
Proactive Cloud Management for Highly
Heterogeneous Multi-Cloud Infrastructures

Alessandro Pellegrini
pellegrini@dis.uniroma1.it
DIAG – Sapienza, University of Rome

Pierangelo Di Sanzo
disanzo@dis.uniroma1.it

DIAG – Sapienza, University of Rome

Dimiter R. Avresky
autonomic@irianc.com
IRIANC – Munich, Germany

Abstract—Various literature studies demonstrated that the
cloud computing paradigm can help to improve availability and
performance of applications subject to the problem of software
anomalies. Indeed, the cloud resource provisioning model enables
users to rapidly access new processing resources, even distributed
over different geographical regions, that can be promptly used in
the case of, e.g., crashes or hangs of running machines, as well
as to balance the load in the case of overloaded machines. Nev-
ertheless, managing a complex geographically-distributed cloud
deploy could be a complex and time-consuming task. Autonomic
Cloud Manager (ACM) Framework is an autonomic framework
for supporting proactive management of applications deployed
over multiple cloud regions. It uses machine learning models to
predict failures of virtual machines and to proactively redirect the
load to healthy machines/cloud regions. In this paper, we study
different policies to perform efficient proactive load balancing
across cloud regions in order to mitigate the effect of software
anomalies. These policies use predictions about the mean time to
failure of virtual machines. We consider the case of heterogeneous
cloud regions, i.e regions with different amount of resources, and
we provide an experimental assessment of these policies in the
context of ACM Framework.

I. INTRODUCTION

The presence of software anomalies—such as memory
leaks and/or unterminated threads— may be a major problem
affecting performance and availability of computing applica-
tions. The study presented in [1] showed that software errors
are the cause of around 40% of failures in web applications.
Given the size and complexity of many modern application
deployments, identifying and fixing software anomalies may
be a long, costly, and burdensome task. To cope with this
problem, some literature studies proposed techniques based
on software rejuvenation [2], [3]. These techniques detect the
effects due to accumulation of software anomalies by means
of monitoring agents, which trigger specific actions to force
software rejuvenation (e.g. process/system restart).

The modern cloud computing paradigm [4] offers the
possibility to access virtualized computing resources on de-
mand. Some studies demonstrated that virtualization and cloud
computing can be exploited to improve availability and per-
formance of applications subject to the problem of software
anomalies [5], [6]. Basically, this can be done by means of
smart strategies that use spare virtual machines to promptly
replace active virtual machines before crashing, or whose
performance has deteriorated, due to the accumulation of
anomalies. However, when considering a large-scale appli-
cation deployment on the cloud, the problem of managing
accumulation of anomalies becomes more complex, given that

additional factors, such as the presence of resources distributed
over multiple cloud regions, are involved.

A recent literature study presented Autonomic Cloud Man-
ager (ACM) Framework [7], a proactive machine learning
(ML)-based framework that manages distributed deployments
of client-server applications on multiple cloud regions. Advan-
tages provided by ACM Framework are: (a) it automatically
enforces software rejuvenation of a virtual machine (VM)
which is approaching a failure and activates a spare healthy
VM that takes its place; b) it allows replicas of VMs to be
distributed over multiple cloud regions, while automatically
handles and forwards incoming requests from clients to VMs
of the different regions; c) it uses a proactive load balancing
approach to distribute client requests to more-healthy regions
on the basis of failure frequency of VMs.

We note that an application deployment over different
geographical regions allows to improve availability (e.g. in
front of a failure of an entire data center in a region). Even, in
some case, applications might require to be instantiated on an
hybrid cloud system, which typically involves multiple cloud
regions. This may be required, e.g., when a portion of the
data should not be disclosed on a public infrastructure. As the
latter point, Gartner [8] foresees that in the near future, 51% of
cloud-deployed applications will in fact exploit hybrid cloud
infrastructures.

Nevertheless, we note that when using different cloud re-
gions (notably when they belong to different cloud providers),
they could be heterogeneous in terms of available resources
(e.g. number of virtual machines, cpu type and memory size).
These differences may have an impact on the effectiveness
of workload distribution policy in ACM Framework. We em-
phasize that using different and heterogeneous cloud regions,
as well as a multi-cloud infrastructures, could be as well a
strategic decision. For example, different cloud providers offer
various types of VMs at different costs. Also, the cost of
VMs of the same cloud provider may change depending on
the geographical region where they are located. Therefore, it
could be more convenient to have more VMs in some regions,
or of a given provider, rather than in/of other ones.

