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Abstract: The product X×Y of measure spaces has as its measurable sub sets, the σ-algebra generated by the products A× B

measurable sub sets of X and Y. Fubini’s Theorem introduced by Guido Fubini in 1907 is a result which gives conditions

under which it is possible to commute a double integral. It implies that two repeated integrals of a function of two
variables are equal if the function is integrable. Tonelli’s Theorem is a successor of the Fubini’s Theorem. The conclusion

of Tonelli’s theorem is identical to that of Fubini’s theorem, but the assumption that |f | has a finite integral is replaced

by the assumption that f is non-negative.
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1. Basics and Main Results

Definition 1.1. Let (X,A, µ) and (Y,B,v) be any two measure spaces. If A ⊂ X and B ⊂ Y then A×B is called a rectangle

of X×Y. If A ∈ A and B ∈ B then A×B is called a measurable rectangle of X×Y.

Theorem 1.2. Let R be the class of measurable rectangles of Z = X×Y . For any A×B ∈ R, Define λ(A×B) = µ(A)v(B),

then R is a semi-algebra and λ is a measure on R.

Proof.

(1) Let A×B ∈ R and C ×D ∈ R then (A×B) ∩ (C ×D) = (A ∩ C)× (B ∩D)⇒ (A×B) ∩ (C ×D) ∈ R.

(2) (A × B)C = AC × BC ∪ (A × BC) ∪ (AC × B) ⇒ (A × B)C is a finite union of members of R. Proves that R is

semi-algebra.

(3) λ is obviously non-negative and λ(φ) = λ(φ× φ) = µ(φ)v(φ) = 0.0 = 0.

(4) Let (En) be any sequence of disjoint measurable rectangles and suppose
∞⋃
1

En = E is also a measurable rectangle.

Let En = An × Bn, E = A× B where A and An are measurable subsets of X and B and Bn are measurable subsets of Y.

Consider any s ∈ A and y ∈ B, then (s, y) ∈ A × B = E =
∞⋃
1

En ⇒ (s, y) ∈ Ei for some i ⇒ (s, y) ∈ Ai × Bi for some

I ⇒ y ∈ Bi when s ∈ Ai ⇒ B ⊂ ∪{Bi/s ∈ Ai}.
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Suppose z ⊂ ∪{Bi/s ∈ Ai}, then z ∈ Bi when s ∈ Ai ⇒ (s, z) ∈ Ai×Bi ⇒ (s, z) ∈ Ei ⇒ (s, z) ∈
∞⋃
1

En = E = A×B ⇒ s ∈ A

and z ∈ B, shows that ∪{Bi/s ∈ Ai} ⊂ Bi. Therefore

B = ∪{Bi/s ∈ Ai} for any s ∈ A (1)

Let u ∈ Ai for some i and Bi 6= φ for some i. Take v ∈ Bi, this gives that (u, v) ∈ Ai × Bi = Ei ⇒ (u, v) ∈
∞⋃
1

En = E =

A×B ⇒ u ∈ A, shows if u /∈ A then

Either u /∈ Ai or if u ∈ Ai thenBi = φ (2)

From (1) and (2) we get v(B)CA =
∞∑
i=1

v(Bi)CAi , by Monotone convergence theorem we have

∫
v(B)CAdµ =

∫
(

∞∑
i=1

v(Bi)CAi)dµ =

∞∑
i=1

∫
v(Bi)CAidµ

⇒ v(B)µ(A) =

∞∑
i=1

v(Bi)µ(Ai)

⇒ λ(A×B) =
∞∑
i=1

λ(Ai ×Bi)⇒ λ(E) =

∞∑
i=1

λ(Ei)

Which proves that λ is a measure on R.

Definition 1.3. Let (X,A, µ) and (Y,B, v) be any measure spaces, Z = X × Y , R be the class of measurable rectangles of

Z, π be defined on R by π(A × B) = µ(A)v(B). Then R is a semi algebra on Z and π is a measure on R. Let a be the

algebra generated by R and λ be the unique extension of π to a measure on a. Let (Z, a, λ̄) be the outer measure extension of

(Z, a, λ). Then (Z, a, λ̄) is called the Product space of (X,A, µ) and (Y,B, v). The measure λ̄ is called the Product measure

of µ and v and is denoted by µ× v.

