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ABSTRACT

We present a fully automatic method to track and quantify
the morphodynamics of differentiating neurons in fluores-
cence time-lapse datasets. Previous high-throughput studies
have been limited to static analysis or simple behavior. Our
approach opens the door to rich dynamic analysis of complex
cellular behavior in high-throughput time-lapse data. It is
capable of robustly detecting, tracking, and segmenting all
the components of the neuron including the nucleus, soma,
neurites, and filopodia. It was designed to be efficient enough
to handle the massive amount of data from a high-throughput
screen. Each image is processed in approximately two sec-
onds on a notebook computer. To validate the approach,
we applied our method to over 500 neuronal differentiation
videos from a small-scale RNAi screen. Our fully automated
analysis of over 7,000 neurons quantifies and confirms with
strong statistical significance static and dynamic behaviors
that had been previously observed by biologists, but never
measured.

Index Terms— Molecular and cellular screening; Image
sequence processing; Fluorescence microscopy

1. INTRODUCTION AND RELATED WORK

The process of forming functional connections between neu-
rons is complex and dynamic. Time-lapse microscopy has
revealed that differentiating neurons undergo a large range of
dynamic processes including cell body motility, filopodial dy-
namics, and repeated cycles of neurite growth and retraction.
Of critical importance is the process by which axons and den-
drites are formed in which a neurite ceases retracting, extends
a long distance, and forms a connection. Such dynamic events
are governed by a complex protein network that coordinates
dynamic functions within the cytoskeleton, membrane, etc.

Powerful tools such as RNA interference (RNAi) technol-
ogy, fluorescent protein labeling, image processing, and auto-
mated high-throughput microscopy have opened the door for
large scale perturbation studies to help investigate such pro-
cesses. RNAi screens have already led to novel insights into
a number of cellular processes such as cell migration [1] and

endocytosis [2]. However, limitations in image processing
have restricted most investigations to static image analysis.

Knowledge of dynamics is essential if we are to un-
derstand complex processes such as neuron morphogene-
sis. However, designing algorithms to quantify dynamic
behaviors is challenging, and automatic methods have ap-
peared only very recently. State-of-the-art high-throughput
techniques have successfully quantified morphodynamics of
HeLA cancer cells in an effort to understand mitosis [3, 4]
However, the morphology and dynamics of cells in previous
studies are simple compared to neurons, whose highly de-
formable neurites that branch, expand, retract, and collapse.

In this paper, we propose a fully automatic method to de-
tect, track, and segment every component of the neuron (nu-
cleus, soma, neurites, and filopodia), as well as quantify their
dynamic behaviors in ways that were previously not possible.
Our approach begins with a tracking step that detects nuclei
at each time step and associates nuclei belonging to the same
neuron throughout the time-lapse sequence. Using tracked
nuclei as seed points, a region-growing algorithm segments
the neuron’s soma. The somata are used to initialize a joint
segmentation of the entire structure of all neurons in an image
using a probabilistic method based on shortest path computa-
tions. A graph describing the morphology of the neurites is
extracted from this segmentation. Each neurite tree is tracked
by association, and filopodia are detected by analyzing the
topology of the tracked neurites. Finally, a set of 156 mor-
phodynamic features is extracted, quantifying the behavior of
the each neuron in the video.

As demonstrated in Fig. 1, our approach extracts the
neurons’ dynamic morphology accurately and reliably. To
validate our approach, we ran our algorithm on a small-scale
siRNA screen of 5 genes (3 siRNAs/gene). Our analysis
confirmed steady-state phenotypes obtained previously using
MetaMorphTM [5]. We also quantified dynamic behaviors
that were previously observed, but never measured [5], and
uncovered new behaviors which are only apparent through
dynamic analysis.
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Fig. 1: Our approach tracks and extracts the morphology of the entire neuron. The top row contains results from an experiment with inhibited MAP2K7
function. Tracked neurons are marked by a unique color and id. Nuclei are denoted by filled ellipsoids, somata as contours, and neurites as trees. The
bottom shows details from above: the original image on the left and neurites marked with various colors on the right. Filopodia are marked in red. Our
approach performs well even in challenging situations where neurons appear in close proximity. Note: contrast has been enhanced for visibility. Cells deemed
uninteresting by the biologist (e.g. faint staining or a short lifetime) can optionally be ignored by the system to improve measurement quality.

