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Zusammenfassung

Diese Arbeit behandelt verschiedene Aspekte der Klasse der nichtlinearen Optimalsteuerungsprobleme
unter Unsicherheit. Dabei handelt es sich um Optimierungsprobleme, die die Optimierung eines durch
einen dynamischen Prozess bestimmten Systems mit der Problematik unsicherer Parameter, die durch
eine Wahrscheinlichkeitsverteilung modelliert werden, verbinden.
Wir geben einen ausführlichen Überblick über verschiedene Verfahren zur Propagierung der Unsicher-
heiten durch das dynamische System und zur Robustifizierung der optimalen Lösung. Zur Umwandlung
der unsicheren Optimalsteuerungsprobleme im Wahrscheinlichkeitsraum in deterministische, sogenan-
nte Surrogate-Modelle verwenden wir die Polynomial Chaos Transformation, eine in den Ingenieur-
wissenschaften weit verbreitete Methode zur Unsicherheitsquantifizierung. Aufgrund ihrer Grösse und
Komplexität sind die entstehenden Surrogate-Optimalsteuerungsprobleme für herkömmliche Optimal-
steuerungssoftware nur schwer lösbar. Diese Problematik wird erschwert, wenn das Ausgangssproblem,
wie in der hier betrachteten Problemklasse, stark nichtlinear ist. In diesem Fall wird eine hohe Expan-
sionsordnung benötigt um die nichtlineare Unsicherheitsfortpflanzung abbilden zu können.
Wir entwickeln zwei algorithmische Verfahren, die zur effizienten Lösung der unsicheren Optimals-
teuerungsproblemen beitragen. Dazu leiten wir einen adaptiven Algorithmus her, der die Eigenschaft
ausnutzt, dass die unterschiedlichen Zustandsvariablen in unterschiedlicher Stärke von den unsicheren
Eingangsparametern abhängen. Mithilfe von Fehlerschätzern bestimmt der Algorithmus für jede Zus-
tandsvariable adaptiv die optimale Expansionsordnung. Dies hat zwei Vorteile: die Laufzeit, die benötigt
wird um eine Lösung des unsicheren Problemes mit ausreichender Genauigkeit zu finden, wird ver-
ringert und wir erhalten zusätzliche Mechanismen zur Verifizierung der Lösung.
Als zweite algorithmische Verbesserung schlagen wir ein strukturausnutzendes Verfahren zur effizienten
Ableitungsberechnung in Optimalsteuerungsproblemen vor. Der Algorithmus verwendet die spezielle
Struktur, die durch die spektrale Projektion in der Polynomial Chaos Methode entsteht. So können Mod-
ellinformationen wiederverwendet und die häufig vorkommende Dünnbesetztheit der Jacobi-Matritzen
ausgenutzt werden. Dies führt zu beträchtlichen Einsparungen Newton-artiger Verfahren für die Lösung
des hochdimensionalen Surrogate-Problems.
Ergänzend zu den zwei algorithmischen Beiträgen zeigen wir in einem Konvergenzbeweis, dass die
Lösungen der Surrogate-Optimalsteuerungsprobleme nach Anwendung der Polynomial Chaos Methode
für steigende Expansionsordnungen zu der korrekten Lösung des unsicheren Problems konvergieren.

Eine weitere anspruchsvolle Problemstellung dieser Arbeit ist die Lösung von unsicheren Optimals-
teuerungsproblemen mit Zufallsbeschränkungen, sogenannten Chance Constraints. Dabei handelt es
sich um eine probabilistische Robustifizierung des Problems im Wahrscheinlichkeitsraum, die weder zu
konservativ ist noch das Risiko unterschätzt, dass die Beschränkung für bestimmte Zufallsrealisierun-
gen zu verletzen. Wir entwickleln dazu eine effiziente, auf der Polynomial Chaos Expansion aufbauende
Methode um die sogenannten Erreichbarkeitsmengen der unsicheren Zustandsvariablen zu berechnen.
Es wird gezeigt, wie Zufallsbeschränkungen durch diese Erreichbarkeitsmengen mit einer garantierten
Güte approximiert werden können.

Alle in dieser Arbeit entwickelten Verfahren sind der Implementierung in direkte Methoden der
Optimalsteuerung zugänglich. Ihre Effizienz und Eignung für nichtlineare Optimalsteuerungsprobleme
zeigen wir in numerischen Experimenten anhand von zwei prototypischen Anwendungen. Für die Ve-
ranschaulichung der Auswirkungen der Unsicherheitsfortpflanzung verwenden wir dabei ausführliche
Monte-Carlo-Simulationen. Als industrielles Anwendungsproblem betrachten wir das komplexe Op-
timalsteuerungsproblem einer Adsoptionkälteanlage unter Unsicherheit, das in Zusammenarbeit mit
dem Lehrstuhl für Technische Thermodynamik der RWTH Aachen entstanden ist.
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Abstract

This thesis treats different aspects of nonlinear optimal control problems under uncertainty in which
the uncertain parameters are modeled probabilistically. We apply the polynomial chaos expansion, a
well known method for uncertainty quantification, to obtain deterministic surrogate optimal control
problems. Their size and complexity pose a computational challenge for traditional optimal control
methods. For nonlinear optimal control, this difficulty is increased because a high polynomial expansion
order is necessary to derive meaningful statements about the nonlinear and asymmetric uncertainty
propagation. To this end, we develop an adaptive optimization strategy which refines the approximation
quality separately for each state variable using suitable error estimates. The benefits are twofold: we
obtain additional means for solution verification and reduce the computational effort for finding an
approximate solution with increased precision. The algorithmic contribution is complemented by a
convergence proof showing that the solutions of the optimal control problem after application of the
polynomial chaos method approach the correct solution for increasing expansion orders.
To obtain a further speed-up in solution time, we develop a structure-exploiting algorithm for the fast
derivative generation. The algorithm makes use of the special structure induced by the spectral projec-
tion to reuse model derivatives and exploit sparsity information leading to a fast automatic sensitivity
generation. This greatly reduces the computational effort of Newton-type methods for the solution of
the resulting high-dimensional surrogate problem.
Another challenging topic of this thesis are optimal control problems with chance constraints, which
form a probabilistic robustification of the solution that is neither too conservative nor underestimates
the risk. We develop an efficient method based on the polynomial chaos expansion to compute nonlinear
propagations of the reachable sets of all uncertain states and show how it can be used to approximate
individual and joint chance constraints. The strength of the obtained estimator in guaranteeing a satis-
faction level is supported by providing an a-priori error estimate with exponential convergence in case
of sufficiently smooth solutions.
All methods developed in this thesis are readily implemented in state-of-the-art direct methods to opti-
mal control. Their performance and suitability for optimal control problems is evaluated in a numerical
case study on two nonlinear real-world problems using Monte Carlo simulations to illustrate the effects
of the propagated uncertainty on the optimal control solution. As an industrial application, we solve a
challenging optimal control problem modeling an adsorption refrigeration system under uncertainty.
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Introduction

The recent growth of computational power and the progress of the research in theory and
algorithms open up the possibility to solve more and more complex optimal control problems.
Often the knowledge of the physical systems is not complete or suffers from insufficient data or
assumptions taken to simplify the complex properties. In other cases even inherently random
model quantities are present, e.g. consider the turbulent fluctuations of a flow field around an
airplane wing. The neglection of this uncertainty however leads to inaccurate results that do
not reflect the physical reality.
In optimal control under uncertainty, the uncertainty within the model is treated in a systematic
way by taking into account that the behavior of the complex system varies from one realization
of the uncertain quantity to another. Predictions need to be made not only for one single
fixed realization, but for all possible outcomes. The aim is to produce solutions with concrete,
quantifiable measures of uncertainty thanks to which we know how good the predictions are.

Problem description and challenges

Based on the assumption that structural information about a-priori uncertainty is at hand,
e.g. in form of probability distributions or moment information, uncertain parameters or initial
conditions can be modeled probabilistically. In this case, the random variables act as carrier
of the uncertainty. This approach can be regarded as a general way to include all knowledge
about the uncertainty into the model.
Techniques to deal with uncertainty within mathematical problems originate from a number of
different fields – statistics and probability theory, but also control theory, optimization, dynam-
ical systems, and many fields of engineering and computational science. Notably mechanics,
fluid dynamics and aerodynamics have contributed to a wealth of advanced methods useful
for the quantification of uncertainty.

In this thesis, we study the mathematical problem class of nonlinear optimal control prob-
lems, that is, time-dependent optimization problems containing ordinary differential equa-
tions in their dynamics. After an appropriate discretization and parametrization of the contin-
uous problem, finding a solution amounts to solving a large-scale structured nonlinear pro-
gram (NLP). Every iteration of an NLP algorithm requires a large number of forward solves
of the uncertain dynamical system. This quickly becomes incompatible with the wide-spread
Monte Carlo sampling (MCS) method which typically requires a huge number of samples to
yield meaningful results. Addressing this issue, we use the polynomial chaos (PC) method,
another well-known uncertainty quantification method, to construct deterministic surrogates,
which can be solved in place of the original uncertain optimal control problems. The bene-
fits of the polynomial chaos method are the broad applicability to nonlinear problems with
possibly large variance and different types of probability distributions, as well as guaranteed
mean-square convergence for sufficiently smooth forward problems with a means for error
control by increasing the expansion order. One challenge of this thesis is to prove that this
fast spectral convergence also applies to optimal control problems that may result in different
control policies for different expansion orders.
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The practical use of the PC method presents some major difficulties: the computational cost be-
comes prohibitive when (i) the dimension of the parameters modeling the uncertainty is even
moderately large ("curse of dimensionality") or (ii) the uncertainty evolves in a very nonlin-
ear fashion or even suffers from stochastic discontinuities or long-term integration. In optimal
control problems, we are mainly faced with the difficulty of a strong nonlinear dependence
on the random input, requiring a large PC order and consequently a very complex surrogate
problem to solve. Accurate results are possible but additional structure exploitation and nu-
merical procedures are indispensable to prevent a convergence breakdown and an explosion
of the problem size.

Another important challenge in the field of optimal control under uncertainty is the robus-
tification of the optimal solution against variations of the uncertain inputs. The notions of
optimality and robustness of the objective function as well as constraint satisfaction under
uncertainty must be properly treated regarding specific application-dependent demands by
appropriate measures of robustness. A valuable solution should not only be able to make pre-
cise statements about the uncertainty propagation within the dynamical system but use the
obtained information to take robustification decisions. The aim is to ensure that the solution
remains feasible and near optimal even when the data changes. As a useful side effect and
second benefit, robustification often involves the decrease of the deviation of the uncertainty,
thus controlling to some extent the aforementioned high nonlinear parameter dependence of
the solution.
The different robustification methods can be distinguished by their numerical computation
procedure as well as the resulting tradeoff between optimality and robustness, also called the
price of robustness. Common approaches are a worst-case robustification against all possible
outcomes, or the use of a safety margin based on the variance. The first approach is an example
resulting in a very high price of robustness, that is, the solutions are often found to be overly
conservative or the problem might even become infeasible. In contrast, the second approach
generally does not allow for reliable statements about the obtained level of robustness. A
preferred approach to this end is to make use of chance constraints, probabilistic formulations
that require constraint satisfaction with a selectable probability level while excluding a well-
defined number of extreme outcomes, leading to decisions that are neither too conservative
nor too risk-seeking. The immediate computation of chance constraints by determining the
propagated density is not tractable for most nonlinear real-world instances and their efficient
computation within optimal control problem is an open problem.

Contributions of the thesis

The aims of this thesis are two-fold: (i) to develop computationally tractable formulations
together with efficient numerical algorithms and a convergence analysis for optimal control
problems under uncertainty, and (ii) to develop reformulations of general chance constraints
with a robustness guarantee applicable to nonlinear optimal control problems.

Theoretical convergence analysis for uncertain optimal control

We contribute a convergence proof of the polynomial chaos method for a general class of
nonlinear optimal control problems with parametric uncertainties. To this end we show that the
solutions of the polynomial chaos surrogates corresponding to the uncertain optimal control
problem approach the correct solution for increasing expansion orders. This convergence study
addresses the issue that optimal control problems may lead to different control policies for
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different polynomial chaos expansion orders. Consequently the spectral convergence property
of the polynomial chaos method does not directly apply to this class of problems.

Fast solution methods for uncertain optimal control

To deal with the high polynomial order – and consequently high computational effort – that is
necessary to capture the nonlinear uncertainty propagation, we develop fast structure-exploiting
polynomial chaos methods suitable for nonlinear optimal control. Based on the preceding con-
vergence analysis, we propose an adaptive optimization strategy suitable for direct methods
for optimal control to identify the optimal expansion order for each state variable making use
of appropriate error estimates. The main idea is the exploitation of an adaptive strategy for
the state basis order selection. The benefit of the adaptive algorithm is a substantial reduction
of the computational effort for finding reliable results with a precision that can be verified
by the derived error estimates. Moreover, the algorithm returns an "optimal" expansion order,
which is useful for repeated solution, e.g., in a feedback loop. A challenging numerical case
study demonstrates that the proposed adaptive strategy leads to a significant performance gain
without loss of accuracy.

As a second advancement, we propose a derivative projection aiming to compute efficiently
the derivatives required for the solution of the surrogate optimal control problems. The special
structure induced by the spectral projection is exploited in order to reuse model derivatives and
take advantage of sparsity structure information. The consequence is a fast automatic sensitiv-
ity generation which greatly reduces the computational effort of Newton-type methods for the
solution of the resulting high-dimensional surrogate problem. The results are complemented
by a complexity comparison with a standard finite difference approach. In a numerical case
study, we demonstrate that the practical performance speed-up agrees with the theoretically
predicted gain, which is proportional to the sparsity factor of the Jacobian matrix.

Chance-constrained optimal control

Another major topic of this thesis is chance-constrained optimal control. Our first contribution
is the development of an algorithmic strategy to compute reachable sets in state space of
stochastic optimal control problems based on extreme realizations of the polynomial chaos
surrogate states. The algorithm is implemented in a differentiability preserving way into direct
methods for optimal control. Second, we apply the developed reachable set formulation to the
reformulation of chance constraints in a very general form. To support the strength of the
proposed estimation, we contribute a proof of convergence with an a-priori error estimate
depending on the regularity of the solution in the parametric space.
In a numerical case study, we illustrate the tradeoff between low cost objective, chance con-
straint satisfaction and variance minimization. The main intention is to demonstrate the suit-
ability of the proposed robustification technique for nonlinear optimal control problems under
uncertainty.

Case Studies

The two new algorithms for the fast numerical solution of optimal control problems under
uncertainty and the new chance constraint robustification method are tested in detail on two
very different nonlinear optimal control problems that are inspired by real-world processes.
Moreover, as an industrial application, we solve a challenging nonlinear optimal control prob-
lem modeling an adsorption refrigeration system – which for the first time is considered under
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uncertainty. The system was developed in collaboration with the Chair of Technical Thermo-
dynamics LTT of the RWTH Aachen University. The dynamic DAE process is provided as a
blackbox in form of a dynamic Modelica model and connected to the optimization algorithm
via the standardized Functional Mock-up Interface (FMI). The focus of this third example is a
first feasibility study of a real industrial application.

Previous work

Our contributions concern the theoretical foundation of the use of polynomial chaos methods
for optimal control problems under uncertainty, the development of fast numerical solution
methods and a new robustification approach for chance constrained optimal control problems
using polynomial chaos methods. In the following, we describe previous studies that are rel-
evant to these research topics. For an overview of existing works on risk measures, general
uncertainty quantification and robustification methods for optimal control under uncertainty
and past and current research in polynomial chaos methods, we refer to the sections 2.2, 2.3
and 3.3, respectively.

Theoretical aspects of polynomial chaos methods for optimal control problems

The theoretical aspects of polynomial chaos based approximation algorithms for uncertain op-
timal control problems, e.g. the rate or quality of the approximation of state trajectories or
the objective value, have not been subject to systematic investigation in many scientific works.
Relevant to the research topics of this thesis are the following: Anitescu [6] derives an approx-
imation method based on polynomial chaos for constrained parametric finite-dimensional op-
timization problems and proves that, given a parametric/uncertain constrained optimization
problem, solving the PC approximation of the Karush–Kuhn–Tucker (KKT) system is equiva-
lent to solving directly the polynomial chaos approximation of the original problem, which
is advantageous in some situations. His focus is on the existence of solutions of the finite-
dimensional constrained optimization problem and in our main proof in Section 3.5 we will
make use of some of his results. Ruths et al. [130] show convergence of the pseudospectral
sampling method for optimal ensemble control, a simpler variant of the problem considered
here. Phelps et al. [119, 120] consider the question of consistent approximations restricted
to the class of optimal control problems in which only the objective function involves an in-
tegration over the stochastic space. After discretizing the uncertain objective functional by
numerical quadrature in form of a sample average approximation scheme, they show conver-
gence of the sequence of stationary points for the approximate problem to a stationary point
of the original problem.

Fast numerical solution methods for polynomial chaos optimal control problems

Well known iterative or adaptive implementations of polynomial chaos methods include the
recomputation of the polynomial basis over time based on probabilistic moment information
of the evolving distribution, cf. [115, 56, 99], and local basis methods such as multi-element
generalized polynomial chaos (ME-gPC), cf. [148], which decompose the underlying probabil-
ity space using the relative error in variance as error control. These works address in particular
the setting of high-dimensional stochastic spaces, discontinuities in the parametric space, long-
time integration and evolution equations with stochastic forcing. Their goal is to enable the
use of low-order polynomial chaos methods while retaining a sufficient level of accuracy, e.g.,
by scaling down the local degree of perturbation. The developed adaptive algorithm in this
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thesis is based on a basis order selection strategy for optimal control problems. For the uncer-
tainty quantification in forward problems, problem-dependent basis order selection strategies
have already been addressed in [77, 116, 102].

Chance constrained optimal control

The approximation of chance constraints in optimal control problems under uncertainty is
an active research topic. In the following short survey, we focus on approaches applicable
to the polynomial chaos method. Several works address the approximation of chance con-
straints using only the mean and the variance, e.g., by using a Gaussian fit on the propagated
state variables [111, 80], or by applying the Cantelli-Chebyshev inequality [53, 104]. Such
approximation techniques generally result in a convexified approximation, but do not lead to
guaranteed bounds for chance constraints for general nonlinear systems. Besides linearization,
other simplifying assumptions on the information prior can be incorporated into the problem
formulation e.g. via maximum likelihood methods.
Monte Carlo sampling methods have been combined with the polynomial chaos approach for
the approximation of chance constraints in optimal control problems, e.g. [100]. A related
approach is scenario-based sampling that has been applied to optimal control by Calafiore et
al. [30, 31]. The authors also provide a satisfaction guarantee with a reasonable bound on the
number of samples. This bound is significantly better than the crude bound of MCS but only
applicable to problems with a convex dependence on the uncertainty.
A combination of polynomial chaos methods and interval analysis in control theory has been
studies by Terejanu in, e.g. [146]. The author applies a transformation from Legendre to Bern-
stein polynomials whose coefficients have favorable range enclosure properties. Smith, Ponci
et al. and Monti, Ponci et al. [139, 140, 108] use the deterministic surrogate resulting from
the polynomial chaos method to obtain the worst-case, expected and best-case output for a
low-pass filter and for robust stability of a closed-loop system.

Thesis structure

The remainer of this thesis consists of six major chapters.
Chapter 1 gives an overview about (deterministic) optimal control theory and algorithms. We
first introduce the problem class in Section 1.1 and derive the necessary optimality conditions
based on Pontryagin’s minimum principle in Section 1.2. After a brief overview of solution
methods in Section 1.3, we give a detailed description of the direct multiple shooting method
for optimal control in Section 1.4.

In Chapter 2, we describe the main problem of optimal control under uncertainty in an informal
manner. We start by introducing the uncertain optimal control problem as an extension of
parametric optimal control in Section 2.1 and proceed with an overview of risk measures in
Section 2.2. The chapter closes with a detailed survey of existing techniques for uncertainty
propagation in dynamical systems and optimal control problems in Section 2.3.

The main new contributions of this thesis are in the chapters 3 to 5.
Chapter 3 contains a thorough analysis of the uncertain optimal control problem. In Sec-
tion 3.1, we set-up first properties of this problem class. We proceed in Section 3.2 with a
summary of the most important definitions and results of spectral projections with orthogo-
nal polynomials, which also form the foundation of the polynomial chaos method described
thereafter in Section 3.3. The topic of Section 3.4 is the application of the polynomial chaos
method to the uncertain optimal control problem with the derivation of the polynomial chaos
surrogate problem. Similar to the deterministic problem version in Section 1.2, we discuss
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well-posedness and necessary optimality conditions. The major contribution is the proof of
convergence of the polynomial chaos surrogates in Section 3.5.

Chapter 4 contains the algorithmic counterpart of the preceding theoretical chapter, contain-
ing as a major contribution the adaptive algorithm for the fast solution of the uncertain opti-
mal control problem in Section 4.1. As another algorithmic improvement, we present the fast
structure-exploiting derivative generation in Section 4.2.

The topic of Chapter 5 is the robustification of the optimal control problem under uncertainty.
In Section 5.1, we develop a method for the approximation of reachable sets for state trajec-
tories based on the polynomial chaos method. We give two algorithms for the implementation
in direct methods for optimal control. An important contribution is the resulting chance con-
straint approximation derived in Section 5.2.

Numerical results for the two new algorithms for the fast numerical solution of optimal control
problems under uncertainty as well as the new chance constraint robustification method are
summarized in Chapter 6, Sections 6.1 and 6.2, using two nonlinear optimal control problems
based on real-world processes. In Section 6.3, we present results for the industrial application
study of an adsorption refrigeration system.

A conclusion in Chapter 7 summarizes the results of this thesis and raises further research
questions.

Two appendices close this thesis. Appendix A contains the most important definitions and lem-
mas of probability theory that are needed throughout this thesis. Useful results of perturbation
analysis for initial value problems and for nonlinear programming problems are collected in
Appendix B.
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1 Optimal control theory and algorithms

We give an overview of optimal control theory and algorithms. First we introduce the problem
class and derive the necessary optimality conditions in terms of the Pontryagin’s minimum
principle. After a short overview of solution methods, we give a detailed description of the
direct multiple shooting method for optimal control problems.
This chapter is based on the dissertation [82] and the textbook [35].

1.1 Problem definition

The origins of optimal control theory lie in Bernoulli’s Brachistochrone problem from 1696
which asks to determine the curve along which a body travels from one fixed point to another in
the shortest time taking into account the gravitational force. Solutions were found by Leibniz,
Newton, Bernoulli himself and l’Hôpital. Particularly Leibniz and Newton’s subsequent works
on the field of variational analysis contributed to the early growth of optimal control theory.
The main developments in this field started in the 1950th with the works of Pontryagin and
collaborators and since then, a large research effort has been put into this problem class.
A continuous optimal control problem is described in terms of states which evolve in time from
a given initial state according to certain laws of dynamics ranging from ordinary differential
equations (ODEs), partial differential equations (PDEs), stochastic differential equations and
discrete difference equations. We consider the dynamical system to be in the form of an ODE
system. The evolution of the states is influenced according to some performance criterion by
a control function taken from a set of admissible controls. Together with some constraints on
the control and the state functions, the problem becomes a constrained nonlinear, infinite-
dimensional optimization problem with the goal to determine the optimal control function
and state trajectories.

Definition 1.1.1 A continuous optimal control problem is a constrained infinite–dimensional
optimization problem of the form

min
x ,u

J[x , u] ··=
∫ tf

t0

l(x (t), u(t), p)dt +m(x (tf), p) (OCP)

s.t. ẋ (t) = f (x (t), u(t), p) t ∈ [t0, tf] a.e. (1.1a)

x (t0) = x0(p) (1.1b)

u(t) ∈ U(t) t ∈ [t0, tf] a.e. (1.1c)

0¾ c(x (t), u(t), p) t ∈ [t0, tf] a.e. (1.1d)

0¾ rin(x (tf), p) (1.1e)

0= req(x (tf), p) (1.1f)

in which we determine a dynamic process, called state trajectory,

x : [t0, tf]→ Rn

7
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on a time horizon [t0, tf] ⊂ R, described by a system of ODEs with right hand side

f : Rn ×Rnu ×Rnp → Rn,

and initial conditions

x (t0) = x0(p)

affected by a control

u : [t0, tf]→ Rnu

taking values in a control set

U(t) ⊆ Rnu

that may or may not be dependent on time. The goal is to minimize a performance index

J : Rn ×Rnu → R

composed out of the Lagrange term l(x (t), u(t), p) and the Mayer term m(x (tf), p) formulated
as a final state penalty. The set of admissible state and control trajectories can be restricted by
the introduction of path constraints, formulated either as mixed state-control, pure state or pure
control constraints on the whole time horizon [t0, tf],

c : Rn ×Rnu ×Rnp → Rnc

and end point constraints, formulated as equality or inequality constraints,

req : Rn ×Rnp → Rnreq and rin : Rn ×Rnp → Rnrin .

All equations may or may not depend on time-independent model parameters p ∈ Rnp describing
global properties of the dynamic process and its environment.

The admissible control set

U ··= {u(t) ∈ L∞([t0, tf],Rnu) | u(t) ∈ U(t), t ∈ [t0, tf] a.e.}

is defined to be the set of all measurable and essentially bounded control functions contained
in the control set. The variable x (t) describes the system state of the process at any time
t ∈ [t0, tf].

X ··=W 1,∞([t0, tf],Rn)

denotes the set of all measurable and essentially bounded state trajectories with measurable
and essentially bounded derivatives.
For a given admissible control, existence and uniqueness of the solution to the initial value
problem (IVP) (1.1a) and (1.1b) follows from the Picard-Lindelöf threorem if f is assumed
to be piecewise Lipschitz continuous. A summary of these results is provided in the Appendix
B.1. We assume further that all other functions are continuously differentiable.

Given the generality of the constraints (1.1a)–(1.1f) under consideration, we must assume
that they are compatible, that is, that there is at least one admissible pair (x , u).

8
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Definition 1.1.2 A trajectory (x , u) is said to be admissible if x ∈ X and u ∈ U and they satisfy
the constraints (1.1a) – (1.1f).

Denoting by

∂x req ··=
∂ req

∂ x
, ∂x rin ··=

∂ rin

∂ x

the Jacobian matrices of the end point constraints, which are of dimension nreq
× n, nrin

× n,
respectively, a constraint qualification for the end point constraints at x (tf) can be formulated
as

rank=

�

∂x req(x (tf), p) 0
∂x rin(x (tf), p) diag

�

rin(x (tf), p)
�

�

= nreq
+ nrin

.

Definition 1.1.3 A trajectory (x ?, u?) is said to be optimal if it is admissible and

J[x ?, u?]¶ J[x , u]

for all admissible trajectories (x , u).
It is said to be locally optimal if it is admissible and there exist δ > 0 such that

J[x ?, u?]¶ J[x , u]

for all admissible trajectories (x , u) in a neighborhood of (x ?, u?), that is, ||x ? − x ||L∞([t0,tf]) ¶
δ, ||u? − u||L∞([t0,tf]) ¶ δ.

In this terminology, u? is the optimal control and x ? is the optimal state trajectory.

Equivalent formulations and generalizations

The presented formulation of the standard optimal control problem can be reformulated or
extended to address a wider class of problems than the considered ODE-constrained optimal
control problem over the fixed time horizon [t0, tf] with path and end point constraints.

Interior point constraints The constraint functions (1.1d), (1.1f) and (1.1e) cover a wide
range of common settings. They can be extended to include inner time point constraints, which
represent conditions imposed on a finite number m of grid points {t i} ⊂ [t0, tf], 0¶ i ¶ m−1,
for instance

req : (Rn)m ×Rnp → Rnreq , req({x (t i)}, p) = 0, {t i} ⊂ [t0, tf].

The constraints may exhibit a coupling in time. One specific example are periodicity con-
straints, e.g.

r 0(x (t0))− r f(x (tf)) = 0

wherein r 0 and r f contain permutations of the state components.

Objective function formulation The performance index J[x , u] in (OCP) is formulated in
form of a Bolza problem consisting of an integral contribution, the Lagrange objective with
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integrand l (x (t), u(t), p), evaluated on the whole time horizon [t0, tf] and an end–point con-
tribution, the Mayer objective m(x (tf), p), evaluated only at the end point tf. Equivalent for-
mulations that contain only one of the two terms are called Lagrange problem and Mayer
problem, respectively. For the equivalence, consider first the conversion of a Lagrange prob-
lem to a Mayer problem with a reformulated objective function

m(x (tf), p) = z(tf)

where z is an additional state variable which follows the differential equation

ż = l (x (t), u(t), p)

with initial value z(t0) = 0. Mayer problems are readily reduced to Lagrange problems con-
sidering the objective function

∫ tf

t0

z(x (t), u(t))dt

where z is an additional state variable with differential equation

ż(t) = 0, z(t0) = t−1
f m(x (tf), p).

Similarly, both objective formulations are equivalent to Bolza problems.

Controllable parameters The model parameters p ∈ Rnp may be considered to be control-
lable in which case

min
x ,u,p

J[x , u, p]

s.t. (1.1a)− (1.1f).

The model parameters can be replaced by additional state variables such that

x̃ =

�

x
p

�

The initial values x0,n, . . . , x0,p+n−1 of the new variables are considered free and the ODE right
hand side function is augmented such that

f̃ (x̃ (t), u(t)) =

�

f (x (t), u(t), p)
0

�

.

Variable time horizons A time transformation replacing t with τ

t(τ) ··= t0 + zτ, z ··= tf − t0.

allows to investigate the optimal control problem on the simplified time horizon [t0, tf]
def
=

[0,1] ⊂ R. With
d

dτ
=

d
dt

z, the ODE is now given by

ẋ (τ) = z · f
�

x (t(τ)), u(t(τ)), p
�

.

10



O P T I M A L C O N T R O L T H E O R Y A N D A L G O R I T H M S
�

� CHAPTER 1

Variable length horizons including a free initial and/or a free final time can be conceptually
formulated by including z as a global model parameter subject to optimization

min
x ,u,z

J[x , u, z]

s.t. ẋ (τ) = z · f
�

x (t(τ)), u(t(τ)), p
�

τ ∈ [0,1] a.e.

ż(τ) = 1

x (t0) = x0(p)

u(t(τ)) ∈ U(t(τ)) τ ∈ [0,1] a.e.

z(t0) = 0

0¾ c
�

x (t(τ)), u(t(τ)), p
�

τ ∈ [0,1] a.e.

