
Using Reengineering and Aspect-based Techniques to Retrieve Knowledge
Embedded in Object-Oriented Legacy System

Vinicius Catdoso Garcia, Daniel Lucrbdio, Antonio Francisco do Prado
GOES - Software Engineering Group

Federal University of S5o Carlos - SZo Carlos, SP, Brazil
{ vinicius, lucredio, prudo) @dc .ufscar.br

Eduardo Santana de Almeida, Alexandre Alvaro
C.E.S.A.R. -Recife Center for Advanced Studies and Systems

Federal University of Pernambuco - Recife, PE, Brazil
(esa2, aa2}@cin.u&e.br

Abstract

This paper presents an approach to retrieve the knowl-
edge embedded in object-oriented legacy system. This ap-
proach aids in the migration from object-oriented code,
written in Java, tQ a combination of objects and aspects,
using AspectJ. The approach uses aspect mining in order
to identify possible crosscutting concerns from the object-
oriented source code and extracts them through refactor-
ings into new aspect-oriented code. Next, the aspect-
oriented design i s retrieved through soj5wm-e transforma-
tions and may be imparted in a CASE tool, becoming avail-
able in higher abstraction levels. The retrieved information
constitutes important knowledge that may be reused in fu-
ture projects or in reengineering.

1 Introduction

Reengineering is a way to achieve software reuse and to
understand the concepts underlying the application domain.
Its objective is to acquire and maintain the knowledge em-
bedded in legacy systems, using it as a base for the contin-
uous and structured evolution of the software system. The
Iegacy code has programming logics, project decisions, user
requirements and business rules that can be retrieved and re-
built without losing semantics.

Current reengineering process models aim at recon-
structing procedural systems using object-orientation or
component-based techniques. The product of these process
is usually the reconstructed, updated system and its new
documentation, resulting in improved maintainability and

flexibility. Also, new developments may benefit from these
products, reusing the retrieved assets, which include mod-
els, documentation and source code, saving effort and time.

However, the quality of these retrieved reusable assets
is too dependent on the experience and level of exper-
tise of the involved people. This happens mainly because
Object-Orientation itself does not assure good modulariza-
tion, where each functionality is grouped in a single module
P11.

Aspect-Oriented Software Development (AOSD) [131
may help to reduce this dependency, by offering a new mod-
ular unit (Aspect). Functionalities that are necessarily dis-
persed in object-oriented systems, such as exception han-
dling and logging, for example, can be grouped into a single
Aspect, increasing the modularity and the reuse level of the
retrieved assets.

This paper presents an approach to retrieve the knowl-
edge embedded in object-oriented legacy systems using
reengineering and AOSD techniques, such as aspect min-
ing, refactoring and software transformation. The reengi-
neering product has great reuse potential, due to the benefits
of AOSD.

2 Background

The proposed approach combines different techniques
based on our experience in software reengineering [2, 71.
This section presents the main concepts underlying the ap-
proach, discussing how they are used in order to provide
an effective way to extract reusable knowledge from 00
legacy systems.

0-7803-881 9-4/04/$20.00 02004 IEEE. 30

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on February 5, 2009 at 12:33 from IEEE Xplore. Restrictions apply.

2.1 Reengineering

Software reengineering, also known as renewal or re-
covery, has as main objective to improve software quality,
maintaining the basic system functionality [181. In [121, Ja-
cobson and Lindstron define reengineering with the follow-
ing formula: Reengineering = Reverse engineering + A +
Forward Engineering.

Reverse Engineering is the activity of defining a more
abstract, and easier to understand, representation of the sys-
tem. “A” represents change of the system (functionality
or implementation). Forward Engineering is the activity of
creating an executable representation of the system.

Our approach covers only the Reverse Engineering ac-
tivity, since the idea is only to extract reusable knowledge.
However, once this knowledge is obtained, Forward Engi-
neering may be easily carried out as a regular software de-
velopment process.

In order to assure that the produced assets are reusable.
the Reverse Engineering activity uses AOSD techniques to
increase the modularity and promote the separation of con-
cerns.

2.2 Aspect-Oriented Software Development

Some existent :functionahties in the software systems,
such as exception handling and logging, are inherentIy dif-
ficult to decompose and isolate, reducing the legibility and
the maintainability of these systems. Object-orientation
techniques and Design Patterns [6] may reduce these prob-
lems but they are not enough 1131.

The AOSD appeared in the 90s as a paradigm addressed
to separate crosscutting concerns (Aspects) through code
generation techniques that combine (weave) Aspects into
the application logic [13 1.

