International Journal of Mathematics And its Applications

Product Measure Spaces and Theorems of Fubini and Tonelli

Research Article

Parvinder Singh ${ }^{1 *}$

1 P.G.Department of Mathematics, S.G.G.S. Khalsa College, Mahilpur, Hoshiarpur, Punjab, India.

Abstract

The product $\mathrm{X} \times Y$ of measure spaces has as its measurable sub sets, the σ-algebra generated by the products $\mathrm{A} \times \mathrm{B}$ measurable sub sets of X and Y. Fubini's Theorem introduced by Guido Fubini in 1907 is a result which gives conditions under which it is possible to commute a double integral. It implies that two repeated integrals of a function of two variables are equal if the function is integrable. Tonelli's Theorem is a successor of the Fubini's Theorem. The conclusion of Tonelli's theorem is identical to that of Fubini's theorem, but the assumption that $|f|$ has a finite integral is replaced by the assumption that f is non-negative.

Keywords: Measure Spaces, Product of Measure Spaces, Theorems of Fubini and Tonelli.

1. Basics and Main Results

Definition 1.1. Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, v) be any two measure spaces. If $A \subset X$ and $B \subset Y$ then $A \times B$ is called a rectangle of $X \times Y$. If $A \in \mathcal{A}$ and $B \in \mathcal{B}$ then $A \times B$ is called a measurable rectangle of $X \times Y$.

Theorem 1.2. Let \mathcal{R} be the class of measurable rectangles of $Z=X \times Y$. For any $A \times B \in \mathcal{R}$, Define $\lambda(A \times B)=\mu(A) v(B)$, then \mathcal{R} is a semi-algebra and λ is a measure on \mathcal{R}.

Proof.

(1) Let $A \times B \in \mathcal{R}$ and $C \times D \in \mathcal{R}$ then $(A \times B) \cap(C \times D)=(A \cap C) \times(B \cap D) \Rightarrow(A \times B) \cap(C \times D) \in \mathcal{R}$.
(2) $(A \times B)^{C}=A^{C} \times B^{C} \cup\left(A \times B^{C}\right) \cup\left(A^{C} \times B\right) \Rightarrow(A \times B)^{C}$ is a finite union of members of \mathcal{R}. Proves that \mathcal{R} is semi-algebra.
(3) λ is obviously non-negative and $\lambda(\phi)=\lambda(\phi \times \phi)=\mu(\phi) v(\phi)=0.0=0$.
(4) Let (E_{n}) be any sequence of disjoint measurable rectangles and suppose $\bigcup_{1}^{\infty} E_{n}=E$ is also a measurable rectangle.

Let $E_{n}=A_{n} \times B_{n}, E=A \times \mathrm{B}$ where A and A_{n} are measurable subsets of X and B and B_{n} are measurable subsets of Y . Consider any $s \in A$ and $y \in B$, then $(s, y) \in A \times B=E=\bigcup_{1}^{\infty} E_{n} \Rightarrow(s, y) \in E_{i}$ for some $i \Rightarrow(s, y) \in A_{i} \times B_{i}$ for some $I \Rightarrow y \in B_{i}$ when $s \in A_{i} \Rightarrow B \subset \cup\left\{B_{i} / s \in A_{i}\right\}$.

[^0]Suppose $z \subset \cup\left\{B_{i} / s \in A_{i}\right\}$, then $z \in B_{i}$ when $s \in A_{i} \Rightarrow(s, z) \in A_{i} \times B_{i} \Rightarrow(s, z) \in E_{i} \Rightarrow(s, z) \in \bigcup_{1}^{\infty} E_{n}=E=A \times B \Rightarrow s \in A$ and $z \in B$, shows that $\cup\left\{B_{i} / s \in A_{i}\right\} \subset B_{i}$. Therefore

$$
\begin{equation*}
B=\cup\left\{B_{i} / s \in A_{i}\right\} \quad \text { for any } s \in A \tag{1}
\end{equation*}
$$

Let $u \in A_{i}$ for some i and $B_{i} \neq \phi$ for some i. Take $v \in B_{i}$, this gives that $(u, v) \in A_{i} \times B_{i}=E_{i} \Rightarrow(u, v) \in \bigcup_{1}^{\infty} E_{n}=E=$ $A \times B \Rightarrow u \in A$, shows if $u \notin A$ then

$$
\begin{equation*}
\text { Either } u \notin A_{i} \text { or if } u \in A_{i} \text { then } B_{i}=\phi \tag{2}
\end{equation*}
$$

