Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Thomas M. Klapötke, Kurt Polborn and Jan J. Weigand*

Department Chemie und Biochemie, LudwigMaximilians Universität, Butenandtstraßee 5-13 (Haus D), D-81377 München, Germany

Correspondence e-mail:
jjwch@cup.uni-muenchen.de

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.033$
$w R$ factor $=0.091$
Data-to-parameter ratio $=9.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Dodecahydroxycyclohexane dihydrate

In the commercially available title compound, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{12} \cdot-$ $2 \mathrm{H}_{2} \mathrm{O}$, the dodecahydroxycyclohexane molecule has an inversion center. The crystal packing is characterized by a strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond involving the water molecules, and the dodecahydroxycyclohexane molecules are additionally linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds of the hydroxyl groups, resulting in the formation of a threedimensional network.

Comment

For a long time, the molecular structure of the commercially available 'hexaketocyclohexane octahydrate', the title compound, (I), has been the cause of controversial discussions and it is amazing that until now no X-ray structure determination has been carried out. Interestingly, the triquinoyl ring of this compound appears from the spectroscopic characterization to be dodecahydroxycyclohexane $\mathrm{C}_{6}(\mathrm{OH})_{12}$ (West \& Niu, 1970), but the products of amine condensation reactions, as well as an oxidation reaction with metallic copper, shows that the chemistry of (I) follows the path of hexaketocyclohexane $\mathrm{C}_{6} \mathrm{O}_{6}$ (Catalano et al., 1994; S peier et al., 1997). In order to unearth the truth, the structure of (I) has been determined.

(I)

The molecular structure of (I) is shown in Fig. 1. The cyclohexane ring lies about an inversion center and exhibits an undistorted chair conformation with 12 OH groups, six in axial and six in equatorial positions. All $\mathrm{C}-\mathrm{C}$ bonds and bond angles (Table 1) fall in the expected ranges derived from other cyclohexanols. The $\mathrm{C}-\mathrm{O}$ bonds are about $0.025 \AA$ shorter than the typical value for such bonds in a similar environment (Linden, 1995). There are seven intermolecular and one intramolecular hydrogen bond (Table 2), with $\mathrm{O} \cdots \mathrm{O}$ in the range 2.704 (2)-2.916 (2) A. All the hydroxyl groups except O1 act as hydrogen-bond donors and acceptors, either with other hydroxyl groups or with the water molecules, forming a three-dimensional network (Fig. 2). The hydrogen bond between O 4 and O 2 is intramolecular and a closer inspection of the intermolecular bond patterns reveals that O1, accepting

Received 18 March 2005 Accepted 30 March 2005 Online 23 April 2005

Figure 1
A view of the molecular structure of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) $1-x, 1-y, 1-z$.]

Figure 2
he hydrogen-bonding scheme in (I), showing the asymmetric unit of the organic molecule with its surroundings. Displacement ellipsoids for nonH atoms are drawn at the 50% probability level. [Symmetry codes: (i) x, $y-1, z$; (ii) $2-x,-y, 2-z$; (iii) $x-1, y, z$; (iv) $1-x, 1-y, 1-z$; (v) $1+x, y, z$; (vi) $1-x, 1-y, 2-z$.]
a hydrogen bond from O6, does not serve as an intermolecular hydrogen-bond donor. The water accepts and donates two hydrogen bonds. Its fourfold coordination shell (Fig. 3), formed by atoms O2, O3, O4 and O5, can be approximated by a very distorted tetrahedron.

Figure 3
Distorted tetrahedral coordination shell of the water molecule in (I). [Symmetry codes: (ii) $2-x,-y, 2-z$; (v) $1+x, y, z$; (vi) $1-x, 1-y$, $2-z$.]

Experimental

In a typical reaction, powdered sodium tetrahydroxyquinone (16.2 g , 50 mmol ; Fatiadi \& Sager, 1983) was added in portions over a period of 10 min to a stirred solution of $25 \% \mathrm{HNO}_{3}(38 \mathrm{ml})$. The temperature of the vigorous reaction was controlled at $318 \pm 5 \mathrm{~K}$ using an ice bath. Compound (I) crystallized from the resulting yellow solution as colorless plates suitable for an X-ray structure determination [yield $17.55 \mathrm{~g}, 80 \%$; m.p. $367-369 \mathrm{~K}$ (decomposition)].