0¾ rin(x (t(1)), p)

0= req(x (t(1)), p).

Non-autonomous system Problem (OCP) is formulated as an autonomous problems with
no explicit time dependence in the model equations. Any non-autonomous system in which
the equations f , l, etc. depend explicitly on time can be readily transformed into this form. To
this end, an additional state variable z is introduced that replaces the explicit occurrences of
the time t and is governed by the ODE

ż(t) = 1, z(t0) = 0

with fixed final value z(tf) = tf.

Linear Semi-Implicit differential algebraic equation (DAE) The class of optimal control
problems using system of ODEs to describe the dynamic process OCP may be extended to that
of a semi–implicit index one DAE systems with differential states x (·) ∈ Rn and algebraic states
z(·) ∈ Rnz satisfying

A(x (t), z(t), u(t), p) ẋ (t) = f (x (t), z(t), u(t), p) t ∈ [t0, tf] a.e.

0= g (x (t), z(t), u(t), p) t ∈ [t0, tf] a.e..

It is assumed that the left hand side matrix A and the Jacobian d
dz g are regular. Using the

implicit function theorem, the algebraic state trajectory z can then be regarded as an implicit
function z(t) = g−1(x (t), u(t), p) of the differential state and control trajectories.
For more information and for the numerical solution of semi–implicit index one DAE systems,
we refer to [3, 4, 12, 118]

1.2 Pontryagin’s minimum principle

Pontryagin’s minimum principle of optimal control, historically also known as Pontryagin’s
maximum principle or simply maximum principle, gives the necessary conditions for a trajec-
tory (x ?, u?) to be optimal. It was developed in the mid 1950s under the leadership of Pon-
tryagin, cf. [122]. The following exposition is based on the textbook [35]. We assume that the
optimal control function u? is non-singular and can hence be determined using Pontryagin’s
minimum principle.

We state the theorem for a simplified version of (OCP) with only equality and inequality end-
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point constraints.

min
x ,u

J[x , u] ··=
∫ tf

t0

l(x (t), u(t), p)dt +m(x (tf), p) (OCP’)

s.t. ẋ (t) = f (x (t), u(t), p) t ∈ [t0, tf] a.e.

x (t0) = x0(p)

u(t) ∈ U(t) t ∈ [t0, tf] a.e.

0¾ rin(x (tf), p)

0= req(x (tf), p)

As before, we consider an autonomous system with a fixed final time. At the end of this sec-
tion, we remark about the extension to control path constraints and to mixed control state
constraints.
It is useful to define the Hamiltonian function.

Definition 1.2.1 The Hamiltonian function associated with (OCP’) is defined as

H(x (t), u(t),λ0,λ(t)) = λ(t) f (x (t), u(t), p) +λ0 l(x (t), u(t), p).

with adjoint function λT (t) ∈ Rn and constant λ0.

The notation ∂u =
∂
∂ u always stands for the partial (Fréchet) derivative.

Pontryagin’s minimum principle asserts that the solution trajectory together with an associated
adjoint function and constraint multipliers satisfy a two-point boundary value problem for state
and adjoint equations.

Theorem 1.2.1 (Pontryagin’s minimum principle, cf. [35, Theorem 4.2i]) If u? and the as-
sociated state trajectory x ? are a solution of (OCP’) on [t0, tf], then there exists a constant λ0 ¾ 0,
an absolutely continuous adjoint function λT (t) ∈ Rn and multiplier vectors ζT ∈ Rnreq and
νT ∈ Rnrin satisfying the following conditions:

1. Nontriviality of the adjoints:

(λ0,λ(t)) 6= 0 on [t0, tf] a.e.

2. State equation:

ẋ ?(t) = f (x ?(t), u?(t), p) on [t0, tf] a.e.

3. Initial condition:

x ?(t0) = x ?0(p)

4. Adjoint equation:

λ̇(t) = −λ(t)∂x f (x ?(t), u?(t), p)−λ0 ∂x l(x ?(t), u?(t), p) on [t0, tf] a.e.

5. Transversality condition:

λ(tf) = λ
0 ∂x m(x ?(tf), p) + ζT∂x req(x

?(tf), p) + νT∂x rin(x
?(tf), p)

12
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6. Constraints:

req(x (tf), p) = 0, rin(x (tf), p)¶ 0

7. Complementary slackness:

νT rin(x (tf), p) = 0, ν¾ 0

8. Minimum condition:

H(x ?(t), u?(t),λ0,λ(t)) = min
u∈U(t)

H(x ?(t), u(t),λ0,λ(t)) on [t0, tf] a.e.

If u(t) takes on values in the interior of U(t) for all t ∈ [t0, tf] a.e., then we can infer from
the minimum condition that

∂u H(x ?(t), u?(t),λ0,λ(t)) = 0 ∀t ∈ [t0, tf] a.e. (1.3)

properly supported by second-order relations, often referred to as Legendre conditions, e.g., [35,
28]:

Definition 1.2.2 The solution trajectory (x ?, u?,λ0,λ) satisfies the Legendre necessary condi-
tion if, in a neighborhood of u?,

dT∂ 2
u2 H(x ?(t), u?(t),λ0,λ(t))d ¾ 0 ∀d ∈ Rnu , ∀t ∈ [t0, tf] a.e..

Under additional requirements using derivative information to describe local minimizers of the
Hamiltonian, it can be ensured that the inner minimization problem in the minimum condition
of Theorem 1.2.1 can be solved by using Equation (1.3).

Definition 1.2.3 The solution trajectory (x ?, u?,λ0,λ) satisfies the strong Legendre condition
if, in a neighborhood of u?, ∀t ∈ [t0, tf] a.e.

dT∂ 2
u2 H(x ?(t), u?(t),λ0,λ(t))d ¾ α for some α > 0 and arbitrary d ∈ Rnu .

Simple control constraints of the form

u(t) ∈ U(t) ⊆ Rnu , t ∈ [t0, tf] a.e.

e.g. with U(t) = [umin(t), umax(t)] can be transferred to the inner minimization problem. To
this end, we define the extended Hamiltonian

Hµ(x ?(t), u?(t),λ0,λ(t)) = H(x ?(t), u?(t),λ0,λ(t))

−µ0(u
? − umin(t)) +µ1(u

? − umax(t))

with multipliers µT
0 ,µT

1 ∈ R
nu .

More complicated mixed state-control constraints and pure state constraints require a more
complex theory that is subject to recent research [59, 128, 68, 28].

1.3 Overview of solution methods

Methods for the solution of optimal control problems of the type (OCP) can be classified into
dynamic programming, indirect methods and direct methods. Dynamic programming is based
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on Bellman’s Principle of Optimality [13]. We refer to [117, 20] for more information. Indi-
rect methods are based on Pontryagin’s minimum conditions and follow the principle of first
optimizing, then discretizing the problem instance. After applying the optimality conditions
in function space, the resulting two-point boundary value problem for the state and adjoint
variables is solved by numerical methods.
For large-scale, real-world optimal control problems with different types of constraints, direct
methods are often the method of choice. This class of methods adheres the principle of first
discretizing, then optimizing. They can be divided into direct collocation, e.g. cf. [22], direct
single shooting and direct multiple shooting methods. We focus on the last method which forms
a hybrid approach combining the shooting method of solving an IVP together with a possibly
problem-dependent discretization. Advantages compared to collocation are the lower dimen-
sion of the resulting NLP and the fixed structure that can be exploited by tailored solvers.
Compared to single shooting methods, it permits an easy initialization of the state trajectory
variables and exhibits improved stability and efficiency of the IVP and the boundary value
problem (BVP) solution process.

1.4 The direct multiple shooting method for optimal control

The direct multiple shooting method for optimal control has its origins in the diploma thesis
[121], supervised by Hans Georg Bock, and was first published in [27]. Extensions can be found
in e.g. [3, 26, 40, 92, 93, 133]. The direct multiple shooting code MUSCOD-II is described in
detail in [91]. For the following description of the multiple shooting method, we follow the
overviews given in [82]. For a detailed exposition including many of the possible extensions
in the formulation of the optimal control problem, we refer to [94].
We consider the numerical solution of the following class of OCP that have been introduced
in the beginning of this chapter as (OCP)

min
x ,u

∫ tf

t0

l(x (t), u(t), p)dt +m(x (tf), p)

s.t. ẋ (t) = f (x (t), u(t), p) t ∈ [t0, tf] a.e.

x (t0) = x0(p)

u(t) ∈ U(t) t ∈ [t0, tf] a.e.

0¾ c(x (t), u(t), p) t ∈ [t0, tf] a.e.

0¾ rin(x (tf), p)

0= req(x (tf), p)

1.4.1 Discretized optimal control problem

The first step of the direct multiple shooting method is a discretization of the continuous time
horizon [t0, tf] into Nshoot not necessarily equidistant intervals with

t0 < t1 < . . .< tNshoot−1 < tNshoot
= tf.

Based on this so-called multiple shooting grid T = {t0, . . . , tNshoot
} a discretization method

for the continuous control and state trajectories and for the constraints is defined using the
building blocks

(I) the control discretization with parameter vector q and control functions û(t;q),

(II) the state parametrization with parameter vector s and state trajectories x (t; s ,q),
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(III) the constraint discretization.

(I) Control discretization A computationally tractable representation of the infinite-dimensional
control trajectory u(·) is obtained by a discretization on the multiple shooting grid T : On each
interval [t j , t j+1], 0 ¶ j ¶ Nshoot − 1, and for each control function 1 ¶ i ¶ nu, we choose lo-

cally supported basis functions û( j)i that are parameterized by a vector of finitely many control

parameters q ( j)i ∈ R
nqi ( j)

û( j)i : [t j , t j+1]×R
n

q
( j)
i −→ R.

Popular choices for the basis functions include piecewise constant controls (nqi( j) = 1)

û( j)i (t, q( j)i )) = q( j)i , (1.5)

piecewise linear controls (nqi( j) = 2)

û( j)i (t,q
( j)
i ) =

t j+1 − t

t j+1 − t j
q( j)i,1 +

t − t j

t j+1 − t j
q( j)i,2 , (1.6)

or piecewise cubic spline controls (nqi( j) = 4) with appropriately chosen spline function coef-
ficients β

û( j)i (t,q
( j)
i ) =

4
∑

k=1

q( j)i,kβk

�

t − t j

t j+1 − t j

�k−1

. (1.7)

If the discretized control trajectory is required to be continuous, we have to impose additional
control continuity conditions in all points of the control discretization grid T . For instance, for
piecewise linear controls, the following constraints

0= û( j)i (t j+1,q ( j))− û( j)i+1(t j+1,q ( j+1)), 0¶ j ¶ Nshoot − 1 (1.8)

guarantee continuity along the multiple shooting horizon.

(II) State parameterization In contrast to single shooting methods, multiple shooting meth-
ods also introduce a parametrization of the state trajectory x (·) on the multiple shooting grid
T resulting in Nshoot IVPs with initial values s ( j) ∈ Rn on the intervals [t j , t j+1]

ẋ ( j)(t) = f (x ( j)(t), û( j)(t,q ( j)), p), t ∈ [t j , t j+1] a.e., 0¶ j ¶ Nshoot − 1 (1.9a)

x ( j)(t j) = s ( j). (1.9b)

For the state parametrization Nshoot − 1 additional matching conditions

0= x ( j)(t j+1; t j , s ( j),q ( j))− s ( j+1), 0¶ j ¶ Nshoot − 1 (1.10)

are required to ensure continuity of the obtained trajectory x (·) on the time horizon [t0, tf].
Here, x ( j)(·; t j , s ( j),q ( j)) denotes the state trajectory obtained as the solution of the IVP (1.9)
on the interval [t j , t j+1]when starting in the initial value x (t j) = s ( j) and applying the control
u(t) = û( j)(t,q ( j)) with final value x ( j)(t j+1; t j , s ( j),q ( j)) at time point t j+1.
Hence, the evaluation of the each matching condition (1.10) requires the solution of an IVP,
which allows the use of highly efficient adaptive IVP solvers, e.g. [4, 3, 12, 118], within the
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direct multiple shooting method. Adaptive solvers employ error estimators to choose stepsizes
and orders adaptively and are able to generate solutions that approximate the analytical so-
lution with a prescribed error guarantee while remaining efficient by avoiding unnecessarily
small stepsizes.

(III) Constraint discretization The path constraint c(·) is discretized on T by enforcing a
satisfaction on the multiple shooting grid only,

0¶ c( j)(s ( j), û( j)(t j ,q
( j)), p), 0¶ j ¶ Nshoot. (1.11)

In rare cases, the discretization may introduce violations of the path constraints between the
shooting nodes for the optimal trajectory (x ?, u?) obtained as solution of the discretized prob-
lem shows. One possibility is to choose a finer, possibly adapted shooting grid for the constraint
discretization. Alternatively, a semi–infinite programming algorithm for tracking of constraint
violations in the interior of shooting intervals is discussed in [123, 124].

The nonlinear problem The resulting (Nshoot + 1)n+ Nshootnq unknown variables from the
application of the direct multiple shooting discretization to problem (OCP), here assuming
nqi( j) to be identical for all nodes and controls, are

y
def
=
�

s (0) q (0) . . . s (Nshoot−1) q (Nshoot−1) s (Nshoot)
�

. (1.12)

The resulting discretized optimal control problem reads

min
s ,q

Nshoot
∑

j=0

l( j)(s ( j),q ( j), p) (DOCP)

s.t. 0= x ( j)(t j+1; t j , s ( j),q ( j))− s ( j+1) 0¶ j ¶ Nshoot − 1 (1.13a)

0¾ c( j)(s ( j), û( j)(t j ,q
( j)), p) 0¶ j ¶ Nshoot (1.13b)

0= req(s
(Nshoot), p) (1.13c)

0¾ rin(s
(Nshoot), p) (1.13d)

Here, the Mayer term m(s (Nshoot), p) has been expressed as final term

l(Nshoot)(s (Nshoot),q (Nshoot), p)

of the objective.

The discretized optimal control problem is a large but highly structured, constrained nonlinear
program (NLP) and is solved by a tailored sequential quadratic programming (SQP) [67, 125]
or other Newton-type methods preserving the specific structure of the Jacobian and the Hessian
matrix resulting from the matching conditions (1.13a).

A convergence criterion to check whether convergence to a local optimum has been achieved is
defined as the so-called Karush–Kuhn–Tucker (KKT) tolerance taking into account the weighted
sum of possible objective function improvement and constraint violations[38, 93]. For the
formula, we refer to [94, Section 3.2.2]. The acceptable KKT tolerance εKKT has the same units
as the objective function.
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1.4.2 Sensitivity generation

When we solve the discretized optimal control problem (DOCP) with a gradient-based method,
the objective and constraints (1.13a)–(1.13d) as well as their first and possibly second order
derivatives with respect to the discretized variables s and q must be evaluated at different
points.
The functions l, m, f , c and r are explicitly formulated as analytic functions and their deriva-
tives can be evaluated, e.g., by using algorithmic differentiation (AD), cf. [65], or symbolic
differentiation by writing down directly the analytic derivatives. For the important matching
conditions (1.13a), the state trajectories x ( j)(·; t j , s ( j),q ( j)), which are given implicitly as so-
lutions of the ODE (1.1a), as well as their derivatives need to be evaluated. The derivatives of
this solution representation in the direction of the initial values s( j) and the discretized controls
q( j), assumed for an arbitrary but fixed shooting node j with 1¶ j ¶ Nshoot

dx ( j)(·; t j , s ( j),q ( j))

d s ( j)
and

dx ( j)(·; t j , s ( j),q ( j))

dq ( j)
,

are called sensitivities in order to distinguish them from derivatives of analytic functions whose
evaluation can be easily handled.

Finite differences

A straightforward approach to obtain the sensitivities of the IVP’s solution at the end point
x ( j)(t j+1; t j , s ( j),q ( j)), or of intermediate shooting points, with respect to the initial values s ( j)

and control parameters q ( j) is to apply a finite difference procedure to the solution method.
For one-sided finite differences with a small perturbation factor h > 0, we obtain the state
sensitivities with respect to s( j)i , 0¶ i ¶ n− 1, by

dx ( j)(t j+1; t j , s ( j),q ( j))

ds( j)i

=
η(t j+1; t j , s ( j) + hei ,q

( j))−η(t j+1; t j , s ( j),q ( j))

h
(1.14)

+O(tol/h) +O(h)

where η(t j+1; t j , s ( j),q ( j)) denotes the approximation of the IVP’s solution x (t j+1) obtained
when starting at time t j with initial values s ( j) and ei is the ith unit vector. tol is the local error
bound, i.e., the integration tolerance of the forward solver. The optimal choice of perturbation
is h = tol

1
2 . This means very tight integration tolerances are required to obtain sufficiently

precise approximations of the IVP sensitivities.
This approach is referred to as external numerical differentiation because it treats the IVP solu-
tion method as a black box to which finite differences are applied externally. Several complica-
tions may occur when using adaptive and possibly different discretization grids {tk}, pivoting
in linear algebra subroutines, and iterative or inexact solvers causing nondifferentiabilities of
the mapping η for the unperturbed and the perturbed values. This can lead to a decrease in
precision or even inconsistent derivatives.

Variational Differential Equations

One way of computing the sensitivities that can be much more efficient than the previous finite
difference scheme is to compute the sensitivities by following the principle of internal numeri-
cal differentiation (IND) introduced by Bock [24, 25]. It is based on the idea of differentiating
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the discretization scheme used to compute an approximation of the nominal solution. There-
fore, it avoids the previoiusly mentioned numerical difficulties and allows re-using certain
internal information of the integration scheme.
The principle of IND is equivalent to numerically solving the nominal ODE system augmented
by the corresponding variational differential equation (VDE), a technique that we will make
use of in a later chapter. For this approach, we define the sensitivity matrices x ( j)s and x ( j)q as

x ( j)s
··=

dx ( j)

d s ( j)
=

 

dx ( j)i (·; t j , s ( j),q ( j))

d s ( j)k

!

1¶i,k¶n

x ( j)q
··=

dx ( j)i

dq ( j)
=

 

dx ( j)i (·; t j , s ( j),q ( j))

dq ( j)k

!

1¶i¶n,1¶k¶nq

.

The (forward) VDE corresponding to the dynamics

ẋ ( j)(t) = f (x ( j)(t), û( j)(t,q ( j)), p)

x ( j)(t j) = s ( j)

can now be formulated as

ẋ ( j)s (t) =
∂ f
∂ x

x ( j)s (t), xs(t0) = I

ẋ ( j)q (t) =
∂ f
∂ x

x ( j)q (t) +
∂ f
∂ u
∂ û
∂ q

, xq(t0) = 0.

This approach also allows to exploit sparsity patterns in the Jacobians ∂ f
∂ x and ∂ f

∂ u of the ODE
system’s right-hand side.
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2 Optimal control under uncertainty

We describe the main problem of optimal control under uncertainty in an informal manner by
introducing the uncertain optimal control problem as an extension of parametric optimal con-
trol. We proceed with an overview of risk measures and a survey of existing solution methods
for uncertainty propagation in dynamical systems and in optimal control problems.

2.1 From parametric optimal control to optimal control under
uncertainty

In parametric optimal control or optimal control with perturbations, the model parameters p ∈
Rnp are not fixed but instead vary according to different realizations. Under standard regularity
assumptions together with the assumption of a sufficiently small variation of the parameters,
the optimality condition hold also for the perturbed state trajectory x (t) = x (t; p). This can
be derived from stability and sensitivity analysis of solutions to parametric optimal control
problems, compare, e.g., [74, 103] or Appendix B for an introduction to perturbation theory
of mathematical problems.
A major extension is optimal control under uncertainty. Similarly assuming a dependence on
unknown parameters, it is not based on the limiting assumption of a sufficiently small varia-
tion. Instead, it is assumed that the parameter domain has a certain structure, e.g., a set of a
certain form or even derive from a measure or probability space. In this thesis, we consider
the special assumption that the unknown parameters represent a random vector ξ on a prob-
ability space (Ω,F , P) with finite or infinite support S ⊆ Rd . Here, d is the dimension of the
uncertainty.

Before setting up the uncertain version of the optimal control problem, we give an informal
introduction to probability-theoretic concepts. For precise definitions and more details we refer
the reader to Appendix A. ξ(ω) represents the outcome of the random vector ξ : Ω→ Rd if the
realizationω ∈ Ω occurs. By working with a probability measure P on Ω, the random variables
induce a probability distribution onRd with cumulative distribution function (CDF) Fξ defined
by taking Fξ(z) to be the probability assigned by P to the set ofω ∈ Ω such that ξ(ω)¶ z. The
corresponding probability density function (PDF) is denoted by ρξ(z).
In optimal control problems, the parameters affect the state variables which evolve in time.
At any arbitrary but fixed time point τ ∈ [t0, tf], the state variables xτ(ξ) = x (τ;ξ) can itself
be considered as an Rn-valued random vector with propagated distribution function Fxτ and
propagated probability density function ρxτ . By means of a nonlinear transformation η(ξ),
they can be expressed in terms of ξ, which can simplify the computation of integrals, etc. While
ξ is usually assumed to be a continuous random variable, the propagated random vector xτ
may not be continuous – due to the nonlinear dependence η on ξ – but can be expressed via
ρξ:

P(xτ ¶ c) = P(η(ξ)¶ c) = P({ξ ∈ S | η(ξ)¶ c}) =
∫

{ξ∈S | η(ξ)¶c}
ρξ(ξ)dξ. (2.1)

Determining the set {ξ ∈ S | η(ξ) ¶ c} and therefore the mapping η of the parameter distri-
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bution onto the state variables or onto the constraints are the main difficulties in analyzing
the effects of the random inputs ξ on the optimal control problem.
A prototype optimal control problem under uncertainty can be formulated as follows.

Definition 2.1.1 The optimal control problem under uncertainty is an optimal control problem
affected by random variables ξ : Ω→ Rd with support S

min
x ,u

Υ
�

J[x , u]
�

(UOCP)

s.t. ẋ (t) = f (x (t;ξ), u(t),ξ) t ∈ [t0, tf] a.e., ξ ∈ S (2.2a)

x (t0) = x0(ξ) ξ ∈ S (2.2b)

u(t) ∈ U(t) t ∈ [t0, tf] a.e. (2.2c)

0¾ Φ
�

c(x (t;ξ), u(t),ξ)
�

t ∈ [t0, tf] a.e. (2.2d)

0= Ψ
�

req(x (tf;ξ),ξ)
�

(2.2e)

0¾ Ψ
�

rin(x (tf;ξ),ξ)
�

(2.2f)

where Υ , Φ and Ψ represent adequately chosen risk measures for the objective and constraint
function.

Regardless of the type of considered uncertain parameters, e.g., "random" uncertain parame-
ters as we have introduced them or "deterministic" uncertain parameters bound to take values
from a certain set, the theory and the solution of optimal control under uncertainty is more
complicated than in its absence. The main question is how the uncertainty affects the solution.
We distinguish between two necessary tasks, which may overlap. In Section 2.3 we describe
techniques for propagating and quantifying the uncertainty within the problem. Problems in
optimization or in optimal control pose the additional challenge, which is often an advantage,
of taking a robustification decisions. This can be achieved by applying one of the risk measures
that we describe in Section 2.2 to the objective function and the constraints.

2.2 Introduction to risk measures

The amount of risk in a quantity of interest, e.g. the constraint c(x , u,ξ), can loosely be re-
garded as the degree of uncertainty in its deviation about the nominal value. Risk measures
assign a value to the random variable that quantifies the risk of loss or of another measure
of performance. There is a wide choice of eligible risk measures that varies in their efficiency
and cost of numerical computation. Loosely spoken, a risk measure is acceptable if it does not
underestimate in some way the possibility of failure. Consequently, we seek for a performance
guarantee even in the presence of uncertainty.

Simple surrogates for the risk are obtained by using moment-based risk measure. The most
popular one is obtained by summing the mean and the standard deviation multiplied by a
constant that depends on the required risk level

Ψ(c(x , u,ξ)) = E
�

c(x , u,ξ)
�

+ cδ
Ç

Var
�

c(x , u,ξ)
�

. (2.3)

This risk measure only leads to acceptable results in the rare case that the distribution of x
can be completely described by the first two moments. This happens for instance if the input
distribution of ξ is sufficiently simple and x depends linearly or nearly linearly on ξ because
outputs resulting from linear transformations have the same distribution as the uncertain in-
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puts. In general, using only low-order moments does not lead to a safe approximations for
general nonlinear transformations without simplifying assumptions.

Arguably the most natural formulation of quantifying the variation of a random variable is by
probabilistic constraints, also called chance constraints, in which the desired constraints are
to hold at least with a specified probability:

P
�

c(x , u,ξ)¶ 0
�

¾ 1−δ. (2.4)

Compared to worst-case, also called "min-max" risk measures, in which the constraint is to be
satisfied for all possible realizations, they leave room for a small bounded number of constraint
violations due to extreme outcomes that are infeasible to be satisfied or lead to a degraded
performance. Therefore, chance constraints are a natural way of guaranteeing constraint sat-
isfaction under uncertainty.
Computation methods for chance constraints can be divided into three major classes: (i) simu-
lation methods; (ii) numerical integration and (iii) analytical methods [96]. The computation
of chance constraints by

P
�

c(x , u,ξ)¶ 0
�

= P({ξ ∈ S | c(x , u,ξ)¶ 0}) =
∫

{ξ∈S | c(x ,u,ξ)¶0}
ρξ(ξ)dξ

involves multidimensional integration over a set in Rd which is difficult to determine. Conse-
quently, there is little hope of finding a closed form expression for the distribution. A popular
way of approximating the integral is by using a Monte Carlo sampling (MCS) average approx-
imation, but the required huge number of samples of the random quantity may destroy either
the satisfaction guarantee or the computational efficiency. One alternative is to apply the MCS
instead to a so-called surrogate model, a sufficiently accurate approximate model describing
the random dependence of the quantity of interest. This can be computationally much more
tractable than a MCS applied to the original optimal control problem.
If we consider one-dimensional chance constraints for c : Rn ×Rnu ×Rd → R

P
�

c(x , u,ξ)¶ 0
�

¾ 1−δ, (2.5)

we can use an equivalent formulation with a scalar value describing the (1−δ)-quantile q1−δ
or value-at-risk (VaR)

VaR1−δ(c(x , u,ξ)) ··= q1−δ(c(x , u,ξ)) = inf{γ | Fc(γ)¾ 1−δ}. (2.6)

The VaR answers the question: what is the maximum loss with a specified confidence level of
1−δ?
For one-dimensional constraints, the satisfaction of (2.4) is equivalent to

VaR1−δ(c(x , u,ξ))¶ 0 (2.7)

or

minγ s.t. P
�

c(x , u,ξ)¶ γ
�

. (2.8)

Thus, this formulation naturally extends chance constraints to the objective functional.
Despite being widely used, chance constraints or the VaR formulation are not free of criticism.
The fact that they do not take into account the extreme loss beyond the (1−δ)-quantile can be
a positive or negative property depending on the application: it means a disregard towards ex-
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treme outcomes, hence robustness against outliers and extremely heavy losses. Another critic
comes with the fact that both formulations are inherently non-convex, thus violating the di-
versification principle in finance and economics and leading to disadvantages for optimization
procedures if the underlying problem is convex. To overcome these drawbacks, the axiomatic
framework of coherency as an indicator for when a risk measure preserves the properties of
the underlying system was developed within finance and economics by Artzner and cowork-
ers [7] and extended by Rockafellar [129]. A coherent replacement of the VaR was found by
the conditional value-at-risk (CVaR) as the tightest convex approximation to individual chance
constraints [112]. With the same confidence level, VaR is a lower bound for CVaR, hence less
conservative.

Our focus in this thesis is not on convex risk measures because the dependence of x (t;ξ)
and therefore of c(·) on ξ is not convex. Rather, we seek risk measures that lead to the best
objective value for optimal control problems while remaining acceptable under uncertainty. In
other words, they should provide a safe application-dependent guarantee of feasibility with as
few conservatism as possible.

2.3 Existing approaches to optimal control under uncertainty

Existing methods can be roughly divided into two groups, based on (i) deterministic methods
such as the worst-case guarantee approach, and (ii) stochastic or statistical design techniques
that employ a probabilistic description of the uncertainty to define robustness measures and
lead to a guarantee with a high probability. In both cases, linearization is often applied for
simplification but only leads to a reasonable reformulation in some cases, e.g., if the uncertain
parameter do not deviate too much from their nominal value or the curvatures of the involved
functions with respect to the uncertainty are bounded. Usually it cannot capture nonlinear
effects of the considered class of constrained, nonlinear optimal control problems.

In the following, we explain and classify the existing techniques in more detail. Our method
of choice must be able to capture the nonlinear uncertainty propagation within the dynamical
system and be tractable for optimal control in which the minimization of the objective and
the solution of the dynamic model proceeds simultaneously. A further consideration is the
assumption that we can only control the system in a nonanticipative open-loop mode with
no measurements available and without possibility to react to disturbances online during the
process operation.

2.3.1 Classical robust control

Classical robust control assumes that the uncertain parameters arise from some compact un-
certainty set S. It was developed to overcome the limitations of the Kalman filter [79, 44]. The
first developments concerned linear control systems with set constrained disturbances [153].
For a more detailed exposition of the development of robust control theory, we refer to the
textbooks [154, 46].
Commonly used bounded uncertainty sets are polytopes, given with bounds ξmin,ξmax ∈ Rd ,

S = {ξ ∈ Rd | ξmin ¶ ξ¶ ξmax} (2.9)

ellipsoids, given with mean ξ̄ ∈ Rd , covariance matrix Σ ∈ Rd×d and scalar γ > 0

S = {ξ ∈ Rd | (ξ− ξ̄)TΣ−1(ξ− ξ̄)¶ γ}. (2.10)
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or the more general norm-constrained set, given with mean ξ̄ ∈ Rd , invertible matrixΣ ∈ Rd×d

and parameter 1¶ q ¶∞ for the scaled Hölder q-norm

S = {ξ ∈ Rd |
�

�

�

�ξ− ξ̄
�

�

�

�

Σ,q ¶ 1}. (2.11)

Some uncertainty sets allow for an interpretation in terms of confidence level sets for random
variables. For instance the first set can be interpreted in terms of a confidence level set of a uni-
formly distributed variable and the second set coincides to the confidence level of a Gaussian
distribution with critical value γ corresponding to a prescribed probability level 1−δ.
For contributions on the analysis of ellipsoidal methods for linear dynamic systems, we refer
to Kurzhanski, Valyi, and Varaiya [86, 87]. Particularly in control theory, polytopic uncertainty
sets are also common, e.g., [21, 41, 23].