From (1) and (2) we get $v(B) C_{A}=\sum_{i=1}^{\infty} v\left(B_{i}\right) C_{A_{i}}$, by Monotone convergence theorem we have

$$
\begin{aligned}
& \int v(B) C_{A} d \mu=\int\left(\sum_{i=1}^{\infty} v\left(B_{i}\right) C_{A_{i}}\right) d \mu=\sum_{i=1}^{\infty} \int v\left(B_{i}\right) C_{A_{i}} d \mu \\
& \Rightarrow v(B) \mu(A)=\sum_{i=1}^{\infty} v\left(B_{i}\right) \mu\left(A_{i}\right) \\
& \Rightarrow \lambda(A \times B)=\sum_{i=1}^{\infty} \lambda\left(A_{i} \times B_{i}\right) \Rightarrow \lambda(E)=\sum_{i=1}^{\infty} \lambda\left(E_{i}\right)
\end{aligned}
$$

Which proves that λ is a measure on R.

Definition 1.3. Let (X, A, μ) and (Y, B, v) be any measure spaces, $Z=X \times Y, \mathcal{R}$ be the class of measurable rectangles of Z, π be defined on \mathcal{R} by $\pi(A \times B)=\mu(A) v(B)$. Then \mathcal{R} is a semi algebra on Z and π is a measure on \mathcal{R}. Let a be the algebra generated by \mathcal{R} and λ be the unique extension of π to a measure on a. Let $(Z, \bar{a}, \bar{\lambda})$ be the outer measure extension of (Z, a, λ). Then $(Z, \bar{a}, \bar{\lambda})$ is called the Product space of (X, A, μ) and (Y, B, v). The measure $\bar{\lambda}$ is called the Product measure of μ and v and is denoted by $\mu \times v$.

Note 1.4. (1) It is obvious that $(Z, \bar{a}, \bar{\lambda})$ is an extension of (Z, \mathcal{R}, π). Hence if $A \times B \in R$ then

$$
\begin{aligned}
(\mu \times v)(A \times B) & =\pi(A \times B) & & {[\text { Because } \mu x v \text { is an extension of } \pi] } \\
& =\mu(A) v(B) & & {[\text { By definition of } \pi] }
\end{aligned}
$$

(2) If μ and v both are finite then $\mu \times v$ is also finite.
(3) If μ and v are σ-finite then $\mu \times v$ is also σ-finite.

Remark 1.5. If \mathcal{F} be the any family of subsets of X and $A=\cup\{F / F \in \mathcal{F}\}, B=\cap\{F / F \in F\}$ then $C_{A}=\sup \left\{C_{F} / F \in \mathcal{F}\right\}$ and $C_{B}=\inf \left\{C_{F} / F \in \mathcal{F}\right\}$

Definition 1.6. Let $E \subset X \times Y$ and $x \in X$ then $E_{x}=\{y \in Y /(x, y) \in E\}$ is called the Cross-Section of E by x. If $y \in Y$ Then $E_{y}=\{x \in X /(x, y) \in E\}$ is called the Cross Section of E by y.

Note 1.7. Let E and E_{α} be any sub sets of $X \times Y$ and $x \in X$
(1) $\left(\bigcup_{\alpha} E_{\alpha}\right)_{x}=\bigcup_{\alpha}\left(E_{\alpha x}\right)$
(2) $\left(\bigcap_{\alpha} E_{\alpha}\right)_{x}=\bigcap_{\alpha}\left(E_{\alpha x}\right)$
(3) $\left(E^{c}\right)_{x}=\left(E_{x}\right)^{C}$
(4) $C_{E_{x}(y)}=c_{E}(x y)$

Theorem 1.8. Let \mathcal{R} Be the class of measurable rectangles, $E \in R_{\sigma s}$ and $x \in X$, then E_{x} is measurable.

Proof.

