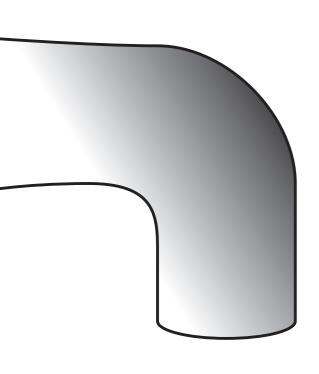
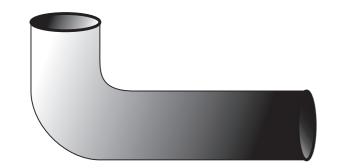
#### A Rant on Queues

Van Jacobson

July 26, 2006

MIT Lincoln Labs Lexington, MA





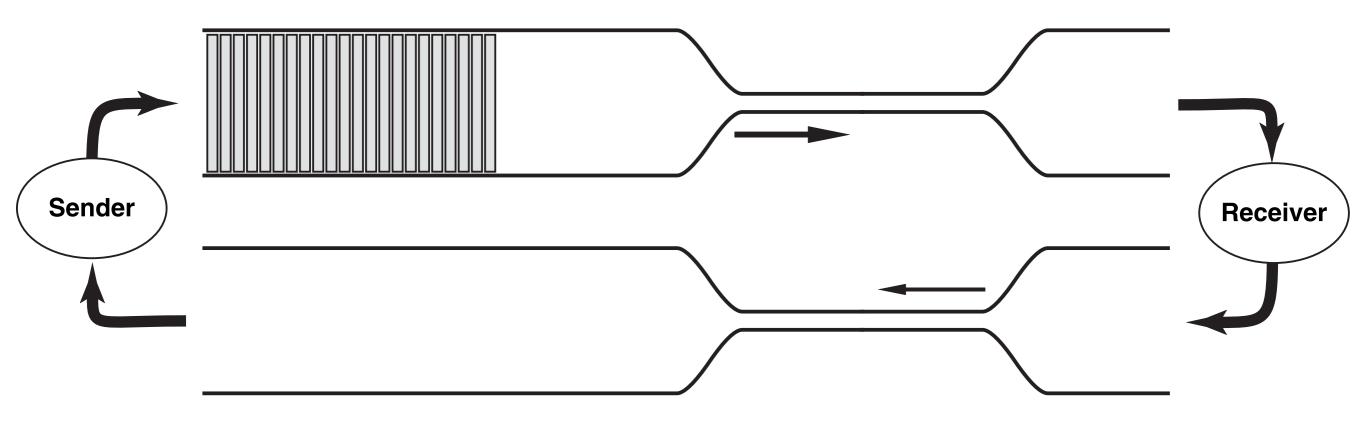
- Unlike the phone system, the Internet supports communication over paths with diverse, time varying, bandwidth.
- This means we often have to connect a fire hose to a soda straw.



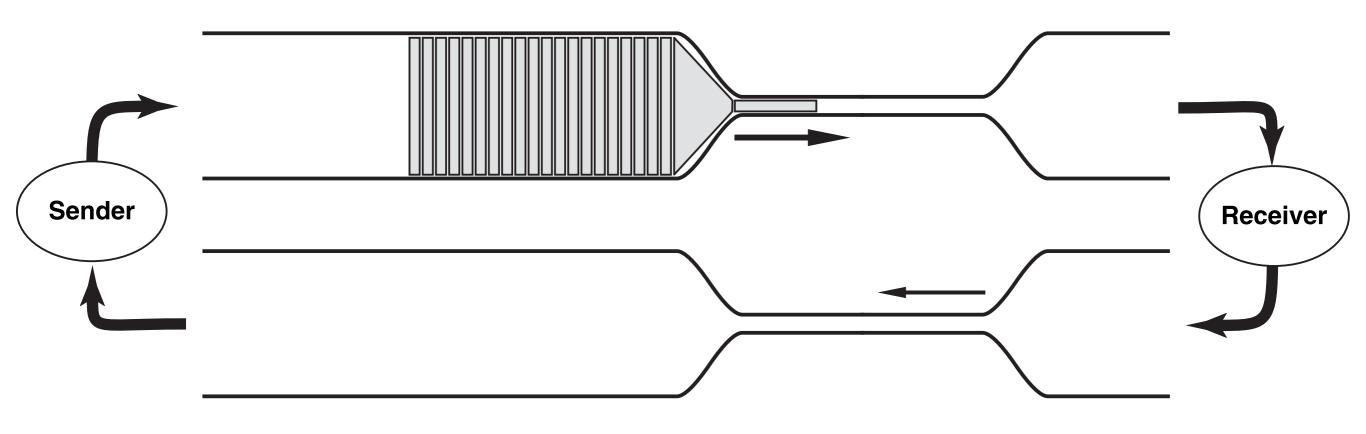
- Unlike the phone system, the Internet supports communication over paths with diverse, time varying, bandwidth.
- This means we often have to connect a fire hose to a soda straw.
- This kind of plumbing needs an adapter. The adapter is called a queue.