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{12} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=312.19$
Triclinic, $P \overline{1}$
$a=6.1829(8) \AA$
$b=7.0696(8) \AA$
$c=7.3023(6) \AA$
$\alpha=70.443(8)^{\circ}$
$\beta=80.153(8)^{\circ}$
$\gamma=63.973(10)^{\circ} \AA^{\circ}$
$V=270.16(5) \AA^{3}$

Data collection

Nonius MACH3 diffractometer $\omega-2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.945, T_{\text {max }}=0.976$
1046 measured reflections 948 independent reflections 893 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.091$
$S=1.10$
948 reflections
98 parameters
H -atom parameters constrained
$Z=1$
$D_{x}=1.919 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 22 reflections
$\theta=9-18^{\circ}$
$\mu=0.20 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Plate, colourless
$0.47 \times 0.43 \times 0.10 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.010 \\
& \theta_{\max }=25.0^{\circ} \\
& h=0 \rightarrow 7 \\
& k=-7 \rightarrow 8 \\
& l=-8 \rightarrow 8 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 120 \text { min } \\
& \text { intensity decay: } 1.9 \%
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0441 P)^{2}\right. \\
& \quad \quad+0.2382 P] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.36 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.43 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.155(19)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 1$	$1.402(2)$	$\mathrm{O} 6-\mathrm{C} 3$	$1.408(2)$
$\mathrm{O} 2-\mathrm{C} 1$	$1.397(2)$	$\mathrm{C} 1-\mathrm{C} 3^{\mathrm{i}}$	$1.553(2)$
$\mathrm{O} 3-\mathrm{C} 2$	$1.393(2)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.562(2)$
$\mathrm{O} 4-\mathrm{C} 2$	$1.416(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.554(2)$
$\mathrm{O} 5-\mathrm{C} 3$	$1.390(2)$		
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	$111.93(13)$	$\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 1$	$108.62(13)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 3^{\mathrm{i}}$	$106.13(13)$	$\mathrm{O} 4-\mathrm{C} 2-\mathrm{C} 1$	$109.99(13)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 3^{\mathrm{i}}$	$109.27(13)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$113.08(13)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	$111.45(13)$	$\mathrm{O} 5-\mathrm{C} 3-\mathrm{O} 6$	$111.14(13)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$105.63(13)$	$\mathrm{O} 5-\mathrm{C} 3-\mathrm{C} 1^{\mathrm{i}}$	$111.13(14)$
$\mathrm{C} 3{ }^{\mathrm{i}}-\mathrm{C} 1-\mathrm{C} 2$	$112.52(13)$	$\mathrm{O} 6-\mathrm{C} 3-\mathrm{C} 1^{\mathrm{i}}$	$106.69(13)$
$\mathrm{O} 3-\mathrm{C} 2-\mathrm{O} 4$	$107.37(13)$	$\mathrm{O} 5-\mathrm{C} 3-\mathrm{C} 2$	$107.33(13)$
$\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 3$	$107.66(13)$	$\mathrm{O} 6-\mathrm{C} 3-\mathrm{C} 2$	$109.66(13)$
$\mathrm{O} 4-\mathrm{C} 2-\mathrm{C} 3$	$109.92(13)$	$\mathrm{C} 1^{\mathrm{i}}-\mathrm{C} 3-\mathrm{C} 2$	$110.93(13)$

Symmetry code: (i) $1-x, 1-y, 1-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\text {vii }}$	0.82	2.00	2.791 (2)	161
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 7^{\text {ii }}$	0.82	2.06	2.761 (2)	143
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 7^{\text {viii }}$	0.82	1.89	2.704 (2)	171
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 2^{\text {i }}$	0.82	2.09	2.768 (2)	140
$\mathrm{O} 5-\mathrm{H} 5 \cdots \mathrm{O}^{\text {v }}$	0.82	2.11	2.897 (2)	161
$\mathrm{O} 6-\mathrm{H} 6 \cdots \mathrm{O}^{\text {vi }}$	0.82	1.97	2.769 (2)	163
$\mathrm{O} 7-\mathrm{H} 7 A \cdots \mathrm{O} 4^{\text {vi }}$	0.96	2.05	2.877 (2)	143
O7-H7B \cdots O5	0.95	1.96	2.916 (2)	175

Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $2-x,-y, 2-z$; (v) $1+x, y, z$; (vi) $1-x, 1-y, 2-z$; (vii) $x, y-1, z$; (viii) $x-1, y, z$.

