YC has the 
jacobian I C 1'n it follows that V(GC) = V(G), for all C in UQ ; consequently the 
formula 

V(G)-= dcw 

defines an invariant volume element on QN. If 61 (A) is an integrable function 
on Q, then we obtain 

(4) 1(A) d L I (I y I Y 1iny) {dY}. 
Put Y'Y = S = (Ski); this is a mapping of i into the space P of all positive 

real symmetric n-rowed matrices. On the other hand, the equation Y'Yj = S 
has for any S e P a solution Y1 e Q, and the general solution is Y = 0Y1, with 
an arbitrary orthogonal matrix 0. We introduce in P the euclidean volume 
element { dS } = Hk < l dskl . Let Q be a measurable set in P, and Q* the set 
in Q which is mapped into Q. If h(S) is any integrable function in P, then 

n k12 

(5) h(Y'Y) dY = an Jh(S) I S I K {dS}. an = k 
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We denote by D and T the diagonal matrices [ti, ... , to] with positive diagonal 
elements t1, , t, and the triangular matrices (tl) with tkl 0 (1 ? 1 < k ? n), 
tkk 1 (k- 1, , *n), tki real (1 ? k < I < n). The Jacobi transformation 
of quadratic forms leads to the decomposition S = D[T] = T'DT, and this de- 
fines a one-to-one mapping of P into the product space of all D and T. Putting 
{dDl = dt1 ... dtx {dt} = ilk<, dtkl, we obtain 

{dS} = {dD} {dT} IT tk 
k=1 

Instead of t,* , t, we introduce the n- I ratios tk/tk+l = qk (k = 
n - 1) and the determinant qn = IIk=1 tk-= S Y = y 2; then 

tn = qk ***qn-1 q n tn k= ok d (t, t n) n tn 

n-1 

(6) 1S {d- } =d1- {dT}Iqdqn dqn Il (q/k/2)(n-k)1 dqk) n k=1I 

We call qi, , qn and tk1(I ?< k < 1 ? n) the normal coordinates of S. It is 
clear that S and XS have the same normal coordinates, with the exception of qnX 
for all positive scalar factors X. 

4. The group F of all unimodular n-rowed matrices U has in P the discon- 
tinuous representation S -* S[U]; plainly, U and - U define the same mapping 
in P. A well known result of Minkowski's reduction theory states that this 
representation possesses in P a fundamental region K which is a convex pyramid 
with the vertex in the point S = 0, and that the normal coordinates, with the ex- 
ception of qnX are bounded in K. Now consider the corresponding domain K* 
in U; this is a fundamental region in i for the representation Y -> i YU of the 
factor group of F obtained by identifying U and - U. By the additional condi- 
tion o-(Y) > 0 we define one half of K* as a fundamental region H for r itself. 
Finally, let F be the intersection of U, with H; then F obviously is a fundamental 
domain on ,1 for the proper unimodular group P1. On the cone F we have 
qn =y 2< SO also qn is bounded there. Since the exponents of q, , 
qn in (6) are > -1, it follows from (3), (5), (6) that the volume 

Vn = V(F) = f dwl 

is finite. 
Let g run over all integral vectors 3 0 and define 

(7) p(X, A) =Dn E f(XAg), 0(X, A) = Xn E abs f(XAg), 
gzo gto 

where 0 < X ? 1 and A e i1 . The function f(x) has the former meaning, viz., 
it is bounded, integrable in the Riemann sense and 0 everywhere outside a 
bounded domain in R; consequently the function so(X, A) is integrable in U, . 
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LEMMA: There exists an integrable function m(A), independent of X, so that 
40(X, A) < m(A), everywhere in S and that the integral 

J IF m(A) dw, 

converges. 
PROOF: Since f(x) is bounded and f(x) = 0 outside a certain sphere x'x < r2, 

it suffices to prove the assertion for the characteristic function of this sphere, 
namely 

f(x) = 1 (x'x < r2), f(x) = 0 (x'x _ r2). 

