
P
o
S
(
I
S
G
C
2
0
1
9
)
0
1
4

Integration of the Italian cache federation within the
CMS computing model

Diego Ciangottini∗

INFN, Sez. Perugia, Italy
E-mail: diego.ciangottini@pg.infn.it

Giuseppe Bagliesi
INFN, Sez. Pisa, Italy
E-mail: giuseppe.bagliesi@pi.infn.it

Massimo Biasotto
INFN, Sez. Legnaro, Italy
E-mail: massimo.biasotto@lnl.infn.it

Tommaso Boccali
INFN, Sez. Pisa, Italy
E-mail: tommaso.boccali@cern.ch

Daniele Cesini
INFN, Sez. Bologna, Italy
E-mail: daniele.cesini@cnaf.infn.it

Giacinto Donvito
INFN, Sez. Bari, Italy
E-mail: giacinto.donvito@ba.infn.it

Antonio Falabella
INFN, Sez. Bologna, Italy
E-mail: antonio.falabella@cnaf.infn.it

Enrico Mazzoni
INFN, Sez. Pisa, Italy
E-mail: enrico.mazzoni@pi.infn.it

Daniele Spiga
INFN, Sez. Perugia, Italy
E-mail: daniele.spiga@pg.infn.it

Mirco Tracolli
INFN, Sez. Perugia, Italy
E-mail: mirco.tracolli@pg.infn.it

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:diego.ciangottini@pg.infn.it
mailto:giuseppe.bagliesi@pi.infn.it
mailto:massimo.biasotto@lnl.infn.it
mailto:tommaso.boccali@cern.ch
mailto:daniele.cesini@cnaf.infn.it
mailto:giacinto.donvito@ba.infn.it
mailto:antonio.falabella@cnaf.infn.it
mailto:enrico.mazzoni@pi.infn.it
mailto:daniele.spiga@pg.infn.it
mailto:mirco.tracolli@pg.infn.it


P
o
S
(
I
S
G
C
2
0
1
9
)
0
1
4

The next decades at HL-LHC will be characterized by a huge increase of both storage and com-
puting requirements (between one and two orders of magnitude). Moreover we foresee a shift
on resources provisioning towards the exploitation of dynamic (on private or public cloud and
HPC facilities) solutions. In this scenario the computing model of the CMS experiment is pushed
towards an evolution for the optimization of the amount of space that is managed centrally and
the CPU efficiency of the jobs that run on “storage-less” resources. In particular the computing
resources of the “Tier2” sites layer, for the most part, can be instrumented to read data from a
geographically distributed cache storage based on unmanaged resources, reducing, in this way,
the operational efforts by a large fraction and generating additional flexibility.
The objective of this contribution is to present the first implementation of an INFN federation
of cache servers, developed also in collaboration with the eXtreme Data Cloud EU project. The
CNAF Tier-1 plus Bari and Legnaro Tier-2s provide unmanaged storages which have been orga-
nized under a common namespace. This distributed cache federation has been seamlessly inte-
grated in the CMS computing infrastructure, while the technical implementation of this solution
is based on XRootD, largely adopted in the CMS computing model under the “Anydata, Anytime,
Anywhere project” (AAA).
The results in terms of CMS workflows performances will be shown. In addition a complete
simulation of the effects of the described model under several scenarios, including dynamic hybrid
cloud resource provisioning, will be discussed. Finally a plan for the upgrade of such a prototype
towards a stable INFN setup seamlessly integrated with production CMS computing infrastructure
will be discussed.

International Symposium on Grids Clouds 2019, ISGC2019
31st March - 5th April, 2019
Academia Sinica, Taipei, Taiwan

∗Speaker.



P
o
S
(
I
S
G
C
2
0
1
9
)
0
1
4

Integration of the Italian cache federation within CMS computing model Diego Ciangottini

1. Introduction

In the current computing model of the CMS [1] experiment at LHC [2], the recorded and
simulated data are distributed and replicated via a central management system across a worldwide
network of custodial storage sites. There are different typologies of datasets created for different
purposes that have to be managed with different policies. For instance, the most frequently used
samples might be kept on disk ready to be accessed with the lowest latency possible, while custodial
data and ,more in general, legacy data that are rarely accessed can be stored on tape facilities. In
this model the computing payloads are sent and distributed across the Grid sites based on the input
data location (preplacement) in order to reduce inefficiencies from transfer latencies. Nevertheless
there are few cases where CMS payloads run at one site while reading data from a remote location:

• fallback mechanism for which, at certain sites, if the local storage is for some reason unable
to serve the requested file, the request is redirected to the remote XRootD CMS federation.

