
Electronic Notes in Theoretical Computer Science 66 No. 5 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume66.html 21 pages

Two formalisms of extended possibilistic logic
programming with context-dependent fuzzy

unification: a comparative description

Teresa Alsinet 1

Computer Science Department
Universitat de Lleida (UdL)

25001 Lleida, Spain
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Possibilistic logic is a logic of uncertainty where a certainty degree between 0 and 1,
interpreted as a lower bound of a necessity measure, is attached to each classical for-
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first order possibilistic logic so as to allow for fuzzy unification. The first formal-
ism, called PLFC, is a general extension that allows clauses with fuzzy constants
and fuzzily restricted quantifiers. The second formalism is an implication-based
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fuzzy constants. In this paper we compare these approaches, mainly their Horn-
clause fragments, discussing their basic differences, specially in what regards their
unification and automated deduction mechanisms.
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1 Introduction

Fuzzy unification has attracted attention in the recent past and a number of
approaches have been proposed in the literature. Some of them allow degrees
of partial matching between classical logical objects (propositions, constants,
predicates) while other ones can support both the handling of imprecise or
fuzzy information as well as a graded pattern macthing mechanism.

The introduction of fuzzy constants in logic programming languages was
suggested in the early eighties by Cayrol et al. [10] and Bel et al. [8] with the
aim of including fuzzy values in a pattern matching procedure. Subsequently,
Umano [24] defined a fuzzy pattern matching process using the extension prin-
ciple for one and two variate functions, and Baldwin et al. [7] implemented
a semantic unification procedure based on the theory of mass assignments
which allows a unified framework for the treatment of fuzzy and probabilistic
data. Godo and Vila [15] proposed a possibilistic-based logic to deal with
fuzzy temporal constraints based on many-valued semantics and a necessity-
like measure to allow a pattern matching mechanism between fuzzy temporal
constraints. Virtanen [25] defined a fuzzy unification algorithm based on fuzzy
equality relations and Rios-Filho and Sandri [13] addressed the problem of uni-
fication involving fuzzy constants in which a separation between general and
specific patterns can be drawn. Arcelli et al. [6] proposed three different
kinds of unification in the fuzzy context: the first one is based on similarity
relations, the second one identifies similar objects through an equivalence re-
lation and the last one uses “semantic constraints” for defining a more flexible
unification. More recently, Gerla and colleagues [14,16] formalized a method-
ology for transforming an interpreter for SLD Resolution into an interpreter
that computes on abstract values which express similarity properties on the
set of predicate and function symbols of the language. Also a similarity-
based approach to unification, in the framework of generalized many-valued
logic programming (called multi-adjoint logic programming) can be found in
[28,20].

Concerning general approaches to deal both with imprecision and fuzzy
unification, Dubois, Prade and Sandri [12] proposed an extension of possibil-
istic logic dealing with fuzzy constants and fuzzily restricted quantifiers (called
PLFC), and [5] provided PLFC logic with a formal semantics and a sound
resolution-style calculus by refutation. Possibility theory is a framework in
which imprecision, fuzziness and uncertainty can be dealt with in a uniform
way. Possibilistic logic (PL) [11] is a logic of uncertainty where to each clas-
sical proposition or closed first order formula is attached a certainty degree
between 0 and 1, which is interpreted as a lower bound of a necessity measure.
For instance, the uncertain statement “it is almost sure that Konstanze likes
sun-bathing ” can be represented by a certainty-weighted formula of the form

(likes Konstanze(sun − bathing), 0.9) .

To enhance its knowledge representation power, Dubois et al. [12] defined
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a syntactic extension to first order possibilistic logic, called PLFC, capable
of dealing with fuzzy constants and fuzzily restricted quantifiers inside the
language.

Fuzzy constants represent disjunctive knowledge and can be seen as (flex-
ible) restrictions on an existential quantifier. For instance, the fuzzy statement
“Peter is about 35 years old” can be represented by a formula of the form

age Peter(about 35) ,

where age Peter is a classical predicate and about 35 is a fuzzy constant
defined over the domain [0, 120] (years). In the case about 35 denotes a crisp
interval of ages, say [34, 36], the formula age Peter(about 35) is to be inter-
preted as

“∃ x ∈ [34, 36] such that age Peter(x)” .

In case about 35 denotes a fuzzy interval the semantics of the formula is more
complex and will be specified later on.

On the other hand, the introduction of variable weights in PL (again see
e.g. [11]) is a suitable technique for modeling statements of the form

“the more x is A (or x belongs to A), the more certain is p(x)”,

where A is a fuzzy set with membership function µA(x). This is formalized in
PLFC as

“for all x, p(x) is certain with a necessity of at least µA(x)”,

and is represented as (p(x), A(x)). When A is imprecise but not fuzzy, the
interpretation of such a formula is just

“for all x ∈ A, p(x)”.
So variable weights in PLFC act equivalently as (flexible if they are fuzzy)
restrictions on a universal quantifier or as a kind of conjunctive constants.

Alsinet et al. [5] defined for PLFC a formal semantics and a sound
resolution-style calculus by refutation, where the resolution rule includes an
implicit fuzzy unification mechanism between fuzzy constants. In [18,19], a
Horn clause formalism for this logic, called PLFC-H, was studied and a refut-
ation based theorem prover for it was developed using system KOMET [9].
This was made possible by first translating PLFC-H to the generalized annot-
ated logic formalism introduced by [23,17], which underlies system KOMET
knowledge representation and inference mechanism.