The water H atoms were located in difference density maps, while the H atoms of the hydroxyl groups were positioned geometrically. Restraints were applied to the bond lengths and to the distance between the H atoms of the hydroxyl groups to stabilize the structure
during initial refinement. All non-H atoms were refined with anisotropic displacement parameters, employing a rigid-bond restaint to U_{ij} of pairs of bonded atoms (Rollett, 1970). The H atoms were allowed to ride on the coordinates of their parent atoms during the final refinement, with hydroxyl $\mathrm{O}-\mathrm{H}=0.82 \AA$ and water $\mathrm{O}-\mathrm{H}$ fixed at the values obtained in free refinement. The $U_{\text {iso }}(\mathrm{H})$ values were taken as $1.2 U_{\text {eq }}(\mathrm{O})$. The hydroxyl groups were allowed to rotate around the $\mathrm{C}-\mathrm{O}$ bonds.

Data collection: CAD-4 Software (Nonius, 1994); cell refinement: CAD-4 Software; data reduction: OpenMoleN (Nonius, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXL97.

Financial support of this work by the University of Munich (LMU) and the Fonds der Chemischen Industrie is gratefully acknowledged (JJW is grateful for an FCI scholarship, DO 171/46).

References

Brandenburg, K. (2000). DIAMOND. Version 2.1.e. Crystal Impact GbR, Bonn, Germany.
Catalano, V. J., Larson, W. E., Olmstead, M. M. \& Gray, H. B. (1994). Inorg. Chem. 33, 4502-4509.
Fatiadi, A. J. \& Sager, W. F. (1983). Organic Synthesis, Collect. Vol. V, edited by B. C. McKusick and J. K. Williams, pp. 1011-1012. New York: Wiley.

Linden, A. (1995). Acta Cryst. C51, 1694-1696.
Nonius (1994). CAD-4 Software. Nonius BV, Delft, The Netherlands.
Nonius (1997). OpenMoleN. Nonius BV, Delft, The Netherlands.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Rollett, J. S. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall and C. P. Huber, pp. 167-181. Copenhagen: Munksgaard.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
West, R. \& Niu, J. (1970). The Chemistry of the Carbonyl Group, edited by J. Zabicky, pp. 241-249. New York: Wiley Interscience.

supporting information

Acta Cryst. (2005). E61, o1393-o1395 [https://doi.org/10.1107/S1600536805010007]

Dodecahydroxycyclohexane dihydrate

Thomas M. Klapötke, Kurt Polborn and Jan J. Weigand

Dodecahydroxycyclohexane dihydrate

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{12} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=312.19$
Triclinic, $P \overline{1}$
Hall symbol: -P1
$a=6.1829$ (8) \AA
$b=7.0696$ (8) \AA
$c=7.3023$ (6) \AA
$\alpha=70.443(8)^{\circ}$
$\beta=80.153$ (8$)^{\circ}$
$\gamma=63.973(10)^{\circ}$
$V=270.16(5) \AA^{3}$

Data collection

Nonius MACH3
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$\omega-2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min }=0.945, T_{\max }=0.976$
1046 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.091$
$S=1.10$
948 reflections
98 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
$Z=1$
$F(000)=164$
$D_{\mathrm{x}}=1.919 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 22 reflections
$\theta=9-18^{\circ}$
$\mu=0.20 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Plate, colourless
$0.47 \times 0.43 \times 0.10 \mathrm{~mm}$

948 independent reflections
893 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.010$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=3.0^{\circ}$
$h=0 \rightarrow 7$
$k=-7 \rightarrow 8$
$l=-8 \rightarrow 8$
3 standard reflections every 7200 min intensity decay: 1.9%