• overflow mechanism that consists in steering jobs assigned to a busy site towards a near one
with idle slots reading remotely from the original tier.

This model is more focused on coherence and data availability guarantee than on operational
and disk space optimization. On the other hand, a centrally managed approach can be intrinsically
disk inefficient and slow on adaptation for the pace at which the user needs may change. A huge
increase of both storage and computing requirements are foreseen for the HL-LHC era (between
one and two orders of magnitude) and new kind of resources are covering a crescent amount of
needs (e.g. private or public cloud and HPC facilities). As a consequence, the CMS experiment is
looking for the optimization of the centrally managed space and the CPU efficiency of the jobs that
will eventually run on “storage-less” resources. In particular “Tier2” sites, for the most part, can
be instrumented to read data from a remote source, eventually enabling the use of a geographically
distributed cache storage based on unmanaged resources. Consequently a reduction of the oper-
ational efforts for maintaining managed custodial storage and an increase in the flexibility of the
system is expected. Among several R&D activities willing to explore new approaches and models
for data access and data organization, one is the exploitation of data caches. The cache system
will appear as distributed and shared file system populated with the most requested data; in case of
missing information data access will fallback to the remote access. Already in the current imple-
mentation, a fraction of accessed data is read from a remote storage and this is a first motivation
for this activity. Moreover in a possible future scenario where a data-lake model would be imple-
mented, a protection layer against peaks of request to the centrally managed storage might be a key
factor along with the control on data access latency. The cache storage used for such a layer will
be by definition "non-custodial", thus reducing the overall operational costs.

The objective of this contribution is to present the first integration experience of an INFN fed-
eration of cache servers spanning over the CNAF Tier-1, Bari and Legnaro Tier-2s that provided
unmanaged storage organized under a common namespace with the use of XCache technology.
The technical implementation of this solution is based on XRootD [3], largely adopted in the CMS
computing model under the “Anydata, Anytime, Anywhere project” (AAA) [4]. First studies on

1



P
o
S
(
I
S
G
C
2
0
1
9
)
0
1
4

Integration of the Italian cache federation within CMS computing model Diego Ciangottini

Figure 1: Representation of a data lake implementation with a distributed cache layer. Few worldwide sites
have replicated data and both ordinary computing sites and dynamic resources access those data through a
network of geo-distributed cache servers.

CMS monitoring data regarding the analysis jobs access pattern over Italian Tier2’s will be pre-
sented, leading to an estimation of the possible improvements provided by the introduction of the
proposed solution at production scale for the Italian Tier2’s. In addition the first measurements
in terms of performances on real CMS workflows will be shown. Finally a brief description of a
Proof-of-Concept deployment of a “smart decision service” platform will be given. XCache server
has been instrumented to interact with the service enabling caching management through ML-based
algorithms.

2. CMS data access patterns

Several metadata of the CMS jobs [5] are collected and stored on a dedicated monitoring sys-
tem. For the purpose of this work, data relative to the information of the input datasets requested
by each job have been analyzed for the whole 2018. Data format considered for the following re-
sults are the most common ones requested by the analysis workflows, namely MINIAOD (recorded
data) and MINIAODSIM (simulation). Only user jobs requiring datasets in these formats and run-
ning in one of the italian Tier2’s have been analyzed and two main categories have been created
based on the data access pattern. In fact, as previously described, payloads can read data either
directly from the storage at the site where they are running or remotely from another site on the
grid. Therefore these two categories go under the label of “Local” and “Remote” in the results that
will be presented. In addition to normal operational fallback procedures, remote access can also
be triggered manually by users. A typical use case is a user that needs some data that are on a
“busy” site (few free running slots) and he wants to run at his local Tier2-3 computing resources.
The metrics evaluated in this work are the following:

2



P
o
S
(
I
S
G
C
2
0
1
9
)
0
1
4

Integration of the Italian cache federation within CMS computing model Diego Ciangottini

• sum of walltime: sum of all the running times considering the jobs running of the previous
month

• sum of CPU time: sum of all the CPU times considering the jobs running of the previous
month