Alternatively to PLFC, Alsinet and Godo defined in [1] an extension of
possibilistic logic, called PGL, defined on top of Gödel infinitely-valued logic,
and in [2] the Horn-rule sublogic of PGL was extended with fuzzy constants
(but not with variable weights) and with a modus ponens-style calculus based
on an explicit fuzzy unification mechanism between fuzzy constants that was
shown to be complete for a restricted class of Horn-rules. This logic is called
PGL+.
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In this paper we review and compare both extensions of possibilistic logic
and focus on the main differences between them, specially from the point of
view of their semantics and their unification and automated deduction mech-
anisms. We shall emphasize that the semantics adopted in both languages
(disjunction-based in PLFC, implication-based on PGL) is crucial for adopt-
ing a particular sound unification mechanism. In both formalisms, unification
between two object (fuzzy) constants is a matter of degree and it is com-
puted in terms of a necessity measure (slightly different from one another)
between fuzzy sets. But, in contrast to classical logic and other frameworks,
this matching process is in most of the cases directional and thus non symmet-
ric, actually only when precise constants are involved it reduces to classical
unification.

In the next section we review main concepts of possibilistic logic. In Section
3 we describe formal aspects of PLFC while in Section 4 we focus on PLFC-H.
The possibilistic logic programming formalism PGL+ is described in Section
5. Finally, in Section 6 we conclude with a discussion on the main differences
between PLFC (and PLFC-H) and PGL+.

2 Background on necessity-valued possibilistic logic

In necessity-valued possibilistic logic each formula is represented by a pair
(ϕ, α), ϕ being a classical, first order logic formula and α ∈ (0, 1] being a
lower bound on the belief on ϕ in terms of necessity measures. A formula
(ϕ, α) is thus interpreted as a constraint N(ϕ) ≥ α, where N is a necessity
measure on propositions, a mapping from the set of logical formulae to a
totally ordered bounded scale, usually (but not necessarily) given by [0, 1],
characterized by the axioms

(i) N(�) = 1,

(ii) N(⊥) = 0,

(iii) N(ϕ ∧ ψ) = min(N(ϕ), N(ψ)),

(iv) N(ϕ) = N(ψ) when ϕ and ψ are classically equivalent,

where � and ⊥ denote respectively tautology and contradiction.

The necessity-valued possibilistic logic (simply possibilistic logic from now
on) is axiomatized (Hilbert-style) by the axioms of classical first-order logic
weighted by 1, together with the following graded versions of the usual modus
ponens and generalization inference rules,

(ϕ, α), (ϕ→ ψ, β)
(ψ,min(α, β))

[MP ],
(ϕ, α)

((∀x)ϕ, α) [G]
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together with a weight weakening rule

(ϕ, α)

(ϕ, β)
[W ]

for β ≤ α. We shall denote by PL the notion of proof in possibilistic logic
derived from this formal system of axioms and rules.

Deduction by resolution has been easily adapted to possibilistic logic. In-
deed, let K be a knowledge base formed by possibilistic clauses, i.e. possib-
ilistic formulas of the type (ψ, α), where ψ is a (first-order or propositional)
clause in the usual sense. Namely, we write K r

PL (ϕ, α) to denote that we
obtain a proof of (⊥, α) by successively applying the resolution rule

(¬p ∨ q, α), (p ∨ r, β)
(q ∨ r,min(α, β))

[Res]

in K ∪ {(¬δi, 1) | i = 1, n}, where ∧
i=1,n δi is the clausal form of ϕ. Then it

holds that K PL (ϕ, α) iff K r
PL (ϕ, α). Moreover, using the r

PL procedure,
other rules can be derived, for instance the fusion rule

(p, α), (p, β)

(p,max(α, β))

and when the unification mechanism employed in the resolution rule is the
same as in classical logic, the following particularization rule is also derivable:

((∀x)p(x), α)
(p(s), α)

.

Now, let us recall here the usual (monotonic) semantics for possibilistic
logic. For the sake of an easier understanding we consider the propositional
case, the first order case being an easy extension. We shall make use of the
following notation. Let L be a propositional language and let Ω be the set of
classical interpretations for L, that is, the set of evaluations w of the atoms of
the language into the boolean truth value set {0, 1}. Each evaluation of atoms
w extends to any clause in the usual way, and thus for any ϕ, w(ϕ) ∈ {0, 1}.
For any clause ϕ, we will write w |= ϕ iff w(ϕ) = 1. We shall also write [ϕ] to
denote the set of models of ϕ, i.e. [ϕ] = {w ∈ Ω | w |= ϕ}.

Belief states are modeled by normalized possibility distributions π : Ω →
[0, 1] on the set of possible interpretations, where π(w) < π(w′) means that
w′ is a more plausible interpretation than w. A possibility distribution π is
normalized when there is at least one w ∈ Ω such that π(w) = 1. In other
words, belief states modeled by normalized distributions are consistent states,
in the sense that at least one interpretation (or state or possible world) has to
be fully plausible. The satisfaction relation between possibilistic models (i.e.
possibility distributions) and possibilistic formulas is defined as follows:
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π |= (ϕ, α) iff N([ϕ] | π) ≥ α,
where N(. | π) is the necessity measure induced by π on the power set of Ω,
defined as

N([ϕ] | π) = inf
w∈Ω

max(1− π(w), w(ϕ)) = inf
w �|=ϕ

1− π(w).(1)

If π |= (ϕ, α) we say that π is a model of (ϕ, α). As usual, if Γ denotes a set
of possibilistic clauses, we say that π is a model of Γ iff π is a model of each
formula in Γ. The possibilistic entailment, denoted |=PL, is then defined as
follows.

Γ |=PL (ϕ, α) iff π |= (ϕ, α),

for each π being model of Γ. Dubois, Lang and Prade have shown [11] that this
semantics makes possibilistic logic sound and complete, and moreover, using
refutation, the resolution-based proof system is also sound and complete wrt
to the above semantics, that is, the following equivalences hold:

Γ |=PL (ϕ, α) iff Γ PL (ϕ, α) iff Γ r
PL (ϕ, α).