### How a real queue works

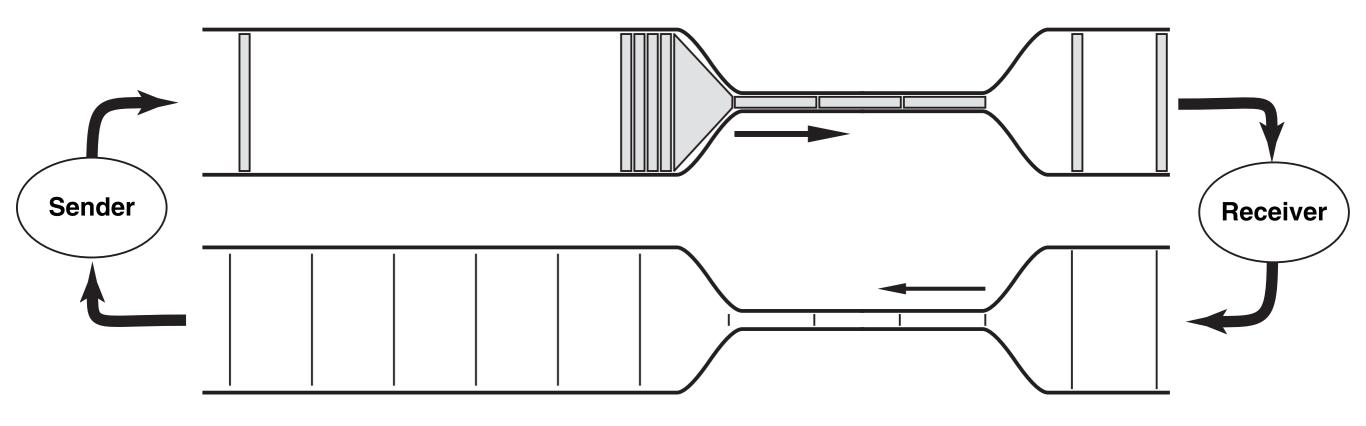
## Sender injects a window's worth of packets



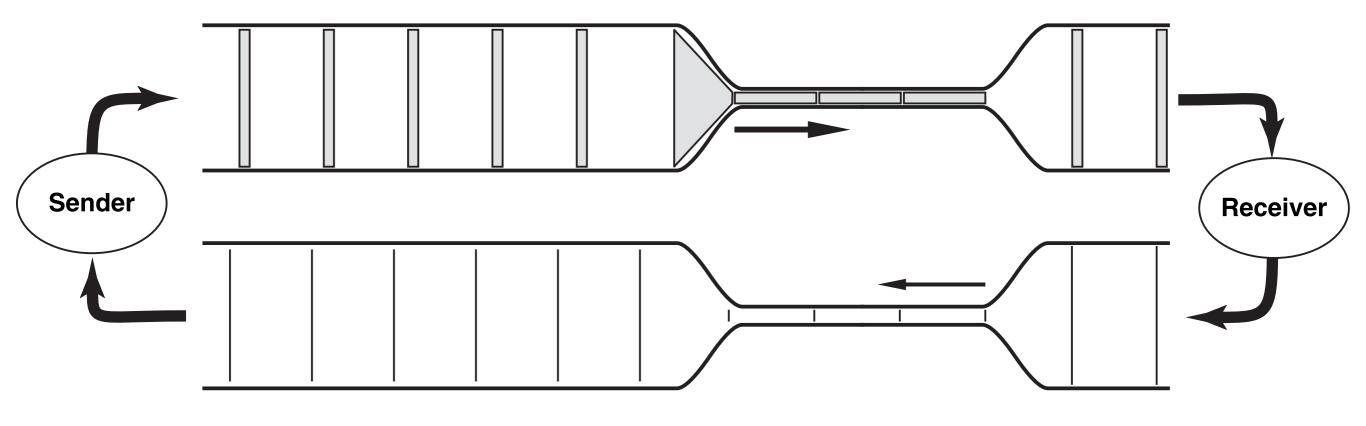
### Packets reach high to low bandwidth transition



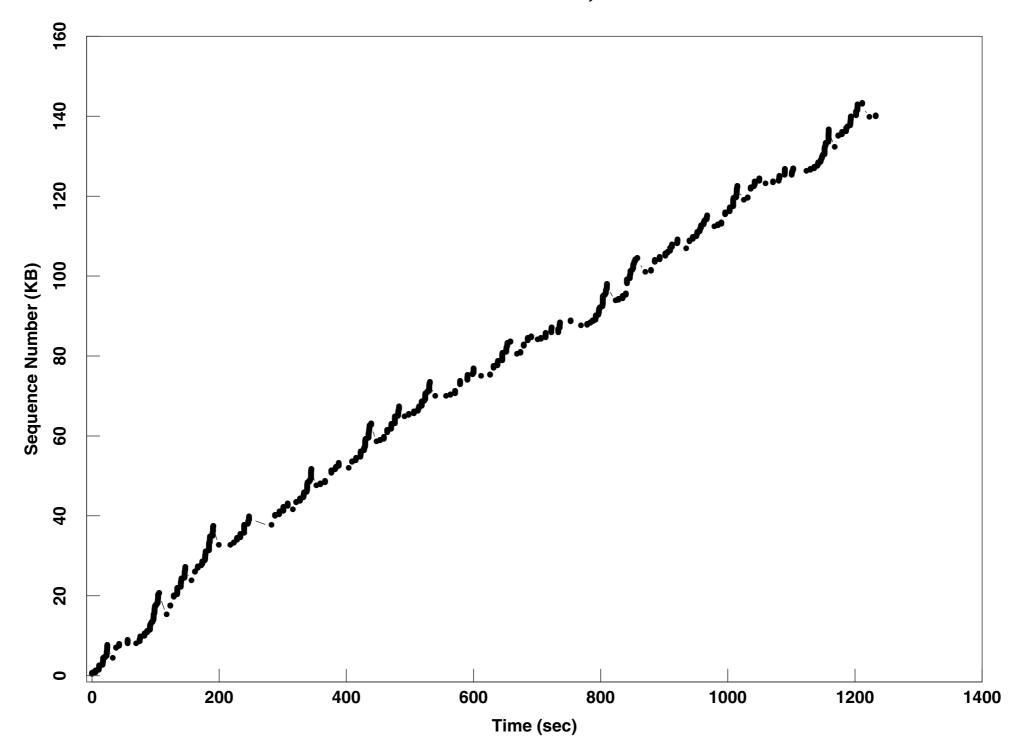
## First ack returns and releases next data packet