• CPU efficiency: the ratio of “sum of CPU time”/“sum of walltime”

• number of hits: number of unique user workflows requiring a dataset

These metrics have been evaluated for each day over a “moving window” spanning over the
previous month; in other words, each day on the following plots collects the information of all the
jobs running in the month before. This approach allowed us to get a view of the overall behaviour
in terms of access patterns on a reasonable time scale, without suffering for daily fluctuation that,
when it comes to user driven activities, might be very significant. Fig. 2 shows the comparison of
the CPU efficiency for jobs reading data locally with respect the remote mode. Local deep aside,
where few big user tasks are running on particularly bad links, the average CPU loss in remote
mode is around 15%. This information has to be combined with the total amount of CPU hours
each reading mode covers. In Fig. 3 the amount of running time in remote mode is on average
2.5E9 seconds per month (equivalent to around 1k core/month), which is around 30% of the local
one.

Figure 2: Comparison of the CPU efficiency for jobs reading data locally with respect to the remote mode

In Fig. 4 the total amount of MINIAOD data stored at the Italian Tier2’s compared to the
amount of data requested by user jobs over one month period is shown. There is a clear feature
here, where the requested data size is consistently below the stored data available at the moment by
a factor of around 20%. In addition in Fig. 5-2 the results of the studies on data hit rates are shown.
These results show how a vast majority of the running time is spent reading data that are accessed
by more than one user workflow over a month and, in terms of volume, around two thirds of the
requested data are likely requested again in the same time window.

3



P
o
S
(
I
S
G
C
2
0
1
9
)
0
1
4

Integration of the Italian cache federation within CMS computing model Diego Ciangottini

Figure 3: Amount of running time in local mode compared to remote

Figure 4: Total amount of data stored compared to the amount of data requested by user jobs over one month
period

3. XCache geo-distributed CMS federation: Italian testbed

In a scenario as the one described by the results above, we investigated the possibility of
seamlessly integrating a geo-distributed cluster of cache servers in the CMS workflow, leveraging
the national high-bandwidth network to optimize the amount of disk space for user analysis inputs
and, in addition, to provide good performance in terms of CPU efficiency for user payloads. A
proof of concept has been deployed using resources provided by 3 Italian computing sites (namely
Legnaro and Bari Tier2s and CNAF). The setup (schematically summarized on Fig. 7) consists in
creating a cache federation thanks to the XCache technology [6] where all the 3 servers register

4



P
o
S
(
I
S
G
C
2
0
1
9
)
0
1
4

Integration of the Italian cache federation within CMS computing model Diego Ciangottini

Figure 5: Time spent by jobs requesting data accessed grouped by number of unique user workflows over
one month: at least one (blue), at least two (yellow) or three (green).

Figure 6: Size of the requested data grouped by number of unique user workflows over one month: at least
one (blue), at least two (yellow) or three (green).

themselves to a cache redirector that is responsible of steering the client request and, in this sense,
load balancing the cluster. Since the servers mediate the requests for a file that is available on the
current CMS XRootD remote federation, the setup is also meant to be propaedeutic for studies on
the effect of a cache layer in a data-lake scenario where data are stored in few remote custodial
sites.

We performed tests using real user workflows that consists in a data reduction for original
format to a series of tuples filtered by analysis needs. This is a good benchmark since it represents
a significant portion of user use cases. Input data for the workflow under study are stored at DESY

5



P
o
S
(
I
S
G
C
2
0
1
9
)
0
1
4

Integration of the Italian cache federation within CMS computing model Diego Ciangottini

Figure 7: Schematic representation of the INFN distributed cache prototype

Scenario Time wasted CPU Efficiency
Remote with No Cache 7% 78%

Cold Cache 3% 87%
Warm Cache 2% 92%

Local with No Cache 2% 94%

Table 1: Time wasted and CPU efficiency of real user analysis workflow in different

Tier-2. We measured performances for the same payload under different scenarios:

• Remote with No Cache: run payloads at available Italian Tier2s while reading input data
remotely from original site.

• Cold Cache: run payloads at available Italian Tier2s and seamlessly use the regional cache
cluster for input data. Starting from an empty cache, so testing performances of proxy while
caching mode.

• Warm Cache: after Cold Cache test, re-run the same workflow to test performances when
data already in cache are requested.