Separation of concerns is a well-established principle
in software engineering. A concern is some part of the
problem that must be treated as a single conceptual unit
[21]. Concerns are modularized throughout software devel-
opment using different abstractions provided by languages,
methods and tools.

In our approach, AOSD is used to increase the reusabil-
ity of the extracted knowledge, by encapsulating functional
and non-functional concerns into separate units. However,
before this encapsulation, there must be a way to identify,
in the legacy system, where these different concerns are lo-
cated. To perform this, Aspect Mining techniques are used.

2.3 Aspect Mining

To identify different concerns inside legacy systems is
not an easy task. It is common tQ find “spaghetti code” and

ad-hoc design due to the improper use of programming and
modeling techniques.

The Aspect identification requires, initially, a clear idea
of where to look for them. Thus, the study of the crosscut-
ting concern that is being mined must precede the mining
itself. For example, before mining the database persistence
concern, one must understand how this concern is usually
treated, and how it is treated in this particular system. This
study may involve the analysis of the documentation and
the search for specific method calls, constructor calls, field
access, and other well-defined execution points, aiming to
discover possible join points involving the concern that is
being mined.

The mining itself consists in scanning the whole sys-
tem, marking every documentation, model and Iine of code
that is d a t e d to the aspect, with basis on the previous
study. Parsing may be useful in this activity, semi-automatic
highlighting possible aspects occurrences inside the source
code.

Several works focus on aspect mining [l 1 , 16, 19,20,4]
to help in the identification of crosscutting concerns inside
software systems. There are two main approaches:

i. The type-based mining considers object types, vari-
able types and method return types in order to determine if
the code is related to the aspect that is being mined. How-
ever, it is not possible to differentiate objects that have the
same type but different goals.

The text-based mining considers character se-
quences and regular expressions in order to find the aspect.
However, it ignores the type of the objects, and may not
identify concerns that are not in the expression used in the
search.

Ideally, these two approaches should be used together, so
that one complements the other.

Once identified, the aspects must be extracted and encap-
sulated in separate units. In our approach, this is achieved
through refactoring.

ii.

2.4 Refactoring

Refactoring [5] is a technique to restructure source code
in a disciplined way. The intention of refactoring is to im-
prove the readability and comprehensibility of source code.
Most refactorings increase the modularity of code and elim-
inate redundancies. Also, they reduce the chance of intro-
ducing errors during program restructuring, since there is
a predefined and well-tested set of steps that, if followed,
produces the expected result.

By looking at existent refactoring catalogues, such as IS],
we identified several similarities between code improve-
ment refactorings and aspect extraction. Thus, we defined
some refactorings [9], with basis on existing refactorings
[5 , 10, 171, that are used to extract the aspects from the

31

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on February 5, 2009 at 12:33 from IEEE Xplore. Restrictions apply.

Software transformation consists in automatically map-
Using ping among different language representations.

a modeling tool to be viewed and edited.

try { [[statement’ tryBody]])
catch (SQLException [[Identifier paramjl) {

[(statement’ catchStatement]]
1

I ?turn client; I
3 An Approach to Retrieve Knowlegde Em-

bedded in Object-Oriented Legacy System

The approach is based on Aspect-Oriented reverse en-
gineering techniques and is supported by two mechanisms:
a transformational system (called Draco-PUC [15]) and a
modeling tool (called MVCASE [l]).

Figure 1 shows the approach.

Figure I . Reverse Engineering

In order to identify and extract crosscutting concerns in
legacy systems, tree steps are performed, as follows.

Crosscutting Concerns Identification. Initially, the
software engineer analyzes the legacy system aiming to
identify possible crosscutting concerns that are present.
These will serve as input to the aspect mining, which deter-
mines where these concerns are located inside the system,
In our approach, aspect mining is performed using character
sequence and regular expression analysis, and parser-based

Figure 2. Exception Handling Crosscutting
Concern Identification

The parser recognizes the “try-catch” syntactic structure
in Java code and the occurrence of a SQLException excep-
tion type, that indicates the presence of a non-functional re-
quirement (exception handling). This information is stored
to be later consulted, in order to aid the software engineer
to extract and encapsulate that crosscutting concern into as-
pects. However, it must be stressed that parser-based min-
ing, as well as character sequence and regular expression
analysis, is just an aid to perform the mining, which must
be carried out manually by the software engineer.

Aspectual Reorganization. After the crosscutting con-
cerns are identified, the software engineer uses refactor-
ings to extract and encapsulate these concerns into aspects.
These refactorings [9] consider the interlaced nature of the
legacy system code, and thus the transfer of individual
members from classes to an aspect should not be isolated.
In most cases, they are part of a set of transfers that com-
prise all the implementation elements of the concern that is
being extracted. Such concerns typically include multiple
code fragments scattered across multiple modular units (e.g.
methods, classes, packages). Therefore, in many cases,
more than one refactoring should be applied to extract a par-
ticular concern.

