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Abstract

An integral formula for the subregular germ of a κ-orbital integral is developed.
The formula holds for any reductive group over a p-adic field of characteristic zero.
This expression of the subregular germ is obtained by applying Igusa’s theory of
asymptotic expansions. The integral formula is applied to the question of the
transfer of a κ-orbital integral to an endoscopic group. It is shown that the quadratic
characters arising in the subregular germs are compatible with the transfer. Details
of the transfer are given for the subregular germ of unitary groups.
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Introduction

An elementary fact in the theory of finite groups states that the vector space
spanned by irreducible characters of representations of a group coincides with the
vector space spanned by characteristic functions of conjugacy classes. To give an
explicit formula for an irreducible character is to express a character as a linear
combination of the basis vectors formed by characteristic functions. For Lie groups
or p-adic groups, irreducible characters must be interpreted as distributions. Simi-
larly the characteristic functions must be replaced by distributions, orbital integrals,
supported on the conjugacy classes if one hopes to develop systematically a the-
ory of characters on Lie and p-adic groups. A successful character theory of these
groups should give relations expressing distribution characters as linear combina-
tions of orbital integrals, and orbital integrals as sums of characters. This work is
concerned with the study of orbital integrals on p-adic groups, needed for eventual
applications to automorphic representation theory and the trace formula.

These orbital integrals have a notoriously complicated structure. As the conju-
gacy class is allowed to vary, the orbital integrals possess an asymptotic expansion
called the Shalika germ expansion. In contrast to what the terminology might sug-
gest, the asymptotic expansion has only finitely many terms and for p-adic groups
actually gives an exact formula for the orbital integral in a sufficiently small neigh-
borhood of the identity element. Moreover, by inductive arguments the behavior of
an orbital integral may be understood once its behavior near the identity element
of the group is understood. Consequently most questions we might have about or-
bital integrals can be answered from Shalika’s expansion. Unfortunately, Shalika’s
existence proof of an asymptotic expansion has not resulted in explicit formulas for
the germs except in a few elementary cases.

A basic problem of harmonic analysis on reductive p-adic groups is then to
develop expressions for the terms of the Shalika expansion of orbital integrals.
This work uses a geometrical approach, introduced by Langlands and Shelstad, to
calculate the first two terms of the Shalika expansion. These terms are called the
regular and subregular terms of the expansion. The first term of the expansion
is, with suitable normalizations of measures, an invariant integral over the stable
regular unipotent class. The second term of the expansion, as we will see, is a sum
of integrals of the form

θ(λ)|λ|
∫
P1

dv

|v|

∫
P1

η(p(w))
dw

|w|2
µ0

where p is an appropriate polynomial in w; and η, θ are multiplicative characters on
the p-adic field F . Also µ0 is an invariant integral over a subregular unipotent con-
jugacy class of the group. These integrals over projective lines must be understood
as principal value integrals.
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viii INTRODUCTION

The explicit formulas for the first two terms of the Shalika expansion allow
us to check a number of conjectures concerning orbital integrals – many of which
were known previously only for a few groups of small rank. This method used
here to obtain explicit formulas for Shalika germs remains the only known general
method to obtain such formulas. Other methods are now available for the general
and special linear groups.

Here are a few remarks on the geometrical construction of Shalika germs. If Γ
is a curve inside a Cartan subgroup T of G such that Γ(0) = 1 ∈ T and Γ(s), s 6= 0
is a regular element of T , then the conjugacy class of Γ(s), s 6= 0 may be identified
with Γ(s)×T\G and the Shalika germ expansion gives the asymptotics of integrals
on Γ(s) × T\G as s tends to 1. The essential part of the construction of Shalika
germs is the construction of a G-equivariant completion Y →π Γ of Γ×T\G→π Γ.
The theory of Igusa then states that the asymptotic expansion as s tends to 1 may
be understood by studying the divisor D = π−1(Γ(1)) in the variety Y . Roughly
each term of the asymptotic expansion is an integral over some of the irreducible
components of D.

To see some of the technical difficulties involved in this procedure, consider two
completions Y1, Y2 of Γ × T\G with corresponding divisors D1 and D2. The fact
that the asymptotic expansion is independent of the completion shows that the
terms of the expansion (integrals over components of D1 and D2) coincide. This
suggests that these integrals on D1 and D2 should be invariant under a large class
of birational maps. This is indeed the case. In the special case that Y1 is obtained
from Y2 by blowing up Y1 along a subvariety of D1, it suggests that the exceptional
divisors introduced by blowing up usually make no contribution to the asymptotic
expansion. In other words, if we begin with a completion Y1 which is far from
being a minimal completion, it will be necessary to sort through a large number
of exceptional or spurious irreducible components of D1 that ultimately make no
contribution to the asymptotic expansion. Unfortunately, we know of no better
general completion of Γ× T\G than the one introduced below, and a great deal of
work is needed to eliminate all but a few fundamental components of D1 that lead
to the Shalika expansion. Finally we should remark that the variety Y is singular,
so that it is necessary to prove that the singularities are of such a nature that they
do not affect the Shalika germ expansion.

Langlands has conjectured deep relations between integrals and representations
of p-adic on different groups (the theory of endoscopy). Some of these are formu-
lated as or translate into conjectural identities between orbital integrals on different
groups. We may at first hope for these identities to hold for geometrical reasons. To
explain this idea, suppose that

∫
X1
f1dω1 is an integral formula for a Shalika germ

on G and
∫
X2
f2dω2 is an integral formula for a Shalika germ on H. Suppose that

we are to show that these two integrals are equal. We might hope for a birational
map φ : X1 → X2 carrying dω1 to dω2 and f1 to f2. If such a birational map satis-
fied certain technical hypotheses, we could then conclude that the two integrals are
equal. In the cases that have been worked out in detail, this expectation has been
fulfilled in a slightly weaker form. There have been geometrical decompositions of
the varieties X1, X2 such that by geometrical “cut and paste” operations the iden-
tities

∫
X1
f1ω1 =

∫
X2
f2ω2 were established. Thus these identities are established

without computing any integrals. This I take to be one of the strengths of the
theory developed here.
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Chapters I and II are preliminary. They describe a number of auxiliary varieties
used to construct the varieties of ultimate concern to us. Some useful coordinates
on these varieties are developed. Beginning in chapter III, we turn from general
considerations to focus on the subregular unipotent classes and their germs. If Igusa
theory is to be successfully applied a large number of divisors must be systematically
excluded from consideration. Chapter III shows how to exclude these spurious
divisors for groups of rank two and chapter IV excludes them for groups of higher
rank. In chapters V and VI we give explicit formulas for the data entering into
the integral representation of the subregular germ. We show for instance that the
irreducible components of the surface (giving the explicit formula for the subregular
germ) are in bijection with the lines of the Dynkin curve and that each irreducible
component is a rational surface. Chapter VII discusses applications to the transfer
of κ-orbital integrals to endoscopic groups. A stable subregular germ is shown to be
equal up to a constant to a stable subregular germ on a quasi-split inner form. We
show that the quadratic characters θ arising in the subregular germ are compatible
with the transfer. Finally we give the details of the transfer of the subregular germ
for unitary groups.

This work appeared originally as the author’s thesis under the direction of
Professor R.P. Langlands. I would like to thank R.P. Langlands for introducing me
to this fruitful field of thought and for his continued encouragement and assistance.





CHAPTER I

Basic Constructions

Chapter I is concerned with preliminary constructions. The groups are not as-
sumed to be quasi-split. The groups are taken over a p-adic field F of characteristic
zero. The germs are studied near the group identity. We are not always careful
in distinguishing a group G from its elements over F̄ so that expressions such as
g ∈ G should be interpreted as g ∈ G(F̄ ).

I.1. Background Information

Igusa has introduced a method of studying asymptotic expansions of integrals
over a local field. The expansion holds in the following context. A variety is fibred
over a punctured neighborhood of a point p on a curve. Let λ be a local parameter
at p. The integral is taken over a fibre and consequently depends on the parameter
λ. Igusa theory gives, provided a number of technical conditions are satisfied, an
asymptotic expansion of the integral as λ tends to 0. The theory gives explicit
formulas for the coefficients of the asymptotic expansion. The locus of λ = 0 in the
variety is to be a union of divisors. The coefficients of the asymptotic expansion
are given as principal value integrals over the divisors.

R.P. Langlands [17] applies Igusa theory to the study of κ-orbital integrals by
constructing a variety and a curve such that the integral taken over the fibre of the
curve is equal to a κ-orbital integral. Chapter I is devoted to a study of the variety
he constructs. Some useful coordinates are defined that simplify computations in
the variety.

I.2. The Igusa Variety

This section reviews the construction of the variety Y1 introduced in [17]. The
variety Y1 and its resolution YΓ are constructed using a number of auxiliary varieties.
First I will make a list of these varieties for reference, and then give the definitions.

S0 is the variety of regular stars
S is the variety of stars, the closure of S0

S′ is the subvariety of S such that for each simple root α there is at least one
chamber W (ω) for which z(W (ω), α) 6= 0
S1(B∞, B0) is the fibred product S1(B∞, B0) = S′(B∞, B0)×T0

Ar.
S1 is a first resolution of S
S′′ is the open subvariety of S1 given on each open patch S′′(B∞, B0) by

S0(B∞, B0)×T0
Ar⊆S′(B∞, B0)×T0

Ar = S1(B∞, B0).

1



2 I. BASIC CONSTRUCTIONS

X0 is a subvariety of G× S0

X is the closure of X0 in G× S
X ′ is the closure of X0 in G× S′
X1 is the closure of X0 in G× S1

X ′′ is the closure of X0 in G× S′′
Y 0 is the restriction of X0 to the inverse image of a curve Γ in T
Y is the closure of Y 0 in X
Y ′ is the closure of Y 0 in X ′

Y1 is the closure of Y 0 in X1

Y ′′ is the closure of Y 0 in X ′′

YΓ is a G-equivariant resolution of Y1 which satisfies the conditions of Igusa data.

Let G be a reductive group defined over a p-adic field F of characteristic zero.
Let T⊆G be a Cartan subgroup defined over F and fix a Borel subgroup B con-
taining T (which need not be defined over F). Let Ω be the Weyl group of G with
respect to T . Let W+ be the positive Weyl chamber with respect to B and let
W (ω) denote the Weyl chamber ω−1W+. Then the Borel subgroups containing T
may be indexed by the Weyl chambers by setting B ω = B (W ) where W = W (ω).

Consider the n-fold product of the variety of Borel subgroups V n where n = |Ω|.
The group G acts on V n by (B1, . . . , Bn).g = (Bg1 , . . . , B

g
n). The variety of regular

stars S0 is defined to be the G-orbit of the point (B (W )) in V n. The variety
of stars S is the closure of S0 and is a projective variety. Let T 0 be the set of
regular elements of T . There is a morphism from T 0 × T\G to G × S0 given by
(t, g)→(tg, (B (W )g)). Let X0 denote the image of T 0 × T\G in G× S0 under this
morphism and let X be its closure in G× S.

A morphism from X to T is defined as follows. If (g, (B(W ))) is a point in X,
then select h ∈ G(F̄ ) such that B(W+)h = B (W+) = B . Then gh lies in B . Then
(gh modulo N) ∈ B /N ' T where N is the unipotent radical of B . This map is
independent of the choice of h. The composite T 0× T\G→T equals the projection
onto the first factor.

We introduce coordinate patches S(B∞, B0) of S and coordinates z(W,α) on
S(B∞, B0) as follows. LetB∞ andB0 be opposite Borel subgroups with intersection
T0. For each simple root α fix root vectors Xα and X−α for T0 in the Lie algebra
of G such that [Xα, X−α] = Hα with α(Hα) = 2. Let S(B∞) be the set of stars
(B(W )) in S such that B(W ) is opposite B∞ for all W . Consider one such point
(B(W )) in S. Fix a Weyl chamber W1 and simple root α. If W1 = W (ω) then write
W2 = W (σαω). We can write B(W1) = Bν1

0 , B(W2) = Bν2
0 with ν1 and ν2 ∈ N∞

the unipotent radical of B∞. The parabolic subgroup of type α containing B(W1)

also contains B(W2) so that B0 and B
ν2ν
−1
1

0 are opposite B∞ and lie in the parabolic
subgroup Pα of type α containing B0. Thus ν2ν

−1
1 = exp(z(W1, α)X−α) for some

uniquely determined value z(W1, α). Also let ν ∈ N∞ be defined by B(W+) = Bν0 .
The variables (z(W,α)) : ∀ (W,α) together with the coefficients of ν generate the
coordinate ring of S(B∞). Also let S(B∞, B0) = {(B(W ))⊆S(B∞) : ν = 1}. The
varieties X(B∞, B0), Y (B∞, B0), etc. have obvious definitions as subvarieties of
X,Y , etc.

The pairs (W,α) and consequently the variables z(W,α) are in bijection with
oriented walls of Weyl chambers. If W is a Weyl chamber and γ = 0 defines a
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wall of that chamber for some positive root γ, then there is an element of the Weyl
group ω such that W = W (ω) and ω.γ is a simple root α. Then the wall of W given
by γ = 0 is said to be of type α and is represented by the pair (W,α). For every
closed path W0,W1, . . . ,Wp+1 = W0 with Wi adjacent to Wi+1 there is a relation
among the variables (z(W,α)). If Wi and Wi+1 are separated by a wall of type αi
then the relation is given by

exp(zpXp) exp(zp−1Xp−1) . . . exp(z0X0) = 1

where zi = z(Wi, αi) and Xi = X−αi .
S′ is defined to be the subvariety of S such that on each coordinate patch

S(B∞, B0) and for each simple root α there is at least one chamber W (ω) for
which z(W (ω), α) 6= 0. T0 acts on S′(B∞, B0) and on affine r-space where r is the
semisimple rank of G. The actions are given by

t : z(W,α)→α(t)z(W,α)

and
t : z(α)→α(t−1)z(α).

The patches S1(B∞, B0) = S′(B∞, B0)×T0 Ar piece together to form a variety S1.
There is a morphism from S1 to S given locally by

(z(W,α)), (z(α))→(z(α)z(W,α))

(z(W,α)) ∈ S′(B∞, B0), (z(α)) ∈ Ar. We add subscripts z1(W,α) to the variables
in S1(B∞, B0), {z1(W,α), z(α)} to distinguish them from their image z1(W,α)z(α)
in S.

Now we describe the F -structure on the varieties. In chapters I through V we
work with the variety over the algebraic closure, but beginning in chapter VI the F -
structure will play an important role. We twist the ordinary action of Gal(F̄ /F ) on
V n. If we define an action of Gal(F̄ /F ) on Weyl chambers by σ(B (W )) = B (σ(W ))
then the action of Gal(F̄ /F ) on V n is given by σ((B(W ))) = (σ(B(σ−1W ))). The
usual F -structure on G together with this twisted F -structure on V n gives an F -
structure on subvarieties of G× V n. There is a unique F -structure on S1, X1, etc.
compatible with the F -structure just given to the subvarieties of G × V n. This
action has been defined in such a way that the morphisms T 0 × T\G→X0 and
X→T are defined over F .

Let M equal the Springer-Grothendieck variety B ×B G = {(g,B) ∈ G × V :
g ∈ B}. There is a morphism X→M given by (g, (B(W )))→(g,B(W+)). The
differential form

∏
(1−α−1(γ))ωT ∧ωT\G on T×T\G when pulled back to M gives a

G-invariant non-vanishing form ωM on M . On the patch M(B∞) of elements (g,B)
such that B is opposite the Borel subgroup B∞, we have B = Bν0 , g = (tn)ν with
t ∈ T0, n ∈ N0, ν ∈ N∞. The coefficients t1, . . . , t`; x1, . . . , xp; ν1, . . . , νp of t, n and
ν serve as coordinates on M(B∞). The assumption that ωM is G-invariant and
non-vanishing forces ωM to have the form

ta1
1 . . . ta`` dt1 . . . dt`dx1 . . . dxpdν1 . . . dνp.

Since we are only interested in the form near the identity, we may assume |ti| = 1
and take ωM to be

dt1 . . . dt`dx1 . . . dxpdν1 . . . dνp

Consequently, we may take the forms ωX and ωY on X0 and Y 0 to be given by

dt1 . . . dt`dx1 . . . dxpdν1 . . . dνp
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and

dλdx1 . . . dxpdν1 . . . dνp

respectively. The form ωX is not defined over F in general but this is not a problem
because there is always a constant c ∈ F̄× such that cωX is defined over F .

I.3. The Variety S0

It was mentioned in section 2, that there is a relation among the variables
z(W,α) for every closed path W+ = W0, . . . ,Wp,Wp+1 = W0 selected through
the Weyl chambers. These relations are not all independent. In fact, this section
shows that all the relations are consequences of the relations that arise for rank two
groups. This result is closely related to the fact that the Weyl group is a Coxeter
group. Chapter III studies the rank two situation carefully. Building on lemma
3.1 and the results of Chapter III, Chapter IV will draw some general conclusions
about the vanishing of principal values on divisors.

The rank two root systems occurring at the codimension two intersections of
walls will be called nodes.

Lemma I.3.1. Lemma 3.1 Every relation among the coordinates (z(W,α)) on
a patch S0(B∞, B0) of the variety of regular stars is a consequence of

i) z(W,α) + z(W ′, α) = 0 where W and W ′ are adjacent walls separated by
a wall of type α, and

ii) exp(zpX−αp) . . . exp(z1X−α1
) = 1 where W1,W2, . . . ,Wp is the path around

a node (so that p = 4, 6, 8, 12 according as the node is of type A1 × A1,
A2, B2, G2) and z1, . . . , zp are the corresponding wall variables.

Proof 1. Consider any closed path W1, . . . ,Wq+1 = W1. The chambers are
separated by walls

(W1, α1) = (W2, α1), . . . , (Wq, αq) = (W1, αq).

Reflection in these walls corresponds respectively to elements ω1, . . . , ωq of the Weyl
group, and ωiWi = Wi+1 or

ωq . . . ω1W1 = W1.

The Weyl group acts simply transitively on the chambers so that ωq . . . ω1 = 1.
Any relation in the Weyl group is a consequence of the relations

i’) ω2
α = 1

ii’) (ωαωβ)mαβ = 1 where π/mαβ is the angle formed by the walls (W+, α)
and (W+, β) of the fundamental chamber.

We have the products

1) exp(zqX−q) . . . exp(z1X−1) (X−i =def X−αi) and
2) ωq . . . ω1.

Every time a relation (i′) or (ii′) is applied to (2) a similar relation (i) or (ii)
can be applied to (1) to keep the length of both expressions the same. Repeated
applications of (i′) and (ii′) will reduce the product in (2) to the identity, the
identical process must then reduce the product in (1) to the identity. �

Proof 2. The Weyl chambers lie in P = Rn. Let P 0 be the points of P lying
in at most two walls. Then P − P 0 has codimension three so that P 0 is simply
connected and has no non-trivial connected covering spaces. Construct a covering
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space as follows. Let each point of the covering space be given by a triple (x,W, p)
where x ∈W and p is a path from W+ to W . We now identify points. A necessary
condition for (x,W, p) and (x′,W ′, p′) to be identified is that x = x′. If x = x′ ∈ P 0,
it must be true that W and W ′ are two chambers at a node (by the definition of P 0).

Let W = W0, . . . ,Wq = W
′

be a path p′′ joining W and W ′ such that for each i,Wi

is a chamber at the node as well. Then (x,W, p) is to be identified with (x′,W ′, p′)
provided that x = x′ and the path p′−1p′′p from W+ to W+ (with composition of
paths in the obvious sense) gives a relation that is a consequence of (i) and (ii).
By conditions (i) and (ii) this condition is independent of the path p′′ selected and
is a local isomorphism. This covering space must be trivial and connected so every
closed path gives a relation that is a consequence of (i) and (ii). �

I.4. The Morphism S1 → S

In this section we prove a proposition that will be used frequently and often
implicitly in all that follows. The proposition was proved for A2 and used in an
essential way in [17]. It is the result required to insure that functions of compact
support on G pull back to functions of compact support on the variety X1. This
proposition will be used in combinatorial arguments in chapters III and IV.

The following result will be used in the proof of the proposition and is stated
here for reference. Here K is a field, R is a valuation ring with quotient field K,
and i : Spec(K)→Spec(R) is the morphism induced by the inclusion R ⊆ K.

Theorem I.4.1. Theorem 4.1 (Valuative Criterion of Properness). Let f :
X → Y be a morphism of finite type, with X noetherian. Then f is proper if
and only if for every valuation ring R and for every morphism Spec(K) to X
and Spec(R) to Y forming a commutative diagram there exists a unique morphism

Spec(K) X

Spec(R) Y

i f

Spec(R)→X making the whole diagram commutative.

Proof. For details and a proof see [8]. �

Proposition I.4.2. Proposition 4.2 The morphism p : S1→S is proper and
hence surjective.

Proof. We apply the valuative criterion of properness. Let η1 be the im-
age in S1 of the unique point in Spec(K). We select an affine patch on S1 that
intersects η1 non-trivially. We may assume that the patch is given by a pair of
opposite Borel subgroups (B0, B∞) and the conditions z1(Wα, α) 6= 0 where we
are given a Weyl chamber Wα for each simple root α, and (z1(W,α)), (z(α)) are

given representatives in S
′
(B∞, B0) × Ar for S′(B∞, B0) ×T0 Ar. The condition

z1(Wα, α) 6= 0 is independent of the choice of representatives in S′(B∞, B0) × Ar.
On this affine patch the coordinate ring is generated by z1(W,α)/z1(Wα, α) ∀ (W,α)
and z(Wα, α) = z(α)z1(Wα, α) ∀ α. For each α let W = W 0

α be a choice of chamber
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for which v(ϕ∗(z1(W,α)/z1(Wα, α))) attains its minimum as W varies over cham-
bers such that ϕ∗(z1(W,α)/z1(Wα, α)) 6= 0. Here v is the valuation and ϕ is the
morphism

ϕ : Spec(K)→S1.

Now η1 intersects the affine patch Sa ⊆ S1(B∞, B0) whose coordinate ring is gen-
erated by

z1(W,α)/z1(W 0
α, α), z(W 0

α, α).

Then

v(ϕ∗(z1(W,α)/z1(W 0
α, α))) ≥ 0

for all (W,α). The map S1→S is given locally by

(z1(W,α)/z1(W 0
α, α)), (z(W 0

α, α))→(z1(W,α)z(W 0
α, α)/z1(W 0

α, α))

=(z(W,α)).

Then the assumption of a morphism Spec(R)→S gives v(ϕ∗(z(W,α))) ≥ 0. In
particular,

v(ϕ∗(z(W 0
α, α)) ≥ 0.

Thus the image of the coordinate ring of Sa lies within the coordinate ring of R.
This gives a morphism from Spec(R) to Sa and hence to S1. The uniqueness of the
morphism is clear. �

I.5. Cocycles

The result of this section is essentially lemma 5.2 of [17]. We reproduce it here
in a form more convenient for our applications. For every regular star (tg, (B(W ))g)
there is a cocycle σ(g)g−1 of Gal(F̄ /F ) with values in T (F̄ ). There is a character
κ on H1(Gal(F̄ /F ), T ) = H1(T ) used to determine the endoscopic group H such
that the integrand f1 on Y 0 is given by π∗1(f)mκ(e) where π∗1(f) is the pullback of
a locally constant function of compact support on G and mκ(e) = κ(σ(g)g−1).

Proposition I.5.2. Let R be the field of rational functions of the variety of
stars S. Then mκ(e) has an expression on a Zariski open set of the variety of
regular stars S0

mκ(e) = κ(tσ(e)), tσ(e) ∈ H1(T ), e ∈ S0

where for each σ ∈ Gal(F̄ /F ), tσ belongs to T (R).

Proof. In the course of the proof we develop an expression from which tσ
may be calculated. We begin with a quasi-split group Gqs and an inner form Gin.
We select a maximally split Cartan subgroup Tqs and a Borel subgroup Bqs both
over F in Gqs with Tqs⊆Bqs. We select a Cartan subgroup Tin over F in Gin.
Fix an isomorphism of Gqs with Gin over F̄ which carries Tqs to Tin. We identify
Gqs and Gin through this isomorphism. The two forms are distinguished by the
actions of Gal(F̄ /F ) on the groups. For σ ∈ Gal(F̄ /F ) we write σqs and σin
for the corresponding actions on the quasi-split and inner forms. For any Cartan
subgroup T over F in Gin, select an element h ∈ G(F̄ ) such that Th = Tqs. Write
σin(h−1) = wσh

−1 with wσ ∈ NG(Tqs). Let g ∈ T\Gin(F ). For g in a Zariski

open set of G we can write T g = Th
−1g

qs ⊆ Bh
−1g
qs = Bνqs or h−1g = tnν with

t ∈ Tqs, n ∈ Nqs, ν ∈ Nqs∞. Nqs is the unipotent radical of Bqs and Nqs∞ is
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the unipotent radical of the Borel subgroup opposite to Bqs through Tqs. Thus
g = htnν = (hth−1)hnν = t′hnν with t′ ∈ T (F̄ ). Now

σin(g)g−1 = σin(t′)σin(h)σin(n)σin(ν)ν−1n−1h−1t′−1

is a cocycle in Z1(T ) which has the same class as

σin(h)σin(n)σin(ν)ν−1n−1h−1.

We define a twisted action σ∗ on Tqs by

σ∗(t) = σin(t)wσ , t ∈ Tqs.

Then if tσ is a cocycle in Z1(T ), we have

τ∗(t
h
σ)thτ = τin(tσ)τin(h)wτ thτ = (τin(tσ)tτ )h = (tτσ)h.

Thus there is an identification of cocycles in T and twisted cocycles in Tqs.

h−1σin(h)σin(n)σin(ν)ν−1n−1 =

w−1
σ σin(n)σin(ν)ν−1n−1

is then a cocycle in Tqs with this twisted action. Call this cocycle Tσ.

T
w−1
σ

σ = σin(n)σin(ν)ν−1n−1w−1
σ .

Since Gqs and Gin are inner forms, we may write

σin(g) = ad A−1
σ (σqs(g)),

where σ→Aσ is a cocycle with values in NGqs(Tqs)adj , the image of the normalizer
in the adjoint group, with respect to the action σqs. Now

T
w−1
σ

σ = A−1
σ σqs(n)σqs(ν)Aσν

−1n−1w−1
σ

T
w−1
σ A−1

σ
σ = σqs(n)σqs(ν)Aσν

−1n−1w−1
σ A−1

σ

Equation I.5.3. Aσν
−1n−1w−1

σ A−1
σ ∈ N∞qsNqsT

w−1
σ A−1

σ
σ .

These last two equations are the fundamental relation from which the function
mκ(e) can be deduced for all reductive groups. The equation 5.3 determines Tσ as
a rational function of the coefficients of

Aσν
−1n−1w−1

σ A−1
σ .

�

The cocycle wσ measures the extent to which Tin and T are not isomorphic
over F , and A−1

σ measures the extent to which Tin and Tqs are not isomorphic over
F . We give a few applications of this formula that will be useful in chapter VII
when we carry out the transfer of the subregular germ for certain groups.

Corollary I.5.4. Corollary 5.4 Suppose that Aσ = 1, B0 = Bqs, T0 = Tqs,
and that wσ is a simple reflection corresponding to the root α. Then t0Tσ =
(z(W+, α))α

v

for some element t0 ∈ Tqs(F̄ ) independent of the regular star.
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Proof. Equation 5.3 gives n−1w−1
σ ∈ Nqs∞NqsT

w−1
σ

σ . w−1
σ differs from σα

by an element of Tqs independent of the star. Here σα is the image in G of the

reflection

(
0 1
−1 0

)
in Gα where Gα is the rank one subgroup corresponding to the

root α. We combine this element with Tσ and write n−1σα ∈ Nqs∞Nqs(t0Tσ)σα .
Now by the 2 by 2 matrix calculation

(
1 −nα
0 1

)(
0 1
−1 0

)
=

(
nα 1
−1 0

)
=

(
1 0

−1/nα 1

)(
nα 1
0 1/nα

)
=

(
1 0

−1/nα 1

)(
1 nα
0 1

)(
nα 0
0 1/nα

)
.

Equation I.5.5.

εα(−nα)σα = ε−α(−1/nα)εα(nα)nα
v

α

where ε±α(X) = exp(xX±α).

From this it follows that n−1σα ∈ N∞N0n
αv

α . Also

B(W (σα)) = B
exp(z(W+,α)X−α)ν
0

and B(W (σα)) = Bσαh
−1g

0 = Bσαnν0 . From this it follows that

B0σαn = B0 exp(z(W+, α)X−α),

and by (5.5) it follows that nα = 1/z(W+, α). The result follows from the relations
nα = 1/z(W+, α) and σα(αv) = −αv. �

Remark I.5.6 (5.6). When Aσ = 1, for the classical groups we can recover Tσ
from the equation

n−1w−1
σ ∈ Nqs∞NqsT

w−1
σ

σ

by computing the principal minors of both sides noting that the principal minors of
any matrix in Nqs∞Nqs are equal to one provided we choose a representation such
that Bqs is upper triangular and Tqs is diagonal.

Corollary I.5.7. Corollary 5.7 Suppose that Aσ is a simple reflection corre-
sponding to a root α, and ν = ε−α(ξ)αν with αν ∈ Nα. Then Tσ is determined by
the condition

σαε−α(−ξ)n−1w−1
σ σ−1

α ∈ Nqs∞Nqs(t1Tσ)w
−1
σ σ−1

α

where t1 ∈ Tqs is independent of the star.

Proof. This follows immediately from (5.3) if we note that

Aσ
αν−1A−1

σ ∈ Nqs∞.

�
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T 0 × T\G X1 G

T

φ π1

ξ

I.6. The Data

In this section we prove that the Igusa data exists for any reductive group,
and show how to associate a unipotent conjugacy class to each divisor. Let G be a
connected reductive group. We have morphisms ϕ, π1, and ξ.
The maps are G-equivariant maps provided G acts on G by ad, on T 0 × T\G
by translation on the second factor, and trivially on T . The maps ϕ, ξ and π1

are defined over F . ξ ◦ ϕ is projection on the first factor. So the diagram above
commutes. π1(ϕ(t, g)) = π1(tg, (B (W ))g) = tg ∈ G. The map π1 is proper.

Now let Γ be a curve in T . The curve Γ is assumed to be a smooth curve which
passes through the identity of T where its tangent is regular in the sense that it
does not lie in a hyperplane defined by a root and which contains no other singular
point. Let Γ0 = Γ\{0}, Y 0

1 = ξ−1(Γ0), and let Y1 be its closure in X1. G then acts
on Y1 since ξ is a G-morphism. We also let 1 denote the element of Γ\Γ0. We have

Γ0 × T\G Y1 G

Γ

φ π1

ξ

All morphisms are G-morphisms, and defined over F provided Γ is defined over F .
Replace Y1 by a desingularization YΓ. The desingularization may be chosen to

be G-equivariant, and the irreducible components of ξ = 1 may be assumed to have
normal crossings [9]. Thus G acts on YΓ and all morphisms are G-morphisms.

ξ−1(1)⊆YΓ breaks up into a finite number of irreducible components. The
expression divisor refers in this text to them. Conjugacy classes are taken to mean
stable conjugacy classes unless indicated otherwise.

Lemma I.6.1. Lemma 6.1 Let E be a divisor in YΓ. There is a unique unipotent
conjugacy class O in G such that π1(E) equals the closure of O in G.

Proof. Since G is connected, G fixes each divisor. π1(E) is also closed (by
properness), irreducible, and G-invariant. So π1(E) is a union of conjugacy classes.
If ξ(x) = 1 then π1(x) lies in a Borel subgroup B and π1(x) modulo N is 1.
Thus π1(x) lies in N and is consequently unipotent. Call the unipotent classes
in π1(E) O1, . . . , Oj and their closures X1, . . . , Xj . π1(E) = Xi for some i by
irreducibility. Xi determines the unipotent class uniquely for the classes in the
closure are of strictly lower dimension. �

If E is associated with the unipotent class O, call E an O-divisor. Similarly call
E a regular or subregular divisor if the unipotent class associated to E is regular
or subregular.
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Remark I.6.2. Remark 6.2 Let u, u′ ∈ O, then ug = u′ for some g and YΓ→YΓ

gives an isomorphism of the fibre E(u) over u with the fibre E(u′) over u′ whenever
E is an O-divisor. This isomorphism is defined over F if u, u′ lie in the same adjoint
conjugacy class. By an adjoint conjugacy, we mean F -conjugacy in Gadj(F ). See
[13] for details. By letting u = u′ we obtain an action of CG(u) on E(u).

Theorem I.6.3. Theorem 6.3 Let G be reductive. There exists a variety YΓ

proper over Y1 such that the conditions for Igusa data are met.

Proof. By blowing up G-equivariantly if necessary we may assume the variety
λ = 0 (i.e. ξ = 1) is the union of divisors with normal crossings. The only condition
that has not been verified in [17] is that f locally has the form γκ1(µ1) . . . κn(µn)
where µ1, . . . , µn are local F -coordinates on YΓ at a point p, and κ1, . . . , κn are
characters of F×. The function γ must be locally constant at p and if κi is not the
trivial character, µi = 0 must define a divisor passing through p.

Fix a basis Λ for the characters of T . By (5.2), if χ ∈ Λ then χ(tσ) ∈ R the
field of rational functions on S. Working with a finite extension K of F and pulling
χ(tσ) back to the field of functions on YΓ we obtain finitely many prime divisors
determined by the Weil divisors of χ(tσ) for all χ ∈ Λ, σ ∈ Gal(K/F ). By blowing
up if necessary, we may assume that these prime divisors together with the prime
divisors determined by λ = 0 all have normal crossings. Let 〈E〉 be the set of prime
divisors. Again blowing up if necessary, we may assume that a prime divisor of 〈E〉
has F -rational points if and only if it is defined over F . In the neighborhood on
the p-adic manifold of an F -rational point p we may write

χ(tσ) = αµa1
1 . . . µann

where a1, . . . , an, α depend on χ and σ. We may assume that µ1, . . . , µn are local
p-adic coordinates at p and that α is regular and invertible at p. It follows that tσ
has the form

tσ : σ→µβ1σ

1 . . . µβnσn tσ

for some cocharacters β1σ, . . . , βnσ and tσ, where tσ is regular at p. Since tσ is a
cocycle τ(tσ)tτ = tτσ, that is

µ
τ(β1σ)
1 . . . µτ(βnσ)

n τ(tσ)µβ1τ

1 . . . µβnτn tτ = µβ1τσ

1 . . . µβnτσn tτσ.

Rearranging:

µ
[τ(β1σ)+β1τ−β1τσ]
1 . . . µ[τ(βnσ)+βnτ−βnτσ]

n = tτσt
−1
τ τ(t

−1
σ ).

The right hand side is regular at p, so the left hand side must be as well. This
forces

τ(βiσ) + βiτ = βiτσ

for all i. Thus σ→µβiσi is a cocycle ∀ i, and σ→tσ is as well. We then define the
character κi on F x by κi(µ) = κ(µβiσ ) where κ is the character on H1(T ) defining
the endoscopic group. This shows that the function f1 has the correct form.

There is one last point to verify. It must be possible to choose the coordinates
µ1, . . . , µn in such a way that if µi = 0 does not define a divisor then κi = 1. Since
the divisors have normal crossings, we may assume that if E is a divisor then it is
given locally by µi = 0 for some i. But then if µj = 0 does not define a divisor,
points of µj = 0, µi 6= 0 i 6= j are regular stars. The result then follows from the
fact that mκ(e) is locally constant on the regular stars (cf. [17]). �



CHAPTER II

Coordinates and Coordinate Relations

II.1. The Coordinates x(W,β)

Before deriving any concrete results from the variety YΓ it will be necessary
to develop coordinates charts on the variety. This section introduces coordinates
x(W,β) indexed by Weyl chambers W and positive roots β. They can be described
as follows. Consider a point p ∈ X1⊆G×S1. Then locally p ∈ B0×S1(B∞)→̃B0×
S1(B∞, B0) ×N∞. Write p = (b, e, ν). For each simple root α fix root vectors Xα

and X−α for T0 = B0∩B∞ in the Lie algebra of G such that [Xα,X−α] = Hα with
α(Hα) = 2. Fix an ordering on the positive roots then write b ∈ B0 as

t
∏

exp(xβXβ) (ordered)

with t ∈ T0. To fix a convention, we agree that lower elements in the ordering
appear to the left in the product. Then t and xβ = xβ(b) are coordinates for b.

If e = (Bnw0 ), then bn
−1
w ∈ B0 for all W . Define x(W,β) to be xβ(bn

−1
w ). This

definition depends on the order of the product. In concrete situations the order
will always be specified. Notice, however, that x(W,α) for α simple is independent
of the order.

II.2. The Coordinates w(β)

This section defines a set of coordinates w(β) on certain open patches Y ′′(B∞)
of the open set Y ′′ indexed by positive non-simple roots β. These coordinates will
prove to be extremely useful on this open set. With them it will be possible to study
the structure of those divisors in YΓ whose image in Y1 meets Y ′′. The coordinates
are easy to define; but it must be checked that they are truly regular coordinates
on Y ′′. These verifications will be made in section 3.

Select the Borel subgroup B∞ to be opposite to B (W+). We work on the
coordinate patch Y 0(B∞). The restriction that B∞ lie opposite B (W+) is not a
serious restriction. Although patches of this sort do not cover Y 0, translates of
these patches by elements of G do cover Y 0 so that no structural information is
lost by making the assumption that B∞ is opposite B (W+). We have maps:

T 0 × T\G→X0

(t, g)→(tg, (B (W )g)).

On Y 0(B∞) we have B (W+)g = B (W+)ν for some ν ∈ N∞, the unipotent radical
of B∞. Thus g = t0nν for uniquely defined t0 ∈ T0, n ∈ N0, and ν ∈ N∞ where N0

is the unipotent radical of B (W+). Then on Y 0(B∞,B (W+)) × N∞ →̃ Y 0(B∞),
(tg, (B (W )g)) equals (tn, (B (W )n))ν . Define y(β) by tn = t

∏
exp(y(β)Xβ). The

11
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definition of y(β) depends on the order of the product. Suppose β =
∑
m(α)α.

Then define w(β) by

w(β) = y(β)
∏

z(α)m(α)/λ

where z(α) is defined to be the quantity which makes w(α) = 1 for α simple. That
is, z(α) = λ/y(α).

This gives the definition of w(β) on an open set of Y1(B∞). This definition
depends on the order the product defining y(β). In applications the order must be
specified.

It must be checked that w(β) extends to a regular coordinate on Y ′′(B∞).
Formulas will be given relating the coordinates w(β) to t, n, and the coordinates

z1(W,α) =def z(W,α)/z(α).

These topics are treated in the next few sections.

II.3. The Extension of w(β) to Y ′′

This section shows that the coordinates w(β) are regular on Y ′′(B∞). Before
proving the result I state a well known lemma that will be needed in the proof.

Lemma II.3.1. Lemma 3.1 Let α and β be positive roots, and let Ψ be the set
of roots of the form rα + sβ (r, s positive integers). Fix vectors Xγ . Then the
commutator (exp(xXα), exp(yXβ)) equals

∏
exp(cαβγx

rysXγ), where the product
is taken over all γ = rα+sβ ∈ Ψ (in some fixed order) and where cαβγ are constants
independent of x and y.

Proof. [11, §32.5]. �

The following result is independent of the order selected on the roots to define
y(β).

Lemma II.3.2. Lemma 3.2 The coordinates w(β) are regular on Y ′′(B∞). The
coordinates w(β) may be expressed as a function of {t, (z(α)), (z1(W,α))}. As such
they are actually independent of the coordinates {z(α)}.

In the course of the proof we will prove a second lemma. Write for any element
n ∈ N0 and t ∈ T

n =
∏

exp(nβXβ)

tn = t
∏

exp(y(β)Xβ)

(ordered)

(ordered)

Any order on the roots may be selected, but it must be the same for both products.
Solve these equations for y(β) in terms of the variables {nα, α−1(t)} (α positive).
We obtain an expression of the form:

y(β) =
∑

cβ1...βn(t)nβ1nβ2 . . . nβn

where the sum ranges over the set β1 + β2 + . . .+ βn = β.

Lemma II.3.3. Lemma 3.3 cβ1...βn(t) is a sum of terms of the form (1 −
γ−1

1 (t))γ2(t) where γ1 is a root and γ2 is a linear combination of roots. Also cβ(t)
equals (1− β−1(t)). In particular y(α) = (1− α−1)nα for α simple.
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Proof. The positive roots can be numbered according to the ordering on them:
α1, . . . , αk so that

n =
∏

εi(ni) with εi = εαi , ni = nαi , and εα(x) = exp(xXα).

Then t−1n−1tn is given by

εk(−α−1
k (t)nk) . . . ε1(−α−1

1 (t)n1)ε1(n1) . . . εk(nk).

The innermost terms combine to give ε1((1− α−1
1 (t))n1). This term can be pulled

through the product to the left. By (3.1), doing so will only add terms whose
dependence on T has the form (1− α−1

1 (t))γ(t) where γ lies in the coordinate ring
of T . By repeatedly pulling out the innermost term of the product, we arrive at the
result. It is clear from this procedure that cβ(t) equals (1−β−1(t)). This completes
the proof of lemma 3.3. �

We continue with the proof of (3.2). nβ is a function on Y 0(B∞)⊆G×S0(B∞, B0)×
N∞. It actually depends only on the second factor so that nβ is a function on
S0(B∞, B0). By the inclusion

S0(B∞, B0)⊆S′′(B∞, B0),

nβ
∏
z(α)m(α) is then a rational function on S′′(B∞, B0).

Lemma II.3.4. Lemma 3.4 nβ
∏
z(α)m(α) considered as a rational function on

S′′(B∞, B0) is regular and depends only on the coordinates

z1(W,α) = z(W,α)/z(α)

and not on the coordinates z(α).

Remark. This lemma will complete the proof of lemma 3.2, for

w(β) = y(β)(
∏

z(α)m(α))/λ =
∑

[cβ1...βn(t)/λ]
∏

(nβi
∏

z(α)mi(α))

where βi =
∑
mi(α)α and cβ1...βn(t)/λ is regular at λ = 0.