2. HIGH-THROUGHPUT TRACKING AND
SEGMENTATION

The input to our approach is a series of T images I =
{I1, . . . , It, . . . , IT } from which we extract K nucleus detec-
tions dkt . The tracking step described in Sec. 2.2 associates
valid detections across time steps while rejecting spurious de-
tections. Since each neuron contains only one nucleus, there
is a one-to-one mapping between each valid nucleus detec-
tion cit and a neuron Xi

t . Thus, the tracking task is to provide
a set of neuron detections X i = {Xi

a, . . . , X
i
t , . . . , X

i
b}

defining an individual neuron i from time t = a to t =
b. As depicted in Fig. 2, each neuron detection Xi

t is
composed of a nucleus cit, a soma sit, a set of J neurites
{ni,1t , . . . , ni,jt , . . . , n

i,J
t }, and a set of L filopodia associated

with each neurite F i,jt = {f i,j,1t , . . . , f i,j,lt , . . . , f i,j,Lt } so
that N i

t = {(ni,1t , F i,1t ), . . . , (ni,jt , F
i,j
t )}. Thus, a complete

neuron i at time step t is described by Xi
t = {cit, sit, N i

t}.

2.1. Nuclei and Somata Detection and Segmentation
The first step in our approach is to extract a set of nucleus
detections {d1, . . . , dK} over the image series. We worked
with two-channel images where the cytoskeleton is marked
with Lifeact-GFP and nuclei are marked with NLS-mCherry.
The nuclei can be reliably detected and segmented by sim-
ply thresholding the NLS-mCherry channel and performing a
morphological filling operation. Alternatively, one could ap-
ply a fast machine learning detector such as the one in [6].

Using the nuclei as seed points, somata are segmented as
follows. A list of pixels neighboring the current soma seg-
mentation is maintained. At each iteration, the neighbor with
the smallest weighted distance to the centroid of the seed nu-
cleus detection D = λ||u − dk|| + |I(u) − Î(dk)| is added
to the soma so long as D < Y , where u is a location in the

image, I(u) is the pixel intensity at that location, Î(dk) is the
mean intensity of detection dk, and Y is a threshold.

2.2. Efficient Tracking of Nucleus Detections
The tracking algorithm searches through the full set of nuclei
detections and iteratively associates the most similar pairs of
detections, returning lists of valid detections corresponding
to each neuron X i. This is accomplished by constructing a
graph G = (D, E) where each node dkt ∈ D corresponds to
a detection. For each detection dkt in time step t, edges e ∈
E are formed between dkt and all past and future detections
within a time window W . A weight we is assigned to each
edge ek,l connecting dkt and dlt. The weight we relates to
spatial distances, temporal distances, and a shape measure:
we = α||dkt1 − dlt2||+ β|t1− t2|+ γf(νkt1, ν

l
t2), where νk is

a shape feature vector containing dkt ’s area, perimeter, mean
intensity, and major and minor axis lengths of a fitted ellipse.
f evaluates differences between a feature a extracted from
dkt and dlt as f(ak, al) = |ak − al|/|ak + al|. The tracking
solution corresponds to a set of edges E ′ ⊂ E with maximal
edge weight Q that forms a set of disconnected tracks T and
minimizes the cost function

∑
e∈T we.

To minimize this cost function, we adopt a greedy selec-
tion algorithm, summarized in Fig. 3, that iteratively selects
an edge with minimum cost ŵe and adds it to the set L re-
moving future and past connections from the detections ek,l

connects. The algorithm iterates until the minimum cost ŵe
is greater than a threshold Q. Each track i is then associated
with a neuron identity X i.

2.3. Neuron Segmentation and Neurite Tree Extraction
Given an image It and the set of somata present in it St =
{s1t . . . smt }, our goal is to associate to each pixel u a label
Jt(u) that indicates to which neuron (soma) it belongs, if any.
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Fig. 2: Neuron tracking notation. At time t a neuron i detection
Xi

t = {cit, sit, N i
t} contains a nucleus cit, a soma sit, and a set of neurite-

filopodia tuples N i
t = {(ni,1

t , F i,1
t ), . . . , (ni,j

t , F i,j
t ), . . . , (ni,J

t , F i,J
t )}

which contains J neurites and their associated filopodia shown in red for
j = 1 and green for j = 2. A spurious nucleus detection d1 is also
shown. A neuron i is defined by a time-series of neuron detections X i =
{Xi

a, . . . , X
i
t , . . . , X

i
b}. The tracking returns a set X i for each neuron.