Aspect-Oriented Design Retrieval. Next, the software
engineer, using software transformations in the Draco-PUC
Transformational System, obtains the A 0 design, in UML

‘Although Draco-PUC is mainly a transformational system, it can op-
erate as a parser generator as well.

32

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on February 5, 2009 at 12:33 from IEEE Xplore. Restrictions apply.

descriptions. The transformations map descriptions in a
programming language, corresponding to the reorganized
A 0 code, into descriptions in a modeling language, which
can be loaded into MVCASE tool. Then, the software engi-
neering may edit the retrieved models in MVCASE, insert-
ing minor corrections and refinements [SI. We currently use
an UML extension that is capable of representing AOSD
concepts, and is implemented in MVCASE. More infor-
mation on automatic design retrieval using transfonnations
may be seen in [7].

Figure 3 shows an example of A 0 design retrieval using
software transformations. The A 0 Source code (1) is ana-
lyzed by the transformations (2), which are responsible for
mapping the code into descriptions in a modeling language
(3). These descriptions are then loaded into MVCASE, be-
coming available for edition (4).

The retrieved design and the Aspect-Oriented Source
code constitute the knowledge of the legacy system, Next,
this knowledge is encapsulated in highly modularized,
reusable assets, with updated and consistent documentation.
These assets may then be used in future developments or in
the reconstruction of the legacy system, which is now more
maintainable and extensible.

TRANSFORM ldentifyAspect
LHS: {{dast aspectj.aspectj-declaration

poinlcut [[Identifier poinh-name]]
([[parameters' pointcut-param]]):

, aspect [[Identifier aspect name]] {

[[statement" stmtsj]:

4 Partial Evaluation

In order to obtain a partial evaluation of the proposed
approach, a pilot project was performed.

The pilot project has involved the reverse engineering
of a Bank Teller System, which was developed in Java. It
is composed of 11 classes, where 3 contain business rules
and 8 are related to Graphical User Interfaces, through the
juva.swing package. The system had 1354 lines of code.

No documentation was available other than source code
comments. The system understanding was performed
through its execution, which generated a document contain-
ing its main functionaIities, such as:

i. The system allows the customer to register itself, as
well as its accounts. The account information includes the
initial balance, and the account type; and

ii. For the user to access his accounts, it is necessary
to inform an user name and a previously stored password.
After this identification, the customer informs the account
number and the value that he wants to draw or deposit.

After understanding, the system was analyzed in order to
identify the possible crosscutting concerns, that were inter-
Iaced and spread through the classes. In this piIot project,
two concerns were identified: database persistence and ex-
ception handling.

Refactorings were applied to extract these concerns, and
the A 0 Design was retrieved through transformations. In
order to verify if the retrieved assets were still in confor-
mance with the original system requirements, a new imple-

Aspect-Oriented Source Code

aspect AddAspect{

before(Customer customer): doAddCustomer (customer) {

I
after(Customer customer): doAddGustomer (customer) {

paintcut doAddCustomer(Customer customer): target(customer)
&& call(public void Cuslomer.addCustomer(..));

I . .

Draco-PUC Transformation

(object Class "AddAspect"
stereotype "-aspect=*

operations (list operations
(object Operation *doAddCustomer"

stereotype "pointcuP

pirameters (list Parameters

type 'Customer"))

(object Parameter "customer"
...

Figure 3. A 0 Design Retrieval

mentation of the system was performed in a forward engi-
neering step. The new A 0 system was executed, and its ob-
servation verified that the functionalities of the 00 system
were maintained.

Table 1 shows a brief comparison between the 00 and
the A 0 systems.

The reduced number of lines of code and the increased
number of moduIes (aspects) indicate that the retrieved as-
sets are smaller and better divided. Since each aspect

33

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on February 5, 2009 at 12:33 from IEEE Xplore. Restrictions apply.

I 00 I A 0
Classes
Asuects

11 I1
6

Liies of Code (LOC) i 1354 \ 1286 1
Table 1. Result Evaluation

groups a single concem, the modules are also more cohe-
sive. Therefore, we may deduct that the retrieved assets are
more reusable than the original ones.