Proof of 3.4. The matrices nw depend only on (z(W,α)). Since z(W,α) =
z(α)z1(W,α) they depend on z1(W,α) and z(α). Recall that the matrix nw in N∞
is defined by the condition B (W )gν

−1

= Bnw0 . On our coordinate patch

B0 = B (W+) = B

and g = t0nν. The condition

B (W )n = B nw ∀ W

allows one to express nβ in terms of the variables {z(α), z1(w,α)}. The torus T0

acts on the points e = (B (W )nν) = (B nwν) by

e→et0 = (B (W )nνt0) = (B nwνt0),

t0 ∈ T0(F̄ ). The coordinates of et0 = (B (W )n
′ν′) = (B n′wν

′
) are clearly given by

ν′ = adt−1
0 (ν), n′ = adt−1

0 (n), n′w = adt−1
0 (nw), or

n′β = β(t−1
0 )nβ , z′(W,α) = α−1(t−1

0 )z(W,α) = α(t0)z(W,α).
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For any choices of z(α) ∈ F̄×, t0 can be selected to give α(t−1
0 ) = z(α) for all

α. Then β(t−1
0 ) =

∏
z(α)m(α) if β =

∑
m(α)α. Write nβ for the rational func-

tion of the variables (z(α)), (z1(W,α)) described above, nβ for the value of nβ at
(z(α)), (z1(W,α)) and n′β for the value of nβ at (1r, (z′(W,α))) = (1r, (α(t0)z(W,α))) =

(1r, (z(α)−1z(W,α))) = (1r, (z1(W,α))). (1r denotes the vector in Ar whose com-
ponents are all equal to one.) This gives the needed independence:

nβ(1r, (z1(W,α))) =
∏

z(α)m(α)nβ((z(α)), (z1(W,α)))

for
nβ(1r, (z1(W,α)))/(

∏
z(α)m(α)) = n′β/(

∏
z(α)m(α))

= β(t0)n′β

= nβ

= nβ((z(α)), (z1(W,α))).

Finally, we check that nβ
∏
z(α)m(α) is regular on S′′(B∞, B0). The point

((z1(W,α)), ν) ∈ S0(B∞, B0)×N∞ describes a regular star e. Since it is a regular
star there is a unique n0 ∈ N0 such that e = (B (W )n0ν). It follows that the
coefficients n0β of n0 are regular functions of (z1(W,α)). But n0β(z1(W,α)) =

nβ(1r, (z1(W,α))) = nβ
∏
z(α)m(α) so that nβ

∏
z(α)m(α) too is regular. The

proofs of the lemmas 3.2 and 3.4 are now complete. �

II.4. The Coordinate Ring

For (g, (B(W ))) in Y ′′(B∞) write (g, (B(W ))) = (b, (Bnw0 ))ν where b ∈ B0 =
B (W+). For the next proposition it is important to work on the affine patch
Y ′′(B∞). We let λ denote the pullback to YΓ (or any related variety) of a local
parameter on Γ.

Proposition II.4.1. Proposition 4.1

a) The subring of the coordinate ring of Y ′′(B∞,B (W+) generated by λ and
{z1(W,α) : ∀ (W,α)} is contained in the subring generated by the coor-
dinates {w(γ) : γ > 0, γ not simple} and λ.

b) The coefficients of b, {z(α) : α simple}, λ, and {w(γ) : γ positive but not
simple} are regular and together generate the coordinate ring of
Y ′′(B∞,B (W+)).

Proof. Let R be the ring generated by λ and {w(γ)}. We have seen that λ
and {w(γ)} are regular.

We have
w(β) =

∑
[cβ1...βn(t)/λ]

∏
(nβi

∏
z(α)mi(α))

β =
∑
m(α)α. Define ñβ = nβ

∏
z(α)m(α) for β =

∑
m(α)α. Then

w(β) =
∑

[cβ1...βn(t)/λ]
∏

ñβi = [(1− β−1(t))/λ]ñβ + . . .

where the omitted terms all contain more than one ñβi as a factor. We show that
ñβ lies in R. By induction we may assume that ñγ lies in the ring R for mγ < mβ

where mγ =
∑
m(α), γ =

∑
m(α)α. We have

w(β) = [(1− β−1(t))/λ]ñβ + x with x ∈ R

and ñβ = (w(β)− x)(λ/(1− β−1(t))).
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This belongs to R since the curve Γ is assumed to be regular at λ = 0 so that
λ/(1− β−1) is regular at λ = 0. Note that at the first step of the induction x = 0
and ñα = λ/(1− α−1(t)) for α simple.

Now let ñ =
∏
εβ(ñβ). There is a regular star given by (Bωñ0 ). [17, §3.1] gives

an algorithm to solve for nw and hence for (z1(W,α)) whereBnw0 = Bωñ0 ,W = W (ω)
provided Bωñ0 is opposite B∞ for all ω. On the affine patch Y ′′(B∞) this is true by
definition. This proves (a).

(b) We first show that z(α) is regular.

z(α) = λ/y(α) = λ/((1− α−1)nα)

so that z(α) is regular provided 1/nα is regular. By the comment following (I.5.5),
1/nα = z(W+, α) which is certainly regular.

By (a) z1(W,α) for all (W,α) lies in the ring generated by

{w(γ) : γ},{z(α) : α}, λ.

But {z(α)},{z1(W,α)}, λ and the coefficients of b generate the coordinate ring of
Y ′′(B∞, B0). �

Proposition II.4.2. Proposition 4.2 Write b = t·
∏
εβ(x(β)) then on Y ′′(B∞, B0)

the following equations hold:

w(α) = 1 : α simple

λw(β) = x(β)
∏

z(α)m(α) : β =
∑

m(α)α

w(γ)x(β) = w(β)x(γ)
∏

z(α)m(α) : γ − β =
∑

m(α)α.

Proof. Referring to the definition of w(β) we must have x(β) = y(β) because
b = tn on Y 0(B∞, B0). �

II.5. A Computation of t−1n−1tn

This section continues the discussion of the variables w(γ). The purpose of the
section is to derive formulas relating w(γ) to t and n. That is, we compute the
product t−1n−1tn. In lemma 3.3 it was shown that if t−1n−1tn =

∏
exp(y(β)Xβ)

then each coefficient y(β) is a sum of terms of the form

cβ1...βn(t)nβ1 . . . nβn where β1 + . . .+ βn = β.

What follows is a computation of the cβ1...βns.
All unipotent elements of a reductive group belong to the derived subgroup

Gder, so t−1n−1t and n can be taken in Gder to calculate the product. In fact, we
can work in any cover, for

∏
exp(y(β)Xβ) is unchanged if t is changed by a central

element.
We illustrate with the group An. Order the roots as follows. Let αr + . . . αr+s

be associated with the pair (n−r, s). Then order the roots by the lexicographical or-
dering on the ordered pairs. The smallest few roots for An will be αn;αn−1, αn−1 +
αn;αn−2, αn−2 + αn−1, etc. The order is illustrated by the following diagram.
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. . . .
7 8 9 10

4 5 6
2 3

1

Lemma II.5.1. Lemma 5.1 With the ordering on the roots just given, y(β) is a
sum of the terms

(−1)jβ−1(t)(1− βj(t))nβ1
. . . nβj

where β = αr + . . .+ αr+s, βi = αai−1−1 + . . .+ αai(ai−1 − 1 ≤ ai) for i = 1, . . . , j
and r + 1 = a0, aj = r + s.

Proof. Send the exponential εγ(x) : γ = αr + . . . + αr+s to the matrix I +
xer,r+s+1 ∈ SL(n+1) where I is the identity and er,r+s+1 is the n+1 by n+1 matrix
with 1 in the (r, r + s+ 1)st position and 0 elsewhere. Note that eije`m = δj`eim.
With the ordering selected eije`m = 0 provided eij corresponds to a root preceding
that of e`m for then ` ≤ i < j so that δj` = 0. Define a matrix Y = (yij) by
yr,r+s+1 = y(γ) (r ≥ 1, s ≥ 0), yij = 0 (i > j), and yii = 1 (i = 1, . . . , n). Then∏
εβ(y(β)) is sent to∏

(I + yr,r+s+1er,r+s+1) = I +
∑

yr,r+s+1er,r+s+1 = (yij).

I claim that if n = (nij) then m = (mij), given by

mij =


∑

(−1)k+1nip1
np1p2

· · ·npkj if i < j

(sum over all i < p1 < p2 < · · · pk < j)

1 if i = j

0 if i > j

is the inverse of n. For

∑
j

nijmjk =
∑
k≥j≥i

nijmjk =


0 if i > k

1 if i = k∑k
j=i nijmjk if i < k

Also
k∑
j=i

nijmjk = mik +

k∑
j=i+1

∑
(−1)`+1nijnjp1np1p2 · · ·np`k

= mik + (−1)mik = 0.

Notice too that

(t−1mt)ij =


∑

(−1)k+1β′−1(t)nip1np1p2 · · ·npkj if i < j

where β′ = αi + . . .+ αj−1

1 if i = j

0 if i > j.
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Set m′ij = (t−1mt)ij

(t−1n−1tn)ij =
∑

m′iknkj =


0 if i > j

1 if i = j∑j
k=im

′
iknkj if i < j

If i < j,

j∑
k=i

m′iknkj = m′ij +

j−1∑
k=i

∑
(−1)`+1β′−1(t)nip1np1p2 · · ·np`knkj

(β′ = αi + . . .+ αk−1)

=
∑

(−1)m+1β−1(t)niq1nq1q2 · · ·nqmj+∑
(−1)`+1β′−1(t)nip1np1p2 · · ·np`+1j

(β = αi + · · ·+ αj−1, β
′ = αi + · · ·+ αp`+1−1)

=
∑

(−1)m+1(β−1(t)− β′−1(t))niq1nq1q2 · · ·nqmj
(β = αi + · · ·+ αj−1, β

′ = αi + · · ·+ αqm−1)

(i < q1 < · · · < qm < j)

=
∑

(−1)mβ−1(t)(1− βm(t))nβ1
nβ2
· · ·nβm .

�

II.6. A Technical Lemma

This section indicates how to calculate the coefficients nγ as functions of the
variables {z(W,α)}. The method presented here has the advantage of working for
all reductive groups. In practice, however, it is laborious. The coefficients nγ for
the classical groups can be calculated directly without using the method presented
here. Section 7 will then compute the coefficients nγ for the group G2 using this
method. Section 8 will carry out the computation for SL(n) using an easier method.
The computation of nγ can be combined with the expressions for w(γ) in terms of
t and n to give expressions for w(γ) in terms of the variables {z1(W,α)} and t.

We need a more precise formulation of [17, §5.3]. Let ω ∈ Ω be the Weyl
group element such that W = ω−1W+ = W (ω). Let σω be a representative of ω
in the normalizer of T0. If ω = σα a simple reflection we let σα also denote the
representative (

0 1
−1 0

)
in G through Gα where Gα is the rank one subgroup of G associated with the
root α of T0 [11]. We have B (W )n = B ωn = B nw , so that on Y 0(B∞,B (W+))
tn0σωn = nw for some t ∈ T0 and n0 ∈ N0 the unipotent radical of B . For every
root γ fix a vector Xγ in the root space of γ. Implicit in [17, §5.3] is a formula for
t. We need to compute n0 as well. Let tvσωm = nw and t′v′σω′m

′ = nw′ where

σαω
′ = ω;nw = exp(zX−α)nw′
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W = W (ω),W ′ = W (ω′), ω′γ = α (γ positive)

v, v′ ∈ N0

m′ lies in Nω′ , and m lies in Nω.

We assume that σω and σω′ are chosen so that σασω′ = σω. Here Nω is the
connected subgroup of N0, the unipotent radical of B0, whose Lie algebra is spanned
by

{Xα|α > 0, ω · α < 0}.
Furthermore write v′ = exp(yαXα)αv′ where αv′ ∈ Nα the unipotent radical of the
parabolic subgroup Pα associated to the simple root α; and define u by σω′Xγσ

−1
ω′ =

uXα.

Lemma II.6.1. Lemma 6.1 With notation as above, the element nw has a de-
composition of the form nw = tvσωm. There is a unique element mγ such that
m = exp(mγXγ)m′. Furthermore,

α(t′)z(yα − umγ) + 1 = 0

t = t′(−α(t′)z)−α
v

, and

v = exp(α(t′)zXα)σα exp(umγXα)αv′ exp(−umγXα)σ−1
α .

Remark. The result is highly dependent on the order of the products, on the
choices of root vectors, and the choices of Weyl group representatives.

Proof. The existence of the decomposition of nw will follow from the calcu-
lations giving formulas for t and v.

nw = tvσωm = tvσασω′ exp(mγXγ)m′,

nw = exp(zX−α)nw′ = exp(zX−α)t′v′σω′m
′

So

tvσασω′ exp(mγXγ)σ−1
ω′ = exp(zX−α)t′v′ = t′ exp(α(t′)zX−α)v′

tv = t′ exp(α(t′)zX−α) exp(yαXα)αv′ exp(−mγuXα)σ−1
α

= t′ exp(α(t′)zX−α) exp((yα − umγ)Xα)σ−1
α v′′

where

v′′
(def)

= σα exp(umγXα)αv′ exp(−umγXα)σ−1
α ∈ Nα.

Now (
1 0
A 1

) (
1 B
0 1

) (
0 −1
1 0

)
=

(
∗ ∗
0 ∗

)
forces AB + 1 = 0. So

α(t′)z(yα − umγ) + 1 = 0.

Also (
1 0
A 1

) (
1 −1/A
0 1

)(
0 −1
1 0

)
=

(
1 −1/A
A 0

) (
0 −1
1 0

)
=

(
−1/A −1

0 −A

)
=

(
−1/A 0

0 −A

) (
1 A
0 1

)
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So
tv = t′(−α(t′)z)−α

v

exp(α(t′)zX−α)v′′

t = t′(−α(t′)z)−α
v

v = exp(α(t′)zXα)v′′.

�

II.7. Application to G2

As an application of the lemma we compute the coefficients nγ for the group
G2. These coefficients will be needed for calculations carried out in chapter III. Let
α be short, β long so that the positive roots are α, β, α+β, 2α+β, 3α+β, 3α+ 2β.
Products will be taken in this order. The order in which the roots are taken here
does not correspond to the ordering forced upon the roots in lemma 6.1; so we must
convert from one ordering to another. To facilitate the computations to be carried
out in this section, we list the action of the reflections σα and σβ on the roots. We
also list the sets Rω, where Rω is defined to be {β > 0|ωβ < 0}.

σβx x σαx
α+ β α −α
−β β 3α+ β
α α+ β 2α+ β

2α+ β 2α+ β α+ β
3α+ 2β 3α+ β β
3α+ β 3α+ 2β 3α+ 2β

ω Rω
σα {α}
σβσα {α, 3α+ β}
σασβσα {α, 3α+ β, 2α+ β}
σβ {β}
σασβ {β, α+ β}
σβσασβ {β, α+ β, 3α+ 2β}

Note also that α+ β = σβα, 2α+ β = σασβα, 3α+ β = σαβ, 3α+ 2β = σβσαβ.
To continue our preparations, we also list some products in G2 that will be

needed. Let γ = α + β, δ = 2α + β, ε = 3α + β, ζ = 3α + 2β. Define the vectors
Xγ , Xδ, Xε, and Xζ by Xγ = Ad σβ(Xα), Xδ = Ad σα(Xγ), Xε = -Ad σα(Xβ), Xζ

= Ad σβ(Xε). Define the structure constants a, b, . . . , j by the relations

εβ(y)εα(x) = εα(x)εβ(y)εγ(axy)εδ(bx
2y)εε(cx

3y)εζ(dx
3y2)

εγ(y)εα(x) = εα(x)εγ(y)εδ(exy)εε(fx
2y)εζ(gxy

2)

εδ(y)εα(x) = εα(x)εδ(y)εε(hxy)

εε(y)εβ(x) = εβ(x)εε(y)εζ(ixy)

εδ(y)εγ(x) = εγ(x)εδ(y)εζ(jxy)

(It is shown in [11] that a = b = c = d = 1, e = 2, f = g = h = j = 3, i = −1.)
The following lemma, which summarizes the products in G2 that will be needed,
follows directly from the definitions just given.
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Lemma II.7.1. Lemma 7.1 εα(xα)εβ(xβ)εγ(xγ)εδ(xδ)εε(xε)εζ(xζ)εα(yα) =

εα(xα + yα)εβ(xβ)εγ(xγ + ayαxβ)εδ(xδ + by2
αxβ + eyαxγ)εε(zε)εζ(zζ)

(zε = xε + cy3
αxβ + fy2

αxγ + hyαxδ)

(zζ = xζ + dy3
αx

2
β + gyαx

2
γ + bjy2

αxβxγ)

εα(xα)εβ(xβ)εγ(xγ)εδ(xδ)εε(xε)εζ(xζ)εβ(yβ) =

εα(xα)εβ(xβ + yβ)εγ(xγ)εδ(xδ)εε(xε)εζ(xζ + ixεyβ).

εα(xα)εβ(xβ)εγ(xγ)εδ(xδ)εε(xε)εζ(xζ)εγ(yγ) =

εα(xα)εβ(xβ)εγ(xγ + yγ)εδ(xδ)εε(xε)εζ(xζ + jyγxδ).

Proof. A calculation. �

Now define m1,m2,m3 and ω1, ω2, ω3 and mδ, mε, mα by the conditions
Bωin = Bωimi, m3 = εδ(mδ)m2, m2 = εε(mε)m1, m1 = εα(mα), ω3 = σαω2,
ω2 = σβω1, ω1 = σα. Define m′1, m′2, m′3 and ω′1, ω′2, ω′3 and mβ , mγ , mζ by
the conditions Bω′in = Bω′im

′
i, m

′
3 = εζ(mζ)m

′
2, m′2 = εγ(mγ)m′1, m′1 = εβ(mβ),

ω′3 = σβω
′
2, ω′2 = σαω

′
1, ω′1 = σβ . Also let

n = εα(nα)εβ(nβ)εγ(nγ)εδ(nδ)εε(nε)εζ(nζ).

Lemma 6.1 will be applied six times in what follows – once for each positive
root. The group element m of the lemma will take the values m1, m2, m3, m′1, m′2,
m′3. The variable mγ of the lemma will take on the values mδ,mε,mα,mζ ,mγ , and
mβ defined here in successive applications of the lemma. The notation is potentially
confusing. Note that the root γ in the lemma need not be the root γ = α+β of the
group G2, and the simple root α of lemma 6.1 need not be the short simple root of
G2.

This lemma shows how to convert from proposition 6.1 to the given ordering
on the roots.

Lemma II.7.2. Lemma 7.2 With these definitions,

mα = nα

mβ = nβ

mγ = nγ

mδ = nδ + bn2
αnβ − enαnγ

mε = nε − cn3
αnβ + fn2

αnγ − hnαnδ
mζ = nζ − inβnε − jnγnδ

(or equivalently)

nδ = mδ − bm2
αmβ + emαmγ

nε = mε + (c− hb)m3
αmβ + (he− f)m2

αmγ + hmαmδ

nζ = mζ + i(c− hb)m3
αm

2
β + (ihe− if − bj)m2

αmβmγ + jemαm
2
γ

+ himαmβmδ + jmγmδ + imβmε.
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Proof. The expressions given for the n−’s in terms of the m−’s are conse-
quences of the expressions for the m−’s in terms of the n−’s. So it is enough to
establish the expressions for the m−’s. By (7.1),

nm−1
1 = εα(nα −mα)εβ(nβ)εγ(nγ − amαnβ)εδ(nδ + bm2

αnβ − emαnγ).

times εε(nε − cm3
αnβ + fm2

αnγ − hmαnδ)εζ(∗)
So σαnm

−1
1 σ−1

α ∈ B implies mα = nα.

nm−1
2 =nm−1

1 εε(−mε)

=εβ(nβ)εγ(nγ − amαnβ)εδ(nδ + bm2
αnβ − emαnγ) times

εε(nε −mε − cm3
αnβ + fm2

αnγ − hmαnδ)εζ(∗).

So ω2nm
−1
2 ω−1

2 ∈ B implies
mε = nε − cm3

αnβ + fm2
αnγ − hmαnδ.

nm−1
3 =nm−1

2 εδ(−mδ)

=εβ(nβ)εγ(nγ − amαnβ)εδ(nδ −mδ + bm2
αnβ − emαnγ)εζ(∗).

So ω3nm
−1
3 ω−1

3 ∈ B implies mδ = nδ + bm2
αnβ − emαnγ .

nm′−1
1 = εα(nα)εβ(nβ −mβ)εγ(nγ)εδ(nδ)εε(nε)εζ(nζ − imβnε).

So σβnm
−1
1 σ−1

β ∈ B implies mβ = nβ .

nm′−1
2 =nm′−1

1 εγ(−mγ)

=εα(nα)εγ(nγ −mγ)εδ(nδ)εε(nε)εζ(nζ − inβnε − jmγnδ).

So ω′2nm
′−1
2 ω′−1

2 ∈ B implies mγ = nγ .

nm′−1
3 = nm′−1

2 εζ(−mζ) = εα(nα)εδ(nδ)εε(nε)εζ(nζ − inβnε − jmγnδ −mζ).

So ω′3nm
′−1
3 ω′−1

3 ∈ B implies mζ = nζ − inβnε − jmγnδ. �

The main result of this section is the following proposition.

Proposition II.7.3. Proposition 7.3 The coefficients mγ of G2 are given as
follows.

mα = 1/z(W+, α),

mβ = 1/z(W+, β),

mα+β = 1/z(W+, β)z(W (σβ), α),

m2α+β = (1/z(W+, α)z(W (σβσα), α)z(W (σα), β))

+ (1/z(W+, α)2z(W (σα), β))

m3α+β = −1/z(W+, α)3z(W (σα), β)

m3α+2β = −(1/z(W+, β)z(W (σασβ), β)z(W (σβ), α)3)

− (1/z(W+, β)2z(W (σβ), α)3).

Proof. Write t3v3ω3m3 = nw3
; t2v2ω2m2 = nw2

; t1v1ω1m1 = nw1
. Let the

variables z1, z2, z3, z
′
1, z
′
2, z
′
3 be given by the following diagram.
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z1 = z(W+, α) z2 = z(W (σα), β) z3 = z(W (σβσα), α)

z′1 = z(W+, β) z′2 = z(W (σβ), α) z′3 = z(W (σασβ), β)

W (σβσασβ)
z′3

W (σασβ)

z′2

W (σβ)

z′1

W+

z1

W (σα)

z2

W (σβσα)

z3

W (σασβσα)

Write
nw1 = exp(z1X−α),

nw2
= exp(z2X−β) exp(z1X−α),

nw3
= exp(z3X−α) exp(z2X−β) exp(z1X−α).

We now apply lemma 6.1 three times. The first application gives

α(t2)z3(y3 − u3mδ) + 1 = 0

where
v2 = exp(y3Xα)αv2 and ω2Xδω

−1
2 = u3Xα.

The second application gives

β(t1)z2(y2 − u2mε) + 1 = 0

where
v1 = exp(y2Xβ)βv1 and ω1Xεω

−1
1 = u2Xβ ;

t2 = t1(−β(t1)z2)−β
v

,

v2 = exp(β(t1)z2Xβ)σβ exp(u2mεXβ)βv1 exp(−u2mεXβ)σ−1
β .

The third application gives

z1(y1 − u1mα) + 1 = 0

where
y1 = 0 and u1 = 1
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t1 = (−z1)−α
v

,

v1 = exp(z1Xα).

Straightforward calculations give β(t1) = β(−z−α
v

1 ) = −z3
1 ,

α(t2) = α(t1)(−β(t1)z2)−<α,β
v> = z1z2,

y1 = 0, v1 = exp(y2Xβ)βv1 = exp(z1Xα), y2 = 0, exp(z1Xα) = βv1.

v2 = exp(y3Xα)αv2 = εβ(∗)σβεα(z1)εγ(az1u2mε)εδ(∗)εζ(∗)σ−1
β

=εα(az1u2mεu
′
2)αv2.

So y3 = az1u2u
′
2mε where Ad σβ(Xγ) = u′2Xα. So

z1z2z3(au2u
′
2mεz1 − u3mδ) + 1 = 0

−z3
1z2(−u2mε) + 1 = 0

−z1(−u1mα) + 1 = 0

Thus u1mα = 1/z1, u2mε = −1/(z3
1z2), u3mδ = 1/(z1z2z3) + (au2u

′
2mεz1) =

1/(z1z2z3)− au′2/(z2
1z2).

Now write t′3v
′
3ω
′
3m
′
3 = nw′3 ; t′2v

′
2ω
′
2m
′
2 = nw′2 ; t′1v

′
1ω
′
1m
′
1 = nw′1 . Write nw′1 =

exp(z′1X−β), nw′2 = exp(z′2X−α) exp(z′1X−β),

nw′3 = exp(z′3X−β) exp(z′2X−α) exp(z′1X−β).

We now apply lemma 6.1 three more times. The first application gives

β(t′2)z′3(y′3 − u′3mζ) + 1 = 0

where v′2 = exp(y′3Xβ)βv′2 and ω′2Xζω
′−1
2 = u′3Xβ . The second application gives

α(t′1)z′2(y′2 − u′2mγ) + 1 = 0

where
v′1 = exp(y′2Xα)αv′1 and ω′1Xγω

′−1
1 = u′2Xα;

t′2 = t′1(−α(t′1)z′2)−α
v

,

v′2 = exp(α(t′1)z′2Xα)σα exp(u′2mγXα)αv′1 exp(−u′2mγXα)σ−1
α .

The third application gives

z′1(y′1 − u′1mβ) + 1 = 0 where y′1 = 0 and u′1 = 1,

t′1 = (−z′1)−β
v

,

v′1 = exp(z′1Xβ).

Now we have as a consequence α(t′1) = α(−z′−β
v

1 ) = −z′1,

β(t′2) = β(t′1)(−α(t′1)z′2)−<β,α
v> = z′1z

′3
2 ,

y′1 = 0,

v′1 = exp(y′2Xα)αv′1 = exp(z′1Xβ),

y′2 = 0, αv′1 = exp(z′1Xβ).

v′2 = exp(y′3Xβ)βv′2 = εα(∗)σαεα(u′2mγ)εβ(z′1)εα(−u′2mγ)σ−1
α =

εα(∗)σαεβ(z′1)εγ(∗)εδ(∗)εε(c(−u′2mγ)3z′1)εζ(∗)σα−1 =

εβ(c(−u′2mγ)3z′1u2)βv′2.

So
y′3 = −c(u′2mγ)3z′1u2
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where

Ad σα(Xε) = u2Xβ .

This gives the equations

−z′1u′1mβ + 1 = 0 or u′1mβ = 1/z′1

z′1z
′
2u
′
2mγ + 1 = 0 or u′2mγ = −1/(z′1z

′
2)

z′1z
′3
2 z
′
3(−cu′32 m3

γz
′
1u2 − u′3mζ) + 1 = 0

or u′3mζ = 1/(z′1z
′3
2 z
′
3)− c(u′2mγ)3z′1u2 =

= 1/(z′1z
′3
2 z
′
3) + cu2/(z

′2
1 z
′3
2 ).

Humphreys [11] shows that Ad σα(Xδ) = −Xγ , Ad σα(Xε) = Xβ , Ad σα(Xζ) =
Xζ , Ad σβ(Xγ) = −Xα, Ad σβ(Xδ) = Xδ, Ad σβ(Xζ) = −Xε. From this it follows
that u1 = 1, u2 = 1, u3 = 1, u′1 = 1, u′2 = −1, u′3 = −1. Substituting these values
into the expressions for m−, we obtain the result. �

II.8. The Functions nγ

The functions nγ are much easier to compute for the classical groups. In fact
lemma 6.1 is not needed. To illustrate we calculate them for SL(n). (The same
method gives all classical groups).

Lemma II.8.1. Lemma 8.1

nαr+...+αr+s = 1/(z(W0, αr)z(W1, αr+1) . . . z(Ws, αr+s))

where W0 = W+, and Wt+1 is adjacent to Wt through a wall of type αr+t(t =
0, . . . , s− 1).

Proof. Represent SL(n) in the standard way with B = B0 upper triangular
and B∞ lower triangular. The relation B ωn = B nw is equivalent to ωnn−1

w ∈ B .
Let σi = σαr+i , Xi = X−αr+i , zi = z(Wi, αr+i), εi(x) = exp(xXi), i = 0, . . . , s.

Then kt =(def) ωnn−1
w =

σt . . . σ0nε0(−z0) . . . εt(−zt) ∈ B.
Also

kt+1 = σt+1σt . . . σ0nε0(−z0) . . . εt(−zt)εt+1(−zt+1)

= σt+1ktεt+1(−zt+1) ∈ B.
Since σt+1 and εt+1(−zt+1) belong to the rank one subgroup with Lie algebra
Xα, X−α, Hα where α = αr+t+1 we can compute this last product inside SL(2)
provided that we can determine the coefficients of kt in the ci,i, ci,i+1, ci+1,i and
ci+1,i+1 positions where i = r + t + 1. Since kt ∈ B, ci+1,i = 0. σi acts as the
permutation (r+i, r+i+1) on the rows of nn−1

w . So σt . . . σ0 acts as the permutation
(r + t, r + t + 1) . . . (r, r + 1) = (r + t + 1, r + t, . . . , r) on the rows of nn−1

w . Thus
the r + t + 1st row of ωnn−1

w equals the rth row of nn−1
w and the r + t + 2nd row

of ωnn−1
w equals the r + t+ 2nd row of nn−1

w . Since n−1
w = ε0(−z0) . . . εt(−zt) the

ith and i+ 1st columns of nn−1
w are the same as the respective columns of n. Thus

ci+1,i+1 = 1, ci,i+1 = nr,r+t+2 = nαr+...+αr+t+1
, ci,i = nr,r+t+1 = nαr+...+αr+t .

We have the matrix product in SL(2)(
0 1
−1 0

) (
x y
0 1

) (
1 0
−z 1

)
=

(
−z 1

yz − x −y

)
∈ B.
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The equality x = yz becomes ci,i = zt+1ci,i+1.

nαr+...+αr+t/z(Wt+1, αr+t+1) = nαr+...+αr+t+1
,

so by induction

nαr+...+αr+s = 1/(z(W0, αr)z(W1, αr+1) . . . z(Ws, αr+s)).

�

Also by a similar argument the following lemma is proved.

Lemma II.8.2. Lemma 8.2 Let mβ be the βth coefficient of the inverse of n,
let W0 = W+ and let Wj+1 be the Weyl chamber adjacent to Wj through the wall
(Wj , αr−j) then

mαr−s+...+αr = (−1)s+1/z(W0, αr)z(W1, αr−1) . . . z(Ws, αr−s).

Proof. Again represent B0 in SL(n) as the upper triangular matrices and
B∞ as the lower triangular matrices. The calculation takes place entirely inside a
Levi subgroup of PΣ where PΣ is the parabolic subgroup given by the simple roots
Σ = {αr−s, . . . , αr}. Thus we reduce immediately to the case where r − s = 1 and
r = n−1. Let σi = σαi , Xi = X−αi , and let zi = z(Wi−1, αn−i). As in the previous
lemma we have ωnn−1

w ∈ B0.
Let

nw = exp(zn−1X1) . . . exp(z1Xn−1).

Then

σ1 . . . σn−1n exp(−z1Xn−1) . . . exp(−zn−1X1) ∈ B.
To make it possible to use the previous lemma we apply the involution g→J tg−1J
to the group SL(n) where

J =


0 0 0 0 1
0 0 0 1 0
0 0 . . . 0 0
0 1 0 0 0
1 0 0 0 0

 .

Under this involution Xi→−Xn−i, σi→σ−1
n−i, n→J tn−1J . Thus ωnn−1

w is sent to

σ−1
n−1 . . . σ

−1
1 J tn−1J exp(z1X1) . . . exp(zn−1X ∈ B.

Now the coefficient in the (1, n)th position of J tn−1J equals mα1+...+αn−1 . We
now apply the previous lemma bearing in mind that the signs of the zi have been
reversed. This gives the result. �

II.9. The Fundamental Divisors on YΓ

There is a morphism from each divisor E in YΓ to the variety ξ−1(1) in Y1. An
irreducible divisor E in YΓ whose image in Y1 lies in the complement of Y ′′ is called a
spurious divisor. If there are walls (W,α) and (W ′, α) such that z(W,α)/z(W ′, α)(=
z1(W,α)/z1(W ′, α)) = 0 on E, then E is a spurious divisor. By [17, §3.8] the
condition that z(W,α)/z(W ′, α) = 0 is independent of the coordinate patch. All
other irreducible divisors on YΓ are called fundamental divisors. An open dense set
of a fundamental divisor lies over Y ′′.
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Every fundamental divisor in YΓ maps to (but not necessarily onto) an irre-
ducible component of ξ−1(1) in Y1. Much can be learned about the fundamental
divisors by studying their image in Y1. In fact nearly all calculations with funda-
mental divisors can be reduced to calculations in the singular variety Y1. We use
the coordinates developed in this chapter to study the fundamental divisors.

Weil divisors are defined on any variety which is regular in codimension one
[8]. I have not proved in general that Y ′′1 is regular in codimension one, although
it seems likely that it is. Thus whenever I speak of a divisor E on (a subvariety
of) Y ′′, I must first produce an appropriate subvariety of Y ′′ which is regular in
codimension one. Assuming that this can be done, we also call the divisors of λ = 0
in Y ′′1 fundamental divisors. Provided appropriate regularity conditions hold, they
are given by the irreducible components of the set of the following set of equations
with λ set equal to 0:

w(γ)λ = x(γ)
∏

z(α)m(α) : γ =
∑

m(α)α

w(γ)x(β) = w(β)x(γ)
∏

z(α)m(α) : γ − β =
∑

m(α)α

(The full list of equations here includes all equations holding on the Zariski closure
of the variety defined for λ 6= 0 by λw(γ) = x(γ)

∏
z(α)m(α) : γ =

∑
m(α)α.)

Recall that w(α) = 1 for α simple. There are 2N + 1 variables in the set

{λ,w(γ), x(γ), z(α)}\{w(α) : α simple}

where N = (dim(G) − rank(G))/2 = dim(S′′(B∞, B0)). For any positive root γ,
set

γ =
∑

mγ(α)α, mγ =
∑

mγ(α) and z(γ) =
∏

z(α)mγ(α).

For every set Σ of simple roots, we describe a divisor EΣ (again assuming appro-
priate regularity). Let Σ′ be the positive roots spanned by Σ; and let Σc be the
other positive roots. EΣ is the closure in Y ′′ of the subvariety defined by

i) λ = 0
ii) x(α) 6= 0 for α /∈ Σ : α simple
iii) z(α) 6= 0 for α ∈ Σ : α simple.

Proposition II.9.1. Proposition 9.1 Let Y ′′Σ be the open subvariety of Y ′′

consisting of points on Y ′′ which satisfy conditions (ii) and (iii). The open sub-
variety of Y ′′ consisting of the union of Y ′′Σ ∀ Σ is regular in codimension one.
EΣ is an OΣ-divisor where OΣ is the Richardson class of the parabolic subgroup
PΣ. The Igusa constant a(EΣ) is one. The Igusa constant β(EΣ) − 1 equals
(dim(CG(u)− rank(G))/2.

Proof. The local ring near a generic point of EΣ is regular because it is
generated by {λ, x(γ) : γ ∈ Σc, w(γ) : γ ∈ Σ′, z(α) : α ∈ Σ} for :

z(α) = λ/x(α) : α /∈ Σ;

x(γ) = λw(γ)/z(γ) : γ ∈ Σ′;

w(γ) = x(γ)
∏

z(α)m(α)/x(α0) : γ ∈ Σc, α0 /∈ Σ, γ − α0 =
∑

m(α)α

(γ not simple). We see that x(γ) = 0 on EΣ if and only if γ ∈ Σ′. This proves that
the subvariety of Y ′′ of the lemma is regular in codimension one. This also shows
that that EΣ is an OΣ-divisor where OΣ is the Richardson class of the parabolic PΣ.
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We also see that the Igusa constant a(EΣ), which is defined to be the multiplicity
with which λ vanishes along E, equals one.

Spaltenstein [24, §3.2] tells us that dimCG(v) = dim(MΣ) where MΣ is a Levi
component associated to the parabolic PΣ and v ∈ OΣ. The form on X0 is given
by

ωX = dλ ∧ dx(α) ∧ dx(β) ∧ . . . ∧ dνα ∧ dνβ ∧ . . .
To pass to the form in a neighborhood of EΣ we make the substitution x(γ) =
λw(γ)/z(γ) for γ ∈ Σ′ where z(γ) is defined to be the product

∏
z(α)m(α). We can

pull the factors λ out of the form to obtain

ωX = λ|Σ
′|dλ ∧

∏
d(w(γ)/z(γ)) ∧

∏
dx(β) . . . = λβ(E)−1dλ ∧ . . . .

The constant b(E) − 1 is defined to be the multiplicity of the zero of ωX along E
which in this case is |Σ′|. When a(E) = 1, β(E) = b(E). But then 2(β(E) − 1) =
2|Σ′| = dim(MΣ)− rank(G). This completes the proof. �

The result that β(E) − 1 = (dim(CG(u)) − rank(G))/2 is to be expected.
Harish-Chandra has proved the following result in characteristic zero.

Proposition II.9.2. Proposition 9.2 Let O be an F -unipotent conjugacy class.
Let Γ(γ) be the O-germ of an orbital integral relative to the measure∏

(1− α−1(γ))ωT\G.

Let r = dim(CG(u)) − rank(G). Let X be a vector in the Lie algebra of T which
does not lie in any singular hyperplane. Then Γ(exp(λ2X)) = |λ|rΓ(exp(X)).

Proof. [5] �

Let E1 denote a globally defined divisor which is equal to EΣ on the given
coordinate patch Y ′′(B∞, B0). The following lemma insures that Σ is independent
of the coordinate patch and that divisors which are distinct on one coordinate patch
are distinct on every coordinate patch.

Lemma II.9.3. Lemma 9.3 Let (u,B(W )) be a generic point of E1. Let PΣ′

be a parabolic subgroup minimal among those parabolic subgroups containing B(W )
for all W . Then Σ = Σ′.

Proof. On a coordinate patch Y ′′(B∞, B0), we have seen that u is a Richard-
son class of the parabolic subgroup PΣ. Also z(α) = 0, α /∈ Σ. This implies that
B(W ) ∈ PΣ for all W . E1 is the closure of EΣ, so that B(W ) ∈ PΣ for all W
and all points in E1. Since z(W+, α) 6= 0 for α ∈ Σ at the generic point, we have
B(W+) 6= B(W (σα)), so that α ∈ Σ′ for any PΣ′ containing B(W ) for all W . Thus
Σ⊆Σ′, and PΣ is minimal. �

The following simple fact will be needed in the proof of proposition 9.5. We
continue to work over the algebraic closure F̄ of F .

Lemma II.9.4. Lemma 9.4 Every irreducible component of λ = 0 has codimen-
sion one in Y ′′.

Proof. This follows directly from [20, p.65] �

The following proposition will not be needed in what follows.
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Proposition II.9.5. Proposition 9.5 When G = An, the variety Y ′′ is regular
in codimension one. The only divisors on Y ′′ for a group of type An are EΣ ∀ Σ.

Proof. If we show that every point of λ = 0 lies inside one of the divisors EΣ,
then the result follows from proposition 9.1. Let E be a component of λ = 0. We will
use the following observation repeatedly. If E has dimension x and the coordinate
ring of E is generated by x + r functions then at most r of those functions equal
zero.

Let R be the set of roots γ such that x(γ) 6= 0 on E. Let Rmin be the subset of
R such that if γ ∈ Rmin and γ−β =

∑
m(α)α with m(α) ≥ 0 then x(β) = 0. Since

w(α) = 1 for α simple, the functions {w(γ)} are indexed by γ ∈ Φ+\∆ where Φ+

are the positive roots and ∆ are the simple roots. Then there are |{λ}|+ |{w(γ)}|+
|{z(α)}| + |{x(γ)}| + |{ coefficients of ν}| = 1 + (N − `) + ` + N + N = 3N + 1
variables where ` = rank(G) and 2N = (dim(G)− `). Also by (9.4) the dimension
of E equals 2N . The observation above tells us that the number of variables we
eliminate plus the number that are identically zero is at most N + 1.

We know by definition of R that x(β) = 0 on E for β ∈ Φ+\R. If γ ∈ R\Rmin

then there exists a positive root β with x(β) 6= 0 such that γ − β =
∑
m(α)α,

m(α) ≥ 0. For such γ the variable w(γ) can be eliminated through the equation

w(γ)x(β) = x(γ)w(β)
∏

z(α)m(α).

We know that that λ = 0 on E. If α ∈ Rmin∩∆ then the equation z(α)x(α) = λ
allows one to eliminate z(α). In summary if δ = |Rmin\∆| then we either eliminate
or set to zero (N − |R|) + |R\Rmin|+ 1 + |Rmin∩∆| = N + 1− δ variables.

Now specialize to the case G = An. We can write the elements of Rmin as
γ1, . . . , γp where γi = αri+· · ·+αri+si with r1 < · · · < rp and r1+s1 < · · · < rp+sp
and si ≥ 0. �

Lemma II.9.6. Lemma 9.6 Rmin⊆∆.

Proof. For each γ ∈ Rmin\∆, write w(γ)x(β) = w(β)x(γ)z(αr) where γ =
αr + . . .+ αr+s and β = γ − αr. By the definition of Rmin, x(β) = 0 and x(γ) 6= 0.
So w(β)z(αr) = 0. From the the inequalities r1 < · · · < rp it follows that the
variables z(αr) are distinct and do not equal any of the variables z(α)(α ∈ Rmin∩∆)
eliminated in the previous paragraph. From the same inequalities it follows that the
variables w(β) are distinct. Furthermore β cannot lie in R\Rmin for this would force
γ to lie in R\Rmin as well. Thus the equations w(γ − αr)z(αr) = 0 ∀ γ ∈ Rmin\∆
force δ = |Rmin\∆| addition variables to zero. We have now eliminated or set to
zero N + 1 distinct variables. No further variables can be eliminated or set to zero
without contradiction.

Set wi = w(αri + · · · + αri+si−1) and zi = z(αri+si) for i ∈ {1, . . . , p}. Let
q be the largest element of {1, . . . , p} such that γq ∈ Rmin\∆. As above we have
wizi = 0. Suppose zq = 0, then we must have zq = z(αr) for some r. But since
rq−1 < rq < rq+sq < rq+1 +sq+1 = rq+1, this is impossible. Thus zq 6= 0 and wq =
0. Continuing inductively suppose that zj+1, . . . , zq 6= 0 and γj , . . . , γq ∈ Rmin\∆.
Then it follows that again zj 6= 0 and wj = 0. If j is now chosen to be the smallest
integer such that γj , . . . , γq ∈ Rmin\∆ then wj = 0. Since γj−1 ∈ ∆, wj cannot
equal any of the variables previously set to zero. This gives a contradiction. Thus
Rmin⊆∆.
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Since no variables equal zero on E other than those already specified, we have
on E (i) λ = 0, (ii) x(α) 6= 0 for α /∈ ∆\Rmin (that is α ∈ Rmin), (iii) z(α) 6= 0
for α ∈ ∆\Rmin. These are the conditions holding on an open set of the divisor EΣ

with Σ = ∆\Rmin. �





CHAPTER III

Groups of Rank Two

III.1. Zero Patterns

Consider the variety of stars S1 and a divisor E. For every coordinate patch
S1(B∞, B0) and simple root α select a chamber Wα such that z1(Wα, α) 6= 0 on
E. Certain of the variables z(W,α)/z(Wα, α)(= z1(W,α)/z1(Wα, α)) will vanish
identically on E. This gives a zero pattern, i.e., a map θ1 from the walls to {0, 1}, by
θ1(W,α) = 0 if and only if z(W,α)/z(Wα, α) = 0 on E. The zero pattern depends
only on E and not on the choices (B∞, B0) and Wα. The first part of this chapter
studies the zero patterns for groups of rank two.