The probability of Jt(u) can be deduced using Bayes’ rule,

P (Jt(u) = i|St, It) =
P (St, It|Jt(u) = i)∑m
η=1 P (St, It|Jt(u) = η)

, (1)

where we assume a uniform distribution on P (Jt(u)). The
numerator is modeled as the probability of the path L that
connects maximally pixel u to soma sit, P (St, It|Jt(u) =
i) = maxL:u→sit

∏
{lr}∈L P (It(r)|lr), where lr are indica-

tor variables for the locations forming the path L. We chose
this model since it produces connected components and an
optimal maxima can be found by minimizing its negative like-
lihood using Dijkstra’s shortest path.

To optimize this function, we map the image It to a graph
Git = (V,E) whose vertices u are the pixels in It and whose
directed edges er,v connect each pixel to its four neighbors.
We assign to each edge a weight wr,v = −logP (It(v)|v).
P (It(v)|v) represents the probability that a neurite traverses
a node v. It is obtained by applying a sigmoid function to the
output of the tubularity filter of [7]. The parameters of the
sigmoid function are estimated using maximum likelihood.
Finally, we define the set of neurite pixels U tn as those that
connect to any soma with a higher probability than ε. We pre-
dict their labels as the ones that maximize Eq. 1. The set of
pixels associated to neuronXi

t is the union of the neurites and
the soma associated with i, U ti = {u ∈ U tn|Jt(u) = i} ∪ sit.
To reduce the neurite segmentation to a tree, we skeletonize
the neuron and define as root node the pixel of the skeleton
closest to the centroid of the nucleus. We instantiate a Min-
imum Spanning Tree from the root and create a neurite tree
whenever the spanning tree exits the soma.

2.4. Neurite Tracking and Filopodia Detection
The identity of neurites is tracked across the frames of the
time-lapse videos by applying the algorithm described in
Sec 2.2, but using the centroids of the neurite trees instead
of the centroids of nuclei, with the additional constraint that
edges may only exist between neurites that emanate from the
same soma. Filopodia are detected by starting at each leaf
node in a neurite and traversing the tree until a branch point
is reached. If the distance traversed is less than a threshold
Tf , the traversed locations are considered to be filopodia.
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d kt d lt

t t+1 t+2t-1

d kt d lt
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d kt d ltk,le

(a) (b) (c)

k,le

Fig. 3: Efficient tracking by association. (a) A graph is built by fully con-
necting each detection to all future and past detections within a time window
W . In this simplified diagram, only dkt ’s edges are shown and W=2. (b)
Each iteration, the edge êk,l with minimum cost ŵe is added to E ′. Edges
connecting dkt to future detections are removed from E . (c) Edges connecting
dlt to the past are removed from E . The process is repeated until ŵe > Q.

3. EXTRACTING MORPHODYNAMIC FEATURES
Our neuron tracking, segmentation and delineation method
produces sets of graphs linking detections, contours, and trees
to define each neuron over time. This data structure is not im-
mediately useful for quantifying dynamic behaviors. To facil-
itate the analysis, we extract a set of 156 informative features
from our data structure to quantify morphodynamics, which
are too numerous to list here. A few examples for the nu-
cleus and soma include: area, perimeter, Lifeact-GFP inten-
sity, NLS-mCherry intensity, speed, acceleration, total dis-
tance traveled, time spent expanding/contracting, frequency
of expansion. For neurites: number of branches, distance
from tip to soma, filopodia length, number of filopodia, major
axis, minor axis and eccentricity of an ellipse fitted to the neu-
rite, total length, time spent expanding/contracting, frequency
of expansion. We also compute change-over-time for each of
the features mentioned above (denoted by ∆).