Worst-case design is concerned with optimizing the worst possible outcome of the uncertain-
but-bounded parameter set. The term robust counterpart formulation was coined by Ben-Tal
and Nemirovski [14] in robust optimization. In this formulation, the optimizer chooses u first
while an adverse player can arbitrarily choose the uncertainty realizations ξ and x (ξ) after-
wards. This leads to a min-max optimization problem with a bilevel structure. For optimal
control for which we assume that the dynamics must be satisfied for almost all uncertainty
realizations, it leads to the following form:

Example 2.3.1 (Min-max formulation)

min
u∈U(t)

max
x ,ξ∈S

J[x , u]

s.t. max
x ,ξ∈S

c(x , u,ξ)¶ 0

s.t. ẋ = f (x , u,ξ) ∀ξ ∈ S
x (t0) = x0

The computationally tractable cases are robust linear, convex and semidefinite programs and
have first been studied by Ben-Tal and Nemiosvski [14, 15] and Ghaoui [58]. A related view is
semi-infinite programming for which we refer to [70] for a recommendable overview article.
In this formulation, the constraints have to be satisfied for all possible uncertainty realizations
arising from S. This leads to an infinite number of constraints that must be regarded at any
time point τ, and has the following form for an optimal control problem:

Example 2.3.2 (Semi-infinite formulation)

min
x ,u∈U(t)

J[x , u]

s.t. ẋ = f (x , u,ξ) ∀ξ ∈ S
x (t0) = x0

0¾ c(x , u,ξ) ∀ξ ∈ S

Under certain simplifying assumptions on the functions and the uncertainty set, the sub maxi-
mization problem can be eliminated by linearization of the model functions using the nominal
value of ξ. If the functional dependence on the uncertain parameters is linear or shows only
small curvalture, or if the underlying maximization problem has its solution always on the
boundary of the uncertainty set, the result is a conservative robustification. In optimal control,
this approach was used by Ma and Braatz [101], Nagy and Braatz [110, 109] and Diehl et
al. [41, 42, 43].
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Recent developments in robust control and uncertain dynamical systems is driven by reacha-
bility analysis and set-based methods, cf., e.g., [72].

2.3.2 Unscented transform and the sigma point approach

The Kalman filter [79] only provides an optimal solution for linear systems by maintaining a
consistent estimate of the first two moments of the state distribution. To improve on it, the
unscented transform (UT) was developed by Julier [78] as a general method for approxi-
mating nonlinear transformations of probability distributions. In control and filtering applica-
tions, the UT, especially in the form of the unscented Kalman filter (UKF), has largely replaced
the extended Kalman filter (EKF), which simply uses a linearization by Taylor approximation
around the mean.
The UT proceeds by applying the nonlinear function transformation to a discrete distribution
of so-called sigma points with specific weights computed to be able to capture a set of known
statistics of an unknown distribution. For simple distributions such as the normal distribu-
tion, the given mean and covariance information can be exactly encoded and propagated. The
mean and covariance of the transformed set of points then represents the desired transformed
estimate.
The disadvantage of these approaches lie in the fact that they do not lead to a conservative
approximation for general nonlinearly propagated distributions. The main advantage is its
simplicity and it has been applied in optimal control, see [69, 145].

2.3.3 Classical stochastic optimal control

Stochastic and statistical techniques to optimization and optimal control under uncertainty
assume that the uncertainty has a probabilistic description. The probabilistic description may
range from a probability distribution, which can completely characterize the uncertainty, to a
continuous or discrete set of possible scenarios together with a corresponding probability of
occurrence or with a number of given probability statistics such as moments.

Similar to robust control based on deterministic principles, linearization of the system trajec-
tories is often used for propagating the uncertainty through the dynamical system. This can be
done by applying the linear transformation to a finite number of lower moments, e.g. applied
to the mean and the variance, we obtain

E
�

Aξ
�

= Aξ̄ and E
�

(Aξ)(Aξ)T
�

= E
�

AξξT AT
�

= AΣξA
T .

A natural interpretation of constraints in the presence of randomness are chance constraints
which have been developed by Charnes, Cooper, and Symonds in [36], Miller and Wagner
[107], as well as by Prekopa [126]. In engineering science, chance-constrained optimization
and chance-constrained optimal control is coined reliability-based design. In Section 2.2, we
gave a theoretical introduction into this topic which plays an important part in this thesis. The
first studied problems in chance constrained optimization were linear programs, exploiting
heavily the convexity of the feasible region resulting in the case of quasi-concavely distributed
uncertain variables [135].
Applied to (UOCP), chance constraints lead to a performance guarantee for the original prob-
lem. In the case of joint chance constraints, the guarantee holds for at least (1 − δ)% of all
possible realizations of the uncertain parameters. There are different possibilities of how to
apply chance constraints to the objective and constraints function.
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Example 2.3.3 (Risk-neutral objective, joint chance-constrained OCP)

min
x ,u∈U(t)

E [J[x , u]]

s.t. ẋ = f (x , u,ξ) ∀ξ ∈ S
x (t0) = x0

1−δ ¶ P
�

c(x , u,ξ)¶ 0
�

︸ ︷︷ ︸

P(c j(x ,u,ξ)¶0, j=1,...,nc)

The multidimensional integral in Example 2.3.3 is over Rnc . Computationally more tractable
is the formulation with individual chance constraints, which leads to a guaranteed constraint
satisfaction rate of

∑nc
j=1(1−δ j)%.

Example 2.3.4 (Risk-neutral objective, individual chance-constrained OCP)

min
x ,u∈U(t)

E [J[x , u]]

s.t. ẋ = f (x , u,ξ) ∀ξ ∈ S
x (t0) = x0

1−δ j ¶ P
�

c j(x , u,ξ)¶ 0
�

j = 1, . . . , nc

A certain attitude towards risk, either a risk preference or a risk averseness, can be expressed by
incorporating chance constraints also for the objective value instead of the risk-neutral mean
formulation.

Example 2.3.5 (Risk-averse/seeking objective, individual chance-constrained OCP)

min
x ,u∈U(t)

γ

s.t. ẋ = f (x , u,ξ) ∀ξ ∈ S
x (t0) = x0

1−δ0 ¶ P (J[x , u]¶ γ)

1−δ j ¶ P
�

c j(x , u,ξ)¶ 0
�

j = 1, . . . , nc

2.3.4 Sampling and scenario-based approaches

In scenario or sampling approaches, the uncertainty space is discretized into a finite number
of N samples or scenarios ∆= {ξ(1), . . . ,ξ(N)} of ξ and the original problem is solved only on
∆. This leads to an enlarged optimal control problem with state dimension RnN and control
dimensionRnu . The objective is formulated as a weighted sum of the objectives for the different
scenarios.

Example 2.3.6 (Sampling/scenario-OCP)

min
x (1),...,x (N)∈Rn,u∈U(t)

N
∑

m=1

J[x (m), u]w(m)

s.t. ˙x (m) = f (x (m), u,ξ(m)) m= 1, . . . , N

x (m)(t0) = x0

0¾ c(x (m), u,ξ(m)) m= 1, . . . , N
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The main concern towards this approach lies in the feasibility of the constraints. That is, does
the satisfaction of c(x (m), u,ξ(m)) ¶ 0 for all scenarios infer the satisfaction of c(x , u,ξ) ¶ 0
for all possible parameter realizations within the critical subspace for a given probability level
δ > 0? In other words, if formulated in terms of a probability space, does

c(x (m), u,ξ(m))¶ 0, m= 1, . . . , N =⇒ P
�

c(x , u,ξ)¶ 0
�

¾ 1−δ (2.18)

hold?
Scenario-based sampling has been applied to optimal control in, e.g., [30, 31], who also pro-
vide a satisfaction guarantee for convex problems with a reasonable bound on the number of
samples.

MCS methods are widely used for uncertainty quantification in many fields. Similarly to scenario-
based approaches, they proceed by solving an enlarged optimal control problem over a finite
set of possible realizations ξ(1), . . . ,ξ(NMC), which are now randomly sampled from the dis-
tribution of ξ. A point-wise approximation of the constraint c : Rn × Rnu × Rd → R is then
constructed via

P
�

c(x , u,ξ)¶ 0
�

=

∫

(−∞,0]d
c(x , u,ξ)ρ(ξ)dξ≈

NMC
∑

m=1

c(x (m), u,ξ(m))w(m)

for appropriately chosen weights {w(m)}m=1,...,NMC
. Using the law of large numbers and the cen-

tral limit theorem [48], MCS provides a consistent convergence rate of O(n−1/2) independent
of the dimension of ξ and applicable to arbitrary probability distributions. Consequently, the
feasibility of the constraints via (2.18) can be guaranteed. Unfortunately, in practical applica-
tions and in particular for nonlinear optimal control problems, the convergence rate is too slow
to be of practical use. Certain techniques, e.g., quasi Monte Carlo (QMC), Latin-Hypercube
MC or variance reduction techniques may allow for a speed-up. However, the required large
number of realizations for obtaining high accuracy is still prohibitively high for optimal con-
trol. Nevertheless, some applications to optimal control were reported in the literature, cf.
[34, 100].

2.3.5 Recourse decisions

Recourse decisions, cf. [149], allow, after taking an initial decision, for taking a second de-
cision. This operation could counteract bad consequences or take advantage of good conse-
quences. A similar approach is multistage programming where decisions are made successively
in order to use the additional information that enters into the problem when the realization of
an uncertain parameter takes place, e.g. to ensure that the constraints are satisfied. In model
predictive control (MPC), scenario tree approaches in which the description of the uncertainty
evolves in form of a scenario tree, are popular [98, 97, 90].

2.3.6 Spectral methods and the polynomial chaos method

Sampling approaches provide a point-wise estimate of the random quantities. A substantially
different view on the resolution of the model equations is provided by spectral methods which
reconstruct the functional dependency of the solution x on the random input ξ

x (ξ) =
∞
∑

k=0

xkφk(ξ) (2.19)
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by means of a set of basis functionals φk and deterministic coefficients xk. Such a series repre-
sentation requires in most cases additional regularity assumptions on the solution, e.g., x (ξ)
being L2-measurable with respect to the underlying probability space. Spectral methods pro-
vide a simpler surrogate model of adjustable complexity and adjustable approximation quality.
These surrogate models can be used, e.g., for approximation of the probability density function
by application of MCS or of other techniques. This can save several orders of magnitudes in
the computational cost compared to direct MCS.

The different types of spectral methods vary in the type of basis functionals and the deriva-
tion of the coefficients which can be carried out analytically, by sampling techniques or by
projection techniques. Our main focus in this thesis is the polynomial chaos (PC) method, a
spectral method in which Equation (2.19) represents a generalized global Fourier expansion,
called polynomial chaos expansion, in a random polynomial basis. When using more general
probability distributions such as the normal distribution, this method is also referred to as
generalized polynomial chaos (gPC). First practical use of the gPC fracemwork can be found
in sparse and linear system, often complicated by high dimensionality in state or uncertain
parameter space originating from a discretization of PDE or stochastic processes. Application
areas vary amongst computational fluid dynamics [57, 151, 89], aerodynamic design [134],
mechanics [147] and geology [114]. Current work primarily addresses this setting. Examples
for recent applications to stochastic optimal control of PDEs include [37, 155, 85, 84] as well
as in shape and topology optimization [134, 147]. The first works of gPC in control systems
with ordinary differential equations empirically studied questions such as convergence and
stability on small test problems [73, 75, 55] or linear systems [138, 54]. Applications to real-
world optimal control problems can be found in, e.g., [111, 80, 18], and the review article
[81]. For recent work on the use of gPC for solving stochastic model predictive control, con-
sider [76, 105, 106]. Fagiano [52] uses gPC to design a controller that induces convergence of
the expected value of the state to the origin and satisfies state constraints in expectation.

2.3.7 Optimal control of stochastic differential equations

So far we have considered the uncertain inputs to be (random) variables. An extension of this
parametric uncertainty framework is the inclusion of a stochastic process ζt into the vector
field function which results in a pathwise (explicit) ODE

ẋ (t) = f (x , u,ζt).

This formulation is called random differential equations (RDE) [83].
A further extension are stochastic differential equations (SDE)

ẋ (t) = f (x , u) + g (x , u)ζt ,

where the random process ζt with known covariance is called noise or stochastic forcing. This
extension is equivalent to the RDE formulation if ζt is sufficiently regular [83, 66] The class
of RDE can be analysed pathwise with the usual methods of deterministic calculus, taking into
account that the solution is only continuously differentiable but not further differentiable in
time [83, 66] while the second class is usually tackled by the L2 convergence results given by
the Îto stochastic calculus.
The most popular SDE, also called Îto SDE, is

dx t = f (x t , u) + g (x t , u)dWt

where Wt is the Wiener process.
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Instead of these two continuous approaches, it is sometimes possible to obtain a finite approx-
imation of the stochastic process ζt by using the Karhunen-Loeve expansion [95], a technique
similar to the principal component analysis. If the noise is amenable to a finite-dimensional
approximation, e.g. if it has a non-zero correlation window, then the number of terms of the
expansion will be finite and can be replaced by a finite number of independent random vari-
ables.
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3 Convergence analysis of the polynomial
chaos surrogate

This chapter contains a thorough analysis of the uncertain optimal control problem in a slightly
simpler form. We include a summary of the most important definitions and results of spectral
projections with orthogonal polynomials, which also form the foundation of the polynomial
chaos method described thereafter. We apply the polynomial chaos method to the uncertain
optimal control problem in order to derive the corresponding polynomial chaos surrogate prob-
lem. Similar to the deterministic problem version in Section 1.2, we discuss well-posedness
and necessary optimality conditions. The major contribution is the proof of convergence of
the polynomial chaos surrogates in the last part of this chapter.

3.1 Problem definition

Having introduced the considered problem class in Section 2.1, we consider a slightly simpler
set-up of the uncertain nonlinear optimal control problem with final state constraints and with
expected value robustification:

Definition 3.1.1 The uncertain optimal control problem is given by

min
u,x

E
�

∫ tf

t0

l(x (t;ξ), u(t),ξ)dt +m(x (t;ξ),ξ)
�

(UOCP)

s.t. ẋ (t;ξ) = f (x (t;ξ), u(t),ξ) t ∈ [t0, tf] a.e., ξ ∈ S (3.1a)

x (t0) = x0(ξ) ξ ∈ S (3.1b)

u(t) ∈ U(t) t ∈ [t0, tf] a.e. (3.1c)

0¾ E
�

rin(x (tf;ξ),ξ)
�

(3.1d)

0= E
�

req(x (tf;ξ),ξ)
�

. (3.1e)

The problem is influenced by uncertain inputs which form a d-dimensional, continuous random
variable

ξ= (ξ1, . . . ,ξd) : Ω→ Rd

independently distributed in each dimension over a probability space (Ω,F , P) with joint density
function ρ(ξ) and support S.

Similar to the deterministic version of the problem, we make the following assumptions on
the involved functions.

Assumption 3.1 For each realization ξ(ω), ω ∈ Ω a.s. the function f is Lipschitz–continuous
in x and u on [t0, tf] with bounded Lipschitz-continuous derivative in x . The expectations of the
objective and constraint functions E [l], E [m], E

�

req

�

and E [rin] are continuously differentiable
in x . We assume that the constraints are compatible, in particular, that there is an admissible pair
(x , u) satisfying (3.1a)–(3.1e).
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We may pose the following constraint qualification on the terminal constraints at x ?(tf;ξ(ω)), ω ∈
Ω a.s.

rank

�

∂x E
�

req(x ?(tf;ξ),ξ)
�

0
∂x E

�

rin(x ?(tf;ξ),ξ)
�

diag
�

E
�

rin(x ?(tf;ξ),ξ)
��

�

= nreq
+ nrin

. (3.2)

Under Assumption 3.1, the IVP (3.1a)–(3.1b) has a unique solution x (·;ξ) = xu(·;ξ) for any
admissible control function u ∈ U and for each fixed random outcome ω ∈ Ω a.s.

We assume in the following that (UOCP) has an optimal solution (xu? , u?). At each time in-
stance, xu? is assumed to have finite variance with respect to the underlying probability space.
In other words, using the definition of L2

ρ(S), the L2-space with weight function ρ over the
set S, we pose the following assumption.

Assumption 3.2 The optimal state trajectories xu? are L2
ρ(S)-measurable, i.e., at any arbitrary

but fixed time point τ ∈ [t0, tf]

xu?(τ; ·) ∈ L2
ρ(S).

This is the fundamental assumption of the polynomial chaos method and can be extended to
any admissible control.

Lemma 3.1.1 Given Assumptions 3.1 and 3.2,

xu(τ; ·) ∈ L2
ρ(S)

holds for any u ∈ U .

Proof Let xu?(τ; ·) be the optimal state trajectory for which we have ‖xu?(τ; ·)‖L2(S) <∞ and
let u ∈ U . The triangle inequality for an arbitrary but fixed point in time τ yields

‖xu(τ; ·)‖L2(S) ¶ ‖xu(τ; ·)− xu?(τ; ·)‖L2(S) + ‖xu?(τ; ·)‖L2(S). (3.3)

Consider the state and control trajectory at a fixed but arbitrary random realization ξ̄. By Lipschitz-
continuity of f in x and u and by applying the Gronwall Inequality, there is a constant M <∞
such that

�

�

�

�xu(·; ξ̄)− xu?(·; ξ̄)
�

�

�

�

L∞([t0,tf])
¶ M ||u − u?||L∞([t0,tf]) <∞.

This implies that for any arbitrary but fixed point in time τ,
�

�

�

�xu(τ; ξ̄)− xu?(τ; ξ̄)
�

�

�

�<∞

thus

‖xu(τ; ·)− xu?(τ; ·)‖L2(S) <∞.

This proves the desired bound ‖xu(τ; ·)‖L2(S) <∞. �
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3.2 Spectral projections with orthogonal polynomials

Before we can explain the polynomial chaos method for uncertainty quantification and apply it
to optimal control under uncertainty, we give an introduction to the theory of spectral projec-
tions with orthogonal polynomials. Spectral methods rely on the approximation of the exact
solution by series of orthogonal polynomials with an order of convergence that is bounded
only by the regularity of the exact solution.
The goal of this section is to lay out the theory necessary for the remainder of this chapter. In
particular, we need a-priori estimates related to the spectral convergence rate of the polynomial
expansion for different families of the classical orthogonal polynomials, i.e. error estimates for
the truncation error, limited only by the regularity in the parameter space.
The references used in this section are Szego [144] for general orthogonal polynomials, Canuto
and Quarteroni [33] for results on weighted Sobolev spaces in bounded domains and Shen et
al. [136] for results on weighted Sobolev spaces in unbounded domains.

Throughout this section, we use the following notation. The partial derivative with respect
to z is denoted by ∂z =

∂
∂ z . I ⊆ R stands for an open or closed interval and S = Id denotes

the Cartesian product whose variables are denotes by ξ = (ξ1, . . . ,ξd). The weight function
in the considered weighted Hilbert and Sobolev spaces typically arise as probability density
functions – up to a scaling factor – hence is denoted by a subscript ρ. If the weight function is
not relevant or if it is clear from the context, we drop the subscript.

3.2.1 Weighted Lp and Sobolev spaces

We first define the weighted Lp and Sobolev spaces of Hilbert type over the open set S.

Definition 3.2.1 Let S ⊆ Rd be a domain. A weight function ρ : S → [0,∞] is a non-negative,

integrable function. The weight function ρ is separable if it can be written as ρ(ξ) =
d
∏

j=1

ρ j(ξ j).

Weight functions are closely related to the concept of probability measures. A separable weight
function corresponds to independent random variables.

Example 3.2.1 (Gaussian measure) The weight function

ρ(ξ) =
1

(2π)d/2
exp

�

−
ξTξ

2

�

defines the Gaussian measure µ(ξ) by setting µ(ξ) = ρ(ξ)dξ. If the components ξ j , 1 ¶ j ¶ d,
are independent to each other, then the weight function is separable

ρ(ξ) =
d
∏

j=1

1
p

2π
exp

�

−
ξ2

j

2

�

.

Definition 3.2.2 The weighted Lp-space on S ⊆ Rd is defined as

Lp
ρ(S) = {v|v measurable and ||v||Lp

ρ(S) <∞}

where

||v||Lp
ρ(S) =

�∫

S

�

�v(ξ)
�

�

p
ρ(ξ)dξ

�
1
p

for 0< p <∞.
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For p =∞, the space of essentially bounded functions L∞(S) is defined similarly with the
norm

||v||L∞(S) = ess supS
�

�v(ξ)
�

� .

We assume that the weight function is chosen such that L2
ρ = L2

ρ(S) forms a Hilbert space with
the norm

‖v‖L2(S) = 〈v, v〉
1
2
L2(S)

induced by the inner product




u(ξ), v(ξ)
�

L2(S) =

�∫

S
u(ξ)v(ξ)ρ(ξ)dξ

�
1
2

.

In this case, there exist a complete orthogonal system of polynomial basis functions {φk} that
can be normalized such that




φk(ξ),φ j(ξ)
�

L2(S) =

∫

S
φk(ξ)φ j(ξ)ρ(ξ)dξ= δk j ∀k, j.

This set can be constructed by the Gram-Schmidt orthogonalization procedure [127].

Example 3.2.2 The Hermite polynomials form a complete orthogonal basis for the Hilbert space
L2(Rd ,µ) with the Gaussian measure µ.

Similar to the weighted Lp-spaces, we can define the weighted Sobolev spaces.

Definition 3.2.3 The weighted Sobolev spaces are defined as

W l,p
ρ (S) =

¦

v ∈ Lp
ρ(S) | Dm v ∈ Lp

ρ(S) ∀m ∈ Nd with |m|¶ l
©

with derivative operator Dm v =
∂ |m|v

∂ m1ξ1 . . .∂ mdξd
and multi-index m = (m1, . . . , md) ∈ Nd with

|m| ··=
∑d

j=1 m j .

The space

W l,2
ρ (S) =·· H

l
ρ, l ¾ 0,

forms a Hilbert space equipped with the norm

||v||H l
ρ
=
∑

|m|¶l

‖Dm v‖L2(S).

If ξ is a random variable with probability measure P over the sample space Ω, we regard
S ⊆ Rd as the support of the pdf of ξ. The inner product in the Hilbert space is determined by
the probability density function (PDF) ρ of the random variables




u(ξ), v(ξ)
�

L2(S) =

∫

S
u(ξ(ω))v(ξ(ω))dP(ω) =

∫

S
u(ξ)v(ξ)ρ(ξ)dξ.
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The first and second moment of the random variable is defined by



ξ
�

L2(S) = E
�

ξ
�

and


ξ




2
L2(S) = E

�

ξ2
�

, respectively.

3.2.2 Generalized Fourier series

Let φ0(ξ), . . . ,φMp−1(ξ) be a sequence of multidimensional polynomials in ξ = (ξ1, . . . ,ξd)
orthonormal with respect to L2

ρ(S). The polynomials are assumed to be separable in each
dimension, i.e.,

φk(ξ) =
d
∏

j=1

φk, j(ξ j).

The total degree of φk(ξ) is defined by

deg(φk(ξ)) ··=
d
∑

j=1

deg(φk, j(ξ j)),

and is assumed to be at most p.

Consider the generated space of polynomials of degree at most p

Sp = span{φ0(ξ), . . . ,φMp−1(ξ)}.

An orthogonal projection

Πp : L2
ρ(S)→ Sp

of a function f ∈ L2
ρ(S) onto Sp is defined by




f −Πp f ,φk

�

L2(S) = 0 for k = 0, . . . , Mp − 1.

A generalized Fourier series is an expansion

Πp f =
Mp−1
∑

k=0

ck( f )φk(ξ)

of a function f based on a system of orthogonal polynomials. The Fourier coefficients are
defined by

ck( f ) ··= 〈 f ,φk〉L2(S).

and satisfy Parseval’s identity

∞
∑

k=0

|ck( f )|
2 = ‖ f ‖2L2(S). (3.4)

The Fourier series Πp f is the L2
ρ-best approximation of f , for which



 f −Πp f




L2(S) =min
g∈Sp
‖ f − g‖L2(S).
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3.2.3 Classical orthogonal polynomials

The classical orthogonal polynomials, which correspond each to a specific weight function ρ
on the open set I ⊆ R, generate most of the common continuous probability distributions. In
higher dimensions with d > 1 independent random variables, the weights ρ(ξ) are tensorized
on S = Id .
Our goal in this section is to derive a-priori estimates related to the spectral convergence rate
of the polynomial expansion for the different families of classical orthogonal polynomials, i.e.
error estimates for the truncation error, limited only by the regularity in the parameter space.

Orthogonal polynomials on bounded domains

The Jacobi polynomials are the orthogonal polynomials with respect to a weight function of
the form

ρ(ξ j) = (1− ξ j)
α(1+ ξ j)

β ,α,β > −1 on I = (−1, 1).

They include the Chebychev polynomials

α= β = −
1
2

with weight function ρ(ξ j) = (1− ξ2
j )
−1/2

and the Legendre polynomials

α= β = 0 with weight function ρ(ξ j) = 1.

It is a well-known fact (see [144, Section 7.32]), that the Jacobi polynomials reach the maxi-
mum and minimum of their absolute value at ξ j = 1 and ξ j = −1, respectively, provided that
α,β ¾ −1

2 . Since

φ
(α,β)
k (1) =

Γ (k+α+ 1)
k!α+ 1

= O(kα) and φ(α,β)
k (−1) =

Γ (k+ β + 1)
k!β + 1

= O(kβ) ∀k ¾ 0,

it follows that

‖φk‖L∞(S) = O(1) ∀k ¾ 0.

In the following, we focus on the Legendre polynomials for their correspondence to the uniform
distributions. The results equally apply to the Chebychev polynomials [33] and more general
types of Jacobi weights [136, Chapter 3.5].

Definition 3.2.4 (Legendre polynomials) The n-th Legendre polynomial Ln(ξ j), ξ j ∈ R is
defined by

L0(ξ j) = 1

Ln(ξ j) =
1

2nn!
dn

dξn
j

�

(ξ2
j − 1)n

�

n¾ 1.

They are solutions to the Legendre’s differential equation

d
dξ j

�

(1− ξ2
j )

d
dξ j

Ln(ξ j)

�

+ n(n+ 1)Ln(ξ j) = 0

normalized such that Ln(1) = 1.
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The associated orthonormal system {φk}∞k=0 with ‖φk‖L2(S) = 1 ∀k is given by

φk = λk Lk, k ¾ 0

with normalization factor

λk = (k+ 1/2)1/2.

The sequence of Legendre polynomials satisfies the recurrence

(n+ 1)Ln+1(ξ j) = (2n+ 1)ξ j Ln(ξ j)− nLn−1(ξ j), L0(ξ j) = 1, L1(ξ j) = ξ j .

and the following relation for the derivative

d
dξ j

Ln+1(ξ j) = 2λn Ln(ξ j) + 2λn−2 Ln−2(ξ j) + . . .+

¨

2λ1 L1(ξ j) if n odd

2λ2 L2(ξ j) if n even
(3.5)

A-priori estimates of the spectral convergence rate of the expansion can be derived by using
the characterization of the classical orthogonal polynomials as eigenfunctions of some second-
order linear differential operator and by finding bounds for the derivative of the expansion
and the expansion of the derivative.

Theorem 3.2.1 (Spectral bound, Theorem 2.25 of [33]) For 0¶ k ¶ m, define

h(k, m) =

¨

2m+1−4k
2 , if k ¾ 1,

2m−3k
2 , if k ∈ [0,1)

.

Then, for any v ∈ Hm
ρ (S),

�

�

�

�v −Πpv
�

�

�

�

Hk
ρ
¶ C p−h(k,m) ||v||Hm

ρ
.

In some cases, it is useful to consider inverse inequalities, which hold for finite-dimensional
spaces.

Theorem 3.2.2 (Inverse inequality, Lemma 2.4 of [33]) Suppose 0¶ k ¶ m. Then,

||v||Hm
ρ
¶ C p2(m−k) ||v||Hk

ρ

for any v ∈ Sp.

In Section 3.5, we make use of the following bound for compact spaces S introduced in [6,
Equation 2.3]: there exist a constant Cs and a parameter h depending only on ρ and on d such
that for v ∈ L2

ρ

max
¦

‖v‖L∞(S),


∂ξ1
v




L∞(S), . . . ,


∂ξd
v




L∞(S)

©

< Cs

∞
∑

k=0

|ck(v)| (degφk)
h. (3.6)

For our purposes it is sufficient to consider the above bound for finite v ∈ Sp, which we derive
from scratch in the following. With the further regularity assumption v ∈ Hk

ρ we can show

boundedness: L∞ can be continuously embedded into Hk
ρ(S) whenever k > d

2 . This can be
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seen by considering the Fourier transform v̂(θ ) ∈ L2
ρ(R

d) of v(ξ) ∈ L2
ρ(R

d)

sup
S

�

�v(ξ)
�

�¶
1

(2π)d

∫

Rd

|v̂(θ )|dθ

¶
1

(2π)d

�∫

Rd

dθ

(1+ |θ |2)k

�1/2

︸ ︷︷ ︸

··=Ck<∞ iff k>d/2

�∫

Rd

|v̂(θ )|2 (1+ |θ |2)kdθ

�1/2

.

The claim ‖v‖L∞(S) ¶ C ||v||Hk
ρ

follows by noting the equivalence, cf. e.g. [17],

Hk(Rn) =
¦

f ∈ L2
ρ(R

n) : F−1
�

(1+ |θ |2)
k
2 F f

�

∈ L2
ρ(R

n)
©

.

Using the inverse inequalities, or directly computing the norms of the derivative of the different
orthonormal polynomials, we can find a constant C and a parameter m depending only on the
weight function ρ such that for 1¶ j ¶ d





∂ξ j
v






L2(S)
¶ C pm‖v‖L2(S) for v ∈ Sp.

Consequently, by Parseval’s identity 3.4 and the L∞-embedding, there exist a constant C ′s and
a parameter h′ depending on only ρ and on d such that for v ∈ Sp

max
¦

‖v‖L∞(S),


∂ξ1
v




L∞(S), . . . ,


∂ξd
v




L∞(S)

©

¶ C ′s ph′
Mp−1
∑

k=0

|ck(v)| . (3.7)

Orthogonal polynomials on unbounded domains

In unbounded domains, the weights are usually of exponential type in order to preserve in-
tegrability of the weighted polynomials. We consider the Hermite polynomials, which can be
defined in two different ways as "probabilists’" or "physicist’" and derived from each other by
rescaling. The weight functions for the two types are defined as follows

ρ(ξ j) = e−ξ
2
j /2 and ρ(ξ j) = exp

�

−ξ2
j

�

on I = R, respectively.