The consequences on identifying and separating cross-
cutting concerns are equivalent to those stated by AOSD:

i. Requirements traceability: After the separation of
concerns, it is easier to trace each module to a specific re-
quirement;

ii. Easier Maintenance: Requirement changes, func-
tionality improvements and code restructuring are also eas-
ier to perform; and

iii. Readability: The new code is lighter and less pol-
luted, because attributes and methods are not spread through
the system.

iv. Reuse: The identified and extracted aspects can be
implemented in such a way that they can be later reused.
This may even give origin, with the accomplishment of dif-
ferent case studies, to a framework of aspects.

v. Maintainability: With the adoption of AOSD, the
new system will be more maintainable, since the non-
functional requirements are encapsulated in specific aspects
and not dispersed throughout all the system.

5 Related Works

The first relevant work involving the 00 technology and
retrieval of knowledge embedded in legacy system was pre-
sented by Jacobson and Lindstron [121, who applied reengi-
neering in legacy systems that were implemented in pro-
cedural languages. The authors state that reengineering
should be accomplished in a gradual way, because it would
be impracticable to substitute an old system for a com-
pletely new one.

Today, on the top of 00 techniques, an additional layer
of software development, based on components, is being es-
tablished. The goals of “componentware” are very similar
to those of 00: reuse of software is to be facilitated and
thereby increased, software shall become more reliable and
less expensive [141.

Among the first research works in this direction, Caldiera
and Basili [3] have explored the automated extraction of
reusable software components from existing systems. They
propose a process that is divided in two phases. First, it
chooses, from the existing system, some candidates and
packages them for possible independent use. Next, an en-

gineer with knowledge of the application domain analyzes
each component to determine the services it can provide.

Another work involving software components and
reengineering to retrieve knowledge embedded in legacy
systems may be seen in [2], where we have presented a
CASE environment for component-based software reengi-
neering, called Orion-RE. The environment uses software
reengineering and Component-Based techniques to rebuild
legacy systems, reusing the available documentation and the
built-in knowIedge in their source code. We observed some
benefits in the reconstructed systems, such as grater reuse
degree and easier maintenance. We also observed benefits
due to the automation achieved through CASE.

6 Conclusions and Future Work

Many reverse engineering and reengineering approaches
have been proposed to retrieve knowledge from legacy sys-
tems. The goal is to develop a global picture on the subject
system, which is the first major step toward its understand-
ing or transformation into a system that better reflects the
quality needs of the application domain.

A new tendency is that the research moves toward the
separation of concerns area, behind AOSD, integrated with
already existent reverse engineering and reengineering tech-
niques. This will represent one step forward in the direction
of the post-00 technologies, seeking even higher maintain-
ability and flexibility.

This paper has presented an approach proposal, using
reengineering techniques to retrieve knowledge embedded
in 00 legacy systems. This approach integrates different
techniques and mechanisms to guide and help software en-
gineers during the process.

The approach uses aspect-oriented software develop-
ment concepts, in order to obtain a better reuse degree in
the retrieved assets. It also helps to improve development
productivity and support for changes in the requirements.

Additionally, an evaluation was accomplished to show
the reengineering proccess usefulness. By following the ap-
proach, we could verify that the AOSD brings several and
important benefits to software development. The way the
aspects are combined with the system modules allows the
inclusion of additional responsibilities without committing
the code clarity, maintainability, reusability, and providing
a greater reliability.

As a future work, the UML extension used in the A 0
modeling (used by the MVCASE tool) will be validated.
Also, the transformations defined in the Draco-PUC trans-
formational system must be proven correct, through the ac-
complishment of more case studies, involving different do-
main systems.

Graphical visualization of the possible crosscutting con-
cerns source code is also being developed. In this way, the

34

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on February 5, 2009 at 12:33 from IEEE Xplore. Restrictions apply.

task of identifying different concerns in the legacy system
should be facilitated. 1991.

Applications (OOPSLA'9I), pages 340-350. ACM Press,

[13] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, I.-M. Loingtier, and J . Irwin. Aspect-Oriented
Programming. In Proceedings of the I 1st European Confer- References

