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Text mapping: Visualising unstructured,
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Abstract. Large collections of text documents are increasingly common, both in business and personal information environments.
Tools from the field of information visualisation are being used to help users make sense of and extract useful knowledge from
such collections.
Flat text collections are often visualised using distance calculations between documents and subsequent (distance-preserving)
projection. Distance calculations are often based on a vector space of term vectors. Projection is often achieved with a
force-directed placement algorithm.
Where extra information about a text collection is available, such as a topical hierarchy or some chronological ordering, it can be
used to improve a visualisation. This paper gives an overview of text mapping techniques.
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1. Introduction

Large collections of text documents are increasingly
common, both in business and in personal information
environments. In order to make sense of and extract
useful knowledge from such collections, tools from the
field of information visualisation [1,21] are increasing-
ly finding application.

The idea behind information visualisation is to utilise
the remarkable capabilities of the human visual percep-
tion system to rapidly and automatically detect patterns
and changes in visual displays. This is know aspre-
attentive processing and requires minimal cognitive ef-
fort [23].

A typical collection ot text documents, say 100 PDF
files containing papers from a conference, is usually
“flat”. That is to say, the collection does not have any
structural information, such as a topical hierarchy or
associative links between related papers. Where the
text documents in a collection are already organised hi-
erarchically or a hierarchical structure can be induced
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from the documents’ contents, the visualisation pro-
cess can make use of the hierarchy to produce a better
visualisation. Sometimes, a text collection is temporal
in nature, such as a collection of newspaper stories or
press releases. Such temporal information can also be
utilised to create or improve visualisations.

2. Visualising unstructured collections

The basic steps in the traditional text visualisation
pipeline are:

1. Distance Calculation: Calculate (dis)similarity
values between every pair of objects (text docu-
ments).

2. Projection: Use the (dis)similarity values to place
objects in a display space (usually a 2d or 3d
space).

These steps are illustrated in Fig. 1.
In terms of distance calculation, the field of infor-

mation retrieval (IR) has long used thevector space
model to characterise the relationships between text
documents [19]. Each text document is represented
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Fig. 1. The traditional text visualisation pipeline.

by a term vector of high dimension (often many thou-
sands). The number of dimensions is given by the total
number of different words appearing in the text collec-
tion. Each entry in a document’s term vector describes
the frequency (or sometimes the significance) of a par-
ticular word in the document. The classic metric for
distance between text documents is the cosine metric
(scalar product), which expresses the angle between
two vectors, and delivers values between 0 (completely
dissimilar) and 1 (completely similar).

Eades [8] first proposed the use of forces between
objects and iterative solution of an energy equation in
his spring model. The original technique was later
refined by Fruchtermann and Reingold [9] and given the
nameforce-directed placement (FDP). The basic idea
is that forces of attraction pull similar objects closer,
while objects which are too close repel slightly.

Chalmers and Chitson [5] combined distance calcu-
lations derived from a vector space model with projec-
tion using force-directed placement, in a scheme simi-
lar to that shown in Fig. 2. In the distance calculation
step, a term vector is first calculated for each document
in the collection. The similarity between two docu-
ments is approximated by the scalar product (cosine
metric) of the two term vectors.

To generate a landscape visualisation from the sim-
ilarity matrix, a force model is constructed. For ex-
ample, the sum forceFi acting on a particular docu-
mentdi might be given by the sum of attraction forces,
repulsion forces, and a low-level gravitational forceG:

Fi =
∑

j �=i

(atti,j + repi,j) + G

The forces acting on documentdi are illustrated in
Fig. 3. The force of attractionatti,j between two docu-
ments is proportional to the similarity between the two
documents. The force of repulsionrep i,j between two
documents is inversely proportional to the square of the
distance between two documents in the display space

(so that very close objects repel strongly). The force of
repulsion should only kick in at very close inter-object
distances. Often, a low-level gravitational forceG is
also used to draw all objects toward the centre of the
display space and stop border objects drifting away.

Objects are initially placed randomly in the 2d dis-
play space, as illustrated in Fig. 4a. At each iteration,
the forces acting on each object are calculated, and the
object is moved a small amount in the direction of the
total forceFi. After many (typically a few dozen) it-
erations, a final stable layout is reached, as shown in
Fig. 4b.

A brute force implementation of FDP would require
the calculation of the forces between every pair of ob-
jects, resulting in a time complexity ofO(n2) for each
iteration. Chalmers and Chitson [5] used a heuristic for
sampling a subset of objects to reduce this complexity
to O(n) for each iteration. Jourdan and Melancon [11]
later further improvedthisO(log(n)) for each iteration.

