
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



 



P E R F E C T M A T C H I N G S IN R A N D O M r-REGULAR,

s - U N I F O R M H Y P E R G R A P H S

by

Colin Cooper
School of Mathematical Sciences

University of North London

and

Alan Frieze
Michael Molloy

Bruce Reed
Department of Mathematics
Carnegie Mellon University

Pittsburgh, PA 15213

Research Report No. 93-157

October 1993

510.6
C28R
93-157



Perfect matchings in random i—regular,
5—uniform hypergraphs.

Colin Cooper* Alan Frieze* Michael Molloy*
Bruce Reed§

September 8, 1993

1 Introduction

Let E = {X\,X2, • • • ,Xm} where the X,- C V for 1 < i < m are distinct.

The hypergraph G = (V, JE7) is said to be s-uniform if |X,| = 5 for 1 < t < m.

Thus, for example, a 2—uniform hypergraph is a graph. A set of edges

M = {Xi : i G / } is a perfect matching if

(i) izjL j G / implies Xt 0 Xj = 0, and

(ii)
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One of the most interesting and difficult problems in probabilistic combina-

torics can be described as follows: suppose that the X{ are chosen indepen-

dently at random from the ('^'), s-subsets of V. For what value of ra, the

number of edges, is it likely that G will contain a perfect matching? When

5 = 2, this was solved by Erdos and Renyi [4]. For s > 3 w e only have the

fairly loose results of Schmidt and Shamir [9].

Putting \V\ = sn it is reasonable to make the following:

CONJECTURE. Assume s is a positive integer constant and m = n(log n+

logs + cn) then

lim Pr(G has a perfect matching ) =

The right-hand side of the above expression is simply the limiting probability

that U£Li Xi = V. The case s = 2 was dealt with in [4].

A related and special case of the problem is that of packing vertex disjoint

copies of a fixed graph H in a random graph G. The existence of perfect

packings was solved completely by Luczak and Rucinski [5] for the case when

H is a tree. Less precise results were obtained by Rucinski [8] for arbitrary

graphs.

For v 6 V, let du{v) = \{i : v G X t } | be the degree of v. H is r—regular if

dH(v) = r for all v G V. Let now V = [sn], where [k] = { 1 , 2 , . . . , k} for all

positive integers k. Let Q = Q(n,r,s) = {G = (V,E) : G is r - r egu la r and

5—uniform }. Let G = Gn,r,s be chosen uniformly at random from Q. In this

paper we prove



Theorem 1 Suppose r, s are fixed positive integers, then

Yim^ Pr(Gn<fV, has a perfect matching ) = < r

where
logr

(r-l)lQgfe)
+ 1.

D

[Note that or is always non-integral and so this result is best possible.]

Next let f(s) = min{r : 5 < or}. Thus f(s) gives the threshold in terms of

degree for a s-uniform hypergraph to almost surely have a perfect matching.

We have computed the first few values of f(s) and they are given in Table

1. For s large f(s) is approximately e3"1.

s 2
3

3
7

4
19

5
52

6
146

7
401

8
1094

9
2979

10
8126

Table 1:

To prove the theorem, we make use of a remarkable new approach due to

Robinson and Wormald [6] and [7]. Although new to probabilistic combi-

natorics, we will see that their method is in fact an Analysis of Variance

technique with a clever partition of the probability space based on the num-

ber of small cycles.

Since the case s = 2 is well known, we will assume that s > 3 from now on.

To prove our theorem, we need a suitable probabilistic model for generating



G(n,r, s). We will use a natural generalisation of the Configuration Models

of Bender and Canfield [2] or Bollobas [3], which we now describe.

2 Configurations

Let Wv = {v} x [r] for v G V = [sn] and W = Uv€v Ww. Each Wv should

be regarded as a block of r fractional edges for each v € V, thus generalising

the concept of half-edges arising from the use of configurations in the context

of graphs. In this context, a configuration is a partition of W into m = rn

subsets of size s. Let ft = ft(n, r, 5) be the set of all such configurations, and

let F = F(n, r, 5) be chosen randomly from fi.

For x = (v,t) e VF we let ^(z) = v. If F € ft and S 6 F we let V(S) =

(ar) : a: G 5}. We define the multigraph 7(F) = (V, {V(5) : 5 € F}).

F is simple if S G F implies 1^(5)1 = 5 and distinct 51,52 G F have

V(5i) 7̂  V(52). Thus 7(F) is s-uniform if and only if F is simple. A routine

calculation shows that

Jirn Pr(35i,52 € F with V(SX) = V(S2)) = 0.