For the Laguerre polynomials, the weights are defined as

ρ(ξ j) = exp
�

−ξ j

�

on I = (0,∞).

The weight function of the "probabilists’" Hermite polynomials corresponds to the Normal
distribution, thus we focus on this class.

Definition 3.2.5 (Hermite polynomials) The n-th (probabilist) Hermite polynomial Hn(ξ j),
ξ j ∈ R is defined by

H0(ξ j) = 1

Hn(ξ j) = (−1)n exp

�

ξ2
j

2

�

dn

dξn
j

�

exp

�

−
ξ2

j

2

��

n¾ 1.
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Example 3.2.3 The Hermite polynomials up to second order two for ξ= (ξ1,ξ2) are given by

φ0(ξ) = φ
0
0(ξ1)φ

1
0(ξ2) = 1

φ0(ξ) = φ
0
1(ξ1)φ

1
1(ξ2) = ξ1

φ0(ξ) = φ
0
2(ξ1)φ

1
2(ξ2) = ξ2

φ0(ξ) = φ
0
3(ξ1)φ

1
3(ξ2) = ξ

2
1 − 1

φ0(ξ) = φ
0
4(ξ1)φ

1
4(ξ2) = ξ1ξ1

φ0(ξ) = φ
0
5(ξ1)φ

1
5(ξ2) = ξ

2
2 − 1.

Denote by

λm = (
p

2πn!)−
1
2

the normalization term such that φk = λkHk and ‖φk‖L2(S) = 1, k ¾ 0.
The sequence of normalized Hermite polynomials satisfies the recurrence

(n+ 1)
1
2φn+1(ξ j) = ξ jφn(ξ j)− n

1
2φn−1(ξ j), H0(ξ j) = 1, H1(ξ j) = ξ j

and the following relation for the derivative

d
dξ j
φn(ξ j) = n

1
2φn−1(ξ j). (3.8)

The derivation of the spectral error estimates is similar to the orthogonal polynomials on
bounded domains and uses the characterization of the classical orthogonal polynomials as
eigenfunctions of some second-order linear differential operator.

Theorem 3.2.3 (Spectral bound, Theorem 2.25 of [16]) Let 0¶ k ¶ m and define

h(k, m) =
m− k

2
.

Then, for v ∈ Hm
ρ (S),

�

�

�

�v −Πpv
�

�

�

�

Hk
ρ
¶ C p−h(k,m) ||v||Hm

ρ
.

For similar results for the Laguerre polynomials, we refer to [16], and for inverse inequalities,
we refer to [16, Theorem 2.21, 2.24].

As before, by computing the derivative of the different orthonormal polynomials, we can find
a constant C independent of any function and p and a parameter m depending only on ρ such
that





∂ξ j
v






L2(S)
¶ C pm‖v‖L2(S) for v ∈ Sp.

For Hermite polynomials, the constant m = 1
2 follows from differentiating the expansion and

from relation (3.8),

∂ξ j
v = ∂ξ j

p
∑

k=0

v̂kφk =
p
∑

k=1

v̂kk
1
2φk−1.

37



CHAPTER 3
�

� C O N V E R G E N C E O F T H E P O LY N O M I A L C H A O S S U R R O G AT E

3.3 The polynomial chaos transformation

The polynomial chaos method, which belongs to the class of spectral methods, is a popular
uncertainty quantification method. A short introduction and a literature review can be found
under Section 2.3.6.

In this section, we aim to provide a simple and compact introduction to this topic. There-
fore, we neglect the time dependence of the state variables that are considered to be random
variables x : Ω→ R affected by an Rd -valued random input vector ξ= ξ(ω).

3.3.1 Basic development

Early development took place in 1938 when Wiener introduced the notion of homogeneous
chaos as the span of Hermite polynomial functionals of a Gaussian process [150] and in 1947
when Cameron and Martin proved that the Fourier-Hermite series expansion, which can be
constructed with the homogeneous chaos, converges to any L2-measurable functional [32].
More than 50 years later, the techniques were rediscovered under the notion of generalized
polynomial chaos (gPC) and extended to several continuous and discrete probability distribu-
tions other than the Gaussian measure, cf. [57, 152, 151].

The polynomial chaos transformation applies a polynomial expansion to approximate the de-
pendence of the propagated random states on the random input parameters ξ, which are
assumed to be independent, see Remark 3.1.

In their seminal work, Cameron and Martin [32] proved that any random functional x ∈
L2((Ω,F , P)) on a probability space (Ω,F , P) can be expanded into an L2-converging series
Mp−1
∑

k=0

x̂kφk(ξ) of a countable collection of independent Gaussian random variables ξ : Ω→ Rd

for some d ¾ 1 with Gaussian probability law P and a sequence of Hermite polynomials {φi}.

The original polynomial chaos expansion was written in the form, cf. [89],

x(ξ(ω)) = c0H0 +
∞
∑

i1=1

ci1 H1(ξi1(ω)) +
∞
∑

i1=1

i1
∑

i2=1

ci1 i2 H2(ξi1(ω),ξi2(ω)) (3.9)

+
∞
∑

i1=1

i1
∑

i2=1

i2
∑

i3=1

ci1 i2 i3 H3(ξi1(ω),ξi2(ω),ξi3(ω)) + . . . ,

where Hd(ξi1(ω), . . . ,ξid (ω)) denotes the multidimensional Hermite polynomial of order d in
terms of the multidimensional independent standard Gaussian random variable ξ= (ξi1 , . . . ,ξid )
and ci1...id are the coefficients.

Relation (3.9) can be reordered and rewritten in a simpler standard notation with multidi-
mensional Hermite basis polynomials φk(ξ(ω)) and coefficients x̂k, here exemplary for d = 2,
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i.e., ξ= (ξ1,ξ2):

x(ξ(ω)) = c0H0 +
∞
∑

i1=1

ci1 H1(ξi1(ω)) +
∞
∑

i1=1

i1
∑

i2=1

ci1 i2 H2(ξi1(ω),ξi2(ω))

+
∞
∑

i1=1

i1
∑

i2=1

i2
∑

i3=1

ci1 i2 i3 H3(ξi1(ω),ξi2(ω),ξi3(ω)) + . . .

= c0H0 + c1H1(ξ1(ω)) + c2H1(ξ2(ω)) + c11H2(ξ1(ω),ξ1(ω))

+ c21H2(ξ2(ω),ξ1(ω)) + c22H2(ξ2(ω),ξ2(ω))

+ c111H3(ξ1(ω),ξ1(ω),ξ1(ω)) + . . .

= x̂0φ0(ξ1(ω),ξ2(ω)) + x̂1φ1(ξ1(ω),ξ2(ω)) + x̂2φ2(ξ1(ω),ξ2(ω)) (3.10)

+ x̂3φ3(ξ1(ω),ξ2(ω)) + x̂4φ4(ξ1(ω),ξ2(ω)) + x̂5φ5(ξ1(ω),ξ2(ω))

+ x̂6φ6(ξ1(ω),ξ2(ω)) + . . . .

In general, the multivariate basis polynomials can be expressed as products of univariate basis
polynomials φi, j(ξ j(ω)) for i ¾ 0, 1 ¶ j ¶ d with the help of multi-indices to define a mixed
set of multivariate polynomials. This decoupling is possible due to the use of independent
random variables. For instance, for (3.10) we obtain

x(ξ(ω)) = x̂0φ0(ξ1(ω),ξ2(ω))
︸ ︷︷ ︸

φ0,1(ξ1(ω))φ0,2(ξ2(ω))

+ x̂1φ1(ξ1(ω),ξ2(ω))
︸ ︷︷ ︸

φ1,1(ξ1(ω))φ0,2(ξ2(ω))

+ x̂2φ2(ξ1(ω),ξ2(ω))
︸ ︷︷ ︸

φ0,1(ξ1(ω))φ1,2(ξ2(ω))

+ x̂3φ3(ξ1(ω),ξ2(ω))
︸ ︷︷ ︸

φ2,1(ξ1(ω))φ0,2(ξ2(ω))

+ x̂4φ4(ξ1(ω),ξ2(ω))
︸ ︷︷ ︸

φ1,1(ξ1(ω))φ1,2(ξ2(ω))

+ x̂5φ5(ξ1(ω),ξ2(ω))
︸ ︷︷ ︸

φ0,1(ξ1(ω))φ2,2(ξ2(ω))

+ . . . .

The coefficients that realize the L2-convergence











x −
Mp−1
∑

i=0

x̂kφk(ξ)











L2(S)

p→∞
−−−→ 0. (3.11)

are computed in a Fourier-like manner using a Galerkin projection

x̂k ··=



x(ξ),φk(ξ)
�

L2(S), k = 0,1, . . .

as defined in Section 3.2.2.
The convergence rate of the expansion is limited by the regularity of the solution x(ξ) and can
be exponentially fast for smooth convergence. The a-priori error estimate











x −
Mp−1
∑

i=0

x̂kφk(ξ)











L2(S)

¶ C p−
m
2 ||x ||Hm ,

where Hm is the Sobolev space weighted by the Gaussian measure, is provided by Theo-
rem 3.2.1 for spectral expansions with Hermite polynomials.
For a p-th order approximation, a total mumber of Mp multidimensional basis polynomials are
required where

Mp = card{φk(ξ) | deg(φk(ξ)) =
∑

0¶ j¶d

φk j
(ξ j)¶ p}
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denotes the number of multivariate polynomials of total degree at most p.
The exact expression for Mp is given by the following well-known lemma, cf. e.g. [8].

Lemma 3.3.1 The number of terms in a p-th order approximation corresponding to the number
of monomials of degree at most p in d variables is

Mp =

�

p+ d
d

�

=
(d + p)!

d!p!
.

Proof (e.g. [8]) There is exactly one monomial of degree 0. For k ¾ 1, the number of monomials
of degree exactly k in d variables is given by [29]

�

k+ d − 1
d − 1

�

.

Thus, the number of monomials of degree at most p in d variables is

Mp = 1+
p
∑

k=1

�

k+ d − 1
d − 1

�

=

�

p+ d
d

�

=
(d + p)!

d!p!
.

This is equal to the number of orthogonal polynomials of degree at most p in d variables, which
can be obtained from the set of monomials by an orthogonalization procedure. �

The benefit of the polynomial chaos series representation x (p)(ξ) =
Mp−1
∑

k=0

x̂kφk(ξ) lies in the

decomposition of the stochastic equations into deterministic coefficients x̂ and random basis
functions φi(ξ). The orthogonality property allows for computing the statistical moments of
the expanded variables from the deterministic coefficients, e.g.,

E
�

x (p)
�

= x̂0, Var [x (p)] = E
�

(x (p))2
�

− E
�

x (p)
�2
=

Mp−1
∑

i=1

x̂2
i .

Lemma 3.3.2 The k-th moment of the p-order polynomial chaos approximation x (p) is

E
�

(x (p))k
�

=
∑

0¶i1,...,ik¶Mp−1

x̂ i1 . . . x̂ ik




φi1(ξ) . . .φik(ξ)
�

L2(S).

Proof

E
�

(x (p))k
�

= E





Mp−1
∑

i1=0

x̂ i1φi1(ξ) . . .
Mp−1
∑

ik=0

x̂ ikφik(ξ)





=
∑

0¶i1,...,ik¶Mp−1

x̂ i1 . . . x̂ ik E
�

φi1(ξ) . . .φik(ξ)
�

�

3.3.2 Choice of basis

For most of the common continuous and discrete distribution, there exists a direct correspon-
dence between the probability distribution and the weight function of the orthogonal polyno-
mials. The polynomial families used in gPC derive from the Askey scheme [151, 5] of hyperge-
ometric polynomials and can be traced back to the classical orthogonal polynomials described
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distribution polynomials support probability density/mass

continuous Gaussian Hermite R 1p
2π

exp
�

−−ξ
2

2

�

Gamma Laguerre [0,∞) exp (−ξ)
Beta Jacobi [a, b] b−a

2 (1− ξ)
α(1+ ξ)β

Uniform Legendre [a, b] b−a
2

discrete Poisson(λ) Charlier {0,1, . . .} exp (−λ)λ
k

k!

Binomial(n, p) Krawtchouk {0,1, . . . , n}
�n

k

�

pk(1− p)r

Negative binomial Meixner {0, 1, . . .}
�k+r−1

k

�

pk(1− p)r

(r, p)

Hypergeometric Hahn {0, 1, . . . , n} (Kk)(N−K
n−k )
(Nn)

(N , K , n)

Table 3.1: Orthogonal polynomials from the Askey scheme and their corresponding continuous or dis-
crete probability distribution.

in Section 3.2.3. A selection of probability distributions with their orthogonal polynomials is
listed in Table 3.1. An extension of the fundamental L2-convergence result to expansion in
polynomials more general than Hermite polynomials, provided the existence of moments of
any order, can be found in [51].
The optimal choice of basis functions {φi(ξ)} that best captures the uncertainty behavior with
the lowest expansion order cannot be predetermined, as the distribution of x(ξ) is not known.
A heuristic choice is to select the polynomial family that is orthogonal to the probability space
of the input distribution instead.

A generalization of polynomial chaos techniques towards arbitrary discrete, continuous, or dis-
cretized continuous probability measures, which can be specified either analytically in form of a
the density or distribution functions, via statistics of the distribution such as moments, numer-
ically as histogram or as raw data sets, is coined arbitrary polynomial chaos (aPC) [113]. The
polynomials can be generated by some orthogonalization procedure, e.g. the Gram-Schmidt
procedure [127].
A final remark concerns the basic assumption of the use of independent random variables.

Remark 3.1 (Dependent random variables) Dependent random variables ζ must be trans-
formed to a set of independent random variables ξ by a nonlinear change of variables. The di-
mension of ξ should thereby be chosen to represent the number of distinct sources of randomness
in the particular problem. That is, it can be smaller than the dimension of the dependent random
variables ζ. Different methods are described in [49].

3.3.3 Intrusive and non-intrusive methods

To obtain expressions for the coefficients x̂0, . . . , x̂k, a projection of x(ξ) or of the model equa-
tions against the selected basis functions is computed as follows:

x̂k ··= 〈x ,φk〉L2(S) =

∫

S
x(ξ)φk(ξ)dξ, k = 0, 1, . . . .
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In practice, a truncated basis is used which results in a finite-dimensional approximation

x̂k ··=



x (p),φk

�

L2(S) =

∫

S
x (p)(ξ)φk(ξ)dξ, k = 0, . . . , Mp − 1. (3.12)

There exist two approaches for computing or approximating the inner product:

1. The intrusive spectral projection approach carries out the analytic computations as far as
possible by using elementary operations, interchanging sum and integral and exploiting
orthogonality. The inner product of products of standard orthogonal polynomials




φi1(ξ), . . . ,φik(ξ)
�

L2(S)

=
¬

φi1,1
(ξ1), . . . ,φik,1

(ξ1)
¶

L2(S)
. . .
¬

φi1,d
(ξd), . . . ,φik,d

(ξd)
¶

L2(S)
∈ R

can be computed analytically using the dimension-independence and possibly be stored
for later reuse. Provided that the involved functions can be expressed as polynomials in
ξ, this leads to a fully deterministic system. For nonlinear problems with non-polynomial
expressions, this may be achieved in some cases through a nonlinear transformation by
using additional differential or algebraic states.

2. The more popular alternative, which can be applied to any kind of system, including
blackbox systems, is referred to as non-intrusive spectral projection. Its main difference
is the use of a numerical integration rule instead of direct algebraic manipulation to com-
pute the Galerkin projection integral. We describe only the use of a grid-based quadrature
and refer to the literature for other methods to approximate the integral 3.12, such as
sampling or regression methods [50, 49, 8].

We first consider one-dimensional quadrature rules for ξ j over I j ⊆ R where 1 ¶ j ¶ d.

An NQ-point one-dimensional Gaussian quadrature rule {(ξ(m)j , w(m)j )}m=1,...,NQ
involes

nodes {ξ(m)j }m=1,...,NQ
selected as the zeros of an NQ-th order one-dimensional polyno-

mial φNQ, j(ξ j) and specific formulas for the weights {w(m)j }m=1,...,NQ
[60], which depend

on the underlying random space. Examples are Gauss-Hermite, Gauss-Legendre, Gauss-
Laguerre, generalized Gauss-Laguerre, and Gauss-Jacobi rules. The integral is then com-
puted as follows

∫

I j

x (p)(ξ j)φk, j(ξ j)dξ j ≈
NQ
∑

m=1

x (p)(ξ(m)j ) φk, j(ξ
(m)
j )w

(m)
j .

An NQ-point Gaussian quadrature rule integrates exactly all one-dimensional polyno-
mials of degree at most 2NQ − 1, see [60] for more information. For multidimensional
quadrature, either a tensor grid of one-dimensional quadrature rules or Smolyak sparse
grids [141] can be used.

Setting w(m) = w(m)1 · . . . ·w(m)d , the inner product (3.12) is computed by

x̂k =

∫

S
x (p)(ξ)φk(ξ)dξ≈

NQ
∑

m=1

x (p)(ξ(m)) φk(ξ
(m))w(m). (3.13)

The integrand in (3.13) involves polynomials of order up to p in each dimension for
the evaluation of φk and of order exactly p in each dimension for evaluation of the PC

42



C O N V E R G E N C E O F T H E P O LY N O M I A L C H A O S S U R R O G AT E
�

� CHAPTER 3

model x (p)(ξ). Consequently, to obtain good accuracy in these coefficients, a Gaussian
quadrature order of 2p+1

2 , i.e., of p+ 1, is necessary and sufficient in each dimension.

In practical problems, the Galerkin projection and hence the Gauss quadrature is not di-
rectly applied to x (p) but to the model function f (x (p)), e.g., for optimal control problems
the Galerkin projection is applied to

d
dt

x (p)(t;ξ) = f (x (p)(t;ξ), u(t),ξ).

In this case, the evaluation of the model function requires a numerical quadrature in the
form, for i = 1, . . . , n,

f̂k,i =

∫

S
fi(x

(p)(t;ξ), u(t),ξ)φk(ξ)dξ (3.14)

s ≈
NQ
∑

m=1

fi(x
(p)(t;ξ(m)), u(t),ξ(m)) φk(ξ

(m))w(m) (3.15)

and the order of the integrand is p+q ¾ 2p where q ¾ p and q = p only if f is linear. Thus
a minimal Gaussian quadrature order of p+ 1 is necessary but might not be sufficiently
large to give exact results. In particular if the model functions f are highly nonlinear,
the Gauss quadrature gives only an approximation of the true solution.

3.3.4 Advantages and limits

There are several distinctive features of the polynomial chaos method, which make them at-
tractive for optimal control problems. It can deal with nonlinear models and several differ-
ent input distributions. Moments of any order can be analytically computed by the use of
Lemma 3.3.2. The non-intrusive polynomial chaos method is easily applicable to blackbox sys-
tems, as they often arise in practical optimal control problems where all or a part of the model
can only be evaluated as the output of a simulator. Furthermore, the approximation quality,
which corresponds to the expansion order is adjustable depending on the available computa-
tional resources. Already a polynomial chaos surrogate model with an expansion order as low
as p = 2 is able to capture significant nonlinear effects that deviate from the input distribution.
Due to the exponential increase of the required number of terms Mp with the dimension d, cf.
Lemma 3.3.1, the method is best suitable for low to moderate uncertainty dimensions. This is
often satisfied for nonlinear optimal control applications.
As the convergence speed depends on the regularity of the solution with respect to the proba-
bility space of the expansion, the selected polynomial basis may not be adequate for capturing
the nonlinear, possibly asymmetric uncertainty propagation. Possible remedies for the case that
the basis cannot adequately represent the propagated uncertainty distribution are a decompo-
sition of the uncertainty space [148] or basis adaption, e.g., [99]. For further references, we
refer to the previous works listed in Section .
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3.4 Properties of the polynomial chaos surrogate optimal control
problem

The polynomial chaos procedure derived in Section 3.3 can be applied to the uncertain optimal
control problem (UOCP). The resulting polynomial chaos surrogate problem is a deterministic,
nonlinear optimal control problem with large state space

x̂ = (x̂0, . . . , x̂Mp−1) = ( x̂0,0, . . . , x̂0,n−1, . . . , x̂Mp−1,0, . . . , x̂Mp−1,n−1),

x̂ ∈W 1,∞([t0, tf],RnMp)

and controls

u ∈ L∞([t0, tf],Rnu).

The new state equations are obtained by an orthogonal projection of f onto the basis functions,

˙̂xk =



f (x (p), u,ξ),φk

�

L2(S) =·· f̂k(x̂ , u) for k = 0, . . . , Mp − 1 (3.16)

as described in Section 3.3.3.
By a slight abuse of notation, we use a simplified way of formulating the expected value ob-
jective and constraints, cf. 3.3.2,

l̂ = E [l] = 〈l,φ0〉L2(S), m̂= E [m] = 〈m,φ0〉L2(S),

r̂eq = E
�

req

�

=



req,φ0

�

L2(S), r̂in = E [rin] = 〈rin,φ0〉L2(S).

The resulting polynomial chaos surrogate problem is given by

min
u,x̂

∫ tf

t0

l̂(x̂ (t), u(t))dt + m̂(x̂ (tf)) (OCPp)

s.t. ˙̂xk(t) = f̂k(x̂ (t), u(t)), t ∈ [t0, tf] a.e., 0¶ k ¶ Mp − 1 (3.17a)

u(t) ∈ U(t) t ∈ [t0, tf] a.e. (3.17b)

x̂ (t0) = (x0,0, . . . ,0) (3.17c)

0¾ r̂in(x̂ (tf)) (3.17d)

0= r̂eq(x̂ (tf)). (3.17e)

As in Chapter 1 for the deterministic OCP, we denote by

∂x̂k
req ··=

∂ (req0, . . . , req nreq
)

∂ ( x̂k,0, . . . , x̂k,n−1)

the nreq
× n Jacobian matrix of an arbitrary function req. Similar notations hold for the other

functions and variables.

3.4.1 Well-posedness

The following lemma implies that the optimal control surrogate problem (OCPp) is well-posed
and consequently has a unique solution (x̂ , u). The regularity of the objective as well as of the
end point constraint follows from Assumption 3.1:
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Lemma 3.4.1 The function f̂ is Lipschitz-continuous in x̂ and u on [t0, tf] a.e. with bounded
Lipschitz-continuous derivatives in x̂ .

Proof Take 0¶ k ¶ Mp − 1 arbitrary but fixed. By construction,

f̂k(x̂ , u) =

∫

S
f (x (p)(t;ξ), u(t),ξ) φk(ξ) ρ(ξ) dξ.

By Assumption 3.1, there exist constants C1, C2, C3 <∞ such that

C1 = sup
t∈[t0,tf]

�

�

�

�∂u f (x , u,ξ)
�

�

�

� , C2 = sup
t∈[t0,tf]

�

�

�

�∂x f (x , u,ξ)
�

�

�

� , C3 = sup
t∈[t0,tf]

�

�

�

�∂ 2
x 2 f (x , u,ξ)

�

�

�

� .

We show that the Lipschitz constants of the projected functions f̂k with respect to u and to x̂ =

(x̂0, . . . , x̂Mp−1) and the Lipschitz constants of ∂ f̂k
∂ x̂ with respect to x̂ are bounded. First,

||∂u fk||=
�

�

�

�

�

�

�

�

∂u

∫

S
f (x (p), u,ξ) φk(ξ) ρ(ξ)dξ

�

�

�

�

�

�

�

�

=

�

�

�

�

�

�

�

�

∫

S
∂u f (x (p), u,ξ) φk(ξ) ρ(ξ)dξ

�

�

�

�

�

�

�

�

¶
∫

S

�

�

�

�∂u f (x (p), u,ξ)
�

�

�

�

︸ ︷︷ ︸

¶C1

�

�φk(ξ)
�

� ρ(ξ) dξ¶ C1 E
�

�φk(ξ)
�

�= C1Mk.

For the derivatives with respect to the new states we apply the chain rule

∂

∂ x̂ j
f (x (p), u,ξ) =

∂

∂ x
f (x (p), u,ξ)

∂

∂ x̂ j
x (p) = ∂x f (x (p), u,ξ)φ j .

W.l.o.g., we only show boundedness for the second derivative. This follows by applying the chain
rule twice:

�

�

�

�

�

�∂ 2
x̂ j x̂ l

fk

�

�

�

�

�

�=

�

�

�

�

�

�

�

�

∂ 2
x̂ j x̂ l

∫

S
f (x (p)(t), u(t))φk(ξ)ρ(ξ)dξ

�

�

�

�

�

�

�

�

=

�

�

�

�

�

�

�

�

∫

S
∂x̂ j

�

∂x̂ l
f (x (p), u,ξ)

�

φk(ξ) ρ(ξ)dξ

�

�

�

�

�

�

�

�

=

�

�

�

�

�

�

�

�

∫

S
∂ 2

x 2 f (x (p), u,ξ)φl(ξ)φ j(ξ)φk(ξ)ρ(ξ)dξ

�

�

�

�

�

�

�

�

¶ C3 E
�

�φl(ξ)φ j(ξ)φk(ξ)
�

�= C3Mi, j,k for 1¶ j, l ¶ Mp − 1

It remains to ensure that the absolute (mixed) moments Mα of φ are bounded, where

Mα ··= E
�

�φα1
(ξ) . . .φαm

(ξ)
�

� for a multi-index α ∈ Nm, 0< m<∞.

To this end, note that φα1
(ξ) · . . . ·φαm

(ξ) is a polynomial in ξ. Thus Mα can be upper bounded by
a sum of absolute moments of ξ, and E

�

|ξ|l
�

<∞ iff the l-th moment exists, which is a necessary
assumption for the polynomial chaos method [51]. �
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3.4.2 Optimality conditions

Given the adjoint function λ̂T (t) = (λ̂T
0 (t), . . . , λ̂T

Mp−1(t)) ∈ R
nMp and the constant λ0 ∈ R

associated with (OCPp), we formulate the Hamiltonian function similarly to Section 1.2

Ĥ(x̂ ?(t), u?(t),λ0, λ̂(t)) =
Mp−1
∑

l=0

λ̂l(t) f̂l(x̂
?(t), u?(t)) +λ0 l̂(x̂ ?(t), u?(t)). (3.18)

The notation ∂u =
∂
∂ u always stands for the partial (Fréchet) derivative.

The existence of the adjoints as well as the necessary optimality conditions is given in the
following theorem, cf. [35, Theorem 4.2i].

Theorem 3.4.2 (Pontryagin’s minimum principle) If u? and the associated state trajectory
x̂ ? are a solution of (OCPp), then there exists a constant λ0 ¾ 0, an absolutely continuous adjoint
function λ̂T (t) ∈ RnMp and multiplier vectors ζT ∈ Rnreq , νT ∈ Rnrin satisfying the following
conditions:

1. Nontriviality of the adjoints:

(λ0, λ̂(t)) 6= 0 on [t0, tf]

2. State equation:

d
dt

x̂ ?(t) = f̂ (x̂ ?(t), u(t)) on [t0, tf] a.e.

3. Initial condition:

x̂ ?(t0) = (x0,0 . . . ,0)

4. Adjoint equation: for k = 0, . . . , Mp − 1

d
dt
λ̂k(t) = −

Mp−1
∑

l=0

λ̂l(t)∂x̂k
f̂l(x̂

?(t), u?(t))−λ0 ∂x̂k
l̂(x̂ ?(t), u?(t))

on [t0, tf] a.e.

5. Transversality condition: for k = 0, . . . , Mp − 1

λ̂k(tf) = λ
0 ∂x̂k

m̂(x̂ ?(tf)) + ζ∂x̂k
r̂eq(x̂

?(tf)) + ν∂x̂k
r̂in(x̂

?(tf))

6. Constraints:

r̂eq(x̂
?(tf)) = 0, r̂in(x̂

?(tf))¶ 0

7. Complementary slackness:

νr̂in(x̂
?(tf)) = 0, ν¾ 0
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8. Minimum condition:

Ĥ(x̂ ?(t), u?(t),λ0, λ̂(t)) = min
u∈U(t)

Ĥ(x̂ ?(t), u(t),λ0 , λ̂(t)) on [t0, tf] a.e.

Using the polynomial chaos approximation of the adjoint state

λ(p)(t;ξ) ··=
Mp−1
∑

l=0

λ̂l(t)φl(ξ),

the Hamiltonian function 3.18 can be written in an alternative form

H(x (p)?, u?,λ0,λ(p)) =
Mp−1
∑

l=0

λ̂l(t)
T



f (x (p)?, u?,ξ),φl

�

L2(S) +λ
0



l(x (p)?, u?)
�

L2(S)

=

*

(
Mp−1
∑

l=0

λ̂lφl)
T f (x (p)?, u?,ξ) +λ0 l(x (p)?, u?,ξ)

+

L2(S)

= E
�

(λ(p))T f (x (p)?, u?,ξ) +λ0 l(x (p)?, u?,ξ)
�

. (3.19)

From the minimum condition, we can infer that

∂uH(x (p)?(t;ξ), u?(t),λ0,λ(p)(t;ξ)) = 0 ∀t ∈ [t0, tf] a.e.

properly supported by a second-order condition

dT∂ 2
u2H(x (p)?(t;ξ), u?(t),λ0,λ(p)(t;ξ))d ¾ 0 ∀d ∈ Rnu , ∀t ∈ [t0, tf] a.e..

Further, we assume a strong second-order sufficient condition for sufficiently large orders p
that allows to express the control as a function of states and adjoints.

Assumption 3.3 The solution trajectory (x (p)?, u?,λ0 ,λ(p)) satisfies the strong Legendre con-
dition for all polynomial chaos orders p ¾ q for some q ¾ 0, that is, ∀t ∈ [t0, tf] a.e.

dT∂ 2
u2H(x (p)?(t;ξ), u?(t),λ0,λp(t;ξ))d

= dT E
�

(λp)T∂ 2
u2 f (x (p)?(t;ξ), u?(t),ξ) +λ0 ∂ 2

u2 l(x (p)?(t;ξ), u?(t),ξ)
�

d

¾ α

for some α > 0 and arbitrary d ∈ Rnu .