The SPIRE [13,24] and VxInsight [6] systems use
a more intricate method of projection known as multi-
dimensional scaling to project directly from the high-
dimensional vector space to a 2d display space. Fig-
ure 5 shows VxInsight displaying a set of articles from
physics journals. SPIRE’s ThemeView introduced the
notion of a topical hillscape, where groupings of the
same terms “pile up” to form peaks in the landscape.

In order to explore the field of text mapping, there is a
freely available tool called PEx (Project Explorer) [15],
which allows various combinations of distance calcu-
lation and projection techniques to be experimented
with.

3. Visualising structured collections

In cases where a collection of text documents fea-
tures explicit hierarchical structure, or where a hierar-
chical structure can be deduced by analysing the col-
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Fig. 2. Using a vector space for distance calculation and force-directed placement (FDP) for projection.

lection, improvements can be made to the “flat” tech-
niques described in Section 2. The TreeMap [20] is an
example of a space-constrained visualisation of hierar-
chical structures, where levels of the hierarchy are rep-
resented by nested rectangles. The size and the colour
of these rectangles are used to encode additional infor-
mation. Figure 6 shows a TreeMap visualising a direc-
tory structure. Each rectangle represents one hierarchy
branch. The area of a rectangle corresponds to the to-
tal size (or somtimes number) of files contained in the
represented branch, while colour is used to encode the
type of the files (such as text, images, PDFs, etc.). The
TreeMap representation has become quite popular and
has been applied to a variety of areas, such as stock
markets and news articles.

TreeMaps directly represent hierarchical relations
as specified in the underlying structure; They are ill-
equipped to convey other types of relations, for exam-
ple topical similarity between collections or documents.
Various approaches have been proposed to overcome
this limitation. InfoSky [3] is an example of a system

d i
at t i, 1rep i,34

at t i,16at t i, 3

at t i, 2

G
Fi

Fig. 3. The sum forceFi acting on documentdi is given by the
vector sum of all forces acting ondi.

designed for visualising both explicitly defined hierar-
chical structure and topical similarity present in docu-
ment and collection content. The system enables explo-
ration of very large, hierarchically structured document
repositories by employing the night sky as a metaphor:
Documents are visualized as stars, while collections
are visualized as polygonal shapes bounding groups of
stars, resembling constellations in the night sky. As
in TreeMaps, the area assigned to a collection corre-
sponds to the total size (or number) of documents and
sub-collections contained within that collection. Fur-
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(a) The initial state for force-directed placement. A set of

objects is randomly placed in the 2d display space.

(b) After many iterations of force-directed placement,

similar objects have moved toward each other to form

visual clusters.

Fig. 4. Force-directed placement (FDP). Over many iterations, similar objects move closer together and dissimilar objects move further apart.
(a) shows the initial state, (b) shows the final state.

thermore, collections and documents are positioned in
the 2D space in a way that translates topical similarity
into spatial proximity. Collections and documents are
labelled with their titles (if available) as well as with
automatically extracted keywords providing appropri-
ate descriptions at any chosen level of magnification.
Smooth, animated transitions allow the user to point
the virtual telescope to a specific region (panning) and
to vary the magnification level (zooming).

InfoSky builds upon the techniques described in Sec-
tion 2 and additionally exploits the hierarchical struc-
ture to reduce computational complexity. Starting with
an arbitrary polygonal area representing the repository
as a whole, the following strategy is applied recursively
from the root collection. Collection centroids, vectors
representing collections, are computed as a sum of vec-
tors belonging to documents contained by the collec-
tions. Corresponding similarity matrices are computed
for all direct child collections. Then, a force-directed
placement algorithm creates a two-dimensional layout
for centroids, grouping similar collections (centroids)
together and reserving more space around larger col-
lections whenever possible. The layout results are in-
scribed into the polygonal area assigned to the collec-
tion currently being processed. Finally, polygonal ar-
eas are assigned to each child collection by computing
a weighted Voronoi diagram from placed centroids and
clipping it against current bounds. Weighting adjusts
the edges of created polygons to assign larger areas
to collections containing more documents. In collec-

tions which do not contain any further subcollections
(leaves), documents are assigned locations using force-
directed placement. Collections which contain both
subcollections and documents have an artificial area
reserved within them into which documents are placed.

This recursive procedure saves huge amounts of main
memory space and processing time. The force-directed
placement algorithm, which has quadratic time and
space requirements, does not have to process the entire
collection at once, but rather is only applied to the di-
rect children of a single collection at a time. Provided
no single collection has a very large number of direct
children, the procedure allows for very fast processing
of huge document collections. Furthermore, there is
no need to keep large amounts of data in main memory
at one time. The data set can be stored on disk and
only the data for direct children of the currently pro-
cessed collection need be fetched into main memory
for processing at any one time.