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0441 P)^{2}+0.2382 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.36 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.43$ e \AA^{-3}
Extinction correction: SHELXL97, $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.155 (19)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
O1	$0.2756(2)$	$0.2131(2)$	$0.61259(18)$	$0.0196(3)$
H1	0.3392	0.0804	0.6258	0.023^{*}
O2	$0.6829(2)$	$0.12722(19)$	$0.61615(17)$	$0.0182(3)$
H2	0.7012	0.0875	0.7337	0.022^{*}
O3	$0.4065(2)$	$0.3354(2)$	$0.89185(17)$	$0.0192(3)$
H3	0.3008	0.2894	0.9268	0.023^{*}
O4	$0.1347(2)$	$0.6042(2)$	$0.67023(18)$	$0.0179(3)$
H4	0.1205	0.7020	0.5673	0.021^{*}
O5	$0.7677(2)$	$0.4402(2)$	$0.71644(18)$	$0.0193(3)$
H5	0.8615	0.4998	0.6763	0.023^{*}
O6	$0.4379(2)$	$0.7556(2)$	$0.74223(17)$	$0.0202(4)$
H6	0.4816	0.7043	0.8550	0.024^{*}
O7	$1.0816(3)$	$0.1603(2)$	$1.04555(19)$	$0.0289(4)$
H7A	0.9602	0.2124	1.1401	0.035^{*}
H7B	0.9742	0.2469	0.9401	0.035^{*}
C1	$0.4533(3)$	$0.2953(3)$	$0.5717(2)$	$0.0143(4)$
C2	$0.3803(3)$	$0.4570(3)$	$0.6963(2)$	$0.0142(4)$
C3	$0.5388(3)$	$0.5886(3)$	$0.6498(2)$	$0.0145(4)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0200(7)$	$0.0178(6)$	$0.0249(7)$	$-0.0116(5)$	$0.0006(5)$	$-0.0064(5)$
O2	$0.0183(7)$	$0.0165(6)$	$0.0160(6)$	$-0.0038(5)$	$-0.0035(5)$	$-0.0033(5)$
O3	$0.0237(7)$	$0.0247(7)$	$0.0120(6)$	$-0.0144(6)$	$-0.0009(5)$	$-0.0024(5)$
O4	$0.0143(6)$	$0.0195(7)$	$0.0180(6)$	$-0.0059(5)$	$-0.0004(5)$	$-0.0046(5)$
O5	$0.0158(6)$	$0.0220(7)$	$0.0206(7)$	$-0.0096(5)$	$-0.0056(5)$	$-0.0021(5)$
O6	$0.0296(8)$	$0.0189(7)$	$0.0153(6)$	$-0.0101(6)$	$-0.0028(5)$	$-0.0078(5)$
O7	$0.0272(8)$	$0.0337(8)$	$0.0207(7)$	$-0.0107(6)$	$0.0012(6)$	$-0.0051(6)$
C1	$0.0137(8)$	$0.0147(8)$	$0.0156(8)$	$-0.0068(7)$	$-0.0019(6)$	$-0.0038(7)$
C2	$0.0140(8)$	$0.0161(8)$	$0.0120(8)$	$-0.0061(7)$	$-0.0012(6)$	$-0.0031(7)$
C3	$0.0161(9)$	$0.0144(8)$	$0.0148(9)$	$-0.0065(7)$	$-0.0024(6)$	$-0.0053(7)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{O} 1-\mathrm{C} 1$	1.402 (2)	O5-H5	0.8200
$\mathrm{O} 1-\mathrm{H} 1$	0.8200	O6-C3	1.408 (2)
$\mathrm{O} 2-\mathrm{C} 1$	1.397 (2)	O6-H6	0.8200
$\mathrm{O} 2-\mathrm{H} 2$	0.8200	O7-H7A	0.9621
O3-C2	1.393 (2)	O7-H7B	0.9548
O3-H3	0.8200	$\mathrm{C} 1-\mathrm{C} 3{ }^{\text {i }}$	1.553 (2)
O4-C2	1.416 (2)	$\mathrm{C} 1-\mathrm{C} 2$	1.562 (2)
O4-H4	0.8200	C2-C3	1.554 (2)
O5-C3	1.390 (2)	$\mathrm{C} 3-\mathrm{Cl}{ }^{\mathrm{i}}$	1.553 (2)
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{H} 1$	109.5	$\mathrm{O} 3-\mathrm{C} 2-\mathrm{O} 4$	107.37 (13)
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{H} 2$	109.5	$\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 3$	107.66 (13)
$\mathrm{C} 2-\mathrm{O} 3-\mathrm{H} 3$	109.5	O4-C2-C3	109.92 (13)
C2-O4-H4	109.5	O3-C2-C1	108.62 (13)
$\mathrm{C} 3-\mathrm{O} 5-\mathrm{H} 5$	109.5	O4-C2-C1	109.99 (13)
C3-O6-H6	109.5	C3-C2-C1	113.08 (13)
H7A-O7-H7B	93.1	O5-C3-O6	111.14 (13)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	111.93 (13)	$\mathrm{O} 5-\mathrm{C} 3-\mathrm{Cl}^{\mathrm{i}}$	111.13 (14)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C}^{\mathrm{i}}$	106.13 (13)	$\mathrm{O} 6-\mathrm{C} 3-\mathrm{C} 1^{\text {i }}$	106.69 (13)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 3{ }^{\text {i }}$	109.27 (13)	O5-C3-C2	107.33 (13)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	111.45 (13)	O6-C3-C2	109.66 (13)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	105.63 (13)	$\mathrm{C} 1{ }^{\text {i }}-\mathrm{C} 3-\mathrm{C} 2$	110.93 (13)
$\mathrm{C} 3{ }^{\text {i }} \mathrm{C} 1-\mathrm{C} 2$	112.52 (13)		
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 3$	-53.70 (17)	O3-C2-C3-O5	50.92 (17)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 3$	68.08 (16)	O4-C2-C3-O5	167.58 (12)
$\mathrm{C} 3-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 3$	-172.78 (13)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 5$	-69.07 (17)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 4$	-170.94 (12)	O3-C2-C3-O6	-69.91 (16)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 4$	-49.17 (17)	O4-C2-C3-O6	46.74 (17)
$\mathrm{C} 3-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 4$	69.97 (17)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 6$	170.09 (13)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	65.75 (18)	$\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 3-\mathrm{Cl}^{1}$	172.49 (13)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-172.48 (13)	$\mathrm{O} 4-\mathrm{C} 2-\mathrm{C} 3-\mathrm{Cl}^{\text {i }}$	-70.85 (17)
$\mathrm{C} 3-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-53.3 (2)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 1^{\text {i }}$	52.50 (19)

