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Abstract 

Epidemics, pandemics, and disease emergence events all underscore the need to predict zoonotic 

pathogen spillover. Because cross-species transmission is inherently hierarchical, involving 

processes that occur at varying levels of biological organization, such predictive efforts can be 

complicated by the many scales and vastness of data potentially required for forecasting. A wide 

range of approaches are currently used to forecast spillover risk (e.g., macroecology, pathogen 

discovery, surveillance of human populations, among others), each of which is bound within 

particular phylogenetic, spatial, and temporal scales of prediction. Here, we contextualize these 

diverse approaches within their forecasting goals and resulting scales of prediction to illustrate 

critical areas of conceptual and pragmatic overlap. Specifically, we focus on an ecological 

perspective to envision a research pipeline that connects these different scales of data and 

predictions from the aims of discovery to intervention. Pathogen discovery and predictions 

focused at the phylogenetic scale can first provide coarse and pattern-based guidance for which 

reservoirs, vectors, pathogens are likely to be involved in spillover, thereby narrowing 

surveillance targets and where such efforts should be conducted. Next, these predictions can be 

followed with ecologically driven spatiotemporal studies of reservoirs and vectors to quantify 

spatiotemporal fluctuations in infection and to mechanistically understand how pathogens 

circulate and are transmitted to humans. This approach can also help identify general regions and 

periods for which spillover is most likely. We illustrate this point by highlighting several case 

studies where long-term, ecologically focused studies (e.g., Lyme disease in the northeast United 

States, Hendra virus in eastern Australia, Plasmodium knowlesi in Southeast Asia) have 

facilitated predicting spillover in space and time and facilitated design of possible intervention 

strategies. Such studies can in turn help narrow human surveillance efforts and help refine and 

improve future large-scale, phylogenetic predictions. We conclude by discussing how greater 

integration and exchange between data and predictions generated across these varying scales 

could ultimately help generate more actionable forecasts and interventions.  
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Introduction 1 

Scale is a key challenge for developing actionable forecasts of pathogen spillover. The processes 2 
that connect reservoir and recipient hosts to facilitate cross-species transmission—which include 3 
infection dynamics in reservoirs, release of infectious agents and survival in the environment, 4 
and recipient host exposure and susceptibility to infection—are inherently hierarchical and occur 5 
over multiple scales of biological organization [1]. Efforts to predict pathogen spillover can thus 6 
be complicated by the many scales and vastness of data potentially required for such forecasts 7 
[Washburne et al., this issue]. However, recent epidemics (e.g., Ebola virus in West Africa [2]), 8 
pandemics (e.g., Zika virus across the Americas [3]), and disease emergence events (e.g., 9 
Plasmodium knowlesi in Malaysia [4]) underscore the need to improve such predictive efforts. 10 

Any prediction of pathogen spillover will be bound to a specific scale of space and time 11 
[5], and these scales are determined by objectives of the particular forecast. We rarely aim to 12 
predict an individual that will become infected with a zoonotic pathogen; instead, forecasts often 13 
aim to predict the region and period within which interventions are practical. As an analogue, 14 
weather forecasts do not aim to predict the specific time and place of a particular thunderstorm 15 
but instead predict the probability of rainfall over regional spatial scales (e.g., cities) at hourly, 16 
daily, and weekly temporal scales. Forecasts of pathogen spillover are further restricted not only 17 
to spatial and temporal scales but also to the scale of organisms for which we forecast risk (e.g., 18 
reservoirs, vectors, pathogens). We refer to this as the “phylogenetic scale”, following recent 19 
developments in ecology and evolution, as it can be defined along a tunable DNA sequence 20 
similarity or given phylogenetic depth [6,7]. As the concept of scale is based upon the order of 21 
entities within some hierarchy (e.g., for spatial scale, continents, biomes, ecoregions, etc [8]), 22 
phylogenetic scale can accordingly encompass several measures, including not only taxonomic 23 
ranks of organisms (e.g., family, genus, species) but also clade age, clade size, and node-to-root 24 
distance, among others [9]. Though we use the term “phylogenetic scale” to be inclusive, its 25 
application here is generally synonymous with taxonomic level. Any spillover prediction will 26 
thus correspond to a particular phylogenetic scale or scales (i.e., a particular lineage of pathogens 27 
from a particular taxon of reservoirs or vectors) within a particular region of space and time. 28 