3 PLFC

As already mentioned, PLFC is an extension of possibilistic logic that provides
a powerful framework for reasoning under possibilistic uncertainty and repres-
enting disjunctive and conjunctive vague knowledge. Following [5], a general
PLFC clause is a pair of the form

(ϕ(x̄), f(ȳ)),

where x̄ and ȳ denote sets of free and implicitly universally quantified variables,
each one having its sort, such that ȳ ⊇ x̄; ϕ(x̄), called base formula, is a
disjunction of (positive and negative) literals with typed classical predicates
and possibly with fuzzy constants, each one having its sort; and f(ȳ) is a
well-formed valuation function, defined for a superset of the variables in the
left-hand side, which expresses a lower bound of the certainty of ϕ(x̄) in terms
of necessity measures. Basically, valuation functions f(ȳ) are either constant
values in the real interval [0, 1], or membership functions of fuzzy sets (fuzzy
constants), or max-min combinations of them, or necessity measures on them.
An example of PLFC clause may be

(p(A, x) ∨ q(y),min(α,B(x), C(y)))

where A, B and C are fuzzy constants.

Next, let us briefly recall PLFC semantics. A many-valued interpretation
w = (U, i,m) maps:

(i) each sort σ into a non-empty domain Uσ of U ;
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(ii) a predicate p of type (σ1, . . . , σn) into a crisp relation i(p) ⊆ Uσ1 × . . .×
Uσn ; and

(iii) an object constant A (precise or fuzzy constant) of sort σ into a normal-
ized fuzzy set m(A) with membership function µm(A) : Uσ → [0, 1]. We
denote by µm(A) the membership function of m(A). When A is a precise
constant c, then µm(A) will represent the singleton m(c).

An evaluation of variables is a mapping e associating to each variable x of
sort σ an element e(x) ∈ Uσ. The truth value of a base formula under an
interpretation w = (U, i,m) and an evaluation of variables e is defined by
cases:

(i) we(p(x, . . . , A)) = sup(u,...,v)∈i(p) min(µe(x)(u), . . . , µm(A)(v)).

(ii) we(¬p(x, . . . , A)) = sup(u,...,v)�∈i(p) min(µe(x)(u), . . . , µm(A)(v)).

(iii) we(L1 ∨ · · · ∨Lr) = max(we(L1), . . . , we(Lr)), where L1, . . . , Lr are (pos-
itive or negative) literals.

Finally, the truth value of a base formula ϕ under an interpretation w is
defined as w(ϕ) = inf{we(ϕ) | e is an evaluation of variables}. Notice that
the negation in this semantics is not truth-functional. Moreover, w(ϕ) may
take any intermediate value between 0 and 1 as soon as ϕ contains some
fuzzy constant and w(ϕ) depends not only on the crisp relations assigned to
predicate symbols, but on the fuzzy sets assigned to fuzzy constants. Then,
in order to define the possibilistic semantics, we need to fix a context and
to consider some extension for fuzzy sets (of interpretations) of the standard
notion of necessity measure.

Basically a context is the set of interpretations sharing a common domain U
and an interpretation of object constantsm. So, given U and m, its associated
context ΩU,m is just the set {w interpretation | w = (U, i,m)}. Now, for each
possibility distribution on the context π : ΩU,m → [0, 1], and each PLFC
formula (ϕ, α), we define

π |= (ϕ, α) iff N1([ϕ] | π) ≥ α,
where N1(· | π) is the necessity measure induced by π on fuzzy sets of inter-
pretations defined by

N1([ϕ] | π) = inf
w∈ΩU,m

max(1− π(w), w(ϕ)),(2)

where we take µ[ϕ](w) = w(ϕ). Here, we have considered a PLFC formula with
a constant weight α. If the formula has a variable weight, e.g. (ϕ(x), A(x)),
then the above definition, always in the same context, extends to

π |= (ϕ(x), A(x)) iff π |= (ϕ(c), µm(A)(m(c)))

for all precise object constants c.

An interesting and remarkable consequence of possibilistic satisfiability of
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PLFC clauses is the following one:

π |= (p(A) ∨ q(B), α) iff π |= (p([A]α) ∨ q([B]α), α),

where p and q can be positive or negative literals, and [A]α and [B]α denote
the imprecise constants corresponding to the α-cuts of the fuzzy constants
A and B, respectively. This property has important consequences since it
means that in PLFC with (only) fuzzy constants we can in a way forget about
fuzzy constants as such and focus only on imprecise but crisp constants. For
instance, in PLFC, the fuzzy statement “it is almost sure that Peter is about 35
years old” can be represented by a certainty-weighted formula of the form

(age Peter(about 35), 0.9) ,

where age Peter is a classical predicate of type (years old) and about 35 is
a fuzzy constant defined over the domain years old [0, 120] (years). In the
case about 35 denotes a crisp interval of ages, say [34, 36], the formula is to be
interpreted as

“∃ x ∈ [34, 36] s.t. age Peter(x)” is certain with a necessity of at least .9.

In the case about 35 denotes a fuzzy interval with a membership function
µabout 35 : [0, 120] → [0, 1], the formula is to be interpreted as

“∃ x ∈ [µabout 35].9 s.t. age Peter(x)” is certain with a necessity of at least .9,

where [µabout 35]0.9 denotes the crisp interval of ages associated with the α-cut
of the fuzzy set µabout 35 at the level of 0.9.

Notation convention: Since we need to fix a context ΩU,m in order to perform
deduction, we can identify a fuzzy constant A with its interpreted fuzzy set m(A)
and also with its membership function µm(A). Hence, for the sake of a simpler
notation we shall consider fuzzy constants simply as fuzzy sets. Further, if A and
B are fuzzy constants, A∩B and A∪B will refer to their fuzzy set min-intersection
and max-union respectively.