Put A'A = S = D[T] and consider the integral solutions g of the inequality 
0 < S[g] < p2, for any given positive p. If gi, , gn are the coordinates of g, 
then 

n n \2 

S[g] = D[Tg] = Z tk gk + E tkl g1g); 
k= I l =k+l 

hence gk lies in an interval of length 2pk , and the number of solutions g has the 
value 

n 

a(p, A) <]I (1 + 2ptk). 
k= 1 

This estimate implies that, for 0 < X < 1, 
n n 

(8) +(X, A) = X-a(X-'r, A) K TI (X + 2rtj1) < II (1 + 2rtk*) = 
k=1 k=1 

say. Plainly the function m(A) depends only upon S = A'A and r. 
For any A in Si, there exists a uniquely determined integer v = 0, 1, * , n 

such that tk < (l(k = 1, ... , v) and t,+1 _ 1; this means in case v = 0 that 
ti > 1, and in case v = n that tk <1 (k = 1, ... , n). Let F, be the set of all 
A in F with given v, and put 

J= I| m(A) dw, v = 0* n) 

then J = Jo + + J.,X and it remains to prove the convergence of the 
integrals J,. 

Since S = A'A lies in the reduced domain K, for all A in F, it follows that the 
ratios qk = tk/tk+l(k = 1, , n - 1) are bounded; hence ti is bounded in F, 
fork = v + 1, ,n,and 

n-I 
(9) m(A) < c Ijtjk = cI (qk qn-i)' ][I 7qkp2n 

k-i k-1 k=1 

by (8), where c depends only on n and r. Now we change the notation and 
define A = i Y I 'Y, S = Y'Y; this does not affect the coordinates ql, * * 
qn-1. If Y lies in the cone F,, then (6) and (9) lead to the inequality 

n-1 

(10) m( I Y I Y) I S I {dS} < ? {dT}qn'I dqn kT qk4 dqk, 
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with ak = k (n - k - 1 + v/2n) > 0, for 1 _ k < min (v, n - 1), and 
2 

ak = k(n-k + v/2n) - v/2 > 0, for v < k _ n -1. Formulae (4), (5), (10) 

imply the convergence of J,; q.e.d. 
Put 

Lf(x) {dx} = 

then 

(11) nlim o(X, A) lim rn E f(XAg) g ff(Ax) {dx} = y, 
X-0 X-O R 

by virtue of the definition of the integral. On the other hand, we infer from the 
lemma that the integral 

(12) I(X) = f p(X, A) dw, = I Xn f(XAg) dw1 
gFF 0 

converges, that 

(13) (X) = f # (XAg) dJ 

and that, by (11), 

(14) lim 4t(X) = lim p(X, A) dw, = V,. 

5. In this section we investigate the sum 

(15) x(X) = Jf(g) dw, 

extended over all primitive g, i.e., over all integral g with the greatest common 
divisor (g9, . , g,9) = 1. 

We complete the primitive g to a proper unimodular matrix U = U, with 
the first column g; then 

(16) L f(Ag) dw, = ff(A U-'g) do,1 ff(I Y I 1'x) {dY}, 
^p F~~U FU 

where x denotes the first column of the variable matrix Y in the cone FU. The 
unimodular matrices of the particular form 

U,= U)' 

with an arbitrary (n - 1)-dimensional integral vector u and an arbitrary proper 
unimodular (n - 1)-rowed matrix C, constitute a subgroup A of it. The 
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left cosets of A, relative to IF, are U0A, where g runs exactly over all primitive 
n-dimensional vectors; consequently the union of all FU, is a fundamental do- 
main F(A) for A on Q1, and 

(17) x(1) = ] f(I Y I x) {dY}, 
F(A) 

by (15), (16). 
Completing x to a matrix Wx in i1 with the first column x, we obtain the de- 

composition 

(18) Y = WwY1, Y1 = Qj ;) 

with a real (n - 1)-dimensional vector y and a real non-singular (n - 1)-rowed 
matrix Y; plainly, 

(19) } Y I = I Y1 I, dY} = {dx}{dy}{dY. 