• Local with No Cache: run payloads where data are stored (DESY in this case).

In Tab. 1 you can see the results of these measurement showing the time wasted on jobs that
failed and that were eventually re-tried along with the CPU efficiency calculated as the total job
running time over the total CPU time.

The results show how at the first request, when the cache servers do not have the input data
cached on disk, the performances in terms of CPU efficiency are already 10% better than the case
in which the remote access is done directly from the computing node to the original site. This is
possible thanks to the latency hiding effect introduced by the cache read-ahead capability. In fact
when a file not present on disk is requested, the server starts to behave as a proxy providing the
requested block of the file while reading ahead the successive blocks in separate streams. When
the same file is requested again (as in the Warm Cache case) the performances improve by an
additional 5% moving near the scenario in which files are read as they were in the local storage of

6



P
o
S
(
I
S
G
C
2
0
1
9
)
0
1
4

Integration of the Italian cache federation within CMS computing model Diego Ciangottini

the site where the job runs. Combining this result and with the historical metrics analysis shown
on the previous chapter, it is possible to depict a first expected scenario for the presented setup in
production:

• the CPU loss reduced by around 10% for the first data access with cache with respect to direct
remote read. Thanks to read-ahead capability (only <7% worse than local read in terms of
CPU efficiency).

• within one month, around 40% of the data are usually accessed again, in which case the gain
raise up to a 20%, similar to local read mode

• usage of "no replica" File Systems is possible for non custodial data as the cache servers.
Thus at least a factor 2 in space available with respect to the actual setup (depending on the
File System configuration used).

3.1 XCache automated deployment on cloud resources

The presented activity involved also the creation of automatic procedures to enable a fast and
effortless deployment of cache clusters in a cloud environment. In fact dynamic resource provision
is a crescent use case that by construction requires a remote read mode for the jobs. So providing
an easy deployment of a scalable cache system near the computing nodes is an important tool to
increase, with a minimal effort, the efficiency of jobs running on this kind of resources.

Figure 8: Schema of the components deployed for using a caching on-demand system on cloud resources

The setup infrastructure is shown in Fig. 8, where the clients that run the payload can be
instructed to request data to a cache system deployed on the same cloud provider and thus with
low latency. The cache stack consists in: a proxy server to function as bridge between the private
network of the cache and the client. This server will simply tunnel the request from cache servers.
a cache redirector for federating each cache server deployed. If a new server is added, it will be
automatically configured to contact this redirector for registration a configurable number of cache
servers, the core of the tool that are responsible for reading-ahead from remote site while caching.
This setup has been tested on different cloud providers. It is also been tested at a scale of 2k
concurrent jobs on Open Telekom Cloud resources in the context of HelixNebulaScience Cloud [7]
project. In the context of the eXtreme Data-Cloud project [8], a collection of recipes have been
produced for the automatic deployment of a cache service on demand using different automation

7



P
o
S
(
I
S
G
C
2
0
1
9
)
0
1
4

Integration of the Italian cache federation within CMS computing model Diego Ciangottini

technology. For bare metal installation an Ansible [9] playbook is available that can deploy either
directly on host or through docker container the whole stack. For those who use docker swarm for
container orchestration, a docker-compose [10] recipe is also available as for Kubernetes where an
Helm [11] chart is provided. All these solutions have been integrated in DODAS [12] and thus
with very few changes the same setup can be automatically replicated in different kind of cloud
resources.

4. Infrastructure setup for a Smart Cache Decision Service

The integration of the XCache servers with a ML-based external service to further optimize
performances and disk space has been investigated. In particular recipes for the infrastructure
deployment have been created and functionally tested to enable studies on different models. In
Fig. 9 an overview of the components is shown, the infrastructure setup is possible with a simple
configuration file describing the system for different cloud provider leveraging the DODAS [12]
enabling technology. The work flow starts from the pre-processing of the input data, filtered and
prepared for the ML training part. The data processed are used to increment or modify the current
model implemented and this will involve further requests. The current input to the environment is
submitted also to the inference service that responds with a suggestion for the cache. The output
from the inference service is immediately used by the cache to produce a result and a response to
the client request.

Figure 9: Complete infrastructure overview for the integration of a smart decision service for cache man-
agement.