One of the main advantages of the present semantics for PLFC is that
it provides a sound refutation by resolution proof mechanism. Given a con-
text ΩU,m, the PLFC resolution rule, which implicitly manages the unification
mechanism between fuzzy constants, can be generalized as follows:

(¬p(x) ∨ ϕ(x),min(α,A(x))), (p(B) ∨ ψ, β)
(ϕ(B) ∨ ψ,min(α, β,N1(A | [B]β))) [GR],

where N1(A | [B]β) = infu∈[B]β A(u). The resolution rule produces conclusions
which are all the stronger as µm(A) is large and µm(B) is small. Therefore, in
order to get higher necessity degrees during the refutation proof procedure, it
is interesting to have PLFC clauses with larger variable weights. Then, the
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following generalized fusion rule must be applied after each resolution step:

(ϕ(x̄), f1(x̄)), (ϕ(ȳ), f2(ȳ))

(ϕ(x̄),max(f1(x̄), f2(x̄)))
[FU].

In order to define a refutation proof procedure for PLFC, we cannot borrow
the unification concept used in classical first-order logic programming systems.
Let us consider one illustrative example. For instance, from

(¬p(A) ∨ ψ, 1) and (p(A), 1),

which, if A is not fuzzy, are interpreted respectively as

“[∃x ∈ A, ¬p(x)] ∨ ψ” and “∃x ∈ A, p(x)”,
we can infer ψ iff A is a precise constant. Then, resolution for ¬p(A) and p(A)
must fail unless A is a precise constant, even though, obviously, p(A)θ = p(A)θ
for each (classical) substitution of variables θ. However, as variable weights
are interpreted as conjunctive (fuzzy) knowledge, an implicit semantical uni-
fication between fuzzy events is performed between variable weights and fuzzy
constants. This points out that before applying the FU inference rule to a
knowledge base, it is interesting to transform each precise object constant
(appearing in the logic component of clauses) into variable weights by means
of the following transformation rule:

(ϕ(x̄, c), f(ȳ))

(ϕ(x̄, t),min(f(ȳ), c(t)))
[TR],

where t �∈ ȳ and c is a precise constant.

Finally, the refutation by resolution proof method is extended to PLFC as
follows. Let K = {(ϕi, fi) | i = 1, . . . , n} be a set of PLFC clauses and let
(ϕ, f) be a PLFC query of the form (p(A), α) or (p(x),min(α,A(x))). Then
one perfoms the following steps:

(i) Negate the query in the following way:
• ¬(p(A), α) is (¬p(x), A(x)).
• ¬(p(x),min(α,A(x))) is (¬p(A>0), 1), where A>0 denotes the support
of A.

(ii) K ′ = K ∪ ¬(ϕ, f).
(iii) Search for a deduction (⊥, α) from K ′, in the context determined by U

and m, by repeatedly applying the GR, FU and TR inference rules.

(iv) If so, then K |= (ϕ, f).

4 PLFC with Horn clauses

As we have seen, PLFC provides indeed with a powerful framework represent-
ing disjunctive and conjunctive fuzzy information, but has some computational
limitations, at least as when considered in its whole generality. Namely, on the
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one hand, the current proof method for PLFC (refutation through a general-
ized resolution rule, a fusion rule and a transformation rule) is not complete;
on the other hand, during the proof process, the merging rule must be applied
after every resolution step, and thus the search space consists of all possible
orderings of the literals in the knowledge base.

Due to these and other computational limitations, it was considered in
[18] to restrict the language to Horn clauses, called PLFC-H, and in [19] an
automated theorem prover for PLFC-H was proposed. A possibilistic clause
(ϕ, v) is a possibilistic Horn clause if ϕ is a Horn clause, i.e. ϕ has at most one
positive literal. A possibilistic Horn clause (p0 ∨¬p1 ∨ . . .∨¬pn, v) is denoted
by (p0 ← p1 ∧ ...∧ pn, v), where p0 and p1 ∧ ...∧ pn are respectively called the
head and the body of the clause. When the head is inexistant, e.g. (← p1, 1)
the clause is called a query, and when the body is inexistant, e.g. (p0 ←, 1),
the clause is called a fact.

In [19], the working framework is restricted to knowledge bases whose non-
query possibilistic Horn clauses obey the following constraints:

• The body of a clause may only contain variables as terms.

• The head of the clause may have terms involving variables, fuzzy functions
and imprecise (but not vague) constants.

The restriction on constants does not really affect completely grounded facts
since due to PLFC semantics (see [5]) a fact (p0(A1, ..., An) ←, α), where
the Ai’s are fuzzy constants is equivalent to (p0([A1]α, ..., [An]α) ←, α), which
obeys the restrictions. For example, let A and B be imprecise but not vague
constants. We write:

• “it is certain to a degree 0.7 that ∀x ∈ A, p(x) ∨ ¬q(x)” as
(p(x) ← q(x), min(A(x), 0.7)),

• “it is certain to a degree 0.7 that ∃x ∈ B, p(x)” as (p(B) ←, 0.7),
• “it is certain ∀x ∈ A, ∀y ∈ B, p(x⊕ y) ∨ ¬q(x) ∨ ¬r(y)” as
(p(x⊕ y) ← q(x) ∧ r(y), min(A(x), B(y))),

where ⊕ denotes the “fuzzy sum”, i.e. addition extended to fuzzy numbers.
These restrictions are valid for all Horn clauses apart from the completely
negative ones (queries). For example, during the reasoning process we may
have a clause such as (← p(B), 0.7) whose interpretation is “it is certain to a
degree 0.7 that ∃x ∈ B,¬p(x).