Case 1 : Let $E \in \mathcal{R}$, Then $E=A \times B$, where A is a measurable sub set of X and B is a measurable sub set of Y . Suppose $x \notin A$. If $E_{x} \neq \phi$ then $y \in E_{x} \Rightarrow(x, y) \in E=A \times B \Rightarrow x \in A$ which is a contradiction, Hence $E_{x}=\phi$. Let $x \in A$ consider any $y \in E_{x}$. Then $(x, y) \in E=A \times B \Rightarrow y \in B \Rightarrow E_{x} \subset B$, On the other hand if $z \in B$ then $(x, z) \in A \times B=E \Rightarrow z \in E_{x} \Rightarrow B \subset E_{x}$. Hence $B=E_{x}$. Thus we see that $E_{x}=\left\{\begin{array}{ll}\phi, & \text { if } x \notin A ; \\ B, & \text { if } x \in A .\end{array}\right.$. Hence E_{x} is measurable.
Case 2: Let $E \in \mathcal{R}_{\sigma}$ then $E=\bigcup_{1}^{\infty} E_{n}$ when E_{n} are members of \mathcal{R}. Therefore $E_{x}=\left(\bigcup_{1}^{\infty} E_{n}\right)=\bigcup_{1}^{\infty}\left(E_{n x}\right)$, by Case $1 E_{n x}$ are measurable for every n. It can imply that $\bigcup_{1}^{\infty} E_{n x}$ is measurable i.e. E_{x} is measurable.
Case 3: Let $E \in R_{\sigma \delta}$. Then $E=\bigcap_{1}^{\infty} F_{n}$ where $F_{n} \in R_{\sigma}$, therefore $E_{x}=\left(\bigcap_{1}^{\infty} F_{n}\right)_{x}=\bigcap_{1}^{\infty}\left(F_{n x}\right)$, By Case $2 F_{n x}$ is measurable for every $n \Rightarrow \bigcap_{1}^{\infty} F_{n x}$ is measurable, which means that E_{x} is measurable.

Note 1.9. Let \mathcal{R} be the semi algebra of measurable rectangles of $Z=X \times Y$ and a be the algebra generated by \mathcal{R} then $R_{\sigma}=a_{\sigma}$.

Proof. Let $\left\{c_{n}\right\}$ be any sequence of members of a_{σ}. Suppose $n=2$ Let $c_{1}, c_{2} \in a \Rightarrow c_{1}=\bigcup_{i=1}^{m} S_{i}$ and $c_{2}=\bigcup_{j=1}^{n} T_{j}$ where S_{i} and $T_{j} \in \mathcal{R}$ for $1 \leq i \leq m$ and $1 \leq j \leq n$. Then $c_{1} \cap c_{2}=c_{1} \cap\left(\bigcup_{j=1}^{n} T_{j}\right)=\bigcup_{j=1}^{n}\left(c_{1} \cap T_{j}\right)=\bigcup_{j=1}^{n}\left[T_{j} \cap\left(\bigcup_{i=1}^{m} S_{i}\right)\right]=$ $\bigcup_{j=1}^{n}\left[\bigcup_{i=1}^{m}\left(T_{j} \cap S_{i}\right)\right]=\bigcup_{j=1}^{n} \bigcup_{i=1}^{m}\left(S_{i} \cap T_{j}\right)=\bigcup_{i=1}^{m} \bigcup_{j=1}^{n} S_{i j}$, where $S_{i j}=S_{i} \cap T_{j}$. \mathcal{R} is closed for intersection hence $S_{i j} \in \mathcal{R}$. Thus $c_{1} \cap c_{2}$ is a finite union of members of \mathcal{R}. Hence $c_{1} \cap c_{2} \in a_{\sigma}$. By induction it follows that $\bigcap_{1}^{\infty} C_{n} \in a_{\sigma}$. It follows that $\mathcal{R}_{\sigma}=a_{\sigma}$.

Theorem 1.10. Let $E \in \mathcal{R}_{\sigma_{\delta}}$ and $(\mu \times v)(E)<\infty$, for $x \in X$ define $g(x)=v\left(E_{x}\right)$. Then g is a non negative measurable function on X and $\int_{X} g d \mu=(\mu \times v)(E)$.

Proof.