The mapping Y -> YU, is the same as Y -* YU, y -> U y + u; this shows that 
another fundamental domain G for A on i1 can be defined in the following way: 
Write the general element Y = A of Q, in the form (18), restrict Y= A to the 
fundamental region F of the group IN of all proper unimodular (n -1)-rowed 
matrices U, in the space i21 of all (n -1)-rowed matrices A with I A- = 1, and 
restrict the coordinates yj, , Yn- of y to the (n - 1)-dimensional unit cube 
0 < yY ? 1 (k = 1, , n -1). In view of (17), (19), we obtain 

X(1) = f (f f( I 'x) {dx}) {dY} = y J I j{df}. 

If y is any positive scalar factor, then 

fin {dY} = ,U(n-12)2 

Jd~~~j {dY (n 1) ,uF F 

and partial integration leads to the formula 

ft Yt {dY} = (n - 1) u du _ = - -1 V 

F 

This proves that 

(20) x(1) = n-i V 

Replacing f(x) by f(Xx), we infer that 

(21) (X) =X-n(1) 
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6. If g runs over all primitive vectors and 1 over all natural numbers, then ig 
runs exactly over all integral vectors 5 0. Therefore, by (13), (20), (21), 

00 

(22) 4/(X) = XA X(1X) = x(l)r(n); 

this shows that ,6(X) is independent of X. From (14), (20), (22) we deduce the, 
recursion formula 

(23) n Vn = (n - )Vn-l (n). 

Since V1 = 1, it follows that 
n 

(24) n Vn H (k). 
k=2 

Minkowski's formula for the volume of the domain of all reduced positive S with 
S I < 1 is a simple consequence of (5) and (24). 
On the other hand, by (12), (14), 

+(1) = f Ef(Ag) dwi = yV. 

Defining dc = V-' dwi, we have 

fdw=1, f|f(Ag)d= f(x) {dxj, 

and this is the assertion of the theorem. 
From (15), (20) and (23) we deduce the additional result that 

(25) t(n) f 'f(Ag) dw= ff(x) {dxj. 

Now let B be a star domain in R, i.e., a point set which is measurable in the Jordan 
sense and which contains with any point x the whole segment Xx, 0 < X < 1. 
Suppose that for each A in UN the domain A-1B contains an integral point g $ 0; 
then it contains also a primitive g. If f(x) denotes the characteristic function 
of the set B, then we obtain 

>,'f(Ag)= A' 1 > 1 
U ge A-1B 

and 

ff(x) fdxj ? t(n), 

in virtue of (25); this is Minkowski's assertion concerning star domains. 
Our theorem may be generalized in various directions: 
1) We may drop the restriction that the integrable function f(x) vanishes 

everywhere outside a bounded domain and replace it, e.g., by the weaker condi- 
tion that (x'x)8f(x) is bounded in R, for some fixed s > n/2. 
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2) Instead of the function f(x) of a single vector we may introduce an inte- 
grable function f(xl, , Xm) of m vectors, with 1 < m < n-1. The corre- 
sponding generalization of (2) is the formula v 

'F E ,~gmf(Agi, , Agm) dw = ff(xl, , xm) {dxi} - {dxm}, 

where the summation is carried over all systems of linearly independent integral 
vectors g9 , * , go . 

3) We may consider certain other discrete subgroups of topological groups, 
instead of U, and rl, e.g., the real symplectic group and the modular group of 
degree n. In my researches on symplectic geometry, I have already applied 
the method of the present paper to the determination of the volume of the funda- 
mental domain of the modular group of degree n. Another and more general 
example is provided by the group of units of the simple order JL, n > 1, con- 
sisting of all n-rowed matrices A = (akl), where the elements aki(k, 1 = 1, - *, n) 
belong to a given order J1 in a division algebra which is of finite rank in the field 
of rational numbers; this comprises in particular the group of n-rowed unimodu- 
lar matrices in an arbitrary algebraic number field. 

THE INSTITUTE FOR ADVANCED STUDY. 
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