In [18], the following restricted resolution rule was proposed for PLFC-H:

Rπ
∗ :

(p0 ← p1 ∧ ... ∧ pn, vp) ; (← q1 ∧ ... ∧ qm, vq)

[(← q1 ∧ ... ∧ qi−1 ∧ p1 ∧ ... ∧ pn ∧ qi+1 ∧ ... ∧ qm,min(vq, vp))]θ

where θ is the mgu that unifies p0 and qi
5 . This rule is called “restricted”

because it only allows for the resolution of a non-negative clause (rule or fact)

5 The most general unifier (mgu) in PLFC is constructed from a mgu of classical logic, with
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with a negative clause (the query). Therefore, a rule (p0 ← p1∧ ...∧pn, vp) and
a fact (qf ←, vf) is not resolved together in that framework, even if there exists
a mgu θ that unifies qf and a pi, i > 0, contrary to what would happen with
the usual resolution rule. This does not imply a lack of generality, because
if p0 is ever resolved with the j-th query, then pi will be part of the j + 1-th
query, which can then be unified with the fact.

Let v = µA(x) be a valuation. If, during the deduction process, a mgu θ
unifies a variable x with a fuzzy constant B, then the application of θ to v
yields vθ = N1(A | B) = infx max(µA(x), 1 − µB(x)). This resolution rule is
only sound when all the constants are not fuzzy (cf. with the sound rule GR
in the previous section).

In [18], a first modelisation of reduction in PLFC-H was proposed, in order
to obtain a higher valuation than the ones obtained only using resolution:

Dπ
∗ :

(p0 ← p1 ∧ ... ∧ pn, vp) ; (q0 ← q1 ∧ ... ∧ qm, vq)

[(p0 ← p1 ∧ ... ∧ pn ∧ q1 ∧ ... ∧ qm,max(vp, vq))]θ

where θ is the mgu that unifies p0 and q0. However, this rule is not general
enough to treat cases as the one involving the following rules and facts:

R1: (Tan(x, normal) ← Beach(x, y),min(France(y), α))

R2: (Tan(x, dark) ← Beach(x, y),min(Spain(y), β))

R3: (Tan(x, normal) ← Solarium(x), γ)

F1: (Beach(Teresa, Catalonia), 1)

F2: (Beach(Konstanze, France), 1)

F3: (Solarium(Konstanze), 1)

where “normal” and “dark” are precise constants, and “France”, “Spain” and
“Catalonia” are imprecise but not vague constants respectively. 6

To the query “Q1: What kind of tan did Konstanze get?”, the deduction
mechanism is capable of yielding the expected answer “normal”, weighted with
a belief of at least max(α, γ), as expected in the context of possibilistic theory.
The query “Q2: What kind of tan did Teresa get?” is more complex and
cannot be treated by the resolution rule above. Resolving R1 and F2 together
would yield a fail (idem in relation to R2 and F2). Moreover, the reduction
rule would not be applicable to R1 and R2, since the constants “normal” and
“dark” in the heads of R1 and R2 cannot be unified together. In [19], a more
powerful framework to model reduction was proposed, consisting of the use of
2 rules: generalised fusion and factorization.

the only remarkable distinction that two (fuzzy) constants A and B in Ω are only unified if
∀x ∈ Ω, A(x) = B(x) and if ∃a ∈ Ω, A(a) = 1, then ∀x �= a, A(x) = 0.
6 Here Catalonia is taken as a region close to the border between France and Spain, en-
compassing some towns from both countries.
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The generalized fusion rule Gπ
∗ is defined as:

Gπ
∗ :

(p0(t1, t2, ..., tk) ← p1 ∧ ... ∧ pn, vp)(p0(s1, s2, ..., sk) ← q1 ∧ ... ∧ qm, vq)

[(p0(r1, r2, ..., rk) ← p1 ∧ ... ∧ pn ∧ q1 ∧ ... ∧ qm,max(vp, vq))]θ

where ti and si and ri are terms. Each term ri is given by ri = ti∪si, if both ti
and si are constants, or by ri = tiθ, the application of the most general unifier
(mgu) θ to ti, otherwise.

The factorization rule is applied to predicates inside a single clause:

T π
∗ :

(p0(...) ← p1(t1, ..., tk) ∧ p2(r1, ..., rk) ∧ p3(...) ∧ ... ∧ pn(...), vp) ;

[(p0(...) ← p1(t1, ..., tn) ∧ p3(...) ∧ ... ∧ pn(...), vp)]θ

where the ti’s and ri’s are variables, p1(t1, ..., tn) is a variant of p2(r1, ..., rn),
and θ is a mgu that unifies p1 and p2 and is such that it does not produce any
inconsistency throughout the entire clause.

The application of the generalized fusion rule on R1 and R2 followed by
the factorization rule on the literal Beach in the resultant clause produces

R12: (Tan(x, normal ∪ dark) ← Beach(x, y),
max(min(France(y), α),min(Spain(y), β))

whose inclusion in the knowledge base allows us to obtain the answer
“normal or dark” with a belief of at least min(α, β) for Q2.

A theorem prover for PLFC-H was implemented in system KOMET [9].
This system has generalized annotated logics (GAL) [23,17] as underlying
representation framework, and is duly equipped with GAL resolution and
reduction rule. In order to make it possible to use KOMET as a theorem
prover to PLFC-H, in [18] it was proposed to translate PLFC-H into GAL
formalism and also to modify KOMET’s resolution rule, such that the mgu θ
that unifies the heads of two clauses be applied not only to the logical part of
the reductant, as in the original definition, but also to its contraints. When
the constraints do not involve fuzzy quantifiers (as in possibilistic logic PL),
the results obtained by the original GAL reduction and the modified rules are
the same. In order to allow the treatment of the example shown above, in [19]
it was proposed to apply the generalized fusion and factorization rules to the
knowledge base –with the consequent creation of new clauses–, prior to the
use of KOMET as a theorem prover. In the example above, rule R12 would
be first added to R1, R2 and R3, and only then queries Q1 and Q2 would be
made, yielding the expected result.