To this end, we assume that u(t) takes on values in the interior of U(t) for all t ∈ [t0, tf] a.e.,
therefore we preclude bang-bang or singular controls. If u(t) takes on values on the bound-
ary of U(t), the control constraints can be transferred to the inner minimization problem by
forming the extended Hamiltonian

Hµ(x (p)?, u?,λ0,λ(p)) =H(x (p)?, u?,λ0,λ(p))−µ0(u
? − umin) +µ1(u

? − umax)

with multipliers µT
0 ,µT

1 ∈ R
nu and control set U(t) = [umin(t), umax(t)].

Remark 3.2 The optimality condition of (OCPp) are required to hold only for the mean value,
i.e.,

0= ∂uH(x ?, u?,λ0λ) = E
�

(λ(p))T∂u f (x (p)?, u?,ξ) +λ0 ∂u l(x (p)?, u?,ξ)
�

.
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In contrary, the Hamiltonian function associated to (UOCP) with adjoint function λ= λ(t;ξ) is

H(x ?, u?,λ0λ) ··= λT f (x ?, u?,ξ) +λ0 l(x , u?,ξ)

and leads to a more restricted form

0= ∂u H(x ?, u?,λ0λ) = (λ(p))T∂u f (x (p)?, u?,ξ) +λ0 ∂u l(x (p)?, u?,ξ)

required to hold for any realization ξ(ω), ω ∈ Ω.

3.5 Proof of convergence

We state and prove our main result that the sequence (x (p), u), constructed from the solution
(x̂0, . . . , x̂Mp−1, u) of (OCPp), converges as p increases and approximates the solution (x ?, u?)
of (UOCP) arbitrarily well in Theorem 3.5.1 and Corollary 3.5.2. Therefore, we consider the
states and adjoints at an arbitrary but fixed time instance t ∈ [t0, tf].
The first part is posed upon a compactness assumption on the underlying random space for
which alternatives will be discussed at the end of this section.

Assumption 3.4 S is compact.

The second paragraph of the following proof including the bounds (3.20) and (3.21) are mo-
tivated by the work of Anitescu [6, Theorem 3.10] who shows convergence of the PC approx-
imation for parametric nonlinear programming problems. Note that bound (3.21) is always
satisfied if the functions m, rin and req in (UOCP) are linear.

Theorem 3.5.1 (Convergence) Let (x̂0, . . . , x̂Mp−1, u(p),λ0(p), λ̂0, . . . , λ̂Mp−1) be the solution of
(OCPp) satisfying the strong second-order condition in Assumption 3.3 for all sufficiently large p.
Let ζ(p) ∈

�

Rnreq
�?

, ν(p) ∈
�

Rnrin
�?

be the corresponding constraint multipliers.
Suppose that Assumption 3.4 holds and that there exist constants C̃x , C̃λ > 0 such that
∀t ∈ [0, tf]

Mp−1
∑

k=0

�

�

�

�

�

�

�

�

d
dt

x̂k(t)

�

�

�

�

�

�

�

�

(degφk)
h < C̃x , (3.20)

Mp−1
∑

k=0

�

�

�

�

�

�

�

�

d
dt
λ̂k(t)

�

�

�

�

�

�

�

�

(degφk)
h < C̃λ,

Mp−1
∑

k=0

�

�

�

�λ̂k(tf)
�

�

�

� (degφk)
h < C̃λ, (3.21)

where h is the parameter from the bound (3.6) in Section 3.2. Further suppose that there exist a
constant C̃ > 0 such that

λ0(p),
�

�

�

�ν(p)
�

�

�

� ,
�

�

�

�ζ(p)
�

�

�

�< C̃ . (3.22)

Then, we can construct a bounded sequence {(x (p), u(p),λ(p))} with

x (p) =
Mp−1
∑

i=0

x̂ i(t)φi(ξ) and λ(p)(ξ) =
Mp−1
∑

i=0

λ̂i(t)φi(ξ)

containing a convergent subsequence whose limit is a feasible solution to (UOCP).

Proof 1. First, we show that Equation (3.20) extends to similar bounds for x̂k and λ̂k.
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By the mean value theorem, there exists τ ∈ (0, tf) with

||x̂k(t)||¶
�

�

�

�

�

�

�

�

d
dt

x̂k(τ)

�

�

�

�

�

�

�

�

tf + ||x̂k(0)|| .

Consequently, and since x̂k(0) = 0 for k > 0, we can find a constant Cx such that

Mp−1
∑

k=0

||x̂k(t)|| (degφk)
h ¶

Mp−1
∑

k=0

�

tf

�

�

�

�

�

�

�

�

d
dt

x̂k(τ)

�

�

�

�

�

�

�

�

(degφk)
h + ||x̂k(0)||

�

¶ ||x̂0(0)||
︸ ︷︷ ︸

given

+tf

Mp−1
∑

k=0

||x̂k(τ)|| (degφk)
h

︸ ︷︷ ︸

<C̃x

< Cx . (3.23)

In the same way, a constant Cλ can be chosen. To this end, for some τ ∈ (0, tf), we note

�

�

�

�λ̂k(t)
�

�

�

�¶
�

�

�

�

�

�

�

�

d
dt
λ̂k(τ)

�

�

�

�

�

�

�

�

tf +
�

�

�

�λ̂k(tf)
�

�

�

� ,

and

Mp−1
∑

k=0

�

�

�

�λ̂k(t)
�

�

�

� (degφk)
h ¶

Mp−1
∑

k=0

��

�

�

�

�

�

�

�

d
dt
λ̂k(τ)

�

�

�

�

�

�

�

�

tf +
�

�

�

�λ̂k(tf)
�

�

�

�

�

(degφk)
h

¶ tf

Mp−1
∑

k=0

�

�

�

�

�

�

�

�

d
dt
λ̂k(τ)

�

�

�

�

�

�

�

�

(degφk)
h

︸ ︷︷ ︸

<C̃λ

+
Mp−1
∑

k=0

�

�

�

�λ̂f(tf)
�

�

�

� (degφk)
h

︸ ︷︷ ︸

<C̃λ

< Cλ. (3.24)

2. Assume p <∞. Using Equation (3.23) and applying the bound (3.6) to

x (p)(t) =
Mp−1
∑

i=0

x̂ i(t)φi(ξ) ∈ L2(S)

by setting ci(x (p)(t)) =

¨

x̂ i(t) 0¶ i ¶ Mp − 1

0 i ¾ Mp

, we obtain

(a) uniform boundedness:


x (p)(t)




L∞(S) ¶ Cs

Mp−1
∑

k=0

||x̂k(t)|| (degφk)
h < CsCx

(b) equicontinuity: ∀ξ0,ξ1 ∈ Ω

�

�

�

�x (p)(t;ξ0)− x (p)(t;ξ1)
�

�

�

�¶








sup
1¶ j¶d

∂ξ j
x (t)









L∞(S)

�

�

�

�ξ0 − ξ1

�

�

�

�¶ CsCx

�

�

�

�ξ0 − ξ1

�

�

�

� .

Equally, Equation (3.20) and bound (3.6) can be applied to

d
dt

x (p)(t) =
Mp−1
∑

i=0

dx̂ i

dt
(t)φi(ξ) ∈ L2

ρ(S)
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to obtain equicontinuity and uniform boundedness of
d
dt

x (p)(t).

Thus,
�

x (p)(t)
	

as well as
§

d
dt

x (p)(t)
ª

are uniform Lipschitz continuous in ξ. Similar ar-

guments apply to the gPC approximation of the adjoint states,
�

λ(p)(t)
	

and
§

d
dt
λ(p)(t)

ª

,

which are by construction also contained in L2
ρ(S).

We apply the Arzela-Ascoli Theorem, cf. [35, Theorem 9.1i] to obtain a uniformly con-
verging subsequence, taking into accound that the multipliers λ0(p),ν(p),ζ(p) are uniformly
bounded,

§�

x (pk)(t),λ(pk)(t),
d
dt

x (pk)(t),
d
dt
λ(pk)(t),λ0(pk),ν(pk),ζ(pk)

�ª

⊂
§�

x (p)(t),λ(p)(t),
d
dt

x (p)(t),
d
dt
λ(p)(t),λ0(p),ν(p),ζ(p)

�ª

with limiting functions
�

x (∞)(t),λ(∞)(t),
d
dt

x (∞)(t),
d
dt
λ(∞)(t),λ0(∞),ν(∞),ζ(∞)

�

that are Lipschitz continuous and contained in L∞(S).

3. Fix ε > 0 and choose p′k such that ∀pk ¾ p′k ∀t ∈ [t0, tf]


x (pk)(t)− x (∞)(t)




L∞(S) < ε and


λ(pk)(t)−λ(∞)(t)




L∞(S) < ε.

Select an index q ∈ {pk} with q ¾ p′k.

(x (q)(t),λ(q)(t)) is constructed from the solution to (OCPp) with control law u(q)(t) and
satisfies

0= ∂uH(x (q)(t), u(q)(t),λ0(q),λ(q)(t)) on [t0, tf] a.e.

with H̃ defined in (3.19).

By Assumption (3.3), ∂ 2
u2H(x (q)(t), u(q)(t),λ0(q),λ(q)(t)) is invertible. Thus, we can apply

the implicit function theorem to determine a Lipschitz continuous mapping

Γ : B∞ε (x
(q)(t),λ0(q),λ(q)(t))→ Rnu

in the ε-neighborhood of (x (q)(t),λ0(q),λ(q)(t)) with

u(t) = Γ (x (t),λ0,λ(t)) ⇔ ∂ 2
u2H(x (t), u(t),λ0,λ(t)) = 0.

Defining

u(pk)(t) = Γ (x (pk)(t),λ0(pk),λ(pk)(t)) and u(∞)(t) = Γ (x (∞)(t),λ0(∞),λ(∞)(t)),

we deduce

lim
k→∞

u(pk)(t) = u(∞)(t).
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4. In the last step, we show that the limit (x (∞)(t), u(∞)(t),λ0(∞),λ(∞)(t),ν(∞),ζ(∞)) of

the convergent subsequence
¦

(x (pk)(t), u(pk)(t),λ0(pk),λ(pk)(t),ν(pk),ζ(pk))
©

l¾0
is feasible

for (UOCP).

For ease of notation, we drop the arbitrary but fixed index t ∈ [t0, tf].

Any (x (pk),λ0(pk),λ(pk), u(pk),ν(pk),ζ(pk)) satisfies the following equations

d
dt

x (pk)(t;ξ) =
M(pk)

−1
∑

k=0




f (x (pk), u(pk)),φk

�

L2(S)φk, (3.25)

d
dt
λ(pk)(t;ξ) = −

Mpk
−1

∑

k=0


�

λ(pk)
�

∂x f (x (pk), u(pk)),φk

�

L2(S)φk

−λ0(p)∂x l(x (pk), u(pk)), (3.26)

λ(p)(tf;ξ) = λ
0(p)∂x E

�

m(x (p)(tf;ξ))
�

+
�

ν(p)
�

∂x E
�

req(x
(p)(tf;ξ))

�

+
�

ζ(p)
�

∂x E
�

rin(x
(p)(tf;ξ))

�

. (3.27)

This follows from their construction as the solution of (OCPp), thus satisfying

d
dt

x̂k(t) =



f (x (p), u),φk

�

L2(S),

d
dt
λ̂k(t) = −

Mp−1
∑

l=0

λ̂l
∂

∂ x̂k




f (x (p), u),φl

�

L2(S) −λ
0(p) ∂

∂ x̂k
l̂0(x

(p), u)

= −
∂

∂ x̂k

* Mp−1
∑

l=0

λ̂lφl

!

f (x (p), u)

+

L2(S)

−
∂

∂ x̂k

¬

λ0(p)l(x (p), u)
¶

L2(S)

= −
∂

∂ x̂k

¬

�

λ(p)
�

f (x (p), u) +λ0(p)l(x (p), u)
¶

L2(S)

=
¬

−
�

λ(p)
�

∂x f (x (p), u)−λ0(p)∂x l(x (p), u),φk

¶

L2(S)
, and

λ̂k(tf) = λ
0(p) ∂

∂ x̂k
m̂(x (p)(tf;ξ)) + ν

(p) ∂

∂ x̂k
r̂eq(x

(p)(tf;ξ))

+ ζ(p)
∂

∂ x̂k
r̂in(x

(p)(tf;ξ))

=
∂

∂ x̂k

¬

λ0(p)m(x (p)(tf;ξ)) + ν
(p)req(x

(p)(tf;ξ)) + ζ
(p)rin(x

(p)(tf;ξ))
¶

L2(S)

=
¬

λ0(p)∂x m(x (p)(tf;ξ)) + ν
(p)∂x req(x

(p)(tf;ξ)) + ζ
(p)∂x rin(x

(p)(tf;ξ)),φk

¶

L2(S)
.

Using Equations (3.25)–(3.27) and the results of 2., we derive

lim
k→∞

Mpk
−1

∑

j=0




f (x (pk), u(pk)),φ j

�

L2(S)φ j =
∞
∑

j=0

D

f ( lim
k→∞

x (pk), lim
k→∞

u(pk)),φ j

E

L2(S)
φ j

=
∞
∑

j=0




f (x (∞), u(∞)),φ j

�

L2(S)φ j = f (x (∞), u(∞)),
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and consequently

ẋ (∞) = lim
k→∞

d
dt

x (pk) = f (x (∞), u(∞)).

Similarly for the adjoint states,

lim
k→∞

Mpk
−1

∑

j=0

¬

−λ(pk)∂x f (x (pk), u(pk))−λ0(pk)∂x l(x (pk), u(pk)),φ j

¶

L2(S)
φ j

= −
∞
∑

j=0

¬

(λ(∞))∂x f (x (∞), u(∞)) +λ0(∞)∂x l(x (∞), u(∞)),φ j

¶

L2(S)
φ j

= −(λ(∞))∂x f (x (∞), u(∞))−λ0(p)∂x l(x (∞), u(∞)).

Consequently

λ̇(∞) = −(λ(∞))∂x f (x (∞), u(∞))−λ0(∞)∂x l(x (∞), u(∞))

and

λ(∞)(tf;ξ) = λ
0(∞)∂x m(x (∞)(tf,ξ)) + ν

(∞)∂x req(x
(∞)(tf;ξ))

+ ζ(∞)∂x rin(x
(∞)(tf;ξ)).

For the constraints, we obtain

req(x
(∞)(tf;ξ)) = lim

k→∞
req(x

(pk)(tf;ξ)) = 0,

ζ(∞)rin(x
(∞)(tf;ξ)) = lim

k→∞
ζ(pk)req(x

(pk)(tf;ξ)) = 0

and

ζ(pk) ¾ 0 ∀k ⇒ ζ(∞) = lim
k→∞

ζ(pk) ¾ 0. �

It remains to show that the limit that (x (p)(t), u(p)(t)) converges to is the sought solution. For
this task, we introduce a random perturbation δ(t;ξ) into the formulation of problem (UOCP).

Definition 3.5.1 (Perturbed Uncertain Optimal Control Problem)

min
x ,u

E [J[x , u]] (PUOCP)

s.t. ẋ (t;ξ) = f (x (t;ξ), u(t),ξ)−δ(t;ξ), t ∈ [t0, tf] a.e., ξ= ξ(ω), ω ∈ Ω a.s.

x (t0) = x0

u(t) ∈ U(t) t ∈ [t0, tf] a.e.

0¾ E
�

rin(x (tf;ξ),ξ)
�

0= E
�

req(x (tf;ξ),ξ)
�
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Corollary 3.5.2 (Consistency) Suppose (UOCP) has an optimum solution (x ?(t;ξ), u?(t)) that
is L2-measurable and assume x (p)(t;ξ) is the polynomial chaos projection corresponding to the
optimal solution (x̂ (p), u(p)) of (OCPp). Then, for any fixed but arbitrary t ∈ [0, tf],

lim
p→∞

x (p)(t; ·) = x ?(t; ·) in L2
ρ(S).

Proof Fix t ∈ [t0, tf] to some arbitrary value. We consider (PUOCP) with a perturbation defined
by the error resulting from the p-th-order polynomial chaos approximation of f ,

δ(p)(t;ξ) =
∞
∑

k=0




f (x (t;ξ), u(t),ξ(ω)),φk

�

L2(S)φk −
Mp−1
∑

k=0




f (x (t;ξ), u(t),ξ(ω)),φk

�

L2(S)φk

for ω ∈ Ω.
Note that the objective and end point constraint function are not affected by any perturbation
defined in this way since they are evaluated at their expected values, and

E
�

δ(p)(t;ξ)
�

=



f (x (t;ξ), u(t),ξ(ω)),φ0

�

L2(S) −



f (x (t;ξ), u(t),ξ(ω)),φ0

�

L2(S) ≡ 0.

For p = ∞, in which case δ(p) ≡ 0, the optimal solution is given by (x ?, u?) and is unique
by assumption. For each finite p with perturbation δ(p), the optimal solution is by construction
(x̂ (p), u(p)), the unique optimal solution corresponding to (OCPp). Since f is globally Lipschitz
continuous in its arguments, we obtain, with the help of 3.1.1 for any admissible u ∈ U ,

y(t;ξ) ··= f (x (t;ξ), u(t),ξ) ∈ L2
ρ(S) ∀t ∈ [t0, tf].

Consequently y admits itself a decomposition

y(t;ξ) =
∞
∑

k=0




f (x (t;ξ), u(t),ξ),φk

�

L2(S)φk

for which



δ(p)




L2(S) =











∞
∑

k=0




f (x , u,ξ),φk

�

L2(S)φk −
Mp−1
∑

k=0




f (x , u,ξ),φk

�

L2(S)φk











L2(S)

=


y −Πp y




L2(S)
p→∞
−−−→ 0.

Consequently, 0= lim
p→∞



x (p) − x ?




L2(S) =


x (∞) − x ?




L2(S). �

3.5.1 Non-compact uncertainty sets

We give an informal description about how to deal with non-compactly supported random
variables for which Theorem 3.5.1 does not directly apply.
A condition for the spectral convergence rate of the polynomial chaos expansion of a ran-
dom variable is the existence of moments of any order [51]. An equivalent and very natural
assumption is the sufficiently rapid decay of the tails of the PDF, that is,

t l P (|x |> t)<∞ ∀l.

For instance, this is satisfied for the Normal distribution and the exponential distribution that
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have exponentially decaying tails. For such well-behaved random variables with rapidly de-
caying tails, we can restrict S to some compact subset S̃ ⊆ S in which case the convergence
results from Theorem 3.5.1 applies. By

||x ||L2
ρ(S) <∞ =⇒ ||x ||L2

ρ(S̃)
<∞,

the truncated random variable is L2-measurable. The truncated density function ρ(ξ) is ob-
tained by

ρ̃(ξ) =

(

ρ(ξ)
W (S̃) if ξ ∈ S̃

0 if ξ 6= S̃

where the scaling factor W (S̃) ensures that
∫

S̃ ρ̃(ξ)dξ= 1. Using the Gram-Schmidt orthogo-
nalization procedure, the corresponding orthogonal polynomial family can be generated.
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4 Fast numerical solution methods

This chapter presents the algorithmic counterpart of the preceding theoretical chapter, con-
taining as a major contribution the adaptive algorithm for the fast solution of the uncertain
optimal control problem. As a second algorithmic improvement, we present a fast structure-
exploiting derivative generation, published in the article [19].

4.1 Adaptive algorithm

While a high expansion order results in a surrogate problem that is difficult to solve computa-
tionally it may be unavoidable to capture the nonlinear effects of the uncertainty propagation
and to guarantee valid results. Considering the expansion order pi for each of the n states
x i(t;ξ) separately, pi is related to the sensitivity of x i to the uncertainty. For instance, if pi = 0
then x i is deterministic and if pi = 1 then x i is of the same distribution family as ξ. On the
contrary, if the propagated density varies a lot from the original density, e.g., is asymmetric
with non-negligible tail behavior while the input density is symmetric, then pi must be suffi-
ciently high. For such problems, the computational resources are usually a limiting factor and
a trade-off on the accuracy must often be accepted.

To prevent a blowup in the number of new surrogate states, we make the observation that
the nature and the sensitivity of the dependence on the input uncertainty varies among the
different states. This idea leads to an adaptive strategy for optimal control problems in which
we consider error estimates for each state separately and adapt the expansion order accord-
ingly. In each iteration, the previously found solution is refined until all state expansions have
converged.

4.1.1 Algorithm

We denote by p = (p0, . . . , pn−1) the joint expansion order for all states. The state coefficient
corresponding to x i with expansion order pi are summarized as x̂ (pi)

·,i = ( x̂
(pi)
0,i , . . . , x̂ (pi)

Mpi
−1,i).

Let pi and pold
i be the current expansion order and the expansion order of the previous iteration

respectively. δ
(pi ,p

old
i )

i denotes the error estimate and δ(pi)
i
··= δ

(pi ,pi−1)
i .

The adaptive strategy is based on the following procedure: if the current error estimate is
higher than a threshold, then the order pi is increased, otherwise it is set back to the order of
the previous iteration by disregarding the added states. The algorithm terminates if all states
have converged to their optimal expansion order. An outline of the adaptive algorithm is given
in Algorithm 1.
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Algorithm 1 Adaptive polynomial chaos for optimal control

Input: gPC basis {φi}, max. order pmax, threshold εAD, initial guess uinit
solve deterministic OCP
store solution u(0), x̂ (0)

pold← 0, p ← 1
while p ¶ pmax do

construct gPC-surrogate with coefficients x̂ (pi)
·,i for i = 1, . . . , n

solve OCPp with control guess u(pold)

store solution u(p), x̂ (p)

for i = 1, ..., n do

if δ
(pi ,p

old
i )

i < εAD then
pi ← pold

i {pold
i was optimal, convergence achieved for x i}

else
pold

i ← pi
pi ← pi + 1 {pi not sufficient}

end if
end for
if max

i
δ
(pi ,p

old
i )

i < εAD then

return {convergence achieved for all states}
end if

end while

4.1.2 Error estimates

For the construction of the error estimates, we consider the L2-error of state x i , i = 1, . . . , n





x (∞)i (t; ·)− x (pi)
i (t; ·)







2

L2(S)
=

Mpi
−1

∑

k=0

�

�

� x̂k,i(t)− x̂ (pi)
k,i (t)

�

�

�

2

︸ ︷︷ ︸

(1)

+
∑

k¾Mpi

�

� x̂k,i(t)
�

�

2

︸ ︷︷ ︸

(2)

,

consisting of two terms: (1) the difference between the computed Mp coefficients of the sur-

rogate model x̂ (pi)
k,i and the unknown optimal coefficients x̂k,i up to that order, plus (2) the

infinitesimal higher-order unknown optimal coefficients. By Lemma 3.1.1 we can assume that

x i ∈ L2
w(Ω) for any admissible control u, consequently we have (2)

p→∞
−−−→ 0 . The difference (1)

depends on the difference between the optimal control surrogate solutions for different expan-
sion orders and can be expected to vanish if the solution converges as shown in Theorem 3.5.1.
An a-posteriori error estimate for each state i = 0, . . . , n− 1 can be defined accordingly by





x (pi)
i (t)− x (qi)

i (t)






2

L2(S)
=

Mqi
−1

∑

k=0

�

�

� x̂ (pi)
k,i (t)− x̂ (qi)

k,i (t)
�

�

�

2
+

Mpi
−1

∑

k=Mqi

�

�

� x̂ (pi)
k,i (t)

�

�

�

2
for pi ¾ qi .

The definition gives rise to an error estimate δ(pi ,qi)
i applicable as refinement criterion for the
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adaptive algorithm by setting

δ
(pi ,qi)
i

··=

�

�

�

�

�

�

�

�

�

�

�

�

Mpi
−1

∑

k=Mqi

�

�

� x̂ (pi)
k,i (t)

�

�

�

2

�

�

�

�

�

�

�

�

�

�

�

�

L∞([0,tf])

(4.1)

or by using the scaled version

δ
(pi ,qi)
i

··=

�

�

�

�

�

�

�

�

�

�

�

�

1

σ̃
(pi)
i (t)

Mpi
−1

∑

k=Mqi

�

�

� x̂ (pi)
k,i (t)

�

�

�

2

�

�

�

�

�

�

�

�

�

�

�

�

L∞([0,tf])

. (4.2)

For the scaling factor, we can use the standard deviation of x (pi)
i , computed according to

Lemma 3.3.2,

σ
(pi)
i (t) ··=

 Mpi
−1

∑

k=1

�

�

� x̂ (pi)
k,i (t)

�

�

�

2
!1/2

, (4.3)

or the following estimate of the standard deviation

σ̃
(pi)
i (t) ··=

 

pi
∑

r=1

Mr−1
∑

k=Mr−1

�

�

� x̂ (pi)
k,i (t)

�

�

�

2
!1/2

that can be implemented without the additional cost of storing the whole sequence x̂ (pi)
0,i , . . . , x̂ (pi)

Mpi
−1,i

in each iteration.

4.2 Fast derivative generation

The surrogate optimal control problem resulting from the polynomial chaos method is trans-
formed into a nonlinear optimization problem by the direct multiple shooting method for op-
timal control problems as described in Section 1.4. The resulting discretized optimal control
problem is typically solved by a Newton-type method, which requires the efficient computa-
tion of the first and second derivatives of the objective function and constraints. One of the
most costly steps is the computation of the sensitivities, that is, the derivatives of the differ-
ential states with respect to the initial values and controls. Here, this is done by solving the
variational differential equation as described in Section 1.4.2, which additionally requires the
efficient and reliable computation of the model function derivatives

∂ f̂k,i(x̂ (t), u(t))

∂ x̂ l, j
,
∂ f̂k,i(x̂ (t), u(t))

∂ ul, j
0¶ k, l ¶ Mp − 1, 0¶ i, j ¶ n− 1.

As in Section 3.3, we use the following notation and ordering for the polynomial chaos coef-
ficients that form the new differential states of the projected optimal control problem:

x̂ = (x̂0, . . . , x̂Mp−1) = ( x̂0,0, . . . , x̂0,n−1, x̂1,0, . . . , x̂1,n−1, . . . , x̂Mp−1,0, . . . , x̂Mp−1,n−1).
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The derivatives are collected in the nMp × nMp model state Jacobian of the projected system

Ĵx[t] =

�

∂ f̂k,i(x̂ (t), u(t))

∂ x̂ l, j

�

0¶k,l¶Mp−1, 0¶i, j¶n−1

=











∂ f̂0,0
∂ x̂0,0

. . .
∂ f̂0,0
∂ x̂0,n−1

. . .
∂ f̂0,0

∂ x̂Mp−1,0
. . .

∂ f̂0,0

∂ f̂Mp−1,n−1

...
. . .

...
∂ fMp−1,n−1

∂ x̂0,0
. . .

∂ f̂Mp−1,n−1

∂ x̂n−1,0
. . .

∂ f̂Mp−1,n−1

∂ x̂Mp−1,0
. . .

∂ f̂Mp−1,n−1

∂ x̂Mp−1,n−1











and in the nMp × nu model control Jacobian of the projected system

Ĵu[t] =

�

∂ f̂k,i(x̂ (t), u(t))

∂ u j

�

0¶k¶Mp−1, 0¶i¶n−1, 0¶ j¶nu−1

=











∂ f̂0,0
∂ u0

. . .
∂ f̂0,0
∂ unu−1

...
∂ fMp−1,n−1

∂ u0
. . .

∂ f̂Mp−1,n−1

∂nu−1











In order to analyze the computational costs for different techniques for computing the Ja-
cobians of the surrogate model, we make the following specifications: by c we denote the
maximum cost to evaluate fi , i = 0, . . . , n− 1, i.e.,

c ··= max
i=0,...,n−1

cost( fi).

Consequently, the cost to evaluate f is equal to cost( f ) = nc. Finally, the cost of applying the
Galerkin projection from Equation (3.12) to f in order to obtain the projected system f̂ is

cost( f̂ ) = MpNQnc.

4.2.1 Computation by finite differences

The standard method for computing Ĵx[t] and Ĵu[t] applies a finite difference approximation
to the nominal trajectory f̂ (x̂ (t), u(t)) and a perturbed trajectory as explained in Section 1.4.2

∂ f̂
∂ x̂ j,l

=
1
h

�

f̂ ( x̂0,0(t), . . . , x̂ j,l(t) + h, . . . , x̂Mp−1,n−1(t), u(t))

− f̂ ( x̂0,0(t), . . . , x̂ j,l(t), . . . , x̂Mp−1,n−1(t), u(t))
�

+ O(h).

This approach requires computing at least nMp perturbed trajectories plus one nominal tra-
jectory which results in costs of order

cost(F Dx) = nMp · cost( f̂ )≈ M2
p NQcn2

for the state Jacobian Ĵx[t] and costs of order

cost(F Du) = nu · cost( f̂ )≈ MpNQcnnu
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for the control Jacobian Ĵu[t].

4.2.2 Computation by sparse Galerkin projection

Instead of the commonly used finite difference approximation, we can apply a sparse Galerkin
projection to obtain the model Jacobians. In the first step, we write down the Jacobians of the
original system

Jx[t] =
∂ f
∂ x
∈ Rn×n, Ju[t] =

∂ f
∂ u
∈ Rn×nu .

Since n, the size of the original system, is small compared to nMp, the size of the projected
system, the computational cost of computing Jx and Ju is negligible compared to the compu-
tational cost of deriving the Jacobians J x̂ and Jû of the projected system. In many cases, the
derivatives can easily be written down analytically at modeling stage or, in case of a blackbox
system, are returned without additional cost.
In the second step, we apply an orthogonal projection as in the projection equation (3.12) to
Jx and Ju and obtain, by making use of the chain rule,

∂ f̂k,i

∂ x̂ l, j
=

∂

∂ x̂ l, j




fi(x
(p), u,ξ),φk

�

=

�

∂

∂ x̂ l, j
fi(x

(p), u,ξ),φk

�

=

*

∂ fi(x (p), u,ξ)

∂ x (p)j

∂ x (p)j

∂ x̂ l, j
,φk

+

=
¬

∂x j
fi(x

(p), u,ξ) ·φl ,φk

¶

while for the control Jacobian

∂ f̂k,i

∂ u j
=
∂

∂ u j




fi(x
(p), u,ξ),φk

�

L2(S) =

�

∂

∂ u j
fi(x

(p), u,ξ),φk

�

L2(S)
.

Compared to the finite difference approximation, this approach does not suffer from truncation

error. Additionally, it opens the possibility to exploit the sparsity present in Jx =
∂ f
∂ x

and Ju =

∂ f
∂ u

since any zero element remains zero after projection, e.g., here for the state derivatives:

∂ fi

∂ x j
= 0=⇒

∂ f̂k,i

∂ x̂ l, j
= 0 for 0¶ k, l ¶ Mp − 1.