The rank two zero patterns will then be used to prove a result about the divisors
for an arbitrary group. Let θ1 be a zero pattern. For a fixed point p (which is not
necessarily a closed point of the variety), a special node is a node such that at least
one wall of each type is non-zero but that at least one wall is zero. By the nature
of the equations at a node of type A1 ×A1,

y

−y
y

−y

x −x

x −x

a special node must be of type A2, B2, or G2. The following proposition indicates
the importance of special nodes.

Proposition III.1.1. Proposition 1.1 Let G be a group of semi-simple rank
2. Suppose that at a generic point of a divisor E there is a special node. Then E
makes no contribution to the subregular germ.

The proof of this proposition is the subject of the second half of this chapter.
Fix a torus T and a Borel B of G and let the positive roots be

α, β, γ = α+ β A2

α, β, γ = α+ β, δ = 2α+ β B2

α, β, γ = α+ β, δ = 2α+ β, ε = 3α+ β, ζ = 3α+ 2β G2.

We will take products according to this order on the roots.

31
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Lemma III.1.2. Lemma 1.2 (G2)
εα(x1)εβ(y1)εα(x2)εβ(y2) . . . εα(xn)εβ(yn) =
εα(an)εβ(bn)εα+β(cn)ε2α+β(dn)ε3α+β(en)ε3α+2β(fn)

where
an = x1 + x2 + . . .+ xn

bn = y1 + y2 + . . .+ yn

cn = (x2 + . . .+ xn)y1 + (x3 + . . .+ xn)y2 + . . .+ xnyn−1

dn = (x2 + . . .+ xn)2y1 + (x3 + . . .+ xn)2y2 + . . .+ x2
nyn−1

en = (x2 + . . .+ xn)3y1 + (x3 + . . .+ xn)3y2 + . . .+ x3
nyn−1

Proof. For n = 1 the statement is obvious. We proceed by induction. By
lemma II.7.1,

εα(an−1)εβ(bn−1)εγ(cn−1)εδ(dn−1)εε(en−1)εζ(fn−1)εα(xn)εβ(yn)
= εα(an−1 + xn)εβ(bn−1)εγ(bn−1xn + cn−1)εδ(dn−1 + 2xncn−1 + x2

nbn−1)
εε(en−1 + 3xndn−1 + 3x2

ncn−1 + x3
nbn−1)εζ(∗)εβ(yn)

= εα(an−1 + xn)εβ(bn−1 + yn)εγ(bn−1xn + cn−1)εδ(dn−1 + 2xncn−1 + x2
nbn−1)

εε(en−1 + 3xndn−1 + 3x2
ncn−1 + x3

nbn−1)εζ(∗).
Define pn(i) by

pn(i) =

{∑n
j=2(xj + . . .+ xn)iyj−1 for i ≥ 1

y1 + . . .+ yn for i = 0.

It follows by expanding ((xj + . . .+ xn−1) + xn)i in powers of xn that

pn(i) =
∑i
k=0

(
i
k

)
xi−kn pn−1(k). We wish to show that bn = pn(0), cn = pn(1),

dn = pn(2), en = pn(3). By induction we have

cn = cn−1 + xnbn−1 = pn−1(1) + xnpn−1(0)

= pn(1)

dn = dn−1 + 2xncn−1 + x2
nbn−1

= pn−1(2) + 2xnpn−1(1) + x2
npn−1(0) =

= pn(2)

en = en−1 + 3xndn−1 + 3x2
ncn−1 + x3

nbn−1

= pn−1(3) + 3xnpn−1(2) + 3x2
npn−1(1) + x3

npn−1(0)

= pn(3).

�

Lemma III.1.3. Lemma 1.3 Suppose

(∗) εα(x1)εβ(y1)εα(x2) . . . εα(xn)εβ(yn) = 1,

then

a) if n = 1, x1 = y1 = 0;
b) if n = 2, x1 = x2 = 0 or y1 = y2 = 0;
c) (B2, G2) if n = 3, x1 = x2 = x3 = 0, or y1 = y2 = y3 = 0, or xi = yi+1 =

0 for some i, where the subscripts are read modulo three.
d) (G2) if n = 4, xi = 0 for some i, or yi = 0 for some i, or

y1 + y3 = y2 + y4 = x1 + x4 = −x2 + x4 = x3 + x4 = 0.
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Proof. The unipotent radical of a Borel subgroup of G2 is generated by εα(x)
and εβ(y). This radical modulo the subgroup generated by ε3α+β and ε3α+2β is
isomorphic to the unipotent radical of a Borel subgroup of B2. Similarly by dividing
by ε2α+β , ε3α+β , and ε3α+2β we obtain the unipotent radical of a Borel subgroup
of A2. These facts follow by an examination of the structure constants [11, §33.5].
It follows that we may work inside G2 ignoring en, fn of (1.2) for B2 and dn, en, fn
for A2.

When n = 1, the lemma is obvious. When n = 2, c2 = x2y1 = 0 forcing x2 = 0
or y1 = 0. The case n = 2 now reduces to n = 1. When n = 3, b3 = c3 = d3 = 0.
This together with x1 + x2 + x3 = 0 gives 1 1 1

x1 x1 + x2 0
x2

1 (x1 + x2)2 0

 y1

y2

y3

 = 0.

We have y1 = y2 = y3 = 0 unless the determinant vanishes. This is a Vander-
monde determinant equal to -x1x2x3. We consider, for instance, the case x2 = 0.
Then the condition (∗) becomes εα(x1)εβ(y1 + y2)εα(x3)εβ(y3) = 0. Applying the
lemma when n = 2, we obtain x1 = x3 = 0 or y1 + y2 = y3 = 0. Since the
equation εα(x1)εβ(y1) . . . εα(xn)εβ(yn) = 1 is unaffected by cyclic permutations
xi→xi+1, yi→yi+1 where the subscripts are read modulo n, the cases x1 = 0 and
x3 = 0 follow similarly.

When n = 4, b4 = c4 = d4 = e4 = 0 together with x1 + . . .+ x4 = 0 give
1 1 1 1
x1 x1 + x2 −x4 0
x2

1 (x1 + x2)2 (−x4)2 0
x3

1 (x1 + x2)3 (−x4)3 0



y1

y2

y3

y4

 = 0.

So y1 = y2 = y3 = y4 = 0 unless the determinant vanishes. This is a Vandermonde
determinant which is easily seen to equal Cx1x2x3x4(x1 + x4)(x1 + x2) where C
is a non-zero constant (C = −1). Suppose that xiyi 6= 0 for all i. Then we have
(1) (x1 + x4) = 0, or (2) (x1 + x2) = 0. Plugging these back in we see that we
must actually have x1 + x4 = 0 and x1 + x2 = 0, and consequently y1 + y3 = 0 and
y2 + y4 = 0. This proves the lemma. �

For a fixed torus T , the Galois group acts on the stars through the Weyl group.
If a divisor is defined over F then the zero pattern is necessarily fixed by σT . If there
is a wall fixed by σT , then the two Weyl chambers W1,W2 bounded by the wall
are stabilized by σT so that σT {W1,W2} = {W1,W2}. Thus an Igusa variety can
be constructed using just the Borel subgroups B(W1) and B(W2). Such a Cartan
subgroup will never be elliptic.

The lemma permits us to list all zero patterns for rank two groups up to sym-
metry. For G2 we only list those that do not have a fixed wall under the action of
the Galois group. The action of the Galois group on the Weyl chambers depends
of course only on the image Ω′(= {σT : σ ∈ Gal(F̄ /F )}) of the Galois group in the
extended Weyl group. The equation holding at the node is

εα(x1)εβ(y1) . . . εα(xn)εβ(yn) = 1

where n = 3(A2), n = 4(B2), or n = 6(G2). Notice that this equation is invariant
under cyclic permutations of variables xi→xi+1, yi→yi+1. When a variable is zero
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the product has the same form but n becomes smaller because two neighboring
variables coalesce. This permits an application of the lemma.

−x −y

0

yx

0

B2 The corners of the squares represent the long roots and the midedges represent
the short roots

B.I
a+ b+ c = 0

y a
0

c

0
b

−y

0

B.II
a+ b+ c = 0

a
0

c

−x

0xb

0

B.III

y x
z

0

−z
−x

−y

0

B.IV

y x
0

−x

−y
−z0

z
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G2 The corners of the hexagon represent the long roots and the midedges represent
the short roots.

G.I

a+ b+ c = 0

0 −z a

x

0

−x

cy0

−y

b

z

G.II

a+ b+ c = 0

z 0 −z

b

x

0

−xcy

0

−y

a

G.III

a+ b+ c = 0
a′+b′+c′ = 0

0 b 0

c

−x

c′

0b′0

a′

x

a

G.IV

a+ b+ c = 0
a′+b′+c′ = 0

a x a′

0

b′

0

c′−xc

0

b

0

G.V

a+ b+ c+ d = 0

a 0 b

x

0

−x

c0d

−y

0

y

G.VI

a+ b+ c+ d = 0

x 0 −x

d

0

c

−y0y

b

0

a

A few remarks on the diagrams are in order. Consider first the case A2. Suppose
x2 = 0 for instance. Then

εα(x1)εβ(y1 + y2)εα(x3)εβ(y3) = 0.

Lemma 1.3.b together with the fact that at least one variable of each type must be
non-zero implies that y1 + y2 = y3 = 0.

Consider B2. Suppose x3 = 0. Then lemma 1.3.c together with the hypothesis
that at least one wall of type α is non-zero implies that y1 = y2 + y3 = y4 = 0
(pattern B.I), or x2 = x3 = y4 = 0 if the xi of (1.3.c) is adjacent to x3 (pattern
B.II), or x3 = x1 = y2 +y3 = 0 if the xi of the lemma is not adjacent to x2 (pattern
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G.VII

0 0 0

−x

−y

−z

000

z

y

x

G.VIII

a+ b+ c = 0

x y z

0

0

0

−z−y−x

0

0

0

G.IX

a+ b = a′+ b′ =
c

x c y

a

0

b

xc−y

b′

0

a′

G.X

a+ b+ c+ d = 0

a 0 b

−x

y

x

d0c

−x

−y

x

G.XI
y z u

v

0

−v

−u−z−y

−x

0

x

G.XII

x y z

u

v

0

−v−u−z

−y

−x

0

B.III). Finally suppose that none of the walls xi are zero. Then suppose y1 = 0.
Again we apply (1.3.c) noting that the first two possibilities do not arise, so that
we have x1 + x2 = y3 = 0 (pattern B.IV ).

I will not give a proof that the zero patterns listed above for G2 are the only
possibilities but I will make the results that follow independent of this classification.

III.2. Coordinate Relations

As a next step in the proof of proposition 1.1 it is necessary to obtain formulas
relating the functions w(γ) to the coordinates z(W,α). Lemmas 7.2 and 7.3 relate
the coefficients nβ to the coordinates z(W,α). Thus it is enough to calculate the
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dependence of w(γ) on the coefficients nβ . Lemmas 2.1 and 2.2 carry out these
calculations.

Lemma III.2.1. Lemma 2.1 Defining a, b, c, d, e, f, g, h, i, j as in (II.7) we have

εζ(xζ)εε(xε)εδ(xδ)εγ(xγ)εβ(xβ)εα(xα)

times
εα(yα)εβ(yβ)εγ(yγ)εδ(yδ)εε(yε)εζ(yζ)

= εα(zα)εβ(zβ)εγ(zγ)εδ(zδ)εε(zε)εζ(zζ)

with
zα = xα + yα
zβ = xβ + yβ
zγ = xγ + yγ + a(xα + yα)xβ
zδ = xδ + yδ + b(xα + yα)2xβ + e(xα + yα)xγ
zε = xε + yε + c(xα + yα)3xβ + f(xα + yα)2xγ + h(xα + yα)xδ
zζ = xζ + yζ + d(xα + yα)3x2

β + g(xα + yα)x2
γ + i(xβ + yβ)xε + j(xγ + yγ)xδ

+hi(xα + yα)(xβ + yβ)xδ + fi(xα + yα)2(xβ + yβ)xγ + ci(xα + yα)3xβyβ
+bj(xα+ yα)2xβyγ + ej(xα+ yα)xγyγ +aj(xα+ yα)xβxδ +aje(xα+ yα)2xβxγ .

Proof. The underlined quantities are moved to the left in each step.
εζ(xζ)εε(xε)εδ(xδ)εγ(xγ)εβ(xβ)
εα(xα)εα(yα)εβ(yβ)εγ(yγ)εδ(yδ)εε(yε)εζ(yζ) =

εα(xα + yα)εζ(xζ)εε(xε)(εδ(xδ)εε(h(xα + yα)xδ)εγ(xγ)εδ(e(xα + yα)xγ)
εε(f(xα + yα)2xγ)εζ(g(xα + yα)x2

γ))(εβ(xβ)εγ(a(xα + yα)xβ)εδ(b(xα + yα)2xβ)

εε(c(xα + yα)3xβ)εζ(d(xα + yα)3x2
β)) · εβ(yβ)εγ(yγ)εδ(yδ)εε(yε)εζ(yζ) =

εα(zα)εβ(xβ + yβ)εζ(xζ)(εε(xε)εζ(i(xβ + yβ)xε))εδ(xδ)(εε(h(xα + yα)xδ)
εζ(ih(xβ + yβ)(xα + yα)xδ))εγ(xγ)εδ(e(xα + yα)xγ)(εε(f(xα + yα)2xγ)

εζ(fi(xα + yα)2(xβ + yβ)xγ))εζ(g(xα + yα)x2
γ)·

εγ(a(xα + yα)xβ)εδ(b(xα + yα)2xβ)

(εε(c(xα + yα)3xβ)εζ(ci(xα + yα)3xβyβ))εζ(d(xα + yα)3x2
β) · εγ(yγ)εδ(yδ)

εε(yε)εζ(yζ) =
εα(zα)εβ(zβ)εγ(xγ + yγ + a(xα + yα)xβ)εζ(xζ)εε(xε)εζ(i(xβ + yβ)xε)
(εδ(xδ)εζ(j(xγ + yγ)xδ + aj(xα + yα)xβxδ))

εε(h(xα + yα)xδ)εζ(ih(xβ + yβ)(xα + yα)xδ)·
εδ(e(xα + yα)xγ)εζ(ej(xα + yα)yγxγ + aje(xα + yα)2xβxγ))εε(f(xα + yα)2xγ)

εζ(fi(xα + yα)2(xβ + yβ)xγ)εζ(g(xα + yα)x2
γ) · (εδ(b(xα + yα)2xβ)

εζ(bj(xα + yα)2xβyγ))εε(c(xα + yα)3xβ)εζ(ci(xα + yα)3xβyβ)
εζ(d(xα + yα)3x2

β) · εδ(yδ)εε(yε)εζ(yζ) =

εα(zα)εβ(zβ)εγ(zγ)εδ(xδ + yδ + b(xα + yα)2xβ + e(xα + yα)xγ)εζ(xζ)εε(xε)

εζ(i(xβ + yβ)xε) · εζ(j(xγ + yγ)xδ + aj(xα + yα)xβxδ)εε(h(xα + yα)xδ)

εζ(ih(xβ + yβ)(xα + yα)xδ)
εζ(ej(xα + yα)yγxγ + aje(xα + yα)2xβxγ)εε(f(xα + yα)2xγ)

εζ(fi(xα + yα)2(xβ + yβ)xγ)εζ(g(xα + yα)x2
γ)

εζ(bj(xα + yα)2xβyγ)εε(c(xα + yα)3xβ)

εζ(ci(xα + yα)3xβyβ)εζ(d(xα + yα)3x2
β) · εε(yε)εζ(yζ) =

εα(zα)εβ(zβ)εγ(zγ)εδ(zδ)
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εε(xε + yε + c(xα + yα)3xβ + f(xα + yα)2xγ + h(xα + yα)xδ)
εζ(xζ) · εζ(i(xβ + yβ)xε)εζ(j(xγ + yγ)xδ + aj(xα + yα)xβxδ)
εζ(ih(xβ + yβ)(xα + yα)xδ)
εζ(ej(xα + yα)yγxγ + aje(xα + yα)2xβxγ)
εζ(fi(xα + yα)2(xβ + yβ)xγ)εζ(g(xα + yα)x2

γ)

εζ(bj(xα + yα)2xβyγ) · εζ(ci(xα + yα)3xβyβ)εζ(d(xα + yα)3x2
β) · εζ(yζ) =

εα(zα)εβ(zβ)εγ(zγ)εδ(zδ)εε(zε)
εζ(xζ + i(xβ+yβ)xε+j(xγ +yγ)xδ+aj(xα+yα)xβxδ+ ih(xβ+yβ)(xα+yα)xδ)
εζ(ej(xα + yα)yγxγ + aje(xα + yα)2xβxγ+

fi(xα + yα)2(xβ + yβ)xγ + g(xα + yα)x2
γ)

εζ(bj(xα + yα)2xβyγ + ci(xα + yα)3xβyβ + d(xα + yα)3x2
β + yζ). �

Corollary III.2.2. Corollary 2.2 t−1n−1tn =

εα(x(α))εβ(x(β))εγ(x(γ))εδ(x(δ))εε(x(ε))εζ(x(ζ))

where
n = εα(nα)εα(nα)εβ(nβ)εγ(nγ)εδ(nδ)εζ(nζ)
x(α) = (1− α−1)nα
x(β) = (1− β−1)nβ
x(γ) = (1− γ−1)nγ − a(1− α−1)β−1nαnβ
x(δ) = (1− δ−1)nδ − b(1− α−1)2β−1n2

αnβ − e(1− α−1)γ−1nαnγ
x(ε) = (1− ε−1)nε − c(1− α−1)3β−1n3

αnβ − f(1− α−1)2γ−1nαnγ
−h(1− α−1)δ−1nαnδ

x(ζ) = (1− ζ−1)nζ + d(1− α−1)3β−2n3
αn

2
β + g(1− α−1)γ−2nαn

2
γ

−i(1− β−1)ε−1nβnε − j(1− γ−1)δ−1nγnδ
−hi(1− α−1)(1− β−1)δ−1nαnβnδ
−fi(1− α−1)2(1− β−1)γ−1n2

αnβnγ − ci(1− α−1)3β−1n3
αn

2
β

−bj(1− α−1)2β−1n2
αnβnγ − ej(1− α−1)γ−1nαn

2
γ

+aj(1− α−1)β−1δ−1nαnβnδ + aje(1− α−1)2β−1γ−1n2
αnβnγ .

Proof. Let xη = −nηη−1, yη = nη in the previous lemma for η = α, β, γ, δ,
ε, ζ. �

In the next lemma we gather together equations that will be used to prove the
main result of this section.

Lemma III.2.3. Lemma 2.3 The following equations hold on Y ′′.

(a) w(α) = 1, w(β) = 1
(b) nα = 1/z(W+, α), nβ = 1/z(W+, β),
(c) λ = x(α)z(α), λ = x(β)z(β)
(d) (1− α−1) = x(α)z(W+, α), (1− β−1) = x(β)z(W+, β)
(e) z(W+, α)/z(α) = z1(W+, α) = (1− α−1)/λ

z(W+, β)/z(β) = z1(W+, β) = (1− β−1)/λ
(f) u′2nγ = −1/(z(W+, β)z(W (σβ), α)) where σβ(Xγ) = u′2Xα
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(g)

λw(γ) = z(α)z(β)x(γ)

= z(α)z(β)((1− γ−1)nγ − β−1(1− α−1)nαnβ)

= [λ2/(1− α−1)(1− β−1)] times

[(−(1− γ−1)u′−1
2 z(W+, α)/z(W (σβ), α))− β−1(1− α−1)]

Proof. (a) holds by definition. (b) was proved in (I.5.5). (c) are the defining
relations for z(α) and z(β). (d) is equation (II.3.3) combined with (b). In (e) the
first equality on each line serves as the definition of z1(W,−). The second equality
on each line is obtained by dividing (d) by (c). (f) was proved for G2 in (II.7.2),
(II.7.3). This calculation only makes use of the fact that β is at least as long as α,
so that the calculation holds for A2 and B2 as well. This is consistent with (II.8.1)
when α = β2, β = β1, u

′
2 = −1. The first equality of (g) is (II.4.2). The second

equality is (2.2). This is consistent with (II.5.1). The third equality of (g) follows
by using (e) for z(α) and z(β), (f) for nγ , and (b) for nαnβ . �

Lemma III.2.4. Lemma 2.4 Let dx1 . . . dxn be a form of maximal degree on
YΓ. Suppose that there are coordinates µ1, . . . , µn on YΓ such that locally µ1 = 0
defines a divisor E and xi = µai1 ξi where ξi is regular on E. Let a =

∑
ai. Then

dx1 . . . dxn vanishes to order at least a− 1 on E.

Proof.

dx1 . . . dxn =
∂(x1, . . . , xn)

∂(µ1, . . . , µn)
dµ1 . . . dµn.

Expanding the Jacobian by the first row we obtain

∂(x1, . . . , xn)

∂(µ1, . . . , µn)
=
∑

(±1)
∂xi
∂µ1

∂(x1, . . . , x̂i, . . . , xn)

∂(µ2, . . . , µn)
.

Now
∂(x1, . . . , x̂i, . . . , xn)

∂(µ2, µ3, . . . , µn)
= µa−ai1

∂(ξ1, . . . , ξ̂i, . . . , ξn)

∂(µ2, µ3, . . . , µn)

and
∂xi
∂µ1

= aiµ
ai−1
1 ξi + µai1

∂ξi
∂µ1

= µai−1
1 (aiξi + µ1

∂ξi
∂µ1

).

Thus every term of the sum vanishes to order at least (a−ai)+(ai−1) = a−1. �

III.3. Exclusion of Spurious Divisors

The next few lemmas show that divisors with certain zero patterns make no
contribution to the subregular germ. A subregular unipotent element is one whose
centralizer has dimension rank(G) + 2. The proofs follow similar lines. Let E be
a divisor. If λ vanishes to order a on E and the form ωY vanishes to order b− 1
on E then E makes a contribution to a term m(λ)rθ(λ)|λ|β−1Fr(θ, β, f) of the
asymptotic expansion with β = b/a. For details see [17].

Suppose we can express ωY locally as λ2µx(dµ/µ) ∧ ω′ where x > 0, µ is a
local coordinate, µ = 0 defines E, and ω′ regular on E. Then b = 2a + x, β − 1 =
(b/a)− 1 = 1 + (x/a) > 1. This shows that such a divisor E does not contribute to
the first order term of the asymptotic expansion. By (II.9.2), it does not contribute
to the subregular germ.
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The coordinate functions z(W,α) are regular on Y1(B∞, B0). However, it is
rather awkward to work directly with these coordinates. On the variety Y ′′ we have
seen in chapter II how to express the functions w(γ) in terms of z(α) (α simple)
and the coefficients of t and n (II.3) and also how to express the coefficients of n in
terms of the coordinates z(W,α). Also z(α) = (λ/(1− α−1))z(W+, α) (2.3). Thus
on Y ′′ we can express w(η) in terms of the coefficients of t, λ and z(W,α). We use
this expression to extend w(γ) to a rational function on Y1(B∞, B0). Similarly we
extend nγ to a rational function on Y1(B∞, B0). The following lemmas show that
with appropriate hypotheses, w(η) or sometimes 1/w(η) may actually extend to a
regular function on a Zariski open set of certain spurious divisors.

The next lemma does not assume that G is rank two.

Lemma III.3.1. Lemma 3.1 Let E be a divisor on YΓ. Suppose that W+ and
two simple adjacent roots α1 and α2 can be chosen so that θ1(W+, α1) 6= 0, and
θ1(W (σα2

), α1) = 0 on E. Suppose also that the root α1 is not longer than the root
α2. Then

a) 1/w(α1 + α2) is regular on E.
b) 1/w(α1 + α2) vanishes on E.
c) E makes no contribution to the subregular germ.

Proof. Note that z(α) = λz(W+, α)/(1 − α−1) and z(β) = λz(W+, β)/(1 −
β−1) are regular on E. Set w = 1/w(α1 + α2). On Y ′′ we have by (2.3.g) w =
[λ2/(1− α−1

1 )(1− α−1
2 )]−1

[(−(1− (α1α2)−1)/λ)(u′−1
2 z(W+, α1)/z(W (σα2

), α1))− α−1
2 (1− α−1

1 )/λ]−1.

Set z = z(W (σα2), α1)/z(W+, α1). By the hypotheses of the lemma, z is regular
on E and is in fact equal to zero on E. Thus up to a regular invertible factor, w is
equal to

z[−((1− (α1α2)−1)/λ)u′−1
2 − zα−1

2 (1− α−1
1 )/λ]−1.

Since z = 0 on E, the factor

−((1− (α1α
−1
2 ))/λ)u′−1

2 − zα−1
2 ((1− α−1

1 )/λ)

equals −((1− (α1α2)−1)/λ)u′−1
2 on E and is consequently regular and invertible on

E. Parts a) and b) follow.
Formulas (2.3.c,g) give

x(α1) = λ/z(α1) = z(α2)x(α1 + α2)w, and

x(α2) = λ/z(α2) = z(α1)x(α1 + α2)w,

λ = z(α1)z(α2)x(α1 + α2)w.

The form up to a factor we can ignore is given on Y 0 by
dλ ∧ dx(α1) ∧ dx(α2) ∧ dx(α1 + α2) ∧ . . . dν =
λ2dλ ∧ d(1/z(α1)) ∧ d(1/z(α2)) ∧ dx(α1 + α2) ∧ . . . dν =
λ2x(α1 + α2)dw ∧ (dz(α1)/z(α1)) ∧ (dz(α2)/z(α2)) ∧ dx(α1 + α2) ∧ . . . dν

where

dν = dν1 ∧ dν2 ∧ . . . ∧ dνp.
Let µ = µ1, . . . , µn be a coordinate system on YΓ near a point of E, and sup-
pose that µ = 0 defines the divisor E locally. Now pull the variables λ, x(α1 +
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α2), w, z(α1), z(α2) etc. up to YΓ and write

z(α1) = µe1ξ1

z(α2) = µe2ξ2

x(α1 + α2) = µe3ξ3

w = µe4ξ4

where ξi is regular on E. By (2.4), dw ∧ dz(α1)∧ dz(α2)∧ dx(α1 + α2) vanishes to
order at least e4 + e1 + e2 + e3 − 1. Thus

ωY = λ2µx(dµ/µ) ∧ ω′

where

x ≥ (e3 − e1 − e2) + (e4 + e1 + e2 + e3 − 1) + 1 = 2e3 + e4,

and ω′ is regular on E. But w vanishes on E so e4 > 0. By remarks at the beginning
of this section, the proof is complete. �

Lemma III.3.2. Lemma 3.2 (B2) Suppose that the Weyl chamber W+ can be
chosen on E so that θ1(W+, α) 6= 0, θ1(W+, β) 6= 0, θ1(W (σβ), α) 6= 0, θ1(W (σα), β) =
0. Then

a) w(γ) is regular on E,
b) 1/w(δ) is regular on E and in fact vanishes on E,
c) E makes no contribution to the subregular germ.

Remark. This lemma treats the zero pattern B.IV .

Proof. By (2.3.e) z(α) = (λ/(1− α−1))z(W+, α) and

z(β) = (λ/(1− β−1))z(W+, β).

Also by (2.3.b,f)

nγ/(nαnβ) = −u′−1
2 z(W+, α)/z(W (σβ), α).

Thus by the assumptions of the lemma z(α), z(β), and nγ/(nαnβ) are regular. By
(2.3.g)

w(γ) = z(α)z(β)((1− γ−1)/λ)nγ − β−1((1− α−1)/λ)nαnβ) =

= (λ2/(1− α−1)(1− β−1))(((1− γ−1)/λ)(nγ/(nαnβ)

− β−1((1− α−1)/λ)).

Thus the regularity of nγ/(nαnβ) implies the regularity of w(γ). This proves (a).
Let z = z(W (σα), β)/z(W+, β). Then z = 0 on E by assumption. By (II.3.3),

zw(δ) = z(1− δ−1)nδz(α)2z(β)/λ+ zz(α)2z(β)
∑

cβ1...βn(t)nβ1
. . . nβn/λ

z(α) = λ/((1− α−1)nα), z(β) = λ/((1− β−1)nβ).

Thus

zw(δ) = [λ3/((1− α−1)2(1− β−1))][zq + (z(1− δ−1)nδ/(λn
2
αnβ))]

where q is the regular function q = cααβ(t)/λ+cαγ(t)nγ/(λnαnβ). Since q is regular
on E and z = 0 on E, zq = 0 on E. If zw(δ) is regular and invertible on E then (b)
will follow. λ2(1− δ−1)/((1−α−1)2(1−β−1)) is regular and invertible on E and zq
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vanishes on E, so zw(δ) is regular and invertible on E if and only if znδ/(n
2
αnβ) is

regular and invertible on E. The following lemma completes the proof of (b). �

Lemma III.3.3. Lemma 3.3 (B2) Let E be as in lemma 3.2. Then znδ/(n
2
αnβ)

equals a non-zero constant on E.

Proof. We apply the condition Bωn = Bnw to the situation ω = σβσα and

nw = exp(z2X−β) exp(z1X−α)

with z2 = z(W (σα), β), z1 = z(W+, α).

This condition can be rewritten

σβσαεα(nα)εβ(nβ)εγ(nγ)εδ(nδ)ε−α(−z1)ε−β(−z2) ∈ B
or

σβ{σαεα(nα)ε−α(−z1)}{ε−α(z1)εβ(nβ)εγ(nγ)εδ(nδ)ε−α(−z1)}ε−β(−z2) ∈ B.

By (I.5.5) the first bracketed term equals (−z(W+, α))α
v

εα(−nα) because z1nα = 1.
Thus

σβ{σαεα(nα)ε−α(−z1)}σ−1
β

lies in B. The condition becomes

σβ{ε−α(z1)εβ(nβ)εγ(nγ)εδ(nδ)ε−α(−z1)}ε−β(−z2) ∈ B.
Now we have

ε−α(z1)εβ(nβ)ε−α(−z1) = εβ(nβ)

ε−α(z1)εγ(nγ)ε−α(−z1) = εβ(ez1nγ) modulo Nβ

ε−α(z1)εδ(nδ)ε−α(−z1) = εβ(fz2
1nδ) modulo Nβ

for some non-zero constants e and f . Thus

ε−α(z1)εβ(nβ)εγ(nγ)εδ(nδ)ε−α(−z1) = εβ(y) modulo Nβ ,

y = nβ + ez1nγ + fz2
1nδ.

Thus by (e.g. II.6.1), 1− z2y = 0, or

1/z2 = nβ + ez1nγ + fz2
1nδ, z1 = 1/nα

1/(z2nβ) = 1 + enγ/(nαnβ) + fnδ/(n
2
αnβ)

fznδ/(n
2
αnβ) = −z − zenγ/(nαnβ) + z/(z2nβ).

The first two terms on the right hand side of this last equation vanish on E because
nγ/(nαnβ) is regular on E and z vanishes on E. Also

z/(z2nβ) = (z(W (σα), β)/z(W+, β))(z(W+, β)/z(W (σα), β)) = 1.

This completes the proof of lemma 3.3. �

We now continue with the proof of lemma 3.2.c. We use coordinates w(γ) and
w′ = 1/w(δ). The relation II.4.2 gives w(δ)x(γ) = w(γ)x(δ)z(α) and λw(δ) =
x(δ)z(α)2z(β) or

x(γ) = w′w(γ)x(δ)z(α) and λ = w′x(δ)z(α)2z(β).

The form up to a factor we can ignore is given on Y 0 by

dλ ∧ dx(α) ∧ dx(β) ∧ dx(γ) ∧ dx(δ) ∧ . . . dν =
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λ2dλ ∧ d(1/z(α)) ∧ d(1/z(β)) ∧ d(w′w(γ)x(δ)z(α)) ∧ dx(δ) ∧ . . . dν =

λ2x(δ)2w′z(α)2dw′ ∧ (dz(α)/z(α)) ∧ (dz(β)/z(β)) ∧ dw(γ) ∧ dx(δ) ∧ . . . dν
where

dν = dν1 ∧ dν2 ∧ . . . ∧ dνp.
Let µ = µ1, . . . , µn be a coordinate system on YΓ near a point of E, and suppose that
µ = 0 defines the divisor E locally. As before pull the variables λ, z(α), z(β), w(γ), w′,
etc., up to YΓ and write

z(α) = µe1ξ1

z(β) = µe2ξ2

x(δ) = µe3ξ3

w(γ) = µe4ξ4

w′ = µe5ξ5.

Then by lemma 2.4, ωY = λ2µx(dµ/µ) ∧ ω′, x ≥ (2e3 + e5 + 2e1) + (e5 + e4 + e3).
But w′ = 0 on E so that e5 > 0. The remarks at the beginning of the section now
give the result.

Remark III.3.4. Remark 3.4 Proposition 1.1 has now been proved for special
nodes of type A2 and B2. This follows by an examination of the zero patterns for
these groups. Lemma 3.1 covers the A2 and all the zero patterns of B2 except for
the pattern B.IV . Lemma 3.2 treats the pattern B.IV .

Lemma III.3.5. Lemma 3.5 (G2) Suppose that W+ can be selected so that on
E

θ1(W+, α) 6=0,

θ1(W+, β) 6=0,

θ1(W (σβ), α) 6=0,

(z1(W (σβσα), α)z1(W (σα), β))/(z1(W+, α)z1(W+, β)) = 0,

and

z(W (σβσα), α)/z(W+, α) 6= −1

on E then

a) w(γ) is regular on E
b) 1/w(δ) is regular on E and in fact vanishes.
c) E makes no contribution to the subregular germ.

Proof. Let z = z(W (σβσα), α)z(W (σα), β)/z(W+, α)z(W+, β). Then z = 0
on E. It follows from the expression (2.3.b,f) for nγ/(nαnβ) that it is regular on E.
(a) now follows by the same argument used in lemma 3.2. Also znγ/(nαnβ) = 0 on
E. (b) will follow if I prove that zw(δ) is regular and invertible on E. An argument
identical to that in lemma 3.2 shows that zw(δ) is regular and invertible on E if
and only if znδ/(n

2
αnβ) has the same property. By lemma II.7.2, mδ/(m

2
αmβ) =

nδ/(n
2
αnβ) + b − enγ/(nαnβ) where b and e are constants defined in chapter II.

Since b and enγ/(nαnβ) are regular on E, znδ/(n
2
αnβ) is regular and invertible on

E if and only if zmδ/(m
2
αmβ) is regular and invertible on E. By lemma II.7.3, we

have
zmδ/(m

2
αmβ) = (z(W+, α) + z(W (σβσα), α)/z(W+, α)
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which is non-zero by hypothesis. This proves (b). �

Now the expression for ωY contained in the proof of lemma 3.2 shows that
w′ = 0 implies (c).

Lemma III.3.6. Lemma 3.6 (G2) Suppose that W+ can be chosen so that
θ1(W+, α) 6= 0, θ1(W+, β) 6= 0, θ1(W (σβ), α) 6= 0, θ1(W (σβσα), α) 6= 0, θ1(W (σα), β) 6=
0, and θ1(W (σασβ), β) = 0 on E. Then

a) w(γ), w(δ), and w(ε) are regular on E
b) w′′ = 1/w(ζ) is regular and vanishes on E.
c) E is not a subregular divisor.

Proof. That z(α), z(β), nγ/(nαnβ), nδ/(n
2
αnβ), nε/(n

3
αnβ) are regular on E

follows from lemmas II.7.2 and II.7.3. That w(γ), w(δ), and w(ε) are regular on E
now follows directly from lemma II.3.3.

Set z = z(W (σασβ), β)/z(W+, β). To prove (b) we show that zw(ζ) is regular
and invertible on E. Proceeding as in the previous lemma we see that zw(ζ) is
regular and invertible on E if and only if zmζ/(m

3
αmβ) is regular and invertible on

E. But by (II.7.3),

mζ/(m
3
αmβ) = (z(W+, α)3/z(W (σβ), α)3)(−z(W+, β)/z(W (σασβ), β)− 1).

So zmζ/(m
3
αmβ) = −z(W+, α)3/z(W (σβ), α)3 on E.

By assumption this is regular and invertible on E.
To prove (c) we note that the following equations hold (II.4.2)

w(ζ)x(η) = w(η)x(ζ)
∏

z(α)m(α) with ζ − η =
∑

m(α)α

or x(η) = w′′w(η)x(ζ)
∏

z(α)m(α) = 0 on E when η 6= ζ.

So E is certainly not a subregular divisor. �

Lemma III.3.7. Lemma 3.7 (G2) Suppose that W+ cannot be chosen to satisfy
any of the previous cases and at least one wall vanishes. Then the zero pattern
must be G.I.

Proof. By the hypothesis of (3.1), we may assume that all of the walls of
type α are non-zero (i.e., θ1(W,α) 6= 0 ∀ W ). If the walls of type α are non-zero
and the hypotheses of (3.6) fail, then there cannot be two consecutive walls of
type β which are non-zero (e.g., (W+, β) and (W (σα), β)). Choose W+ so that
θ1(W+, β) 6= 0. (Thus θ1(W (σα), β) = θ1(W (σασβ), β) = 0.) By the hypothesis of
(3.5), z1(W (σβσα), α)/z1(W+, α) = −1 and by symmetry z1(W (σβ), α)/z1(W (σβσασβ), α) =
−1. We have the following situation: (see figure).
x2 + x3 = 0;x1 + x6 = 0 (so also x4 + x5 = 0). Now

εα(x1)εβ(y1) . . . εα(x6)εβ(y6) = εα(x5)εβ(y5 + y1 + y3)εα(x4)εβ(y4) = 0.

By (1.3.b), using x4, x5 6= 0 we have y4 = y5 + y1 + y3 = 0. This is pattern (G.I).
(We allow the possibility that y1y3y5 = 0). �

The following lemma completes the proof of proposition 1.1.
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y5 x6 6= 0 y6 = 0

x1 6= 0

y1

x2 6= 0

y2 = 0x3 6= 0y3

x4 6= 0

y4

x5 6= 0

Lemma III.3.8. Lemma 3.8 (G2) Suppose that E gives the pattern G.I. Select
W+ so that θ1(W+, β) = 0, θ1(W+, α) 6= 0, θ1(W (σβ), α) 6= 0, θ1(W (σβσα), α) 6= 0,
θ1(W (σα), β) 6= 0, θ1(W (σασβ), β) 6= 0 on E. Then

(1) a) z(W+, α)/z(W (σβ), α) = 1 on E,
(2) b) z(β) vanishes on E,
(3) c) nγ/(nαnβ) = −1, nδ/(n

2
αnβ) = −3, nε/(n

3
αnβ) = −5, nζ/(n

3
αn

2
β) = 13

on E;
(4) d) w(η) is regular on E, η = γ, δ, ε, ζ;
(5) e) w(ζ) is invertible on E.
(6) f) E is not a subregular divisor.

Proof. Notice that by the equations holding for the pattern G.I we have
z1(W (σβ), α) = z1(W+, α). The minus sign has disappeared because the walls
(W (σβ), α) and (W+, α) have opposite orientations. Thus (a) and (b) follow easily.
Now use lemma II.7.3,
mα = 1/z(W+, α)
mβ = 1/z(W+, β)
mγ/(mαmβ) = +z(W+, α)/z(W (σβσα), α) = −1 on E.

mδ/(m
2
αmβ) =

(z(W+, α)z(W+, β))/(z(W (σβσα), α)z(W (σα), β))

+ z(W+, β)/z(W (σα), β) = 0

on E.
mε/(m

3
αmβ) = −z(W+, β)/z(W (σα), β) = 0 on E.

mζ/(m
3
αm

2
β) = −(z(W+, β)z(W+, α)3)/(z(W (σασβ), β)z(W (σβ), α)3)−

z(W+, α)3/z(W (σβ), α)3 = −1 on E.

Now apply (II.7.2). Recall that a = b = c = d = 1, e = 2, f = g = h = j = 3,
i = −1.
−1 = mγ/(mαmβ) = nγ/(nαnβ) on E
0 = mδ/(m

2
αmβ) = nδ/(n

2
αnβ) + b− enγ/(nαnβ) = nδ/(n

2
αnβ) + b+ e;

nδ/(n
2
αnβ) = −b− e = −3.
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0 = mε/(m
3
αmβ) = nε/(n

3
αnβ)− c+ fnγ/(nαnβ)− hnδ/(n2

αnβ) =
nε/(n

3
αnβ)− 1 + 3(−1)− 3(−3);

nε/(n
3
αnβ) = −5.

−1 = mζ/(m
3
αm

2
β) = nζ/(n

3
αn

2
β)− inε/(n3

αnβ)

-j(nγ/(nαnβ))(nδ/(n
2
αnβ) = nζ/(n

3
αn

2
β) + 1(−5)− 3(3);

nζ/(n
3
αn

2
β) = −1 + 5 + 9 = 13.

Parts (c) and (d) now follow immediately. Write (1−α−1)/λ|E = A, (1−β−1)/λ|E =
B, etc. By lemma 2.2,

w(ζ) = Z(nζ/n
3
αnβ) + gA(nγ/(nαnβ))2 − iB(nε/n

3
αnβ)−

jΓ(nγ/nαnβ)(nδ/n
2
αnβ)− ejA(nγ/nαnβ)2 + ajA(nδ/n

2
αnβ) =

= Z(13) + gA− iB(−5)− jΓ(−1)(−3)− ejA+ ajA(−3)

= 13Z + 3A− 5B − 9Γ− 6A− 9A

= 13Z − 21A− 14B = 6Z 6= 0

because the tangent of our curve lies in no singular hyperplanes. This proves (e). �

w(ζ)x(η) = w(η)x(ζ)z(α)m(α)z(β)m(β) where ζ − η = m(α)α + m(β)β. If η 6=
ζ, x(η) = 0 on E because w(ζ) is invertible, m(β) > 0, and z(β) vanishes on E.
Thus E is certainly not a subregular divisor.