5 PGL+

In [1,2,3] an alternative Horn-rule style formalism to PLFC has been defined,
allowing only disjunctive fuzzy constants. Within this restricted framework
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the aim was to fully define a logical system for reasoning under possibilistic
uncertainty and disjunctive vague knowledge with an efficient and complete
proof procedure oriented to goals.

To achieve this objective, first a possibilistic logic programming language
of Horn rules with fuzzy propositional variables, called PGL, was defined and
equipped with a complete modus ponens-style calculus [1]. Later, in [2,3],
this language was extended to allow disjunctive fuzzy constants and the proof
method was enlarged with a mechanism of semantical unification of fuzzy
constants together with three other inference patterns. This extension, called
PGL+, was proved to be complete for atomic deduction when clauses fulfill
two kinds of constraints.

The basic components of PGL+ formulas are: a set of primitive propos-
itions Var ; sorts of constants; a set C of object constants (crisp and fuzzy
constants), each having its sort; a set Pred of unary 7 regular predicates, each
one having a type (a type is a tuple of sorts); and connectives ∧, →. An
atomic formula is either a primitive proposition from Var or of the form p(A),
where p is a predicate symbol from Pred , A is an object constant from C and
the sort of A corresponds to the type of p. Formulas are Horn-rules of the
form p1 ∧ · · · ∧ pk → q with k ≥ 0, where p1, . . . , pk, q are atomic formulas.
A (weighted) clause is a pair of the form (ϕ, α), where ϕ is a Horn-rule and
α ∈ [0, 1].

Fuzzy constants, like in PLFC, are seen as (flexible) restrictions on an
existential quantifier. Moreover, it is natural to take the truth-value of, for
instance, (low), under a given interpretation in which the salary is x0 euros, as
the degree in which the salary x0 is considered to be low, i.e. µlow(x0). This
leads to treat formulas as many-valued, with the unit interval [0, 1] as set the
of truth-values.

A many-valued interpretation for the language is a structure w = (U, i,m)
which maps each basic sort σ into a non-empty domain Uσ; a primitive pro-
position q into a value i(q) ∈ [0, 1]; a predicate p of type (σ) into a value
i(p) ∈ Uσ; and an object constant A (crisp or fuzzy constant) of sort σ into
a normalized fuzzy set m(A) with membership function µm(A) : Uσ → [0, 1].
Remark that interpretations are disjunctive in the sense that, for each pre-
dicate symbol p, i(p) is a unique value of the domain. Indeed, in contrast to
PLFC, fuzzy constants in PGL+ always express disjunctive fuzzy knowledge.
The truth value of an atomic formula ϕ under an interpretation w = (U, i,m),
denoted by w(ϕ), is just i(q) if ϕ is a primitive proposition q, and it is com-
puted as µm(A)(i(p)) if ϕ is of the form p(A). This truth value extends to rules
by means of the min-conjunction and Gödel’s many-valued implication:

w(p1 ∧ · · · ∧ pk → q) =




1, if min(w(p1), . . . , w(pk)) ≤ w(q)

w(q), otherwise

7 We restrict ourselves to unary predicates for the sake of simplicity. However, since vari-
ables and function symbols are not allowed, the language still remains propositional.
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As for the possibilistic semantics for PGL+, as in PLFC, we need to fix a
meaning for the fuzzy constants and to consider some extension of the standard
notion of necessity measure for fuzzy events. The first is achieved by fixing a
context. Recall that by ΩU,m we denote the context of interpretations sharing
a domain U and an interpretation of constants m and, once fixed the context,
by [ϕ] the fuzzy set of models for a formula ϕ defining µ[ϕ](w) = w(ϕ), for all
w ∈ ΩU,m.

Now, in a fixed context ΩU,m, a belief state (or possibilistic model) is de-
termined by a normalized possibility distribution on ΩU,m, π : IU,m → [0, 1].
Then, we say that π satisfies a clause (ϕ, α), written π |= (ϕ, α), iff the (suit-
able) necessity measure of the fuzzy set of models of ϕ with respect to π,
denoted N2([ϕ] | π), is indeed at least α. Here, for the sake of soundness
preservation, we take

N2([ϕ] | π) = inf
w∈ΩU,m

π(w) ⇒ µ[ϕ](w)(3)

where ⇒ is the reciprocal of Gödel’s many-valued implication, defined as x⇒
y = 1 if x ≤ y and x ⇒ y = 1 − x, otherwise. This necessity measure for
fuzzy sets was proposed and discussed by Dubois and Prade (cf. [11]). Notice
the difference of N2 in (3) with respect the necessity measure N1 adopted for
PLFC in equation (2). For example, the formula

(age Peter(about 35), 0.9)

is to be interpreted in PGL+ as

(age Peter([about 35]β) is certain with necessity of at least min(0.9, 1− β)
for each β ∈ [0, 1]. As usual, a set of clauses P is said to entail another clause
(ϕ, α), written P |= (ϕ, α), iff every possibilistic model π satisfying all the
clauses in P also satisfies (ϕ, α). Finally, still in a context IU,m, the degree of
possibilistic entailment of an atomic formula (or goal) ϕ by a set of clauses P ,
denoted by ‖ϕ‖P , is the greatest α ∈ [0, 1] such that P |= (ϕ, α). In [2], it is
proved that ‖ϕ‖P = inf{N2([ϕ] | π) | π |= P}.