Case 1: Suppose $E \in \mathcal{R}$. Let $E=A \times B$, where A is a measurable sub set of X and B is a measurable sub set of Y , Let $x \in X$ then $E_{x}=\left\{\begin{array}{ll}\phi, & \text { if } x \notin A ; \\ B, & \text { if } x \in A .\end{array}\right.$. Therefore
$g(x)=v\left(E_{x}\right)=\left\{\begin{array}{ll}0, & \text { if } x \notin A ; \\ v(B), & \text { if } x \in A .\end{array}=v(B) C_{A}(x) \Rightarrow g=v(B) C_{A} \Rightarrow g\right.$ is a non negative simple function. And $\int_{X} g d \mu=$ $\int_{X} v(B) C_{A} d \mu=v(B) \mu(A)=(\mu \times v)(A \times B)=(\mu \times v)(E)$.
Case 2: Suppose $E \in \mathcal{R}_{\sigma \delta}$, then E is a countable union of members of \mathcal{R}. Since every countable union of semi algebra can be written as a countable disjoint union of members of the given semi algebra, It follows that E is a countable disjoint union of members of \mathcal{R}. Let $E=\bigcup_{1}^{\infty} E_{n}$, where E_{n} is a disjoint sequence of members of \mathcal{R}. This gives that

$$
\begin{equation*}
E_{x}=\left(\bigcup_{1}^{\infty} E_{n}\right)_{x}=\bigcup_{1}^{\infty}\left(E_{n x}\right) \Rightarrow v\left(E_{x}\right)=\sum_{1}^{\infty} v\left(E_{n x}\right) \forall x \in X . \tag{3}
\end{equation*}
$$

For a natural number n , define g_{n} on X by $g_{n}(x)=v\left(E_{n x}\right) x \in X$. By Case $1 g_{n}$ is a non negative measurable and

$$
\begin{equation*}
\int_{X} g d \mu=(\mu \times v)\left(E_{n}\right) \tag{4}
\end{equation*}
$$

From (3) we get $g(x)=\sum_{1}^{\infty} g_{n}(x) \forall x \in X \Rightarrow g=\sum_{1}^{\infty} g_{n}$. By Monotone Convergence Theorem we get $\int_{X} g d \mu=\sum_{n=1}^{\infty} \int_{X} g_{n} d \mu=$ $\sum_{i=1}^{\infty}(\mu \times v)\left(E_{n}\right)=(\mu \times v)\left(\bigcup_{1}^{\infty} E_{n}\right)=(\mu \times v)(E)$ [From (4)].
Case 3 : Assume that $E \in \mathcal{R}_{\sigma \delta}$, Then $E=\bigcap_{1}^{\infty} F_{n}$ where $F_{n} \in \mathcal{R}_{\sigma}$, since \mathcal{R}_{σ} is closed for finite intersections, we can assume that $F_{n} \supset F_{n+1}$ for $n=1,2, \ldots$ Then by Caratheodory's Extension Theorem we can find $A \in a_{\sigma} \exists E \subset A$ and $(\mu \times v)(A)<(\mu \times v)(E)+1[\epsilon=1]$. Define $D_{n}=A \cap F_{n}$, thus $D_{n} \in \mathcal{R}_{\sigma}$. Define $h_{n}(x)=v\left(D_{n x}\right)$ for $x \in X$. By Case 2 the function h_{n} is non negative measurable and

$$
\begin{align*}
\int_{X} h_{n} d \mu & =(\mu \times v)\left(D_{n}\right) \tag{5}\\
\lim _{n \rightarrow \infty}\left(D_{n}\right) & =\bigcap_{1}^{\infty} D_{n}=\bigcap_{1}^{\infty}\left(A \cap F_{n}\right)=A \cap\left(\bigcap_{1}^{\infty} F_{n}\right)=A \cap E=E \Rightarrow\left(D_{n}\right) \downarrow E \tag{6}
\end{align*}
$$

$(\mu \times v)\left(D_{n}\right) \leq(\mu \times v)(A)<(\mu \times v)(E)+1<\infty$

$$
\begin{equation*}
\Rightarrow(\mu \times v)\left(D_{n}\right) \rightarrow(\mu \times v)(E) \Rightarrow(\mu \times v)(E)=\lim _{n \rightarrow \infty}(\mu \times v)\left(D_{n}\right) \tag{7}
\end{equation*}
$$