CHAPTER IV

The Subregular Spurious Divisor

IV.1. Subregular Unipotent Conjugacy Classes

This section reviews well known results on the subregular conjugacy class of a
reductive group. For details see [25]. Let G be a reductive group. A subregular
unipotent conjugacy class of G is a conjugacy class whose centralizer has dimension
rank(G)+2. Conjugacy classes are taken over the algebraic closure of the base field
unless specifically stated otherwise. Simple algebraic groups possess exactly one
subregular unipotent conjugacy class. More generally a reductive group contains as
many subregular unipotent conjugacy classes as there are connected components of
the Dynkin diagram. Each subregular unipotent element determines a connected
component of the Dynkin diagram. The variety of Borel subgroups containing a
subregular unipotent element u, (B\G)u, is a union of projective lines and is called
a Dynkin curve. Let Pα denote the parabolic subgroup associated with the simple
root α. Each line is of the form B\Pαg for some g ∈ G. The root α is uniquely
determined by the line, and the line is said to be of type α. A line of type α does
not intersect a line of type β if (α, β) = 0. The number of lines in (B\G)u and
their incidence relations depends only on the connected component of the Dynkin
diagram determined by u. There is always one line for each of the shorter roots,
and two lines for each of the longer roots except for G2 where there are three lines
corresponding to the long root. There are 〈−β, α〉 lines of type β intersecting each
line of type α.

The line B\Pαg is a line in (B\G)u if and only if ug
−1

is contained in the
unipotent radical of Pα. For a point p ∈ YΓ such that π(p) = u is subregular
unipotent, let Lp(W ) be the set of simple roots α such that B(W ) lies in a line of
type α in (B\G)u. From the fact that no Borel subgroup lies in more than two lines
of (B\G)u it follows that |Lp(W )| = 1 or 2. Also if α, β ∈ Lp(W ) then (α, β) 6= 0
because a line of type α does not intersect any lines of type β when (α, β) = 0.
Consider a coordinate patch S(B∞, B0).

Recall x(W,α) is defined to be x(α)(un
−1
w ).

Lemma IV.1.1. Lemma 1.1 α ∈ Lp(W ) if and only if x(W,α) = 0 at p.

Proof. 0 = x(W,α) if and only if uν
−1n−1

w lies in the unipotent radical of Pα
the parabolic subgroup of type α containing the Borel B0. So the line B0\Pαnwν
containing Bnwν0 lies in the Dynkin curve and conversely. �

Note also that Lp(W ) = Lp(W
′) if z(W,α) = 0 and that z(W,α) = 0 if

B(W ) = B(W ′) where (W,α) is the wall separating adjacent chambers W and W ′.
For every simple root α, we fix a wall (Wα, α) of type α such that θ1(Wα, α) 6= 0,
and set

z̃(W,α) = z(W,α)/z(Wα, α) = z1(W,α)/z1(Wα, α)

47
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Examples of
Dynkin Curves

G2, D4

F4, E6

Bn, A2n+1

E8E7

Cn, Dn+1

A2n

By the definitions of z̃(W,α) and θ1(III.1) we have z̃(W,α) = 0 if and only if
θ1(W,α) = 0. By abuse of language we will often say that the wall (W,α) is non-
zero if θ1(W,α) 6= 0. The following equations hold on Y1(B∞, B0) for any two Weyl
chambers W and W ′ where T (W,α) = (1 − γ−1)/λ and ±γ is the root such that
γ = 0 defines the wall (W,α).

Equation IV.1.2.

λT (W,α) = z(α)z1(W,α)x(W,α) = z(W,α)x(W,α)

z̃(W,α)x(W,α)T (W ′, α) = T (W,α)z̃(W ′, α)x(W ′, α).

T (W,α) is regular and invertible at λ = 0. Also it follows immediately from (1.1)
and this equation that if z(W,α) 6= 0 then α ∈ Lp(W ).

Corollary IV.1.3. Corollary 1.3 For any given Weyl chamber W and p with
π(p) = u, u ∈ G(F̄ ) subregular there are at most two simple roots α such that
z(W,α) 6= 0. If z(W,α) 6= 0 then α ∈ Lp(W ).

Proof. No point of (B\G)u lies in more than two lines. �

IV.2. Exclusion of Spurious Divisors

Theorem IV.2.1. Theorem 2.1 Let E be a subregular spurious divisor. Then
β(E) > 2.
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Proof. Select a wall (W,α) such that θ1(W,α) = 0. Select a wall (W ′, α)
such that θ1(W ′, α) 6= 0. Form a path W ′ = W0,W1, . . . ,Wp = W from W ′ to
W . Suppose that Wi and Wi+1 are separated by a wall of type αi, i = 0, . . . , p− 1.
Corresponding to this path is a sequence of walls (Wi, α) i = 0, 1, . . . , p. Let j
be the smallest index for which θ1(Wj , α) = 0. Since θ1(W,α) = 0 such an index
exists. Since θ1(W ′, α) 6= 0, j > 0. Then θ1(Wj , α) = 0 and θ1(Wj−1, α) 6= 0. The
simple root αj−1 cannot equal α. By the nature of the equations holding at a node
of type A1 ×A1 (III.1) we see that (αj−1, α) 6= 0.

Suppose first of all that α can be chosen so that |αj−1| ≥ |α|. The hypotheses
of (III.3.1) now hold so that we can exclude the divisor.

Now assume that no matter how α is chosen |αj−1| < |α|. It follows that if
β is adjacent to α then θ1(W,β) 6= 0 for all W . Thus at the node defined by the
two walls (Wj−1, αj−1) and (Wj−1, α) none of the walls of type αj−1 are zero and
θ1(Wj−1, α) = 0, θ1(Wj , α) 6= 0. This by definition is a special node. Proposition
III.1.1 now shows that β(E) > 2. �

IV.3. The graph Γ0

The remainder of this chapter discusses the structure of subregular spurious
divisors and their zero patterns. These structural results will not be used in any
of the following chapters. We assume that G = An, Bn, Cn or Dn+1, n ≥ 3 over an
algebraically closed field F̄ . We fix a point p in a divisor such that π(p) ∈ G(F̄ ) is
subregular unipotent. Let R be the set of roots α such that z(W,α) 6= 0 for some
W . Let S be the set of roots α such that θ1(W,α) = 0 for some W . Define a solid
node to be a node at which θ1(W,α) 6= 0 for all walls (W,α) at the node. We make
the following assumption which remains in effect until section 8.

Assumption IV.3.1. |S| ≥ 2 and if α, β ∈ S then there are no solid nodes of
type (α, β).

We will see in section 8, that this assumption holds except in a few exceptional
easily categorized cases.

Lemma IV.3.2. Lemma 3.2 S⊇R.

Proof. Suppose α ∈ R\S. We will show that |S| ≤ 1, contrary to assumption
3.1. If α ∈ R\S, then z(W,α) 6= 0 for all W . Thus by (1.2), x(W,α) = 0 for all W .
Let β ∈ S. Then again by (1.2), z̃(W,β)x(W,β) = 0 for all β (since z̃(W,β) = 0 for
some W). Pick W = W ′ such that θ1(W ′, β) 6= 0. Then x(W ′, α) = x(W ′, β) = 0.
Since π(p) is assumed to be subregular, α and β are adjacent.

Assume that α and β are the same length. Then the fact that θ1(W,α) 6= 0
for all (W,α) together with the fact that θ1(W ′, β) 6= 0 forces the node of type A2

formed by the walls (W ′, α) and (W ′, β) to be a solid node. (See the list of zero
patterns for a node of type A2.) Thus

x(W,α) = x(W,β) = 0

for all walls (W,α), (W,β) at the node. This shows that α, β ∈ Lp(W ) for all Weyl
chambers W at the node. There is exactly one Borel subgroup B+ which lies at the
intersection of a line of type α with a line of type β. Thus B(W ) = B+ for all W
at the node. This contradicts the fact that z(W ′, α) 6= 0 (B(W ′) 6= B(W ′′) where
W ′′ is the chamber through a wall of type α from W ′). We conclude that α and β
have different lengths.
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For a reductive group the assumption that S is a set such that if β ∈ S then
(β, α) 6= 0 and α and β are different lengths forces |S| ≤ 1. This proves the
lemma. �

We form an equivalence relation on the non-zero walls (W,α) of type α for
α ∈ S. Say that two non-zero walls (W,α) and (W ′, α) are equivalent if (I) there is
a path W = W0, . . . ,Wp = W ′ from W to W ′ such that if θ1(Wi, αi) 6= 0 then αi /∈S
or if (II) (W,α) and (W ′, α) are the two non-zero colinear walls at a node of type B2

with zero patternB.III orB.IV :

α

β β

W

0 0

W ′

β β

α

The equivalence classes are defined to be the smallest classes such that (I) and (II)
are satisfied.

Form a graph Γ0 as follows. Let each vertex be given by an equivalence class
of walls. A vertex v1 of Γ0 is said to be of type α (type(v1) = α) if the walls of the
equivalence class are of type α. Join two vertices (v1 6= v2) by an edge if there is a
series of chambers W0, . . . ,Wp separated by walls (Wi, αi) i = 0, . . . , p−1 such that
(W0, type(v1)) is a wall of v1, (Wp, type(v2)) is a wall of v2, and if θ1(Wi, αi) 6= 0
then αi /∈S for i = 0, . . . , p− 1.

Lemma IV.3.3. Lemma 3.3 If the vertices v1 and v2 are joined then

(type(v1), type(v2)) 6= 0.

Proof. By construction a vertex is not joined to itself by an edge. �

We use equation 1.2 in the form

z̃(W,α)x(W,α)T (W ′, α) = T (W,α)z̃(W ′, α)x(W ′, α).

Since type(v1) ∈ S, there is a W ′ such that θ1(W ′, type(v1)) = 0. It follows that
z̃(W,α)x(W,α) = 0 for all W where α = type(v1). If (W,α) ∈ v1 then θ1(W,α) 6= 0
and x(W,α) = 0 so that α ∈ Lp(W ). Similarly, if

(W ′, type(v2)) ∈ v2 then type(v2) ∈ Lp(W ′).
Selecting a path between appropriately selected chambers W and W ′, we see that
the intervening walls are zero (z(Wi, αi) = 0)(3.2) so that B(W ) = B(W ′) and
Lp(W ) = Lp(W

′). So

type(v1), type(v2) ∈ Lp(W ).
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B(W ) lies in lines of type type(v1) and type(v2). By the nature of the Dynkin curve
(type(v1), type(v2)) 6= 0.

Every path W0, . . . ,Wp through the Weyl chambers gives rise to a path through
the graph Γ0 as follows. Let Wa1

, . . . ,Waj a1 < a2 < . . . < aj be the indices of the
chambers in the path such that θ1(Wai , αai) 6= 0 and αai ∈ S. Then let vi be the
vertex corresponding to the wall (Wai , αai). By construction vi is joined by an edge
to vi+1 provided vi 6= vi+1. It is clear that if the path through the Weyl chambers
is taken to be closed W0, . . . ,Wp,Wp+1 = W0 then the corresponding path through
the graph Γ0 will be closed. Since we can always select a path W0, . . . ,Wp between
any two given walls (W,α) and (W ′, β), there is a path in Γ0 between any two given
vertices. Thus Γ0 must be a connected graph. This proves part (a) of the following
lemma.

Lemma IV.3.4. Lemma 3.4

a) The graph Γ0 is connected.
b) Γ0 is a tree.
c) S forms a connected Dynkin diagram.

Proof. (a) has been proved and (c) follows directly from (a) and (3.3).
(b) We have described a map from closed paths W0, . . . ,Wp,Wp+1 = W0

through the Weyl chambers to the closed paths in Γ0. (b) will follow from two
facts. First, a homotopy of paths in the Weyl chambers maps to a homotopy of
paths in Γ0. Second, every closed path in Γ0 is homotopic to the image of a closed
path through the Weyl chambers. If we have these two facts then (b) follows from
the fact that any closed path through the Weyl chambers is contractable. We do
not require that the homotopies fix a base point.

To check that a homotopy of paths in the Weyl chambers maps to a homotopy
of paths in Γ0, it is enough to check the statement as the homotopy passes through
a wall or node. We begin with a special case. Suppose that part of the path L is

. . .Wi,Wi+1, . . . ,Wi+k = Wi,Wi+k+1, . . .

which a homotopy carries to

L′ : . . .Wi,Wi+k+1, . . .

Suppose that there is a vertex v of Γ0 such that for all j in the range i ≤ j < i+ k
we have: If θ1(Wj , αj) 6= 0 and αj ∈ S then (Wj , αj) belongs to the vertex v of
Γ0. Let (W`, α`) be the wall with the largest index ` such that ` < i, α` ∈ S and
θ1(W`, α`) 6= 0. Let va be the vertex of Γ0 corresponding to (W`, α`). If v 6= vα, v
and vα are joined by an edge. Similarly let (W`′ , α`′) be the wall with the smallest
index `′ such that `′ ≥ i+ k, α`′ ∈ S and θ1(W`′ , α`′) 6= 0. Let vb be the vertex of
Γ0 corresponding to (W`′ , α`′). If v 6= vb then v and vb are joined by an edge.

I claim that va, vb, and v are not distinct vertices. For if they were distinct,
there would be edges between each pair, and their types (a simple root in S) would
be distinct. This by (3.3), would give a closed loop in the Dynkin diagram of G.

If v = va or vb then paths L and L′ give rise to the same path in Γ0. If va = vb,
then the paths in Γ0 corresponding to L and L′ are given by the following diagram.
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va v va v

L : L′ :

They are clearly homotopic.
This special case takes care of the situation where the homotopy moves through

a wall or through a node of type (α, β) such that if β ∈ S then θ1(W,β) = 0 for all
walls (W,β) at the node. We must still consider a homotopy that moves through
a node of type (α, β) with α, β ∈ S. By assumption 3.1, we may assume that it
is a special node. The following diagrams now make it clear that the homotopy of
paths in the Weyl chambers translates to a homotopy of Γ0.

v1 v2 v1 v2

L : to L′ :

v1 v2 v1 v2

Γ0 to
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v1 v2

L : to L′ :

v3

v1 v2 v1 v2

Γ0 to

We turn to the second fact: that every path in Γ0 has the same homotopy
class as the image of a path through the Weyl chambers. This would be obvious by
the definitions of the vertices and edges of the graph were it not for condition (II)
defining the equivalence relation on walls belonging to a given vertex. It is enough
to check that if (W,α) and (W ′, α) are the two non-zero colinear walls at a node
(with pattern B.III or B.IV) belonging to the vertex v of Γ0, then there is a path
joining (W,α) to (W ′, α) whose image in Γ0 is a path homotopic to the constant
path at the vertex v. This is completely evident from the following diagram.
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v1 v v′

W

L : Γ0 :

which is homotopic to

v1 v2

�

IV.4. The Modified Star

Let S2 be the affine variety generated by the variables ẑ(α) ∀ α, ẑ(W,α)
∀ (W,α) subject to the relations:

i) ẑ(W,α) + ẑ(W ′α) = 0 where W and W ′ are adjacent walls separated by
a wall of type α, and

ii) exp(ẑpX−αp) . . . exp(ẑ1X−α1
) = 1 whereW1,W2, . . . ,Wp is the path around

a node (so that p = 4, 6, 8 according as the node is of type A1xA1, A2, B2)
and ẑ1, . . . , ẑp are the corresponding variables.

iii) ẑ(Wα, α) = 1 for some chamber Wα (unless ẑ(W,α) = 0, ∀W ).

By (I.3.1) there is an injection from the affine patch

{x ∈ S1(B∞, B0) : θ1(Wα, α) 6= 0}
to S2 given by ẑ(W,α)→z̃(W,α), ẑ(α)→z(Wα, α). Elements of S2 will be called
modified stars.

Lemma IV.4.1. Lemma 4.1 Suppose that all the walls corresponding to a given
vertex of Γ0 are set equal to zero. Then the resulting equations define a modified
star.

Proof. To check this it is sufficient to verify that the equations at every node
are still satisfied. But this is immediate from the definition of a vertex of Γ0. �
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IV.4.1. Modifications. We now modify the graph. Every time a vertex is
eliminated from the graph, we set all corresponding walls to zero in the star. Doing
so gives a new modified star by (4.1). The new star will have a graph Γ′ associated
to it. When an extremal vertex of the graph Γ0 is eliminated, the modified graph
Γ′ is a subgraph of Γ0. If G = Dn, |S| ≥ 4, α+, α− ∈ S where α+ and α− are
simple roots interchanged by an outer automorphism of G, then let S− = S\{α−}.
Otherwise set S− = S. Thus S− forms a connected Dynkin diagram with two
extremal simple roots.

Modify the graph as follows.

1. For every extremal simple root of the Dynkin diagram S− fix a vertex of
that type in Γ0.

2. Let Γ1 be the minimal tree containing these two vertices. Eliminate the
vertices not in Γ1 and set the corresponding walls of the star equal to zero.
The resulting star will have graph Γ1.

3. Γ1 is linear. Let α1, . . . , αn be the roots of S− ordered in such a way that
if (αi, αj) 6= 0 then |i− j| ≤ 1. Let v1 (resp. vn) be the extremal vertex in
Γ1 corresponding to α1 (resp. αn). Order the vertices in Γ1 from u1 = v1

up to uk = vn. For each i (1 ≤ i ≤ n) eliminate all vertices of type αi
except for the last. The corresponding star (∈ S2) has one equivalence
class of type αi for all i. Its graph Γ′ is the Dynkin diagram S−.

The modified star will be easier to work with because its graph is the same as
the Dynkin diagram S−.

The non-zero walls of a given type α of the modified star divide the Weyl
chambers into α-regions each region being a union of Weyl chambers bounded by
non-zero walls of type α. More precisely, define an equivalence relation on the Weyl
chambers by making two chambers equivalent if there is a path from one to the
other which does not pass through any non-zero walls of type α. Each region is
then defined to be the union of the chambers in an equivalence class.

Lemma IV.4.2. Lemma 4.2 Suppose α, β ∈ S and α 6= β. Then there is a
β-region inside which all the non-zero walls of type α lie.

Proof. This lemma will follow immediately from definitions if we show that
in the modified star there are no nodes with zero pattern B.III or B.IV . In the
graph Γ′ of the modified star there is only one vertex of each type. Thus we must
show that the walls (W,β), (W ′, β) of type β on opposite sides of the non-zero
walls (W,α) = (W ′, α) of type α are inequivalent. Suppose there were a path
W = W0, . . . ,Wp = W ′ from W to W ′ such that θ1(Wi, αi) = 0 if αi = α. Then
the condition that the non-zero walls of a given type in a closed loop sum to zero
gives ẑ(W,α) = 0. This is a contradiction. �

Remark IV.4.3. Remark 4.3 The argument of the lemma also shows that the
α-regions have no “internal” non-zero walls of type α.

IV.5. The Weyl Chambers

To obtain more detailed information about the graph Γ0 we must first study
the Weyl chambers. Weyl chambers are taken to be closed rather than open sets
in Rn, so that the walls of a Weyl chamber are contained in the chamber.
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For a fixed simple root α define an equivalence relation on the Weyl chambers as
follows. Two chambers W,W ′ are equivalent if and only if W and W ′ are connected
by a path W = W1, . . . ,Wp = W ′ such that for i = 1, . . . , p − 1 the chambers Wi

and Wi+1 are adjacent chambers, and the wall separating them is not type α. The
union of all chambers in an equivalence class is called an α-chamber or a big chamber
of type α. Each α-chamber is bounded by walls of type α. Similarly, given a set Q
of simple roots, big chambers of type Q can be defined. If a wall of type α bounds
a big chamber of type Q then α ∈ Q.

The union of all walls of type α which lie entirely in the intersection of an
α-chamber with a hyperplane in Rn is called a big wall or α-wall . Let ξ1 and ξ2
be connected components of two α-walls such that the intersection of ξ1 and ξ2 is
codimension two. Then the intersection is a union of nodes. Such walls are said
to be adjacent . The angle formed by the walls is π/2 (nodes of type B2) or 2π/3
(nodes of type A2). In the latter case but not the former the big walls are said to
be obtusely adjacent. Since the angle between adjacent walls is always less than or
equal to π, each big chamber is convex. Therefore each big chamber W is defined
by the intersection of a finite number of half spaces E1, . . . , Eq. The big walls
are ∂Ei ∩ W and are therefore convex and thus connected. The codimension two
intersections are called big nodes. Either three big walls come together at angles of
2π/3 or four big walls come together at angles of π/2. From this it is clear that each
big wall must bound exactly two big chambers. Since a big wall lies in a hyperplane,
the only nodes between walls forming a big wall must be of type A1 × A1. By the
connectivity of the big walls and the nature of the equations holding at a node of
type A1×A1(III.1) it follows that ẑ(W,α) = ẑ(W ′, α) for all walls (W,α), (W ′, α)
forming a big wall.
Label the roots as follows:

An
1− 10n−1 01− 10n−2 0n−11− 1

α1 α2 αn
Bn, Cn

1− 10n−2 01− 10n−3 0n−1ε

α1 α2 αn

α+
Dn+1 0n−11− 11− 10n−1 01− 10n−2

α1 α2
0n−11 1

α−

Define the fundamental α1-cell to be the α1-chamber containing the fundamen-
tal Weyl chamber. Define the fundamental αi+1-cell i = 1, . . . , n− 1 to be the
smallest union of αi+1-chambers to contain the fundamental αi-cell (i.e. the union
of all αi+1-chambers meeting the interior of the fundamental αi-cell). Define an
αi-cell to be a translate of the fundamental αi-cell by the Weyl group.
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Lemma IV.5.1. Lemma 5.1 Given any αp-chamber W and a wall ξ of W there
exists an αp-cell containing ξ but not W.

Proof. Let W be a Weyl chamber with wall (W,αp) contained in αp-chamber
W and αp-wall ξ respectively. Let W ′ be a Weyl chamber which is not contained
in the fundamental αp-cell but whose wall (W ′, αp) is. A Weyl group element takes
W ′ to W, (W ′, αp) to (W,αp) and the fundamental cell to an αp-cell K. Then K
does not contain W but does contain ξ.

Now fix a simple root α = αp where 1 ≤ p ≤ n (1 ≤ p ≤ n − 1 for Dn+1).

Let L = Kc be the closure of the complement of the fundamental α-cell. Call a
big wall of L external if it lies in the intersection of L and K. L can be broken up
into two sets L+ ∪ L−. Each is a union of α-chambers. The set L+ is the union
of α-chambers in L which contain an external wall. L− is the union of all other
α-chambers in L. The rest of the section establishes the following facts about the
structure of L.

Fact 1. If W is an α-chamber in L−, then W ∩L+ contains a big wall.

Fact 2. (Assume α 6= α+, α− for Dn+1). If p > 1, any two obtusely adjacent
external walls which lie in the same α-chamber W⊆L+ meet at a big node which
contains a node of type (αp, αp−1). (Recall that a big node is a union of nodes).

Fact 3. (Assume α 6= αn for Bn, Cn;α 6= α+, α− for Dn+1). The external walls
of L lying in a given α-chamber W are connected in the following sense. Given two
external walls ξ, ξ′ in W there exists a chain of external walls ξ = ξ1, . . . , ξt = ξ′ in
W such that ξi, ξi+1 are obtusely adjacent for i = 1, . . . , t− 1.

Fact 4. (Assume α 6= αn for Bn,Cn; α 6= α+, α− for Dn+1). Let W and W′
be adjacent α-chambers in L+ separated by a big wall ξ′′. Then there are external
walls ξ in W and ξ′ in W′ such that ξ, ξ′, ξ′′ form a big node with angles 2π/3.

2 3 4

ξ ξ′ ξ′′

W

W ′ W
αp, αp−1

W

ξ′ ξ

The Weyl Chambers. In the following we must discuss particular cases.
An. Let the Weyl chambers lie in the hyperplane P = {x ∈ Rn+1 :

∑
xi = 0}. The

fundamental chamber W+ is given by

W+ = {x ∈ P : (x, α) ≥ 0 for all α} = {x ∈ P : x1 ≥ x2 ≥ . . . ≥ xn+1}.
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The Weyl group acts on P by permuting the coordinate axes. So |Ω| = (n + 1)!
Each chamber has n walls. If e1, . . . , en+1 is a standard basis of Rn+1 then π ∈ Ω
acts on {1, . . . , n+ 1} by π(ei) = eπi. Then

W (π) =π−1W+

={x ∈ P : xπ−1
1
≥ xπ−1

2
≥ . . . ≥ xπ−1

j
≥ xπ−1

j+1
≥ . . . ≥ xπ−1

n+1
};

and if wj equals the permutation (j, j + 1) then

W (wjπ) = {x ∈ P : xπ−1
1
≥ xπ−1

2
≥ . . . ≥ xπ−1

j+1
≥ xπ−1

j
≥ . . . ≥ xπ−1

n+1
}.

So the wall of type αj of W (π) is given by

{x ∈W (π) : xπ−1
j

= xπ−1
j+1
}.

Fix a simple root α = αp. Then the αp-chamber containing W+ is obtained
by reflecting through walls other than αp. In terms of the defining equations the
αp-chamber is obtained by interchanging the kth variable with the k + 1st variable
for k 6= p. This shows that the αp-chamber is

{x ∈ P : min
i≤p

(xi) ≥ max
i>p

(xi)}.

To facilitate the description of the cells define

rank(x, i) = 1 + |{j : xj > xi}|

for x ∈ Rn+1 and i ∈ {1, . . . , n+ 1}. It is the order in which the variable xi occurs
among the variables x1, . . . , xn+1 when they are ranked according to size. The
αp-chamber containing W+ becomes

{x ∈ P : rank(x, i) ≤ p, i = 1, . . . , p}.

The fundamental α1-cell is

{x ∈ P : rank(x, 1) ≤ 1}.

The α2-chambers which meet this are

{x ∈ P : rank(x, i) ≤ 2, i = 1, j}

for j = 2, . . . , n+ 1. So the fundamental α2-cell is

{x ∈ P : rank(x, 1) ≤ 2}.

Inductively, we obtain that the fundamental αp-cell equals

{x ∈ P : rank(x, 1) ≤ p}.

Acting on the fundamental αp-cell by the Weyl group we obtain the αp-cells

W (p, i) = {x ∈ P : rank(x, i) ≤ p}.

Notice that an αn-cell is the closure of the complement of an α1-cell. The set
L introduced above is given by the closure of {x ∈ P : rank(x, 1) > p}. The
αp-chambers in L are

W = {x ∈ P : rank(x, i) ≤ p, i ∈ I}

for all sets I ⊆{2, . . . , n+ 1} of cardinality p. Let W be a Weyl chamber in W with
rank(x, i) ≤ p, i ∈ I and rank(x, 1) = p + 1 in the interior of W . Then (W,αp)
forms a part of an external wall. So L− is the empty set and fact 1 is trivial.
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Consider the αp-chamber (p > 1)

W = {x ∈ P : rank(x, i) ≤ p, i = 2, . . . , p+ 1}.
It lies in L. The external walls are given by {x ∈ W : xi = x1} i = 2, . . . , p + 1.
Consider the walls xj = x1 and xi = x1 (i, j fixed 2 ≤ i, j ≤ p + 1). Let W be a
Weyl chamber in W with rank(x, j) = p− 1, rank(x, i) = p, rank(x, 1) = p+ 1 in
the interior of W . Then the walls (W,αp−1) (xi = xj) and (W,αp) (xi = x1) are
walls of an (αp−1, αp) node forming a part of a big node at which the walls xj = x1

and xi = x1 meet. This gives facts 2 and 3.
If p = n,L consists of a single αp-chamber and fact 4 is trivial. So suppose that

p < n. Consider adjacent αp-chambers W , W′ in L separated by ξ. By relabeling
if necessary we have

W = {x ∈ P : rank(x, i) ≤ p, i = 2, . . . , p+ 1},
W′ = {x ∈ P : rank(x, i) ≤ p, i = 3, . . . , p+ 2},
ξ = {x ∈W ∩W′} = {x ∈W : x3 = xp+2}.

An external wall is given by ξ′ = {x ∈W : x3 = x1}. They meet at a node of type
(αp, αp+1) along with the wall

ξ′′ = {x ∈W′ : x1 = xp+2}.
This gives fact 4.
Bn,Cn. The Weyl chambers lie in P = Rn. The fundamental chamber W+ is given
by

{x ∈ P : (x, α) ≥ 0} = {x ∈ P : x1 ≥ x2 ≥ . . . ≥ xn ≥ 0}.
The Weyl group acts on P by permuting the coordinate axes and changing signs.
So |Ω| = 2nn! Each chamber has n walls. Define a modified rank function by
rank′(x, i) = rank(x′, i) where x = (x1, . . . , xn) and x′ = (|x1|, . . . , |xn|). The αp-
chamber containing W+ (p 6= n) is obtained by interchanging xi and xi+1 (i 6= p)
and negating xj (j > p). This gives

{x ∈ P : min
i≤p

(xi) ≥ max
i>p
|xi|}

as the αp-chamber containing W+. In terms of the rank function it is

{x ∈ P : rank′(x, i) ≤ p, i = 1, . . . , p and xi ≥ 0, i = 1, . . . , p}.
The fundamental αp-cell is

{x ∈ P : rank′(x, 1) ≤ p, x1 ≥ 0}.
The other αp-cells are

W±(p, i) = {x ∈ P : rank′(x, i) ≤ p,±xi ≥ 0}.
Note that W±(n, i) is a half space.

A simplifying notation can be introduced for big chambers. If W is an αp-
chamber it is specified by a subset J⊆{1, . . . , n} with |J | = p and a function
ε : J→{±1}. Let W{ε, J} be the αp-chamber

{x ∈ P : rank(x, i) ≤ p, εixi ≥ 0 for all i ∈ J}.
If W is a big chamber (W = W{ε, J}), let W[a1, . . . , ak|b1, . . . , b`] (where
ai, bi ∈ {±1, . . . ,±n}; i = 1, . . . , k; j = 1, . . . , ` and |a1|, . . . , |ak|, |b1|, . . . , |b`| are all
distinct) be the big chamber given by J ′ = (J ∪ {|ai|})\{|bi|} and ε′(x) = sign(ai)
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if x = |ai| for some ai, and ε′(x) = ε(x) otherwise. If W is an αp-chamber p 6= n
we let W〈a, b〉 (a, b ∈ {±1, . . . ,±n}) be the wall of W given by

sign(a)x|a| = sign(b)x|b|

where exactly one of |a|, |b| lies in J and sign(a) = ε(a) if say a ∈ J . Also when
p 6= n let W〈a, b, c〉 be the node of W given by

sign(a)x|a| = sign(b)x|b| = sign(c)x|c|

where either one or two of |a|, |b|, |c| lie in J , and sign(r) = ε(r) for

r ∈ {|a|, |b|, |c|} ∩ J.

With this notation it is clear that the big chambers at the node W〈a, b, c〉 are
W[a, b|c], W[b, c|a], W[c, a|b], W[a|b, c], W[b|c, a], and W[c|a, b]. When we write an
equation such as W = W[|a] we mean that W is a big chamber such that |a|/∈J .

If W is an αp-chamber that does not lie in the fundamental αp-cell then either
W = W[−1|] or W = W[|1]. In the latter case W〈j|1〉 is an external wall so these
W must lie in L+. In the former case W〈j,−1〉 is a big wall in W ∩ L+ for all j
(provided p 6= n). If p = n, W = W[−1|] shares the wall x1 = 0 with W[1|] so that
L− = φ. This proves fact 1.

Fact 2 is trivial for Bn, Cn if p = n. So for facts 2, 3 p 6= 1, n. Consider an
αp-chamber W = W[|1] and the external walls W〈j, 1〉, W〈j′, 1〉 (|j| 6= |j′|). They
meet at the node W〈1, j, j′〉 of type (αp, αp−1). If p = 1 W = W[i|1] has only one
external wall W〈i, 1〉 and fact 3 is trivial.

When p = n − 1, W is never adjacent to W′ if W, W′⊆L+ for W = W[|1]
can only pass to W[1|x] or W[−1|x]. So assume p ≤ n − 2. Let W = W[x|1, y],
W′ = W[y|1, x]. Then we have the node W〈1, x, y〉 with external walls W〈1, x〉,
W′〈1, y〉. This proves fact 4.

Dn+1 The fundamental Weyl chamber is

W+ = {x ∈ P : (x, α) ≥ 0} = {x ∈ P : x1 ≥ . . . ≥ xn ≥ |xn+1|}.
The Weyl group permutes coordinate axes and changes signs of all but the smallest
variable so |Ω| = 2n(n+ 1)! Each chamber has n+ 1 walls. The αp-chamber p < n
is obtained by repeatedly interchanging xi and xi+1(i 6= p) and negating xi(i > p).
Thus it is given by

{x ∈ P : min
i≤p

(xi) ≥ max
i>p
|xi|}.

So things are identical to the previous case if α 6= α+, α−. Adopt the same notation
used for Bn and Cn. The fundamental αp-cell is

{x ∈ P : rank′(x, 1) ≤ p, x1 ≥ 0}.
Again if W is an αp-chamber that does not lie in the fundamental cell then W =
W[−1|] or W = W[|1]. The arguments are now verbatim those of Bn and Cn except
we need not assume that p ≤ n− 2 in the proof of fact 4.

Lemma IV.5.2. Lemma 5.2 If α = α− (or α+) then L− = φ.

Proof. We must analyze the α+ and α−-cells. Rather than break the symme-
try consider Q-chambers instead where Q = {α+, α−}. The Q-chamber containing
W+ is obtained by interchanging repeatedly xi and xi+1 for i 6= n so it is given by

{x ∈ P : min
i≤n

(xi) ≥ |xn+1|}.



IV.6. A LEMMA ABOUT CELLS 61

The smallest union of Q-chambers to contain the fundamental αn−1-cell (called the
fundamental Q-cell) is

{x ∈ P : rank′(x, 1) ≤ n, x1 ≥ 0}.

Q-chambers are smaller than α−-chambers, so the fundamental α−-cell will contain
the fundamental Q-cell. The notation introduced earlier for Bn and Cn extends to
Q-chambers. In particular we have sets LQ = L+

Q ∪ L
−
Q.

Let W be a Q-chamber. If W = W[1|],W is contained in the fundamen-
tal Q-cell; if W = W[|1] then W⊆L+

Q; and if W = W[−1|] then W⊆L−Q. Let
W be the α−-chamber containing W. It is a union of Q-chambers. If W lies in
the fundamental Q-cell then W must lie in the fundamental α−-cell. If W⊆L+

Q

(W = W[x|1]), then the wall W〈x, 1〉 of W is either of type α+ placing W in the
fundamental α−-cell, or of type α− placing W in Kn ∪ L+

n where Kn is the funda-
mental α−-cell. Finally if W⊆L−Q (W = W[−1|x]) then either the wall W〈−1, x〉
or the wall W〈−1,−x〉 is of type α+. Passing through that wall one obtains an-
other Q-chamber W′ contained in W but one which is also in L+

Q. W′⊆L+
Q so W

⊆ Kn ∪ L+
n . This proves the lemma. �

IV.6. A Lemma about Cells

The subregular point p remains fixed through this section. The same assump-
tions on the Dynkin diagram remain in force, i.e. ∆ = An, Bn, Cn or Dn+1. Assume
that |S| ≥ 2. Let γ1 be the smallest root in S− with the ordering on the roots given
in section 5.

Lemma IV.6.1. Lemma 6.1 Let Y (6= Rn, ∅) be a union of γ1-chambers such
that if ξ is a γ1-wall, ξ⊆Y , and ξ 6⊆Y c then ξ vanishes. Suppose further that Y
is path connected and every big wall of Y ∩ Y c is non-zero. Then Y c contains a
γ1-cell.

Proof. If γ1 = α1, a γ1-cell is a γ1-chamber, and Y c is a union of γ1-chambers
so the lemma follows from Y 6= Rn. Since |S| > 1 and γ1 is the smallest in S−,
γ1 = αp, p 6= n (3.1) and since we are assuming ∆ 6= F4, G2 we are reduced to the
case where αp and αp−1 have the same length.

Let ξ0 be a (non-zero) big wall of Y with ξ0⊆Y c and let W0 be a big γ1-chamber
in Y which contains ξ0. By (5.1), we have an γ1-cell K which does not contain W0

but contains ξ0. We shall show that K is the desired cell. We might as well translate
the data by an element of the Weyl group and assume that K is the fundamental
γ1-cell. Let Y 0 be the path component of Y ∩Kc inside Kc = L containing W0.
Y 0 is again the union of γ1-chambers. It is enough to prove that the external
walls in Y 0 are non-zero for then Y = Y 0. In terms of the following diagram with
Y 0 = A, Y = A ∪ B ∪ C, K = B ∪ D ∪ E we wish to show B = C = D = φ by
proving the walls separating A and B are non-zero.
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Let W be a big chamber in Y 0 containing a non-zero external wall ξ⊆K. If
ξ′ is also an external wall of W which is obtusely adjacent to ξ, then fact 2 shows
that ξ and ξ′ meet at a node A2 of type (αp−1, αp). Since αp−1 6∈ S ⊇ R then
z1(W,αp−1) 6= 0 for all W , and hence either all roots of type αp at the node are
zero or none are; so ξ′ is a non-zero wall as well (consult the list of zero patterns).
Fact 3 shows then that if ξ, ξ′ are external walls in W then either both are zero or
neither is.

Let Y 0
+ = L+ ∩ Y 0 and Y 0

− = L− ∩ Y 0. If two γ1-chambers W and W′ of Y 0
+

are adjacent and separated by ξ′′, then by the hypothesis of the lemma, ξ′′ is zero.
Fact 4 gives walls ξ, ξ′ of W, W′ resp. and a big node with angles 2π/3. Since ξ′′

is zero and the sum of the wall variables around a node is zero the external walls
of W and W′ vanish or do not vanish together.

The argument is nearly complete for An. Given W0 and any other γ1-chamber
W in Y 0

+ = Y 0 there is a path in Y 0
+ joining W and W′ because Y0 is defined as a

path component. Since the external wall ξ0 does not vanish repeated application
of the previous paragraph shows that the external walls do not vanish. This shows
that the external walls in Y 0 are non-zero and consequently that Y = Y 0.

From here on assume that the Dynkin diagram is of type B,C, or D, and that
all chambers are γ1-chambers unless specifically stated otherwise. Say that two
γ1-chambers W and W′ are proximate if W = W[i|] and W′ = W[−i|] for some i.

Lemma IV.6.2. Lemma 6.2 If two γ1-chambers W, W′ in Y 0 are proximate
then the external walls in one are non-zero if and only if the external walls in the
other are non-zero.

Proof. Let W and W′ be given by W = W[i|1] and W′ = W[−i|1]. If W has a
vanishing external wall then by the preceding arguments, the external wall W〈i, 1〉
vanishes. It follows then that W [1|i] must also lie in Y . Since W[1|i] and W[−i|1]
both lie in Y the wall between them must be zero. This is an external wall, so W′
contains a vanishing external wall. �

To complete the proof of (6.1) for B,C,D it is enough to show that for any
two big chambers W,W′ in Y 0

+ there exists a chain of chambers in Y 0
+ : W =

W1, . . . ,Wp = W′ such that Wi and Wi+1 are adjacent or proximate i = 1, . . . , p−1.
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To do this first we pick any path from W to W′ in the path connected space Y 0. If
the path actually lies in Y 0

+ then we are done. Otherwise along the parts of the path
which lie in Y 0

− we must construct a chain W1, . . . ,Wp in Y 0
+ which runs alongside

the portions of the path in Y 0
− such that Wi and Wi+1 are adjacent or proximate.

Two adjacent chambers W and W′ in Y 0
− are adjacent to a uniquely determined

third chamber in Y 0
+. To see this set W = W[−1x|y],W′ = W[−1y|x]. Then the

chamber W′′ = W[xy|1] lies in L+. It also lies in Y 0 because the node W〈x, y, 1〉 is
of type (αp−1, αp) and the wall W〈x, y〉 is zero. Thus W′′⊆Y +

0 .

W ′′

W W ′

If we have three chambers W′1,W′2,W′3 in Y 0
− with W′i,W′i+1 adjacent i = 1, 2

then we have situation of the following diagram with W1 and W2 the chambers in
Y 0

+ determined by the last paragraph.

W1 W2

W ′1 W ′2 W ′3

I claim that W1 and W2 are equal, adjacent, or proximate. Set

W1 = W′2[u|1] W2 = W′2[x|1]

W′1 = W′2[−1u|v] W′2 = W′2[−1|] W′3 = W′2[−1x|y].

So if u 6= ±x we have W1 = W2[u|x] and they are adjacent; if u = x they are equal,
and if u = −x they are proximate.

There is one last thing to check. If W2⊆Y 0
+, if W′1, W′2⊆Y −0 , and if W′1 and W′2

are adjacent as are W′2 and W2, then W1 and W2 are equal, adjacent, or proximate.
The same proof applies leaving out W′3. �
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IV.7. Contact

In this section we show that the graph Γ′ obtained in (4.2) is a subgraph of
Γ0. In other words we show that no vertices were eliminated in step 3 of the
modification (4.2). It follows that if a linear subgraph in Γ0 has extremal vertices
which are extremal in S− then the subgraph is S−. To show that Γ′ is a subgraph it
is sufficient to show that if vi and vi+1 are vertices in Γ′ corresponding to adjacent
roots αi and αi+1 then there is a special node of type (αi, αi+1) in the modified
star. This result clearly implies that vi and vi+1 were already joined by an edge in
Γ0 and (since Γ0 is a tree) that Γ′ is a subgraph of Γ0.

Continuing with the arguments of sections 5, 6, and 7 we could characterize
the graphs Γ0 associated with the zero patterns and classify the zero patterns
according to the graphs. One can prove for instance for An that Γ′ = Γ0 so that
Γ0 is a subgraph of S and that Γ0 determines the zero pattern up to Weyl group
symmetry. We will not pursue these lines of enquiry further here.

Let β be the largest simple root in S− (ordering the simple roots as in section
5). Let α be the next largest root in S−. By (4.2) there is a union of α-chambers Z−α
and a union of β-chambers Zβ such that the non-zero walls of type α are contained
in Z−α , the non-zero walls of type β are contained in Zβ , Z

−
α is bounded by non-zero

walls of type α,Zβ is bounded by non-zero walls of type β, and the interiors of Z−α
and Zβ are disjoint. It follows from (6.1) and induction using the definition of cells
that Z−α contains an α-cell Kα. By translating Z−α , Zβ by an element of the Weyl
group we may assume that Z−α contains the fundamental α-cell. Let L− = L−β be
the set defined in section 5 corresponding to the root β.