The calculus for PGL+ in a given context ΩU,m is defined by the following
set of inference rules:

Generalized resolution:

(p ∧ s→ q(A), α), (q(B) ∧ t→ r, β)

(p ∧ s ∧ t→ r,min(α, β))
[GR], if A ⊆ B

Fusion:

(p(A) ∧ s→ q(D), α), (p(B) ∧ t→ q(E), β)

(p(A ∪B) ∧ s ∧ t→ q(D ∩E),min(α, β))
[FU]

Intersection:
(p(A), α), (p(B), β)

(p(A ∩ B),min(α, β))
[IN]
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Resolving uncertainty:

(p(A), α)

(p(A′), 1)
[UN], for A′ = max(1− α,A)

Semantical unification:

(p(A), α)

(p(B),min(α,N2(B | A))) [SU]

For each context IU,m, the above GR, FU, SU, IN and UN inference rules can
be proved to be sound with respect to the possibilistic entailment of clauses.
Moreover we shall also refer to the following weighted modus ponens rule,
which can be seen as a particular case of the GR rule

(p1 ∧ ... ∧ pn → q, α), (p1, β1), . . . , (pn, βn)

(q,min(α, β1, . . . , βn))
[MP]

Finally, the notion of proof in PGL+, denoted by , is deduction by means
of the triviality axiom and the PGL+ inference rules. Then, given a context
IU,m, the degree of deduction of a goal ϕ from a set of clauses P , denoted |ϕ|P ,
is the greatest α ∈ [0, 1] for which P  (ϕ, α).

In [3] it is shown that this notion of proof is complete for determining the
degree of possibilistic entailment of a goal, i.e. |ϕ|P = ‖ϕ‖P , for non-recursive
and satisfiable programs P , called PGL+ programs, that satisfy two further
constraints, called modularity and context constraints. Actually, the mod-
ularity constraint can be achieved by a pre-processing of the program which
extends the original PGL+ program with valid clauses by means of the GR and
FU inference rules. This is indeed the first step of an efficient and complete
proof procedure for PGL+ programs satisfying what we call context constraint.
A second step, based on the MP, SU, UN and IN rules, translates a PGL+

program satisfying the modularity constraint into a semantically equivalent
set of 1-weighted facts, whenever the program satisfied the context constraint.
And, finally, a deduction step, based on the SU rule, which computes the
maximum degree of possibilistic entailment of a goal from the equivalent set
of 1-weighted facts.

6 Comparison and discussion

The main differences between PLFC and PGL+ are (i) at the level of the syntax
and semantics of the language; (ii) at the level of providing the language with
a sound calculus; and (iii) at the level of defining an automated deduction
method based on (ii).

Regarding the syntax, in PLFC, formulas are pairs of the form (ϕ(x̄), f(ȳ)),
where x̄ and ȳ denote sets of free and implicitly universally quantified variables
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and ȳ ⊇ x̄, ϕ(x̄) is a disjunction of literals with fuzzy constants, and f(ȳ) is
a valid valuation function which expresses the certainty of ϕ(x̄) in terms of
necessity measures. Basically, valuation functions f(ȳ) are constant values
and variable weights. In PGL+, formulas are pairs of the form (ϕ, α), where
ϕ is a first-order definite clause or a query with fuzzy constants and regular
predicates and α ∈ [0, 1] is a lower bound on the belief (necessity) of ϕ.

On the other hand, in PLFC, fuzzy constants can be used in positive or
negative literals, representing in both cases a flexible restriction on a exist-
ential quantifier over the literal. Therefore, as the proof method for PLFC
is defined by refutation through a generalized resolution rule between posit-
ive and negative literals, unification (in the classical sense) of fuzzy constants
is not allowed. However, as variable weights are interpreted as conjunctive
(fuzzy) knowledge, an implicit semantical unification between fuzzy events
can be performed between variable weights and fuzzy constants. In PGL+,
fuzzy constants are interpreted as disjunctive knowledge too but, in contrast
to PLFC, there are no negative literals in the language; this allows to provide
the language with a sound modus ponens-style calculus by derivation based
on an explicit unification mechanism of fuzzy constants; furthermore, for a re-
stricted class of clauses, completeness can be achieved by extending the system
with a mechanism of fusion and an intersection between fuzzy constants.

Regarding the semantics, due to the presence of fuzzy constants, the truth
evaluation of formulas is many-valued in both systems, and belief states are
modeled by normalized possibility distributions on a set of many-valued in-
terpretations, also in both systems. However, the basic connectives of PLFC
are negation ¬ and disjunction ∨ while in PGL+, they are conjunction ∧
and implication →, and the semantics for the two sets of connectives are not
equivalent, i.e. the two sets of connectives are not inter-definable. Moreover,
the generalized necessity measures used in PLFC and in PGL+ for setting
the possibilistic semantics of formulas (see expressions (2) and (3)) are differ-
ent, although both are extensions of the classical necessity measure used in
possibilistic logic (see expression (1)).

Regarding the unification mechanism between fuzzy constants, in both
systems it consists of estimating to what degree the information expressed by a
fuzzy constant follows from another piece of fuzzy information. This basically
amounts to evaluate a (asymmetrical) matching between fuzzy events, and it is
performed by computing a necessity measure. However, the necessity measure
and the unification mechanism itself are different in each system. In PLFC
unification is allowed between variable weights and fuzzy constants, and the
degree of unification is implicitly computed during the resolution process. In
PGL+, unification can be performed between fuzzy constants and is explicitly
handled by a separate inference rule. It is also worth noticing that the necessity
measure N1 used in PLFC has an interesting feature: N1(A | B) = 1 iff the
support of B ⊆ the core of A; however, in general, 1

2
≤ N1(A | A) ≤ 1 and

N1(A | A) = 1 iff A is crisp. On the other hand, PGL+ makes use of a different
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necessity measure N2 which intuitively computes an inclusion degree. To be
precise, N2(A | B) = 1 iff B ⊆ A. However, this necessity measure has a side
effect: if µB(u) = 1 and µA(u) �= 1, then necessarily N2(A | B) = 0.