E. Almeida, C. Bianchini, A. Prado, and L. Trevelin.
MVCASE: An integrating technologies tool for distributed
component-based software development. In Proceedings of
the 6th Asia-Pucifrc Nenvork Uperatiom and Management
Symposium. (APNOMS'2002) Poster Session. IEEE Com-
puter Society Press, 2002.
A. Alvaro, D. Lucrdio, V. C. Garcia, E. S. de Almeida, A. E
do Prado, and L. C. TreveIin. Orion-RE: A Component-
Based Software Reengineering Environment. In Proceed-
ings of the 10th Working Conference on Reverse Erlgineer-
ing (WCRE), pages 248-257. lEEE Computer Society Press,
November 2003.
G, Caldiera and V. R. Basili. Identifying and qualifying
reusable software components. IEEE Computer, 24(2):61-
71, Feb. 1991.
A. v. Deursen, M. Marin, and L. Moonen. Aspect Mining
and Refactoring. In Proceedings of the First International
Workshop on REFactoring: Achievements. Challenges. Ef-
fects (REFACEO3). Held in conjunction with WCRE 2003.
University of Waterloo, Canada, November 2003.
M. Fowler. K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring: improving the design of existing code. Object
Technology Series. Addison-Wesley, 1999.
E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Resign
Patterns - Elements of Reusable Object-Oriented Sufhvare.
Addison Wesley Professional Computing Series. Addison-
Wesley, 1995.
V. C. Garcia, V. Fontanette. A. B. Perez, and A. E Prado.
RST - Software Reengineering using Transformations [in
portuguese), RHAE'CNPQ. Technical Report 6 10.069/01-2,
Department of Computer, Federal University of Slo Carlos,
S%o Carlos-SP, Brazil, March 2004.

ence Object-Oriented Programming (ECUOP'97), volume
1241 ofL.NC.7, pages 220-242. Springer Verlag, 1997.

[14] E. Lee, B. Lee, W. Shin, and C. Wu. A reengineering process
for migrating from an object-oriented legacy system to a
component-based system. In Proceedings ofthe 27thAnnual
Internationnl Computer Software and Applications Confer-
ence (COMPSAC), pages 336341. IEEE Computer Society
Press, November 2003.

[I51 5. C. Leite, M. Sant'anna, and E G. Freitas. Draco-PUC: A
Technology Assembly for Domain Oriented Software De-
velopment. In Proceedings of the 3rd International Con-
ference on Software Reuse (ICSR.941, pages 94-100. IEEE
Computer Society Press, November 1994.

[16] N. Loughran and A. Rashid. Mining aspects. In Workshop
on Early Aspects: Aspect-Oriented Requirements Engineer-
ing and Architecture Design (AOSD-2002). Mar. 2002.

[17] M. P. Monteiro and J. ao M. Fernandes. Object-to-aspect
refactorings for feature extraction. In Proceedings of the
3rd International Conference on Aspect-Oriented Software
DeveIopment (AOSD'2004). ACM Press, March 2004.

[18] R. S. Pressman. Soware Engineering; A Practitioner's Ap-
proach. McGraw-Hill, fifth edition edition, 2001.

[19] M. P. Robillard and G. C. Murphy. Capturing concern
descriptions during program navigation. In Workshop on
Tools for Aspect-Oriented Sofhvare Development (OOPSLA
2002), November 2002.

[20] J. K. Silvia Breu. Aspect mining using dynamic anaIysis.
In 5. Workshop Sufiare-Reengineering (Published in: GI-
Sofhvaretechnik-Trends, Mitteiliingen der Gesellschaft fur
Infurmatik, volume 2, pages 21-22, May 2003.

[21] P. Tam, H, Ossher, W. Harrison, and S . M. Sutton, Jr. N
degrees of separation: Multi-dimensional separation of con-
cerns. In Pruceediflgs of 2Isr International Conference on

[8] V. C. Garcia, D. Lucrkdio, t. Frota, A. Alvaro, E. S.
de Almeida, and A. E do Prado. A case tool for aspect-
oriented software development (in portuguese). In X I Tools
Section - XVIII Brazilian Symposium on Software Engineer-
ing (SBES 2004). (Io appear), October 2004.

[9] V. C. Garcia, E. K. Piveta, D. Lucrkdio, A. Aharo, E. S .
de Almeida, A. E do Prado, and L. C. Zancanella. Manip-
ulating Crosscutting Concems. 4rh Latin American Confer-
ence on Patterns Languages of Programming (SugarLoaf
Prop 2004), 2004.

[IO] S . Hanenberg, C. Oberschulte, and R. Unland. Refactoring
of aspect-oriented software. In Net.Object Days 2003, Oc-
tober 2003.

[111 J. Hannemann and G. Kiczales. Overcoming the preva-
lent decomposition in legacy code. In Proceedings of
rhe 23rd International Conference on Sofware Engineering
(ICSE'ZOOI). Workshop on Advanced Separation of Con-
cerns in Software Engineering., May 2001.

[12] I. Jacobson and E Lindstrom. Reengineering of old sys-
tems to an object-oriented architecture. In Proceedings of
the Object-Oriented Programing Systems, Languages, and

Software Engineering (ICSE'99), pages 107-1 19, Los An-
geles CA, USA, 1999. IEEE Computer Society Press.

35

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on February 5, 2009 at 12:33 from IEEE Xplore. Restrictions apply.