Figure 7 shows the InfoSky browser visualising a
repository of over 100,000 technical documents organ-
ised into a manually edited hierarchy up to 16 levels
deep. By colour-coding search results (green is ‘win-
dows’, magenta is ‘linux’) one can easily compare the
distribution of results over the whole hierarchy and
identify correlations. Users can pan and zoom freely
or navigate into the hierarchy by clicking on collection
labels. Figure 8 shows six levels of zooming around
the collection “Webalizer”.

As discussed above, where document collections are
already pre-structured into a topical hierarchy, exploit-



V. Sabol et al. / Text mapping: Visualising unstructured, structured, and time-based text collections 121

Fig. 5. VxInsight displaying a set of articles from physics journals. Similar articles are grouped in clusters. Groups of the same terms in similar
documents are used to produce a height field. Hilltops are labelled with the predominant terms (or journal names, in this case).

ing this hierarchical structure can deliver huge improve-
ments in runtime performance and memory usage. Un-
fortunately, as outlined in Section 2, many document
collections are often flat in nature. To overcome this
problem, a hierarchy of topics can be extracted auto-
matically by analysing the documents’ contents. Once
a topical hierarchy has been constructed, a recursive
layout algorithm such as InfoSky can be used.

This approach was first implemented and tested as
part of a project to cluster and visualise search re-
sults on-the-fly called VisIslands [2,16]. More recently,
the technique has been applied to an ongoing research
project focused on competitive intelligence. To gener-
ate the required hierarchical structure from the flat data
set, a variant of the well-known k-means clustering al-
gorithm is applied recursively to the data set. The gen-
erated hierarchy of clusters is balanced by enforcing
limits on the maximum and minimum number of direct
children assigned to a cluster, with typical limits be-

ing 3 and 12 children, respectively. Since the k-means
algorithm has no capability of guessing the number of
clusters in advance, strategies for splitting and merg-
ing of clusters are implemented along the lines of the
ISODATA algorithm [14].

The chosen balancing requirements are derived from
usability and performance considerations. From a us-
ability point of view, a cluster with a very large num-
ber of children is not well suited for browsing, be-
cause users would have to scan through too many ob-
jects. With regard to performance, the maximum num-
ber of clusters should be limited in order to achieve
good performance, since force-directed placement al-
gorithms do not scale well. In this particular case, a
very light-weight force-directed placement implemen-
tation with cubic runtime behaviour is used: although
algorithms with far better scaling are available, the
chosen implementation outperforms the alternatives on
small datasets. The resulting layout algorithm scales
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Fig. 6. A TreeMap visualising part of a file system, in this case directories and files collected during travel research. Each solid rectangle
represents a file, whose type is indicated by the colour. The enclosing rectangles indicate the directory structure.

very well (approximatelyO(n · log(n))) and is indeed
quite fast. Assuming document term vectors are al-
ready available, it takes less than 5 minutes to pro-
cess 50,000 documents (including the initial hierarchi-
cal clustering) on a 3.4 GHz Pentium 4 machine.

A current limitation is that the clustering algorithm
requires that all document term vectors are kept in main
memory at once, which limits its applicability to ap-
proximately 50,000 documents on a machine with 4 gb
of main memory. A version employing a clustering
algorithm which does not have this requirement, such
as BIRCH [25], is currently under development and
should be capable of generating similarity layouts of
huge data sets on a standard desktop machine.

Figure 9 shows a collection of approximately 30,000
“unstructured” documents visualised as an information
landscape generated by the algorithm described above.
This representation is similar to the one employed in
InfoSky, insofar as similar documents are spatially co-
located. Like VisIslands, concepts have been adopted

from geographical representations: mountains repre-
sent areas where the density of related documents is
high, while sparsely populated regions are represented
by water. Users can freely navigate within the full 3D
virtual landscape or can explore the data set along the
hierarchical structure. Keywords extracted from the
hierarchical clusters provide labels suited to the chosen
level of detail.

Furthermore, the underlying vector space model is
capable of handling more than a single vector per docu-
ment. In addition to the vector space constructed for the
full text content, further vector spaces are constructed
for extracted entities such as personal names, organi-
sations, or place names. When computing document
similarities, the user can assign weights to the different
aspects to emphasise relationships of interest. Another
interesting possibility is to generate a layout depending
on similarities from one vector space and to compute
labels from another vector space. This would, for ex-
ample, allow one to instantly see which organisations
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Fig. 7. InfoSky visualising a hierarchy with over 100,000 documents.

produce the most technical papers in a specific field of
interest.

4. Visualising time-based collections

In addition to hierarchical structure, temporal in-
formation is becoming increasingly important as a di-
mension along which information can be organised.
Discovering trends and causal relationships implicitly
present in document collections can be just as important
as understanding topical patterns.

The visual representations presented upto now focus
on topical relatedness and offer no means of exploring
the temporal dimension. ThemeRiver [10] was the first

representation for visualising temporal development of
topics. Temporal variations of topical clusters, which
are encoded by different colours, are shown in the con-
text of external events. The width of a topic changes
along the time axis to reveal its “thematic strength”
which is typically related to the number of documents
referencing that time point.