A final remark regarding the unification mechanisms is that the unifica-
tion degree between two different and precise constants is null in both systems.
Sometimes this is a rather unpleasant behavior, specially if we are trying to
model approximate knowledge. To remedy this particular situation, a possible
solution is to extend (in both systems) each basic sort with a fuzzy similar-
ity relation and to fuzzify precise constants by means of this similarity rela-
tion. This similarity-based unification approach is under development in [4]
for PLFC and is somewhat related to those proposed by Arcelli, Formato,
Gerla and Sessa [6,16,22] on the one hand, and the ones proposed by Vinař
and Vojtáš [26,27] and Medina, Ojeda-Aciego and Vojtáš [20], in different
frameworks.

Regarding automated deduction, a sound resolution-style refutation pro-
cedure for PLFC has been developed based on the computation of the necessity
evaluation of fuzzy events. In order to get PLFC clauses with the greatest pos-
sible weights (i.e. to get higher unification degrees), a fusion mechanism must
be applied after each resolution step. Therefore, the refutation procedure can-
not be oriented to a resolvent clause and the search space consists of all pos-
sible orderings of the literals in the knowledge base. As already pointed out,
in order to gain completeness, a fusion mechanism is also needed for PGL+.
Therefore, from a computational point of view, the extension of a knowledge
base with all (explicit and hidden) clauses through a fusion mechanism is a
drawback in both systems. However, this problem can be partially overcome
in both the Horn fragment of PLFC (PLFC-H) and PGL+ by performing a
pre-processing step on the knowledge base.

In Table 1 we summarize the main differences between PGL+ and PLFC-
H, put into context by means of the following example. Consider the following
fuzzy and uncertain statements:

s1 “The price of the book is about 34 euros with a certainty degree of 0.75”.

s2 “If the price of a book is around 35 euros, buy the book”.

Let price book(·) be a unary predicate of type (price), let buy book be a
propositional variable, and let about 34 and around 35 be two fuzzy object
constants of sort price. These statements are differently represented in each
system. In PLFC-H we get the following representation:

s1 (price book(about 34), 0.75)

s2 (buy book ← price book(x), around 35(x))

and in PGL+:

s1 (price book(about 34), 0.75)

s2 (price book(around 35) → buy book, 1)
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PLFC-H PGL+

(salary(x, low) ← age(x, y), young(y)) (age(x, young)→ salary(x, low), 1)

(speaks(Anna, x), µ{Spanish,English}(x))
Syntax Disjunctive & conjunctive fuzzy constants Disjunctive fuzzy constants

w = (U, i, m) w = (U, i, m)

i(p) ⊆ U (conjunctive inter.) i(p) ∈ U (disjunctive inter.)

e(x) ∈ U (crisp evaluations) e(x) : U → [0, 1] (fuzzy evaluations)

Interpr. w(p(A)) = supu∈i(p) µm(A)(u) w(p(A)) = µm(A)(i(p))

w(¬q(B)) = supu�∈i(q) µm(B)(u) w(q(B) → p(A))

w(¬q(B) ∨ p(A)) = max(w(¬q(B)), w(p(A))) Gödel truth functions

π : ΩU,m → [0, 1] π : ΩU,m → [0, 1]

Poss. π |= (ϕ, α) iff N1([ϕ] | π) ≥ α π |= (ϕ, α) iff N2([ϕ] | π) ≥ α

Models N1([ϕ] | π) = infw max(1 − π(w), w(ϕ)) N2([ϕ] | π) = infw π(w) ⇒ w(ϕ)

Unifi. Variable weights/Imprecise constants Fuzzy constants/Fuzzy constants

Proof Refutation by resolution (implicit unification) Deduction by modus ponens + unification rule

method + generalized fusion + factorization + fusion + intersection

S. & C. Soundness (for PLFC) Soundness and context constrained completeness

Table 1
Summary comparison of PLFC-H and PGL+

Consider the following context:

• U = {Uprice = [0, 1000](euros)};
• m(about 34) = [32; 34; 34; 36] 8 ; m(around 35) = [30; 34; 36; 40].

In PLFC-H, since about 34 is interpreted as fuzzy set in the above context, s1
should be rewritten as

s1’ (price book([about 34]0.75), 0.75)

due to their semantical equivalence (see Sections 3 and 4). Now, we are inter-
ested in computing the certainty degree of buying the book in that particular
context. To this end, in PLFC-H, we extend the knowledge base with the
query

q (← buy book, 1)
and we search a proof for (⊥, α) by applying the resolution rule. The res-
olution of s1’ and s2 consists of computing the certainty degree of the
price being m(around 35) euros given the price is in the crisp interval
[m(about 34)]0.75 = [33.5, 34.5], and thus, N1(m(around 35) | [33.5, 34.5]) =

8 We represent a trapezoidal fuzzy set as [t1; t2; t3; t4], where the interval [t1, t4] is the
support and the interval [t2, t3] is the core.
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infu∈[33.5,34.5] µ[30;34;36;40](u) = 0.87 and we infer

s3 (buy book,min(0.75, 0.87)) .

Now, resolving this clause with the query q we infer (⊥, 0.75), and thus, the
necessity degree of buying the book is 0.75.

On the other hand, in PGL+, as m(about 34) ⊆ m(around 35), we get
N2(m(around 35) | m(about 34)) = 1. Then, applying the unification rule to
s1 we derive

s4 (price book(around 35),min(0.75, 1))

and applying the generalized modus ponens rule to s2 and s4 we get again
s3, i.e. (buy book, 0.75).

Hence, in the above particular context, both systems provide the same
result. However, if we consider a different context U ′ with for instance
m(around 35) = [33, 37], we get N1(m(around 35) | [m(about 34)]0.75) =
infu∈[33.5,34.5] µ[33,37](u) = 1 and N2(m(around 35) | m(about 34)) =
infu∈[0,1000] µ[32;34;34;36](u) ⇒ µ[33,37](u) = 0.5, and thus, in this particular con-
text, the necessity degree of buying the book is 0.75 in PLFC-H and 0.5 in
PGL+.
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