Various approaches are currently used to forecast spillover risk within the bounds of 29 
these scales of prediction. Many macroecological studies focus on processes located upstream in 30 
the spillover pathway and have thus examined trait profiles or cladistic patterns in which species 31 
are likely to serve as reservoirs or vectors of zoonotic pathogens. For example, rodents with a 32 
particularly fast pace of life are more likely to host zoonotic pathogens [10]. Related approaches 33 
have been applied to pathogens [11], and recent work has used viral sequences to predict 34 
reservoirs and vectors [12]. By generating predictions at the phylogenetic scale, these approaches 35 
can guide surveillance, and mapping distributions of known or predicted reservoirs, vectors, and 36 
zoonoses can allow spatial predictions that identify regions where spillover is likely [13,14]. 37 
Given phylogenetic and spatial biases in such research [15,16], a related approach has used 38 
pathogen discovery to characterize pathogen diversity; examples include but are not limited to 39 
the U.S. Agency for International Development PREDICT project and Global Virome Project 40 
[17,18]. Many pathogen discovery projects also enhance local capacity and conduct human 41 
surveillance (e.g., VIZIONS in Vietnam [19]), which is another (but not mutually exclusive) 42 
approach [Das et al., this issue]. Spatiotemporal human surveillance can identify spillovers by 43 
screening persons with symptoms that are not easily diagnosable [20] and can facilitate early 44 
detection of known pathogens [21]. These approaches focus on upstream (e.g., reservoirs) and 45 



downstream (e.g., humans) processes of the spillover pathway and can generate predictions at 46 
different scales, which has prompted discussions of how best to allocate research efforts [22,23].  47 

The problem of scale has been well described for ecology and evolution [8,24] and could 48 
inform discussions of how various research approaches and data streams can contribute to 49 
forecasting pathogen spillover risks [22,25,26]; in particular, scales define the interface between 50 
data collection, forecasts, and interventions. Here, we argue that these various methods, data 51 
streams, and predictions fit along a research pipeline that spans from discovery to intervention 52 
(e.g., Plowright et al. 2019), and we accordingly contextualize these approaches within their 53 
forecasting goals and resulting scales of prediction (Table 1). On the one hand, many approaches 54 
aim to predict spillover of novel pathogens (e.g., pathogen discovery in wildlife or in human 55 
populations), and these efforts and the data they collect inform the phylogenetic scales of 56 
prediction (e.g., identifying likely reservoir, vector, and pathogen lineages involved in spillover) 57 
and by extrapolation the spatial scales of prediction (e.g., mapping distributions). On the other 58 
hand, a different suite of efforts aims to predict the spillover of known pathogens, which often 59 
focus explicitly on prediction at the scales of space and time within a well-defined phylogenetic 60 
scale (e.g., yellow fever virus [Childs et al., this issue] or Hendra virus [27]). A central concept 61 
connecting these different approaches is scale, but no ecological system has a single scale for 62 
which complex phenomena such as spillover should be studied or predicted [24]. For pathogen 63 
spillover, the scales for which we aim to forecast risk (i.e., phylogenetic, spatial, temporal) vary, 64 
and the resulting predictions made across these variable scales can have different applications.  65 

In this paper, we (i) highlight what practical information can be gained from data at 66 
different phylogenetic and spatiotemporal scales and (ii) identify areas of complement between 67 
coarse- and fine-scale forecasts through ecological perspective. Specifically, we envision a 68 
research pipeline that spans from discovery to intervention and connects the data and predictions 69 
provided by macroecology, pathogen discovery, and surveillance in wildlife and humans (Fig. 1). 70 
We also highlight statistical tools for defining the appropriate phylogenetic, spatial, and temporal 71 
scales at which such predictions can be made, which are necessary to better connect data with 72 
proposed interventions. The problem of predicting pathogen spillover is thus best framed as a 73 
challenge in identifying over what scales our data permit forecasts, at what benefits, and at what 74 
costs. Each of these can be quantified for improved surveillance and management decisions. 75 