In this paper, we extend the previous results in [7] by
studying different policies for the load balancing problem in
ACM Framework. We remark that this problem arises from
the need of distributing the workload in order to balance the
effects of VM failures (and the subsequent overhead due to
rejuvenation of VMs) over the different cloud regions where
the application is deployed. We note that the heterogeneity of

regions is likely to exacerbate the load imbalance, thus leading
to scenarios with (highly) overloaded/underloaded regions.

We present an experimental comparison of the load bal-
ancing policies in the case of two hybrid cloud infrastructures
composed of two and three regions, respectively. In our exper-
iments, we used two regions hosted in Amazon EC2 and one
region hosted in a private infrastructure.

The remainder of this paper is structured as follows. In
Section II we discuss related work. Section III presents an
overview of ACM Framework. The load balancing policies
for heterogeneous multi-cloud environments that we analyse
are described in Section IV. Finally, the experimental data and
the assessment of policies are discussed in Section VI.

II. RELATED WORK

Load balancing in cloud computing [9], [10], [11] is a
fundamental topic, and it has been studied in the literature
from different aspects, such as scalability, generated overhead,
energy consumption and carbon emission perspective. Our
work, similarly to [12], specifically adds to all these aspects the
issue of availability/dependability of applications hosted on a
cloud environment. Differently from [12], we explicitly tackle
the case of geographically-distributed multi-cloud (hybrid)
environments.

The works presented in [13], [14], [15] specifically tackle
the issue of load sharing from a SLA point of view. The work
in [13] explicitly relies on a self-control loop to monitor the
state of virtual machines. ACM Framework keeps the ability
to control load balancing from a SLA-compliance perspective,
as well to reduce the response time experienced by end users
and to improve system availability.

In [16], [17] the authors propose to use a mixture of simu-
lation and machine learning to study optimal deploys of cloud-
based in memory applications. ACM Framework keeps the
ability offered by these proposals and offers the possibility to
modify the deploy at runtime in case the workload conditions
change during the lifetime of the system.

The works in [18], [19] address the issue of resource
allocation in a cloud environment trying to maximize the usage
of available resources and to improve the efficiency. We keep
these abilities, while adding the possibility to migrate incoming
(remote) workload, so as to decrease response time and reduce
and increase availability/dependability.

In [20], the authors present a middleware infrastructure to
automate the deployment of large-scale service compositions.
Our framework allows as well to transparently deploy appli-
cations in distributed (hybrid) clouds, while monitoring their
runtime behavior to increase the availability/dependability.

In [21], [22], machine-learning techniques are used to learn
workload indices to dynamically schedule jobs. The indices
combine information from the key resources of contention:
CPU, disk, network, and memory. We exploit machine-learning
techniques as well to learn from the same features, but we
used the learned information to determine what is the best
configuration of the various cloud regions in terms of active
VMs and incoming requests.

The works in [23], [24] target cloud computing envi-
ronments using ML-based prediction models to self-tune the
runtime configuration of the applications being run on the
virtualized infrastructure. Differently from our proposal, these
works do not explicitly consider multiple cloud regions. More-
over, their principal target is the performance of applications,
rather than their availability and dependability.

In the work in [25], the possibility to add/remove VMs
dynamically at runtime to account for load changes is explored
in the context of MMOGs games. We have this same capability
in our system, but we target generic applications in an agnostic
fashion.

III. OVERVIEW OF THE ACM FRAMEWORK

As we discussed, ACM Framework is designed for applica-
tions based on a client-server model, where the server can be
replicated over different machines. ACM Framework builds
on top of the F2PM framework [26] and of the PCAM [6]
framework. F2PM is designed to build ML-based prediction
models which are completely agnostic of the running appli-
cation. During an initial phase, the system under monitoring
(namely a VM running a server replica) runs the application
and a thin software client which measures a large set of system
features, such as memory usage, CPU time, and swap space
usage. This information is transferred to a feature monitor
agent. This agent builds a database of system features, for
later usage by the ML algorithms. Under the accumulation
of software anomalies, these measures are subject to change
over time. The user of F2PM can set several constraints which,
altogether, define the failure point of the system. This failure
point is not necessarily related to an actual crash of the system,
rather it can describe as well the violation of one or more SLA
(e.g. the average response time overcomes a given threshold).
All measurements are fed into an automatic ML toolchain. The
goal of this toolchain is to generate and validate alternative ML
models for predicting the Remaining Time To Failure (RTTF),
as well as to select (via Lasso regularization [27]) what are
the most relevant system features to be used by these models.
This selection allows to reduce the amount of information
to be managed when the system is operational. The user of
F2PM is provided as well with a series of metrics which allow
to select which is the most effective ML model to be used
for predictions. F2PM supports several ML models, namely
Linear regression [28], M5P [29], REP-Tree [30], Lasso as
a predictor [27], Support-Vector Machine (SVM) [31], and
Least-Square Support-Vector Machine [32].

