pp. 733–747

ON THE APPROXIMATION OF FIXED POINTS FOR NON-SELF MAPPINGS ON METRIC SPACES

Adrian Petruşel Radu Precup^{*} and Marcel-Adrian Şerban

Babeş-Bolyai University, Department of Mathematics 400084 Cluj-Napoca, Romania

Dedicated to Professor Juan J. Nieto on the occasion of his 60th birthday

ABSTRACT. Starting from some classical results of R. Conti, A. Haimovici and K. Iseki, and from a more recent result of S. Reich and A.J. Zaslavski, we present several theorems of approximation of the fixed points for non-self mappings on metric spaces. Both metric and topological conditions are involved. Some of the results are generalized to the multi-valued case. An application is given to a class of implicit first-order differential systems leading to a fixed point problem for the sum of a completely continuous operator and a nonexpansive mapping.

1. Introduction. In 1960, R. Conti in [3] stated the following remark, which is presented below as a theorem, about the approximation of fixed points for continuous self mappings of a metric space, and discussed its applications to the approximation of solutions to the Cauchy problem.

Theorem 1.1 (R. Conti). Let (X, d) be a metric space and $T : X \to X$ be a continuous mapping. Assume that there exists a sequence $(x_n)_{n\geq 1}$ of elements of X such that:

(i): the set $\{Tx_n : n \ge 1\}$ is relatively compact;

(ii): $d(Tx_n, x_n) \to 0 \text{ as } n \to \infty$.

Then T has at least one fixed point, and each limit point of the sequence (x_n) is a fixed point of T.

Conti also noted that in case that T is *completely continuous* (i.e., continuous and with the property of sending bounded sets into relatively compact sets), then a sufficient condition for (i) to hold is that

(i'): the set $\{x_n; n \ge 1\}$ is bounded.

In 1961, independently of Conti, A. Haimovici [5] obtained a fixed point theorem similar to Theorem 1.1, with a concrete indication about the sequence (x_n) . More

²⁰¹⁰ Mathematics Subject Classification. Primary: 47H10; Secondary: 47H09.

Key words and phrases. Fixed point, metric space, generalized contraction mapping, measure of noncompactness, condensing mapping, nonexpansive mapping, multi-valued operator, implicit differential equation.

^{*} Corresponding author: Radu Precup.

exactly, x_n is assumed to be a fixed point of a mapping T_n which approximates T in the sense that

$$d(T, T_n) := \sup_{x \in X} d(Tx, T_n x) \to 0 \text{ as } n \to \infty.$$

In fact, in [5], instead of condition (i), it was assumed that the set $\{x_n; n \ge 1\}$ is relatively compact. However, in virtue of the fact that

$$d(Tx_n, x_n) = d(Tx_n, T_n x_n) \to 0 \text{ as } n \to \infty,$$

we have that $\{x_n : n \ge 1\}$ is relatively compact if and only if $\{Tx_n : n \ge 1\}$ is so. In addition, the condition (ii) holds too.

Notice that the proof of the continuation fixed point theorem for nonexpansive mappings in Hilbert spaces (see R. Precup [13] and [14]) offers an example of such a sequence (T_n) of mappings. Indeed, if H is a Hilbert space, U is an open bounded subset of H containing the origin and $T: \overline{U} \to H$ is nonexpansive such that the boundary condition

$$T(x) \neq \lambda x$$
 for all $x \in \partial U$ and $\lambda > 1$

holds, then the mappings

$$T_n x = \left(1 - \frac{1}{n}\right) T x \quad (n \ge 1)$$

approximate T, are contractions from \overline{U} to H and also satisfy the boundary condition. Consequently, in view of the continuation principle for condensing mappings, T_n has a (unique) fixed point x_n . In addition, as proved in [13] and [14], the sequence (x_n) is convergent. Hence the assumptions of Haimovici's theorem are fulfilled. For an extension to complete CAT(0) spaces, see W.A. Kirk [8] and Theorem 9.12 in W. Kirk and N. Shahzad [9]. Another example is given in Section 5.