This can reduce the number of necessary function evaluations and projection operations by at
least a factor Sx and Su proportional to the inverse of the fraction of nonzero elements in Jx
and Ju, respectively. Here, the sparsity factors Sx and Su are defined as follows

Sx ··=
n2

n−1
∑

i=0
card

�

0¶ j ¶ n− 1 | ∂ fi
∂ x j
6= 0

	

=
n2

n−1
∑

i=0
ni

x

(4.4)

¶
n2M2

p

Mp−1
∑

k=0

n−1
∑

i=0
card

�

(l, j) | 0¶ l ¶ Mp − 1,0¶ j ¶ n− 1,
∂ f̂k,i
∂ x̂ l, j
6= 0

	

=·· Ŝx ,
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Figure 4.1: Sparsity pattern of Ĵx for container crane problem (Sx = 4.2, Mp = 4).

whereas ni
x denotes the number of nonzero entries of the state gradient of fi , and in the case

of the control Jacobian,

Su ··=
n · nu

n−1
∑

i=0
card

�

0¶ j ¶ n− 1 | ∂ fi
∂ u j
6= 0

	

=
n · nu
n−1
∑

i=0
ni

u

¶
nMp · nu

Mp−1
∑

k=0

n−1
∑

i=0
card

�

0¶ j ¶ nu − 1 | ∂ f̂i
∂ u j
6= 0

	

=·· Ŝu,

whereas ni
u denotes the number of the nonzero entries of the control gradient of fi . Figure 4.1

shows an example of the sparsity pattern of the projected Jacobian J x̂ .

Consequently, instead of the full Jacobians, only the reduced sparse Jacobians J spa
x and J spa

u
with information about the sparsity structure are required to be stored and projected. The full
procedure is given in Algorithm 2.

Algorithm 2 Sparse derivative projection

Input: gPC quadrature grid
�

(ξ(m),ρ(m))
	NQ

m=1, sparse Jacobian J spa
x , J spa

u

evaluate sparse Jacobian J spa
x and J spa

u at (x (t,ξ(m)), u(t)) for m= 1, . . . , NQ
for k = 0, . . . , Mp − 1 do

for l = 0, . . . , Mp − 1 do
project J spa

x on φlφk → Ĵ spa
x

end for
project J spa

u on φk → Ĵ spa
u

end for

With the notation from Section 4.4, the total computational effort of this method is of order

cost(DPx) = M2
p NQcost(J spa

x ) = M2
p NQc

n−1
∑

i=0

ni
x
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for the state Jacobian and costs of order

cost(DPu) = MpNQcost(J spa
u ) = MpNQc

n−1
∑

i=0

ni
u

for the control Jacobian. Therefore, the savings resulting from using the sparse projection
approach compared to the finite difference approach is proportional to

cost(DPx)− cost(F Dx)
cost(DPx)

≈ 1− S−1
x and

cost(DPu)− cost(F Du)
cost(DPu)

≈ 1− S−1
u .
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5 A new approach to chance constrained
optimal control

We first introduce the polynomial chaos approach to reachable set propagation and show how
to implement it into direct methods for optimal control problems. Thereafter, we show how to
apply the developed techniques to the reformulation of chance constraints in the considered
problem class. All results of this chapters are published in the article [18].

5.1 The polynomial chaos approach to reachable set propagation

We start with a description of the reachability problem considered in this chapter and explain
how it can be approximated with the help of the polynomial chaos surrogate.

5.1.1 Conditional reachable sets

Given S ⊆ Rd , the finite or infinite support of ξ, we call the set Uδ ⊆ S the initial uncertainty
set. We make the following assumption.

Assumption 5.1 Uδ ⊆ Rd is compact.

The compactness assumption covers our main application, the reformulation of chance con-
straints. In particular, it includes all infinitely supported probability distributions with finite
variance as long as the constraint satisfaction level is smaller than 1 while for finite supported
distributions the required satisfaction level may be equal to 1 and consequently include all pos-
sible realizations similar to the worst case robustification approach described in Section 2.3.1.

Definition 5.1.1 The reachable set conditioned on Uδ at time point τ ∈ [t0, tf] for a fixed control
trajectory u(·) is given by

Xδ(τ;Uδ) = {y ∈ Rn | ∃ x (·) solution of ẋ = f (x (t;ξ), u(t),ξ) a.e. on [t0,τ]

with x (t0) = x0, x (τ) = y for ξ ∈ Uδ}. (5.1)

For ease of notation, we drop the dependence on the control and initial state.
We use the explicit functional mapping of the polynomial chaos method to derive an approxi-
mation by solving a subproblem.

Problem 1 Given x (p)(t;ξ) =
Mp−1
∑

k=0

x̂kφk, we can compute a p-th order approximation of

Xδ(τ;Uδ) by solving a polynomial optimization problem to find

Xδ(p)(τ;Uδ) = [min
ξ∈Uδ

x (p)(τ;ξ), max
ξ∈Uδ

x (p)(τ;ξ)].

Convergence of this estimator with increasing order to the exact term Xδ(τ;Uδ) is shown in the
following lemma by invoking an additional regularity assumption. The bound on the order m
of the Sobolev space follows by ensuring that h(·, ·)> 0 in Theorem 3.2.1 and Theorem 3.2.3.

62



C H A N C E C O N S T R A I N E D O P T I M A L C O N T R O L
�

� CHAPTER 5

Lemma 5.1.1 Assume x ∈ Hm(S) for m>max
�3

4 , d − 1
2

	

. Then

lim
p→∞

Xδ(p)(τ;Uδ) = Xδ(τ;Uδ).

Proof 1. Define v(ξ) ··=
Æ

ρ(ξ)x (ξ) ∈ L2(S). By application of the Sobolev embedding the-
orem, cf. [1, Theorem 4.11], v ∈ Hk(S) implies boundedness of v since L∞(S) can be
continuously embedded into the Sobolev space Hk(S) whenever k > d

2 which applies to the
chosen m. Consequently, for a domain-dependent constant CS ,

||v ||L∞(S) ¶ CS ||v ||Hk(S)

assuming v ∈ Hk(S). Now we consider the functions v(ξ) and x(ξ) defined as the restric-
tions of v(ξ) and x (ξ), respectively, to Uδ. It follows that

||v||L∞(Uδ) ¶ CS ||v||Hk(Uδ)

and, taking into account that

Cρ ··=min
Uδ
ρ(ξ)> 0

is a constant bounded away from zero, we obtain

max
Uδ

�

�x(ξ)
�

�¶ C−1
ρ max

Uδ

�

�

�

Æ

v(ξ)
�

�

�¶ CSC−1
ρ ||v||Hk(Uδ) = CSC−1

ρ ||x||Hk
ρ(Uδ) .

2. Define similarly x(p)(ξ) to be the restriction of x (p)(ξ) to Uδ.

Uniform convergence follows by applying the previous arguments for the first estimate to
obtain

max
Uδ

�

�x− x(p)
�

�¶ CSC−1
ρ

�

�

�

�x− x(p)
�

�

�

�

Hk(Uδ)
¶ CSC−1

ρ Ck
︸ ︷︷ ︸

C

p−h(k,m) ||x||Hm(Uδ) ,

and by choosing m and k > d
2 appropriately such that the function h(·, ·) in Theorem 3.2.1

and in Theorem 3.2.3 is positive.

3. Given the uniform convergence of x(p) and the boundedness of x and hence x(p), we can now
show convergence of the extreme values. Fix ε > 0. Choose q ∈ N such that

∀ξ ∈ Uδ ∀p ¾ q : x(ξ)− ε < x(p)(ξ)< x(ξ) + ε

It follows that

∀ξ ∈ Uδ : x(ξ)− ε ¶max
ξ∈Uδ

x(p)(ξ)

x(p)(ξ)¶max
ξ∈Uδ

x(ξ)− ε

and consequently

max
ξ∈Uδ

x(ξ)− ε ¶max
ξ∈Uδ

x(p)(ξ)

max
ξ∈Uδ

x(p)(ξ)¶max
ξ∈Uδ

x(ξ) + ε
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resulting in
�

�

�

�

max
ξ∈Uδ

x(ξ)−max
ξ∈Uδ

x(p)(ξ)

�

�

�

�

¶ ε.

The same argument can be applied to the infimum. Thus, min
ξ∈Uδ

x(p)(τ;ξ) and max
ξ∈Uδ

x(p)(τ;ξ)

converge to min
ξ∈Uδ

x(τ;ξ) and max
ξ∈Uδ

x(τ;ξ), respectively. �

An immediate consequence is that the rate of convergence is determined by

|max
ξ∈Uδ

x (ξ)−max
ξ∈Uδ

x (p)(ξ)|¶max
ξ∈Uδ
|x (ξ)− x (p)(ξ)|¶ C p−h(d,m) ||x ||Hm ,

where h is positive and depends on the polynomial basis, e.g., for Hermite polynomials,

h(d, m) =
1
2

�

m− (
d
2
+ ε)

�

for ε > 0 arbitrary, cf. Theorem 3.2.3.

5.1.2 Solving the polynomial subproblem

In the following, we present two computational approaches for solving Problem1 in order to
approximate the reachable set.
For an illustration of the complexity of finding a solution to this polynomial subproblem and a
verification of the accuracy of the resulting polynomial chaos surrogate, consider the following
example.

Example 5.1.1 Figure 5.1 (values taken from the uncertain container crane problem described
in Section 6.1) illustrates the functional dependence of the state variable x (t;ξ) on the uncertain
parameter ξ over time for a given control policy ū. This example shows the common behavior of the
dependency becoming more asymmetric as time evolves, starting from linear for early times and
evolving to a non-monotone function with multiple extrema giving evidence that the propagated
distribution deviates significantly from the initial distribution. For verification, the true functional
mapping obtained by computing the solution of the (deterministic) ODE given ū on a grid of ξ is
included as sampled data points. The data points show almost complete agreement with the PC
surrogate trajectories.

-3   0   3

-0.05

0

0.05

0.1

x5(ξ)

Figure 5.1: 9-th-order PC surrogate x (9)(ξ) visualizing the dependence of the state x5(t;ξ) on ξ and
sampled points of the deterministic ODE on a grid of ξ ∈ [−3, 3] at time t = 0.44s (blue
diamonds), t = 5.0s (dark triangles), t = t f = 9s (light-colored circles).

64



C H A N C E C O N S T R A I N E D O P T I M A L C O N T R O L
�

� CHAPTER 5

Method 1: Discretization of the stochastic space

A straightforward approach for solving the polynomial subproblem, easily generalizable for
high-dimensional uncertainty, employs a (problem-adapted) discretization of the domain Uδ
to approximately find the location of the extrema. For the conducted numerical experiments
in Section 6.2, we select tensor product grids of Chebyshev nodes with, e.g., n j = p j points per
dimension. Chebyshev nodes are distributed more densely towards the edges of the domain,
where the majority of the global extrema are likely to be located. This behavior is also illus-
trated in Example 5.1.1 and in partcular Figure 5.1. For the generation of Chebyshev nodes,
we have used the Chebfun software package [45]. This approach yields a total of

NP = n1 . . . nd ∼ pd

points to check, where we assume that the boundaries are included in the chosen point set.
An example of the application to a practical optimal control problem can be found in the
numerical section, cf. Remark 6.2.

Method 2: Root search

The second method that we propose builds on a reformulation of the polynomial subproblem
as a root search for a multivariate polynomial of degree at most (p − 1)d over a compact set
Uδ:

Problem 2 Given f (ξ) ··= x (p)(τ;ξ), find ξ? = (ξ?1, . . . ,ξ?d) ∈ Uδ such that

0=∇ f (ξ?).

To obtain the exact solution, the method needs to identify all local extrema, a maximum of
(p−1)d , and compare their values to the ones at the boundary, a maximum of 2d . The problem
of real polynomial root finding can be solved in various ways, e.g., by finding the eigenvalues of
the companion matrix in case of a one-dimensional polynomial or with a subdivision algorithm
in the general case, e.g. [137].
For the multidimensional case, we use a decomposed Newton method with

Nd ∼ (p− 1)d

subsets. To ensure that each subset contains at most one root and that the Newton method can
be applied, we pose the following assumptions.

Assumption 5.2

(i) H ··=∇2 f (ξ?) is non-singular at ξ?.
(ii) ∇ f (ξ) has bounded derivatives.

Non-singularity of H in a neighborhood of ξ? implies that ∇ f (ξ) has only simple and well-
conditioned roots that admit an isolation. Requirement (ii) can be ensured by imposing x ∈
Hm(S) similarly as in Lemma 5.1.1.
A combined Newton-bisection procedure, outlined in Algorithm 3, with a fixed number of
steps to avoid nondifferentiability issues caused by adaptivity is applied to each subset in order
to approximate the root. As a safeguarding measure, a bisection step in the direction of the
Newton step to the middle of the interval is taken whenever the Newton step falls outside the
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Algorithm 3 Multidimensional Newton-Raphson with root-bracketing

Input: functions ∇ f , H ··=∇2 f , domain [l, h] = [l1, h1]× . . .× [ld , hd] ⊆ Rd

fixed number of steps Nstep
for j = 1, . . . , d do

if ∇ f (l j)> 0>∇ f (h j) then
exchange l j , h j

end if
end for
set starting point ξ(0)←

1
2
(l + h)

evaluate ∇ f (0) =∇ f (ξ(0)), H(0) = H(ξ(0))
for k = 1, . . . , Nstep do

compute Newton step ξ(k)← ξ(k−1) −
�

H(k−1)
�−1
∇ f (k−1)

i = argmin j=1,...,d

¦

(h j − ξ
(k)
j )(ξ

(k)
j − l j)

©

if (hi − ξ
(k)
i )(ξ

(k)
i − li)< 0 then

compute bisection step ξB
i ← li +

1
2
(hi − li)

set step length αi =
ξB

i − ξ
(k−1)
i

ξ
(k)
i − ξ

(k−1)
i

compute modified Newton step ξ(k)← ξ(k−1) −αi

�

H(k−1)
�−1
∇ f (k−1)

end if
evaluate ∇ f (k) =∇ f (ξ(k)), H(k) = H(ξ(k))
for j = 1, . . . , d do

if ∇ f (k)(l j)< 0 then

l j ← ξ
(k)
j

else
h j ← ξ

(k)
j

end if
end for

end for
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subset in at least one dimension. Further remarks related to numerical experiments can be
found in Remark 6.1.
The computational cost for one run of Algorithm 3 for one-dimensional problems is moder-
ate given the fixed number of iterations, e.g. Nstep = 10, and the fast polynomial function
evaluation. The significant factor for multidimensional systems is the effort to obtain H−1(ξ).
Additionally to the obtained root in each of the Nd subsets, we need to check the boundaries,
thus resulting in

NP = Nd + Nd2d ∼ pd

points to check.

Summary of computational cost of the chance constraint evaluation

In summary, the computational costs of both methods as well as the number NP of points to
check is polynomial in p and exponential in d. Both methods can be considered as improved
sampling methods, leading to NP ∼ pd simple linear constraints per original uncertain con-
straint. The subproblem solution becomes part of the evaluation of the robustified constraint.
Solving the surrogate optimal control problem, e.g. by the direct multiple shooting method,
requires that first and possibly second order derivatives are well-defined and computable. Un-
der standard nondegeneracy assumptions, per discretization node at most one of the newly
introduced constraints is active near the solution. Thus, the additional computational effort
is restricted to evaluating the constraint residuals, which are provided analytically as polyno-
mials using the PC-surrogate, but does not usually involve computing more than one active
constraint per node.

5.2 Chance constraint reformulation

In this section, we show how to use the reachable sets conditioned on an initial set Uδ to
reformulate chance constraints with a guaranteed satisfaction level.
Given a maximum allowable violation rate δ > 0 and the multivariate constraint function
c : Rn ×Rnu ×Rd → Rnc , a probabilistic formulation of the constraints c(x (t;ξ), u(t),ξ) ¶ 0
is given by

P
�

c(x (t;ξ), u(t),ξ)¶ 0
�

¾ 1−δ.

In other words, the joint failure probability

P
�

c(x (t;ξ), u(t),ξ)> 0
�

of the constraints

c0(x (t;ξ), u(t),ξ)¶ 0, . . . , cnc−1(x (t;ξ), u(t),ξ)¶ 0

must not exceed the maximum allowable failure level δ.
Individual chance constraints

P
�

c j(x (t;ξ), u(t),ξ)¶ 0
�

¾ 1−δ j for j = 0, . . . , nc − 1, (5.2)

allow for a violation of each constraint of at most δ j . Since they involve only one-dimensional
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integration, they are easier to compute.
Comparing both formulations, joint chance constraints lead to a performance guarantee for the
whole problem while individual chance constraints pose bounds for each constraint separately.
A sufficient, although over-conservative, condition for ensuring feasibility of individual chance
constraints in the joint chance constrained problem is to enforce the sum of individual violation
probabilities to be less than the total violation probability. This is a consequence of Bonferroni’s
inequality [47, p. 31]:

P
�

c0(x (t;ξ), u(t),ξ)> 0, . . . , cnc−1(x (t;ξ), u(t),ξ)> 0
�

= P

�nc−1
⋂

j=0

c j(x (t;ξ), u(t),ξ)> 0

�

¶
nc−1
∑

j=0

P
�

c j(x (t;ξ), u(t),ξ)> 0
�

¶
nc−1
∑

j=0

δ j ¶ δ.

W.l.o.g., we consider the chance constraint c : Rn → Rnc for an arbitrary but fixed t ∈ [t0, tf]
and arbitrary but fixed admissible control function u(t). Using the polynomial chaos approx-
imation of the state variables, we can express the dependence of c on ξ explicitly by a multi-
variate function h : Rd → Rnc defined for an arbitrary but fixed t ∈ [t0, tf] as

h(ξ) = c(x p(t;ξ), u(t)).

Depending on the structure of c, the root-finding problem might involve a polynomial of higher
degree than the expansion order p or even a non-polynomial multivariate function. In the
following proposition, which is based on elementary probability and set theory, we derive the
reformulation of chance constraints using reachable sets.

Lemma 5.2.1 Let h : Rd → Rnc be a measurable transformation and Uδ ⊆ Rd such that

P
�

ξ ∈ Uδ
�

¾ 1−δ

for a given δ > 0. Denote the image set of Uδ under h by Xδ = h(Uδ) ⊆ Rnc . Then

P
�

h(ξ) ∈ C
�

¾ 1−δ

whenever Xδ ⊆ C.

Proof Denote by

h−1(Xδ) = {ξ ∈ X | h(ξ) ∈ Xδ}

the pre-image of Xδ under h. By elementary properties of the pre-image,

Uδ ⊆ h−1(h(Uδ)) (5.3)

and therefore, by monotonicity,

P
�

ξ ∈ Uδ
�

¶ P
�

ξ ∈ h−1(h(Uδ))
�

. (5.4)

Then, by a change of variables,

1−δ = P
�

ξ ∈ Uδ
�

¶ P
�

ξ ∈ h−1(h(Uδ))
�

= P
�

h(ξ) ∈ Xδ
�

¶ P
�

h(ξ) ∈ C
�

assuming Xδ ⊆ C. �
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Remark 5.1 (i) Measurability of h is implied by continuity of c and x .

(ii) Equality in Equation (5.3) and (5.4) occurs if h is injective. In general, we get an over-
approximation of the chance constraint. The reason is the intentional avoidance of com-
puting the inverse transformation h−1, which requires the availability of an expression for
x (t;ξ). Assuming the use of the polynomial chaos surrogate for x (t;ξ), this would be equiv-
alent to computing the inverse of a non-monotone, possibly multidimensional, higher-order
polynomial. This seems to be a more difficult problem, and without further limiting infor-
mation, the inverse function can in the best case only be expected to be well approximated
locally.

Example 5.2.1 P
�

h(ξ) ∈ [a, b]
�

¾ 1 − δ is satisfied if for some set Uδ constructed such that
P
�

ξ ∈ Uδ
�

¾ 1−δ it holds that

a ¶ min
ξ∈Uδ

h(ξ) and max
ξ∈Uδ

h(ξ)¶ b.

Remark 5.2 (Choice of the uncertainty set S)

(i) Uδ is chosen to be a closed set that covers (1−δ) ·100% of the population corresponding to
the distribution of ξ. Bounds are given by the corresponding (one- or two-sided) quantile
of ξ.

(ii) There are different choices leading to the same coverage probability. The resulting ambiguity
can be avoided by selecting the smallest such interval Uδ or by taking information about
the problem structure into account.

Example 5.2.2 Given Gaussian input distribution with maximum violation rate δ = 5%, there
is an infinite number of possibilities for Uδ, e.g., [−1.96,1.96] (left tail 2.5%, right tail 2.5%),
[−2.242, 1.781] (left tail 1.25%, right tail 3.75%), [−2.576, 1.696] (left tail 0.5%, right tail
4.5%), of which Uδ = [−1.96,1.96] is the smallest.

Xδ is the propagated reachable set of the function c(x p(ξ)) for ξ ∈ Uδ and covers at least
(1− δ) · 100% of the population. This means that no matter of how complex the chance con-
straint is, it can be traced back to the probability that ξ, which follows a well-known distri-
bution, is contained in some intervals Uδ. For the practical computation, we can use the esti-
mation developed in the previous chapter. Additionally to the convergence proved in Lemma
5.1.1, we prove convergence of the chance constraint approximation by showing convergence
in distribution, including the special cases of nonlinear constraint functions c(·), multidimen-
sional uncertainties d > 1 and joint chance constraints with > 1 that seek the simultaneous
satisfaction of several constraints with one given probability.

Lemma 5.2.2 For the constraint function c : Rn→ Rnc , there is a sequence of PC-approximations
�

c(p)(x (ξ))
	

with

P
�

c(p)(x (ξ)) ∈ C
� p→∞
−−−→ P

�

c(x (ξ)) ∈ C
�

for arbitrary C ⊆ Rnc .

Proof First, note that C ⊆ Rnc is a continuity set of c as c and x are continuous. Depending on
the dimension of c we consider different cases.
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(i) If c : R→ R, i.e., c depends only on a one-dimensional variable x, we set

c(p) ··= c(x (p)(ξ)),

i.e., the p-th order PC surrogate of c(x(ξ)). It is a well-known fact that the mean-square
convergence of x (p) implies convergence in probability, which implies convergence in distri-
bution, cf. [48], and this proves the statement. The last two convergence modes extend to all
continuous functions c by the continuous mapping theorem, in particular also for nonlinear
c, for which mean-square convergence need not hold.

(ii) If c : Rñ → R with 1 < ñ ¶ n, we can introduce an additional uncertain state variable
y(t,ξ) = c(x (t,ξ)) into the uncertain optimal control problem defined by the ODE

ẏ(t) =
d
dt

c(x (t)), y(t0) = c(x (t0)).

Expanding y(p) =
Mp
∑

i=0

yiφi(ξ) leads to new state variables y0(t), . . . , yMp
(t) specified by

the ODE

ẏk =



ẏ(p),φk

�

L2(S), k = 0, . . . , Mp.

Writing

c(p)(x (t,ξ)) ··= y(p)(x (t,ξ))

leads to a mean-square convergence for c(p) from which follows

P
�

c(p)(x (ξ)) ∈ C
� p→∞
−−−→ P

�

c(x ((ξ)) ∈ C
�

.

(iii) If c : Rñ → Rnc with 1 < ñ ¶ n and nc > 1, we need to show convergence jointly for nc
constraint functions with sets C1, . . . ,Cnc

∈ R

P
�

c(p)1 (x (ξ)) ∈ C1, . . . , c(p)nc
(x (ξ)) ∈ Cnc

� p→∞
−−−→ P

�

c1(x (ξ)) ∈ C1, . . . , cnc
(x (ξ)) ∈ Cnc

�

.

By using the same arguments as in case (ii) for nonlinear c j and otherwise setting

c(p)j (x (ξ)) ··= c j(x
(p)(ξ)),

we may assume that

c(p)j (x (ξ))
p→∞
−−−→ c j(x (ξ))

in L2(S) for j = 1, . . . , nc.

The events {c(p)j (x (ξ)) ∈ C j}, similarly as
�

c j(x (ξ)) ∈ C j

	

, are generally not mutually inde-
pendent. A necessary and sufficient condition for weak convergence in the joint distribution
is that each linear combination of constraint functions converges to the corresponding lim-
iting linear combination, cf. [48, Theorem 5.1.8]. To this end, we have to show that for all
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constants ∀α ∈ Rnc

α1c(p)1 + . . .+αnc
c(p)nc

p→∞
−−−→ α1c1 + . . .+αnc

cnc
in distribution.

This simply follows from the fact that L2-convergence of the polynomial chaos expansion is
preserved under linear combination. �

Thus, for joint chance constraints

P
�

c1(x (ξ)) ∈ C1, . . . , cnc
(x (ξ)) ∈ Cnc

�

¾ 1−δ,

we require the constraints

h j(Uδ) = c j(x (ξ)) ⊆ C j

to hold over the same set Uδ for 1¶ j ¶ nc.

Remark 5.3 (Multidimensional uncertainty)
Under the independence assumption of the polynomial chaos method, cf. Remark 3.1, the bounds
of a multidimensional uncertainty set Uδ = I1 × . . .× Id can be selected by

P
�

ξ ∈ Uδ
�

=

∫

I1

. . .

∫

Id

ρξ(ξ1, . . . ,ξd) dξ1 . . . dξd

=
∏

i=1,...,d

∫

Ii

pξi
(ξi) dξi =

∏

i=1,...,d

P (ξi ∈ Ii) .

The polynomial subproblem now involves the one- or multi-variate function c with d variables
over a d-dimensional interval. From a practical viewpoint, we can select the Ii to be sets that
satisfy

P (ξi ∈ Ii)¾ (1−δ)
1
d for i = 1, . . . , d

to obtain P
�

ξ ∈ Uδ
�

¾ 1 − δ. This illustrates how the conservatism resulting from the over-
approximation of chance constraints, cf. Remark 5.1, is often increased for higher-order uncer-
tainty.
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6 Numerical results

We analyze the performance of the methods developed in the previous chapters using two
nonlinear optimal control benchmark problems that are inspired by real-world processes. Ad-
ditionally, the last part of this chapter contains an industrial application, a challenging nonlin-
ear optimal control problem modeling an adsorption refrigeration system – which for the first
time is considered under uncertainty.

The resulting polynomial chaos surrogate problems are solved with the direct multiple shooting
method for optimal control [27] described in Section 1.4 using the software package MUSCOD-
II [71]. The standard accuracy εKKT for the solution of the discretized optimal control problems
is computed in form of the KKT-tolerance, as described at the end of Section 1.4.1.

The performance of the adaptive algorithm described in Section 4.1 is measured in terms of
the total run time required to find a solution of the surrogate problem with an expansion
order that is sufficient to capture the nonlinear uncertainty propagation. It is compared to the
standard approach of solving the surrogate problem with an a-priori defined order. In addition
to the full adaptive algorithm, we assess the use of the "optimal" expansion order returned by
the adaptive algorithm to solve the problem in a single run. This may be useful for repeated
solution, e.g., in a feedback loop. Both benchmark problems show a significant performance
gain without loss of accuracy, which can be attributed to the smaller problem sizes and the
iterative search procedure for the full adaptive algorithm.
The sparse Jacobian projection for the fast derivative generation developed in Section 4.2
is compared to the standard method implementing finite differences. For both benchmark
problems, the performance speed-up agrees with the theoretically predicted gain proportional
to the sparsity factors of 2.8 and 4.2.
In the robustification studies, we illustrate the tradeoff between low cost objective, chance
constraint satisfaction and variance minimization. The main intention is to demonstrate the
suitability of the reachable set computation developed in Chapter 5 for the approximation of
chance constraints in nonlinear optimal control problems.

Computing Environment The computational results for the two benchmark optimal control
problems have been obtained on a 64–bit Ubuntu Linux 16.04 system powered by an Intel Core
i7 6700 CPU with 32 GB main memory available.
For the industrial application, a 64–bit Windows 7 system powered by an Intel Core i7 4800MQ
CPU with 8 GB main memory available has been used.
In both cases, a single core of the available four physical cores of the CPU has been used.
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6.1 Container crane

The following model of the optimal control of a container crane has been developed in [131]
and is characterized by a strong nonlinear dynamics.

6.1.1 Control problem

The aim of the container crane problem is to transfer containers from a ship to a cargo truck,
specified by a fixed initial and desired final position while minimizing the swing during the
transfer operation. The crane is driven by a hoist motor and a trolley drive motor, and the six
differential states constitute the trolley position, the hoist cable length, the load swing angle,
the trolley velocity, the hoist cable velocity and the load swing velocity.
The optimal control problem with time horizon t0 = 0, tf = 9 is formulated as follows:
∀t ∈ [t0, tf] a.e.

min
x ,u

1
2

∫ tf

t0

x2
2(t) + x2

5(t)dt s.t.

ẋ0(t) = x3(t)

ẋ1(t) = x4(t)

ẋ2(t) = x5(t)

ẋ3(t) = u0(t) + 1.76 · 9.81 β x2(t)

ẋ4(t) = u1(t)

ẋ5(t) = −
u0 + (1.0+ 1.76 α)9.81 x2(t) + 2 β x4(t)x5(t)

x1(t)
x (t0) = (0,22, 0,0,−1, 0)

|x3(t)|¶ 2.5
�

�x4(t)
�

�¶ 1.0

|x5(t)|¶ 0.035

|u0(t)|¶ 2.83374

−0.80865¶ u1(t)¶ 0.71265

x (tf) ∈ [xminf
, xmaxf

]

with two parameters α and β with nominal values ᾱ = β̄ = 1 that model the influence of the
uncertainty, e.g., due to fluctuating environmental or operating conditions.
The final state condition is determined by

xminf
= (9.9, 13.9,−0.001,2.4,−0.001,−0.001)

xmaxf
= (11, 14.1,0.001, 2.6,0.001).