Similarly for every pair of adjacent roots αi, αi+1 ∈ S− we can pick regions Z−αi
and Zαi+1

such that the interiors of Z−αi and Zαi+1
are disjoint, the bounding walls

are non-zero, and

Z−αi⊆Z
−
αi+1

Zαi⊇Zαi+1

Lemma IV.7.1. Lemma 7.1 Zβ 6⊆L−β . If β = α+ ∈ S− (Dn+1) then Zβ 6⊆L−Q.

Proof. For An L−β = φ and the lemma is trivial. Let Z = Zβ , L
− = L−β .

Assume that β = αi (with the restrictions i 6= n, n− 1 Bn, Cn;β 6= α+, α− Dn+1).
If W ⊆Z ∩ L− then W = W[−1|xy]. The walls of type αi+1 of the (αi, αi+1) node
W〈−1, x, y〉 are non-zero (αi+1 is not in S). By our restrictions it is a node of type
A2. So by the zero patterns for A2 either the αp-walls are zero which implies that
W[x|1y] and W[y|1x] lie in Zβ or the αp-walls are nonzero which implies that either
W [x|1y] or W[y|1x] lies in Zβ (for by assumption all non-zero walls of type αp lie
in Zβ).

Now assume that i = n − 1, that the group is of type Bn or Cn and that
W = W[−1|x]⊆Z ∩ L−. An (αn−1, αn) node is W〈±1,±x〉.
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W[−x|1] W[1|x]

W[−1|x] W[x|1]

If a wall of W is zero then either W[−x|1] or W[x|1] is contained in Zβ ∩L+. If the
walls of W are non-zero then all the walls of type αn−1 at the node are non-zero.
(Consult the list of zero patterns). The condition that Zβ contain all non-zero walls
of type αn−1 forces W[−x|1], W[1|x], or W[x|1] to lie in Z. The chambers W[x|1]
and W [−x|1] lie in L+ and W[1|x] lies in Kβ .

If β = αn (type Bn, Cn) or β = α+, α−(Dn+1) then L− = φ and there is nothing
to prove. Turn to the second statement of the lemma. If W = W[−1|x]⊆L−Q is a

Q-chamber in Zβ then either W〈−1, x〉 or W〈−1,−x〉 is an α−-wall so that W[x|1]
or W[−x|1] lies in Zβ ∩ L+. �

Lemma IV.7.2. Lemma 7.2 Zαi 6⊆L−αi for all αi ∈ S.

Proof. By the previous lemma we may assume that αi 6= β. Suppose that
W[x|1] is an αi+1-chamber which is contained in Zαi+1

. Then since Zαi⊇Zαi+1
,

W[|1x] must lie in Zαi . Similarly if W = W[±1|] is an αi+1-chamber in Zαi+1 then
W[|1] lies in Zαi . Finally for Dn+1, αi = αn−1 we note the same arguments hold
using Q-chambers instead of α-chambers. �

Lemma IV.7.3. Lemma 7.3 There is a special node of type (αi−1, αi) for αi−1, αi ∈
S.

Proof. First suppose the group is of type Bn, Cn, or Dn+1 and i ≤ n−1. Set
Z = Zαi and Z− = Z−αi−1

, and let K denote the fundamental αi−1-cell. K⊆Z−.

Select W ⊆Z, W 6⊆L−. If W = W [1x|y] then W′ = W[1|xy]⊆K and the interiors of
W′ and W are not disjoint (contradiction). So W = W[xy|1]. The node W〈1, x, y〉
contains the αi−1-chamber W[1|xy]⊆K. This is the special node. �
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6= 0 6= 0

W[1|xy] W[−1|x]

Now assume i = n, and the group is of type Bn or Cn. If W = W[1x|] then
the α-chamber W′ = W[1|x] lies in K and the interiors of W′ and W are not
disjoint (contradiction). So W = W [−1x|]. The node W〈±1,±x〉 contains the
αi−1-chamber W[1| − x]. This is a special node.

W[−1− x|]

W[1− x|]

6= 0 6= 0

W[1x|]

Now assume that the group is of type Dn+1 and αi = α−, αi−1 = αn. Let
W be a Q-chamber in Z not in L−Q. If W = W[1x|y] then the αi−1-chamber

W[1|xy] lies in K hence in Z− and intersects the interior of W (contradiction).
So W = W[xy|1]. The node W〈1, x, y〉 is of type (αn−1, α±). The αn−1-chamber
W[1|xy] lies in K ⊆ Z−. Since Z− and Z are disjoint and bounded by nonzero
walls this must be a special node.
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6= 0 6= 0

W[1x|y] W[xy|]

For An we make use of graph automorphism and the fact that an αn-cell is
precisely the closure of the complement of an αn-chamber. Let a fundamental dual
αi-cell be the smallest union of αi-cells to contain a fundamental dual αi+1-cell
and let a fundamental dual αn-cell be the fundamental αn-chamber. It follows by
induction that a dual αi-cell is the closure of the complement of an αi-cell. Z must
contain a dual αi-cell and Z− contains an αi−1-cell. Since the interiors of Z and
Z− are disjoint Z is equal to the dual cell, and Z− is equal to K. The result
follows. �

IV.8. The Assumption 3.1

Assumption 3.1 was made to simplify the arguments in section 3. The cases
where the assumption fails to hold are easily managed. We have for instance:

Lemma IV.8.1. Lemma 8.1 If the roots of G are all the same length and
θ1(W0, α0) = 0 for some (W0, α0) then assumption 3.1 holds.

Proof. The hypothesis θ1(W0, α0) = 0 of the lemma is made to insure that
p does not lie in Y ′′. First we show that |S| ≥ 2. Suppose that |S| = 1. Form
a path W0, . . . ,Wp from W0 to Wp where Wp is chosen so that θ1(Wp, α0) 6= 0.
Let i be the smallest index for which θ1(Wi, α0) 6= 0. Then i > 0 and the wall
dividing Wi−1 from Wi is not of type α0. Say it is of type β1. It is easy to see that
(α0, β1) 6= 0. The assumption on the lengths of roots forces it to be a node of type
A2. Since β1 6∈S (|S| = 1) the walls of type β1 at the node are non-zero. There is
a non-zero wall of type α0 as well as a vanishing wall of type α0 at the node. But
this is impossible by the zero pattern (A.I) of type A2. Thus |S| ≥ 2. �

For any root β ∈ S, z̃(W,β)x(W,β) = 0 (1.2). Lemma 3.2 holds because it
only makes use of the assumption |S| ≥ 2. Fix (W2, β2) with θ1(W2, β2) 6= 0. Then
x(W2, β2) = 0. For any chamber W3 adjacent to W2, x(W3, β2) = 0 except if the
wall separating W2 and W3 has type β3 for some β3 ∈ R and θ1(W2, β3) 6= 0. Then
x(W3, β3) = 0, x(W2, β3) = x(W2, β2) = 0, and (β2, β3) 6= 0 (1.3). It follows by
considering paths originating from W2 that R forms a connected Dynkin diagram
and for every Weyl chamber W there is a simple root β ∈ R such that x(W,β) = 0.
Also if α ∈ S then x(W,α) = 0 for some W and (α, β) 6= 0 for some β ∈ R. It
follows that if R 6= φ then for β1, β2 ∈ S and (β1, β2) 6= 0 either β1 or β2 lies in
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R. Say β2 ∈ R. Then select W2 such that θ1(W2, β2) 6= 0 then B(W2) 6= B(W3)
where W3 is the Weyl chamber through a wall of type β2 from W2. So either
x(W2, β1) 6= 0 or x(W3, β1) 6= 0 (the line of type β2 does not intersect two lines
of type β1). Therefore the walls (W2, β1) and (W2, β2) do not come together at a
solid node.

Finally we consider the case R = φ. Then B(W ) = B(W ′) for all W and
x(W,β) = x(W ′, β) for all W,W ′, β. If α ∈ S then x(W,α) = 0 for some W so that
x(W,α) = 0 for all W . This forces |S| = 2, S = {α, β} with (α, β) 6= 0. Suppose
for a contradiction that there is a solid node of type (α, β). Let W be a chamber
at the node. If we reflect through the wall (W,γ) with (γ, α) = (γ, β) = 0 then by
the nature of the nodes of type A1 ×A1 the solid node is reflected to another solid
node:

x x

W

y y

z z

γ

If we reflect through the wall (W,γ) with (γ, α) = 0, (γ, β) 6= 0 then by the nature of
the nodes of type A2 the solid node is reflected to another solid node (θ1(W ′, γ) 6= 0
for all W ′):
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x c kx

W

N N ′
y y

z k′z

γ

By repeatedly reflecting through walls we find that every node of type (α, β) is a
solid node. This contradicts the assumption that α, β ∈ S.

Remark IV.8.2. Remark 8.2 The same conclusion holds under the weaker
assumption that all the roots in S or adjacent to a root in S are the same length.
The assumption |S| = 1 is made to avoid trivialities. There are a few cases where
assumption 3.1 breaks down; but they too are easily classified. For example one
can have a solid node of type (α, β) in the situation S = {α, β} where α and β have
different lengths. I will not treat these cases here.





CHAPTER V

The Subregular Fundamental Divisor

This chapter and the next develop an integral expression for the subregular
germ of a κ-orbital integral of a Cartan subgroup T . The data entering into this
expression are a surface (together with a description of its irreducible components
and F -structure), a character κ(E) of F× for each irreducible component of the
surface defined over F , a properly normalized 2-form on each irreducible compo-
nent of the surface, a cocycle depending on the F -rational points of the surface of
Gal(F̄ /F ) with values in T , a character κ on H1(T ), and finally canonical coor-
dinates (w, ξ) on the surface. The germ is obtained by evaluating the cocycle by
κ and integrating it with respect to the 2-form over the surface. We will see that
the principal value integrals cannot be given an intrinsic coordinate free definition.
Canonical coordinates are introduced to overcome this shortcoming.

Section 1 shows that the irreducible components of the surface are in bijection
with the lines of the Dynkin curve and that each component is a rational surface. In
section 2 we give a condition that must be satisfied for the 2-forms on the various
irreducible components to be compatibly normalized. Near F -rational points at
the intersection of two irreducible components of the surface the definition of the
principal value integral differs from the usual one. In particular, the definition is
not coordinate free. This places certain restrictions on coordinates near F -rational
points at the intersection. These restrictions are discussed in section 3. Section
4 develops formulas giving the contribution to the subregular germ of the divisors
whose intersection is defined over F , which are not themselves defined over F .
These formulas will be applied to the subregular germ of G = 2A2n in chapter VII.
Section 5 gives formulas for coordinate transitions on the overlap of two patches.
Section 6 develops some useful coordinate relations that will be used to study the
rationality of the surface in chapter VI.

V.1. Regularity

Let Ys be the open subvariety of Y ′′ of elements (b, B(W )) such that b is regular
or subregular. (b need not be unipotent.) Let π denote the restriction to Ys of the
morphism from Y ′′ to G described in chapter I.

Lemma V.1.1. Lemma 1.1 On Ys

a) If λ = 0 and π(p) = u is subregular then either i) there exists a simple root
α′ such that x(α) 6= 0 for α 6= α′ and x(α′) = 0, or ii) there exist adjacent
simple roots α′, α′′ such that x(α) 6= 0 for α 6= α′, α′′, and x(α′) = x(α′′) =
0, x(α′ + α′′) 6= 0.

b) Ys is regular and the divisors of λ = 0 have normal crossings.
c) The divisors on Ys are Eα ∀ α, and E0 the regular divisor.
d) Eα ∩ Eα′ is non-empty if and only if (α, α′) 6= 0.

71
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Remark. By the coordinate free description of EΣ given in (II.9.3), it follows
that EΣ 6= EΣ′ if Σ 6= Σ′. Here Eα denotes EΣ, Σ = {α}, and E0 = EΣ, Σ = ∅.

Proof. (a) Option (i) corresponds to the situation where B(W+) lies in only
one line, a line of type α′. If B(W+) lies in two lines of (B\G)u then the lines
must correspond to adjacent roots α′ and α′′. Suppose that x(α′) = x(α′′) =
x(α′ + α′′) = 0. We show that this is not subregular. If α′ is at least as long as
α′′ then σα′(α

′ + α′′) = α′′. It follows that if u is unipotent and x(α′) = x(α′′) =
x(α′ + α′′) = 0, then uexp(x1X−α′ ) ∈ Nα′′ and

uexp(x1X−α′ ) exp(x2X−α′′ ) ∈ Nα′′⊆B0

or

u ∈ Bexp(−x2X−α′′ ) exp(−x1X−α′ )

0 .

This shows that dim(B\G)u ≥ 2 so that u is not subregular. This proves (a).
We prove (b), (c), and (d) together. Case 1. Suppose at p, x(α) 6= 0 for α 6= α′, α

simple. To prove regularity we show that the local ring is generated by x(γ) : γ
positive and z(α′). The equations (II.4.2)

w(α) = 1 : α simple.

z(α) = λ/x(α) : α 6= α′

w(γ) = z(γ − α)x(γ)/x(α) : γ not simple

where z(β) is defined to be
∏

z(α)m(α) for β =
∑

m(α)α.

λ = x(α′)z(α′) : λ

show that z(α) ∀ α,w(γ) : γ positive and λ lie in the ring generated by x(γ) : γ
positive and z(α′). This proves regularity. The equation λ = x(α′)z(α′) shows that
there are two divisors on this coordinate patch and that they have normal crossings.
The divisor Eα′ is defined by x(α′) = 0 and the divisor E0 is defined by z(α′) = 0.

Case 2. Suppose at p, x(α) 6= 0 for α 6= α′, α′′, and x(α′ + α′′) 6= 0. Then by
(II.4.2)

z(α) = λ/x(α) : α 6= α′, α′′

w(γ) = z(γ − α)x(γ)/x(α) : for γ simple and γ not in the rank two system
generated by α′, α′′

z(α′) = w(α′ + α′′)x(α′′)/x(α′ + α′′)

z(α′′) = w(α′ + α′′)x(α′)/x(α′ + α′′)

λ = x(α′)x(α′′)w(α′ + α′′)/x(α′ + α′′)

w(δ) = x(δ)w(γ)z(δ − γ)/x(γ) : for δ = m(α′)α′ +m(α′′)α′′

where γ = α′ + α′′.
x(α′) = 0 defines Eα′ , x(α′′) = 0 defines Eα′′ , w(α′ + α′′) = 0 defines E0 and

the local ring at p is regular for it is generated by x(δ) : all δ and w(α′+α′′). These
divisors have normal crossings. The only two subregular divisors on this patch are
Eα′ and Eα′′ and (α′, α′′) 6= 0. By part (a) of the lemma, patches of the form
considered in case 1 and case 2 cover the subregular divisors. This completes the
proof. �
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The patch described in case two of the lemma will be used frequently in this
chapter. We denote it by U(α′, α′′). It depends on the choice of opposite Borel
subgroups (B∞, B0).

Fix a subregular element u ∈ G. Set Eα(u) = π−1(u) ∩ Eα and let Eα(u)0 be
an irreducible component of Eα(u).

Lemma V.1.2. Lemma 1.2

a) Suppose that (u1, (B
nw
0 ))ν and (u2, (B

n′w
0 ))ν

′
both lie in Eα(u)0. Then

νν′−1 ∈ Pα the parabolic of type α containing B0.
b) Eα(u) is a disjoint union of |α|2/|αmin|2 rational surfaces where αmin is

any short root.

Proof. We begin with (b). If

(u, (B(W ))) ∈ Eα(u) then B(W+) ∈ (B\G)u.

The equation (IV.1.2) λT (W,α) = x(W,α)z(W,α) and z(α) 6= 0 imply that x(W,α) =
0 for all W . Thus B(W ) lies in a line of type α for all W .

nw has the form:

nw = exp(z(Wq, αq)X−q) . . . exp(z(W1, α1)X−1)

where W+ = W1, . . . ,Wq,Wq+1 = W is a path from W+ to W and Wi+1 and Wi

are separated by a wall of type αi. From the relations z(α′) = 0 α′ 6= α it follows
that z(W,α′) = 0 on Eα for all (W,α′) α′ 6= α. Thus the product for nw collapses
into an expression nw = exp(awX−α) on Eα where aw =

∑
z(Wi, αi) and the sum

is over all i such that αi = α.
Write

(u, (B(W ))) = (uν
−1

, (Bnw0 ))ν ∈ Eα(u), nw = exp(awX−α).

If B(W+) ∈ `α(= B0\Pαν) then for all W , B(W ) = Bnwν0 ∈ P να also lies in the line
`α ( = B0\Pαν). Thus Eα(u) breaks up into a disjoint union of varieties according
to which line of type α the (B(W )) lie in.

By [24, p.146], CG(u) acts transitively on the lines of a given type in (B\G)u.
Thus there is a variety for each line of type α and they are isomorphic over F̄ . It
remains to be seen that each is a rational surface.

Now turn to (a) Bν0 and Bν
′

0 lie in the same line `α, i.e. the same parabolic

subgroup which must be P να = P ν
′

α . Thus νν′−1 ∈ Pα.
We return to (b). Fix the component Eα(u)0 with associated line `α. We will

often denote this component by E(`α, u). Select B0 to lie in two distinct lines
of (B\G)u including the line `α. Select a point (u1, (B(W ))) in Eα(u) such that
B(W+) = B0. Then (u1, (B

nw
0 ))ν = (u1, (B(W ))) = (u1, (B

nw
0 )). So u = u1 and

ν = 1. Let (u2, (B
n′w
0 ))ν

′
be any other point in Eα(u). Then by (a), νν′−1 = ν′−1 ∈

Pα so ν′ = exp(ξX−α) for some ξ. uν
′

2 = u or u2 = uν
′−1

. It follows that for fixed
u, the coefficients of u2 are polynomials in ξ.

(1.1) shows that on an open set U(α, α′) (defined by x(α′′) 6= 0 α′′ 6= α, α′

x(α+α′) 6= 0) the coefficients x(γ) ∀ γ and w(α+α′) generate the local ring. Thus
on an open patch for a fixed u, ξ and w(α + α′) are coordinates on Eα(u)0. This
shows that Eα(u)0 is a rational surface. �
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V.2. Igusa theory and measures

Each divisor Eα projects to G. The image of an open set in Eα is the set of
subregular unipotent elements in G. We use this fibration to express the principal
value integral over Eα as a repeated integral over the fibre of an element u and
an invariant integral over the conjugacy class of u. We have seen that ξ and
w = w(α+β) serve as coordinates on U(α, β)∩Eα(u)0. We compute the differential
form on the fibre over u in this section.

It is often inconvenient to work directly with F -coordinates on the variety. We
translate the formulas in [17] for the differential form ωE on a divisor E into a
more convenient form. It is not our purpose here to develop the formalism of Igusa
theory. Rather we adapt the formalism to our specific purposes. For details see
[12] or [17]. From [17] we have formulas

f = γκ1(µ1) . . . κn(µn)

h(0, µ2, . . . , µn) = γθ(α)−1
n∏
j=2

κj(µj)θ(µ
−aj
j ) where θa1 = κ1

ω = W (µ1, . . . , µn)µb1−1
1 . . . µbn−1

n dµ1 . . . dµn

ωE = W (0, µ2, . . . , µn)α−β
n∏
j=2

µ
bj−βaj−1
j dµ2 . . . dµn

λ = αµa1
1 . . . µann .

By these formulas we see that ωE is the restriction of ω/(λβ(dµ1/µ1)) to E. The
coordinate µ1 may be replaced by any other coordinate µ′ (not necessarily F -
rational) such that µ′ = 0 defines E. We let µ′ = x(α) so that ωE for E = Eα
becomes the restriction (of the extension) of ω/(λβ(dx(α)/x(α)) to E. We obtain
h by extending f/θ(λ) to E. Finally we note that κ(E) can be described as the
character such that f/κ(E)(µ) extends to an open set on E where as usual µ is a
local coordinate and µ = 0 defines E locally.

By remark I.6.2 the fibres E(u) and E(u′) are isomorphic (over F̄ ) by the
G-action on YΓ. It is therefore sufficient to fix the measure for one unipotent
element. The choice of isomorphism is not uniquely determined but it follows from
the G-invariance of ωY that the identification of the form on E(u) with one on
E(u′) is independent of the choice of isomorphism. We fix a subregular element u
independent of T and Γ. We may take ωY to be

ωY = dλ ∧ dx1 ∧ . . . ∧ dxp ∧ dν1 ∧ . . . ∧ dνp.

By fixing isomorphisms over F̄ between the varieties X1 constructed for various
Cartan subgroups T , we fix the form for all T .

We fix a 2-form on E(u) =(def)
⋃
E(`α, u) in two steps.

1) If `α and `β intersect we link the normalization of the 2-form on E(`α, u) relative
to that on E(`β , u) by matching their residues on E(`α, u)∩E(`β , u). The following
equalities hold on Eα ∩ Eβ :

Equation V.2.1.

ωY x(α)x(β)/(λ2dx(α) ∧ dx(β)) = ωEαx(β)/dx(β) = ωEβx(α)/dx(α).
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Of course any other local coordinates may be substituted for x(α) and x(β). This
last equality determines the relative normalization on adjacent components.

2) We single out any component E(`α, u) and fix a normalization of the measure.
Any normalization is acceptable, but it must be independent of T and Γ.

Remark V.2.2. Remark 2.2 We give local coordinates on the subregular class
O. Fix a parabolic subgroup Pα which is defined over F . Let B be a Borel subgroup
in Pα. Consider the subset O′ of O on which there is a line of type α fixed by
Gal(F̄ /F ) in (B\G)y meeting BN−α for y ∈ O′. Then Bν for some ν ∈ N−α(F̄ )
is a Borel subgroup in a line of type α in (B\G)y. We may assume that the line
is given by P να . Since the line is defined over F , ν ∈ Nα(F ), and if y ∈ G(F )

then yν
−1 ∈ Nα(F ). We may use the coefficients of N−α(F ) and Nα(F ) as local

coordinates on O(F ) in some neighborhood of y. The morphism Nα × N−α→O
is defined over F . Note that the number of points in Nα(F ) × N−α(F ) covering
a given unipotent element y depends on the number of lines of type α in (B\G)y
meeting BN−α .

Lemma V.2.3. Lemma 2.3 The form on a fibre E(`α, u) is given up to a scalar
by δ−1dξ ∧ dw/(ξw2) where δ = x(β)/(ξx(γ)). (γ = α+ β).

Proof. By (2.2) we may use the coefficients of Nα(F ) and N−α(F ) as local
p-adic coordinates on O(F ).

Choose B0 to lie in `α. Elements on an open set near Eα can be written in the
form

(b, (Bnw0 ))exp(ξX−α)αν .

Now

λ = x(α)x(β)w/x(α+ β)

and by the previous paragraph the restriction of the form to Eα is given by ωE =
(ωY /λ

2)(x(α)/dx(α)). We have ωY /λ
2 =

x(γ)(dw/w2) ∧ (dx(α)/x(α)) ∧ (dx(β)/x(β)) ∧ dx(γ) ∧
∏

dx(α′) ∧ (dξ ∧ dαν).

ωE = x(γ)(dw/w2) ∧ (dx(β)/x(β)) ∧ dx(γ) ∧
∏

dx(α′) ∧ (dξ ∧ dαν).

The coefficients of b are x(β), x(γ) etc. We can write u = bexp(ξX−α), and write the
coefficients of u as u(β), u(γ), etc. Then the coefficients of u and the coefficients
of αν are local coordinates along the subregular conjugacy class. The relation
u = bexp(ξX−α) implies that

dξ ∧ dx(β) ∧ dx(γ) ∧ . . . = dξ ∧ du(β) ∧ du(γ) ∧ . . .

Thus when expressed in terms of the variables u(η) instead of the variables x(η),
the form becomes

ωE = (x(γ)/x(β))(dw/w2) ∧ du(β) ∧ du(γ) ∧
∏

du(α′) ∧ (dξ ∧ dαν)

or

ωE = (x(γ)/x(β))(dw/w2)dξ ∧ ωsub
where ωsub is independent of the coordinates on the fibre. �
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The tangent direction X of the regular curve Γ can be identified with a vector
in the regular elements of the Lie algebra Lie(T ) of T . In the remainder of this
text X will denote an element of Lie(T ). The expression for the germs will depend
on the tangent direction X through the parameters α(X) : α simple. To make this
dependence explicit we introduce the field KX of rational functions on Lie(T ). It
is isomorphic to F̄ (x1, . . . , xn) where n = dim(T ) and x1, . . . , xn are independent.
We may identify the simple roots with elements of this field. The regular func-
tion T (W,α) discussed in (IV.1.1) equals ±η(X) when λ = 0 where η is the root
determined by the wall (W,α) of W .

For points of E(`α, u) we have defined δ(ξ) by ξx(γ)/x(β) = δ(ξ)−1. There is
the simple but useful relation.

Lemma V.2.4. Lemma 2.4 On E(`α, u), z(W+, α)/ξ = δ(ξ)w(α+ β)α(X).

Proof. By (II.4.2),

λ = x(α)x(β)w(α+ β)/x(γ) = (1− α−1(t))x(β)w(α+ β)/(x(γ)z(W+, α)).

z(W+, α)/ξ = (x(β)/ξx(γ))w(α+ β)(1− α−1)/λ.

On E(`α, u), (1− α−1)/λ = α(X) and x(β)/ξx(γ) = δ(ξ). �

V.3. Principal value integrals at points of Eα ∩ Eβ
If we wish to compute the principal value integral at a point near the inter-

section of two divisors Eα and Eβ where κ(Eα) = κ(Eβ), a(Eα) = a(Eβ) and
b(Eα) = b(Eβ) then we must use the formulas for principal value integrals of [17].

We follow [17, p.469]. The Igusa constants a(Eα) and a(Eβ) are 1. The

principal part of
∏2
i=1(1−tai)−1 at t = 1 is

∑2
j=1cj(1−t)−j with c1 = 0, c2 = 1. The

polynomial A(x) defined to be
∑
cj(x+1) . . . (x+j−1) is (x+1). The polynomials

Ar(y) defined by A(x − y) = A1(y) + xA2(y) are A2(y) = 1, A1(y) = 1 − y. It
follows from [17, p.470] that the contribution to the term F1(β, θ, f), β = 2 on a
small patch with coordinates satisfying conditions the local conditions of [17] is
given by ∫

A1(M)h2|ν2|.

The integral extends over U ∩ Eα ∩ Eβ where U is our coordinate patch. By the
remarks of section 2 combined with the formulas in [17] we see that h2 is given by
f/θ(λ)|Eα∩Eβ and ν2 is given by

(ω/λβ)x(α)x(β)/(dx(α)dx(β))|Eα∩Eβ .

We must still define M . We may assume that we are on a coordinate chart such
that

λ = αµ1µ2µ
a
3

|µi| ≤ q−mi i = 1, . . . , n

µ1 = 0 defines Eα locally and µ2 = 0 defines Eβ locally. µ3 = 0 defines E0 locally
if E0 intersects the coordinate patch. If E0 does not intersect the coordinate patch
then a = 0. Then M is given by m + m1 + m2 + am(µ3) where q−m = |α| and
m(µ3) = −logq|µ3| on our patch. We may restate this definition of M in terms of
coordinates on Eα and Eβ .
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(x1, y1) = (µ2, µ3) are local p-adic coordinates on a patch

U1 = {(x1, y1) : |x1| ≤ q−m1 , |y1| ≤ q−n1}

of Eα and (x2, y2) = (µ1, µ3) are local p-adic coordinates on a patch

U2 = {(x2, y2) : |x2| ≤ q−m2 , |y2| ≤ q−n2}

of Eβ . We have

A.i) y1 = y2 on U1 ∩ U2

A.ii) n1 = n2

A.iii) If E0 intersects U1 or U2 then x1 = 0 defines E0 in U1 and x2 = 0 defines
E0 in U2.

A.iv) |α| = q−m on U1 ∩ U2.

We see that M = m+m1 +m2 + am(y1). We must exert caution at this point
because a different choice of coordinates on Eα and Eβ will lead to a different value
for M . In other words, if we wish to give the principal value integral a definition
that is independent of the embedding of Eα and Eβ in YΓ then we must place
restrictions on the coordinates used to compute the value of M . It is easy to list
some conditions on the coordinates that will insure that M is well-defined.

As above, at any point p ∈ Eα(u, F ) ∩ Eβ(u, F ) we begin by selecting local
analytic coordinates that are the restriction to Eα(u, F ) and Eβ(u, F ) of local
analytic coordinates on YΓ near p. We also let α be the restriction to Eα(u, F ) ∩
Eβ(u, F ) of the function defined on a patch by

α = λ/(µ1µ2µ
a
3).

Shrinking the patches U1 and U2 if necessary, any other system of coordinates
(x′1, y

′
1), (x′2, y

′
2) together with a function α′ on U1 ∩ U2 must then satisfy (Ai-iv)

together with the following conditions on neighborhoods U1 and U2 of Eα(u, F )
and Eβ(u, F ) :

B.i) xi/x
′
i = ϕi where ϕi is regular and invertible on U1 ∩ U2.

B.ii) yi/y
′
i = ψ where ψ is regular and invertible on U1 ∩ U2. (By A.i ψ is

independent of i.)
B.iii) |ϕi| and |ψ| are constant on U1 ∩ U2,
B.iv) α′/α = ϕ1ϕ2ψ

a on U1 ∩ U2.

The definition of M is clearly independent of the choice of coordinates satisfying
these conditions on sufficiently small patches. We have:

m′ = m+m(ϕ1) +m(ϕ2) + am(ψ)

m′1 = m1 −m(ϕ1)

m′2 = m2 −m(ϕ2)

am(y′1) = am(y1)− am(ψ).

Remark V.3.1. Remark 3.1 To specify the principal value integrals we must
select a system of coordinates satisfying the conditions listed above. Such a system
relates the scale of regions in Eα to the scale on Eβ . The form ωEα (resp. ωEβ )
fails to provide a scale because near ωEα it is scale invariant:

|ωEα(c.x1, y1)| = |ωEα(x1, y1)| on U1.
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Remark V.3.2. Remark 3.2 Notice also that by extending the norm | | to a field
extension K/F , it is not necessary to assume that the original coordinates on YΓ

near p are defined over F . The reason for this is that coordinates over F satisfying
the conditions A.i-iv, B.i-iv above can always be found and the calculation of M is
independent of the coordinates over F satisfying these conditions. In section 6 we
will give rational functions (called canonical coordinates) on Eα(u) and Eβ(u) which
give local coordinates on Eα(u, F ) and Eβ(u, F ) near every p ∈ Eα(u, F )∩Eβ(u, F ).
These canonical coordinates will thus provide us with a scale between Eα and Eβ .

V.4. Igusa data for interchanged divisors

It is possible for two divisors to contain F -rational points without themselves
being defined over F . This section develops a formula for the contribution of these
F -rational points to the asymptotic expansion. The contribution is expressed as
a principal value integral over the intersection of two divisors interchanged by the
Galois group of a quadratic field extension K of F . Suppose the two divisors that
are interchanged by the Galois group are E1 and E2 and that both have Igusa
constants a(E1) = a(E2) = 1, b(E1) = b(E2) = b. Suppose that on a Zariski open
set U we have a relation

λ = α0x1x2

where x1 is a regular function such that x1 = 0 defines E1 and x2 is a regular
function such that x2 = 0 defines E2 and α0 is regular on U and invertible on open
set of E1 ∩ E2.

For every F -rational point on an open subset of E1 ∩ E2, we construct a co-
cycle aσ of H1(U(1)) as follows. (U(1) is defined by the quadratic field extension
K/F , where K is the field over which E1 and E2 are defined.) The cocycle of
H1(Gal(K/F ), U(1,K)) given by σ→(λ) pulls back to a cocycle a′σ in H1(U(1)).
This does not extend to E1 ∩ E2 but

a′σσ([x1])[x1]−1, [x1] ∈ U(1, F̄ )

does extend to an open set of E1 ∩ E2. We take this to be our cocycle aσ. Note
that the cohomology class of aσ is independent of the choice of local coordinates.
Let ηK be the non-trivial character of H1(U(1)). Finally we restrict ourselves to
the case that f extends to a locally constant function on a Zariski open subset of
E1 ∩ E2.

Proposition V.4.1. Proposition 4.1 The contribution of the F -rational points
on E1 is given by

(1/2)|λ|b
∫
|dX/X|

∫
h2|ν2|+ (1/2)ηK(λ)|λ|b

∫
|dX/X|

∫
ηK(aσ)h2|ν2|

where ν2 is the restriction of (ωY /λ
b+1)dx1dx2/(x1x2) to E1∩E2, h2 is the restric-

tion of f to E1 ∩E2, X varies over norm 1 elements in the field K and the second
integral is taken over F -rational points in E1 ∩ E2.

Proof. A more elegant proof of the result in far greater generality could be
given using Mellin transforms. I will settle for a direct proof in this special case.
As the size of the mesh goes to zero, the principal value integral on each region also
goes to zero. This is clear from formulas appearing in [17, p.475]. So by removing
a region with arbitrarily small integral we may work exclusively on patches of the
underlying p-adic manifold U(K) which satisfy the conditions:
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i) U does not intersect any divisors other than E1 and E2.
ii) µ1 = 0 defines E1 and µ2 = 0 defines E2.
iii) f is locally constant on U(F ).
iv) ωY = γµb1µ

b
2dµ1dµ2 . . . .dµn with |γ| constant on U .

v) U(K) = {(µ1, . . . , µn) : |µi| ≤ q−mi} and m1 = m2.
vi) U(F ) = {(µ1, . . . , µn) ∈ U(K) : σ(µ1) = µ2, σ(µi) = µi i ≥ 3}

(σ ∈ Gal(K/F ), σ 6= 1).

vii) λ = αµ1µ2 with |α| constant on U(K).

We drop the factor γ from the differential form because |γ| is constant on U(K).
We also ignore the function f because it is locally constant.

If λ/α is not a norm then there are no rational points in the region of inte-
gration and the contribution is zero. To compensate for this we insert the func-
tion (1 + ηK(λ/α))/2 which vanishes precisely when λ/α is not a norm. Every
x ∈ F× sufficiently close to the identity is a norm of an element in K×. It follows
that ηK(α(µ1, σ(µ1), µ3, . . . , µn)) = ηK(α(0, 0, µ3, . . . , µn)) for sufficiently small µ1.
Thus we may assume that ηK(1/α) is independent of µ1 and µ2. We must check
that ηK(1/α) equals ηK evaluated on the cocycle aσ. 1/α ∈ F× lifts to the cocycle
cσ in Z1(U(1)) given by σ→1, σ|K = 1, σ→1/α, σ|K 6= 1. For λ small but nonzero
it has the same class as σ([µ1])[µ1]−1cσ [µ1] ∈ U(1,K). Thus cσ has the same
class for small non-zero λ as the cocycle σ→1, σ|K = 1, σ→1/λ, σ|K 6= 1. It is now
clear that ηK(1/α) = ηK(aσ) on F -rational points.

The region of integration is given by |µi| ≤ q−mi i = 1, . . . , n. i = 1, 2 gives
|λ/αµ2|, |µ2| ≤ q−m1 or

(V.1) |λ/α|qm1 ≤ |µ2| ≤ q−m1 . ∗
When µ2σ(µ2) = λ/α and λ is sufficiently small the inequalities (∗) always hold, so
we integrate over all µ2 with µ2σ(µ2) = λ/α. When λ/α is a norm select x ∈ K×
such that xσ(x) = λ/α and set µ2x

−1 = µ. The integral now extends over all norm
1 elements.

The form ωY /(λ
bdλ) equals by (vii) and (iv)

(1/α)b(d(λ/α)/dλ)(dµ2/µ2) ∧ dµ3 . . . dµn =

(1/α)b(d(λ/α)/dλ)(dµ/µ) ∧ dµ3 . . . dµn. ∗
For sufficiently small λ, |d(λ/α)/dλ| = 1/|α|. If we integrate out the dependence
dµ/µ on the norm 1 elements, then for sufficiently small λ the norm of the form
(∗) equals the norm of the form

(1/α)b+1dµ3 . . . dµn = ωY /(αλ
bdµ1dµ2) = ωY µ1µ2/(λ

b+1dµ1dµ2).

Also ωY µ1µ2/(λ
b+1dµ1dµ2) restricted to E1 ∩ E2 equals the restriction of

ωY x1x2/(λ
b+1dx1dx2). This proves the lemma. �

V.5. Transition functions

We have seen that on an open patch U(α, β) we can introduce coordinates
w = w(α + β) and ξ. Fix two lines `α and `β of (B\G)u that intersect at B+ and
select a coordinate patch (B0, B∞) with B0 = B+. Let E(`α, u) and E(`β , u) be
the components of Eα(u) and Eβ(u) corresponding to these two lines. This section
considers the question of what the coordinate transition functions are when two
coordinate patches overlap. First we consider the effect of fixingB0 and varyingB∞.
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Suppose we have pairs (B0, B∞) and (B0, B
′
∞) = (B0, B∞)n, n ∈ N0. Stars are

related by (Bnwν0 ) = (B
nw′ν

′

0 ) with n′w, ν
′ ∈ N ′∞ = Nn

∞. Write n′w = n′′w
n
, ν′ = ν′′

n

with n′′w, ν
′′ ∈ N∞. Then B0nwν = B0n

′′
wν
′′n. We add double primes to all

functions on (B0, B
′
∞).

Lemma V.5.1. Lemma 5.1 Suppose n−1 = exp(yXα) modulo Nα. Then the
following statements are true on E(`α, u).

a) ξ′′ = ξ/(yξ + 1)

b) δ′′w′′ = δw/(α(X)yξδw + (1 + yξ))

c) δ′′(ξ′′)−1dw′′dξ′′/(w′′2ξ′′) = δ(ξ)−1dwdξ/(w2ξ) Furthermore, the follow-

ing statements hold on E(`α, u) ∩ E(`β , u).

d) ξ′′/ξ = 1

e) x′′(W,α′)/x(W,α′) = 1 for any simple root α′ and any Weyl chamber W

f) w′′/w = 1

(Recall that δ(ξ) appearing in (b) and (c) is defined by δ(ξ)ξ = x(β)/x(γ).)

Proof. nwν = exp((aw + ξ)X−α) on E(`α, u) (aw is defined in the proof of
1.2) so the 2× 2 matrix calculation(

1 0
x 1

) (
1 y
0 1

)
=

(
1 y
x 1 + xy

)
=

(
1/(xy + 1) y

0 xy + 1

) (
1 0

x/(xy + 1) 1

)
shows that B0nwνn

−1 = B0 exp(((aw + ξ)/(y(aw + ξ) + 1))X−α)m1 with m1 ∈ Nα.
So B0nwνn

−1 = B0 exp(((aw + ξ)/(y(aw + ξ) + 1))X−α) (for Nα is normal in Pα).
Thus a′′w + ξ′′ = (aw + ξ)/(y(aw + ξ) + 1). In particular for W = W+ we obtain
(a) ξ′′ = ξ/(yξ + 1).

Let W = W (σα) so aw = z(W+, α). Then a′′w + ξ′′ = (aw + ξ)/(y(aw + ξ) + 1)
becomes

(z′′(W+, α)/ξ′′ + 1)ξ′′ = (z(W+, α)/ξ + 1)ξ/(y(z(W+, α)/ξ + 1)ξ + 1).

Now by (2.4), z(W+, α)/ξ = δ(ξ)wα(X) and similarly

z′′(W+, α)/ξ′′ = α(X)w′′δ′′(ξ′′).

Using (a) we obtain

(δ′′w′′α(X) + 1)ξ′′ = (α(X)wδ + 1)ξ/(y(α(X)wδ + 1)ξ + 1)

δ′′w′′α(X) + 1 = (1 + yξ)(α(X)wδ + 1)/(yξα(X)wδ + (1 + yξ))

δ′′w′′α(X) = α(X)wδ/(yξα(X)wδ + (1 + yξ)).

This proves (b).
If w′′ = (aw+ b)/(cw+ d) then dw′′/w′′2 = (ad− bc)dw/(aw+ b)2. So holding

ξ, ξ′′ constant δ′′−1dw′′/w′′2 = δ−1(yξ+ 1)dw/w2. Also dξ′′/ξ′′ = dξ/(yξ+ 1)ξ and
(c) follows.

In E(`α, u) ∩ E(`β , u), B(W ) ∈ `α ∩ `β for all W . Thus B(W ) = B0 for all
W . On E(`α, u), B(W ) = Bnwν0 , nwν = exp((aw + ξ)X−α). Thus aw + ξ = 0 for all
W on E(`α, u) ∩ E(`β , u). In particular for W = W+ we see that ξ = 0. Thus (d)
follows from (a).
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(e) If α′ 6= α, β then the result is trivial. In fact for any positive root γ such

that xγ(u) 6= 0 we have the following string of equalities: xγ(u) = xγ(uν
−1n−1

w ) =

x(W,γ) = xγ(uν
′−1n′−1

w ) = x′′(W,γ). (We use nwν = n′wν
′ = 1 on E(`α, u) ∩

E(`β , u).)
Suppose α′ = α. a′′w + ξ′′ = (aw + ξ)/(y(aw + ξ) + 1), ξ′′ = ξ/(yξ + 1). Thus

a′′w = (aw + ξ)/(y(aw + ξ) + 1)− ξ/(yξ + 1) =

aw(1 + yξ)−1(1 + y(aw + ξ))−1.

Thus a′′w/aw = 1 on E(`α, u)∩E(`β , u). SelectingW = W (σα) we obtain z′′(W+, α)/z(W,α) =
1 on E(`α, u) ∩ E(`β , u). The relations

λT (W,α) = z′′(W+, α)x′′(W+, α)

λT (W,α) = z(W,α)x(W,α)

now imply that x′′(W,α)/x(W,α) = 1 on E(`α, u)∩E(`β , u). By interchanging the
roles of α and β we obtain the proof for α′ = β.

(f) Set

Eα,β,u = E(`α, u) ∩ E(`β , u).

By (b) δ′′w′′/(δw) = 1/(α(X)ξδwy + (1 + yξ)) = 1 on Eα,β,u. Thus (f) follows if
and only if δ′′/δ = 1 on Eα,β,u. On Eα,β,u

δ′′/δ = δ′′ξ′′/(δξ) = x′′(β)x(γ)/(x(β)x′′(γ)) = x(γ)/x′′(γ) = 1.

The first equality is a result of (d), the second holds by definition, the third equality
is a result of (e), and the last equality follows from the string of equalities at the
beginning of the proof of (e). �

Now we turn to the situation where `α intersects at least two other lines `β and
˜̀
β′(β and β′ not necessarily distinct) with corresponding Borel subgroups B+ and
B− respectively.