From (6) we have $\left(D_{n x}\right) \downarrow E_{x} \Rightarrow v\left(D_{n x}\right) \rightarrow v\left(E_{x}\right) \Rightarrow g(x)=\lim _{n \rightarrow \infty} v\left(D_{n x}\right)=\lim _{n \rightarrow \infty} h_{n}(x) \Rightarrow h_{n} \rightarrow g$. As $\left(D_{n x}\right)$ is a decreasing sequence it is clear that $\left(h_{n}\right)$ is a decreasing sequence. Thus $0 \leq h_{n} \leq h_{1} \forall n$ [From (6)]
h_{1} is integrable, hence by Dominated Convergence Theorem we get

$$
\begin{array}{rlr}
\int_{X} g d \mu=\lim _{n \rightarrow \infty} \int_{X} h_{n} d \mu & =\lim _{n \rightarrow \infty}(\mu \times v)\left(D_{n}\right) \\
& =(\mu \times v)(E)
\end{array}
$$

Lemma 1.11. Let E be a measurable null set with $(\mu \times v)(E)=0$. Then for almost all x, E_{x} is measurable and $v\left(E_{x}\right)=0$.
Proof. We can find $F \in a_{\sigma \delta}$ and $E \subset F$ such that $(\mu \times v)(F)=(\mu \times v)(E)\left[\right.$ For $\epsilon>0$ there exist $A \in a_{\sigma \delta}$ such that $E \subset A$ and $\left.\mu^{*}(A)=\mu^{*}(E)\right] \Rightarrow(\mu \times v)(E)=0$. Since a is the algebra generated by \mathcal{R} we have $a_{\sigma \delta}=\mathcal{R}_{\sigma \delta} \Rightarrow F \in \mathcal{R}_{\sigma \delta}$. Hence F_{x} is measurable and g defined by $g(x)=v\left(F_{x}\right)$ is non negative measurable and $\int g d \mu=(\mu \times v)(F) \Rightarrow \int g d \mu=0 \Rightarrow g=0$ a.e. $\Rightarrow v\left(F_{x}\right)=0$ for almost all x. But $E_{x} \subset F_{x}$, hence E_{x} is measurable and $v\left(E_{x}\right)=0$ for almost all x.

Proposition 1.12. Let E be any measurable set of finite measure with $(\mu \times v)(E)<\infty$. Then E_{x} is measurable for almost all x. If g s a non negative function such that $g(x)=v\left(E_{x}\right)$ whenever E_{x} is measurable then g is measurable (In fact Integrable) and $\int g d \mu=(\mu \times v)(E)$.

Proof. Let $F \in \mathcal{R}_{\sigma \delta}$ such that $E \subset F$ and $(\mu \times v)(E)=(\mu \times v)(F)$. Define $G=F-E$. Then G is measurable and $(\mu \times v)(G)=(\mu \times v)(F)-(\mu \times v)(E)=0$. By the above Lemma G_{x} is measurable and $v\left(G_{x}\right)=0$ for almost all x. Then from $G=F-E$ we get $G_{x}=F_{x}-E_{x} \Rightarrow v\left(G_{x}\right)=v\left(F_{x}\right)-v\left(E_{x}\right) \Rightarrow v\left(F_{x}\right)=v\left(E_{x}\right)$ for almost all x. Let h be defined by $h(x)=v\left(F_{x}\right)$ then h is non negative measurable and $\int h d \mu=(\mu \times v)(F)$. But $g(x)=v\left(E_{x}\right)=v\left(F_{x}\right)=h(x)$ for almost all x .
$\Rightarrow g=\mathrm{h}$ a.e. Hence g is measurable and $\int g=\int h=(\mu \times v)(F)=(\mu \times v)(E) \Rightarrow \int g d \mu=(\mu \times v)(E)$.

Theorem 1.13 (Fubinis Theorem). Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, v) be two complete measure spaces and $Z=X \times Y$. Suppose f be any integrable function on Z then
(1) For almost all $x \in X$, the function f_{x} defined on Y by $f_{x}(y)=f(x, y)$ is integrable on Y.
(1') For almost all $y \in Y$, the function f_{y} defined on X by $f_{y}(x)=f(x, y)$ is integrable on X.
(2) $\int_{Y} f d v$ is integrable on X.
(2') $\int_{X} f d \mu$ is integrable on Y.
(3) $\int_{X} \int_{Y} f d v d \mu=\int_{Z} f d(\mu \times v)=\int_{Y} \int_{X} f d \mu d v$.