4. RESULTS
We applied our approach to data from a small-scale siRNA
screen in which the functions of 5 genes were inhibited: Sr-
GAP2, MAP2K7, RhoA, Trio, and Net. Three siRNAs were
applied for each gene, producing a total of 17 experiments in-
cluding 2 controls. 30 videos per experiment were obtained
over the course of 3 days, with images taken at 20× magnifi-
cation in 10 minute intervals. A total of 510 videos were col-
lected, each containing approximately 100 2-channel images
of 696× 520 resolution. We tracked and segmented a total of
7,298 neurons (33,213 neurites), extracting morphodynamic
features for each. Video were processed in under 210 s, on
average, using a notebook computer. The entire screen was
processed in just a few hours using conventional PCs.

4.1. Analysis

Our goals were to reproduce the findings of [5], quantify pre-
viously observed but unmeasured morphodynamics, and un-
cover new dynamic behaviors. A brief summary of our find-
ings is provided below and in Fig 4. Reported findings are
statistically significant, with p-values << 0.05.

Our analysis confirmed several effects previously ob-
served through static image analysis in [5]. In particular,
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Fig. 4: Morphodynamic analysis of 3 of the 156 informative features extracted through our analysis. The control is marked in gray. Black dots indicate
collected data points. Red bars indicate the mean, green bars indicate standard deviation. The control mean is shown by a blue line. Values under the %
column show the percentage of data points above the control mean. The P column reports the statisical signifcance measured by the student-t test p-value.
(a) Our analysis confirmed the finding from [5] that RhoA and SrGAP2 loss results in longer neurites, and Map2K7 loss results in shorter neurites. (b) The
decrease in mean neurite elongation associated with loss of RhoA quantifies the observation that RhoA loss limits the cell’s ability to retract neurites. Neurites
of neurons without RhoA produce more lateral branches, therefore their elongation is decreased. (c) Our analysis revealed that loss of Map2K7 and RhoA led
to an enhancement/retardation of nucleus speed, which was impossible to observe through static analysis.

RhoA loss of function resulted in fewer but longer neurites
than the control. SrGap loss was found to have longer neu-
rites, and Map2K7 loss was found to have more neurites but
of shorter length. These findings were confirmed by static
measures from our experiments: the mean longest neurite
length – control 22.6µm, RhoA-3 32µm, SrGap2-1 28.9µm,
and Map2K7-1 19.5µm (see Fig. 4a); and by a dynamic mea-
sure – the mean number of neurites belonging a neuron over
its lifetime: control 3.4, RhoA 3.1, and Map2K7-1 3.9.

It had been previously observed, but never quantified, that
loss of SrGap2 function produces a high number of filopo-
dia, and that RhoA loss results in neurites that easily extend
but have difficulty retracting. Morphodynamic features from
our analysis confirmed these observations. Mean number of
filopodia detected per neurite over its lifetime was 6.69 in the
control and 8.81 for SrGap-3. The mean change in elongation
as measured by an ellipse fitted to the neurite was 5.7% for
the control and 5.3% for RhoA-1 (see Fig. 4b). While this
difference may seem small, it is statiscially significant due to
the large amount of data collected (p-value of 2× 10−7).

Our quantitative analysis revealed new morphodynamics
which were not obvious to human observers. We found that
RhoA function loss slowed neuron motility and Map2K7 in-
creased it. Control cells moved at .30 µm/min, RhoA moved
at .23 µm/min, and Map2K7-2 moved at .37 µm/min (see
Fig. 4c). We also found that RhoA and SrGap increased the
branching of the neurites. Over the course of a neurites life-
time, the maximum number of branches in a control neuron
was 14.5, 19.44 for RhoA-3, and 21.39 for SrGap2-3.

5. CONCLUSION

We have described a fully automatic method to track and
quantify the morphodynamics of differentiating neurons in
fluorescence time-lapse datasets. Our approach is capable of
robustly detecting, tracking, and extracting the morphology
of the entire neuron including the nucleus, soma, neurites,

and filopodia. Previous efforts to analyze high-throughput
screens have been limited to static images or simple cell
behavior, whereas our approach provides researchers with a
rich dynamic analysis of complex cellular behavior in high-
throughput time-lapse data. From the rich set of 156 features
we extract in our experiments we are able to to 1) corrobo-
rate previous findings by biologists, 2) quantify previously
observed neuronal behavior and 3) infer new unobserved
behaviour, all with strong statistical significance.
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