The main properties we need are

(A) each G G Q arises from precisely (r\)sn simple configurations F.

(B) Jiim Pr(F is simple ) = e-(s-\)(r-i)/2 (see Lemma 2 below).

A perfect matching of F is then a set {5t- : i G /} C F such that



(ii) ij £l,i^ j implies V(S{) n V(Sj) = 0, and

(iii) U€ / V(Si) = V.

Thus if F is simple it has a perfect matching if and only if 7(F) has a perfect

matching. Furthermore, Theorem 1 will follow immediately from (A) and

(B) above and

Theorem 2

lim P r ( F has a perfect matching ) = < n
 r

n-+oo v F J * } y 1 s < aT

D

3 Outline Proof of Theorem 2

We use the notation a « /? to mean a = (1 + o(l))/3 where the o(l) term

tends to zero as n tends to infinity. All subsequent inequalities are only

claimed to hold for sufficiently large n.

Suppose that F is chosen randomly from f2. Let Z{F) denote the number of

perfect matchings in F. We will prove the following lemma in Section 4.

Lemma 1

E(z)

Notice that the first (easy) part of Theorem 1 now follows immediately since

the righthand side of (1) tends to zero exponentially fast when s > ar.



To apply the Analysis of Variance technique, we have to decide on a partition

of ft. We proceed analogously to Robinson and Wormald. For the moment

let 6, x be arbitrarily large fixed positive integers.

We now define a fc—cycle of F for integer k > 1.

k = 1: 5 G F is a 1-cycle if 1^(5)1 < s.

k = 2: Si, 52 G F form a 2-cycle if \V(SX) n V(S2)| > 2.

k > 3: Si, S2 , . . . , Sfc G F form a fc—cycle if there exist distinct t>i, ̂ 2 , . . . , vjb G

V such that Vi e V(S{) D V(S{+i) for 1 < i < fc, (5fc+i = 5i).

Observe that F is simple if and only if it has no 1-cycles and yields no

repeated edges.

Next let Cfc denote the number of k—cycles of F for k > 1. For c =

(ci ,c2 , . . . ,c6) e AT6, where N = {0,1,2, . . .} , let ftc = {F G ft : Ck =

Cjk,l < A: < 6}. Let
((5 - l)(r - l))fc

A f c = 2k *

Lemma 2 Let c 6e /ixed, t/ien

Now define

S(z) = {c € Nb: \ck - Afc| < xAj/3,1 < k < b},

and

n = U nc.



Let

W = Pr(F 6 H).

For c e iV6 let

Ec = E(Z | F e ftc)

and

Vc = Var(Z | F e Qc).

Then we have
"EV ^ 2 \ V ^ /»- T/ i V ^ ^- Z?2 /o\M2J\ ZJ I = > 7Tr» K r "T" 7 TT^jtS^. ( O )V / 2--^ v ^ Z—/ ^ C V /

ceA^6 ceNb

The following two lemmas contain the most important observations. Lemma

3 shows that for most groups, the group mean is large and Lemma 4 shows

that most of the variance can be explained by the variance between groups.

Lemma 3 For all sufficiently large x (a) W < e~ax for some absolute con-

stant a > 0. (b) c e S(x) implies

Ec >e

for some absolute constants /?, 7 > 0. O

Lemma 4 If x is sufficiently large then

where 7 is as in Lemma 3



Hence we have from (2) and (3),

(4)

where 6 = {be~^x + (jz\)b) y ^ i j . The rest is an application of the Cheby-

cheff inequality. Define the random variable Z(F) by

Z(F) = Ec, if F € Hc.

Then for any t > 0

< 6E(Z)2/t\ (5)

where the last inequality follows from (4).

Now put t = e~(^+7a?)E(Z)/2 where /?, 7 are from Lemma 3. Applying Lemma

3 we obtain

Pr (Z^O) > Pr(Z > e

> P r ( | Z - Z | < i A

> 1 - A6e2^x) - W

Hence, using Lemma 3

lim Pr(Z = 0) < Ube2^x + 4 ( ^ Y e^+^A J£=l. (6)

This is true for all 6, x and so limn^oo Pr(Z = 0) must in fact be zero, proving

Theorem 2, (putting b = x2 and x arbitrarily large makes the right-hand side

of (6) arbitrarily small).
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4 Moments

First of all let
(sm)\

™v ' m!(a!)»»

denote the number of ways of partitioning [sm] into m s-sets. Then for any

fc>o,

Pr(F contains k given s-tples) =

(srn)sk

We can then compute

(s\)k(rn)k ,ri n ,
/ \ / if k is fixed

7 \
{rn)

on using Stirling's Formula. Here ifis(n)rsn counts the number of distinct

possible perfect matchings.