Note 1.4. (1) It is obvious that (Z, a, λ̄) is an extension of (Z,R, π). Hence if A×B ∈ R then

(µ× v)(A×B) = π(A×B) [Because µxv is an extension of π]

= µ(A)v(B) [By definition of π]

(2) If µ and v both are finite then µ× v is also finite.

(3) If µ and v are σ-finite then µ× v is also σ-finite.

Remark 1.5. If F be the any family of subsets of X and A = ∪{F/F ∈ F}, B = ∩{F/F ∈ F} then CA = sup{CF /F ∈ F}

and CB = inf{CF /F ∈ F}

Definition 1.6. Let E ⊂ X × Y and x ∈ X then Ex = {y ∈ Y/(x, y) ∈ E} is called the Cross-Section of E by x. If y ∈ Y

Then Ey = {x ∈ X/(x, y) ∈ E} is called the Cross Section of E by y.

Note 1.7. Let E and Eα be any sub sets of X × Y and x ∈ X

(1) (
⋃
α

Eα)x =
⋃
α

(Eαx)

(2) (
⋂
α

Eα)x =
⋂
α

(Eαx)

(3) (Ec)x = (Ex)C

(4) CEx(y) = cE(xy)
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Theorem 1.8. Let R Be the class of measurable rectangles, E ∈ Rσs and x ∈ X, then Ex is measurable.

Proof.

Case 1 : Let E ∈ R, Then E = A × B, where A is a measurable sub set of X and B is a measurable sub set of Y.

Suppose x /∈ A. If Ex 6= φ then y ∈ Ex ⇒ (x, y) ∈ E = A × B ⇒ x ∈ A which is a contradiction, Hence Ex = φ.

Let x ∈ A consider any y ∈ Ex. Then (x, y) ∈ E = A × B ⇒ y ∈ B ⇒ Ex ⊂ B, On the other hand if z ∈ B then

(x, z) ∈ A × B = E ⇒ z ∈ Ex ⇒ B ⊂ Ex. Hence B = Ex. Thus we see that Ex =

 φ, if x /∈ A;

B, if x ∈ A.
. Hence Ex is

measurable.

Case 2 : Let E ∈ Rσ then E =
∞⋃
1

En when En are members of R. Therefore Ex =

(
∞⋃
1

En

)
x

=
∞⋃
1

(Enx), by Case 1 Enx

are measurable for every n. It can imply that
∞⋃
1

Enx is measurable i.e. Ex is measurable.

Case 3 : Let E ∈ Rσδ. Then E =
∞⋂
1

Fn where Fn ∈ Rσ, therefore Ex =

(
∞⋂
1

Fn

)
x

=
∞⋂
1

(Fnx), By Case 2 Fnx is measurable

for every n⇒
∞⋂
1

Fnx is measurable, which means that Ex is measurable.

Note 1.9. Let R be the semi algebra of measurable rectangles of Z = X × Y and a be the algebra generated by R then

Rσ = aσ.

Proof. Let {cn} be any sequence of members of aσ. Suppose n = 2 Let c1, c2 ∈ a ⇒ c1 =
m⋃
i=1

Si and c2 =
n⋃
j=1

Tj where

Si and Tj ∈ R for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Then c1 ∩ c2 = c1 ∩

(
n⋃
j=1

Tj

)
=

n⋃
j=1

(c1 ∩ Tj) =
n⋃
j=1

[
Tj ∩

(
m⋃
i=1

Si

)]
=

n⋃
j=1

[
m⋃
i=1

(Tj ∩ Si)
]

=
n⋃
j=1

m⋃
i=1

(Si ∩ Tj) =
m⋃
i=1

n⋃
j=1

Sij , where Sij = Si ∩ Tj . R is closed for intersection hence Sij ∈ R. Thus

c1 ∩ c2 is a finite union of members of R. Hence c1 ∩ c2 ∈ aσ. By induction it follows that
∞⋂
1

Cn ∈ aσ. It follows that

Rσ = aσ.