In 1962, again independently of Conti's work, K. Iseki in [6] extended Haimovici's result to the case where x_n is an approximate fixed point of T_n , in the sense that

$$d(T_n x_n, x_n) \to 0 \text{ as } n \to \infty.$$

In this case, again $\{x_n : n \ge 1\}$ is relatively compact if and only if $\{Tx_n : n \ge 1\}$ is so, and (ii) holds, as follows from

$$d(Tx_n, x_n) \le d(Tx_n, T_n x_n) + d(T_n x_n, x_n) \to 0 \text{ as } n \to \infty.$$

Note that some concrete sequences (x_n) like the abstract Iseki's sequence, appear in Conti's paper in connection to different constructive schema for the Cauchy problem: the methods of Cauchy-Lipschitz, Tonelli, Severini and Picard-Peano.

Recently, S. Reich and A.J. Zaslavski [19] (see also Section 3.13 in the recent book [20]) considered a similar problem for non-self mappings and proved the following metric result.

Theorem 1.2 (Reich-Zaslavski). Let (X, d) be a complete metric space, Y be a closed subset of X, and $T: Y \to X$ be a φ -contraction, in the sense that

$$d(Tx, Ty) \le \varphi(d(x, y))$$
 for every $x, y \in Y$,

where φ is a comparison function, i.e., $\varphi : [0, \infty) \to [0, \infty)$ is increasing and $\varphi^n(t) \to 0$ as $n \to \infty$ for all t > 0. Assume that there exists a bounded sequence (y_n) such that $T^n y_n$ is defined for all $n \ge 1$. Then T has a unique fixed point x and $T^n y_n \to x$ as $n \to \infty$.

Motivated by the paper S. Reich and A.J. Zaslavski [19], and by its subsequent extensions A. Petruşel, I.A. Rus and M.-A. Şerban [12], I.A. Rus and M.-A. Şerban [22], M.-A. Şerban [23], we shall analyze the results of this type in connection with Conti's remark and we shall present new fixed point results for non-self mappings. Some extensions for multi-valued mappings are also given. Finally, we give an application to the initial value problem for an implicit first-order differential system leading to a fixed point problem for the sum of a completely continuous operator and a nonexpansive mapping.

2. Fixed point theorems for non-self mappings. Conti's theorem is also true for a continuous non-self mapping $T: Y \to X$, where Y is any closed subset of X, if we assume that $x_n \in Y$ for all $n \geq 1$. Thus, we have the following theorem.

Theorem 2.1. Let (X, d) be a metric space, $Y \subset X$ be a closed set and $T : Y \to X$ be a continuous mapping. Assume that there exists a sequence (x_n) of elements of Y such that:

(i): the set $\{Tx_n : n \ge 1\}$ is relatively compact;

(ii): $d(Tx_n, x_n) \to 0 \text{ as } n \to \infty$.

Then T has at least one fixed point, and each limit point of the sequence (x_n) is a fixed point of T.

Proof. Indeed, from (i), there exists a subsequence (Tx_{n_k}) of (Tx_n) which is convergent to some $x \in X$. Next from (ii),

$$d(x_{n_k}, x) \le d(Tx_{n_k}, x_{n_k}) + d(Tx_{n_k}, x) \to 0 \text{ as } k \to \infty.$$

Hence $x_{n_k} \to x$ as $k \to \infty$. Since $x_{n_k} \in Y$ and Y is closed, one has $x \in Y$. Now, by the continuity of T, $Tx_{n_k} \to Tx$ as $k \to \infty$. Therefore Tx = x.

From now on (X, d) is a metric space, $Y \subset X$ is closed and $T : Y \to X$ is continuous. The mapping T is said to be *condensing* (with respect to Hausdorff's measure of noncompactness α_H) if it is continuous and

$$\alpha_H\left(T\left(M\right)\right) < \alpha_H\left(M\right),$$

for any countable bounded set $M \subset Y$ with $\alpha_H(M) > 0$.

The next result gives a sufficient condition for (i) in Theorem 2.1 to hold.

Theorem 2.2. Let (X, d) be a complete metric space, $Y \subset X$ be a closed set, and $T: Y \to X$ be a condensing mapping. If there exists a bounded sequence (x_n) of elements of Y such that $d(Tx_n, x_n) \to 0$ as $n \to \infty$, then T has at least one fixed point, and each limit point of the sequence (x_n) is a fixed point of T.