Lemma V.5.2. Lemma 5.2 Suppose that a line `α of (B\G)u intersects at least
two other lines of (B\G)u. Let B− and B+ be two different Borel subgroups deter-
mined by these intersections. Suppose that the set {B+, B−} is fixed by Gal(F̄ /F ).
Then B− ∩ B+ contains a Cartan subgroup T0 which is defined over F . Also
Bσα− = B+ where σα is the simple reflection in the Weyl group of T0 corresponding
to the simple root α.

Remark. We will see in the proof that T0 depends on the choice of a Levi
component Mα in Pα and that the various choices of T0 are conjugate by Nα(F ).

Proof. The Borel subgroups in `α fill out a parabolic subgroup Pα which is
defined over F because Gal(F̄ /F ) fixes `α. (As always we are working in a perfect
field.) Let Mα be a Levi component of Pα which is defined over F . Mα has semi-
simple rank one so that the intersection of any two distinct Borel subgroups of Mα

is a Cartan subgroup T . Thus B+ ∩Mα ∩ B− ∩Mα = B+ ∩B− ∩Mα is a Cartan
subgroup of Mα and hence of G. T0 is defined over F because Mα is defined over
F and B+, B− are either fixed or interchanged by the Galois group Gal(F̄ /F ) so
B+ ∩B− is also defined over F .

Since B+ ∩Mα and B− ∩Mα are opposite in Mα with intersection T0, we have

(Bσα+ ∩Mα) = (B+ ∩Mα)σα = B− ∩Mα.
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Two Borel subgroups in Pα are equal if and only if their intersections with Mα are
equal. Thus Bσα+ = B−. �

By the previous lemma we have a natural patches on E(`α, u) given a pair
of Borel subgroups B+ and B− lying at the intersections of two lines. If B+ lies
in `β on U(α, β) we let B0 = B+ and let B∞ be the Borel subgroup opposite

to B+ through T0. Similarly if B− lies in ˜̀
β′ , then on U(α, β′) we let B′0 = B−

and let B′∞ be the Borel subgroup opposite to B− through T0. We relate the
two pairs of coordinates on the intersection of the two patches. Let ωα be an
element of the normalizer of T0 which represents the simple reflection σα in the

Weyl group. If (b, (Bnw0 ))ν = (b′, (B
n′w
− ))ν

′
where b ∈ B0 = B+, nw, ν ∈ N∞,

b′ = b′′
ωα ∈ B− = Bωα0 , n′w = n′′

ωα
w ∈ Nωα

∞ , ν′ = ν′′
ωα ∈ Nωα

∞ , then clearly

(b, Bnw0 )ν = (b′′, B
n′′w
0 )ν

′′ωα , with b, b′′ ∈ Nα and nw, n
′′
w, ν, ν

′′ ∈ N∞. Let (w, ξ) and
(w′′, ξ′′) be coordinates on these two patches.

Lemma V.5.3. Lemma 5.3
a) ξ = 1/ζξ′′ for some ζ ∈ F̄× depending on ωα.
b) δw = −δ′′w′′/(δ′′α(X)w′′ + 1).

Proof. Write

nw = exp(awX−α)αnw, n′′w = exp(a′′wX−α)αn′′w

ν = exp(ξX−α)αν, ν′′ = exp(ξ′′X−α)αν′′

with αnw,
αn′′w,

αν, αν′′ ∈ N−α. Then

n′′wν
′′ωα = exp((a′′w + ξ′′)X−α)ωαν1

where ν1 ∈ N−α. By the 2× 2 matrix calculation

Equation V.5.4.(
1 0
x 1

) (
0 a
b 0

)
=

(
0 a
b ax

)
=

(
−b/x a

0 ax

) (
1 0

b/(ax) 1

)
we see that

B0n
′′
wν
′′ωα =B0 exp((1/ζ(a′′w + ξ′′))X−α)ν1

=B0nwν = B0 exp((aw + ξ)X−α)ν2,

ν2 ∈ N−α, ζ = a/b. Thus 1/ζ(a′′w + ξ′′) = (aw + ξ). In particular, taking W = W+

we obtain 1/ζξ′′ = ξ. This proves (a).
(b) ξ/(aw + ξ) = (a′′w + ξ′′)/ξ′′ or (aw/ξ) + 1 = 1/((a′′w/ξ

′′) + 1).
Let W = W (σα) so that aw = z(W+, α) and a′′w = z′′(W+, α). Now by

(V.2.4), z(W+, α)/ξ = α(X)δw. Similarly z′′(W+, α)/ξ′′ = α(X)w′′δ′′. Thus

α(X)wδ + 1 = (α(X)w′′δ′′ + 1)−1 or

δw = −δ′′w′′/(α(X)w′′δ′′ + 1).

�
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V.6. Coordinate Relations

For any two adjacent roots α1 and α2 we define a constant e = e(α1, α2) by
the condition

exp(X−α1) exp(Xα1+α2) exp(−X−α1) = exp(eXα2) modulo Nα2 .

Recall from chapter II that x(W,α) = xα(bn
−1
w ), and that w(γ) depends on an

ordering on the positive roots.

Lemma V.6.1. Lemma 6.1 Suppose that `α intersects a line `β at B+ in (B\G)u.
Let the Borel subgroup B0 defining a coordinate patch (B∞, B0) be given by B0 =
B+. If α is adjacent to a long root then we assume that `β corresponds to a long
root. If `α intersects a second line we also require that T0 be chosen so that Bσα0

lies in the intersection of `α and a second line ˜̀
β′ . (Cf. 5.2). If β is longer than α

we require that B0 and T0 are chosen so that β′ = β. Finally we exclude the group
G2 when β is longer than α. On this coordinate patch the following statements hold
in the coordinate ring of E(`α, u). They hold independent of the implicit ordering
on the roots.

a) If α′ is longer than α and (α′, α) 6= 0, then α′ = β and x(2α+ β) = 0.
b) x(W,α+ β) = x(α+ β) = xα+β(u) ∀ W .
c) δ(ξ) = e(α, β).
d) z(W+, α)/ξ = α(X)we(α, β).
e) If w(γ) 6= 0 and γ is not simple then γ = α+ α′ where α′ 6= β′ if β′ 6= β.
f) For any two simple roots α′ and α′′ (not necessarily distinct),

x(W (σα′′), α
′)/x(α′) = 1 + e(α′′, α′)α′′(X)w(α′ + α′′)

(Set w(α′ + α′′) = 0 if α′ + α′′ is not a root.)
g) w and ξ are independent of the order selected on the roots. If `α intersects

more than one line, w and ξ depend only on the choice of lines `β and ˜̀
β′

and not on the choice of T0 satisfying the hypotheses of the lemma.

Remark 1. By (g)w and ξ depend only on the choice of lines `β and ˜̀
β′ and

are called canonical coordinates.

Remark 2. It should be pointed out that despite the large number of hy-
potheses, given any line `α (except the short line in G2) B0 and T0 can be chosen
to satisfy the hypotheses.

Proof. First I show that the equations in (a), (b) do not depend on the
ordering on the roots. By rearranging the order of the product we have

n =
∏

exp(x(γ)Xγ) (fixed order) and

n =
∏

exp(y(γ)Xγ) (different order)

By (II.3.1), we have identities of the form:

x(γ) +
∑
n≥2

dβ1...βnx(β1) . . . x(βn) = y(γ)

with β1 + . . . + βn = γ. The values of the constants dβ1...βn do not concern us
here. For simple roots β we obtain x(β) = y(β). For γ = α + β we obtain
x(α + β) + dαβx(α)x(β) = y(α + β). On Eα x(α) = 0 so x(α + β) = y(α + β)
– independent of the order. Similarly for γ = 2α + β we obtain x(2α + β) +
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dααβx(α)2x(β) + dαγx(α)x(γ) = y(2α + β). Again on Eα x(2α + β) = y(2α + β)
independent of the order.

(a) The first conclusion is true by hypothesis. Also by hypothesis we are at a
node of type B2. u ∈ Bσα0 = B− and B− also lies in a line of type β. This is so
if and only if the βth coefficient of uσα is zero, that is the σα(β)th coefficient of u
is zero. But if β is longer than α in a node of type B2 then σα(β) = 2α + β. So
x(2α+ β) = 0.

(b) Write u =
∏

exp(xα′(u)Xα′). xα(u) = xβ(u) = 0 by the choice of B0. Since

u is subregular xα+β(u) 6= 0 (V.1.1). Now (u, (B(W )) = (u,Bnwν0 ) = (uν
−1

, Bnw0 )ν .

So b = uν
−1

and bn
−1
w = uν

−1n−1
w .

nwν = exp((aw + ξ)X−α)

on Eα(u) (1.2). So bn
−1
w =

exp((ξ + aw)X−α){
∏

exp(xα′(u)X ′α)} exp(−(ξ + aw)X−α). ∗

We are interested in the α + βth coefficient of this product. Suppose first that
|α| ≥ |β|. With respect to the Weyl chamber W (σα), α + β and −α are positive
simple roots. Therefore exp(−(ξ+aw)X−α) can be passed to the left in (∗) without
affecting the α + βth coefficient in

∏
exp(xα′(u)X ′α). Now suppose that |α| < |β|.

We work inside B2. The simple roots with respect to the Weyl chamber W (σα)
are 2α + β and −α. Again exp(−(ξ + aw)X−α) can be passed to the left in (∗)
without affecting the α+βth coefficient in

∏
exp(x(α′)Xα′). This is because α+β =

(2α+β)+(−α) (as a sum of simple roots with respect to W (σα)) and x(2α+β) = 0.
This proves (b).

(c) I claim first of all that if η = m(α)α+m(β)β, m(α) +m(β) ≥ 3 then

exp(ξX−α) exp(x(η)Xη) exp(−ξX−α) ∈ Nβ .
The only interesting case occurs when η = σα(β). By (a) we may assume that β
is no longer than α. But when β is no longer than α, σα(β) = α+ β contradicting
the hypothesis that m(α) +m(β) ≥ 3.

Select a point p = (u, (B(W ))) ∈ Eα(u) such that B(W+) = B0. Then p =
(u, (Bnw0 )). As above xα(u) = xβ(u) = 0. Now let (u, (B(W ))) be any other point

in Eα(u). Then (u, (B(W )) = (uν
−1

, (Bnw0 ))ν and (1.2) implies that ν = exp(ξX−α)
for some ξ. The coefficient x(β) is given by the equation

exp(ξX−α)u exp(−ξX−α) = exp(x(β)Xβ) modulo Nβ .

By the previous paragraph

exp(ξX−α)u exp(−ξX−α) = exp(ξX−α) exp(x0Xα+β) exp(−ξX−α) =

exp(e(α, β)x0ξXβ) modulo Nβ

where x0 = xα+β(u) = x(α+β) by (b). Thus x(β) = e(α, β)x(α+β)ξ follows from
(b). By definition x(β) = δ(ξ)x(α+ β)ξ. We have seen that x(β) and x(α+ β) are
independent of the order. ξ is independent of the ordering on the roots because

B(W+) = B
exp(ξX−α)
0 on E(`α, u) independent of the ordering.

(d) This follows immediately from (c) and (2.4).
(e)

λw(γ) = x(γ)
∏

z(α′)m(α′)

= x(γ)
∏

(λ/x(α′))m(α′)z(α)m(α).
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Set m =
∑
m(α) if γ =

∑
m(α)α. Then

w(γ) = λm−m(α)−1x(γ)z(α)m(α)
∏

(1/x(α′))m(α′).

Now z(α) and x(α′), α′ 6= α are not identically zero on Eα(u). So w(γ) = 0 if and
only if λm−m(α)−1x(γ) = 0 on Eα(u). If m −m(α) > 1 then λm−m(α)−1x(γ) = 0.
So it is enough to check the case m−m(α) = 1 (i.e. γ = m(α)α+ α′).

If m(α) > 1 then α′ is longer than α and it follows from (a) that x(γ) = 0.
So we limit ourselves to the case that m(α) = 1, α′ is no longer than α, and
α′ = β′, β′ 6= β. As in the proof of (a) uσα ∈ Bσα+ = B− on which the α′th(= β′th)
coefficient is zero. But the β′th coefficient of uσα is zero if and only if the σα(β′)th
coefficient of u is zero. σα(β′) = α+ β′ so x(α+ β′) = 0.

(f) We begin with a few simple cases. Write nw′′ = exp(zX−α′′) with z =
z(W+, α

′′) and W ′′ = W (σα′′).

Case 1. α′ = α′′. We appeal to the 2× 2 matrix calculation(
1 0
z 1

) (
t1 t1x
0 t2

) (
1 0
−z 1

)
=

(
t1 t1x
zt1 zt1x+ t2

) (
1 0
−z 1

)
=(

t1 − zt1x t1x
z(t1 − t2 − zt1x) zt1x+ t2

)
.

Now t1 − t2 − zt1x(α) = 0 by (II.6.1).

=

(
t2 t1x
0 t1

)
=

(
t2 t2x

′

0 t1

)
where x = x(α) and x′ = x(W (σα′), α

′). So that x(W ′′, α′)/x(α′) = t1/t2 and
upon restriction to Eα(u) x(W ′′, α′)/x(α′) = 1.

Case 2. (α′, α′′) = 0. x(α′) = xα′(b), and x(W,α′) = xα′(b
n′′w). It is clear that

on Y 0 x(W ′′, α′)/x(α′) = 1 so that the same holds true on Eα(u).

Case 3. α′ 6= α, α′′ 6= α. The hypothesis that α′′ 6= α implies that z = 0 on
Eα(u). The hypothesis that α′ 6= α implies that x(α′) is not identically zero on
Eα(u). It follows easily that x(α′) = x(W ′′, α′) on Eα(u).

Before proceeding to the final cases we prove a preliminary result. Write

exp(zX−α′′) exp(x(η)Xη) exp(−zX−α′′) = exp(cXα′) modulo Nα′ ∗
where η = m(α′)α′+m(α′′)α′′ with m(α′)+m(α′′) ≥ 3. c here is a function of z and
x(η). I claim that the rational function c/x(α′) is zero on Eα. c is identically zero
unless η = m(α′′)α′′+α′. The conditions m(α′)+m(α′′) ≥ 3 and η = m(α′′)α′′+α′

are incompatible unless α′′ is shorter than α′. So we assume that α′′ is shorter than
α′. If α′ 6= α, α′′ = α then x(η) = 0 by (a) (using the fact that α′′ is shorter than
α′). If α′ = α, and α′′ 6= α then conjugate the relation (∗) by t ∈ T0 such that
α(t) = 1/x(α), α′′(t) = x(α). The relation (∗) modulo Nα becomes

exp((z/x(α))X−α′′) exp(x(α)jx(η)Xη) exp(−(z/x(α))X−α′′) =

exp((c/x(α))Xα) modulo Nα.

Since α′′ is shorter than α′, j = m(α′′) −m(α′) > 0 so that x(α)jx(η) = 0 on Eα.
Thus the point will follow if z/x(α) is regular on Eα. (1−α′′−1) = z(W+, α

′′)x(α′′)
and (1− α−1) = z(W+, α)x(α) so

z/x(α) = (1− α′′−1)z(W+, α)/(x(α′′)(1− α−1))
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which is regular on an open set of Eα.
Now we move to the proof of (f). x(W (σα′′), α

′) is given by

t0 exp(zX−α′′)b exp(−zX−α′′) = exp(x(W (σα′′), α
′)Xα′) mod Nα′ , t0 ∈ T0.

If b is expressed as a product t ·
∏

exp(x(γ)Xγ) then x(W (σα′′), α
′)/x(α′) on

E(`α, u) becomes a sum
∑

(cγ/x(α′)) where cγ is defined by

exp(zX−α′′) exp(x(γ)Xγ) exp(−zX−α′′) = exp(cγXα′) mod Nα′ .

By the previous paragraph cγ/x(α′) = 0 except possibly when γ = α′ or α′ + α′′.
(It is clear that cγ/x(α′) is zero if γ = α′′.) Now

exp(zX−α′′) exp(x(α′)Xα′) exp(−zX−α′′) = exp(x(α′)Xα′) modulo Nα′

and

exp(zX−α′′) exp(x(α′ + α′′)Xα′+α′′) exp(−zX−α′′) = exp(cXα′) modulo Nα′

where

c/x(α′) = e(α′′, α′)z(W+, α
′′)x(α′ + α′′)/x(α′)

by the definition of e(α′′, α′). Using

z(W+, α
′′) = T (W+, α

′′)λ/x(α′′) and λ = x(α′)x(α′′)w(α′ + α′′)/x(α′ + α′′)

we obtain

c/x(α′) = e(α′′, α′)α′′(X)w(α′ + α′′).

This proves (f).
(g) The independence of ξ was observed in the proof of (c). (f) gives

x(W (σα), β) = (1 + e(α, β)α(X)w)x(β).

The independence of w of the order now follows from the independence of x(β)
and x(W (σα), β) of the ordering. The various choices of T0 are conjugate by any
element n ∈ Nα. (5.1) can be applied with y = 0, (5.1.a) gives ξ′′ = ξ, (5.1.b) gives
δ′′w′′ = wδ, but from (c) we see that δ = δ′′ = e(α, β), so that w′′ = w. �

The next lemma supplements (6.1) in the case that `α intersects only one line.

Lemma V.6.2. Lemma 6.2 Suppose that `α intersects exactly on line `β. Se-
lect Borel subgroups so that Bσα0 = B+ where B+ is the Borel subgroup at the
intersection of `α and `β and σα is a simple reflection in the Weyl group of T0 =
B0 ∩B∞. Then the following relations hold for functions in the coordinate ring of
E(`α, u)(B∞, B0).

a) x(α+ β) = 0
b) x(W,α′)/x(α′) = 1 for all simple roots α′ and all W .
c) w(γ) = 0 : γ not simple.

These relations hold independent of the implicit ordering on the roots.

Proof. It follows from the fact that α intersects only one line that |α| ≥ |β|.
Thus σα(β) = α+ β. These relations are independent of the ordering on the roots
for the same reasons they were in the previous lemma.

(a) Bσα0 = B+ implies that uσα ∈ B0 and that the αth and βth coefficients of
uσα are zero, so the αth and σα(β)th = α+ βth coefficients of u are zero.

We will return to (b) after proving (c).
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λw(γ) = x(γ)
∏

z(α′)m(α′)

= x(γ)
∏

(λ/x(α′))m(α′)z(α)m(α).

Set m =
∑
m(α) if γ =

∑
m(α)α. Then

w(γ) = λm−m(α)−1x(γ)z(α)m(α)
∏

(1/x(α′))m(α′).

w(γ) = 0 on Eα(u) if m−m(α)− 1 > 0. Assume m = m(α) + 1. γ = m(α)α+ α′.
Since `α intersects only one line α′ = β. β is not longer than α so we must have
γ = α+ β. Now

w(α+ β) = x(α+ β)z(α)/x(β) = 0

because x(α+ β) = 0.

(b)
λT (W,α′) = z(W,α′)x(W,α′)

λT (W ′, α′) = z(W ′, α′)x(W ′, α′)
∗

so (b) will follow if we show z1(W,α′)/z1(W ′, α′) = T (W,α′)/T (W ′, α′) on Eα(u).
On the regular divisor E0, x(α′) = x(W,α′) independent of W so that (∗) implies
that
z1(W,α′)/z1(W ′, α′) = T (W,α′)/T (W ′, α′) on E0. On E0 we also have

w(γ) = λm−1x(γ)
∏

(1/x(α′))m(α′)

so that w(γ) = 0 for γ not simple. Proposition II.4.1 shows that

z1(W,α′)/z1(W ′, α′)

lies in the ring generated by λ and {w(γ)}. Since w(γ) (γ not simple) and λ are
zero on both E0 and Eα(u) it follows that z1(W,α′)/z1(W ′, α′) has the same value
on Eα(u) as on E0. This completes the proof. �





CHAPTER VI

Rationality and Characters

VI.1. Rationality

This section investigates the rationality structure of the variety E(`α, u). The
variables (w, ξ) are not in general defined over F . The rationality structure is
determined by the action of the group Gal(F̄ /F ) on the coordinates. First we
determine the action of Gal(F̄ /F ) on the divisors.

Lemma VI.1.1. Lemma 1.1 The Galois group acts on the divisors by σ(Eα) =
Eσ∗α where the action σ∗ on the simple roots is that governed by the quasi-split
form of G.

Proof. Fix a subregular unipotent element u ∈ G(F ). Let E0(u) = π−1(u)∩
E0. On E0, z(α) = 0 ∀ α. So nw = 1 ∀ W and

B(W ) = B(W ′) ∀ W,W ′ if (u, (B(W ))) ∈ E0(u).

It is easy to see that (u, (B(W ))) ∈ E0(u) ∩ Eα if and only if B(W ) ∈ `α for
all W . This gives an isomorphism over F of E0(u) with (B\G)u. If B\Pαg is a
line of type α in (B\G)u then σ(B\Pαg) = (σ(B)\P ′σ∗ασ(g)) where P ′σ∗α is the
parabolic subgroup of type σ∗α containing σ(B). So σ(B\Pαg) is a line of type
σ∗α in (B\G)u. Since the map E0(u)→(B\G)u is defined over F , the divisor σ(Eα)
must be associated with the root σ∗α. �

We make three important remarks.

Remark VI.1.2. Remark 1.2 It follows by glancing at the possible graph au-
tomorphisms that if a subregular divisor has an F -rational point which projects
to a subregular element in G(F ) then the divisor itself is defined over F , with the
exception of the group 2A2n and the divisors Eαn and Eαn+1

. They are not defined
over F but their intersection is.

Remark VI.1.3. Remark 1.3 The action of the Galois group Gal(F̄ /F ) on
the components {E(`α, u)} of Eα(u) must also be compatible with the action of
Gal(F̄ /F ) on the lines of type α in the Dynkin curve (B\G)u. It is important to
note that this action will depend on the choice of subregular element u ∈ G(F )
(but certainly not on the Cartan subgroup T ). For example, consider the group of
type Bn. The Dynkin curve has the form

89
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α1 α2 α3 α4 α5

where |α1| < |αi| for i > 1. It can be shown that for a quasi-split group of type Bn
the adjoint conjugacy classes of subregular unipotent elements in G(F ) are in 1− 1
correspondence with F×/F×2 where x ∈ F×/F×2 corresponds to a class O where
the field of definition of the lines of (B\G)u is F (

√
x). There is no a priori reason

to expect the germs corresponding to unipotent classes with different actions on
the Dynkin curve to be related.

Remark VI.1.4. Remark 1.4 If u ∈ G(F ) then (B\G)u is defined over F . If
(B\G)u contains a fixed point under Gal(F̄ /F ) then we conclude it is quasi-split.
By examining the various Dynkin curves in diagram (IV.1), we see that the Dynkin
curve has a fixed point (marked by “o” in the diagram) at the intersection of two
lines under the action of Gal(F̄ /F ) except possibly for the Dynkin diagrams and
Galois actions: G2,

3D4,
6D4, Bn,

2A2n+1. Furthermore, by Kneser’s classification
[14, 15] groups of type G2,

3D4, and 6D4 are always quasi-split. Thus if G is not
quasi-split and G(F ) contains a subregular unipotent element then the Dynkin
curve has the following form.

The Galois group exchanges lines as indicated by the arrows; and the line fixed by
the Galois group has no F -rational points.

Now we turn to the question of the action of the Galois group on the coordinates
(w, ξ). We begin with a split form Gsp of G with split Cartan subgroup and Borel
subgroup Tsp⊆Bsp⊆Gsp. Let σsp denote the action of the Galois group on Gsp.
Fix root vectors such that σsp(Xγ) = Xγ .

Suppose that `α is a line of (B\G)u defined over F . Then it is associated with a
parabolic subgroup Pα over F . If `α intersects only one line then the action is given
in (3.2). Excluding these cases and the exceptional cases 3D4,

6D4, G2 we see that
the hypotheses of (V.5.2) are satisfied. Thus there exists a Cartan subgroup T0 over
F in Pα such that the two Borel subgroups B+ and B− = Bσα+ in Pα containing T0
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lie at the intersection of two lines in (B\G)u. (We choose our lines as in (V.6.1).)
We set B+ = B0 and let B∞ be the Borel subgroup opposite to B0 through T0.

We fix an isomorphism over F̄ of G with Gsp which carries Pα to Pαsp⊇Bsp
and T0 to Tsp. B+ is carried to a Borel subgroup in Pαsp containing Tsp so we
may also assume that the isomorphism carries B+ to Bsp. We identify G and Gsp
through this isomorphism and write σ(g) = σsp(adwσaσ(g)) for g ∈ G and some
wσ ∈ NPα(T0)adj , and aσ an automorphism of (Gsp, Bsp, Tsp, {Xγ}). wσ is the
non-trivial element in the Weyl group ΩPα(T0) if and only if σ interchanges the
Borel subgroups B+ and B−. By [17] or directly from definitions in chapter I we
have for a point p

(b, Bnw0 )ν(σp) = (σ(b), σ(B0)σ(nw′ ))σ(ν)(p),

W ′ = σ−1W or

Equation VI.1.5.

σ−1
sp (b, Bnw0 )ν(σp) = ad wσ[(aσ(b), B

aσ(nw′ )
0 )aσ(ν)]. ∗

We analyze two cases separately. First suppose that all the roots are the same
length. Then there is only one line in (B\G)u corresponding to each simple root.
B+ lies in `α and `β . B− lies in `α and `β′ and β′ 6= β. But σ(β) = β′ if aσ is
non-trivial, so that B+ and B− are interchanged if and only if aσ is non-trivial. We
observed above that wσ gives the non-trivial element in NPα(T0)adj if and only if
B+ and B− are interchanged. We conclude that wσ is trivial in ΩPα if and only if
aσ is trivial. Let K be the field of definition of B+. Over the extension K, aσ = 1
so that G splits over K. Thus we may actually arrange that our identification of G
with Gsp is defined over K (and is independent of T). In particular we may assume
that wστ = wτ and wσ = 1 if σ|K = 1. Thus wσ depends only on the image of

Gal(F̄ /F ) in Ω̃, the extended Weyl group. We see that wσ takes on only two values
1 and w0 as σ ranges over elements of Gal(F̄ /F ). The right hand side of (1.5)
depends on T only through W ′ = σ−1W . It depends on Gal(F̄ /F ) only through its

image in the extended Weyl group Ω̃ (using the action of Gal(F̄ /F ) on chambers
W).

Next we consider the case that there are roots of different lengths. Then G is
quasi-split if and only if it is split. So aσ = 1 for all σ. Again we may identify G
with Gsp over the field of definition K of B+. Once again wστ = wτ and wσ = 1 if

σ|K = 1. We define the group Ω̃ to be the direct product of a cyclic group of order

two and the Weyl group: Ω̃ = Ω×Z/2. Define a homomorphism ϕ : Gal(F̄ /F )→Ω̃
by identifying the cyclic group of order two with Gal(K/F ) (if K 6= F ) and sending
σ to ω ∈ Ω with σ−1W = ω−1W ∀ W . (If K = F we take the image of ϕ to lie in

Ω⊆Ω̃.) We see as before by (1.5) that the action of Gal(F̄ /F ) depends only on of

Ω̃.
If the roots are the same length we let σ0 denote an outer automorphism in Ω̃

fixing Bsp. If they are not the same length we let σ0 = (1, ε) ∈ Ω×Z/2 = Ω̃, ε 6= 1.

σ0 and the simple reflections generate Ω̃ provided |Ω̃ : Ω| ≤ 2. We have now proved
the first two statements of

Theorem VI.1.6. Theorem 1.6 Exclude as above the cases of `α intersecting
only one line or three lines with no rational points.
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a) The isomorphism of G with Gsp described above can be chosen to be defined
over the field of definition of B+.

b) There are automorphisms indexed by Ω̃ on the coordinate ring of Eα(u)
which are independent of T (but dependent on u ∈ G(F )) such that for any
T the action of Gal(F̄ /F ) on the coordinate ring is given by σ(x(σ−1p)) =
(ϕ(σ)(x))(p) where x belongs to the coordinate ring of Eα(u), and

p ∈ Eα(u)(F̄ ), σ ∈ Gal(F̄ /F ), ϕ : Gal(F̄ /F )→Ω̃.

(Note that ϕ depends on both u and T.)

c) The automorphisms indexed by Ω̃ on ξ are given by:
σα′(ξ) = ξ, α′ 6= α, α′ simple
σα(ξ) = (α(X)e(α, β)w + 1)ξ
σ0(ξ) = 1/ζξ, ξ ∈ F×, ζ depends on u. If K is the splitting field of B+

then ζ is a norm of an element in K× if and only if the line `α has rational
points.

d) The automorphisms indexed by Ω̃ on w are given by:
σα′′(w) = w/(w(α+ α′′)α′′(X)e(α′′, α) + 1) α′′ 6= α
σα(w) = w/(wα(X)e(α, β) + 1)
σ0(w) = we(α, β)/(e(α, β′)(wα(X)e(α, β) + 1))

When |Ω̃ : Ω| ≤ 2 the above gives the the action on generators. The other
automorphisms are obtained by composing these in the appropriate manner.

Proof. (c), (d). By (1.5) the action of a simple root on x(α′) is given by
σα′′(x(α′)) = x(W (σα′′), α

′). Thus we may apply (V.6.1.f). Now λ = x(α)x(β)w/x(γ)
so that

x(W ′′, α)x(W ′′, β)σα′′(w)/x(α)x(β)w = 1

or σα′′(w) = w(x(α)/x(W ′′, α))(x(β)/x(W ′′, β)) where W ′′ = W (σα′′). Using
(V.6.1.f) we obtain the results (d) for simple roots.

By (V.6.1.c), x(β)/x(γ) = ξe(α, β) so that x(W ′′, β)/x(β) = σα′′(ξ)/ξ. Using
(V.6.1.f) once again we obtain the results (c) for simple roots.

Now we turn to the action of σ0. We write ξ′ = σ0(ξ) and w′ = σ0(w). By
(1.5)

ad wσ[aσ(b), B
aσ(nw′ )
0 )σ(ν)]

gives

(ad wσ)(B
aσ(ν)
0 ) = Bν

′

0 .

Now on Eα(u), ν = exp(ξX−α) and aσ(exp(ξX−α)) = exp(xξX−α) for some x.
Now apply (V.5.3.a). We obtain ξ′ = 1/ζξ some ζ ∈ F̄× and (z(W+, α)/ξ + 1) =
(z′(W+, α)/ξ′ + 1)−1, or by (V.2.4)

α(X)we(α, β) + 1 = (α(X ′)w′e(α, β′) + 1)−1.

now α(X ′) = −α(X) from which the action on w follows immediately.
The equation w = 0 defines E0. Since ζ is independent of w it is enough to

verify the properties of ζ in (c) on points of E0 ∩E(`α, u). This is a projective line
isomorphic over F to the line `α in (B\G)u. We see that for p ∈ Eα(u)∩E0(F ) we
have

σ(ξ) = ξ, σ|K = 1

σ(ξ)ξ = ζ, σ|K 6= 1
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for σ ∈ Gal(F̄ /F ). This shows that ζ ∈ F× and that `α has rational points if and
only if ζ is a norm in K/F . The same conclusion holds when expressed in terms of

the extended Weyl group Ω̃. �

We must also discuss the rationality on the intersection of two divisors which
are interchanged for G = 2A2n. In this case we have

Lemma VI.1.7. Lemma 1.7 Suppose that two subregular divisors Eα and Eβ
are interchanged by Gal(K/F ) where α and β are adjacent roots and E is the field
of definition of Eα. Select coordinates such that B0 lies at the intersection of the
line of type α and the line of type β in (B\G)u. Let B∞ be any Borel subgroup

opposite to B0. Then the automorphisms indexed by Ω̃ on w in the coordinate ring
of Eα(u) ∩ Eβ(u) are given by

σα(w) = w/(α(X)e(α, β)w + 1)
σβ(w) = w/(β(X)e(β, α)w + 1)
σα′(w) = w, α′ 6= α, β
σ0(w) = −w.

Proof. By (V.5.1.f), the coordinate w is independent of the choice of B∞.
In particular we may calculate the action of σα′(α

′ simple) on w by restricting the
action of σα′ on w in the coordinate ring of Eα(u) to Eα(u) ∩ Eβ(u).

Now turn to the action of σ0. We have (1.5)

(aσ(b), B
aσ(nw′ )
0 )aσ(ν) = (b′, B

n′w
0 )ν

′
.

For W = W+ we see that aσ(ν) = ν′, aσ(b) = b′. Thus x′(α) = x(β), x′(β) = x(α).
Furthermore on Eα ∩ Eβ we have x′(α+ β) = −x(α+ β). The relations

λ = x(α)x(β)w/x(α+ β) and λ = x′(α)x′(β)w′/x′(α+ β)

yield

w′ = (x(α)/x′(α))(x(β)/x′(β))(x′(α+ β)/x(α+ β))w

restricting to Eα ∩ Eβ we obtain by (V.5.1) σ0(w) = w′ = −w. �

From (1.6) it is clear that for any σ, (σ−1ξ(σp))ξ−1 is a rational function of
w (provided ξ = 0 is defined over F). It appears that the coordinate system breaks
down at the finitely many zeros and poles of this rational function. However, we
wish to use the coordinates (w, ξ) to fulfill the condition (V.3.2). The following
lemma shows that zeros and poles never create a problem because they are not
F -rational points.

Lemma VI.1.8. Lemma 1.8 Suppose that `β is fixed by Gal(F̄ /F ). Fix σ ∈
Gal(F̄ /F ) and that ξ = 0 is defined over F . The zeros and poles of the rational
function of w :

σ−1ξ(σp)ξ−1

are not F -rational points.

Proof. For an F -rational points σp = p and σξ(σ−1p)ξ−1 is a cocycle of σ
with values in KX(w)× where KX is defined in (V.2). A choice of Cartan subgroup
makes KX into a Gal(F̄ /F )-module. We take the cocycle relative to some finite
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extension K of F and restrict the cocycle to the cyclic group generated by σ.
Suppose that the order of σ is `. There is a short exact sequence

1→K×X→KX(w)×→D0→1

where D0 are the degree zero divisors on P1, i.e., formal finite sums
∑
nxx with

nx ∈ Z and x ∈ P1 with
∑
nx = 0. This gives a homomorphism

H1(Gal,KX(w)×)→ H1(Gal,D0)

where D0 is considered as a Gal(K/F )-module in the obvious way. The cocycle
relation becomes

(1 + σ + . . .+ σ`−1)
∑

nxx = 0.

If x0 is a rational point, σ(x0) = x0 and the cocycle condition becomes

`nx0x0 + (1 + σ + . . . σ`−1)
∑

nxx = 0.

This forces nx0
= 0. �

VI.2. The Characters κ(Eα)

The results of this section assume that G is quasi-split. The quasi-split form of
G provides an action of Gal(F̄ /F ) on the simple roots of G. For each root α there
is a field extension Fα of F defined as the smallest extension over which the roots
in the orbit of α becomes fixed. Fα is Galois and Fα = Fσ∗α for σ ∈ Gal(Fα/F ).
Let ∆′ be a set of representatives of the orbits under this action.

The function e(p) can be considered a function of the coordinates z(W,α) for
all (W,α). Fix Σ ∈ ∆′ and let

e = e(z(W,α) : α /∈ Σ; z(W,α) : α ∈ Σ).

And let

e′ = e(z(W,α) : α /∈ Σ; t(α)z(W,α) : α ∈ Σ)

where t(α) ∈ Fα and σ(t(α)) = t(σ∗α) for σ ∈ Gal(Fα/F ). Then by [17, §5.4]
and its generalization in [19] there is a character κα of F×α such that mκ(e′) =
κα(t(α))mκ(e). With these conventions

κα(t(α)) = κσ∗α(t(σ∗α))

so that if we act on characters of Fα by σ(θ)(x) = θ(σ−1x), σ ∈ Gal(Fα/F ), x ∈ F×α ,
then σ(κα) = κσ∗α.

We have from (IV.1.2)

T (W,α)λ = z(W,α)x(W,α).

On the regular divisor E0 the coefficients x(W,α) = x(α) are independent of W .
Choosing root vectors Xα over Fα such that σ(Xα) = Xσ∗α σ ∈ Gal(Fα/F ) we
have x(α) ∈ F×α and σ(x(α)) = x(σ∗α). The function mκ(e)/

∏
κα(λ) extends to

the regular divisor E0. Products are taken over α ∈ ∆′ unless indicated otherwise.
The restriction to E0 of this extension equals∏

κα(1/x(α))mκ(e′)

where now e′ = e(T (W,α) : α simple). We set ∆Γ = mκ(e′). Also note that
by the discussion (V.2) of κ(E),

∏
κα = κ(E0) which we abbreviate to κ0. Thus

mκ(e)/κ0(λ) extends to a regular divisor and equals ∆Γ

∏
κα(1/x(α)). Note that
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κα(1/x(α)) is none other than µκ(n) of [17]. [17] shows that µκ(n) and hence∏
κα(1/x(α)) depends on H and not directly on T . This gives the results:

Corollary VI.2.1. Corollary 2.1 κα depends only on H not T .

Corollary VI.2.2. Corollary 2.2 Let E be any fundamental divisor defined
over F . Then κ(E) depends only on H not T . In fact, κ(E) =

∏
(κα)e(α) where α

runs through representatives in ∆′ such that z(α) = 0 on E and the Weil divisor
defined by the regular function z(α) contains the divisor E with multiplicity e(α).

Proof. Select a local coordinate system µ1, . . . , µn so that µ1 = 0 defines
a fundamental divisor E. For every root α, pull the functions z(α) up to YΓ and

write z(α) = µ
e(α)
1 ξα where ξα is regular and invertible on E. e(α) depends only on

the orbit containing α. e(α) is given geometrically as the multiplicity with which
E occurs in the Weil divisor determined by z(α). Then

mκ(e(z(W,α)) = mκ(e(µ
e(α)
1 ξαz1(W,α))

=
∏

κα(µ1)e(α)mκ(e(ξαz1(W,α)).

By the definition of fundamental divisors z1(W,α) is regular and generically in-
vertible on E. So mκ(e(ξαz1(W,α)) extends to a locally constant function on an
open set of E. By the discussion (V.2), κ(E) is the character such that f/κ(E)(µ1)
extends to a locally constant function on an open set of E. Thus we have κ(E) =∏

(κα)e(α). �

By corollary 2.2, to determine κ(E) for all fundamental divisors it is enough
to calculate κα for α simple. We observe that if G 6= 2A2n, ∆′ can be selected so
that whenever (α, β) 6= 0 for α ∈ ∆′ and β /∈∆′ then Fα = F . For G = 2A2n we let
∆′ = {α1, . . . , αn}.

Proposition VI.2.3. Proposition 2.3 The characters κα must have the follow-
ing form.
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1An θn+1 = 1

θ θ2 θ3 θn−1 θn

Bn θ2 = 1

θ θ2 θ3 θn−1 θn

Cn θ2 = 1

1 1 1 1 θ

θ1θ2

1Dn

n even
θ2

1 = θ2
2 = 1

θ1 θ2
1 θ3

1 θn−2
1 θ2

θ3

1Dn

n odd
θ4 = 1

θ2 θ4 θ6 θ2n−4 θ

1

θ3 = 1

1E6

θ θ2 1 θ θ2

θ

θ2 = 1

E7

θ 1 θ 1 1 1
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2A2n θ2n+1 = 1

θ|F = 1
θ1 θ2

1 θ3
1 θn1

2A2n+1 θ2
2 = θ1|F = 1

θ2 θn+1
1 = θ2 ◦N

θ1 θ2
1 θ3

1 θn1

2D2n θ2 θ2
2 = 1, θ2

1 = 1

θ1 θ2
1 θ3

1 θ2n−2
1 θ1 = θ2|F

2D2n+1 θ2 θ2
1 = 1, θ2|F = 1

θ1 θ2
1 θ3

1 θ2n−1
1 θ2

2 = θ1 ◦N

2E6 θ3 = 1

1 1 θ|F = 1

θ θ2

3D4 θ (3D4) θ2 = θ|F = 1

6D4 1 (6D4) θ|F = 1
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The character κα is a character on F×α . N denotes the norm map from K to F .
|F denotes the restriction to F . The characters are trivial on G2, F4, E8.

Proof. Consider a coordinate patch S(B∞, B0) with Cartan subgroup T0 =
B∞ ∩B0 and Borel subgroup B0 defined over F . Then on Y 0(B∞, B0), B (W )h =
Bω0 , W = W (ω) for some h ∈ G(F̄ ). For t′ ∈ T0(F ), let e be given by (Bωn0 )ν and

e′ by (Bωn0 )νt = (Bωn
′

0 )ν
′
. Then

mκ(e) =κ(σ(h)σ(n)σ(ν)ν−1n−1h−1)

=κ(σ(h)σ(n)σ(ν)σ(t′)t′−1ν−1n−1h−1)

=mκ(e′).

If e = e(z(W,α)), e′ = e(z′(W,α)), n′ = adt′−1(n), and

z′(W,α) = α(t′)z(W,α)

then

mκ(e) =
∏

κα(α(t′))mκ(e′),

α ∈ ∆′.
Thus

∏
κα(α(t′)) = 1 for all t′ ∈ T0(F ). If βv is the coroot of β ∈ ∆′ and if

z ∈ F×β then ∏
σ(z)σ(βv) ∈ T0(F )

(product taken over σ ∈ Gal(Fβ/F )). We obtain∏
κα(α(

∏
σ(z)σ(βv))) =

∏
κα(σ(z))<α,σ(βv)> = 1.

The second product extends over α ∈ ∆′ and σ ∈ Gal(Fβ/F ). By the choice of
∆′ :< α, σ(βv) >= 0 if σ 6= 1 in Gal(Fβ/F ) (for G 6= 2A2n). We break the product
into two pieces. The first is ∏

κα|Fβ (z)<α,β
v>

where the product extends over all α ∈ ∆′ such that Fα 6= F . The second is∏
κα(Nz)<α,β

v>

where N is the norm map from Fβ to F and the product here extends over all
α ∈ ∆′ such that Fα = F . The result is now a short calculation carried out but
substituting successively all coroots in for βv. �

Corollary VI.2.4. Corollary 2.4 Let G be split. κ(E0) =(def) κ0 is given by:
a) If G = A2n, G2, F4, E6, E8 then κ0 is the trivial character.
b) For A2n+1κ0 = θp where p = n+ 1 and θ2p = 1
c) For Bn, κ0 = θn(n+1)/2 where θ2 = 1
d) For Cn, κ0 = θ where θ2 = 1
e) For D2n, κ0 = θn1 where θ2

1 = 1
f) For D2n+1, κ0 = θ2n where θ4 = 1
g) For E7, κ0 = θ where θ2 = 1.