For a multiple shooting discretization of Nshoot = 25 and a KKT-tolerance of εKKT = 10−6, the
computation time is 0.1s resulting in a deterministic optimum value of 4.396 · 10−3.
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6.1.2 Uncertainty analysis

We consider two uncertainty scenarios:

1. d = 1: α∼N (1,0.4) (i.e., mean µ= 1, standard deviation σdev = 0.4)
2. d = 2: α∼N (1,0.4), β ∼N (1,0.1)

For an illustration of the control trajectories and the state trajectories of the problem under
uncertainty and in the deterministic case, we refer to Figures 6.1 and 6.2, respectively. The
effects of the uncertainty on the state variables at different time instances can be observed in
Figures 6.3 and 6.4 which show the probability density function (PDF) of the states for the
test case d = 1 and d = 2, respectively.
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Figure 6.1: Container crane optimal control law. Deterministic, case d = 1 and d = 2 are plotted as
dark dotted, dashed and light-colored solid lines, resp. Termination criterion: εKKT = 10−8.
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Figure 6.2: Container crane optimal process behavior. Deterministic, case d = 1 and d = 2 are plotted as
dark dotted, dashed and light-colored solid lines, resp. Termination criterion: εKKT = 10−8.
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Figure 6.3: Sampled PDF (NMC = 10, 000) of container crane problem with d = 1 for all states in-
fluenced by uncertainty. Dotted light curve depicts Gaussian fit with abscissa ranging over
[−3σdev, 3σdev]. Termination criterion: εKKT = 10−8.
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Figure 6.4: Sampled PDF (NMC = 10, 000) of container crane problem with d = 2 for all states in-
fluenced by uncertainty. Dotted light curve depicts Gaussian fit with abscissa ranging over
[−3σdev, 3σdev]. Termination criterion: εKKT = 10−8.

76



N U M E R I C A L R E S U LT S
�

� CHAPTER 6

6.1.3 Derivative projection

Figures 6.5 and 6.6 illustrate the reduction in run time of the proposed derivative projection
compared to the standard method based on a finite difference derivative approximation for the
test case d = 1 and d = 2, respectively. The actual speed-up corresponds well to the savings

with sparsity factor Sx = 4.2 given by the predicted trajectory tDP =
tFD

Sx
. Due to the short

solution times in the one-dimensional test case, the computational overhead present in the
sparse derivative generation is still visible in Figure 6.5.
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Figure 6.5: Illustration of smaller run times for container crane problem with derivative projection (DP)
compared to finite difference derivatives (FD) and predicted trajectory for d = 1. Termina-
tion criterion: εKKT = 10−6.

0 5 10 15

order p

0.5

1

1.5

2

2.5

3

ru
n
ti
m
e
(i
n
s)

×10
4

FD

DP

pred.

Figure 6.6: Illustration of smaller run times for container crane problem with derivative projection (DP)
compared to finite difference derivatives (FD) and predicted trajectory for d = 2. Termina-
tion criterion: εKKT = 10−6.
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6.1.4 Adaptive algorithm

We set the adaptive refinement threshold to εAD = 10−6. The decay of the error estimates δ(p)

for the adaptive refinement is plotted in Figure 6.7. For the test case d = 1, the algorithm
terminates after 2.5s with objective value 6.265 · 10−3 and optimal adaptive order popt,1 =
{10, 0,9,10, 0,10}. For the test case d = 2, the overall run time is 5:05min leading to an
objective value of 6.455 · 10−3 and an optimal adaptive order popt,2 = {12, 0,11, 12,0, 12}.
The results of the single run of the surrogate problem with fixed order chosen to be sufficiently
high for accurate results and the single run with the optimal orders returned by the adaptive
algorithm are compared in Table 6.2. For a better comparison of the standard approach and
the proposed adaptive algorithm, we refer to Figure 6.8 for a plot of the run times for different
expansion orders.
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x̂2

x̂3

x̂5

Figure 6.7: Decay of error estimates for uncertain states for container crane problem. Dotted and solid
curves correspond to d = 1 and d = 2, resp. Different colors correspond to different state
indices (deterministic states omitted). Termination criterion: εKKT = 10−6.

fixed order optimal order adaptive algorithm

p {10, . . . , 10} {10, 0,9, 10,0, 10} –

Mp {11, . . . , 11} {11,1, 10,11, 1,11} –

# states 66 45 –

obj. value 6.263 · 10−3 6.263 · 10−3 6.265 · 10−3

run time [s] 5.03 2.51 2.54

Table 6.1: Results container crane for single run with predefined fixed order, single run with optimal
adapted order and adaptive algorithm for d = 1. Termination criterion: εAD = εKKT = 10−6.
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Figure 6.8: Illustration of smaller run times of adaptive algorithm compared to standard method for
different polynomial orders for container crane problem. The two lower and two higher
curves correspond to d = 1 and d = 2, resp. Termination criterion: εKKT = εAD = 10−6.

fixed order optimal order adaptive algorithm

p {12, . . . , 12} {12, 0,11, 12,0, 12} –

Mp {91, . . . , 91} {91, 1,78, 91,1, 91} –

# states 546 353 –

obj. value 6.454 · 10−3 6.453 · 10−3 6.455 · 10−3

run time [mm:ss] 27:14 11:51 05:05

Table 6.2: Results container crane for single run with predefined fixed order, single run with optimal
adapted order and adaptive algorithm for d = 2. Termination criterion: εAD = εKKT = 10−6.
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6.1.5 Chance constraint reformulation

The effects of the uncertainty on the state variables at different time instances for the one-
dimensional uncertainty are illustrated in the probability density function plots in Figure 6.3.
As can be observed in the corresponding Figure 6.4 for the two-dimensional uncertainty, this
case does not lead to majorly different effects. Thus we restrict the analysis for this example
problem to the case d = 1 with α∼N (1, 0.4). The used polynomial chaos order is p = 9, Mp =
10.

The state constraint

x5(t,ξ) ∈ [−0.03,0.045]

on the load swing velocity is to be satisfied in almost all cases and can be formulated in form
of a two-sided chance constraint for t ∈ [0, tf] with

P
�

x5(t,ξ) ∈ [−0.03,0.045]
�

= P
�

x5(t,ξ)¾ −0.03, x5(t,ξ)¶ 0.045
�

¾ 0.95.

The other inequality constraints in the problem formulation are formulated for the mean values
only.
For the chance constraint computation, we consider the three different approximations:

(i) Mean constraint: E
�

x5(t,ξ)
�

∈ [−0.03,0.045]

(ii) Two-sided mean-variance approximation/Gaussian fit: constraints

E
�

x5(t,ξ)
�

− 1.96
Ç

Var
�

x5(t,ξ)
�

¾ −0.03 and

E
�

x5(t,ξ)
�

+ 1.96
Ç

Var
�

x5(t,ξ)
�

¶ 0.045

where c0.025 = 1.96 corresponds to the two sided 2.5%-quantile of the normal distribu-
tion.

(iii) Chance constraint formulation using a 95%-reachable set: constraints

−0.03¶min
ξ∈S

x5(t,ξ) and max
ξ∈S

x5(t,ξ)¶ 0.045

where S = [−2.576,2.576] is the smallest set with P
�

ξ ∈ S
�

= 0.95.

Remark 6.1 For this example, the chance constraint in (iii) is approximated using Method 1 of
Section 5.1.2 on a uniform decomposition of NP = p−1 subsets with a fixed number of Nstep = 10
Newton-bisection steps on each subset. It is verified empirically that these choices are sufficient to
identify all roots up to machine accuracy. That is, using adaptivity a lower number of steps would
have been selected in all cases. No issues with nondifferentiability from the bisection safeguard
were observed.

Formulation (ii) does not lead to a feasible problem formulation and is therefore omitted in
the results. The issue that the normal distribution is not a good approximation can be observed
in the in Figure 6.3 depicting an estimation of the true probability density function and the
normal distribution fit for all states influences by the uncertainty at different time instances.
Figures 6.9 and 6.10 show the associated control and state trajectories. A Monte Carlo sampling
of the state trajectory of interest illustrating the extent of the sampled trajectories for different
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uncertainty realizations is depicted in Figure 6.11. Table 6.3 summarizes the results and the
dimensions of the surrogate problems after the multiple shooting discretization. The chance
constraint reformulation leads to a lower constraint violation rate than the required 5%, which
is violated by a large extent for the expected value robustification. In this example, the final
variance for the solution with the chance constraint robustification is larger than the final
variance of the solution with expected value robustification. The reason is that it interferes
with the explicit variance minimization imposed in the objective function

E

�

1
2

∫ tf

0

x2
2(t,ξ) + x2

5(t,ξ) dt

�

=
1
2

∫ tf

0

E
�

x2
2(t,ξ)

�

+ E
�

x2
5(t,ξ)

�

dt.
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-1

-0.5

0

0.5

1

Figure 6.9: Robustified version of container crane optimal control law. Deterministic, mean value
bounds (case (i)) and chance constraint robustification (case (iii)) are plotted as dark dot-
ted, dashed and light-colored solid lines, resp.

det. (i) (iii)

objective 4.31 · 10−3 6.13 · 10−3 7.30 · 10−3

final variance Var [x5(tf)] – 5.0 · 10−4 9.2 · 10−3

max. constraint violation [%] – 50.4 1.0

computation time [ss] 0.8 14.7 11.1

NLP variables 386 2582 2582
equality constraints 280 2440 2440
inequality constraints 736+ 12 5164+ 12+ 20 · 2 5164+ 12+ 2 · 10 · 40

= 748 = 5216 = 5976

Table 6.3: Properties of the optimal solutions obtained for the robustified container crane problem. Con-
straint violations have been computed by NMC = 10, 000 samples over R using the obtained
optimal control law. Last section contains the NLP dimensions after the multiple shooting
discretization with Nshoot = 40.
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Figure 6.10: Robustified version of container crane optimal process behavior. Deterministic, mean value
bounds (case (i)) and chance constraint robustification (case (iii)) are plotted as dark
dotted, dashed and light-colored solid lines, resp.

Figure 6.11: Sampled trajectories (NMC = 10,000) of state x5(t,ξ) of robustified container crane prob-
lem given optimal controls for average constraint (i) (left) and chance constraint approx-
imation (iii) (right). The light-colored dotted trajectory is the nominal solution. Triangle-
shaped markers illustrate the extreme trajectories for the 95%-quantile (case (iii)).
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6.2 Semi-batch fermentation process

The challenge of the second test problem modeling the control of a fermentation process in a
semi-batch reactor lies within the larger problem size.

6.2.1 Control problem

The semi-batch fermentation process describes the fermentation of a product P produced by
a biomass B in a semi-batch reactor given substrates S1 and S2 and a nutrient G. The state
variables are composed of the corresponding concentrations, the crop rate, the amount of
product generated and the volume balances of the substrate feeds. The control variables are
the substrate feed rates and the crop rate. It has been used as a benchmark problem in [18].
The optimal control task is to minimize the accumulated amount of substrates fed, while max-
imizing the accumulated yield of the product on a normalized time horizon [t0, tf] = [0,1]:

min
x ,u

S1(tf) +
1
2S2(tf)

P(tf)
(6.1a)

s.t. ẋ(t) = f (x (t), u(t), p) t ∈ [t0, tf] a.e. (6.1b)

x (t0) = x0 (6.1c)

0¾ c(x (t), u(t)) t ∈ [t0, tf] a.e. (6.1d)

(6.1e)

The process model (6.1b) is as follows:

ċp(t) = µpcB(t)cS1
(t)cS2

(t)− cp(t)
u0(t) + u1(t)

V (t)
,

ċS1
(t) = 0.42

u0(t)
V (t)

− cS1

u0(t) + u1(t)
V (t)

− 10 · 104 · cB(t)cS1
(t)cS2

(t)cG(t)− γp,S1
cB(t)cS1

(t)cS2
(t),

ċS2
(t) = 0.333

u0(t)
V (t)

− cS1

u0(t) + u1(t)
V (t)

− 5000 cB(t)cS1
(t)cS2

(t)− γp,S2
cB(t)cS1

(t)cS2
(t)cG(t),

ċB(t) = 20 · 104 cB(t)cS1
(t)cS2

(t)cG(t)− cB(t)
u0(t) + u1(t)

V (t)
,

ċG(t) = −5 · 104 cB(t)cS1
(t)cS2

(t)cG(t)− cG(t)
u0(t) + u1(t)

V (t)
,

V̇ (t) = u0(t) + u1(t)− u2(t),

Ṗ(t) = u2(t)cp + (u0(t) + u1(t)− u2(t))cp

+ V (t)
�

µp cB(t)cS1
(t)cS2

(t)− cp(t)
u0(t) + u1(t)

V (t)

�

,

Ṡ1(t) = 0.42 u0(t),

Ṡ2(t) = 0.333 u1(t)

with parameters µG, µp, γg,S1
, γg,S2

, γp,S1
, γp,S2

, γg,G, cin
S1

, cin
S2

as listed in Table 6.4.
State and control bounds (6.1d) as well as initial values (6.1c) are listed in Table 6.5.

For a multiple shooting discretization of Nshoot = 20 and a KKT-tolerance of εKKT = 10−6, the
computation time is 0.4s resulting in a deterministic optimum value of 5.208.
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Symbol Description Nominal value

µG Growth rate of B 20 · 104

µp Product generation rate 5.0 · 103

γg,S1
Consumption of S1 due to growth 10 · 104

γg,S2
Consumption of S2 due to growth 0.5 · 104

γp,S1
Consumption of S1 due to production 2.0 · 104

γp,S2
Consumption of S2 due to production 1.5 · 103

γg,G Consumption of G due to growth 5.0 · 104

cin
S1

Feed concentration of S1 4.2 · 10−1

cin
S2

Feed concentration of S2 3.33 · 10−1

Table 6.4: Parameters for the fermenter process model.

cp cS1
cS2

cB cG V p S1 S2 u0 u1 u2

min 0 0 0 0 0 0.3 0 0 0 0 0 0
max 0.1 0.04 0.03 0.1 0.45 0.1 0.05 0.2 0.025 15 1 30

x (t0) 0 0.03 0.03 0.01 0.1 0.3 0 0.009 0.009 - - -

Table 6.5: Bounds and initial values of differential states and controls for the fermentation process.

6.2.2 Uncertainty analysis

We consider the two uncertainty scenarios:
1. d = 2:

µG ∼ 104 ·N (20,4), γg,S2
∼ 104 ·N (0.5,1.25)

2. d = 3:

µP ∼N (5 · 103, 400), γp,S1
∼N (20 · 103, 2 · 103), γp,S2

∼N (1.5 · 103, 300)

For an illustration of the control and state trajectories, we refer to Figure 6.12 and Figure 6.13,
respectively. The effect of the uncertainty on the state variables at different point in time can
be observed in the Figures 6.14 and 6.15, respectively, illustrating the probability desnity func-
tions of the state variables.
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Figure 6.12: Fermentation process optimal control law. Deterministic, case d = 2 and d = 3 are plotted
as dark dotted, dashed and light-colored solid lines, resp. Termination criterion: εKKT =
10−8.
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Figure 6.13: Fermentation process optimal process behavior. Deterministic, case d = 2 and d = 3 are
plotted as dark dotted, dashed and light-colored solid lines, resp. Termination criterion:
εKKT = 10−8.
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Figure 6.14: Sampled PDF (d = 2, NMC = 10,000) of fermentation process for uncertain states. Dotted
light curve depicts Gaussian fit over [−3σdev, 3σdev].
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Figure 6.15: Sampled PDF (d = 3, NMC = 10,000) of fermentation process for uncertain states. Dotted
light curve depicts Gaussian fit over [−3σdev, 3σdev].
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6.2.3 Derivative projection

Figures 6.16 and 6.17 illustrate the reduction in run time of the proposed derivative projection
compared to the standard method based on a finite difference derivative approximation for
the two test cases. The actual speed-up corresponds well to the savings with sparsity factor

Sx = 2.79 given by the predicted trajectory tDP =
tFD

Sx
.
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Figure 6.16: Illustration of smaller run times for the soultion of uncertain fermentation process (d = 2)
with derivative projection (DP) compared to finite difference derivatives (FD). Termination
criterion: εKKT = 10−6.
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Figure 6.17: Illustration of smaller run times for the soultion of uncertain fermentation process (d = 3)
with derivative projection (DP) compared to finite difference derivatives (FD). Termination
criterion: εKKT = 10−6.

88



N U M E R I C A L R E S U LT S
�

� CHAPTER 6

6.2.4 Adaptive algorithm

We set the adaptive refinement threshold εAD = 10−7 because the solution shows a higher
sensitivity to the selected error tolerance. The decay of the state error estimates δ(p) for the
adaptive refinement is plotted in Figure 6.18. Compared to the first test problem, the conver-
gence is faster, cf. Figure 6.18, which can be attributed to the smaller degree of nonlinearity in
the dynamics. For the test case d = 2, the algorithm terminates after 27s with objective value
5.2582 and returns an optimal order of popt,2 = {3,6, 2,4, 0,1, 2,0, 0}. For test case d = 3,
the adaptive algorithm terminates after 7:34min with objective value 5.2287 and returns an
optimal order of popt,3 = {4,5, 2,2, 0,1, 2,0, 0}.
The results of the single run of the surrogate problem with fixed order chosen to be sufficiently
high for accurate results and the single run with the obtained optimal orders are compared in
the Tables 6.6 and 6.7 for the two test cases. For a better comparison of the standard approach
and the proposed adaptive algorithm, we refer to Figure 6.19 which shows a plot of the run
times for different expansion orders. It can be seen that the adaptive algorithm leads to a
further run time reduction and a more precise objective value.
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Figure 6.18: Decay of error estimates for uncertain states for fermentation process. Dotted and solid
curves correspond to d = 2 and d = 3, resp., while colors correspond to different state
indices (deterministic states omitted). Termination criterion: εr = 10−7, εKKT = 10−6.

fixed order optimal order ad. alg

p {6, . . . , 6} {3,6, 2,4, 0,1, 2,0, 0} –

# states 252 71 –

obj. value 5.2879 5.273 5.2582

run time [mm:ss] 12:09 02:55 00:27

Table 6.6: Results fermentation process for single run with predefined fixed order and single run with
optimal adapted order for test example d = 2. Termination criterion: εKKT = 10−6.
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Figure 6.19: Illustration of smaller run times for adaptive algorithm compared to standard approach for
fermentation process. Blue upper and black lower curves correspond to d = 2 and d = 3,
resp. Termination criterion: εr = 10−7, εKKT = 10−6.

fixed order optimal order ad. alg

p {5, . . . , 5} {4,5, 2,2, 0,1, 2,0, 0} –

# states 504 128 –

obj. value 5.2849 5.2786 5.2287

run time [h:mm:ss] 1:03:08 0:09:32 0:07:34

Table 6.7: Results fermentation process for single run with predefined fixed order and single run with
optimal adapted order for test example d = 3. Termination criterion: εKKT = 10−6.
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6.2.5 Chance constraint reformulation

In this part, we consider only the two-dimensional uncertainty because it shows a more inter-
esting behavior. The uncertain inputs are

µG ∼ 104 ·N (20,4), γg,S2
∼ 104 ·N (0.5,1.25)

and the employed polynomial chaos order is

p = {3,6, 2,4, 0,1, 2,0, 0}, Mp = {10,28, 6,15, 1,3, 6,1, 1}.

The effects of the uncertainty on the state variables at different time instances can be observed
in Figure 6.14 depicting an estimation of the true probability density function and the normal
distribution fit for all states influences by the uncertainty at different time instances.
The upper bound on the substrate concentration

cS1
(t,ξ)¶ 0.04

is critical and may only be violated in a well-defined number of cases. To meet this requirement,
we add a chance constraint allowing for a constraint violation in at most δ = 2% of all possible
outcomes

P
�

cS1
(t,ξ)¶ 0.04

�

¾ 0.98.

We compare different constraint reformulations:

(i) Mean constraint: E
�

cS1
(t,ξ)

�

¶ 0.04

(ii) Mean-variance constraint:

E
�

cS1
(t,ξ)

�

+ 2.0537
Ç

Var
�

cS1
(t,ξ)

�

¶ 0.04

where cu
0.2 = 2.0537 corresponds to the upper 2%-quantile of the normal distribution.

(iii) 98%-chance constraint:

max
ξ∈S

cS1
(t,ξ)¶ 0.04

using the uncertainty set S = [−2.574, 2.574]× [−2.574, 2.574] with P
�

ξ ∈ S
�

¾ 0.98.

Figures 6.20 and 6.21 show the control and state trajectories corresponding to the different
strategies.
Table 6.8 summarizes the benchmarks and includes the dimensions of the surrogate problems
after the multiple shooting discretization. The chance constraint reformulation leads to a sig-
nificantly lower constraint violation rate than the required 2%, which is violated in the two
other cases.

Remark 6.2 In this example, we have used the Chebyshev discretization of Method 2 in Sec-
tion 5.1.2 for the computation of the chance constraint reformulation (iii). The number of se-
lected Chebyshev points is NP = 182 = 324. It can be seen from the computation times in Table 6.8
that the effort of the additional linear inequality constraints is negligible compared to the effort
related to the high-dimensional state space of the surrogate problem and the increased effort to
find a solution in the presence of tight constraints.
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Figure 6.20: Robustified version of optimal control law of fermentation process (u1 shows nearly con-
stant behavior and is omitted). Deterministic (no uncertainty present), mean-variance
bound (case (ii)) and chance constrained robustification (case (iii)) are plotted as dark
dotted, dashed and light-colored solid lines, resp.
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Figure 6.21: Robustified version of optimal process behavior of fermentation process. Deterministic,
mean-variance bound (case (ii)) and chance constrained robustification (case (iiia), (iiib))
are plotted as dark dotted, dashed and light-colored solid lines, resp.
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A Monte Carlo sampling of the state trajectory of interest cS1
(t) illustrating the extend of

the sampled trajectories for different uncertainty realizations is depicted in Figure 6.22. The
overall extent of the trajectories can be seen to be significantly smaller in the solutions corre-
sponding to the chance constraint reformulation. This property is also indicated by the smaller
propagated variance, which is implicitly enforced by satisfying the chance constraints. Com-
pared to the container crane problem, the inclusion of chance constraints has an inherent
variance minimization effect.

det. (i) (ii) (iii)

objective 5.176 5.233 5.257 5.403

Var cS1
(tf) – 3.91 · 10−5 2.77 · 10−5 0.62 · 10−5

constraint violation [%] – 27.45 3.96 0.08

run time [mm:ss] 00:01 09:54 09:33 03:54

NLP variables 309 1921 1921 1921
equality constraints 225 1775 1775 1775
inequality constraints 618 2 · 1921+ 26 2 · 1921+ 26 2 · 1921+ 324 · 25

3868 3868 11942

Table 6.8: Properties of the optimal solutions obtained for the robustified fermentation process. Con-
straint violation rates for different strategies have been computed from NMC = 10,000 sam-
ples overR2 using the obtained optimal control law. Last section contains the NLP dimensions
after the multiple shooting discretization with Nshoot = 25.

Figure 6.22: Sampled trajectories (NMC = 10,000) of x1(t,ξ) of robustified fermentation process given
optimal controls for average constraint (i) (upper left), Gaussian fit (ii) (upper right) and
chance constraint approximation (iii) (lower). The light-colored dotted trajectory is the
nominal solution. Dark triangular- and diamond-shaped markers illustrate computed and
sampled mean-variance bound (case (ii)) and computed extreme trajectories for the 99%-
quantile (case (iii)), resp.
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6.3 Application: Adsorption chiller

In this section, we present numerical results for an industrial application, a challenging nonlin-
ear optimal control problem modeling an adsorption refrigeration system under uncertainty.
The process model of an adsorption chiller was developed by the Chair of Technical Thermo-
dynamics LTT of the RWTH Aachen University. The focus of this case study is a first feasibility
study of a real industrial application under uncertainty.

6.3.1 Adsorption chiller cycle

Adsorption chillers or heat pumps use the physical process of adsorption for thermal compres-
sion of the working fluid. The advantage of these systems is the efficient use of solar or waste
heat to meet cooling and heating demands, therefore allowing an environmentally friendly
provision of heating and cooling demands.
The one-bed adsorption chiller consists of one adsorber bed, a condenser and an evaporator.
The main components of the adsorber bed are the heat exchanger and the attached adsorbent
material. There are different choices of combinations of adsorbent material, e.g. silica gel or
zeolite, and working fluid or refrigerant, e.g. water. The adsorber is connected to the evapo-
rator and to the condenser via butterfly valves and between condenser and evaporator there
is a condensate reflux connection. For a picture and the scheme of the adsorption chiller test
stand, see Figures 6.23 and 6.24. For a scheme of the structure of the adsorption chiller model,
see Figure 6.25.

Figure 6.23: Picture of the adsorption chiller test stand.
Source: Chair of Technical Thermodynamics LTT, RWTH Aachen

The basic working principle of the adsorption cycle is to condense the refrigerant at high pres-
sure/temperature and evaporate it at low pressure/temperature. The simple one-bed adsorp-
tion cooling cycle is divided into four different phases: isosteric cooling, adsorption, isosteric
heating and desorption.
In the isosteric cooling, the adsorbent is cooled until the pressures of the adsorbent material is
equal to the low pressure of the evaporator. In the adsorption phase, using hot water from the
external waste heat source, e.g. the solar collector, the refrigerant vaporizes in the evaporator
and streams into the adsorber in order to be adsorbed. Due to the low pressure, the evaporation
happens at low temperature, extracting heat from its surroundings and thereby producing the
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Figure 6.24: Scheme of the adsorption chiller test stand consisting of one adsorber bed, a condenser and
an evaporator chamber. Additionally, the temperature, pressure and volume flow sensors
are pictured.
Source: Chair of Technical Thermodynamics LTT, RWTH Aachen

useful "cold". The adsorption phase is finished when the adsorbent is saturated. With the use
of hot water, the adsorbed refrigerant is again evaporated. The adsorbent pressure rises until
it reaches the condenser pressure. The desorbed vapor streams out of the adsorber to the
condenser which is cooled down. The desorption phase ends when the maximal temperature
of the adsorbent and minimal loading is reached.
The adsorption cycle is a batch process. For quasi-continuous cooling, at least two sorbent
beds are needed, which operate in counter-phase. In a two-bed adsorber, the sorbent in the
first compartment (adsorption department) adsorbs the steam entering from the evaporator
and produces the useful "cold", while the sorbent in the second compartment is regenerated
using hot water from the external waste heat source. If the sorption material in the adsorption
compartment is saturated, the chambers are switched over in their function.

Lanzerath et al. propose a lumped model for the adsorbent in which only the heat exchang-
ers are discretized in flow direction. Further assumptions are reported in the corresponding
paper [88]. The inlet water temperatures and volume flows are given by measurement data.
To transform this simulation model to a model suited for optimization, three modifications
are done: i) removing discretizations, ii) simplifying adsorber heat exchanger, iii) approximat-
ing measurement data by smooth functions. The model is built modularly in Modelica using
the adsorption energy systems library developed at RWTH Aachen University [9]. The fluid
properties and the heat exchangers are based on the TIL library by TLK Thermo [61].

6.3.2 Control problem

To compare the performance of adsorption chillers to the performance of conventional com-
pression chillers, the two performance indicators coefficient of performance (COP) and specific
cooling power (SCP) are used. The COP measures the efficiency of the plant whereas the SCP
measures the system’s power density.
The COP is defined by the ratio of the used heat Qevap, which is the heat transferred during the
evaporation process, and the expended heat Qheating consisting of the heat required to heat up
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Figure 6.25: Structure of the adsorption chiller model with the three components: evaporator, con-
denser and adsorber. Each component consists of sub-models for heat exchangers, heat
capacities, tubes and equilibrium models for the refrigerant water and the adsorbent. The
reflux connection between the condenser and the evaporator is realised by a valve model.
The connection between the adsorber and the condenser respectively the evaporator is
modelled by a double valve model describing convective and diffusion resistances. The
connections to the heat exchangers respectively the heat capacities are realized via heat
transfer models. To simplify the representation the heat losses are omitted.
Source: Chair of Technical Thermodynamics LTT, RWTH Aachen

the adsorber and the heat needed for the desorption process:

COP =
Qevap

Qheating
.

For the SCP indicator, the used heat is divided by the adsorbent mass msor and the time for an
entire cycle tcycle:

SCP =
Qevap/tcycle

msor
.

To improve system properties, an optimization of the adsorber bed design can be carried out.
Design choices include the heat exchanger geometry, the adsorbent configuration and the com-
bination of working fluid and adsorbent material. In most cases, one must accept a trade-off
between COP and SCP. For instance, a large heat exchanger surface promotes a high SCP but
the resulting increase in mass of the heat exchanger lowers the COP. A similar relationship
holds for the cycle times that constitute the durations of the adsorption and the desorption cy-
cle. Assuming for simplicity that the adsorption and desorption cycle times are equal, then long
cycle times promote a high COP whereas short cycle times promote a high SCP [2, 39, 132].
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An appropriate optimal control problem is to find a cycle time and possibly design parame-
ter choices that lead to maximum cooling power per period, assuming there is enough cheap
waste heat available. The process is restricted to periodic operation. Depending on the model
complexity, one can determine different duration times for isosteric cooling, adsorption, isos-
teric heating, desorption and, if applied, durations of heat recovery and mass recovery [63].

The resulting optimal control problem with differential state variables x (t) and algebraic state
variables z(t) reads

min
x ,z,p,tcycle

−Qevap(tcycle)/Qheating(tcycle) (6.3a)

−Qevap(tcycle)/(tcycle ·msor) (6.3b)

s.t. ẋ (t) = f (t, x (t), z(t), p) t ∈ [t0, tcycle] a.e. (6.3c)

0= g (t, x (t), z(t), p) t ∈ [t0, tcycle] a.e. (6.3d)

u(t) ∈ U(t) t ∈ [t0, tcycle] a.e. (6.3e)

0¾ c(t, x (t), z(t), p) t ∈ [t0, tcycle] a.e. (6.3f)

0= x (t0)− r (x (tcycle)) (6.3g)

In this formulation, there are no continuous controls required as the system is controlled purely
by the horizon length and design parameter choices. The path constraints (6.3f) comprise typ-
ically the bounds on the variables, the parameters and the time horizon. The constraint (6.3g)
on the initial and final state value, where r contains permutations of the state variables and
the initial value can be a free variable, ensures the period operation of the system.
The dynamic DAE process (6.3c)–(6.3d) is provided as a blackbox system in form of a dynamic
Modelica model, which is encapsulated in a functional mock-up unit (FMU). Via the standard-
ized Functional Mock-up Interface (FMI), the dynamic model is connected to the optimization
algorithm. For more details on the technical realisation, see Gräber et al. [64].

For the following case study under uncertainty, we use a model with two adsorber beds and
equal adsorption and desorption times. The adsorption cycle is modeled by 39 differential
states describing mainly the fluid density and temperature in the evaporator and in the con-
denser, the temperature and water uptake of the two adsorber beds and the temperature values
of the discretized heat exchangers for the condenser, evaporator and the two adsorbers. Addi-
tional state variables, e.g. Qevap(t), Qheating(t) model the heat flows. There are 21 parameters
describing the geometric design and the heat and mass transfer of the components. The opti-
mization variables are composed of the cycle time tcycle and the three parameters describing
the lengths lads, levp, lcond of the evaporator, condenser and adsorbers. For different formu-
lations of the adsorption chiller optimal control problem using, e.g., multi-stage system and
algebraic variables, we refer to [62, 63, 10, 11].