Proof. Because of symmetry it is enough to prove (1), (2) and first part of (3).
First suppose that f is non negative.
Case 1: Let $f=\mathcal{C}_{E}$ where E be any measurable set of finite measure, i.e. $(\mu \times v)(E)<\infty$, this gives $f_{x}=\left(\mathcal{C}_{E}\right)_{x}=\mathcal{C}_{E x} \Rightarrow$ $\int_{Y} f_{x} d v=\int_{Y} \mathcal{C}_{E x} d v=v\left(E_{x}\right)$

Let $g(x)=v\left(E_{x}\right)$, by the proceeding theorem g is non negative integrable and $\int g d \mu=(\mu \times v)(E)$. But $g(x)=v\left(E_{x}\right)=$ $\int_{Y} f_{x} d v \Rightarrow \int_{X} g d \mu=\int_{X}\left(\int_{Y} f_{x} d v\right) d \mu \Rightarrow \int_{X}\left(\int_{Y} f d v\right) d \mu=(\mu \times v)(E)=\int_{Z} \mathcal{C}_{E} d(\mu \times v)=\int_{Z} f d(\mu \times v)$. g is integrable implies that $g(x)$ is finite for almost all $\mathrm{x} \Rightarrow \int_{Y} f_{x} d v$ is finite for almost all $\mathrm{x} \Rightarrow f_{x}$ is integrable for almost all x .

Further g is integrable means $\int_{Y} f d v$ is integrable.
Case 2 : Since integral is a linear operator, it follows from Case 1 that the result holds for all non negative simple functions which vanish outside set of finite measure.

Case 3 : Let f be any non negative integrable function. Let $\left(\phi_{n}\right)$ be an increasing sequence of non negative simple functions such that each ϕ_{n} vanish outside a set of finite measure and $\left(\phi_{n}\right) \uparrow f$. Then this gives $\left(\phi_{n x}\right) \uparrow f_{x}$ and by M.C.T. we get

$$
\begin{align*}
\int_{Z} f d(\mu \times v) & =\lim _{n \rightarrow \infty} \int\left(\phi_{n}\right) d(\mu \times v) \tag{8}\\
\& \int_{Y} f_{x} d v & =\lim _{n \rightarrow \infty} \int_{Y}\left(\phi_{n x}\right) d v \tag{9}
\end{align*}
$$

Let $g_{n}=\int_{Y}\left(\phi_{n}\right) d v$. Then g_{n} is non negative and measurable and

$$
\begin{equation*}
\int_{X} g_{n} d \mu=\int_{X}\left(\int_{Y} \phi_{n} d v\right) d \mu . \tag{10}
\end{equation*}
$$

$\lim _{n \rightarrow \infty} g_{n}(x)=\lim _{n \rightarrow \infty} \int_{Y}\left(\phi_{n x}\right) d v=\int_{Y} f_{x} d v[\operatorname{From}(9)]$ i.e. $g_{n} \uparrow \int_{Y} f_{x} d v=h$ (say). By M.C. T. we get

$$
\begin{aligned}
\int_{X}(h) d \mu & =\int_{X}\left(\int_{Y} f d v\right) d \mu \\
& =\lim _{n \rightarrow \infty} \int_{X}\left(g_{n}\right) d \mu=\lim _{n \rightarrow \infty} \int_{X} \int_{Y}\left(\phi_{n x}\right) d v d \mu \quad[\text { From (10)] } \\
& =\lim _{n \rightarrow \infty} \int_{Z}\left(\phi_{n x}\right) d(\mu \times v) \quad[\text { By Case 2] } \\
& =\int_{Z}(f) d(\mu \times v)[\text { By (8)] }
\end{aligned}
$$

$\Rightarrow \int_{X} \int_{Y} f d v d \mu=\int_{Z} f d(\mu x v)=\int_{Y} \int_{X} f d \mu d v$.
Theorem 1.14 (Tonelli's Theorem). Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, v) be two σ-finite measure spaces and f be any non negative measurable function on $Z=X \times Y$. Then
(1) For almost all $x \in X$, the function f_{x} defined on Y by $f_{x}(y)=f(x, y)$ is non negative measurable
(1') For almost all $y \in Y$, the function f_{y} defined on X by $f_{y}(x)=f(x, y)$ is non negative measurable.
(2) $\int_{Y} f d v$ is non negative measurable on X.
(2') $\int_{X} f d \mu$ is non negative measurable on Y.
(3) $\int_{X}\left(\int_{Y} f d v\right) d \mu=\int_{Z} f d(\mu \times v)=\int_{Y}\left(\int_{X} f d \mu\right) d v$.