 76 

Phylogenetic scales of spillover prediction 77 

Do lineages of reservoirs, vectors, and pathogens have common patterns in spillover occurrence? 78 
Phylogenetic predictions for which animals are likely to be reservoirs or vectors and which 79 
pathogens are likely to be zoonotic range from the phylogenetic scale of species to order or even 80 
class. Species-specific predictions, often generated from trait-based analyses and machine 81 
learning algorithms, can offer the most operable resolution of spillover forecasting given a 82 
sufficiently high degree of cross-validation (e.g., area under the receiver operating characteristic 83 
curve [AUC] for out-of-sample prediction) and resulting rank order of likely hosts of zoonotic 84 
pathogens. For example, boosted regression trees with high classification accuracy (AUC=87%) 85 
predicted 112 bat species to be within the 90th percentile of likely novel filovirus reservoirs [28]. 86 
Mapping the geographic distributions of these likely reservoirs further provided spatially explicit 87 
predictions, with Southeast Asia being a notable hotspot of filovirus-positive bat species where 88 
evidence has otherwise been moderate. Recent filovirus surveys of bats listed in this 90th 89 
percentile (e.g., Eonycteris spelaea) validate these fine-scale phylogenetic predictions [29]. 90 



Similar species-specific predictions have been generated for rodent zoonoses [10], Zika virus in 91 
mosquitoes and primates [14,30], and human-to-human transmissibility of zoonotic viruses [31]. 92 
Other trait-based approaches generate broader predictions focused on the life history profiles of 93 
likely reservoirs or zoonotic pathogens rather than species predictions [13,32,33].  94 

Phylogenetic predictions are also commonly generated at coarser scales, such as clades 95 
(Fig. 1a). Such efforts can be especially insightful when trait data are limited. A comprehensive 96 
study across mammal viruses found that host Order had greater predictive power for explaining 97 
variation in viral diversity compared to traits such as sympatry and body mass [13]. Similarly, 98 
trait-based analyses found no host traits to be predictive of how helminth infections in wildlife 99 
respond to environmental change, yet Old World primates showed high phylogenetic signal [34]; 100 
recent work on helminths in more urban vervet monkeys supports such cladistic predictions [35].  101 

In general, it may not be safe to assume a single phylogenetic scale (e.g., class, order, 102 
genus, species) captures any pattern in an ecological dataset. As traits driving spillover may 103 
evolve along branches in a phylogeny, there may not be any a priori reason to expect the most 104 
important driving patterns to be concentrated along branches of a fixed depth (e.g., only genus). 105 
A novel machine learning algorithm, phylogenetic factorization, was recently developed to more 106 
flexibly identify phylogenetic scales at various depths (e.g., genera and families simultaneously) 107 
underlying patterns in ecological data [36]. A recent application of this method to the taxonomy 108 
of mammal viruses found that the propensity of viruses to be zoonotic is best partitioned along 109 
clades of different phylogenetic scales, such as the order Nidovirales, family Papillomaviridae, 110 
and genera Alphavirus and Deltaretrovirus [37]. Such consideration of multiple phylogenetic 111 
scales in future studies of cladistic patterns in reservoirs and vectors would be informative.  112 

Generating even coarse predictions of reservoir, vector, or pathogen clades involved in 113 
spillover (Fig. 1a) depends on pathogen discovery and its data on pathogen diversity. However, 114 
such data streams and phylogenetic forecasts provide the first steps that are needed to move from 115 
discovery to intervention by narrowing the range of which reservoirs, vectors, and pathogens 116 
should be the focus of surveillance and where such efforts should be conducted (Fig. 1b). This 117 
initial stage of the pipeline can apply to diverse contexts of spillover (Table 1). Predicting broad 118 
clades of reservoirs or vectors could be especially important for guiding surveillance of novel 119 
pathogens for which little a priori data exist [26]; for example, viral genome sequences were 120 
used to forecast artiodactyls as the likely origin of the recently emerged Bas-Congo virus [12]. 121 
For known pathogens of public health concern, coarse phylogenetic predictions can still guide 122 
field surveillance; for example, Old World fruit bats, primates, and artiodactyls could be targeted 123 
for further Ebola virus survey efforts [Schmidt et al., this issue]. To move toward interventions, 124 
however, these phylogenetic predictions should be next followed by spatiotemporal studies. 125 