The ML-based prediction models generated by F2PM are
then used by PCAM to enforce proactive rejuvenation of a VM
before it reaches a failure point. Indeed, these models allow
PCAM to estimate the RTTF, i.e. the time after which a crash
will happen or a SLA will be violated due to the accumulation
of anomalies. PCAM keeps some VMs hosting server replicas
in the ACTIVE state, while others VMs in the STANDBY
state. The state of a VM is controlled by a Virtual Machine
Controller (VMC). VMC maps a ML model to a given VM,
and uses the system features selected by Lasso regularization
for training the ML model to predict, at runtime, the RTTF of
the VM. Whenever the estimated RTTF of an ACTIVE VM
is less than a threshold (established by the user), VMC sends
an ACTIVATE command to a VM in the STANDBY state and

a REJUVENATE command to the about-to-fail VM. In this
way, availability of a server replica is ensured by prompt and
proactive takeover of an anomaly-free VM.

PCAM targets as well transparency towards the user of the
application at the level of a single cloud region, namely the
virtualization infrastructure where all the VMs managed by a
VMC are hosted. In fact, all the requests issued by remote
clients of the system are directed to VMC, which hosts a load
balancer. The goal of this component is to balance the load
associated to client requests to VMs in the ACTIVE state.

ACM, as shown in Figure 1, brings all the capabilities
of PCAM to a geographically-distributed network of VMs. In
particular, several VMCs instances are in charge of monitoring
a cloud region each. As mentioned before, a cloud region
includes a set of VMs hosted by a single cloud provider
or a single virtualization infrastructure in a given geographic
location. To maximize the dependability and to reduce the re-
sponse time, the interconnection among the various controllers
is actuated via an overlay network, which selects the path
with the smallest latency among two given controllers, and is
able to reroute connections in case of a network link failure.
Among all the regions VMCs, a leader VMC is automatically
elected using the algorithm in [33], which has been shown to
be tolerant to multiple nodes and link failures.

As shown in [7], the failure and rejuvenation rate of MVs
can have a non-negligible impact on the performance of a
region, and consequently on the response time experienced
by end-users. Further, some cloud regions could be more
overloaded than others. This may be due to: a) the different
number of clients than could be connected to any region, and
b) the heterogeneity of regions in terms of available resources.
Under these circumstances, some regions could be overloaded
with respect to others, and the rate of anomaly accumulation
of these regions could be therefore likely higher. For these
reason, ACM Framework requires smart policies to determine
how to balance the load across regions.

IV. POLICIES FOR LOAD BALANCING IN HIGHLY
HETEROGENEOUS ENVIRONMENTS

In this section, we present the policies that we evaluate in
our study. These policies aim at performing efficient proactive
load balancing across cloud regions in order to avoid that
different failure and rejuvenation rates in different regions lead
to overloaded and underloaded regions. Ultimately, the goal of
these policies is to ensure that all active VMs in all regions
show the same Mean Time To Failure (MTTF) in front of the
heterogeneity of regions in terms of number and computing
power of VMs.

In ACM Framework, the MTTF of VMs hosted in a
cloud region is estimated by the ML models. The VMC of
a region i periodically sends to the leader VMC the last
average value of the Region Mean Time To Failure (RMTTF),
say lastRMTTFi, calculated as the average MTTF of all
active VMs in the region i. When the leader VMC receives
lastRMTTFi at time t, the current RMTTF of the region
i, say RMTTF t

i , is (re-)calculated by using the following
weighted average:

RMTTF t
i = (1−β) ·RMTTF t−1

i +β · lastRMTTFi, (1)

where RMTTF t−1
i is the previous value of RMTTF and 0 ≤

β ≤ 1.

The goal of the policies is therefore to decide the fraction fi
of global incoming requests to be forwarded to a cloud region
i to ensure that the different values of the current RMTTF of
all regions converge (fast) to the same value.