Symmetry code: (i) $-x+1,-y+1,-z+1$.

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D-\mathrm{H} \cdots A$	D - H	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	D-H \cdots A
$\mathrm{O} 1-\mathrm{H} 1 \cdots{ }^{\text {O }}{ }^{\text {ii }}$	0.82	2.00	2.791 (2)	161
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 3$	0.8	2.36	2.782 (2)	113
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 7^{\text {iii }}$	0.82	2.06	2.761 (2)	143
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 7^{\text {iv }}$	0.82	1.89	2.704 (2)	171
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.82	2.09	2.768 (2)	140
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 5^{\text {i }}$	0.82	2.46	2.877 (2)	112
O5-H5 $\cdots \mathrm{O}^{v}$	0.82	2.56	2.931 (2)	109
$\mathrm{O} 5-\mathrm{H} 5 \cdots{ }^{\text {v }}$	0.82	2.11	2.897 (2)	161

supporting information

$\mathrm{O} 5-\mathrm{H} 5 \cdots \mathrm{O} 1^{\text {i }}$	0.82	2.35	2.748 (2)	110
O6-H6 ${ }^{\circ} \mathrm{O}^{\text {vi }}$	0.82	1.97	2.769 (2)	163
$\mathrm{O} 7-\mathrm{H} 74 \cdots \mathrm{O} 4{ }^{\text {vi }}$	0.96	2.05	2.877 (2)	143
$\mathrm{O} 7-\mathrm{H} 7 A \cdots \mathrm{O} 6^{\text {vi }}$	0.96	2.40	3.211 (2)	142
O7- $\mathrm{H} 7 \mathrm{~B} \cdots \mathrm{O} 5$	0.95	1.96	2.916 (2)	175

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $x, y-1, z$; (iii) $-x+2,-y,-z+2$; (iv) $x-1, y, z$; (v) $x+1, y, z$; (vi) $-x+1,-y+1,-z+2$.