 126 

Spatiotemporal scales of spillover prediction 127 

As pathogen circulation in the reservoir or vector over space and time is the first requisite for 128 
spillover [1], the next stage of the pipeline from discovery to intervention requires phylogenetic 129 
predictions to be supplemented by spatial and temporal surveillance (Fig. 1c). Specifically, such 130 
studies in the proposed reservoir(s) or vector(s) are necessary to quantify spatiotemporal 131 
fluctuations in infection (i.e., pathogen pressure) [Plowright at al., this issue] and assess their 132 
ecological drivers [38–42]. Mechanistic models can help explain whether pathogen pressure is 133 
driven by birth seasonality, metapopulation dynamics, environmental synchrony, and within-host 134 
processes, among others [Glennon et al., this issue][43,44]. Models that integrate such drivers 135 



can be highly predictive of spillover. For example, an ecologically driven model of yellow fever 136 
virus spillover that integrated various spatiotemporal data streams had the strongest predictive 137 
accuracy (AUC=0.79) when considering cyclical infection dynamics in wild primate reservoir 138 
hosts; critically, models considering the ecology of mosquito vectors and wild primate reservoirs 139 
were more predictive than those that also included human population size and immunity [Childs 140 
et al., this issue]. As with phylogenetic predictions, such ecologically driven efforts may not 141 
generate exact spatial and temporal spillover predictions. However, these coarser predictions at 142 
the scale of months, seasons, geographic regions, and habitat types can be actionable for guiding 143 
spillover prevention, surveillance, and possible interventions (Fig. 1c).  144 

As with phylogenetic predictions, one may not wish to a priori assume a given spatial 145 
(e.g., 5 km, 50 km) and temporal scale (e.g., weeks, months) for studying infection dynamics in 146 
reservoirs and vectors. Analyses of spatiotemporal autocorrelation of case data in recipient hosts 147 
or prevalence in related sylvatic systems can facilitate sampling decisions by determining the 148 
spatial and temporal scales at which sampling should occur (e.g., by identifying the range of 149 
spatial and temporal dependence with semivariograms) [45]. Where spatially and temporally 150 
explicit data exist across many reservoir or vector species, phylogenetic factorization could be 151 
applied to identify which spatial and temporal scales may be most appropriate for surveillance or 152 
intervention for specific clades [36]. Determining the spatial and temporal scales at which 153 
infection is correlated can also help identify ecological correlates of infection dynamics and 154 
spillover risk. For example, spatial dependence across large scales can suggest effects of major 155 
climatic drivers, while spatial dependence between nearby locations can instead suggest a highly 156 
localized infection process [46,47]. Additionally, other time series analyses can provide further 157 
epidemiological inference and timescales of spillover risk (e.g., early warning signals) [48]. 158 

Spatiotemporal surveillance of human populations, especially those in regular contact 159 
with wildlife, is also important for predicting places and times of high spillover risk [22]. For 160 
example, focused surveillance for Ebola virus in humans within West and Central Africa could 161 
alert health systems to early virus detection and avert costs of containing large outbreaks [21]. 162 
However, focusing on spatiotemporal data and predictions in the context of reservoirs and 163 
vectors can be particularly informative given the hierarchical nature of spillover, as processes 164 
that occur upstream in the pathway to spillover could have a greater influence on human risk 165 
[Childs et al., this issue; Washburne et al., this issue]. Identifying regions and times of high 166 
pathogen pressure in proposed reservoirs or vectors (e.g., Fig. 1c) could also help prioritize 167 
human surveillance. Lastly, interventions focused upstream on reservoirs or vectors could be 168 
more cost effective and have sustained influence on minimizing risk [Sokolow et al, this issue].  169 

Below, we highlight three case studies that demonstrate the value of spatiotemporal data 170 
and understanding ecological mechanism to generate actionable predictions of spillover risks and 171 
to guide long-term interventions (Fig. 2). However, we acknowledge that such efforts can 172 
accordingly carry high logistical costs (e.g., years to establish seasonal pulses of infection from 173 
reservoir populations), and thus ecologically driven studies should be viewed as complementary 174 
to the recipient host surveillance efforts involved in a response to spillover.   175 

 176 

Lyme disease 177 

Lyme disease, which is caused by the bacterium Borrelia burgdorferi and transmitted to humans 178 
by Ixodes ticks, is the most common vector-borne disease in the United States [49]. Ticks require 179 
three bloodmeals to complete their life cycle. As larvae are born naïve, ticks only obtain Borrelia 180 



infection after feeding on a competent small vertebrate host. Infected larvae then molt to become 181 
nymphs, which are the most likely life stage to transmit infection to humans. Accordingly, the 182 
density of infected nymphal ticks is a useful proxy for human Lyme disease risk [50,51]. 183 