#### Steady-state reached

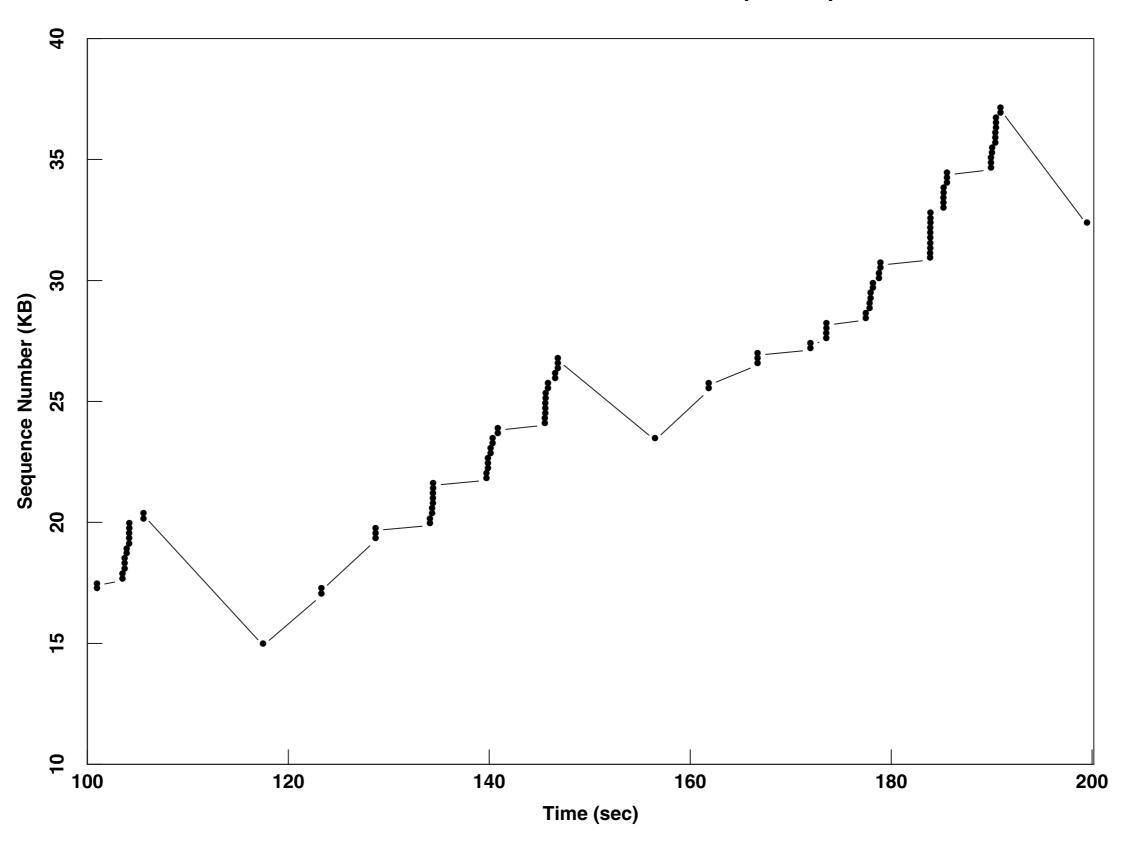


- The amount of data that has to be in transit to run at 100% utilization is the bottleneck bandwidth times the sender-receiversender round-trip delay (this is called the bandwidth\*delay product).
- The bottleneck has to have this much buffer to handle the start up transient.
- What happens if it doesn't?