Theorem 1.10. Let E ∈ Rσδ and (µ× v)(E) < ∞, for x ∈ X define g(x) = v(Ex). Then g is a non negative measurable

function on X and
∫
X
gdµ = (µ× v)(E).

Proof.

Case 1 : Suppose E ∈ R. Let E = A× B, where A is a measurable sub set of X and B is a measurable sub set of Y, Let

x ∈ X then Ex =

 φ, if x /∈ A;

B, if x ∈ A.
. Therefore

g(x) = v(Ex) =

 0, if x /∈ A;

v(B), if x ∈ A.
= v(B)CA(x) ⇒ g = v(B)CA ⇒ g is a non negative simple function. And

∫
X
gdµ =

∫
X
v(B)CAdµ = v(B)µ(A) = (µ× v)(A×B) = (µ× v)(E).

Case 2 : Suppose E ∈ Rσδ, then E is a countable union of members of R. Since every countable union of semi algebra

can be written as a countable disjoint union of members of the given semi algebra, It follows that E is a countable disjoint

union of members of R. Let E =
∞⋃
1

En, where En is a disjoint sequence of members of R. This gives that

Ex =

(
∞⋃
1

En

)
x

=

∞⋃
1

(Enx)⇒ v(Ex) =

∞∑
1

v(Enx) ∀x ∈ X. (3)

For a natural number n, define gn on X by gn(x) = v(Enx) x ∈ X. By Case 1 gn is a non negative measurable and

∫
X

gdµ = (µ× v)(En) (4)
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From (3) we get g(x) =
∞∑
1

gn(x) ∀ x ∈ X ⇒ g =
∞∑
1

gn. By Monotone Convergence Theorem we get
∫
X
gdµ =

∞∑
n=1

∫
X
gndµ =

∞∑
i=1

(µ× v)(En) = (µ× v)

(
∞⋃
1

En

)
= (µ× v)(E) [From (4)].

Case 3 : Assume that E ∈ Rσδ, Then E =
∞⋂
1

Fn where Fn ∈ Rσ, since Rσ is closed for finite intersections, we can

assume that Fn ⊃ Fn+1 for n = 1, 2, . . . . Then by Caratheodory’s Extension Theorem we can find A ∈ aσ ∃ E ⊂ A and

(µ× v)(A) < (µ× v)(E) + 1 [ε = 1]. Define Dn = A ∩ Fn, thus Dn ∈ Rσ. Define hn(x) = v(Dnx) for x ∈ X. By Case 2 the

function hn is non negative measurable and

∫
X

hndµ = (µ× v)(Dn) (5)

lim
n→∞

(Dn) =

∞⋂
1

Dn =

∞⋂
1

(A ∩ Fn) = A ∩

(
∞⋂
1

Fn

)
= A ∩ E = E ⇒ (Dn) ↓ E (6)

(µ× v)(Dn) ≤ (µ× v)(A) < (µ× v)(E) + 1 <∞

⇒ (µ× v)(Dn)→ (µ× v)(E)⇒ (µ× v)(E) = lim
n→∞

(µ× v)(Dn) (7)

From (6) we have (Dnx) ↓ Ex ⇒ v(Dnx)→ v(Ex)⇒ g(x) = lim
n→∞

v(Dnx) = lim
n→∞

hn(x)⇒ hn → g. As (Dnx) is a decreasing

sequence it is clear that (hn) is a decreasing sequence. Thus 0 ≤ hn ≤ h1 ∀ n [From (6)]

h1 is integrable, hence by Dominated Convergence Theorem we get

∫
X

gdµ = lim
n→∞

∫
X

hndµ = lim
n→∞

(µ× v)(Dn) [From (5)]

= (µ× v)(E) [From (7)]

Lemma 1.11. Let E be a measurable null set with (µ× v)(E) = 0. Then for almost all x, Ex is measurable and v(Ex) = 0.