A. Policy 1: Sensible Routing

The first policy that we study is called sensible routing,
and is based on the work presented in [34].

Assuming to have N cloud regions, the fraction fi of
global incoming requests to be forwarded to cloud region i
is calculated as:

fi =
RMTTF t

i∑N
j=1RMTTF t

j

. (2)

Intuitively, by using this policy, the fraction of requests
forwarded to a region i is proportional to the weight of the
current RMTTF of the region over the sum of the last RMTTF
of all regions.

B. Policy 2: Available Resources Estimation

This policy uses a single numeric parameter as an ab-
straction to quantify the amount of available resources in a
region. It assumes that resources are linearly consumed by
the accumulation of anomalies over time (therefore by the
incoming requests). Accordingly, the estimation of the amount
of available resources a in region i is calculated as:

Qi = RMTTF t
i · fi · λ (3)

where λ is the global incoming request rate, thus fi · λ is
the incoming request rate of region i. The above estimation is
based on the idea that if a region shows a higher RMTTF in
front the same amount of received requests, then the amount
of available resources in that region is higher. Similarly, if the
region receives more requests in front the same RMTTF, then
the amount of available resources in that region is higher.

The fraction of requests to be forwarded to region i is
calculated as as:

fi =
Qi∑N
j=1Qj

. (4)

Basically, with this policy, the fraction of requests for-
warded to a region i is proportional to the current amount of
estimated resources of the region over the sum of the amount
of estimated resources of all regions.

C. Policy 3: Exploration

The third policy uses an exploration strategy, as it is
inspired to the hill climbing [28] search algorithm. This policy
calculates the Average RMTTF (ARMTTF) over all regions,
i.e.:

ARMTTF =

∑n
i=1RMTTF t

i

N
. (5)

Overlay

Network

Controller

Load Balancer

Clients

Load Balancer

Controller

Clients

Controller

Load Balancer

Clients

application data

application data

commands
features

st
at

e

application data

global system
 state

application data

commands

features

s
ta

te

global system state

application data

application data

state

global s
ystem state

ap
pl

ic
at

io
n

da
ta

commands

features

application data
application data

Cloud Region 3

VM1 VMn. . .

Cloud Region 2

VM1 VMn. . .

Cloud Region 1

VM1 VMn. . .

Fig. 1. ACM framework organization (Figure taken from [7])

Then, all regions for which RMTTF t
i > ARMTTF

get their current value fi decreased, while the regions with
RMTTF t

i < ARMTTF get their value fi increased.

The policy therefore selects all the regions such that
RMTTFi < ARMTTF (which we call the set of overloaded
regions OL = {i : RMTTFi < ARMTTF}), and for each
of these regions it computes the new value of the fraction fi,
say fnexti as:

fnexti =
RMTTFi

ARMTTF
· fi · k (6)

where k is a constant scaling factor. Of course, the equality∑n
i=1 fi = 1 must hold. To this end, it must be ensured that

any portion taken out of some fi must be added to some fj ,
i 6= j. Then, the policy computes the total variation of the
flow of overloaded regions:

∆f< =
∑
i∈UL

(fnexti − fi) (7)

Then it selects all the regions such that RMTTFi >
ARMTTF (which we call the set of underloaded regions
UL = {i : RMTTFi > ARMTTF}), and for each of these
regions it updates the workload fraction as:

fnexti =
∆f<

N∑
i=1

RMTTFi

· fi · k (8)

where k is the same scaling factor.

Summarizing, all fractions are calculated as:

fnexti =

RMTTFi

ARMTTF
· fi · k if RMTTFi < ARMTTF

∆f t<
n∑

i=1

RMTTFi

· fi · k otherwise

(9)

V. THE ACM FRAMEWORK CLOSED CONTROL LOOP

ACM Framework adopts a control strategy based on a
closed loop. ACM Framework assumes that a user can arbitrar-
ily connect to whichever cloud region. Each region has a load
balancer (LB) to which users send requests. In order to achieve
that any region i processes the established fraction of request
fi over the global incoming requests, ACM Framework uses
a global forward plan. After that the fraction fi of requests
that each region should process has been calculated, this plan
establishes the fractions of requests that are sent from users
to the LB of a region that have to be forwarded to the local
region and to be forwarded to LBs of other regions. The plan
is updated at each step of the closed control loop.

The closed control loop includes the four states reported
in Figure 2. Initially, the system enters the Monitor state. In
this state, the system features are collected by each VMC
in a region according to the distributed organization of the
F2PM framework. These results are then fed to the ANALYZE()
routine, which is depicted in Algorithm 1.