Proof. Because of symmetry it is enough to prove (1), (2)and First part of (3).
Case 1: suppose $f=\mathcal{C}_{E}$ where E is a measurable set with $(\mu \times v)(E)<\infty$. Then for almost all $x \in X, E_{x}$ is measurable. Let $g(x)=v\left(E_{x}\right)$, whenever E_{x} is measurable and $g(x)=0$ otherwise. Then g is a non negative measurable function and $\int_{X} g d \mu=(\mu \times v)(E)$. Since E_{x} is measurable for almost all x and $f_{x}=\left(\mathcal{C}_{\dot{E}}\right)_{x}=\mathcal{C}_{E_{x}}$. It follows that f_{x} is non negative measurable for all x. Further $\int_{Y} f_{x} d v=\int_{Y} C_{E_{x}} d v=v\left(E_{x}\right) \Rightarrow \int_{Y} f_{x} d v=g(x)$ for almost all x. $\Rightarrow \int_{Y} f d v$ is also non negative measurable and $\int_{X}\left(\int_{Y} f d v\right) d \mu=\int_{X} g d \mu=(\mu \times v)(E)=\int_{Z} \mathcal{C}_{E} d(\mu \times v)=\int_{Z} f d(\mu \times v)$.

Case 2: Since integral is a linear operator, therefore the theorem holds for all non negative simple functions which vanish outside the set of finite measure.

Case 3: Let f be any non negative measurable function. Since μ and v are σ-finite we see that $\mu \times v$ is also σ-finite hence there exists an increasing sequence (ϕ_{n}) of non negative simple functions such that $\phi_{n} \uparrow f$ and each ϕ_{n} vanishes outside a set of finite measure. By M.C. T. we get

$$
\begin{equation*}
\int_{Z} f d(\mu \times v)=\lim _{n \rightarrow \infty} \int_{Z}\left(\phi_{n}\right) d(\mu \times v) . \tag{11}
\end{equation*}
$$

As $\phi_{n} \uparrow f$ it follows $0 \leq \phi_{n x} \uparrow f_{x}$ again by M.C.T. we obtain

$$
\begin{equation*}
\int_{Y} f_{x} d v=\lim _{n \rightarrow \infty} \int_{Y}\left(\phi_{n x}\right) d v \tag{12}
\end{equation*}
$$

Define $g_{n}(x)=\int_{Y}\left(\phi_{n x}\right) d v$ for $x \in X$. Then $\left(g_{n}\right)$ is an increasing sequence of non negative measurable functions and

$$
\begin{aligned}
\lim _{n \rightarrow \infty} g_{n}(x) & =\lim _{n \rightarrow \infty} \int_{Y}\left(\phi_{n x}\right) d v \quad[\text { From }(12)] \\
& =\lim _{n \rightarrow \infty} \int_{Y}\left(f_{n}\right) d v=h \text { say }
\end{aligned}
$$

Then $g_{n}(x) \uparrow h$. By M.C.T. $\int_{X} h d \mu=\int_{X}\left(\int_{Y} f_{x} d v\right) d \mu=\lim _{n \rightarrow \infty} \int_{X}\left(g_{n}(x)\right) d \mu=\lim _{n \rightarrow \infty} \int_{X}\left(\int_{Y} \phi_{n} d v\right) d \mu=\lim _{n \rightarrow \infty} \int_{Z}\left(\phi_{n}\right)(\mu \times v)=$ $\int_{Z} f d(\mu \times v)$ [From (11)]. This proves the theorem.

References

[1] B.Gerald, Real Analysis, Modern Techniques and Their Applications, John Wiley \& Sons, Inc., New York, (1999).
[2] F.Harvey, A Consistent Fubini-Tonelli Theorem for Non measurable Functions, Illinois J. Math. 24(3)(1980), 390-395.
[3] G.Fubini, Sugli integrali multipli, Rom. Acc. L. Rend. (5)16(1)(1907), 608-614.
[4] L.D.Kudryavtsev, Fubini theorem, Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer, (2001).

[^0]: * E-mail: parvinder070@gmail.com