Another, similar temporal representation, the Time-
line Visualisation [12], is shown in Fig. 10. Similar in
functionality to ThemeRiver, it differs from ThemeRiv-
er by having constant width and employing polygonal
(instead of curved) geometry.

Figure 11 shows time visualisations from the Visu-
al Conversation Analysis (VCA) tool [17]. It is de-
signed for visual analysis of conversations extracted
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Fig. 8. Zooming in InfoSky. Six levels of zooming into the collection “Webalizer” can be seen in the centre-left.

from video recordings of meetings. All visual compo-
nents have a shared time axis (the x-axis) which flows
from left (past) to right (present). To the top-right there
is an interval selection bar which allows the user to
navigate in time. Temporal zooming is achieved by
changing the width of the interval. To move back and
forth in time the user can slide the interval bar, whereby
all temporal visualisation components smoothly scroll
to the chosen temporal position.

Beneath the interval selection component is a search
result bar. Clicking on a result triggers a smooth, ani-
mated navigation to the corresponding time point. To-
wards the bottom of Fig. 11 two thumbnail bars can
be seen. The upper thumbnail bar visualises Power-
Point slide transitions, the lower one shows the story-
board. The central components are the activity view
and the intensity view. The activity view (upper cen-
tre) visualises events produced by people taking part
in the meeting over the selected time interval. Rows
represent the people (colour-coded), while the rectan-
gles within each row represent events linked to the cor-
responding person, in this case speech activity of the
participants. The width of each rectangle represents

the duration of the corresponding event, a zero duration
event being represented by a vertical line. The view
provides a clear representation of event boundaries, but
is not appropriate for visualising overlapping events.

The intensity view (lower centre) visualises the in-
tensity of overlapping events over the selected time in-
terval. Here, each row corresponds to a different the-
matic topic. Overlapping events are stacked over each
other and added together to yield higher "hills", so that
the height of a hill indicates a higher density of events.
In contrast to the activity view, the intensity view is not
suitable for exact representation of event boundaries.

The representations described so far in this section
focus on the discovery of trends and relationships with-
in the temporal dimension. In contrast to visualisa-
tions based on static similarity layouts, they cannot
convey topical relationships. The question arises as to
whether it would be possible to combine visual compo-
nents representing topical relationships, such as infor-
mation landscapes, with components designed to rep-
resent temporal information to allow for simultaneous
topical-temporal analysis.

One way to address this problem would be to tight-
ly couple temporal views with a dynamic topography
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Fig. 9. An information landscape showing a flat collection of approximately 30,000 documents.

information landscape. To understand the idea, one
might imagine the surface of the landscape placed or-
thogonally to the temporal axis, as shown in Fig. 12, so
that the surface of the landscape becomes a slice of the
temporal view(s) for the selected time interval. As the
user modifies the selected time interval, the topography
of the landscape is dynamically updated to visualise
only the selected subset of the data. As documents are
removed or added to the current active set, old islands
and hills may disappear or change their shape and new
ones might arise from the sea. Hills may drift towards
one other (corresponding to the merging of previous-
ly separate topical clusters) or an island may split off
(corresponding to the break-up of a cluster).

In such a scenario, topography transitions must be
performed incrementally, in the sense that only those
changes should be introduced which are really neces-

sary. Regions of the visualisation which are little af-
fected by the choice of the time interval should remain
as stable as possible, To support the user in understand-
ing modifications to the topography, incremental tran-
sitions should be smoothly animated so that the user
can follow and understand the changes. Such dynam-
ic, incremental, animated information landscapes were
introduced in [18], but were only applied to very small
data sets up to a few hundred documents. Applying the
concept to large data sets poses substantial challenges
and is the subject of ongoing work [22].

5. Concluding remarks

The techniques presented in this paper support the
visual exploration of large text collections. For text
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Fig. 10. Temporal thematic visualisation from the TimelineVis system.

Fig. 11. Temporal visualisation of speech in the Visual Conversation Analysis tool.
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Fig. 12. Idea behind generation of information landscapes with dynamic topography.

documents, a similarity matrix is constructed to express
the (dis)similarity between every pair of documents.
The similarity matrix is then projected to a 2d or 3d
display space.

The techniques presented here generalise to other
kinds of collection in addition to text. For more general
object collections, feature vectors based on other fea-
tures extracted from the objects are used to construct a
vector space. For example, for collections of images,
features such as the frequencies of particular colours,
or texture-based features such as coarseness, contrast,
and directionality can be used [7]. For collections of 3d
models, features such as the bounding box, the distri-
bution of normal vectors, and ray-based moments can
be used [4].
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