Two decades of consistent annual monitoring across replicate sites for the density of 184 
infected nymphs and relevant biotic and abiotic covariates (e.g., acorn abundance, small mammal 185 
abundance, deer abundance, temperature, precipitation) have shown that Lyme disease risk can 186 
be predictable [52–54]. A given year’s density of infected nymphs is predicted by the prior 187 
year’s abundance of white-footed mice and eastern chipmunks and by acorn abundance from two 188 
years prior [52]. Years with strong acorn mast generate high rodent abundances in the next year, 189 
which subsequently drive high nymphal abundances the following year. Such analyses drawn 190 
from years of repeated, ecologically driven surveillance thus show that masting indices can 191 
provide relevant spatial and temporal (e.g., two-year lag) predictions for spillover risk (Fig. 2a).  192 

In addition to identifying regions and years for which human risk of exposure to infected 193 
nymphs is high, this mechanistic understanding highlights opportunities to interrupt Borrelia 194 
transmission by targeting small mammal reservoirs and their contribution to hosting and 195 
infecting larval ticks. Field experiments have found that direct immunization of white-footed 196 
mice can reduce nymphal infection prevalence [55], though effects were strongest when oral bait 197 
vaccines were used to immunize the broader small mammal host community [56]. Such 198 
ecological approaches were more effective across longer study durations, highlighting how such 199 
interventions may be more sustainable [Sokolow et al., this issue]. Ongoing efforts through The 200 
Tick Project (https://www.tickproject.org/) are further assessing what combination of acaricide 201 
treatments, deployed at which spatial and temporal scales, are most capable of reducing risk [57].  202 

 203 

Hendra virus 204 

Hendra virus is a RNA virus that emerged in 1994, causing an outbreak of a lethal respiratory 205 
and neurological disease in horses and subsequently to humans that has been followed by over 206 
60 spillover events through 2018 across eastern Australia [58,59]. Flying foxes of the genus 207 
Pteropus are the natural reservoir hosts, and transmission of virus to horses is assumed to occur 208 
through the ingestion of food or water contaminated with urine [39,60]. Surveillance shows 209 
pulses of bat viral shedding in winter [61], but these do not follow uniform seasonality [47]. 210 

Despite the relatively small number of spillover events compared to Lyme disease cases, 211 
a mechanistic understanding of Hendra virus spillover informed by long-term ecological work 212 
has likewise provided coarse predictions over space and time [58]. The unprecedented cluster of 213 
spillovers in 2011 was preceded by distinct environmental conditions: a rise in the southern 214 
oscillation index in 2010 that shifted eucalypt plants, the preferred nectar source of bats, into a 215 
growth rather than a flowering phase, in turn restricting food availability [62]. Such food 216 
shortages have been exacerbated by agricultural land conversion and cause periods of intense 217 
nutritional stress for bats [63,64]. Nutritional stress not only drives flying foxes into urban 218 
habitats, where they form sedentary camps near abundant but poor-quality food resources, but 219 
also likely amplifies Hendra virus shedding by impairing bat immunity; for example, nutritional 220 
stress was associated with greater seroprevalence in little red flying foxes [65,66] (Fig. 2b).  221 

Recently, environmental conditions and weather events in eastern Australia mirrored 222 
those seen prior to the 2011 Hendra virus spillovers; a severe El Niño in late 2015 and early 2016 223 
was followed by a rise in the southern oscillation index in winter 2016 and a subsequent food 224 
shortage in summer 2016 with concomitant nutritional stress observed in flying foxes [58]. A 225 
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spillover event in horses was coincident in space and time with nutritional stress in flying foxes 226 
[67]. This chain of predictable events enabled researchers to suggest veterinarians increase 227 
winter monitoring of horses and urge precautionary actions such as vaccination [58]. As with 228 
Lyme disease, a mechanistic ecological understanding facilitated generating such predictions.  229 

 230 

Plasmodium knowlesi 231 

A species of zoonotic malaria, Plasmodium knowlesi primarily circulates in monkeys across 232 
Southeast Asia. While human infections were first recorded in the 1960s, only since 2004 have 233 
larger epidemiological clusters been recorded [4]; in some regions (e.g., Sabah, Malaysia), P. 234 
knowlesi accounts for the majority of all malaria cases [68]. Wild macaques and leaf monkeys 235 
are the primary reservoirs, and transmission occurs through an infectious bite of Anopheles 236 
leucosphyrus mosquitoes [69]. Most if not all human cases are spillover from primates [70].  237 