The execution of Algorithm 1 brings the system into
the Analyze state. The operations associated with this state
differentiate between an execution on the leader VMC and on
the slave VMCs. In particular, every VMC—both the leader
and the slaves—apply the ML-based prediction models offered
by F2PM to determine the RMTTFi of the local region. Then,
all slave VMCs send their RMTTFi values to the leader

Monitor Analyze

Execute Plan

Algorithm 2

Algorithm 3

time t+ 1

Algorithm 1

Fig. 2. Control Loop Flow Diagram driven by ML prediction models for
Hybrid Clouds

Algorithm 1 Analyzing the Distributed Deploy
procedure ANALYZE()

Predict local RMTTF using ML-based models
if current VMC is leader then

collect all RMMTFi from slave VMCs
else

send local RMTTF to leader VMC
end if
Actuate PCAM policies

end procedure

VMC. Additionally, all VMCs actuate PCAM policies locally
which depend on the ML-based prediction models.

When all the values of RMTTFi are received by the leader
VMC, the system transitions to the Plan state. This state is
associated with the execution of Algorithm 2, which takes
place only at the leader VMC. The goal of this algorithm is to
use all the information gathered from the distributed regions
to determine a global current state of the system. In particular,
Algorithm 3 issues a call to a POLICY() function, which is
in charge of using one of the three policies presented in Sec-
tion IV. The selected policies can be specified at configuration
time. Therefore, the POLICY() function determines the new
value of f ti , for all the regions i in the system. The new values
f ti are then sent back to the local slave VMCs.

The system then moves to the Execute state. The goal of
this state, which is associated with Algorithm 3, is to make
the workload forward plan devised in Algorithm 2 persistent
on all the geographically-distributed cloud regions.

Moreover, during the execution of this Algorithm, each
local VMC controller uses the ML-based prediction models of-
fered by F2PM to determine, via correlation analysis, whether
the clients directly connected to the region are experiencing a
Response Time which is over a pre-defined threshold. In this
case, the system adds new VMs to the pool, so as to reduce it.
In particular, when the global workload increases, the failure
rate of VMs in one or multiple cloud regions may increase,
so that excessive performance loss and low availability may
be experienced by clients. As a countermeasure to this issue,
ACM can proactively change the number of active VMs in
each cloud region. If the RMTTF of a cloud region becomes
less (more) than a given threshold, then the local controller
can activate news VM (deactivate some active VMs) by using
MTTF prediction models to evaluate the expected RMTTF as
a result of the VM activation (deactivation).

Algorithm 2 Planning Autonomic Actions on the Deploy
executed only by leader VMC
procedure PLAN()

for i ∈ CloudRegions do
f t
i ← POLICY(f t−1

i , RMTTF1, . . . , RMTTFn)
end for
send to all slave VMCs the associated f t

i

end procedure

Algorithm 3 Executing Autonomic Actions on the Deploy
1: procedure EXECUTE()
2: if slave VMC then
3: receive f t

i from leader VMC
4: end if
5: install new f t

i in the load balancer
6: if Predicted Response Time > threshold then
7: ADDVMS()
8: end if
9: end procedure

After the execution of EXECUTE() completes, the system
enters again the Monitor state, and the time era t is incremented
to the next one.

VI. EXPERIMENTAL RESULTS

A. Benchmark Setup

To assess the presented policies, and to compare their
effectiveness, we conducted an experimental study using a
hybrid cloud architecture. We used three cloud regions: Region
1, hosted in the Ireland Region of Amazon EC2, Region 2,
hosted in the Frankfurt Region of Amazon EC2, and Region 3,
privately hosted in a 32-cores HP ProLiant server with 100 GB
RAM, located in Munich (Germany). We used 6 m3.medium
Amazon EC2 instances in Region 1, 12 m3.small Amazon
EC2 instances in Region 2, and 4 VMs equipped with 2 virtual
CPU cores, 1 GB or RAM, and 4 GB of virtual disk space in
Region 3. The HP ProLiant server was equipped with VMware
Workstation 10.4 as the hypervisor. All VMs were equipped
with Ubuntu 10.04 Linux Distribution (kernel version 2.6.32-
5-amd64).