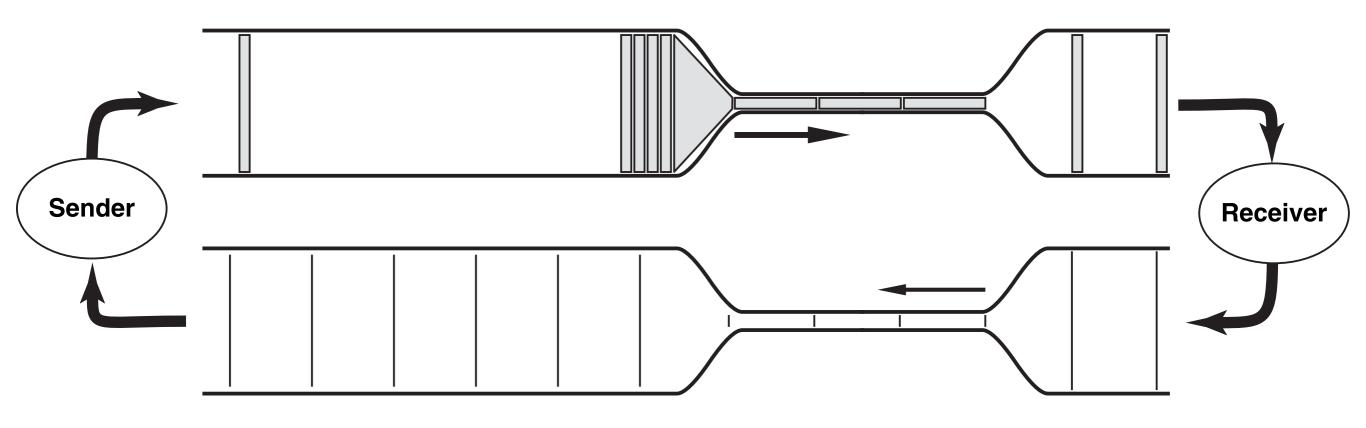


(averaged 100 Bytes/sec on a 8 KByte/sec link)

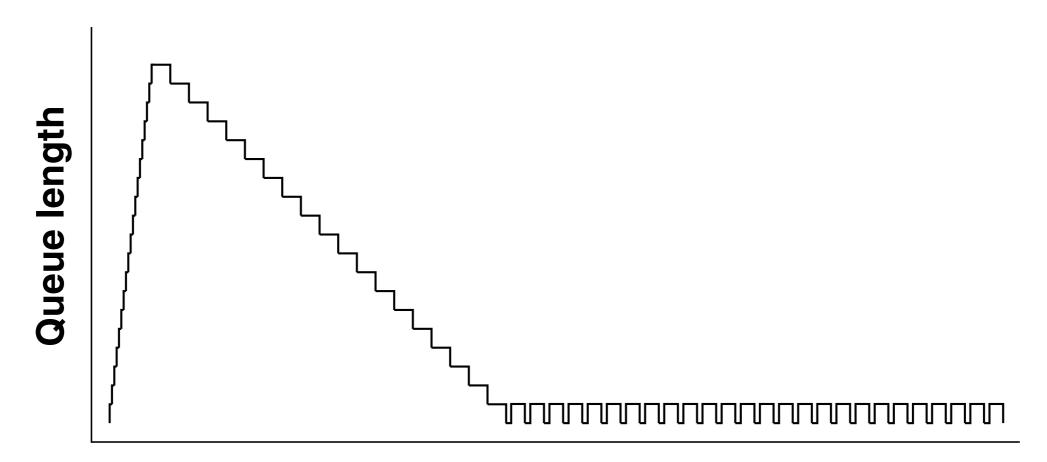
#### Satnet Test -- Dec 11, 1988 (Detail)