Proof. κ0 =
∏
κα|F . �
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VI.3. mκ(e) and Vanishing of Integrals

Lemma VI.3.1. Lemma 3.1 Fix a surface E(`α, u). Suppose that for all β 6= α
either E(`α, u)∩Eβ has no F -rational points or κ(Eβ) 6= κ(Eα). Then the principal
value integral can be computed on any variety birational to Eα(u)0 which is biregular
on E(`α, u) ∩ E0. In particular, the principal value integral depends only on the
structure of the divisor on its intersection with Y ′′.

Proof. Any birational map on a surface can be factored by successively blow-
ing up and down at points. It therefore suffices to prove that the principal value
integral is unaffected by blowing up. We write the form locally as

γµb1−1
1 µb2−1

2 dµ1 ∧ dµ2, |γ| constant.

If bi is not equal to one then µi = 0 defines the intersection of E(`α, u) with a
divisor E′ and bi = bα(E′). The constants bα(E) are related to the constants
of the Igusa data by the relation (V.2) bα(E) = b(E) − 2a(E). In particular,
bα(E0) = −1, bα(Eβ) = 0 (β simple), and bα(E) ≥ 1 otherwise. Blowing up at
µ1 = µ2 = 0 creates a divisor E with bα(E) =

∑
bi. The conditions of the lemma

insure that the principal value integral on E(`α, u) is well defined (that is, it is
not necessary to resort to the definitions of (V.3)). [18] guarantees that blowing
up does not alter principal value integrals provided bα(E) 6= 0. If

∑
bi = 0 then

permuting coordinates if necessary either b1 = b2 = 0 or b1 = −1, b2 = +1. The
first possibility never arises because three lines of the Dynkin curve (B\G)u never
intersect. The second possibility is excluded by the condition that the rational map
be biregular on E0. �

Proposition VI.3.2. Proposition 3.2 Assume that `α intersects one line `β
and that `α is fixed by Gal(F̄ /F ).

a) If κ(Eα) 6= κ(Eβ) then E(`α, u) makes no contribution to the subregular
germ.

b) If κ(Eα) = κ(Eβ) then κ(E0) = κ(Eα) and mκ(e)/κ0(λ) restricted to
Eα(u) depends only on u ∈ G(F ). If we select coordinates as in (V.6.2)
with T0 defined over F , it equals∏

κα
′
(1/x(α′))∆Γ.

Proof. Note that the hypothesis implies that G is quasi-split. I claim that
z(α) is defined over F . λ = x(α)z(α), λ = x(W,α)σ−1(z(α)(σp)). By (V.6.2) we
see that x(W,α)/x(α) = 1 on Eα so z(α) is defined over F .

z(W,α′) = T (W,α′)λ/x(W,α′)

= (x(α′)/x(W,α′))T (W,α′)(λ/x(α′)) : α′ 6= α

= (x(α)/x(W,α))T (W,α)z(α) : α′ = α.

Again by (V.6.2), x(α′)/x(W,α′) = 1 on Eα(u).

mκ(e)/κ(Eα)(λ)|Eα =
∏

κα
′
(1/x(α′))κα(z(α))∆Γ.

Using arguments as in (V.2) we find that the differential form is

(dλ/λ2) ∧ dx(α) ∧ . . . =

dz(α)/z(α)2 ∧ dx(α)/dx(α) ∧ . . .
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and is dz(α)/z(α)2 ∧ dξ on the fibre up to a scalar independent of T .
We have a morphism over F from an open set of E(`α, u) to P1 given by

(ξ, z(α))→(z(α)) ∈ P1. We extend this morphism by blowing up a finite number
of points of E(`α, u). If blowing up is necessary at points of E0 ∩ E(`α, u) we
must check that no exceptional divisors E with bα(E) = 0 are introduced. By the
calculations of (V.5.3)

(aw + ξ)/ξ = ξ′′/(a′′w + ξ′′), ξ′′ = 1/ξζ

where ξ′′ and w′′ are canonical coordinate on E(`α, u) ∩ U(α, β). Now by (V.2.4)
(a′′w + ξ′′)/ξ′′ for W = W (σα) equals α(X)e(α, β)w′′ + 1.

(aw + ξ)/ξ = (T (W,α)z(α) + ξ)/ξ = T (W,α)z(α)/ξ + 1,

or

z(α) = −α(X)e(α, β)w′′/(α(X)e(α, β)w′′ + 1)ζξ′′.

This morphism does not extend to w′′ = ξ′′ = 0. This defines the point of inter-
section of E(`α, u) with E0 ∩ Eβ . Blowing up creates a divisor E with bα(E) =
bα(E0) + bα(Eβ) = −1 + 0 = −1 6= 0. [18] tells us this does not affect the principal
value integral. It is easy to see that by blowing up once the morphism extends to
points over w′′ = ξ′′ = 0.

Now with the morphism Eα(u)→P1 we integrate over the fibre using [18]∫
|dξ| = 0.

�

Lemma VI.3.3. Lemma 3.3 Suppose that `α intersects two lines `β and `β′ .
Suppose also that Gal(F̄ /F ) fixes these two points of intersection. Pick canonical
coordinates (w, ξ) on U(α, β). Fix u ∈ G(F ).

a) If κα 6= κβ then Eα(u) makes no contribution to the subregular germ.

b) If κα = κβ then κ(E0) = κ(Eα), κα = κβ = κβ
′

= 1, and

mκ(e)/κ0(λ)|Eα = ∆Γ

∏
κα
′
(1/x(α′)).

Remark VI.3.4. Remark 3.4 The formulas in (b) and (3.2.b) effectively allow
us to ignore the transfer factor on E(`α, u) for all but possibly one surface (for a
simple group) when considering the question of the transfer of the subregular germ
of orbital integrals. If `α intersects three lines or if `α intersects two lines that are
interchanged by Gal(F̄ /F ), then mκ(e) must be computed using (I.5).

Proof. The hypothesis forces G to be quasi-split. Assume that κα 6= κβ .
Then on an open set in Eα(u) we define a morphism over F to P1 by (w, ξ)→w.
We extend this morphism by blowing up at a finite number of points over Eα(u).
By (3.1), we must verify that if blowing up is required at points over E0 that no
divisors E are introduced with bα(E) = 0. We express the morphism in terms of
canonical coordinates (w′′, ξ′′) on U(α, β′). By (V.5.3),

e(α, β)w = −e(α, β′)w′′/(α(X)e(α, β′)w′′ + 1).

From this expression it is clear that this morphism extends to points of E0 (w′′ = 0)
on the coordinate patch U(α, β′). The patches U(α, β) and U(α, β′) cover E0 ∩
Eα(u) so that the morphism extends without difficulty.



VI.3. mκ(e) AND VANISHING OF INTEGRALS 101

We select F -coordinates. By (1.6) σξ(σ−1p)ξ−1 = aσ(w) where for fixed σ
this is a rational function of w. Define an action σ∗ of Gal(F̄ /F ) on (w, ξ) by

σ∗(w(p)) = σ(w(σ−1p))

σ∗(ξ(p)) = σ(ξ(σ−1p)).

With respect to this action aσ(w) is a cocycle of Gal(F̄ /F ) with coefficients in
KX(w)×. By Hilbert’s theorem 90 there is an element b(w) ∈ KX(w)× such that
aσ(w) = σ∗(b)b

−1. This gives an F -coordinate ξ′ = b−1ξ (away from the zeros and
poles of b).

Next we compute mκ(e)/κ(Eα)(λ) on Eα.

z(W,α′) = T (W,α′)λ/x(W,α′)

= (x(α′)/x(W,α′))T (W,α′)(λ/x(α′)) : α′ 6= α

= (x(α)/x(W,α))T (W,α)z(α) : α′ = α.

The dependence on ξ′ of the right hand side of this equation is through

x(β)|Eα = ξe(α, β)x(α+ β)

(V.6.1.c)) and z(α) = z(W+, α)/T (W+, α) = e(α, β)ξwα(X)/T (W+, α). This uses
(V.6.1.d).

It follows that mκ(e)/κ(Eα)(λ) restricted to Eα equals∏
κα
′
(1/x(α′))κα(ξ′)κβ(1/ξ′)mκ(e′) ∗

where e′ depends on w not ξ′. When κα 6= κβ we integrate over ξ′ and use [18]∫
κα/κβ(ξ′)|dξ′/dξ′| = 0.

(b) Referring to (2.3), we observe that the characters of α, β, β′ are in geometric

progression: κβ = θi−1, κα = θi, κβ
′

= θi+1 for some θ and i. Thus κα = κβ implies
that κα = κβ = κβ

′
= 1. We also observe that there is a chain of lines `α1

, . . . , `αk
with `αk−1

= `α, `αk = `β , καi = 1. Lemma (3.2) shows that mκ(e) is constant on

Eα1(u). The expression (∗) with κα/κβ = 1 shows that Eα(u) is independent of ξ.
This is also true for canonical coordinates on Eα2(u), . . . , Eαk(u). By induction we
may assume Eαj−1

(u) is constant so that Eαj (u) is constant on Eαj (u)∩Eαj−1
(u),

i.e. for ξ = 0. But since mκ(e) is independent of ξ, mκ(e) must then be constant
on Eαj (u). Thus finally mκ(e) is constant on Eα(u).

Since mκ(e) is constant on Eα(u), the value of mκ(e) equals the value of mκ(e)
for w = 0, i.e. on E0. On E0 we have

z(W,α′) = (x(α′)/x(W,α′))T (W,α′)(λ/x(α′)).

For a regular element x(α′) = x(W,α′) for all W , and

mκ(e)/κ0(λ) =
∏

κα
′
(1/x(α′))∆Γ.

This definition extends to points in the intersection of E0 with Eα because the
characters κα, κβ , κβ

′
are trivial. �





CHAPTER VII

Applications to Endoscopic Groups

This chapter discusses applications of the formula for subregular germs to en-
doscopic groups. We will begin by listing the cuspidal endoscopic groups.

VII.1. Endoscopic Groups

Basic facts about endoscopic groups will be assumed. For definitions see [16].
For our purposes, the most important properties of endoscopic groups H that will
be used are:

1) The identity component of the dual LH0 of H is the connected centralizer
of a semisimple element s ∈ LG0.

2) There is a homomorphism ρ from Gal(F̄ /F ) to the group of outer auto-
morphisms of LH0 which factors through Cent(s, LG)/LH0.

Following Arthur an endoscopic group is said to be cuspidal if there is no proper
parabolic subgroup of LG containing LH. This chapter will ignore the problem of
embeddings of L-groups ξ : LH → LG. For our purposes (1) and (2) may be taken
as defining properties of endoscopy. In particular we are not asserting the existence
of ξ : LH → LG.

VII.1.1. The groups 1An and 2An. We do no compute all the endoscopic
groups for groups of type An. Instead, for the transfer of the subregular germ, we
will appeal to the following Proposition

Proposition VII.1.1. Proposition 1.1 Let G be a group of type An and let H
be an endoscopic group of G. Let KG and KH be the smallest field extensions of F
over which G and H are inner forms of a split group. If KG 6= KH then none of
the subregular unipotent classes of H are defined over F .

Proof. We may assume G is a form of SL(n). First suppose that G = SL(n).
The endoscopic groups of SL(n) are given in [16]. The cuspidal ones are of the form
`(Ar−1× . . .×Ar−1), `r = n. They have no subregular class over F unless ` = 0. If
G = SU(n), then H × Spec(KG) is an endoscopic group of G× Spec(KG)→̃SL(n)
as groups over KG. Again they have no subregular class over KG (and hence F)
unless ` = 0. �

By this result it suffices to compute the endoscopic groups of SU(n) which have
the same splitting field K as SU(n). Suppose H is defined by

ŝ = (s1Ia1
, . . . skIak)

where ŝ ∈ GL(n,C) maps to s in LG0. Let σ be the nontrivial automorphism
of (LG0, LB0, LT 0, {Yα}). The conditions defining endoscopic groups require that
w(σ(s)) = s for some w in the normalizer of LT 0. Or wσ(ŝ) = λŝ for some λ ∈ C×.

103



104 VII. APPLICATIONS TO ENDOSCOPIC GROUPS

Now if τ2 = λIn then wσ(τ)τ = τ−1τ = 1. So wσ(ŝτ) = ŝτ . So by adjusting the
choice of ŝ mapping to s if necessary we may assume wσ(ŝ) = ŝ. This means that
up to isogeny H is an endoscopic group of U(n) (cf. section 2). So without loss of
generality we take G = U(n), ŝ = s, LG0 = GL(n,C).

Now σ(s) = (s−1
k Iak , . . . , s

−1
1 Ia1

) and the Weyl group acts as permutations;

thus for every i there is a j such that si = s−1
j . Replacing s by w′(s) for some w′

in the normalizer of LT 0 we have

s = (s1Ia1
, . . . , spIap , Ir,−It, s−1

p Iap , . . . , s
−1
1 Ia1

).

The endoscopic group is not cuspidal unless p = 0 which we now assume so
s = (Ir,−It).

Suppose that the rank is even. Now r + t = 2n + 1 so exactly one of r and
t is odd. By replacing s by −s if necessary we may assume that t = 2k and
r = 2m + 1, k + m = n. Then again replacing s by w′′(s), w′′ in the normalizer
of LT 0, we may assume s = (Ik,−I2m+1, Ik). With this choice of s the condition
w(σ(s)) = s together with the condition that wσ act as outer automorphisms
forces w = 1. (Here and elsewhere we identify the group of outer automorphisms
with automorphisms that fix a given Borel subgroup, Cartan subgroup, and root
vectors.) Thus H = U(2m+ 1)× U(2k).

Now consider G = U(2n), s = (Ir,−It). If both r = 2k and t = 2j are even we
may assume that s = (Ik,−I2j , Ik) and that H = U(2k)×U(2j), j+k = n. If both
r = 2k+ 1 and t = 2j + 1 are odd we may assume that s is (Ik,−Ij , 1,−1,−Ij , Ik)
and that w is the simple reflection corresponding to the simple root α fixed by σ.
We conclude that the cuspidal endoscopic groups of U(n) are U(j)× U(n− j).

VII.1.2. Type Bn. The identity component of the L-group of the simply
connected semisimple group of type Bn is LG0 = PSp(2n). Suppose ŝ ∈ Sp(2n)
lies over s ∈ PSp(2n) defining the endoscopic group. Without loss of generality we
may take ŝ to be

ŝ = (s1Ia1
,−s1Ia2

, . . . ,−spIap , iIq, Ir,−I2t, Ir,−iIq, . . . , s−1
1 Ia1

).

The group is not cuspidal unless p = 0 which we now assume; so

ŝ = (iIq, Ir,−I2t, Ir,−iIq)

If ρ is trivial this is not cuspidal unless q = 0; so ŝ = (Ir,−I2t, Ir), LH0 = Cr×Ct,
r + t = n and H = Br × Bt, r + t = n. If ρ is nontrivial then r = t and LH0 =
Aq−1 × Cr × Cr and H = 2Aq−1 × 2(Br ×Br), q + 2r = n.

VII.1.3. Type Cn. The connected component of the L-group of the simply
connected semi-simple group of type Cn is LG0 = SO(2n + 1). Without loss of
generality, select

s = (s1Ia1
, s2Ia2

, . . . , spIap ,−Im, I2r+1,−Im, . . . , s−1
1 Ia1

).

This is not cuspidal unless p = 0 which we now assume. So

s = (−Im, I2r+1,−Im)

LH0 = Dm × Br,m + r = n. H = Cr × Dm if ρ is trivial and Cr × 2Dm if ρ is
non-trivial (m+ r = n).
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VII.1.4. Type Dn. The connected component of the L-group of the simply
connected semisimple group of type Dn is LG0 = PSO(2n). We may assume
ŝ ∈ SO(2n) to be

ŝ = (s1Ia1
,−s1Ia′1 , . . . ,−spIa′p , iIq, Ir,−I2t, Ir,−iIq, . . . , s

−1
1 Ia1

). ∗

There is some difficulty if r = t = 0 for the Weyl group of Dn allows permutations
of coordinates but only an even number of sign changes, so that ŝ cannot always
be brought precisely into this form. But it can be brought into this form by the
extended Weyl group. Thus it is possible for there to be two inequivalent endoscopic
groups which are isomorphic as reductive groups.

Ignoring this difficulty, we find that the group H is not cuspidal unless p =
0 which we now assume. So ŝ = (iIq, Ir,−I2t, Ir,−iIq). If ρ is non-trivial on
ker(SO(2n)→PSO(2n)) then r = t and LH0 = Aq−1×Dr ×Dr. So H = 2Aq−1×
2(?Dr× ?Dr) where q+ 2r = n. The superscript ? indicates that various quasi-split
forms are possible. If ρ is trivial on ker(SO(2n)→PSO(2n)) then H is not cuspidal
unless q = 0 so that ŝ = (Ir,−I2t, Ir) and H = ?Dr×?Dt. Again various quasi-split
forms are possible.

Allowing Dn to be quasi-split and split over a non-trivial quadratic extension
K of F allows little new. The outer automorphism acts on LH0 by an outer
automorphism of the factor Dt. If t = 0, it acts by an outer automorphism of the
factor Dr. If r = t = 0 and q is odd we obtain the endoscopic group 2Aq−1. If
r = t = 0 and q is even then ρ cannot fix s and there is no endoscopic group.

VII.1.5. Type G2. Let the roots of G2 be

±α,±β,±(α+ β),±(2α+ β),±(3α+ β),±(3α+ 2β).

Suppose that LH0 contains a short root. By equivalence we may assume that it
is α. There must be another positive root if H is cuspidal. α together with any
positive root other than 3α + 2β generate all the roots of G2. So we can take the
roots to be α and 3α + 2β and H = A1 × A1. This leaves the case where all the
roots of H are long roots. If this is to be a cuspidal group there must be at least
two positive roots. These will generate all the long roots. We obtain H = A2.

VII.1.6. Other exceptional groups. We will not compute these. It should
be pointed out however that most of the cuspidal endoscopic groups can be de-
duced directly from [4] where primitive subalgebras of the exceptional groups are
computed.

Lemma VII.1.6. Lemma 1.6 Let G = F4, Es, s = 6, 7, 8. Then the centralizer
of a semisimple element in G stabilizes one of the following subalgebras of G.

Algebra Primitive Subalgebras
E8 A1 ⊕ E7, A

8
1, A2 ⊕ E6, A

4
2, A

2
4, D

2
4, D8, A8, T

8

E7 A1 ⊕D6, A
3
1 ⊕D4, A

7
1, A2 ⊕A5, A

3
2 ⊕ T 1, A7, E6 ⊕ T 1, T 7

E6 A1 ⊕A5, A
3
2, D4 ⊕ T 2, D5 ⊕ T 1, T 6

F4 A1 ⊕ C3, A
2
2, B4, D4.

T k denotes the center of the subalgebra, where k is the dimension of that center.

Proof. This is proved in [4]. The algebra A2⊕D5 listed there as a subalgebra
of E7 is apparently a misprint for the subalgebra A2 ⊕A5. �
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VII.2. Characters, Centers, and Endoscopic Groups

The next lemma shows that we do not lose any endoscopic groups by passing
to the simply connected cover of the derived group.

Lemma VII.2.1. Lemma 2.1 Let G be a reductive group. Let Gs be a cover
of the derived group of G. Let H be an endoscopic group of G. Then there is an
endoscopic group Hs of Gs and an isogeny Hs→H.

Proof. We have a morphism Gs→ϕG. Fixing a Borel subgroup B and Cartan
subgroup T in G fixes Bs and Ts in Gs. Let K̃ be the L-group L(Gs), and let tildes

denote quantities in K̃ corresponding to quantities in LG. LG0 is a reductive
group whose derived group is a cover of L(Gs)

0. Thus we have a surjection Lϕ0 :
LG0→K̃0 which factors through L(Gder)

0. Since ϕ is defined over F, Lϕ0 extends

to Lϕ : LG→K̃ [2]. Let x̃ = Lϕ(x) ∀ x ∈ LG. The image of Cent(s, LG) under Lϕ

lies in Cent(s̃, K̃) because xsx−1s−1 = 1 implies x̃s̃x̃−1s̃−1 = 1. Similarly

Lϕ0(Cent(s, LG0))⊆Cent(s̃, K̃0)

and
Lϕ0(Cent(s, LG0)0)⊆Cent(s̃, K̃0)0.

I claim that this last inclusion is actually an equality:

Lϕ0(Cent(s, LG0)0) = Cent(s̃, K̃0)0.

Let

K = (LG0)der∩(Lϕ0)−1(Cent(s̃, K̃0)0).

Then Lϕ0(K) = Cent(s̃, K̃0)0, so Lϕ0(K0) = Cent(s̃, K̃0)0. Now we have a mor-
phism of varieties

K0→ker((LG0)der→K̃0) given by

x→xsx−1s−1.

But ker is discrete and K0 is connected and 1 ∈ K0 is sent to 1 ∈ ker so the image
ξ(K0) is 1. That is, xsx−1s−1 = 1 for all x ∈ K0. So K0⊆Cent(s, LG0)0 and

Cent(s̃, K̃0)0 = Lϕ0(K0)⊆Lϕ0(Cent(s, LG0)0) proving the equality. Notice too
that the kernel is central.

We have a homomorphism

ρ : (Gal(F̄ /F )→Aut(LH0, LB0
H ,

LT 0
H , {Yα}).

Let ρ̃ be given by ρ̃ = Lϕ ◦ ρ. If ρ(σ) is given by adn(w) : n(w) ∈ LG then
Lϕ(ρ(σ)) = ρ̃(σ) is given by ñ(w) = Lϕ(n(w)) ∈ K̃. So ρ̃ satisfies the conditions of
[16] provided ρ does.

Thus we obtain endoscopic groups H and Hs corresponding to G and Gs re-
spectively. Since we have a surjection LH0→LH̃0 with central kernel we obtain a
dual morphism Hs→H again with central kernel [2]. �

We have the simple but useful lemma:

Lemma VII.2.2. Lemma 2.2 Let G be a reductive group and let Z1 be a subgroup
over F in the center of G. A necessary and sufficient condition for H to descend
to an endoscopic group on G/Z1 (in the sense of (2.1)) is that the character κ be
trivial on Z1.
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Proof. By [19] κ restricted to Z1 for quasi-split groups is independent of the
Cartan subgroup T with endoscopic group H. The short exact sequence

1→ Z1→T→T/Z1 → 1

gives

H1(Z1)→H1(T )→H1(T/Z1).

By exactness (and the vanishing of an appropriate Ext1) κ is trivial on H1(Z1) if
and only if it extends to a character κT/Z1

on H1(T/Z1). If it extends then we may
define an endoscopic group by the Cartan subgroup T/Z1 and character κT/Z1

. If

H descends to G/Z1 it defines a character κ′ on H1(T/Z1) that restricts to κ on
H1(T ). By exactness κ restricted to H1(Z1) is trivial. �

Remark VII.2.3. Remark 2.3 For a given endoscopic group H of a quasi-split
group G we may use this idea to calculate the characters of (V I.2.3) in terms of
the splitting field of H. We make this explicit for split groups.

Let G be a split reductive group. We may work with LG0 instead of LG since
the L-group is a direct product of LG0 by the Weil group. Let K be the smallest
extension through which ρ factors. Suppose we have groups H, LH0, T, LT 0, simply
connected cover LG̃0→LG0 of LG0 with subgroups LH̃0, LT̃ 0 projecting to LH0 and
LT 0 respectively. Suppose also we have an element s ∈ LT 0 with Cent(s, LG0)0 =
LH0 and s̃ ∈ LT̃ 0⊆LH̃0 projecting to s. The element ρ(σ) can be written as

n(σ)|LH0 and lifted to ñσ in NG(LT̃ 0).

Since n(σ)(s) = s we have ñσ(s̃) = zσ s̃ where the element zσ in ker(LG̃→LG0)
depends only on ρ(σ). This gives an injection σ→zσ from Gal(K/F ) to

ker(LG̃→LG0).

By passing to a cover LG′0 of LG0 we may assume that G′ is as “adjoint as possible”,
that is, the elements zσ generate ker(LG̃0 → LG′0) and that

Gal(K/F )→ker(LG̃0→LG′0)

is an isomorphism. Identifying ker(LG̃0→LG′0) with

Hom(X∗(LT̃ 0)/X∗(LT ′0),C×)

we obtain an isomorphism

ρ : Gal(K/F )→Hom(X∗(LT̃ 0)/X∗(LT ′0),C×).

We identify Gal(K/F ) with the dual of X∗(Tadj)/X∗(T
′). Now for a cyclic exten-

sion select a generator σ1 of K. K will be a cyclic extension except possibly for
G = Dn where two generators σ1, σ2 might be needed. Then ρ(σ1) gives a char-
acter of X∗(Tadj)/X∗(T

′) which by Tate-Nakayama we identify with a character
θ on H1(Gal(K/F ), Z ′) where Z ′ is the center of G′. To obtain the character on
H1(Gal(K/F ), Z) we pull back the character on H1(Gal(K/F ), Z ′) by the map
Z→Z ′. Note that the order of θ is precisely the order of σ in Gal(K/F ). From
construction it is clear that the character depends only on the endoscopic group
and not the choice of Cartan subgroup.

Thus loosely speaking the characters on H1(Z) are determined by selecting
the most adjoint possible group G′ with a given endoscopic group, and selecting
characters which generate the dual of H1(Z ′).
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VII.3. Compatibility of Characters

As an application of the formulas for the subregular germ we check the compati-
bility of characters for the subregular germ. A necessary condition for the matching
of the subregular germs is that the characters of the subregular germ of a κ-orbital
integral match the characters of the subregular germ of a stable orbital integral on
H.

Let G be a reductive group, T a Cartan subgroup, κ a character on T , and
H an endoscopic group attached to the triple (G,T, κ). We have an asymptotic
expansion along a regular curve Γ∑

|λ|β−1θ(λ)F (β, θ, f)

of the κ-orbital integral on T . We let Y (T, κ) be the set of characters θ for which
there exists an f ∈ Cc(G) with F (2, θ, f) 6= 0. Similarly, the stable orbital integral
on H gives an expansion ∑

|λ|β−1θ(λ)F (θ, β, fH)

and we let X(H) be the set of characters θ for which there exists an f ′ ∈ Cc(H)
with F ′(2, θ, f ′) 6= 0. X(H) is independent of the Cartan subgroup T provided T
is selected so that the subregular germs do not vanish (3.2). The sets Y (T, κ) and
X(H) are independent of the regular curve Γ. The purpose of this section is prove
(assuming a minor assumption about 2E6).

Theorem VII.3.1. Theorem 3.1 Let G be a quasi-split reductive group such
that G(F ) contains a subregular unipotent element. If H is an endoscopic group
attached to the pair (T, κ) then Y (T, κ) = X(H) provided X(H) 6= φ.

The hypothesis that G is quasi-split is made to simplify the arguments. We
begin with

Lemma VII.3.2. Lemma 3.2 Suppose H is a quasi-split simple reductive group.
Then X(H) = φ or {1} provided H 6= 2A2n. X(2A2n) = {ηK}.

Proof. If G 6= 2A2n the characters κ(Eα) are trivial for all α and the result
follows. If G = 2A2n we have the two term asymptotic expansion of the subregular
germ given by (V.4.1).

(1/2)|λ|
∫
|dX/X|

∫
h2|ν2|+ (1/2)|λ|ηK(λ)

∫
|dX/X|

∫
ηK(bσ)h2|ν2|.

We show that
∫
h2|ν2| = 0. The form ν2 of (V.4.1) is

ωx(α)x(β)/(λ2dx(α)dx(β))

whereas the form ωE on Eα is given by

ωE = ωx(α)/(λ2dx(α)).

Write Eα,β,u = Eα(u) ∩ Eβ . Thus we may obtain the form on ν2 on Eα,β,u by
taking the 2-form δ−1dξdw/(ξw2) on Eα(u), dividing by dx(β)/x(β) and restricting
to Eα,β,u. x(β)dξ/(ξdx(β)) = 1 on Eα(u)∩Eβ(u) so we may take our 1-form on
Eα,β,u to be dw/w2. w need not be a coordinate over F . But v = w/(Rw + 1) for
some R ∈ KX will be a coordinate over F . Thus the principal value integral is by
[18] ∫

|dv/v2| = 0.
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This proves that X(2A2n) = {ηK}. �

Proof of 3.1. We work with the quasi-split groups. We use (V I.2.4) together
with the previous section to determine the characters θ. We rely heavily on the
vanishing theorems (V I.3.2) and (V I.3.3) to eliminate unwanted terms. (V I.3.2)
and (V I.3.3) tell us that if a component E(`α, u) makes a contribution then one of
the following conditions hold:

1) `α intersects three other lines in the Dynkin curve
2) `α intersects two lines that are interchanged by Gal(F̄ /F ).
3) `α intersects a line `β and κα = κβ .

By (V I.2.3), condition (3) implies that κα = κβ = 1. There is also the obvious
condition that E(`α, u) contain rational points. Using these criteria one can read
off the irreducible components E(`α, u) that contribute to the subregular germ.

1An. If θ 6= 1 then Y (T, κ) = φ. Also if θ 6= 1 then by (1.1), X(H) = ∅. So if
θ 6= 1 X(H) = Y (T, κ) = ∅. If θ = 1 then Y (T, κ) = {1} and X(H) = {1}.

2An. Assuming that X(H) 6= φ, we may take G to be U(n) and H to be
U(j)×U(n−j) (1.1). If n is odd thenX(H) = {1, ηK}. Up to isogeny the endoscopic
group is an endoscopic group of the adjoint group U(n)adj so the characters in
chart (V I.2.3) are all trivial. However by lemma (V.4.1), the subregular germ of
the asymptotic expansion contains the characters {1, ηK}. If n is even and j is even
then X(H) = {1}. Again the endoscopic group up to isogeny is an endoscopic group
of U(n)adj so that the characters in chart (V I.2.3) are trivial. Thus X(T, κ) = {1}.
Finally we consider the case that n is even, j and n−j are odd. Then X(H) = {ηK}.
This time, however, H is not an endoscopic group of U(n)adj (up to isogeny). The
element s ∈ GL(n,C) defining the endoscopic group has odd determinant so that
it does not pass to SL(n,C).

We show that θ1 = 1, and θ2 = ηK in (V I.2.3). We have
∏
κα(α(t′)) = 1. Let

t′ = zβ
v

σ(z)σ(βv) where z ∈ K,σ ∈ Gal(K/F ), and < αi, β
v >= 1 if i = 1 and 0

otherwise. (Such a cocharacter exists in U(n)). This gives θ1(z) = 1 for z ∈ K×
so that θ1 = 1. Now θ2N = 1, so that θ2 is either the trivial character or ηK . If θ2

were the trivial character then H (up to isogeny) would be an endoscopic group of
the adjoint group U(n)adj(2.2), so θ2 = ηK .

Bn. If θ 6= 1 then by (V I.2.3) and section 2 Y (T, κ) = {ηnK} where K is the
splitting field of H. H = 2An−1−2j × 2(Bj × Bj). The factor 2(Bj × Bj) does
not contain any F -rational subregular elements. Thus the character comes from
2An−1−2j and X(H) = {ηn−2j

K } = {ηnK}. So X(H) = Y (T, κ). If θ = 1 then
Y (T, κ) = X(H) = {1}.

Cn. X(H) = Y (T, κ) = {1}.

Dn,
2Dn n even. Y (T, κ) = {1} and we never obtain an even rank unitary

group.

Dn,
2Dn n odd. Y (T, κ) = {θ2}. θ2 = 1 if and only if H descends to an

endoscopic group of SO(2n). If θ2 = 1 we see that ρ is trivial. LSO(2n)0 = SO(2n)
and the unitary piece drops out. So X(H) = {1}. If θ2 6= 1 then H does not
descend to SO(2n) so inside SO(2n), ρ(σ)(s) = −s. Thus the orthogonal factors
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will be interchanged and Aj will be unitary (of even rank). Thus X(H) = {ηK},
(ηK = θ2).

Exceptional Groups E6, E7, E8, G2, F4,
2E6,

3D4,
6D4.

By examining (V I.2.3) we see that Y (T, κ) = {1}. To prove compatibility of
characters we must show that these exceptional groups do not have an endoscopic
group with an even rank unitary group as a factor. If G = G2, E8, G2 or F4 this is
easy: the centers of these groups do not contain an involution (|Z(E8)| = |Z(G2)| =
|Z(F4)| = 1). The outer automorphism of order three in 3D4 and 6D4 cannot give
rise to a unitary group. But we have seen that the endoscopic groups of D4 and
2D4 do not have an even rank unitary group as a factor. Thus 3D4 and 6D4 do
not either. This leaves E7 and 2E6. Unfortunately, I know of no simple proof to
show that their endoscopic groups do not contain any even rank unitary factors.
We sketch a case by case proof in the following paragraphs.

E7. We take the dual of E7 to be the adjoint group of type E7 over C. By the
result of Golubitsky and Rothschild (1.7) the centralizer of s in E7 stabilizes one of
the following subalgebras: A1⊕D6, A

3
1⊕D4, A

7
1, A2⊕A5, A

3
2⊕T 1, A7, E6⊕T 1, T 7.

We discuss each of these algebras in turn. A1⊕D6 gives no even rank unitary factors
because D6 does not. Similarly A1

3 ⊕ D4 gives no even rank unitary factors. A7
1

and T 7 can be immediately dismissed. A2 ⊕ A5 requires some attention especially
because the outer automorphism of A2 ⊕A5 which acts on both factors is realized
in the group E7. We must show that this outer automorphism does not lie in the
centralizer of s where Lie(Cent(s, E7)) = A2⊕A5. The extended diagram of E7 is

α1 α2 α3 α4 α5 α6 α7

1 2 3 4 3 2 1

2 α8

The element s is defined by αi(s) = 1 for i 6= 5, α5(s) = x. Since α5 has the
weight 3 in the extended diagram it follows that x3 = 1. Thus the cube of every
element in the centralizer of s lies in the connected component. It follows that the
outer automorphism of order two of A2 ⊕A5 does not lies in the centralizer of s.

Next we exclude the case A3
2 ⊕ T 1. α3(s) = y, α5(s) = x, (xy)3 = 1, αi(s) = 1,

i 6= 3, 5. If there is to be a subregular unipotent element in H(F ) then ρ must
stabilize one of the components A2. But then the centralizer actually stabilizes
A2 ⊕A5(i.e. we may take y = 1) and we reduce to the previous case.

Consider A7. α8(s) = x, x2 = 1 and αi(s) = 1 for i 6= 8. The center of
the centralizer of s has two elements (namely 1 and s). So we may take it to
be SL(8,C)/µ4 where µ4 are the fourth roots of unity. We show that 2A2k−1 ×
2A7−2k is not an endoscopic group of the group with L group LG0 = SL(8,C)/µ4.
Let ŝ = diag(xa, y8−a) x 6= y where the exponents indicate the number of fac-
tors. 1 = det(ŝ) = xay8−a, x 6= y. Following section 1 we have w(σ(ŝ)) =
diag((x−1)a, (y−1)8−a) = λŝ, λ ∈ µ4. Thus x2 = y2 = λ ∈ µ4. It follows that
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x = −y and x8 = y8 = 1. The determinant is then (x/y)ay8 = (−1)a = 1, so that
a must be even.

E6⊕T 1 reduces to the case E6 if E7 does not contain the outer automorphism
of E6 or 2E6 if it does.

2E6. We turn our attention to the group 2E6. I am forced to assume at this
point that the list of primitive algebras for the connected group E6 is the same as
the list for the semidirect product of E6 by {1, ω} with two components. Again we
take the adjoint group over C for the L-group. The extended Dynkin diagram is
given by:

α1 α2 α3 α4 α5

1 2 3 2 1

2 α6

1 α7

The centralizer stabilizes one of A1 ⊕ A5, A
3
2, D4 ⊕ T 2, D5 ⊕ T 1, T 6. We begin

with A3
2. We identify the outer automorphisms of A3

2 with signed permutations.
Let x be the outer automorphism of E6 considered as an automorphism of A3

2, a
signed permutation on three letters. Let y be an outer automorphism of A3

2 of order
3 coming from Cent(s, LG0). With appropriate choices y and x may be represented
by the signed permutations

y =

(
1 2 3
2 3 1

)
x =

(
1 2 3
ε12 ε21 ε33

)
x acts trivially on the factor of A3

2 it stabilizes so ε3 = 1. y and x together generate
a group isomorphic to the symmetric group on 3 letters so xyx−1 = y2. An easy
calculation shows this implies ε1 = ε2 = 1. Thus an outer automorphism that fixes
a component acts as the trivial automorphism on that component.

D4 ⊕ T 2 is excluded because D4 has no endoscopic groups with an even rank
unitary factor. D5⊕T 1 is a Levi component of E6. Therefore the centralizer of s is
simply connected inside the simply connected group of type E6. But the orders of
the centers of the simply connected groups of types E6 and D5 are relatively prime
so that the centralizer of s is simply connected in the adjoint group as well. The
group of type D5 with a simply connected L-group does not have any endoscopic
groups with unitary factors. T 6 is obviously excluded.

A1 ⊕ A5 is the only remaining case. Let t be given by α6(t) = −1, αi(t) = 1
i 6= 6. The centralizer is seen to be

Cent(t, LG0)0 = (SL(2,C)× SL(6,C)/µ3)/(±1).

We work inside this subgroup. Proceeding as in the calculations for unitary groups
we find that if we are to obtain a unitary factor over F then there must be a root
αj (1 ≤ j ≤ 5) such that α7(s) = −1, αi(s) = 1 (i ≤ 5, i 6= j), αj(s) = −1. If
the unitary factor is to have even rank j must equal 1, 3, or 5. The weights in the
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extended diagram on these roots are odd so that αj(s)
mj = −1. Using

α1(s)α2(s)2α3(s)3α4(s)2α5(s)α6(s)2α7(s) = 1

we find that α6(s)2 = 1 so that α6(s) = ±1. Thus either α6(s) or α6α7(s) = 1.
Neither is a root of Cent(t, LG0)0. This contradicts the assumption that LH0

stabilizes A1 ⊕A5.

�

VII.4. Stable orbital integrals

In this section we transfer the stable subregular germ on a group G to its
quasi-split inner form Gin. We fix a measure by setting

ωEαx(β)/dx(β)|Eα∩Eβ = dw/w2.

Theorem VII.4.1. Theorem 4.1 For every subregular adjoint conjugacy class
O in G there is a subregular adjoint conjugacy class O′ in Gin such that ΓO = −ΓO′

where ΓO and ΓO′ are the germs of O and O′ respectively.

Proof. Fix an adjoint conjugacy class O in G. There is only one component
Eα(u) which contains any F -rational points (V I.1.4). Select O′ to be a subregular
element in Gin such that the action of Gal(F̄ /F ) on the lines of (B\Gin)u′ u

′ ∈
G(F ) coincides with the action on the lines of (B\G)u u ∈ G(F ). The only possible
difference in the data for the two germs is the constant ζ that appears in formula
(V I.1.6). By blowing up as needed we obtain a morphism over F from Eα(u) to
P1 given on U(α, β) in canonical coordinates by (w, ξ)→w. Blowing up to extend
the morphism does not affect principal value integrals because we never blow up
at an F -rational point. The fibre over a given p ∈ P1(F ) does not necessarily
have any rational points. It will have rational points if and only if the cocycle
σ(ξ)ξ−1 (depending on p ∈ P1(F )) in H1(U(1)) is non-trivial. We introduce the
non-trivial character ηK of H1(U(1)). As p varies in P1(F ), σ(ξ)ξ−1 equals a cocycle
of Gal(F̄ /F ) with coefficients in UKX(w)(1). The integral over the fibre thus equals∫

|dX/X|.

The integral over the base equals∫
((1 + ηK(σ(ξ)ξ−1)/2)|dw/w2| = (1/2)

∫
ηK((σ(ξ)ξ−1)|dw/w2|

because the principal value integral
∫
|dw/w2| is zero [18]. Now ηK(σ(ξ)ξ−1) =

ηK(ζ)ηK(∗) where ∗ is independent of ζ and is consequently the same for G and
Gin. It was proved in (V I.1.6) that ζ is a norm if and only if G is quasi-split. �

VII.5. Unitary Groups

In this section we prove the transfer of the subregular germ of κ-orbital integrals
from unitary groups to the endoscopic groups H = U(n− 2h)× U(2h).
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VII.5.1. Vanishing of Germs. We begin by proving that the subregular
germ of a κ-orbital integral is zero if the endoscopic group H contains no F -rational
points. There are two ways to prove this result. One is to use the formulas obtained
in the last chapter. The principal value integrals can easily be shown to vanish. The
other approach does not use Igusa theory, but calculates the action of H1(Z) on
F -conjugacy classes in each adjoint conjugacy class. We take the second approach.

Lemma VII.5.2. Lemma 5.2 Let G be a simply connected semi-simple group.
The F -conjugacy classes in an adjoint class are in bijection with classes in the
image of H1(F,Z) in H1(F,CG(x)red) (where x is a fixed F -element of an adjoint
class). In fact the classes are given by the image of H1(F,Z) in H1(F, (CG(x)′red)
where CG(x)′red is the subgroup of CG(x)red that acts trivially on components of
(B\G)x.

Proof. Fix an F -conjugacy class O. Let aσ be a cocycle in H1(F,Z). By
Kneser [14, 15], there is an element g ∈ G(F̄ ) such that σ(g)g−1 is a cocycle
representing aσ. Let O′ be the conjugacy class Og. It is adjointly conjugate to
O, and it depends only on the class in H1(F,Z) and not on the choice of cocycle
or element g. Suppose that O and O′ are adjointly conjugate F -conjugacy classes.
Then Og = O′ for some g such that σ(g)g−1 = zσ ∈ Z1(F,Z). Thus we have a
map from H1(F,Z) onto the set of classes adjointly conjugate to O.

Suppose that aσ acts trivially on O. This means there is a g such that σ(g)g−1

represents aσ and Og = O. Adjusting by an element in G(F ), we may also assume
that xg = x for some x ∈ O. Thus σ(g)g−1 is a boundary in CG(x), and g lies
in CG(x). CG(x) is a semi-direct product of a reductive piece CG(x)red and its
unipotent radical [23, §7.5]. Write g = g0n according to this semi-direct product.

σ(g)g−1 = σ(g0)g−1
0 · ad(g0)(σ(n)n−1).

Since aσ is central the cocycle σ(g)g−1 lies in CG(x)red. This forces σ(n)n−1 to be
the identity so that we might as well take σ(g0)g−1

0 to be our representative of aσ.
Thus the kernel of the action of H1(F,Z) on adjoint conjugacy classes lies in the
kernel of the map from H1(F,Z) to H1(F,CG(x)red). It is easy to see that this
is actually a bijection. For the last statement of the lemma, it suffices to remark
that Z acts trivially on components so that the image actually lies in this smaller
subgroup. �

Lemma VII.5.3. Lemma 5.3 Let x ∈ G(F ) be subregular, G = SU(n) , (n ≥ 3).
κ is trivial on ker(H1(Z)→ H1(CG(x)red) if and only if H (up to isogeny) is an
endoscopic group of U(n).