The test-bed application was the TPC-W benchmark [35],
a multi-tier e-commerce web application that simulates an on-
line store. We used a Java implementation of TPC-W [36]
developed using servlets, and relying on MySQL [37] as a
database server. Clients were emulated using emulated web
browsers to generate requests according to TPC-W specifica-
tions. We modified the TPC-W implementation to randomly
generate software anomalies at run-time, including memory
leaks and unterminated threads. Specifically, anomalies were
generated with different probabilities on each VM when re-
ceiving a client request—10% of requests generate a memory
leak, 5% of requests generate an unterminated thread. This
led to scenarios where each VM (thus each cloud region)
showed different anomaly occurrence patterns. We varied the
number of active clients (towards each cloud region) in the
interval [16, 512], ensuring that the clients connected to each
cloud region (thus, to the VMC on each cloud region) where
significantly different in number. Based on our previous results

in [26], we selected REP Tree as a ML model for predicting
the MTTF.

B. Experimental Data

To assess the validity of our policies, we run two differ-
ent experiments, one with two regions, and one with three
regions. The first experiment evaluates all the three policies
on a geographically-distributed hybrid cloud environment com-
posed of Region 1 and Region 3, namely using Amazon VMs
in Ireland and privately-hosted VMs in Munich.

For each policy, Figure 3 shows the variation over time of:
a) the RMTTF of each region, b) the calculated fraction fi for
each region, and c) the average response time measured by all
clients. By the results, we can see that the three policies show
different behaviours. In particular:

• With Policy 1, the values of the RMTTF of the two
regions do not converge. This can be seen by the
fact that the two RMTTF stabilize to different values.
Further, the values of fi are subject to oscillations.

• Policy 2 performs better. The values of the RMTTF
converge quite quickly, and fi shows less-oscillating
values. We remark that Policy 2 explicitly takes into
account an estimation of the amount of available
resources on each region.

• Policy 3 is able to converge better than Policy 1,
however the values of RMTTF and fi are less stable
with respect to Policy 1.

In all cases, the average response time measured at the
clients is kept below the threshold of 1 second, and its
variations are not highly affected by some policy more than
others.

A more complex scenario is reported in Figure 4, where
all three regions are used. This experiment confirms that
with Policy 1 the RMTTF does not converge. In particular,
the values of the RMTTF continue to oscillate, and so do
the values of f . This, in turn, causes many redirections of
the request flow between regions, which generates additional
overhead in the system. Contrarily, both Policy 2 and 3 are
able to cope with the heterogeneity of regions, given that the
RMTTF converges in both cases. Policy 2 converges more
quickly, although it produces values of fi that are slightly more
oscillating than Policy 3. For the sake of brevity, we do not
report the response time measured at the clients for the case of
3 regions, because it is similar to the results shown in Figure 3.

Overall, we can conclude that Policy 1, based on the
sensible routing, is more suitable for less-heterogeneous envi-
ronments, as already reported in [7]. On the contrary, when
heterogeneity is very high, the quickest convergence and
the most stable results are provided by Policy 2, which is
based on explicit available resources accounting. Exploration
approaches, such as Policy 3, are similarly valid, yet they can
suffer more from their intrinsic randomness.

VII. CONCLUSIONS

In this paper we analyzed different policies to balance
the workload across heterogeneous cloud regions. Particularly,

we focused on the case of a large-scale deployment on het-
erogeneous cloud regions of applications subject to software
anomalies. We study the different policies in the context of
ACM Framework, which uses ML models to predict the MTTF
of machines that run server replicas of an application. All load
balancing policies that we studied rely on MTTF predictions,
and they aim at ensuring that all active VMs in all regions show
the same MTTF in front of the heterogeneity of regions. By
the results, the policy which explicitly takes into account the
estimation of the amount of resources in all cloud regions has
been proven to show the fastest convergence and the highest
stability.

ACKNOWLEDGEMENTS

The research presented in this paper has been supported
by the European Union via the EC funded project PANACEA,
contract number FP7 610764.

REFERENCES

[1] S. Pertet and P. Narasimhan, “Causes of Failure in Web Applications,”
Carnegie Mellon University, Tech. Rep. CMU-PDL-05-109, 2005.

[2] K. Vaidyanathan and K. Trivedi, “A comprehensive model for software
rejuvenation,” IEEE Transactions on Dependable and Secure Comput-
ing, vol. 2, no. 2, 2005.

[3] D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo, “Software
aging and rejuvenation: Where we are and where we are going,” in
Proceedings - 2011 3rd International Workshop on Software Aging and
Rejuvenation, WoSAR 2011, 2011, pp. 1–6.