### How does the queue behave vs. time?

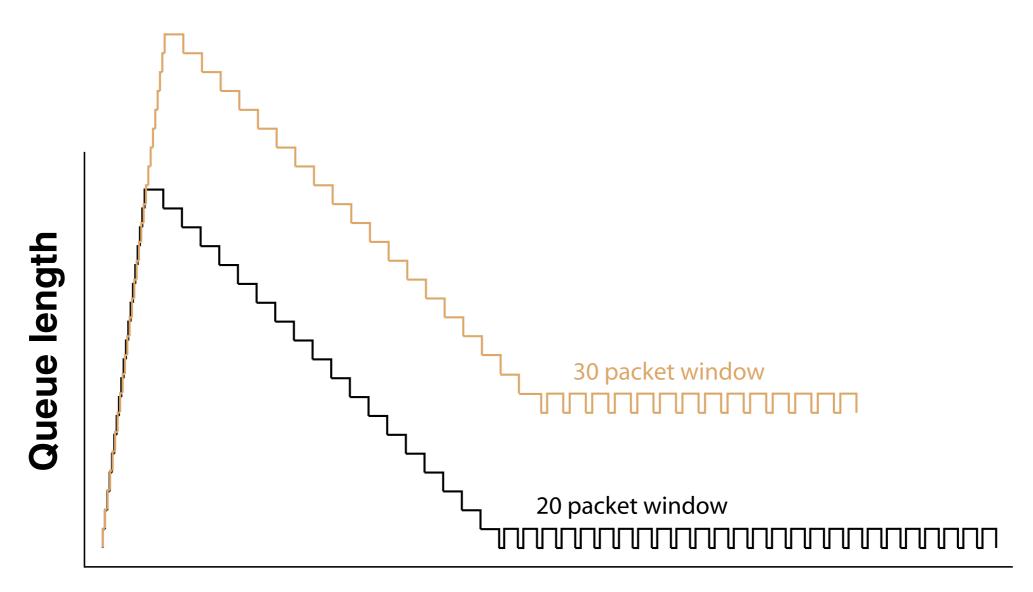


### Queue behavior at the fast-to-slow transition



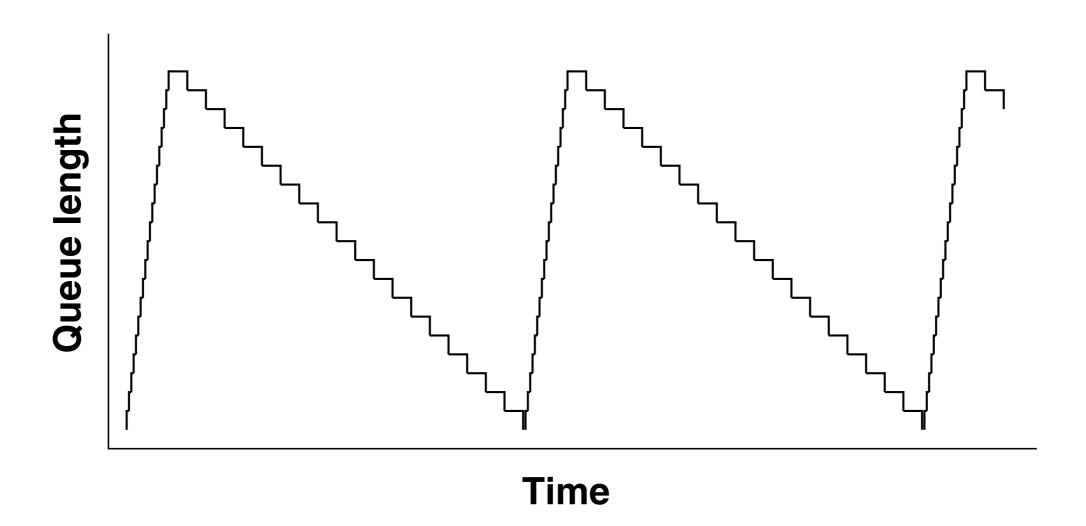
Time

## Queue behavior at the fast-to-slow transition



**Time** 

# Queue behavior with ack-per-window receiver



Three minor (and completely standard) variations in protocol implementation give three wildly different average queue lengths.

# I.e., the average queue length contains <u>no</u> information about demand or load.

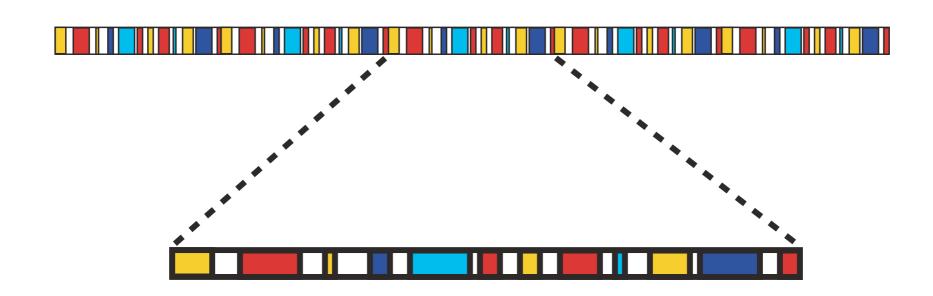
# A mathematical digression ...

$$\int [A(t) - D(t)]$$

 A queue is the integral of the difference between an arrival process & a departure process.

 For packet network queues, D is usually deterministic and A is some sort of random mixture process.

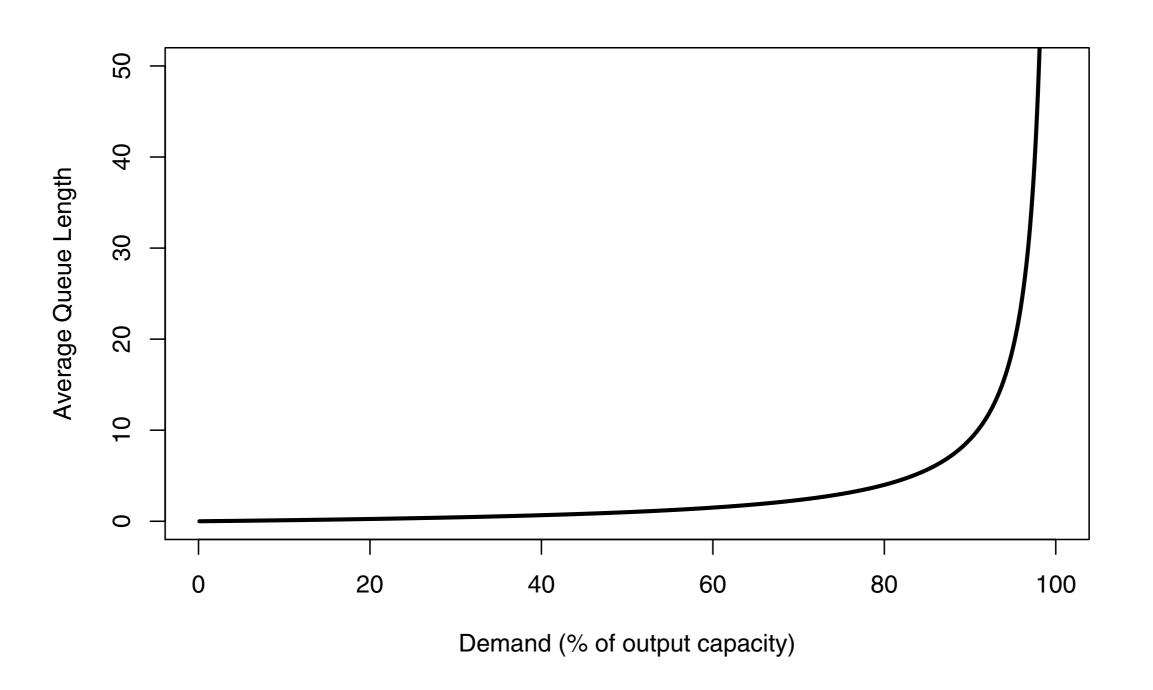
# The Poisson arrival process is beloved by academics the world over