Unlike Lyme disease and Hendra virus, most research on P. knowlesi has focused on 238 
humans, including a large-scale case–control study, MONKEYBAR, in the Philippines and 239 
Malaysian Borneo [71]. Human risk factors for infection include recent activities within or at the 240 
edge of forests (e.g., vegetation clearance, agriculture) where wild macaques occur [72,73], and 241 
human cases have been positively associated with high degrees of local forest cover (2 km) and 242 
recent forest loss [74]. In regions where P. knowlesi cases are less common, human risk has been 243 
associated with land clearing activities within 500 meters of an exposed person’s home [75].  244 

These findings suggest land conversion may alter interactions between humans, 245 
reservoirs, and vectors differently at distinct spatial scales. Recent work thus used machine 246 
learning tools to flexibly consider the effects of multiple spatial scales on malaria cases [76]. 247 
Risk was high when the proportion of cleared land within 1 km was low, suggesting that isolated 248 
households could be more prone to high vector densities in forested habitats. The effect of 249 
deforestation was also high at larger spatial scales (4–5 km), suggesting elevated human 250 
exposure to mosquitoes during commutes to agricultural work or a change in macaque behavior 251 
or demography [76]. Such large-scale deforestation could reduce reservoir host densities and 252 
promote a subsequent behavior change in mosquitoes in these cleared habitats [77]. While 253 
identifying the spatial scales of human risk cannot identify the processes by which deforestation 254 
drives P. knowlesi spillover, such work can narrow the space of possible ecological mechanisms 255 
to be elucidated by detailed spatiotemporal studies of reservoirs and vectors (Fig. 2c) [78]. 256 

 257 

Interplay between phylogenetic and spatiotemporal scales of prediction 258 

The above examples highlight that ecologically minded spatiotemporal studies of reservoirs and 259 
vectors can provide actionable predictions that can be used to mitigate spillover risks. These 260 
predictions are often coarse in scale and cannot identify the precise spatial location and narrow 261 
timepoint of observed spillover events. However, predictions need not be generated on extremely 262 
fine scales to be useful for prevention or intervention. For Lyme disease, human risk is greatest 263 
in regions with high oak abundance and where acorn masting occurred two years prior. People 264 
can become more vigilant in spring and summer when nymphs are questing, and ecological 265 
interventions can work to break the transmission cycle between rodents and ticks [52,54,57]. For 266 
Hendra virus, veterinarians in regions with active flying fox camps can expect to more closely 267 
monitor horse health during the seasons that follow notable shifts in the southern oscillation 268 
index or observed nutritional stress events in flying foxes [47,58,62]. Although the ecological 269 
mechanisms connecting deforestation to P. knowlesi spillover remain less resolved than for 270 



Lyme disease or Hendra virus, observed associations between human cases and different spatial 271 
scales of land conversion can guide future ecological studies as well as spatially explicit 272 
interventions [74,76,78]. Such work collectively highlights that spillover can be predicted, but at 273 
varying phylogenetic, spatial, and temporal scales, which carry distinct benefits and costs.  274 

We here argue that generating phylogenetic predictions, conducting ecologically driven 275 
spatiotemporal studies, and surveying human populations are complementary approaches to 276 
investigating and predicting spillover. Ecological studies at fine spatial and temporal scales can 277 
complement large-scale pathogen discovery projects, macroecology of zoonoses in reservoirs 278 
and vectors, and human surveillance (Fig. 1). Pathogen discovery can generate the data needed to 279 
narrow the wide range of which reservoirs, vectors, and pathogens should be targets of 280 
surveillance. Detailed ecological field studies can next generate a mechanistic understanding of 281 
pathogen circulation and spillover that coarsely predict when and where cross-species 282 
transmission is most likely. This work can also identify ecological interventions that could occur 283 
prior to human exposure and that may have pronounced and long-term impacts on limiting risks. 284 
Further, spatiotemporal studies of reservoirs and vectors can also narrow human surveillance 285 
efforts toward pathogens with the greatest likelihood for being zoonotic and around those regions 286 
and periods where spillover is most likely. Indeed, projects such as PREDICT currently adhere to 287 
a similar model by integrating wildlife and human data streams to guide surveillance efforts [25]. 288 
Moreover, these various data streams on spatial and temporal infection in reservoirs, vectors, and 289 
recipient hosts could help refine and improve macroecological analyses and predictions (Fig. 1d). 290 
This pipeline connecting macroecology, pathogen discovery, and surveillance could facilitate 291 
synergistic hypothesis generation (i.e., prediction) and testing (i.e., surveillance) to continually 292 
refine research efforts. This integrated approach also highlights how spillover predictions can 293 
catalyze both discovery and intervention. Greater exchange between macroecology, pathogen 294 
discovery, and surveillance (e.g., through interdisciplinary working groups [Becker et al., this 295 
issue; [79,80]) could ultimately help generate more actionable predictions and public health 296 
interventions to limit pathogen spillover risks.  297 
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Tables 535 
 536 
Table 1. Summary of select approaches to predict pathogen spillover, stratified by the goal and 537 
the scales of predictions. 538 