[4] B. Hayes, “Cloud computing,” Communications of the ACM, vol. 51,
no. 7, p. 9, jul 2008.

[5] L. M. Silva, J. Alonso, and J. Torres, “Using Virtualization to Improve
Software Rejuvenation,” IEEE Trans. Comput., vol. 58, no. 11, pp.
1525–1538, 2009. [Online]. Available: http://dx.doi.org/10.1109/TC.
2009.119

[6] P. Di Sanzo, A. Pellegrini, and D. R. Avresky, “Machine Learning for
Achieving Self-* Properties and Seamless Execution of Applications in
the Cloud,” in Proceedings of the Fourth IEEE Symposium on Network
Cloud Computing and Applications, ser. NCCA. IEEE Computer
Society, 2015.

[7] D. R. Avresky, P. Di Sanzo, A. Pellegrini, B. Ciciani, and L. Forte,
“Proactive Scalability and Management of Resources in Hybrid Clouds
via Machine Learning (short paper),” in Proceedings of the 14th IEEE
International Symposium on Network Computing and Applications.
Boston, MA, USA: IEEE Computer Society, 2015.

[8] J. Fenn, “Gartner’ s Hype Cycle Special Report for 2011,” Tech. Rep.
August, 2011. [Online]. Available: http://www.gartner.com/technology/
research/hype-cycles/index.jsp

[9] R. Rajan and V. Jeyakrishnan, “A Survey on Load Balancing in Cloud
Computing Environments,” Ijarcce.Com, vol. 2, no. 6, pp. 4726–4728,
2013.

[10] A. Khiyaita, H. E. L. Bakkali, M. Zbakh, and D. E. Kettani, “Load
balancing cloud computing: State of art,” Network Security and Systems
(JNS2), 2012 National Days of, pp. 106 – 109, 2012.

[11] N. J. Kansal and I. Chana, “Cloud Load Balancing Techniques : A Step
Towards Green Computing,” IJCSI International Journal of Computer
Science Issues, vol. 9, no. 1, pp. 238–246, 2012.

[12] C. Zenon, M. Venkatesh, and A. Shahrzad, “Availability and Load
Balancing in Cloud Computing,” International Conference on Computer
and Software Modeling IPCSIT vol.14 (2011) IACSIT Press, Singapore,
vol. 14, pp. 134–140, 2011.

[13] T. Aubonnet and N. Simoni, “Self-Control Cloud Services,” in Network
Computing and Applications (NCA), 2014 IEEE 13th International
Symposium on, 2014, pp. 282–286.

[14] R. Lee and B. Jeng, “Load-balancing tactics in cloud,” Proceedings -
2011 International Conference on Cyber-Enabled Distributed Comput-
ing and Knowledge Discovery, CyberC 2011, pp. 447–454, 2011.

Fig. 3. Results using 2 regions. First row shows RMTTF, second row shows the workload factor fi, third row shows the response time measured by the clients
of the system.

Fig. 4. Results using 3 regions. First row shows RMTTF, second row shows the workload factor fi, third row shows the response time measured by the clients
of the system.

[15] S. Goswami and A. D. Sarkar, “A Comparative Study of Load Bal-
ancing Algorithms in Computational Grid Environment,” in 2013 Fifth
International Conference on Computational Intelligence, Modelling and
Simulation, vol. 1, no. 2. IEEE, sep 2013, pp. 99–104.

[16] P. Di Sanzo, F. Antonacci, B. Ciciani, R. Palmieri, A. Pellegrini,
S. Peluso, F. Quaglia, D. Rughetti, and R. Vitali, “A Framework for
High Performance Simulation of Transactional Data Grid Platforms,”
in Proceedings of the 6th International ICST Conference on Simulation
Tools and Techniques, ser. SimuTools ’13. ICST, Brussels, Belgium,
Belgium: ICST, 2013, pp. 63–72.

[17] P. Di Sanzo, F. Quaglia, B. Ciciani, A. Pellegrini, D. Didona, P. Romano,
R. Palmieri, and S. Peluso, “A flexible framework for accurate simu-
lation of cloud in-memory data stores,” Simulation Modelling Practice
and Theory, vol. 58, pp. 219–238, nov 2015.

[18] S. Rampersaud and D. Grosu, “A Sharing-Aware Greedy Algorithm for
Virtual Machine Maximization,” in IEEE 13th International Symposium
on Network Computing and Applications, ser. NCA, 2014, pp. 113–120.