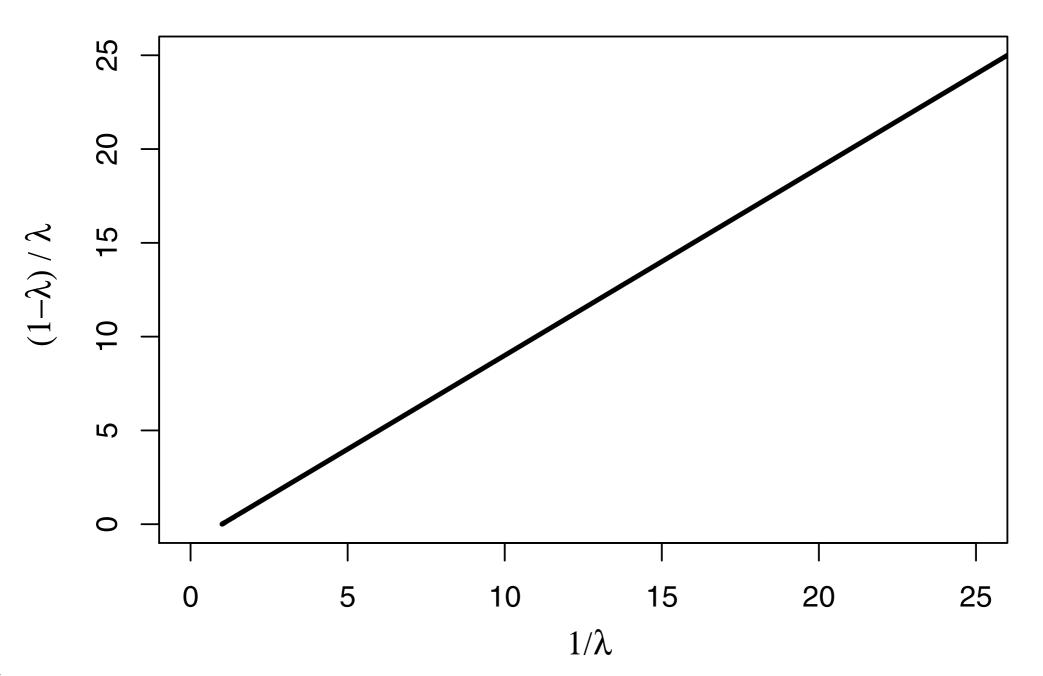
- It describes a low density, IID, uniform random collection of stuff.
- 'Uniform random' means the interarrival time is distributed as  $e^{-\lambda t}$ .

vj-II-jul06

### For a Poisson process, queue length is a function of demand



### In fact, inverse queue length is a linear function of $1/\lambda$



# For years people have used queue length as a proxy for load in network controls

- In theory this shouldn't work at all
- In practice it sometimes sort of works because the internet protocols are robust in the face of foolishness.

#### Theory failures

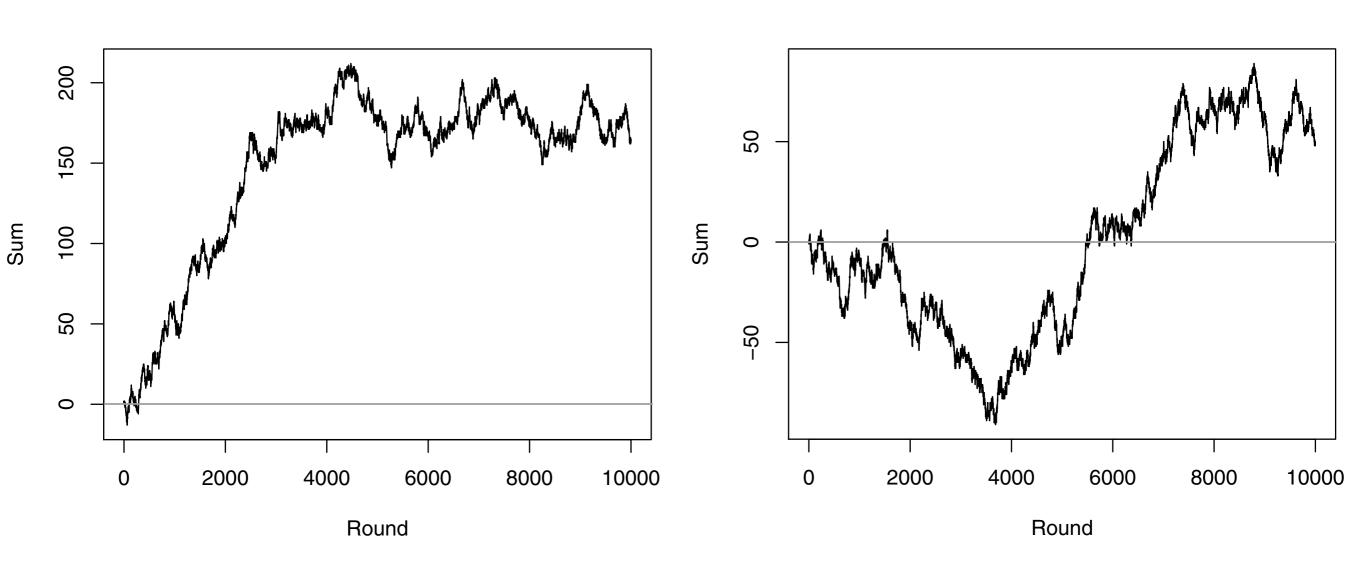
- There can be lots of Poisson traffic in the network but not at a bottleneck.
- Poisson requires independent, random uniform traffic but at a bottleneck real traffic is highly correlated and not at all uniform.
- The correlations are intrinsic since reliability requires a sender-receiver-sender loop and traffic in a loop is never poisson.