Proof. We can find F ∈ aσδ and E ⊂ F such that (µ×v)(F ) = (µ×v)(E) [For ε > 0 there exist A ∈ aσδ such that E ⊂ A

and µ∗(A) = µ∗(E)]⇒ (µ× v)(E) = 0. Since a is the algebra generated by R we have aσδ = Rσδ ⇒ F ∈ Rσδ. Hence Fx is

measurable and g defined by g(x) = v(Fx) is non negative measurable and
∫
gdµ = (µ × v)(F ) ⇒

∫
gdµ = 0 ⇒ g = 0 a.e.

⇒ v(Fx) = 0 for almost all x. But Ex ⊂ Fx, hence Ex is measurable and v(Ex) = 0 for almost all x.

Proposition 1.12. Let E be any measurable set of finite measure with (µ× v)(E) <∞. Then Ex is measurable for almost

all x. If g s a non negative function such that g(x) = v(Ex) whenever Ex is measurable then g is measurable (In fact

Integrable) and
∫
gdµ = (µ× v)(E).

Proof. Let F ∈ Rσδ such that E ⊂ F and (µ × v)(E) = (µ × v)(F ). Define G = F − E. Then G is measurable and

(µ × v)(G) = (µ × v)(F ) − (µ × v)(E) = 0. By the above Lemma Gx is measurable and v(Gx) = 0 for almost all x. Then

from G = F − E we get Gx = Fx − Ex ⇒ v(Gx) = v(Fx) − v(Ex) ⇒ v(Fx) = v(Ex) for almost all x. Let h be defined by

h(x) = v(Fx) then h is non negative measurable and
∫
hdµ = (µ× v)(F ). But g(x) = v(Ex) = v(Fx) = h(x) for almost all

x.

⇒ g = h a.e. Hence g is measurable and
∫
g =

∫
h = (µ× v)(F ) = (µ× v)(E)⇒

∫
gdµ = (µ× v)(E).

Theorem 1.13 (Fubinis Theorem). Let (X,A, µ) and (Y,B, v) be two complete measure spaces and Z = X × Y . Suppose

f be any integrable function on Z then
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(1) For almost all x ∈ X, the function fx defined on Y by fx(y) = f(x, y) is integrable on Y.

(1’) For almost all y ∈ Y , the function fy defined on X by fy(x) = f(x, y) is integrable on X.

(2)
∫
Y
fdv is integrable on X.

(2’)
∫
X
fdµ is integrable on Y.

(3)
∫
X

∫
Y
fdvdµ =

∫
Z
fd(µ× v) =

∫
Y

∫
X
fdµdv.

Proof. Because of symmetry it is enough to prove (1), (2) and first part of (3).

First suppose that f is non negative.

Case 1 : Let f = CE where E be any measurable set of finite measure, i.e. (µ× v)(E) <∞, this gives fx = (CE)x = CEx ⇒∫
Y
fxdv =

∫
Y
CExdv = v(Ex)

Let g(x) = v(Ex), by the proceeding theorem g is non negative integrable and
∫
gdµ = (µ × v)(E). But g(x) = v(Ex) =∫

Y
fxdv ⇒

∫
X
gdµ =

∫
X

(
∫
Y
fxdv)dµ⇒

∫
X

(
∫
Y
fdv)dµ = (µ× v)(E) =

∫
Z
CEd(µ× v) =

∫
Z
fd(µ× v).

g is integrable implies that g(x) is finite for almost all x ⇒
∫
Y
fxdv is finite for almost all x ⇒ fx is integrable for almost all

x.

Further g is integrable means
∫
Y
fdv is integrable.

Case 2 : Since integral is a linear operator, it follows from Case 1 that the result holds for all non negative simple functions

which vanish outside set of finite measure.