Prediction goal Approach Scale Example method Source 

Emergence of 

novel zoonotic 

pathogens 

Reservoir or 

vector 

surveillance 

Phylogenetic 

(reservoir, 

vector, 

pathogen), 

space 

Quantify pathogen diversity across 

reservoirs or vectors globally 
[17] 

Macroecology 

Phylogenetic 

(reservoir, 

vector, 

pathogen), 

space1 

Machine learning to identify likely 

or novel reservoirs or vectors 
[10,12] 

Human 

surveillance 

Phylogenetic 

(pathogen), 

space 

Survey human populations with 

high wildlife contact 
[22] 

 

Where and 

when known 

pathogens may 

spillover 

Macroecology 
Phylogenetic 

(host), space1 

Machine learning to identify 

which reservoirs to sample 
[14] 

Human 

surveillance 
Space, time 

Improve diagnostic capacity to 

detect early zoonotic outbreaks 
[21] 

Early warning 

signals 
Time 

Detect transition from stuttering 

chains to sustained transmission 
[48] 

Reservoir 

surveillance 
Space, time 

Identify ecological predictors of 

pathogen spillover (Fig. 2) 
[52,58] 

1Space is here implicit through mapping the distribution of predicted reservoirs or vectors 539 
 540 
 541 
  542 



Figures 543 
 544 
Figure 1. Interplay between scales of pathogen spillover prediction and a proposed pipeline for 545 
their integration. Even coarse phylogenetic predictions (a) can narrow the scope of what 546 
reservoirs and vectors for a given set of pathogens, and in which geographic regions, should be 547 
prioritized for surveillance (b); examples based on trait-based or cladistic analyses include 548 
filoviruses in Neotropical bats [28], zoonotic pathogens in European rodents [10], and helminths 549 
in Old world primates [34]. Spatiotemporal studies can next elucidate how zoonotic pathogens 550 
circulate in reservoir or vector populations, identify broad spatial and temporal scales at which 551 
pathogen pressure (e.g., shedding) is greatest, and uncover the ecological mechanisms leading to 552 
spillover (c). Based on these regions and times where risk is greatest (circles), managers can 553 
design preemptive interventions and prioritize human surveillance. Data from spatiotemporal 554 
studies can further address information gaps and refine future macroecological analyses and 555 
predictions in an iterative fashion (d). The map (b) is adapted from Han et al. [10], and 556 
perspective plots (c) were generated using random realizations of a binomial point process with 557 
varying intensities [81]; both are used here simply as heuristic devices. 558 
 559 

 560 
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Figure 2. Predictive insights into pathogen spillover risk gained from long-term, spatiotemporal 562 
studies of reservoir hosts and vectors. For Lyme disease in North America (a) and Hendra virus 563 
in eastern Australia (b), ecological and mechanistic approaches have identified both spatial and 564 
temporal proxies for spillover risk in recipient hosts. Columns indicate ecological correlates of 565 
spillover risk at varying time lags, and colors represent differentiate those that occur in autumn 566 
and winter (blue) or in spring and summer (yellow) for systems with strong seasonality (a–b). 567 
The ecological mechanisms linking land clearance with P. knowlesi spillover in Southeast Asia 568 
are less well understood (c), but analyses of spatial scale and human cases have generated 569 
hypotheses for spatiotemporal studies of reservoirs and vectors.     570 
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