The above result is a consequence of the following lemma.

Lemma 2.3. If $(x_n), (y_n)$ are two bounded sequences of elements from the metric space (X, d) such that $d(x_n, y_n) \to 0$ as $n \to \infty$, then

$$\alpha_H \left(\{ x_n : n \ge 1 \} \right) = \alpha_H \left(\{ y_n : n \ge 1 \} \right).$$

Proof. Denote $S := \{x_n : n \ge 1\}$, $S' := \{y_n : n \ge 1\}$, $\kappa := \alpha_H(S)$ and $\kappa' := \alpha_H(S')$. Assume the contrary, for instance that $\kappa < \kappa'$. Then, taking any $\varepsilon > 0$ with $\kappa + 2\varepsilon < \kappa'$, we can cover S by a finite number of balls of radius $\kappa + \varepsilon$. From $d(x_n, y_n) \to 0$ as $n \to \infty$, we find that starting to some index n_{ε} , the elements y_n belong to those balls enlarged to radius $\kappa + 2\varepsilon$. Thus S' can be covered by a finite number of balls of radius $\kappa + 2\varepsilon < \kappa'$, a contradiction.

Proof of Theorem 2.2. Let $S := \{x_n : n \ge 1\}$ and $S' = \{Tx_n : n \ge 1\}$. According to Lemma 2.3,

$$\alpha_H(S) = \alpha_H(S'). \tag{1}$$

On the other hand, if $\alpha_H(S) > 0$, then since S' = T(S), we would have $\alpha_H(S') = \alpha_H(T(S)) < \alpha_H(S)$, which is excluded by (1). Hence $\alpha_H(S) = \alpha_H(S') = 0$, that is condition (i) holds. The result is now seen to be a consequence of Theorem 2.1.

In particular Theorem 2.2 is applicable if T is φ -condensing, i.e.,

$$\alpha_{H}\left(T\left(M\right)\right) \leq \varphi\left(\alpha_{H}\left(M\right)\right)$$

for any countable bounded set $M \subset Y$, where φ is a comparison function (see [22]). Indeed, since $\varphi^n(t) \to 0$ as $n \to \infty$, for all t > 0, one has that $\varphi(t) < t$ for all t > 0. Hence any φ -condensing mapping is condensing.

For example, the sum of a completely continuous mapping and a φ -contraction is a φ -condensing mapping.

Also recall that, if $\varphi(t) = at$, for $t \ge 0$ (where a < 1), then the φ -condensing property reduces to the *a-set-contraction* property, i.e.,

$$\alpha\left(T\left(M\right)\right) \leq a\alpha\left(M\right)$$

for any countable bounded set $M \subset Y$.

736

Theorem 2.2 yields the following topological version of Theorem 1.2.

Theorem 2.4. Let (X, d) be a complete metric space, Y be a closed subset of X and $T: Y \to X$ be a condensing mapping. Assume that there exists a bounded sequence (y_n) such that $T^n y_n$ is defined for all $n \ge 1$ and

$$d(T^n y_n, T^{n-1} y_n) \to 0 \quad as \quad n \to \infty.$$
⁽²⁾

Then T has at least one fixed point which is a limit point of the sequence $(T^{n-1}y_n)$.

Proof. Apply Theorem 2.2 to the sequence $x_n := T^{n-1}y_n$.

Notice that, in the very particular case when T is a φ -contraction, the hypothesis (2) is trivially satisfied and Theorem 2.4 reduces to Theorem 1.2. Indeed, in this case,

$$d\left(T^{n}y_{n}, T^{n-1}y_{n}\right) \leq \varphi\left(d\left(T^{n-1}y_{n}, T^{n-2}y_{n}\right)\right) \leq \dots \leq \varphi^{n-1}\left(d\left(Ty_{n}, y_{n}\right)\right).$$
(3)

Also, the sequence (y_n) being assumed bounded and T being a φ -contraction, the sequence (Ty_n) is also bounded and thus there is a constant c > 0 with $d(Ty_n, y_n) \le c$ for all $n \ge 1$. Then

$$\varphi^{n-1}\left(d\left(Ty_n, y_n\right)\right) \le \varphi^{n-1}\left(c\right).$$

Now since $\varphi^{n-1}(c) \to 0$ as $n \to \infty$, we deduce that $\varphi^{n-1}(d(Ty_n, y_n)) \to 0$ as $n \to \infty$. In view of (3), we obtain (2).