# Poisson model isn't even representative

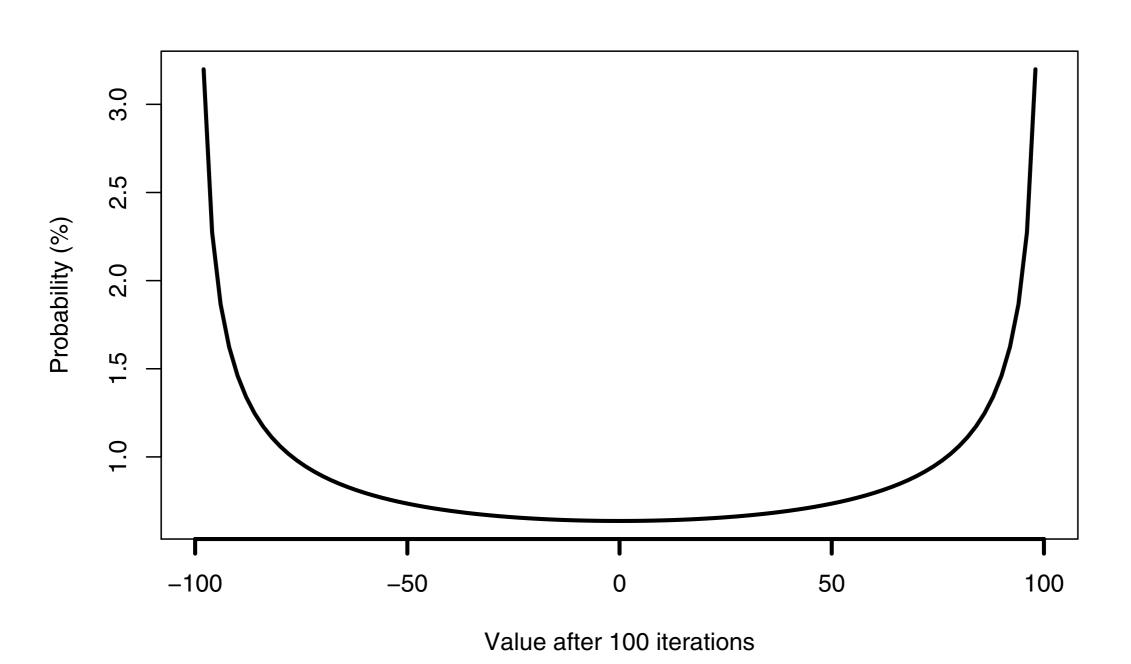
- Queue length is the integral of an arrival rate (with deterministic departures).
- Queue length for a Poisson process is proportional to arrival rate.
- Implies family where  $\int F(t) \propto F(t)$
- Exponential (Poisson process) is the <u>only</u> member of this family.

- Poisson models fail because they're memoryless but congested router queues are all about memory.
- A much better mathematical model for real queues is a random process with memory.
  I.e., a random walk or Brownian motion.
- Its behavior is the polar opposite of poisson (see Feller, vol. I, chap.3).