Proof. By Slodowy [23], CG(x)red is connected and is in fact isomorphic to
Gm over F̄ . Let B+ be a Borel subgroup over F in (B\G)x (n odd) or let B+

be one of the two Borel subgroups in `α lying at the intersection with a second
line where `α is the line in (B\G)x over F (n even). Since elements of CG(x)red
stabilize (B\G)x, CG(x)red⊆B+. By (5.2), we see that the image of H1(Z) lies
in H1(CG(x)red). If n is odd fix a Cartan subgroup T over F in B+ containing
CG(x)red. If n is even we again fix a Cartan subgroup T in B+ containing CG(x)red.
It will no longer be defined over F . Let N be the unipotent radical of B+. It is
clear that if b ∈ CG(x)red then

α′(b modulo N) = 1
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if x does not lie in a line of type α′. If B+ lies at the intersection of α1 and α2 then
x(α1 + α2) 6= 0 so that

α1α2(b modulo N) = 1.

Thus identifying T with the diagonal matrices and B+ with the upper triangular
matrices we see that b modulo N has the form

diag(a, a, . . . , a, a−n+1, a, . . . , a).

The morphism T→U(1) defined by

diag(t1, . . . , tn)→t1
yields an isomorphism over F of a subtorus of T with U(1) even when the torus T
is not defined over F . This gives an isomorphism over F of CG(x)red with U(1). If
we identify Z(F̄ ) with the nth roots of unity, then the morphism Z→CG(x) corre-
sponds to the inclusion µn→U(1). The center of U(n) (or any of its inner forms)
is isomorphic over F to U(1) and the inclusion SU(n)→U(n) gives an inclusion
Z→U(1) or µn→U(1). This demonstrates that the kernel of the homomorphism

H1(Z)→H1(CG(x)red)

equals the kernel of the homomorphism

H1(Z)→H1(ZU(n)).

From the formalities of centers, characters and endoscopic groups given in section
2, we know that H (up to isogeny) is an endoscopic group of U(n) if and only if κ
is trivial on this kernel. Hence the result. �

Lemma VII.5.4. Lemma 5.4 If κ is non-trivial on the ker(H1(Z)→H1(CG(u)red)
then the germ of the conjugacy class of u equals zero.

Proof. Define an action of Z\G(F ) on f ∈ Cc(G) by z · f(g) = f(z−1gz).
Then it is easy to see that with the proper normalization of measures

κ(σ(z−1)z)Φ(f) = Φ(z · f) =
∑

ΓOµO(z · f) =
∑

ΓOµ(Oz)(f)

where Φ(f) is the κ-orbital integral of f , ΓO is the germ of the unipotent conjugacy
class O and µO is an invariant measure on O. By the uniqueness of germ expansions
κ(σ(z−1)z)ΓO = ΓadzO. If κ is non-trivial on

ker(H1(Z)→H1(CG(u)red)

pick z such that adzO = O and κ(σ(z−1)z) 6= 1. Then ΓO = 0. �

Remark. This centralizer argument can be applied quite generally to show
that germs vanish. One can show for instance for G = An that if the splitting field
of H is cyclic of order `, then the only non-vanishing germs correspond to unipotent
classes such that ` divides the lengths of all the Jordan blocks of an element of the
conjugacy class. This implies, in particular, that the asymptotic expansion has the
form ∑

|λ|`βθ(λ)F (`β, θ, f).

where β is a non-negative integer.
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VII.5.5. 5.5. The stable germ of unitary groups. The next two sections
contain calculations that give the transfer of the subregular germ of G = U(n) to
H = U(n−2h)×U(2h). The general idea should not be obscured by the calculations
that follow. As was mentioned in chapter V , our expression of the subregular germ
consists of the following data:

1. A surface S (together with a description of its components and rationality
structure)

2. a 2-form on S defined over F .
3. a cocycle bσ in T depending on p ∈ S(F )
4. a character κ on T
5. canonical coordinates (w, ξ).

As in the transfer of stable germs, we will be able to integrate out the depen-
dence on ξ at the expense of introducing a cocycle aσ in H1(U(1)) depending on
w. Furthermore the cocycle in T will be simplified to a cocycle in H1(U(1)). The
data will then become:

1. a projective line P1 with canonical coordinate w
2. a 1-form dw/w2 on P1

3. cocycles b and a · b in H1(U(1))
4. the non-trivial character ηK of H1(U(1))

The germ is related to the data on U(n) by the formula

(1/2)|λ|
∫
ηK(b)|dw/w2|+ (1/2)|λ|ηnK(λ)

∫
ηK(a · b)|dw/w2|.

Here ηnK is the nth power of the character ηK . The cocycle a depends on the rank
of the group so we add a subscript n when discussing more than one unitary group.
The cocycle b will depend on G and on H = U(n−2h)×U(2h). We add subscripts
to indicate this dependence b = bn,2h(2h ≤ n). In particular bn,0 corresponds to
the stable orbital integral (H = U(n)). We also add subscripts to the variables
(w, ξ) and to the form ν. The transfer will follow from the following three steps:

1. If κ is trivial (i.e. for stable orbital integrals) bn,0 = 1 and∫
ηK(bn,o)|dw/w2| = 0.

2. (Transfer to U(2h)) There is a morphism P1→P1 over F given by

wn/(R1wn + 1) = w2h for some R1 ∈ KX

carrying bn,2h to a2h. (Note that η2h
K = 1 and that dwn/w

2
n = dw2h/w

2
2h).

3. (Transfer to U(n− 2h)) There is a morphism P1→P1 over F given by

wn/(R2wn + 1) = wn−2h for some R2 ∈ KX

carrying anbn,2h to an−2h. (Note that ηnK = ηn−2h
K ).

We must also discuss the degenerate case n− 2h = 1 when n is odd.
Let ε = 1 when n is even and ε = 0 when n is odd. We write element of the

Cartan subalgebra as (xk, . . . , x−k) (2k + 1− ε = n) with the understanding that
x0 = 0 if n is even. We let Ti, −k ≤ i ≤ k to be the character on the Cartan
subalgebra given by Ti (xk, . . . , x−k) = xi. The Weyl group may be identified with
permutations on 2k + 1 − ε letters Tk, . . . , T−k. Positive roots are identified with
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Ti − Tj i > j (i, j 6= 0 if n is even). We write εj j ≥ 1 for the permutation (j,−j).
The field KX introduced in (V.2) is F̄ (Tk, . . . , T−k).

We give a description of the stable subregular germ of U(n).

Theorem VII.5.6. Theorem 5.6 Let α and β be the simple roots α = T1 −
T−ε, β = T−ε−T−ε−1. The stable subregular germ of U(n) is given by the following
data

1. The curve P1 with canonical variable w. The action of Ω̃ on w is given by

σα′(w) = w α′ 6= α, β

σα(w) = w/(α(X)e(α, β)w + 1)

σβ(w) = w/(β(X)e(β, α)w + 1)

σ0(w) = −w/((Tε − T−ε)e(α, β)w + 1)

2. The 1-form dw/w2

3. The cocycle a of Ω̃ with values in U(1) given on generators by

σα′ → 1 if α′ 6= α

σα→(α(X)e(α, β)w + 1)

σ0→1/ζ, ζ ∈ F× : n even

σ0→w/x(γ) : n odd.

Remark. We take e(α, β) = 1, e(α, β′) = −1, e(β, α) = −1, (β′ = T2 − T1).
This is justified by the 3× 3 calculations:1 0 0

1 1 0
0 0 1

1 0 1
0 1 0
0 0 1

 1 0 0
−1 1 0
0 0 1

 =

1 0 1
0 1 1
0 0 1

← e(α, β)

and similarly for e(β, α) and e(α, β′).

Proof. Begin with n odd. By (V.4.1) and section 4 the subregular germ is
given by

(1/2)|λ|2ηK(λ)

∫
|dX/X|

∫
ηK(aσ)|dw/w2|.

The action of Ω̃ on the variables is given in (V I.1.6) and (V I.1.7). The cocycle aσ
for n odd is given by (V.4)

σ→λ/(σ(x(β))x(β)) (σ not in Ω⊆Ω̃)
σ→σ(x(β))x(β)−1 (σ in Ω).

For simple roots σα′(x(β))/x(β) = x(W (σα′), β)/x(β) and we apply (V.6.1). For
σ→σ0, σ0(x(β)) = x(α),

λ/σ(x(β))x(β) = x(α)x(β)w/(x(α)x(β)x(γ)) = w/x(γ).

When n is even we integrate out the contribution of ξ. By blowing up if
necessary we extend the morphism (w, ξ)→(w) to a morphism Eα(u)→P1. We
integrate over exactly those w ∈ P1 such that the fibre over w has rational points.
Now aσ = σ([ξ])[ξ]−1 is a cocycle of Ω̃ in U(1) which is trivial exactly when the
fibre has rational points. When the fibre has rational points the integral over the
fibre is

∫
|dX/X|. Thus the germ may be written in the form∫

|dX/X|
∫

(1/2)(1 + ηK(aσ))|dw/w2|.



VII.5. UNITARY GROUPS 117

That aσ has the form given in the lemma follows immediately from lemma (V I.1.6).
�

To carry out a comparison of orbital integrals we must switch to a different set
of generators of Ω̃. We let σα′ = (`+ 1, `) act on w by

(`+ 1, `)(w) = w/((T`+1 − T`)e`w + 1).

Here e` are for now arbitrary constants in F .

Lemma VII.5.7. Lemma 5.7 This action extends uniquely to an action of Ω on
KX(w)×.

Proof. Since simple reflections generate Ω, the extension if it exists is neces-
sarily unique. We must check that if σ(w) = w/(Aσw + 1) then

w/(Aστw + 1) = στ(w) = σ(w/(Aτw + 1) = w/((σ(Aτ ) +Aσ)w + 1).

That is, we must check that Aσ is a cocycle. Since Ω is a Coxeter group it is sufficient
to verify that A(σασβ)3 = 1 for α and β adjacent simple roots and A(σ2

α) = 1 for α
simple.

A(`+1)2 = (`+ 1, `)A(`+1,`) +A(`+1,`)

= (`+ 1, `)(T`+1 − T`)e` + (T`+1 − T`)e` = 0

A(`+2,`) = A(`+1,`)(`+2,`+1)(`+1,`)

= (`+ 1, `)(`+ 2, `+ 1)A(`+1,`) + (`+ 1, `)A(`+2,`+1) +A(`+1,`)

= (`+ 1, `)(`+ 2, `+ 1)(T`+1 − T`)e`
+ (`+ 1, `)(T`+2 − T`+1)e`+1 + (T`+1 − T`)e`

= (T`+2 − T`+1)e` + (T`+2 − T`)e`+1 + (T`+1 − T`)e`
= (T`+2 − T`)(e` + e`+1)

A(`+2,`)2 = (`+ 2, `)(T`+2 − T`)(e` + e`+1) + (T`+2 − T`)(e` + e`+1) = 0.

�

Lemma VII.5.8. Lemma 5.8 A(`,−`) = (T` − T−`)(e`−1 + . . .+ e−`) (` ≥ 1).

Proof. When ` = 1 we obtain the result by the calculation of A(`+2,`)

carried out in the proof of the previous lemma. Let r be the permutation r =
(j + 1, j)(−j,−1− j) j ≥ 1. Then r(j,−j)r = (j + 1,−j − 1). So that

A(j+1,−j−1) = r(j,−j)Ar + rA(j,−j) +Ar

Ar = A(j+1,j) +A(−j,−j−1) = (Tj+1 − Tj)ej + (T−j − T−j−1)e−j−1

So r(j,−j)Ar +Ar = (Tj+1 − T−j−1)(ej + e−j−1).

By induction we may assume that A(j,−j) = (Tj − T−j)(ej−1 + . . . + e−j). We
conclude that A(j+1,−j−1) = (Tj+1 − T−j−1)(ej + . . .+ e−j−1). �

To apply this result to U(n) when n is odd we set ei = 0 i 6= 0,−1, e0 =
e(α, β)(= 1), e−1 = e(β, α)(= −1). Then this action corresponds to the action on
w given in (5.6). Thus e0 + e−1 = 0 so that A(`,−`) = 0 for all ` ≥ 1. When n
is even, we let (e0 + e−1) = e(α, β), e−2 = e(β, α) and ei = 0 otherwise. Then
A(`,−`) = 0 for ` ≥ 2 and A(1,−1) = (T1 − T−1)e(α, β). This proves:
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Corollary VII.5.9. Corollary 5.9 A(`,−`) = 0 for all ` ≥ 2. A(1,−1) = (Tε −
T−ε)e(α, β).

We suppress the direction X from the notation in most of what follows.

Lemma VII.5.10. Lemma 5.10 aεj = ((Tj−T−ε)we(α, β)+1)/((T−j−T−ε)we(α, β)+
1) if j ≥ 1 + ε and aε1 = (T1 − T−1)we(α, β) + 1 if j = ε = 1.

Proof. Suppose that n is odd then ε1 = σβσασβ . By (5.6) aσα = (T1 −
T0)e(a, β)w + 1 and aσβ = 1. Thus

aε1 = σβaσα = σβ((T1 − T0)e(α, β)w + 1) = (T1 − T−1)e(α, β)σβ(w) + 1 =

((T1 − T0)e(α, β)w + 1)/((T−1 − T0)e(α, β)w + 1).

Suppose that n is even then ε1 = σα so that (5.6)

aε1 = (T1 − T−1)e(α, β)w + 1.

Let r = (1, 2)(−1,−2). Then ar = 1 and ε2 = rε1r so that aε2 = r(aε1).

r(aε1) = (1, 2)(−1,−2)((T1 − T−1)e(α, β)w + 1) =

(T2 − T−2)e(α, β)σβ(w) + 1 =

((T2 − T−1)e(α, β)w + 1)/((T−2 − T−1)e(α, β)w + 1).

Suppose that aεj = ((Tj − T−ε)e(α, β)w + 1)/(T−j − T−ε)e(α, β)w + 1) j ≥ 1 + ε
then

aεj+1
= (j, j + 1)(−j,−j − 1)aεj =

((Tj+1 − T−ε)e(α, β)w + 1)/((T−j−1 − T−ε)e(α, β)w + 1)

and the result follows by induction. �

VII.5.11. 5.11. The κ-subregular germ on U(2n). In this section we cal-
culate a simple expression for mκ(e) when G = U(n) or an inner form thereof. We
assume in the remainder of this chapter that G(F ) contains a subregular unipotent
element and H = U(2h) × U(n − 2h) = H1 × H2. We let H be the subgroup
U(2h)× U(n− 2h) of G with the following formh 0 h

0 n− 2h 0
h 0 h

 .

If n is odd G is quasi-split if G(F ) contains a subregular unipotent element so these
subgroups exist. If G(F ) contains a subregular unipotent element we may assume
that the cocycle defining the inner form lies in a parabolic subgroup of type α, in
fact we may assume it lies inside a Levi component M of such a parabolic subgroup.
Thus again the subgroups H exist over F . If H ′ is a subgroup of G over F which is
stably conjugate to H then Hg = H ′ for some g ∈ Gder(F̄ ). We find that σ(g)g−1

is a cocycle in H which lies in Gder.

Lemma VII.5.12. Lemma 5.12 Let deti be the determinant on Hi. Then H ′ is
stably conjugate to H if and only if det1(σ(g)g−1) is the trivial cocycle in H1(U(1)).
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Proof. We have the short exact sequence

1→SU(2h)× SU(n− 2h)→U(2h)× U(n− 2h) −→(det1,det2) U(1)1 × U(1)2→1.

This gives an injection

H1(U(2h)× U(n− 2h))→H1(U(1)× U(1))

because by Kneser [14,15] H1(SU(2h)×SU(n−2h)) = 1. Moreover, this injection
is actually an isomorphism, for U(n)→U(1) has a section. If n = 2k + 1 the
section is x→diag(1k, x, 1k). If n is even U(2)⊆U(n) and U(2) contains a torus
isomorphic to U(1). Since σ(g)g−1 lies in Gder, its image lies in the diagonal
(x, x−1) ∈ U(1)⊆U(1)1 × U(1)2. Thus σ(g)g−1 gives a cocycle in H1(U(1)). H ′ is
conjugate to H over F if and only if σ(g)g−1 gives the trivial class of H1(U(1)).
We conclude that the subgroups stably conjugate to H modulo F -conjugacy are in
bijection with elements of H1(U(1)). �

Lemma VII.5.13. Lemma 5.13

a) The Cartan subgroups in G which are identified with Cartan subgroups in
H are precisely those which are stably conjugate to a Cartan subgroup in
H.

b) Selecting a representative T in H for each of these stable conjugacy classes,
if g ∈ T\G(F ), then κ(σ(g)g−1) = ηK(det1(σ(g)g−1)) where ηK is the
non-trivial character on H1(U(1)).

Proof. (a) is sufficiently clear.
(b) Suppose that h ∈ (T\H)(F ). We show that κ(σ(h)h−1) = 1. Let Td be

the subgroup T∩Hder of T . Then we may take σ(h)h−1 to lie in H1(Td). By
Tate-Nakayama we have the commutative diagram

H1(Td) →̃ H−1(X∗(Td)) →̃ H−1(X∗(LT 0
d ))

↓ ↓ ↓
H1(T ) →̃ H−1(X∗(T )) →̃ H−1(X∗(LT 0)).

We have s ∈ LT 0 corresponding to κ on H1(T ). Since Hder is simply connected
L(Hder)

0 is adjoint. We have dual morphisms

LH0 → L(Hder)
0

↑ ↑
LT0 → L(Td)

0

s ∈ LT0 is central in LH0 so that the image of s in L(Td)
0 is central in L(Hder)

0.
But L(Hder)

0 is adjoint so the image of s in L(Td)
0 is the identity. It is now clear

that κ(σ(h)h−1) = 1. (b) follows immediately. �

The next step is to compute the determinant of the cocycle σ(g)g−1. To com-
pletely determine the cocycle it is enough to calculate it for generators. As in (5.5)
we have characters Ti, −k ≤ i ≤ k (2k + 1 − ε = n. The Weyl group of H is then
generated by the simple reflections (i, i+ 1) i 6= k−h,−k+h− 1 together with the
involution εk−h+1 = (k − h + 1,−k + h − 1). Thus it is sufficient to calculate the
determinant on these generators together with the outer automorphism σ0. We let
γj be the positive root Tj − T−j , j = 1, . . . , k.
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Lemma VII.5.14. Lemma 5.14 On the regular elements Y 0(B0, B∞) up to a
factor in F̄× independent of the star the cocycle det1(σ(g)g−1) is given by

bσ = 1 : σ→(i, i+ 1) i 6= k − h,−k + h− 1

nγn−h+1
/mγn−h+1

: σ→εn−h+1

where n =
∏
εγ(nγ) and n−1 = m =

∏
εγ(mγ). The order on the roots is that

given in (II.5).

Proof. By lemma (I.5.4), σ(g)g−1 = z(W+, α)α
v

for σ→σα = (i, i + 1) (up
to a constant independent of the star). If i 6= k − h,−k + h − 1 then det1(bσ) =
det1z(W+, α)α

v

= 1. Next we compute bσ for σ→ω = ε1ε2 . . . εn−h+1. By (I.5.6)
it is sufficient to calculate the principal minors of n−1ω ∈ N∞N0T

ω
σ . To recover

det2(σ(g)g−1) = det1(σ(g)g−1)−1 it is sufficient to compute the n − hth and hth

principal minors. n−1ω has the form1 mij mij

0 1 mij

0 0 1

1h−1 0 0
0 Jn−2h+2 0
0 0 1h−1

.
We see that the hth principal minor is∣∣∣∣∣∣

1 ∗ ∗
0 1 ∗
0 0 mγ

∣∣∣∣∣∣ = mγ .

The n − hth principal minor equals the n − hth principal minor in the following
n− h+ 1 by n− h+ 1 matrix ∣∣∣∣∣∣

mij 1
1 0

1 0 0

∣∣∣∣∣∣
which is plus or minus the cofactor of mγ in∣∣∣∣∣∣

1 mij

0 1
0 0 1

∣∣∣∣∣∣ .
So the n− hth principal minor equals ±nγ (γ = γn−h+1). �

The following lemma gives the restriction ofmγ/nγ to the variety E = Eαk∩Eαk+1

(2A2k+1) or E = Eαk (2A2k). We work on the coordinate patch U(αk, αk+1) and
use canonical coordinates.

Lemma VII.5.15. Lemma 5.15 Up to a constant in K×X independent of (w, ξ),
nγp/mγp restricted to E equals

((Tp − T−ε)e(α, β)w + 1)/((T−p − T−ε)e(α, β)w + 1)

provided p 6= 1 if ε = 1. If p = ε = 1, nγp/mγp is independent of (w, ξ).

Remark VII.5.16. Remark 5.16 (Transfer factors for H = U(n−2h)×U(2h)).
By the remarks in the proof of (3.1) on U(n) we see that mκ(e) = ∆Γ on E0 (i.e.
κα = 1 ∀ α). mκ(e) extends to Eα∩Eβ (n odd) and Eα (n even) and depends on
w. w = 0 defines the intersection of Eα∩Eβ (resp. Eα) with E0 so that we write
mκ(e) = ∆ΓηK(bσ(w)) where bσ(w) is a cocycle in H1(U(1)) and bσ(0) is trivial
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in H1(U(1)). In other words, if we normalize our cocycles so that w = 0 gives the
trivial cocycle the transfer factor is precisely what it should be.

Proof. Let ñβ =
∏
z(α)m(α)nβ . Then (II.5.1) gives

λw(γ) =
∑

(−1)jγ−1(t)(1− βj(t))ñβ1 . . . ñβj or

w(γ) =
∑

β−1
1 ñβ1

(−1)w(γ − β1) + ((1− γ−1)/λ)ñγ .
∗

By the proof of (V.1.1.b), w(γ) = 0 on E if γ is not simple and γ 6= α + β, α =
T1 − T−ε, β = T−ε − T−ε−1. So if γ = (Tp − Tq) q 6= −1− ε, p > q then on E (using
w(α′) = 1, α′ simple) (∗) becomes

0 = ñTp−Tq+1
(−1) + γ(X)ñTp−Tq .

Iterating this result for q > −1− ε we find that ñTp−Tq (q > −1− ε) is constant on
E since ñα′ = z(α′)/z(W,α′) = 1/z1(W,α′) = 1/T (W,α′) for α′ 6= α, β.

If q = −1− ε and p > 1 then

0 = ñTp−T1
(−1)w + ñTp−T−ε(−1) + γ(X)ñTp−T−1−ε

and 0 = ñTp−T1
(−1) + (Tp − T−ε)ñTp−T−ε .

Subtracting w times the second from the first:

[(Tp−T−ε)w + 1]ñTp−T−ε = γ(X)ñTp−T−ε−1
.

We conclude that up to a factor ∗ independent of w

ñTp−T−1−ε = ∗((Tp − T−ε)w + 1) and so also

ñTp−T−p = ∗′((Tp − T−ε)w + 1).

Now suppose that p = 1 and n is odd. Then T1 − T−1 = α+ β. So

w = ñα(−1) + (T1 − T−1)ñα+β

ñα = 1/T (W,α) = 1/(T1 − T0).

We conclude that ñT1−T−1
= ∗((T1 − T0)w + 1). If p = 1 and n is even then α =

T1 − T−1, and ñα = ñT1−T−1
is independent of w.

The calculation for m̃γ follows the same lines. λw(γ) equals the γth coefficient
of t−1ñ−1tñ = t−1m̃tm̃−1 where ñ =

∏
εγ(ñγ) and ñ−1 = m̃. By the proof of

(II.5.1) the βth coefficient of m̃−1 equals∑
(−1)jm̃β1

m̃β2
. . . m̃βj

where βi = (Tai − Tai+1
) ai > ai+1 and β = Ta1

− Taj+1
. The βth coefficient of

t−1m̃t is β−1m̃β . It follows that the γth coefficient of (t−1m̃t)m̃−1 equals∑
(−1)jβ−1

0 m̃β0m̃β1 . . . m̃βj +
∑

(−1)j+1m̃β0m̃β1 . . . m̃βj

where βi = (Tai − Tai+1) ai > ai+1 and γ = Ta0 − Taj+1 . So λw(γ) =∑
(−1)j(1− β−1

1 )m̃β1
m̃β2

. . . m̃βj =

[
∑
j≥2

(−1)j−1(̃1− β−1
1 )m̃β1

. . . m̃βj−1
] m̃βj (−1) + (−1)(1− γ−1)m̃γ =

[
∑

λw(γ − βj)m̃βj (−1)] + (−1)(1− γ−1)m̃γ .

So w(γ) =
∑

w(γ − βj)m̃βj (−1) + (−1)(1− γ−1)m̃γ/λ.
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Again w(γ) = 0 on E if γ is not simple and γ 6= α+β. If γ = Tp−Tq p−1 > q, p 6= 1
then on E

0 = (−1)m̃Tp−1−Tq + (−1)γ(X)m̃Tp−Tq .

Iterating this result for p < 1 we find that m̃Tp−Tq is constant for p < 1.
If p = 1 and q < −1− ε then

0 = m̃T−ε−Tq (−1) + m̃T−ε−1−Tq (−1)w + (−1)(T1 − Tq)m̃T1−Tq and

0 = m̃T−ε−1−Tq (−1) + (−1)(T−ε − Tq)m̃T−ε−Tq .

Multiplying the first equation by T−ε − Tq and subtracting we obtain

0 = ((Tq − T−ε)w + 1)m̃T−ε−1−Tq + (−1)(T1 − Tq)(T−ε − Tq)m̃T1−Tq

so that up to a factor independent of w

m̃T1−Tq = ∗((Tq − T−ε)w + 1)

m̃Tp−T−p = ∗′((T−p − T−ε)w + 1) for p > 1 + ε.

Next we treat the case p = 1 + ε. α+ β equals T1 − T−1−ε and on E

w = (−1)m̃T−ε−T−ε−1
+ (−1)(T1 − T−1−ε)m̃T1−T−ε−1

and

m̃T−ε−T−ε−1
= −ñT−ε−T−ε−1

= 1/(T−1−ε − T−ε).
We find that m̃T1−T−1−ε = ∗((T −1ε −T−ε)w + 1) and

m̃T1+ε−T−1−ε = ∗′((T−1−ε)w + 1).

If p = ε = 1 then m̃α = m̃T1−T−1
is constant. Finally we note that the factor

e(α, β) = 1 for our representation (5.6). �

We are now in a position to carry out the transfer of the subregular germ. If
wn = w′/(−Rw′ + 1), σ(wn) = δwn/(A

n
σwn + 1), σ(w′) = δw′/(A′σw

′ + 1), δ = ±1,
then this is defined over F provided

Anσ + δσ(R)−R = A
′

σ.

We follow steps 2 and 3 of (5.5). For w′ = w2h we let R = 0. For w′ = wn−2h we
let R = T−p−T−ε. We verify that these maps are defined over F by using (5.6) and
(5.8) and checking on generators. We may take e(α, β) = 1, e(β, α) = −1. δ = 1
except for σ0 where δ = −1.

Generator An
σ δσ(R)−R A2h

σ

σ0 Tε − T−ε (Tp − T−ε)− T−p + T−ε Tp − T−p
σT1−T−ε T1 − T−ε T−ε − T1 0

σT−ε−T−ε−1 T−ε−1 − T−ε T−ε − T−ε−1 0
σTp−T−p 0 Tp − T−p Tp − T−p

σT−p−T−p−1
0 T−p−1 − T−p T−p−1 − T−p

others 0 0 0

Thus Anσ + δσ(R)−R = A2h
σ .

Now we check that the map wn = wn−2h is defined over F .
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Generator An
σ δσ(R)−R An−2h

σ

σ0 Tε − T−ε 0 Tε − T−ε
σT1−T−ε T1 − T−ε 0 T−ε − T1

σT−ε−T−ε−1 T−ε−1 − T−ε 0 T−ε − T−ε−1

σTp−T−p 0 (5.8) 0 0
others 0 0 0

Thus Anσ + δσ(R)−R = An−2h
σ .

We check that the cocycles are carried into cocycles for the transfer to U(2h).
We use (5.6), (5.15), (I.5.3) and (I.5.7). Note that ζ = 1 for quasi-split groups.

Generator bn,2h a2h

σ0 1 1
σTp−T−p ((Tp − T−ε)wn + 1)/((T−p − T−ε)wn + 1) (Tp − T−p)w2h + 1

= (Tp − T−p)w2h + 1
others 1 1

Thus the cocycles correspond on the transfer to U(2h).

Finally we must check that the cocycles correspond on the transfer to U(n−2h).

Generator bn,2h an an−2h

σ0 1 1/ζ 1
1 w/x(γ) w/x(γ)

σT1−T−ε 1 (T1 − T−ε)wn + 1 (T1 − T−ε)wn−2h + 1
σTp−T−p x x 1
others 1 1 1

where x = ((Tp − T−ε)wn + 1)/((T−p − T−ε)wn + 1). So b−1
n,2han = ζ−1 · an−2h

where we identify ζ with a cocycle in the obvious way. In the degenerate case
k = h, n − 2h = 1. w = wn−2h is defined over F (we may exclude the generators
σT1−T0 and σT0−T−1) and ηK(an−2h) = ηK(−w/x(γ)). The principal value integral∫
ηK(w)|dw/w2| is zero [18]. So everything checks out. This completes the proof

of the transfer.

Remark. We make a few observations about the transfer. First the arguments
are independent of the Cartan subgroup. Second the singularities of the variety Y1

ultimately played no role in the expression for the subregular germ. Finally we note
that the transfer factor enters into the transfer of the subregular germ in almost a
trivial way.
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List of Notation and Conventions

α I.2 simple root
α IV.7 root next in size to β in S−
α-cell IV.5
α-wall IV.4
α-chamber IV.4
α II.7 short simple root of G2

α III.1 positive simple root in a rank two group
αv I.5 coroot associated to α

β positive simple root
β II.7 long simple root of G2

β III.1 positive simple root in a rank two group
β IV.7 largest simple root of S−
β(EΣ) II.9 Igusa constants
β V.3 Igusa constant, see Langlands [17]

γ III.1 positive root in a rank two group
γ II.7 root α+ β of G2

γj VII.5.13 root Tj − T−j
Γ I.1,I.6 regular curve in T
Γ I.6 Γ \ {0}
ΓO,ΓO′ VII.4 subregular germs
Γ0 IV.3.2 a graph
Γ1 IV.4 minimal tree in Γ0 containing extremal

α, β ∈ S−
Γ′ IV.4 pruned Γ1, as a graph it equals S−

δ III.1 positive root in a rank two group
δ II.7 root 2α+ β of G2

δ V.2.3 δ(ξ) = x(β)/ξx(γ)
∆Γ VI.2 = mκ(e′), e′ = e(T (W,α) : α simple
∆′ VI.2 representatives of orbits of simple roots

under Gal(F̄ /F )

ε III.1 positive root in a rank two group
ε±α(x) I.5 exp(xX±α), X±α root vectors
ε II.7 root 3α+ β of G2

ε VII.5.5 ε = 1 for n even and ε = 0 for n odd

127
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εj VII.5.5 permutation (j,−j) of −k, . . . , k

ζ III.1 positive root in a rank two group
ζ II.7 root 3α+ 2β of G2

ηK V.4,VII.4 nontrivial character of H1(Gal(F̄ /F ), U(1))
ηK nontrivial quadratic character of F×

κ I.1,I.5 character on H1(Gal(F̄ /F ), T )
κα VI.2 character of F×α
κ(E) V.2 character such that f/κ(E)(µ) extends

generically to E
κ(E) VI.2

∏
(κα)e(α), e(α) an integral multiplicity

κ(E0) VI.2 = κ0

κ0 VI.2
∏
κα

λ I.1 local parameter on Γ at p
λ II.4 pullback of a local parameter on Γ to Y

ν I.2,II.1 an element of N∞
ν2 V.3 form on Eα ∩ Eβ

ξ I.5,V.1.2 coordinate in Nqs∞/Nα on U(α, β) ∩ Eα(u)0

ξ IV.5 a wall of an α-chamber
ξ : X1 → T I.6 a morphism
ξ : LH → LG an embedding of L-groups

π1 : X1 → G I.6 a morphism
π1 : Y1 → G I.5 a morphism

ρ VII.1 homomorphism Gal(F̄ /F )→ Outer(LH0)

σα I.5,II.6,V.5.2 simple reflection in the Weyl group
σω II.6 representative of ω ∈ Ω in NG(T0)
σ∗ VI.1 action of Galois group on simple roots in

a quasisplit group
σsp VI.1 action of the Galois group in Gsp
σ0 VI.1 element of Ω̃
σT III.1 permutation of Weyl chambers associated

to σ ∈ Gal(F̄ /F ) and T
Σ VI.2 an element of ∆′

φ : T 0 × T\G→ X1 I.6 a morphism

ωα V.5.2 ωα ∈ NG(T0)
ωσ VI.1 element of NPα(T0)adj
ωZ I.2,V.2 invariant form of top degree on Z,

Z = M,T, T\G,X or Y
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Ω I.2 Weyl group of G with respect to T

Ω̃ VI.1 the extended Weyl group or direct
product Ω× Z/2Z

Ω′ III.1 Image(Gal(F̄ /F )→ Ω̃), Ω̃ extended
Weyl group

adjacent walls IV.4
adjoint conjugacy I.6 a conjugacy class in the adjoint group
aσ V.4 cocycle in H1(Gal(F̄ /F ), U(1))
aσ VI.1 automorphism of (Gsp, Bsp, Tsp, {Xγ})
aσ(w) VI.2.3 a cocycle
an VII.5.5 the cocycle a for the group U(n)
a(EΣ) II.9 Igusa constants
Aσ I.5 a cocycle of Z1(Gal(F̄ /F ), NGqs(Tqs)ad)
A(X), Ar(X) V.3 Igusa data, see Langlands [17]
An I.3 group or algebra of type An
Ar affine r-space

big nodes IV.4
big chamber IV.4
big wall IV.4
b II.1 element of B0

b = bn,2h VII.5.5 a cocycle in H1(U(1))
B I.2 Borel subgroup containing T
B (W ) I.2 B ω, W = W (ω).
(B(W )) I.2 star in S
B0, B∞ I.2 a pair of opposite Borel subgroups
Bqs I.5 Borel subgroup over F containing Tqs
Bsp VI.1 Borel subgroup in split form
B+ V.5 intersection of lines `α, `β
B− V.5.1 intersection of lines `α, `′α
B.I,. . .,B.IV III.1 zero patterns
Bn I.3 group or algebra of type Bn

C complex numbers
CG(x) centralizer in G of x
CG(x)red VII.5 the reductive part of the centralizer of x
Cn I.3 group or algebra of type Cn

divisor I.6
– fundamental II.9
– O I.6 a divisor over the unipotent class O
– regular I.6 a divisor over a regular unipotent class
– spurious II.9
– subregular I.6 a divisor over a subregular unipotent class
Dn I.3 group or algebra of type Dn

Dynkin curve IV.1,VI.1 (B\G)u
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external wall IV.5
e I.5,II.1 a star, element of S
e(p) VI.2 a star depending on a point p
e = e(α1, α2) V.6 constant defined by

exp(X−α1
) exp(Xα1+α2

) exp(−X−α1
) = . . .

e` VII.5.6 constants in F
E I.6 a divisor
E(u) I.6 the fibre in E over u ∈ G
Eα V.1 a subregular divisor, α-simple, Eα = EΣ,

Σ = {α}
Eα(u) V.1.1 π−1(u) ∩ Eα, fibre over u in Eα
Eα(u)0 V.1.1 an irreducible component of Eα(u)
E(`α, u) V.1.2 a component of Eα(u) indexed by the line `α
E0 V.1 the regular divisor, E0 = EΣ, Σ = ∅
E VII.5.14 Eαk ∩ Eαk+1

or Eαk
En I.3 group or algebra of type En, n = 6, 7, 8

fundamental
– α-cell IV.5
– divisor II.9
f I.5 a locally constant fuunction of compact

support on G
F I. p-adic field of characteristic 0.
F̄ I. algebraic closure of F
Fα VI.2 field extension of F fixing α
F4 I.3 group or algebra of type F4

F1(β, θ, f) V.3 a term of the asymptotic expansion,
see Langlands [17]

G I. reductive group defined over F
Gadj I.6 the adjoint group of G
Gder II.5 the derived group of G
Gin VII.4 inner form of G
Gin I.5 an inner form of Gqs
Gqs I.5 a quasi-split group, a form of G
Gsp VI.1 split form of G
G2 I.3 group or algebra of type G2

h2 V.3 function on Eα ∩ Eβ
H1(T ) I.5 H1(T ) = H1(Gal(F̄ /F ), T ) first

cohomology group with coefficients in T
H I.5,VII.1 endoscopic group
H VII.5 the endoscopic group U(n− 2h)× U(2h)

of U(n)
H VII.5.11 subgroup U(2h)× U(n− 2h) of G = U(n)
H ′ VII.5.11 subgroup of U(n) conjugate to H

K field extension of F
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KX V.2.3 field of rational functions on Lie(T )
Kα IV.7 an α-cell in Z−α

`α V.1.2 a projective line of type α in
the flag variety

Lp(W ) IV.1 a set of simple roots
L− = L−βi IV.5,IV.7

mα II.2 β =
∑
m(α)α

mκ(e) I.5 the function g → κ(σ(g)g−1),
σ ∈ Gal(F̄ /F ), g ∈ (T\G)(F )

M I.2 Springer variety B ×B G
M V.3 constant m+m1 +m2 + am(µ3)

node I.3 a node is an {i, j}-residue in the Coxeter
complex of Ω

– big IV.4
– solid IV.3
– special III.1
nw II.1 a coordinate in N∞: Bnw0 = B(W )
NG(T ) normalizer in G of T
N I.2 unipotent radical of B
N∞ I.2 the unipotent radical of B∞
Nqs I.5 unipotent radical of Bqs
Nqs∞ I.5 unipotent radical of Borel opposite Bqs

through Tqs
Nα I.5 radical of the parabolic subgroup

Bopqs 〈σα〉Bopqs , op = opposite
Nω II.6 subgroup of N0

N VI.2.3 the norm map from K to F , K a field

obtusely adjacent IV.4
O-divisor I.6 a divisor over the unipotent class O
O II.9 unipotent class O

proximate chamber IV.4
p I.1 point on a curve Γ
p II.1 a point in X1

p I. residue characteristic of F
Pα II.6 parabolic subgroup containing B0

Pα IV.1,V.1.2 a parabolic subgroup of type α
containing B0

P1 VII.4 projective line
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Q-chamber IV.5

regular divisor I.6 a divisor over a regular unipotent class
r I.2 the semisimple rank of G
R IV.3 roots α such that z(W,α) 6= 0 for some W
Rω II.7 {β > 0|ωβ < 0}
R1, R2 VII.5.5 elements of KX

solid node IV.3
special node III.1
spurious divisor II.9
subregular
– divisor I.6 a divisor over a subregular unipotent class
– conjugacy class IV.1
– unipotent III.3
S I.2 variety of stars
S′ I.2 subvariety of S
S′′ I.2 open subvariety of S1

S0 I.2 variety of regular stars
S1 I.2 first resolution of S
S(B∞) I.2 a coordinate patch on S
S(B∞, B0) I.2 a coordinate patch
S2 IV.4
S IV.3 roots α such that z1(W,α) = 0 for some W
S− IV.4 S− = S except for D4, |S| ≥ 4, . . .

type of a vertex IV.3.2
tσ I.5 a cocycle on T (R), R the field of rational

functions on S
T I.2 Cartan subgroup in G over F
T 0 I.2 regular elements of T
T0 I.2 intersection of opposite Borel

subgroups B0, B∞
T0 V.5.2 Cartan subgroup in B+ ∩B−
Tin I.5 Cartan subgroup in Gin
Tqs I.5 maximally split Cartan subgroup of Gqs
Tsp VI.1 Cartan subgroup in split form
T (W,α) IV.1 (1− γ−1)/λ
Tσ I.5 a twisted cocycle in Z1(Tqs)
Ti VII.5.5 the ith character on the Cartan subalgebra

U(1) V.4 unitary group in 1-variable
U(α′, α′′) V.1.1 a coordinate patch in Ys
U1, U2 V.3 coordinate patches

V n I.2 n = |Ω|-fold product of the flag variety
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w = w(α+ β) V.2 a coordinate on U(α, β) ∩ Eα(u)0

wn VII.5.5 the variable w for the group U(n)
W+ I.2 positive Weyl chamber for B
W (ω) I.2 ω−1W+, ω ∈ Ω
W IV.4 a big chamber
W a Q-chamber

xβ II.1 xβ(b) is the βth coefficient of b ∈ B0

x(W,β) II.1 a local coordinate
(x−k, . . . , xk) VII.5.5 element of a Cartan subalgebra for

U(n), 2k + 1− ε = n
X I.2 closure of X0 in G× S
X ′ I.2 closure of X0 in G× S′
X ′′ I.2 closure of X0 in G× S′′
X(B∞, B0) I.2 a coordinate patch on X
X0 I.2 subvariety of G× S0

X1 I.2 closure of X0 in G× S1

X±α I.2,VI.2 root vectors
X±α, Hα II.1 a Lie triple
X(H) VII.3 a set of characters θ : F× → C×

yβ II.2 βth coefficient of tn

Y I.2 closure of Y 0 in X
Y ′ I.2 closure of Y 0 in X ′

Y ′′ I.2 closure of Y 0 in X ′′

Y (B∞, B0) I.2 a coordinate patch on Y
YΓ I.2 resolution of singularities of Y1

YΓ I.6 resolution of Y1

Y 0 I.2 restriction of X0 to Γ
Y1 I.2 closure of Y 0 in X1

Ys V.1 an open subvariety of Y ′′

Y (T, κ) VII.3 a set of characters θ : F×C×

zero pattern III.1
ẑ(α) IV.4 a variable in S2

ẑ(W,α) IV.4 a variable in S2

z̃(W,α) IV.1 z̃(W,α) = z(W,α)/z(Wα, α)
z(W,α) I.2 a coordinate on S(B∞, B0)
z1(W,α) I.2 homogeneous coordinate in S1(B∞, B0)
z1(W,α) II.2 z1(W,α) = z(W,α)/z(α)
Z ring of integers
Z VII.5 center of G
Z−α IV.7 union of α-chambers
Zβ IV.7 union of β-chambers