We can assume from now on that s < ar. Next we have

E(Z2) = B(Z)f: fj)^(n-fc)(r-l)^-fcVJ(rn-2n+fc)M((r-l)n). (7)

Explanation: we choose a fixed perfect matching Mo and compute the

probability that F contains a perfect matching M given it contains Mo.

Summing over M$ accounts for E(Z). The parameter k denotes the number

of s-tuples common to M and MQ. (?) counts the number of ways of choosing

these. There are ^3{n — k)(r — l)5(n~fc) possible completions. The remaining

terms give the probability of M given Mo-



Let Uk denote the summand in the right-hand side of (7). Then for 1 < k < n

u>k+i n — k y j s(rn — 2n + k) + i , ,
~^T = (k + l){r-l)s fJi sn - sk - i " }

We first eliminate k < en and n-k <en from consideration, where e = e(ry s)

is small.

From (8), when k < n/(10r) we have Wfc+i/̂ fc > 5. Hence

ln/(20r)j

^ 5n/(20r)liLn/(10r)j,

and so the first n/(20r) terms can be "ignored". Similarly, if for some e > 0

we have k > n(l — 6) then

uw (r - 1 - e)-* ( .
ttfc - ( r - 1 ) ^ - 2 • W

Also wn = 1 and since Z) ujt > E(Z) we can also ignore k > n(l — r~s). Thus

on applying Stirling's Formula and putting k — n{\ + x)/r we get

X

h x)(r - 1 - x)n V(1 + x>

E

10



The range of summation for x is {—1 + ~ : n/(20r) < k < n(\ — Vs)}. Thus

— l < x < r — 1. Note that the term with x « 0 corresponding to k = [n/ rJ

is approximately one and so we can eliminate any terms of order o{n~l).

We continue with the terms with \x\ < 1. Here we can expand (1 + x)l+x

and see that they contribute

r (n (°° xk

x\<i A/2TT(1 + x)(r — 1 — x)n I r \k=2 K\K

n / r(r — 5)

2(r -

(

f (r - s)n 2

2(r - 1 ) ^

We will subsequently eliminate the terms with x > 1 as being insignificant

and so from (10) and (12),

/
- 1) •/-

exp
(r-s) 2\

2 r - 1 2 J

as claimed. (Note that in going from the first line to the second line, the

factor r disappears as x changes in steps of r/n.)

11



Now to deal with x > 1. Returning to (10) we bound from above its right-

hand side, for x > 1, by

n/r

2 5 1 ^ g **-* \ylT

since a; < r — 1 in the summation.

Now consider

where C == [~'
r_[

4>\x) = 2^x - log(l + x)

4T(x) = 2C-r^~
1 + X

Observe first that 2£ < log 2 for all s > 3 and ar > s. Also (j> will be concave

and decreasing until x == ~ — 1 and convex from then on. Also for fixed s

and x > 1, <j)(x) decreases with r. Our strategy is now as follows: taking

r = f(s) (see Table 1) we let e = 1/7 in (9) and put xs = | r - 1. We then

verify that
1 y , ^ . > 1 for r > f(s) (14)

and

^,/(,)(^) < -.0001 . (15)

12



Then in the range x e [l,xs] we can use (13) and (15) and in the range

[xSJr — 1] we can use (9) and (14) to show that the contribution of x > 1 is

negligible.

We leave the detailed verification of (14) and (15) to the reader. ((14) is

trivial, as is (f>sj^(l) < —.0001 . The remaining inequality is a bit close for

small 5, but nevertheless true. For large s, f(s) « e8"1 is a good approxi-

mation. Also, for s > 4 we can take e = 1/5 and xs = | r — 1 which makes

things easier.)

5 Cycles

First for k > 2,

- 1))*
2k

Explanation: n n accounts for choosing the v\, V2,..., Vk. (k —1)1/2 counts

the cyclic orderings. (r(r — l))fc counts the choices of points in the blocks

WVi. (*™£) approximates the choices of the remaining k(s — 2) points. Then

we have the probability that the k chosen s-tuples are in F.