# Two simulation runs of the simplest random walk (Bernoulli trials)

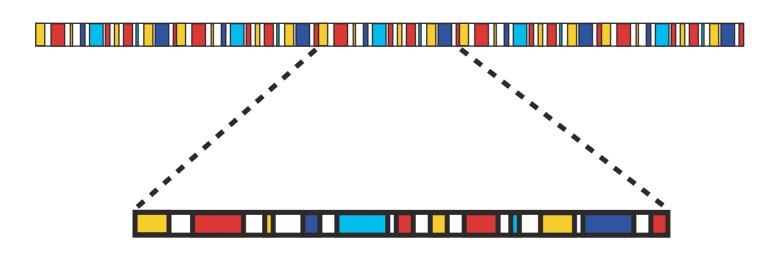


### Probability density distribution of the simplest random walk

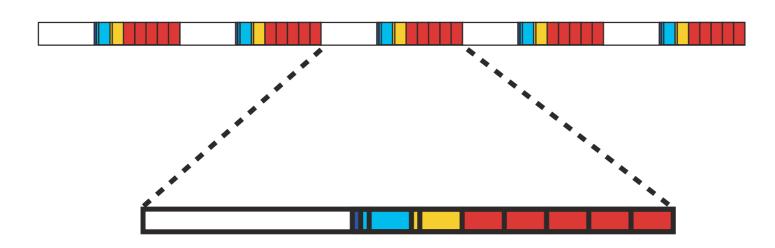


# And now back to packets ...

### CS profs try to instill intuition based on this picture of traffic:



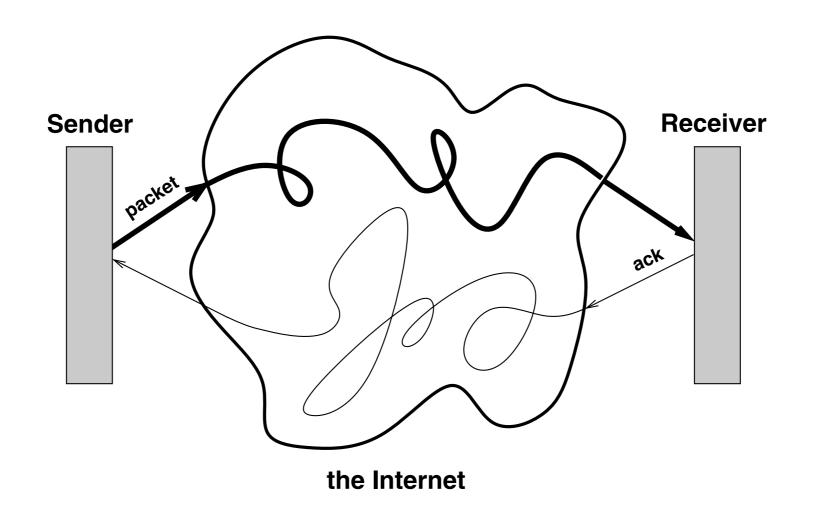
Measured traffic usually looks more like:



Where does all the structure come from?

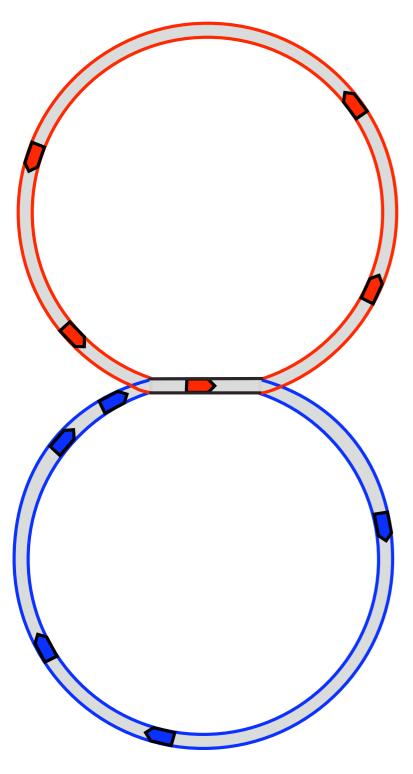
- Part of the structure comes from the stability of high rate, bursty arrivals on the upstream side of the queue -- one conversation is unlikely to insert a packet into another's burst.
- This tendency to preserve bursts is then driven by some of the non-linear dynamics of the net ...

## The Internet at 50,000 feet



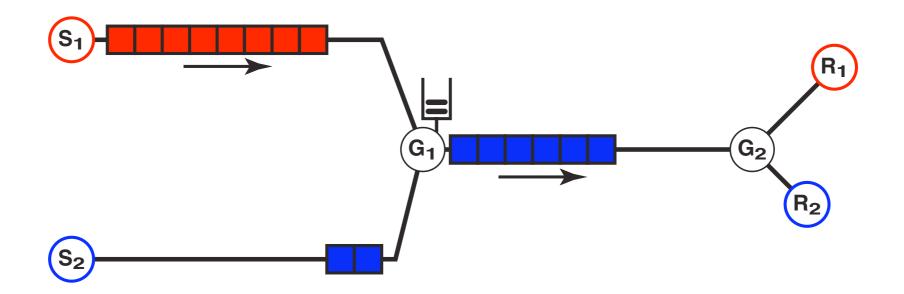
The ends are just mirrors, all the dynamics result from the (usually non-linear) behavior of the net.

#### How shared links make bursts



- Picture two conversations sharing a congested gateway as two separate train tracks with one common section.
- When a blue train waits for red trains to go through the shared section, the blue trains behind it catch up (get more clumped)
- If the merge rules are efficient (service each color to exhaustion), the system clumps exponentially fast.

- Clumping creates a 'horizon problem' that tends to bias traffic managers.
- For satellite systems, the traffic time structure can interact with superframe epoch structure in unfortunate ways (e.g., ACTS hopping beams).
- Increasing delay or epoch length makes things worse (windows increase to compensate).



#### Suggestions

- Queue length is meaningless (but long term min can be useful).
- Try have at least a bandwidth\*delay of buffer.
- Don't let it stay full.
- Try for a 'flow-thru' architecture to minimize packet time-structure disturbance

### Suggestions (cont.)

- Never introduce additional delay (apps will just try to fill it with packets):
  - Let apps do their own FEC; avoid link layer Reed-Solomon and ARQ.
  - Use smooth, simple downlink schedulers
  - Use predictive and anticipatory uplink schedulers