6.3.3 Uncertainty analysis

The calibration of the parameter values with the measurement data suffers from deviating
operating conditions, e.g., changing availability of solar or waste heat, different temperatures,
filling levels etc. In particular the outcomes for the diffusion transport resistance D for the
adsorption and desorption process and the heat transfer coefficients (αA) of the evaporator,
condenser and the adsorbers are affected. For a detailed analysis of the model accuracy after
calibration of the parameters, we refer to Lanzerath et al. [88].

For this initial uncertainty quantification study, we consider one uncertain parameter Dads,
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normally distributed with nominal value Dads = 1.8 ·10−10 m2/s and with a standard deviation
of 7.5% up to 15% of the nominal value.

One of the main challenges that arises when incorporating uncertainty into Problem (6.3) is
the appropriate reformulation of the periodicity conditions (6.3f) that are imposed as equality
constraints comprising the deterministic initial state and the final state that is influenced by
the uncertainty.

A straight-forward reformulation using the mean value E
�

r (x (tcycle))
�

is as follows:

x (t0)− E
�

r (x (tcycle))
�

= 0.

In the presence of uncertainty, this formulation is rather restrictive and in most cases results in
an infeasible problem formulation. Therefore, a reformulation as inequality constraints using
a target set [−ε |x (t0)| ,ε |x (t0)|] with a small parameter ε ∈ [0,1), scaled in magnitude by
the deterministic initial value, is advisable. This results in the two constraints

x (t0)− E
�

r (x (tcycle))
�

¶ ε |x (t0)| , (6.4)

x (t0)− E
�

r (x (tcycle))
�

¾ −ε |x (t0)| . (6.5)

A higher degree of robustness than the mean value formulation (6.4)–(6.5) can offer is given
by a chance constraint based formulation with

P
��

�x (t0)− E
�

r (x (tcycle))
��

�¶ ε |x (t0)|
�

¾ 0.99.

Larger or smaller bounds than 0.99 are possible and depend on the application. The chance
constraint can be readily incorporated into the optimal control problem with the methodology
developed in Chapter 5.

Robustified optimal control problem The reformulated optimal control problem with chance
constraint robustification reads

min
x ,p,tcycle,ε

− E
�

Qevap(tcycle)/(tcycle ·msor)
�

+ cε (6.6a)

s.t. ẋ (t) = f (t, x (t), p) t ∈ [t0, tcycle] a.e. (6.6b)

0.99¾ P
��

�x (t0)− E
�

r (x (tcycle))
��

�¶ ε |x (t0)|
�

(6.6c)

u(t) ∈ U(t) t ∈ [t0, tcycle] a.e. (6.6d)

0¾ E [c(t, x (t), p)] t ∈ [t0, tcycle] a.e. (6.6e)

COP= E
�

Qevap(tcycle)/Qheating(tcycle)
�

(6.6f)

Instead of considering the original multi-objective problem with two simultaneous objective
functions (6.3a) and (6.3b), we fix one of the objectives to COP = 0.14. The offset ε that is
scaled by an appropriate constant c is minimized in order to ensure that the target set is as
small as possible. Consequently, the periodicity constraint under uncertainty is nearly satisfied
while retaining the problem feasibility. It is customary to set the scaling factor c to a large
value, here c = 10000, such that cε is of the same magnitude as the SCP. The initial standard
deviation is set to σDads

= 0.075 · Dads.

To obtain the deterministic surrogate optimal control problems, we used a polynomial chaos
order of p = 3. In the reformulation of the chance constraints, we used Method 2 in Sec-
tion 5.1.2 with NP = 10 Chebyshev points. Both values turned out to be sufficient to capture
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the low or moderate nonlinear effects. For the solution of the optimal control problem, we set
the termination criterion to εKKT = 10−5 for the discretized optimization problem and use an
integration tolerance of 10−7.

The results for the deterministic optimal control problem and the uncertain optimal con-
trol problem with mean value and with chance constraint robustification are summarized
in Table 6.9. As expected the offset ε is 0 for the deterministic version and the periodic
equality constraints are satisfied while for the uncertain problem versions a small deviation
of approximately 1% is necessary. Because of the larger offset, they result in a higher SCP
of 171.2 W/kg−1 for the chance constraint robustification and a slightly larger outcome of
170.4 W/kg−1 for the mean value robustification versus 125.3 W/kg−1 for the deterministic
case.
The effects of the uncertainty on the state variables at different time instances can be ob-
served in Figure 6.26 which shows the state density functions for the uncertain problem with
chance constraint robustification. Note that the mean value robustification gives similar density
plots. Due to the high state dimensionality, we depict only a selection of the state variables:
evaporator temperature Tevap, condenser fluid density ρcond, heating transferred during the
evaporation process Qevap, expended heat Qheating, fluid temperature of second adsorber heat
exchanger Thx−fluid,ads2 and wall temperature of second adsorber heat exchanger Thx−wall,ads2.

SCP [W/kg−1] tcycle[s] lads[mm2] levp lcond ε

chance constraint 170.4 110.8 7.00 3.00 4.60 1.46 · 10−2

mean value 171.2 110.0 7.00 3.00 4.59 1.44 · 10−2

deterministic 125.3 184.6 7.68 2.31 4.55 0

Table 6.9: Optimal control results for periodic adsorber problem for chance constraint robustification,
mean value robustification and deterministic version. The initial standard deviation isσDads

=
0.075 · Dads and COP=14%.

For an evaluation of the effects of the periodic constraints on the uncertainty propagation,
we consider Problem 6.6 with fixed initial states x (t0) = x0. Hence, the uncertainty propaga-
tion through the forward problem takes place without being influenced by the periodic state
condition. For this test, we set the initial standard deviation to σDads

= 0.15 · Dads.

The results for the deterministic optimal control problem and the uncertain optimal control
problem with mean value robustification and with chance constraint robustification are sum-
marized in Table 6.10. As expected the offset ε modeling the violation of the equality con-
straints is significantly smaller for the deterministic version. Contrary to the periodic problem,
which has more degrees of freedom, a small non-zero offset ε is necessary for the determin-
istic version to satisfy the equality constraint. Moreover, the two uncertain problem versions
result now in a lower SCP value than the deterministic case – the expected behavior of the
robustified solution under uncertainty. As before, a deviation of approximately 0.1% and 1%
from the nominal equality constraint is necessary for the uncertain problem with with mean
value and with chance constraint robustification, respectively.

The probability density functions of the states Tevap, ρcond, Qevap, Qheating, Thx−fluid,ads2 and
Thx−wall,ads2 at different time instances can be observed in Figure 6.27. Again, the plots are
shown for the uncertain problem with chance constraint robustification, however, the mean
value robustification gives similar plots. Contrary to the periodic version of the problem, the
propagated density functions now deviate from the initial normal distribution and the nonlin-
ear effects of the dynamics become visible.
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Figure 6.26: Sampled PDF (NMC = 10, 000) of adsorption chiller under uncertainty with periodic con-
straints for selected states (Tevap, ρcond, Qevap, Qheating, Thx−fluid,ads2, Thx−wall,ads2). The initial
standard deviation is σDads

= 0.075 · Dads and a chance contraint robustification was ap-
plied. Dotted light curve depicts Gaussian fit with abscissa ranging over [−3σdev, 3σdev].100



N U M E R I C A L R E S U LT S
�

� CHAPTER 6

314.25 314.3 314.35 314.4

0

5

10

15

x
3
8

317.4 317.6 317.8 318

0

1

2

3

4

x
2
8

1.5 1.52 1.54

×10
4

0

1

2

3

4

x
2
4

×10
-3

400.5 401 401.5

0

0.5

1

1.5

2

x
2

279.4 279.6 279.8 280

0

1

2

3

4

x
1

t = 61.8712s

399.885 399.89 399.895

0

50

100

150

200

250

x
0

309.32 309.36 309.4

0

10

20

30

310.8 310.9

0

5

10

15

0.95 1 1.05

×10
5

0

0.5

1

1.5

2
×10

-4

398 400 402 404

0

0.1

0.2

0.3

0.4

277.9 278 278.1 278.2 278.3

0

2

4

6

t = 185.6136s

399.928 399.9282

0

2000

4000

6000

8000

Figure 6.27: Sampled PDF (NMC = 10,000) of adsorption chiller under uncertainty with fixed initial
value for selected states (Tevap, ρcond, Qevap, Qheating, Thx−fluid,ads2, Thx−wall,ads2). The initial
standard deviation isσDads

= 0.15·Dads and a chance contraint robustification was applied.
Dotted light curves illustrate Gaussian fit with abscissa ranging over [−3σdev, 3σdev]. 101
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SCP [W/kg−1] tcycle[s] lads[mm2] levp lcond ε

chance constraint 122.6 185.6 7.50 2.01 4.00 1.9 · 10−2

mean value 122.7 180.4 7.22 2.01 4.00 1.7 · 10−3

deterministic 125.5 178.4 7.10 2.35 4.64 9.0 · 10−5

Table 6.10: Optimal control results for adsorber problem with fixed initial value for chance constraint
robustification, mean value robustification and deterministic version. The initial standard
deviation is σDads

= 0.15 · Dads and COP=14%.

Discussion of the results The presented model of an adsorption chiller is a high-dimensional
optimal control problem with a complex DAE-ODE process model that is given as a blackbox
in form of a dynamic FMU model. Solving it robustly in the deterministic case already proves
to be challenging.
Solving the presented optimal control problem under uncertainty is even more demanding and
takes up to several hours compared to a few minutes for the solution of the deterministic ver-
sion. There are several reasons for this discrepancy. The applied resolution of the (periodic)
equality constraint results in a complex optimal control problem with an objective function
that contains a weighted sum of two terms. This may result in multiple local solutions of the
optimization problem. Slight variations in the values for the state variables, which are un-
avoidable under uncertainty, often lead to infeasibilities that are difficult to resolve due to the
blackbox structure. Moreover, due to modeling issues of the FMU dynamic model, changing
the realizations of the uncertain parameters in different simulations of the model – an impor-
tant requirement in the implementation of the applied non-intrusive polynomial chaos method
– involves a considerably high computational effort. Consequently, the adsorber model only
permits the analysis of a one-dimensional uncertainty.
We find that the effects of the uncertainty on the state trajectories and on the optimal control
solution are low to moderate, thus a low polynomial chaos order as well as a low number
of discretization points in the resolution of the chance constraints proved to be sufficient to
capture the effects of the uncertainty propagation. It is interesting to note that the periodic
initial and final state condition further appears to prevent the emergence of the nonlinear
effects.
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7 Conclusion

In this work, we have developed theory and algorithms for optimal control problems under
uncertainty. Special focus was put on the nonlinear propagation of the uncertainty and on a
problem-dependent robustification of the solution in form of chance constraints. To this end,
we applied the polynomial chaos method to optimal control under uncertainty and solved the
resulting surrogate optimal control problem. Our efforts involve the extensive application of
the polynomial chaos method to real-world optimal control problems including a challenging
new industrial application study under uncertainty illustrating that it is able to capture the
nonlinear uncertainty propagation while remaining computationally tractable as long as the
number of uncertainties is low to moderate.

From a theoretical point of view, we rigorously studied the properties of the polynomial chaos
surrogate optimal control problem with end point constraints in order to prove convergence
of the polynomial chaos approximation for increasing orders.
On this basis, we proposed two algorithms which aim for the fast numerical solution of the
surrogate problems. The proposed adaptive algorithm identifies the smallest expansion or-
der for each state variable necessary to capture the nonlinear uncertainty propagation with
a prescribed accuracy. Due to the smaller problem size as well as the adaptive search proce-
dure, the computational effort is considerably reduced compared to the standard procedure
of solving the polynomial chaos surrogate with a fixed, pre-determined order. An additional
significant saving of computation time is achieved by developing a fast derivative generation
technique that exploits the structure resulting from the spectral projection of the polynomial
chaos method.
The two algorithmic contributions are complemented by an extensive numerical case demon-
strating the performance gain of both methods.

The robustification of objective and constraint functions against uncertainty variations is an-
other main topic of this thesis. We proposed a new method to reformulate chance constraints
within optimal control problems by using the polynomial chaos method to propagate reachable
sets of all uncertain states. Our method is well suited for nonlinear and asymmetric uncertainty
propagation. The strength of the estimator in guaranteeing a satisfaction level is supported by
a proof of convergence and an a-priori error estimate.
A numerical case study illustrates the tradeoff between low cost objective, chance constraint
satisfaction and variance minimization, and demonstrates the suitability of the proposed ro-
bustification technique for nonlinear optimal control problems under uncertainty.

We hope that the theoretical, algorithmic and numerical results of this thesis contribute to a
better understanding of the class of uncertain optimal control problems. Not all of the open
questions in this field as well as the new research directions that arose during the work on this
thesis have been fully answered. We therefore conclude this thesis with the most important
possible directions of further work.
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Directions of further research A deeper investigation of the effects of uncertainties on op-
timal control problems is desirable, concerning in particular questions such as the trade-off
between cost optimality and robustification in terms of constraint satisfaction, as well as so-
lution stability and convergence properties. The convergence proof for the polynomial chaos
method applied to optimal control problems is a first result of this kind. A possible extension
to a larger problem class, such as optimal control problems with path constraints, is subject to
further work.

For the fast numerical solution of the optimal control surrogate problem, we think that the
adaptive algorithm deserves further attention. For instance, a more refined order selection
strategy that selects new basis functions in a non-monotonic way seems to be a promising
strategy to capture the nonlinear uncertainty propagation with an even smaller total number
of basis functions.

Further research directions for the chance constraint reformulation method include the simul-
taneous solution of the optimal control surrogate problem and the polynomial subproblem
arising in the computation of the reachable set by enlarging the state and/or parameter space.
This would also allow the treatment of non-compact sets. A second direction is the determina-
tion of near-optimal uncertainty sets in order to reduce the over-approximation of the chance
constraints, for example with a two-stage approach, prior knowledge or decomposition of the
uncertainty space. This seems to be an interesting problem in itself, in particular as the pro-
posed approach to chance constraint approximation is not restricted to the utilized uncertainty
propagation method.

The study of the adsorption chiller under uncertainty, the industrial application problem of this
thesis, requires many further improvements and numerical experiments. In particular numer-
ical improvements to decrease the run time for the solution of the uncertain problem are nec-
essary. Moreover, it would be appropriate to consider the problem with a higher dimensional
uncertainty. The applied resolution of the periodic equality constraints under uncertainty can
possibly be improved. Another task is the consideration of the original multi-objective optimal
control problem without fixing one of the two objective function terms COP or SCP. This can
be achieved, for instance, by computing the whole Pareto frontier under the influence of the
uncertainty.
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A Foundations of probability theory

Probability theory deals with the mathematical concepts that help to describe events that occur
in a non-deterministic way or with uncertainty. We restrict the following presentation of impor-
tant definitions and lemmas of probability theory to what we need throughout this thesis. The
aim of this appendix is to lay out the foundations to understand the concept of transformations
of multidimensional random variables.
For a detailed overview we refer to the textbooks [48, 47].

Probability space

The basic abstract fundament is a probability space comprising the sample space of possible
outcomes or realizations, the set of possible events and the assignment of probabilities to the
events.

Definition A.1 A probability space is a triple (Ω,F , P) consisting of
• the sample space Ω 6= ;
• the σ-algebra F ⊆ 2Ω consisting of measurable sets such that

– Ω ∈ F
– A∈ F ⇒ Ω/A∈ F
– Ai ∈ F , i = 1, . . .⇒∪∞i=1Ai ∈ F

• the probability measure P : F → [0, 1] with P(Ω) = 1
– P is countably additive: if {Ai}∞i=1 ⊆ F is a countable collection of pairwise disjoint

sets, then P(∪∞i=1Ai) =
∑∞

i=1 Ai .

Random variables

A random variable is a measurable function whose values can be interpreted as numerical
outcomes of a random phenomenon. The definition requires an abstract set-up.

Definition A.2 A function X : Ω→ Rd is called F -measurable if

X−1(B) = {ω ∈ Ω | X(ω) ∈ B} ∈ F

for all open sets B ⊆ Rd . It suffices to consider

X−1([−∞, b]) = {ω ∈ Ω | X(ω)¶ b} ∈ F ∀b ∈ Rd

We denote by B(Rd) the Borel σ-algebra on Rd which is defined to be the σ-algebra generated
by the open sets, or equivalently, by the closed sets.

Definition A.3 A real-valued, multivariate random variable X is an F -measurable function from
(Ω,F , P) to (Rd ,B(Rd)). Every random variable induces a measure on (Rd ,B), called probability
law µX : Rd → [0, 1] and defined by

µX (B) ··= P(X−1(B))
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with B ∈ B. The function

FX : Rd → [0, 1], FX (x ) ··= P(ω ∈ Ω | X(ω)¶ x )

is called the cumulative distribution function (CDF) of X .

Definition A.4 If
∫

Ω
|X |dP(ω)<∞, then we define the expectation of X with respect to P as

E [X] =

∫

Ω

X(ω)dP(ω) =

∫

Rd

xdµX (x ).

If f : B → R is Borel-measurable and
∫

Ω
| f (X)|dP(ω) <∞, then the expectation of f (X) is

similarly defined via

E [ f (X)] =

∫

Ω

f (X(ω))dP(ω) =

∫

Rd

f (x)dµX (x ).

If E
�

|X |2
�

<∞, we obtain the variance of X by

Var[X] = E
�

(X − E [X])2
�

= E
�

X2
�

− E [X]2 .

Random variables with finite variance are contained in L2(Ω,F , P), the Hilbert space of (equiv-
alence classes of) real-valued square-integrable random variables on Ω with inner product
〈X , Y 〉L2(S) = E [X Y ] =

∫

Ω
X Y dP.

Definition A.5 A random variable X is continuous if there exist a non-negative, measurable
function ρX : Rd → [0,∞), called the probability density function (PDF) of X , such that

FX (x ) =

∫ x1

−∞
. . .

∫ xd

−∞
dµX (x ) =

∫ x1

−∞
. . .

∫ xd

−∞
ρX (x )dx ∀x = (x1, . . . , xd) ∈ Rd .

In this case, the formulas for the moments from the previous definition can be simplified to

E [X] =

∫

Rd

xρX (x )dx ,

E [ f (X)] =

∫

Rd

f (x )ρX (x )dx , etc.

Transformations of random variables

Any function Y = g (X) of a random variable X is also a random variable. Let

S = {x ∈ Rd | ρX (x )> 0}

be the support of the PDF of X . The function g : Rd → Rk is assumed to be a continuous
function, or any function that preserves measurability. Then, we can infer the CDF of the trans-
formed random variable Y = g (X) completely from that of X by

FY (y) = P(Y ¶ y) = P(g (X)¶ y) = P({x ∈ S | g (x )¶ y}) =
∫

{x∈S | g (x )¶y}
ρX (x )dx .
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It may be difficult to identify the set {x ∈ Rd | g (x ) ¶ y} in particular for non-monotone
functions. If g is a monotone function, the PDF of Y can be obtained by a simple change-of-
variable formula. Let

�

�Jg (·)
�

� and
�

�Jg−1(·)
�

� be the determinants of the Jacobians of g and g−1,
respectively.

Lemma A.1 Let X have a continuous PDF ρX , Y = g (X) where g is a strictly monotone function
with (continuously differentiable) inverse g−1 on S. Then

ρY (y) = ρX (g
−1(y))

�

�Jg (g
−1(y))

�

�=
ρX (g−1(y))
�

�Jg−1(y)
�

�

for y ∈ g (S).

The situation is more complicated if g is non-monotone, in which case we need to consider
partitions of S over which g is monotone.

Lemma A.2 Let {Si}mi=1 be a partition of S such that ρX is continuous and g (x ) is monotone
with (continuously differentiable) inverse g−1

i on Si . Then

ρY (y) =
m
∑

i=1

ρX (g
−1
i (y))

�

�

�Jg−1
i
(y)
�

�

�

−1
I(g−1

i (y ∈ Si))

where I(·) is the indicator function.
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B Perturbation and stability analysis of
mathematical problems

In this appendix, we summarize useful results of perturbation analysis for initial value prob-
lems and nonlinear programming problems. For a detailed overview we refer to the text-
books [143, 142].

B.1 Initial value problems

Existence and uniqueness theory

An initial value problem (IVP) is written in the standard form

ẋ (t) = f (t, x (t)), x (t0) = x0 (B.1)

with initial values (t0, x0). The continuously differentiable solution trajectory x : [t0, tf]→ Rn,
denoted by x (·; t0, x0), satisfies the integral form

x (t) = x0 +

∫ t

t0

f (τ, x (τ))dτ.

Remark B.1 For autonomous problems that do not depend explicitly on t, we can assume t0 = 0
because, by time translation, x (t − t0) is a solution whenever x (t) is a solution.

For uniqueness of the solution, we require the function f to be Lipschitz continuous.

Definition B.1 A function f : D ⊂ R × Rn → Rn is locally Lipschitz continuous in x ∈ D
if ∀(t0, x0) there exist a neighborhood U × V such that for all (t, y), (t, z) ∈ U × V for some
appropriate L <∞

|| f (t, y)− f (t, z)||¶ L ||y − z|| .

The following theorem asserts that a solution exist locally in a neighborhood of the initial
values whenever f is continuous, and is unique whenever f is Lipschitz continuous.

Theorem B.1 (Picard-Lindelöf) Assume f : D ⊂ R×Rn→ Rn is locally Lipschitz continuous.
Then, for each pair of initial values (t0, x0) ∈ D, there exist a unique solution x : U → Rn of
Equation (B.1) in a neighborhood U ··= (t0 − ε, t0 + ε) of t0 for some ε > 0.

The solution can be extended to the whole of R×Rn if f is globally Lipschitz continuous on
R×Rn.

Dependence on initial values and parameters

Statements about the continuously differentiable dependence of the solution on the initial
values can be made under a regularity assumption on f .
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Theorem B.2 Assume f to be m times continuously differentiable in its arguments with m ¾ 1.
Then, there exist a neighborhood of (t0, x0) such that

x (t; t0, x0) is m-times continuously differentiable in t0 and x0.

This theorem can be proved with the help of the sensitivity matrix

G(t; t0, x0) ··=
∂ x
∂ x0
(t; t0, x0)

and the variational differential equation (VDE)

Ġ(t; t0, x0) =
∂

∂ x
f (t, x (t; t0, x0))G(t; t0, x0)

Ġ(t0; t0, x0) = I .

The VDE is equivalent to the integral form

0= G(t; t0, x0) + I −
∫ t

t0

∂

∂ x
f (τ, x (τ; t0, x0))G(τ; t0, x0)dτ=·· F(G, t).

According to the implicit function theorem, this equation can be solved for G if and only if
∂ F
∂ G

is regular which follows from the regularity assumption posed on f .
We suppose now that the IVP depends on parameters p ∈ Rnp , i.e., it reads

ẋ (t) = f (t, x (t), p), x (t0) = x0

with solution x (t; t0, x0, p).
Similar to Theorem B.2, we can formulate the following result for the dependence on the
parameters.

Theorem B.3 Assume f : D ⊂ R×Rn ×Rnp → Rn is m times continuously differentiable in its
arguments with m¾ 1. Then x (t; t0, x0, p) is m-times continuously differentiable in p.

This result can be proved with the help of the following matrix

Gp(t; t0, x0, p) ··=
∂ x
∂ p
(t; t0, x0, p)

and the VDE

Ġp(t; t0, x0, p) =
∂

∂ x
f (t, x (t; t0, x0, p), p)Gp(t; t0, x0, p) +

∂

∂ p
f (t, x (t; t0, x0, p), p)

Ġp(t0; t0, x0, p) = 0.

Perturbation and stability analysis

Theorem B.4 Assume f ∈ C0(D̄) is Lipschitz continuous on D̄ = [a, b]× {||x − x0|| ¶ K} ⊂ D
with Lipschitz constant L <∞. The solutions of the IVP and of the perturbed IVP

ẋ (t) = f (t, x (t)), x (t0) = x0

ẏ(t) = f (t, y(t)) +δ f (t, y(t)), y(t0) = y0 = x0 +δx0
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exist both on [t0, tf] ⊂ [a, b] on D̄. Under the assumption ||δx0|| ¶ ε1 for all (t, y(t)) with
||δ f (t, y)||¶ ε2, the difference δx (t) = y(t)−x (t) between the two IVP solutions can be bounded
by

||δx (t)||¶ (ε1 + ε2(t − t0)) e
L(t−t0).

Proof We have

δx (t) = δx0 +

∫ t

t0

f (τ, y(τ))− f (τ, x (τ)) +δ f (τ, y(τ))dτ.

and therefore, by using the L-Lipschitz-continuity of f ,

||δx (t)||¶ ||δx0||+
∫ t

t0

|| f (τ, y(τ))− f (τ, x (τ))||+ ||δ f (τ, y(τ)||dτ

¶ ε1 + L

∫ t

t0

||δx (τ)||dτ+ ε2(t − t0).

Applying Gronwall’s inequality from Lemma B.5 with w(t) = ||δx (τ)|| and b(t) = ε1+ε2(t− t0)
satisfies the claim. �

Lemma B.5 (Gronwall) Assume w(t), b(t) are scalar function, integrable on [t0, tf], b(t)mono-
tone non-decreasing and |b(t)|¶ K <∞. Assume for 0¶ L <∞

w(t)¶ b(t) +

∫ t

t0

L ·w(τ)dτ, t ∈ [t0, tf].

Then

w(t)¶ b(t)eL(t−t0).

B.2 Nonlinear programming problems

Introduction

A standard nonlinear programming problem has the form

min
x

f (x ) (B.2a)

s.t. g (x ) = 0 (B.2b)

h(x )¶ 0 (B.2c)

We assume that the objective function f and the constraints g and h are twice continuously
differentiable and that a standard regularity assumption on the active constraints holds.

Definition B.1 A feasible point x is called regular if the gradients of the equality constraints g
and of the inequality constraints h active in x are linear independent, i.e.,

rank

�

∇g T (x ) 0
∇hT (x ) diag(hT (x ))

�

= ng + nh
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where ∇g T (x ) and ∇hT (x ) are the Jacobian matrices evaluated at x with dimensions ng × n
and nh × n, respectively.

Regular points are said to satisfy the linear independence constraint qualification (LICQ).
Another constraint qualification, which is generalizable to optimization problems in Banach
spaces, is the following.

Definition B.2 A feasible point x satisfies the Mangasarian–Fromovitz constraint qualification
(MFCQ) if

a) ∇g T (x ) has full column rank

b) ∃d ∈ Rn with

∇g T (x )d = 0, ∇hT
i (x )d < 0 for 1¶ i ¶ nh with hi(x ) = 0.

The necessary optimality conditions are defined using the Lagrange function

L(x ,λ,µ) = f (x ) +λT g (x ) +µT h(x )

with Lagrange multipliers λ and µ. Further, the notion of the tangent space of the equality
constraints and of the active inequality constraints is required.

Definition B.3 The tangent space is defined as

T (x ) = {d | dT∇g (x ) = 0,dT∇hi(x ) = 0 for 1¶ i ¶ nh with hi(x ) = 0}.

Theorem B.1 (Necessary optimality conditions, Karush–Kuhn–Tucker (KKT) point) Assume
x ? is a minimum of (B.2) and regular. Then, there exist Lagrange multipliers λ ∈ Rng and µ ∈ Rnh

satisfying the following system of equations

1. stationarity: ∇L(x ?,λ,µ) =∇ f (x ?) +∇g (x ?)λ+∇h(x ?)µ= 0

2. constraints: g (x ?) = 0, h(x ?)¶ 0

3. complementarity: µT h(x ?) = 0, µ¾ 0

4. second-order condition: dT∇x x L(x ?,λ,µ)d ¾ 0 for d ∈ T (x ?)

If inequality constraints are present, we require strict complementarity for the stability analy-
sis.

Definition B.4 Strict complementarity holds at a feasible point x if, for i = 1, . . . , nh,

µi > 0⇔ hi(x ) = 0.

Theorem B.2 (Strict local minimum, second-order sufficient condition) Assume (x ?,λ,µ)
is a KKT-point, strict complementarity holds and

dT∇x x L(x ?,λ,µ)d > 0 for d ∈ T (x ?)\{0}.

Then x ? is a strict local minimum.
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Perturbation and stability analysis

A perturbed nonlinear programming problem has the form

min
x

f (x ,τ) (B.3a)

s.t. g (x ,τ) = 0 (B.3b)

h(x ,τ)¶ 0 (B.3c)

where τ is the perturbation parameter.
We assume that the functions are twice continuously differentiable in their arguments.
In what follows, we summarize the active inequality constraints, for which hi(x ,τ) = 0, as
h̃(x ,τ).

Theorem B.3 (Strict local minimum for the perturbed problem) Assume that for τ = τ?,
there exist a solution (x?,λ?,µ?), i.e., in a neighborhood U of τ? there exist functions

x : U → Rn, λ : U → Rng , µ : U → Rnh

with x (τ?) = x ?, λ(τ?) = λ?, µ(τ?) = µ? and x (τ) is solution of the perturbed problem with
Lagrange multipliers λ(τ) and µ(τ). Assume that (x?,λ?,µ?) satisfies regularity, strict comple-
mentarity and the second-order sufficient condition.
Then, x (τ) is a strict local minimum and strict complementarity holds for all τ ∈ U.

Proof (scratch) Apply the implicit function theorem to

F(x ,λ,µ,τ) ··=





∇ f (x ,τ) +∇g (x ,τ)λ+∇h(x ,τ)µ
g (x ,τ)
h̃(x ,τ)



= 0.

Note that

∂ F
∂ (x ,λ,µ)

(x ?,λ?,µ?,τ?) =





∇x x L(x ?,λ?,µ?,τ?) ∇g (x ?,τ?) ∇h(x ?,τ?)
∇g T (x ?,τ?) 0 0
∇h̃T (x ?,τ?) 0 0





is regular and therefore the functions x (τ), λ(τ) and µ(τ) exist in a neighborhood U of τ?.
The neighborhood U can be further restricted such that the set of active inequality indices does
not change. It follows immediately that

dT∇x x L(x ,λ,µ)d > 0 for 0 6= d ∈ T (x ?). �
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