Case 3 : Let f be any non negative integrable function. Let (φn) be an increasing sequence of non negative simple

functions such that each φn vanish outside a set of finite measure and (φn) ↑ f . Then this gives (φnx) ↑ fx and by M.C.T.

we get

∫
Z

fd(µ× v) = lim
n→∞

∫
(φn)d(µ× v) (8)

&

∫
Y

fxdv = lim
n→∞

∫
Y

(φnx)dv (9)

Let gn =
∫
Y

(φn)dv. Then gn is non negative and measurable and

∫
X

gndµ =

∫
X

(∫
Y

φndv

)
dµ. (10)

lim
n→∞

gn(x) = limn→∞
∫
Y

(φnx)dv =
∫
Y
fxdv [From (9)] i.e. gn ↑

∫
Y
fxdv = h (say). By M.C. T. we get

∫
X

(h)dµ =

∫
X

(∫
Y

fdv

)
dµ

= lim
n→∞

∫
X

(gn)dµ = lim
n→∞

∫
X

∫
Y

(φnx)dvdµ [From (10)]

= lim
n→∞

∫
Z

(φnx)d(µ× v) [By Case 2]

=

∫
Z

(f)d(µ× v) [By (8)]

⇒
∫
X

∫
Y
fdvdµ =

∫
Z
fd(µxv) =

∫
Y

∫
X
fdµdv.

Theorem 1.14 (Tonelli’s Theorem). Let (X,A, µ) and (Y,B, v) be two σ-finite measure spaces and f be any non negative

measurable function on Z = X × Y . Then

(1) For almost all x ∈ X, the function fx defined on Y by fx(y) = f(x, y) is non negative measurable

(1’) For almost all y ∈ Y , the function fy defined on X by fy(x) = f(x, y)is non negative measurable.
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(2)
∫
Y
fdv is non negative measurable on X.

(2’)
∫
X
fdµ is non negative measurable on Y.

(3)
∫
X

(
∫
Y
fdv)dµ =

∫
Z
fd(µ× v) =

∫
Y

(
∫
X
fdµ)dv.

Proof. Because of symmetry it is enough to prove (1), (2)and First part of (3).

Case 1 : suppose f = CE where E is a measurable set with (µ× v)(E) <∞. Then for almost all x ∈ X, Ex is measurable.

Let g(x) = v(Ex), whenever Ex is measurable and g(x) = 0 otherwise. Then g is a non negative measurable function and∫
X
gdµ = (µ × v)(E). Since Ex is measurable for almost all x and fx = (CĖ)x = CEx . It follows that fx is non negative

measurable for all x. Further
∫
Y
fxdv =

∫
Y
CExdv = v(Ex)⇒

∫
Y
fxdv = g(x) for almost all x.

⇒
∫
Y
fdv is also non negative measurable and

∫
X

(
∫
Y
fdv)dµ =

∫
X
gdµ = (µ× v)(E) =

∫
Z
CEd(µ× v) =

∫
Z
fd(µ× v).

Case 2 : Since integral is a linear operator, therefore the theorem holds for all non negative simple functions which vanish

outside the set of finite measure.

Case 3 : Let f be any non negative measurable function. Since µ and v are σ-finite we see that µ×v is also σ−finite hence

there exists an increasing sequence (φn) of non negative simple functions such that φn ↑ f and each φn vanishes outside a

set of finite measure. By M.C. T. we get

∫
Z

fd(µ× v) = lim
n→∞

∫
Z

(φn)d(µ× v). (11)

As φn ↑ f it follows 0 ≤ φnx ↑ fx again by M.C.T. we obtain

∫
Y

fxdv = lim
n→∞

∫
Y

(φnx)dv (12)

Define gn(x) =
∫
Y

(φnx)dv for x ∈ X. Then (gn) is an increasing sequence of non negative measurable functions and

lim
n→∞

gn(x) = lim
n→∞

∫
Y

(φnx)dv [From (12)]

= lim
n→∞

∫
Y

(fn)dv = h say

Then gn(x) ↑ h. By M.C.T.
∫
X
hdµ =

∫
X

(
∫
Y
fxdv)dµ = lim

n→∞

∫
X

(gn(x))dµ = lim
n→∞

∫
X

(
∫
Y
φndv)dµ = lim

n→∞

∫
Z

(φn)(µ× v) =∫
Z
fd(µ× v) [From (11)]. This proves the theorem.
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