The principal building blocks of the proposed pre-processing stack are Apache Spark [13],
and Apache Hadoop [14] that are used, respectively, to process and manage data. The idea behind
the architecture is that the configuration has to be as much modular as possible in order to allow
the interaction with external and already existing data sources and pipelines when needed. The
components provided in the stack are the following:

• data ingestion: sequence of modules responsible for collecting and manipulating metrics
from a local or remote archive

8



P
o
S
(
I
S
G
C
2
0
1
9
)
0
1
4

Integration of the Italian cache federation within CMS computing model Diego Ciangottini

• stream ingestion: sequence of modules responsible for collecting and manipulating metrics
from streaming pipelines (e.g. message queues, sensors etc. )

• data manager: user custom modules to aggregate information coming from ingestion ser-
vices. They can be either cron or spark jobs

• pre-processing: jupyter notebooks for the production of pre-processed dataframes, ready to
be served as input to train ML models

• processed data store: local storage instance where pre-processed data are stored

• training notebooks: jupyter notebooks for the training and saving the trained models

The components are focused on providing on-demand services for training and exposing in-
ference to different services, in this case the cache servers. The integrated deployment of a jupyter-
hub [15] allows the end users to interact with the ML frameworks through python notebooks. With
such notebooks it is possible to create a model using the most popular ML framework python APIs
and test their performances. It is also possible to define custom data pre-processing steps there
without any further requirements. The Spark framework is integrated through the notebook and a
context is already created for the users. So far TensorFlow [16] and Keras [17] frameworks are
natively installed, others can be added with ease though. The output models can then be saved
and uploaded on the TensorFlow as a Service (TFaaS) provided. The TFaaS [18] is a piece of the
service offered by the cluster. It manages the models loaded into it and it performs the inference
for the end users. The service has an HTTP API interface that is also exposed to external sources.
That is the endpoint of the request from the XCache decision plugin, enabling the cache to use
an external source to make smarter choices, delegating them to a ML based model. An end-to-end
prototype has been tested on INFN cloud resources and it will be used as testbed for different model
comparison in the near future.

5. Conclusions

In this work the motivations for integrating a cache system for the CMS computing model have
been presented along with an estimation of the possible benefits. An INFN prototype is in place and
seamlessly integrated with CMS workflows, it will also be used as a testbed for RD activities that
aims to optimize the cache content management base on ML-base models. Future plans include
the transition of the current prototype towards a production-like grade for a better understanding of
the needs for a WLCG data-lake. At the same time a systematic evaluation of the performance of
different ML models for the cache decision is in the pipeline, along with the creation of a common
interface between the cache servers and the model inference endpoint.

6. Acknowledgments

The authors would like to thank the European Commission’s Horizon 2020 research and inno-
vation programme for financial support, under grant agreement RIA 777367.

9



P
o
S
(
I
S
G
C
2
0
1
9
)
0
1
4

Integration of the Italian cache federation within CMS computing model Diego Ciangottini

References

[1] S. Chatrchyan et al. “The CMS Experiment at the CERN LHC”. In: JINST 3 (2008), S08004. DOI:
10.1088/1748-0221/3/08/S08004

[2] Lyndon Evans and Philip Bryant. “LHC Machine”. In: Journal of Instrumentation 3.08 (2008),
S08001

[3] https://xrootd.slac.stanford.edu

[4] Kenneth Bloom et al. “Any Data, Any Time, Anywhere: Global Data Access for Science”,
arXiv:1508.01443 [physics.comp-ph]

[5] V. Kuznetsov, “Gaining insight from large data volumes with ease”, arXiv:1811.04785
[physics.data-an]

[6] XRootd, disk-based, caching proxy for optimization of data access, data placement and data
replication, CMS collaboration, J.Phys.Conf.Ser. 513 (2014) 042044

[7] http://www.helix-nebula.eu/

[8] http://www.extreme-datacloud.eu/

[9] https://www.ansible.com/

[10] https://docs.docker.com/compose/

[11] https://helm.sh/

[12] D. Spiga et al. “DODAS: How to effectively exploit heterogeneous clouds for scientific
computations”, PoS(ISGC 2018 FCDD)024, DOI: https://doi.org/10.22323/1.327.0024

[13] https://spark.apache.org/

[14] https://hadoop.apache.org/

[15] https://jupyter.org/hub

[16] https://www.tensorflow.org/

[17] https://keras.io/

[18] https://github.com/vkuznet/TFaaS

10