When k = 2,

\)2(rnfE^«(7)(Hs™2)i
_ (r-l)2(5-l)2

13



and when k = 1,

, x fr\ ( srn \ s\rn
E(Ci) « sn[\[ J 7v u \2J \s - 2) (sr7 r(srn)s

^ 2

Thus E(Cfc) = Ajb, for fixed k > 1. Routine calculations can strengthen this

to show that Ck is asymptotically Poisson with this parameter and that in

fact Ci, C2 , . . . , Cfe are asymptotically independent. This proves Lemma 2.

6 Proof of Lemma 4

Let Mo be some fixed perfect matching . Then

I cl A/CF

ku

E(Z)Pr(F e »c | f 3 MQ)

Let Et, t = 0 , 1 , . . . &o = L^/2j denote the expected number of fc-cycles which

contain t s-tuples from Mo. Then EQ = ((s - l)(r - 2))k/(2k) and for t > 1

14



sn \ f ( — I) X*^"1

Explanation: consider the first term inside [ ]'s. Choose t s-tuples T from

Mo and cyclically order them ( ( " ) ^ i ^ ) - Choose ordered pairs of elements

of tuples to connect with non-Mo tuples ((s(s — 1))*). For each such point

choose an element from the same block to go in a non-Mo tuple ((r — I)2 ').

Choose #1,0:2, • • • ,%t > 1 where x\ + x<i + • • • xt = k — t. There will be

X{ non-Mo tuples between the i'th and (i+l) ' th Mo tuple (rT^T1))- ^ o w

consider the third term [ ]. We choose k — 2< members U of V and order

them ((fc!^J(fc — 2i)M. They are to be placed in s-tuples which will then

be put between the tuples in T. Choose ordered pairs from each WU}u G U

(((r — l)(r — 2))A:"~2'). Then choose the remaining (s — 2){k — t) points for the

non-Mo tuples ( « (**jljj / ) * ^ e m ^ d l e term [ ] is simply the conditional

probability that the chosen tuples are in F.

Thus

where

(r-2)'-
Now

feu * - i ; " hk-A t)

« I h +

15



vi £ i
3

1 +
X

i-/•+!.

Thus, putting /i*. = E(Cjt | Mo) we see that

_ ((5 - l)(r - l))fc

2fc

= At 1 +
(r -

Of course, further calculations will show that, given F D Mo, the Ck are

asymptotically independently Poisson with means /i*.. Hence, from (16),

Ec « (17)

So,

Cfc!

(18)

16



We need to estimate

First put

where a*,/?* > —773- when x is sufficiently large.

From Alon and Spencer [1], p239 we obtain

, (20)

and

I ~".r i-"/v—"it / /
1/3V \ -W2

If a:Aj/3 > 4O7 then x\l
k
/3 > 4O7 for A: = 1,2,..., b and then the right-hand

side of (20) is at most e"~4rr for k = 1,2,..., b.

On the other hand to make the right-hand side of (21) less than e~4rc we

need to make

; / 3 I67/AP, (22)

17



where

y

Now when y < 1 we have </>(y) > y/3 and making x > 967 handles those k

for which 487/A*/3 < 1. The set of k for which 487/Aj /3 > 1 depends only

on 7 (i.e. is finite) and we can clearly increase x to make (22) true for all of

these.

Hence, for x sufficiently large,

TTCEI > E(Z)2(1 - be-^x) TT exp ( ^ 7 ^ 1 • (23)
fc=i I Xk )ces(x)

Also

f(aM\ /
exp —II—f = expi

Thus, from (23), with

E TcBf > (l
i b = l

r — s

This completes the proof of Lemma 4.

18



7 Proof of Lemma 3

First we quote a lemma from [6].

L e m m a 5 Let 771,7/2? ••• he given. Suppose that 771 > 0 and that for some

c > 1, rji+i/rji > c for all i > 1. Then uniformly over x > 1,

t
t = l *=ifc-(l+y,-) * ' e

where yi = 0:77," ' and CQ = min{77i , 77/ }/4.

(a) Putting 77,- = A,- satisfies the conditions of Lemma 5 with c = r — 1. Now

6

« E E

for some constant a, independent of x.

(b) Applying (17) we obtain

> ABX,

where

19



and

= n (i-TrrivE) n i+piu •
u ̂ AA \ v l) / k even \ v l) /k odd

Now

6 < ' Xk A fc , A f c

_ /r-sN1/4

Vr-lJ '
Now

.2/3

"S(r-lV-lJ"> exp < —

The sum in the exponential term is convergent and so B is bounded below

by a positive absolute constant.
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