[19] G. Xu, J. Pang, and X. Fu, “A load balancing model based on cloud
partitioning for the public cloud,” Tsinghua Science and Technology,
vol. 18, no. 1, pp. 34–39, 2013.

[20] L. A. F. Leite, C. E. M. D. Santos, D. Cordeiro, M. A. Gerosa, and
F. Kon, “Deploying Large-Scale Service Compositions on the Cloud
with the CHOReOS Enactment Engine,” in IEEE 13th International
Symposium on Network Computing and Applications, ser. NCA, 2014,
pp. 121–128.

[21] P. Mehra and B. W. Wah, “Automated Learning of Workload Measures
for Load Balancing on a Distributed System,” 1993 International
Conference on Parallel Processing - ICPP’93, vol. 3, 1993.

[22] M. Randles, D. Lamb, and A. Taleb-Bendiab, “A comparative study
into distributed load balancing algorithms for cloud computing,” 24th
IEEE International Conference on Advanced Information Networking
and Applications Workshops, WAINA 2010, pp. 551–556, 2010.

[23] P. Di Sanzo, D. Rughetti, B. Ciciani, and F. Quaglia, “Auto-tuning
of Cloud-Based In-Memory Transactional Data Grids via Machine
Learning,” in 2012 Second Symposium on Network Cloud Computing
and Applications, ser. NCCA. IEEE, dec 2012, pp. 9–16.

[24] P. Di Sanzo, F. M. Molfese, D. Rughetti, and B. Ciciani, “Providing
Transaction Class-Based QoS in In-Memory Data Grids via Machine
Learning,” in 2014 IEEE 3rd Symposium on Network Cloud Computing
and Applications, ser. NCCA. IEEE, feb 2014, pp. 46–53.

[25] A. P. Negralo, M. Adaixo, L. Veiga, and P. Ferreira, “On-Demand
Resource Allocation Middleware for Massively Multiplayer Online
Games,” in 2014 IEEE 13th International Symposium on Network
Computing and Applications, 2014, pp. 71–74.

[26] A. Pellegrini, P. Di Sanzo, and D. R. Avresky, “A Machine Learning-
based Framework for Building Application Failure Prediction Models,”
in Proceedings of the 20th IEEE Workshop on Dependable Parallel,
Distributed and Network-Centric Systems, ser. DPDNS. IEEE Com-
puter Society, 2015.

[27] R. Tibshirani, “Regression Shrinkage and Selection Via the Lasso,”
Journal of the Royal Statistical Society, Series B, vol. 58, pp. 267–288,
1994.

[28] E. Alpaydin, Introduction to Machine Learning, 3rd ed., 2014.
[29] Y. Wang and I. H. Witten, “Inducing Model Trees for Continuous

Classes,” in Procedings of the 9th European Conference on Machine
Learning, 1997, pp. 128–137.

[30] H. A. Chipman, E. I. George, and R. E. Mcculloch, “Extracting
Representative Tree Models From a Forest,” in IPT Group, IT Division,
CERN, 1998, pp. 363–377.

[31] C. Cortes and V. Vapnik, “Support-Vector Networks,” Machine Learn-
ing, vol. 20, no. 3, pp. 273–297, 1995.

[32] J. A. K. Suykens and J. Vandewalle, “Least Squares Support Vector
Machine Classifiers,” Neural Processing Letters, vol. 9, no. 3, pp. 293–
300, 1999.

[33] D. R. Avresky and N. Natchev, “Dynamic reconfiguration in computer
clusters with irregular topologies in the presence of multiple node and
link failures,” IEEE Transactions on Computers, vol. 54, no. 5, pp.
603–615, 2005.

[34] L. Wang and E. Gelenbe, “Adaptive Dispatching of Tasks in the Cloud,”
IEEE Transactions on Cloud Computing, vol. pp, no. 1, pp. 1–1, jan
2015.

[35] W. D. Smith, “TPC-W: Benchmarking an ecommerce solution,” 2000.
[36] T. Bezenek, T. Cain, R. Dickson, T. Heil, M. Martin, C. McCurdy,

R. Rajwar, E. Weglarz, C. Zilles, and M. Lipasti, “Characterizing a Java
implementation of TPC-W,” in Proceedings of the Third Workshop On
Computer Architecture Evaluation Using Commercial Workloads, 2000.

[37] MySQL, “MySQL database server,” http://www.mysql.com, 2004.