The next result is the version for non-self mappings of the result of Haimovici-Iseki.

Theorem 2.5. Let (X,d) be a metric space, $Y \subset X$ be a closed set, $T: Y \to X$ be a continuous mapping and $T_n: Y \to X$ (with $n \ge 1$) be a sequence of mappings with

$$d(T_n, T) := \sup_{x \in Y} d(T_n x, Tx) \to 0 \quad as \quad n \to \infty.$$
(4)

Assume that there exists a sequence (x_n) of elements of Y such that the set $\{Tx_n : n \ge 1\}$ is relatively compact and

$$d(T_n x_n, x_n) \to 0 \quad as \quad n \to \infty.$$
⁽⁵⁾

Then T has at least one fixed point, and each limit point of the sequence (x_n) is a fixed point of T.

Proof. From (4), (ii), we have

$$d(Tx_n, x_n) \le d(Tx_n, T_n x_n) + d(T_n x_n, x_n) \le d(T_n, T) + d(T_n x_n, x_n) \to 0$$

as $n \to \infty$. Then the conclusion follows from Theorem 2.1.

Assuming that T is condensing, we have the following result whose proof makes use of Theorem 2.2.

Theorem 2.6. Let (X,d) be a complete metric space, $Y \subset X$ be a closed set, $T: Y \to X$ be a condensing mapping and $T_n: Y \to X$ (with $n \ge 1$) be a sequence of mappings satisfying (4). If there exists a bounded sequence (x_n) of elements of Y such that condition (5) holds, then T has at least one fixed point, and each limit point of the sequence (x_n) is a fixed point of T.

We conclude this section by another extension of Theorem 1.2 in the sense of the Haimovici-Iseki type condition.

Theorem 2.7. Let (X, d) be a complete metric space, Y be a closed subset of X, $T: Y \to X$ be a condensing mapping and $T_n: Y \to X$, $n \ge 1$, be a sequence of mappings satisfying (4). Assume that there exists a bounded sequence (y_n) such that $T_n^n y_n$ is defined for all $n \ge 1$ and

$$d\left(T_n^n y_n, T_n^{n-1} y_n\right) \to 0 \quad as \quad n \to \infty.$$
(6)

Then T has at least one fixed point which is a limit point of the sequence $(T_n^{n-1}y_n)$.

Proof. Direct consequence of Theorem 2.5, with $x_n = T_n^{n-1}y_n$.

Notice that the condition (6) holds in particular if T_n are φ -contractions with respect to the same comparison function φ .

3. Other contractive conditions.

3.1. Kannan non-self mappings. Let (X, d) be a metric space and $Y \subset X$ be a nonempty subset of it. An operator $T: Y \to X$ is an α -Kannan mapping for some $\alpha > 0$ if

$$d(Tx, Ty) \le \alpha \left[d(x, Tx) + d(y, Ty) \right], \text{ for all } x, y \in Y$$

(see R. Kannan [7]). In the case of the Kannan mappings we have the following general result.

Theorem 3.1. Let (X, d) be a complete metric space, $Y \subset X$ be a closed subset and $T: Y \to X$ be a continuous α -Kannan mapping. If there exists a sequence (x_n) of elements of Y such that

$$d(Tx_n, x_n) \to 0 \text{ as } n \to \infty,$$

then

(a): T has a unique fixed point x^* ; (b): $d(x_n, x^*) \leq (1 + \alpha)d(Tx_n, x_n)$.

Proof. By the relation

738

 $d(Tx_n, Tx_m) \leq \alpha \left[d(x_n, Tx_n) + d(x_m, Tx_m) \right] \to 0 \text{ as } n, m \to \infty,$

we have that (Tx_n) is a Cauchy sequence, and so it is convergent. Thus the set $\{Tx_n : n \geq 1\}$ is relatively compact. Applying Theorem 2.1 we get that T has at least one fixed point in Y and each limit point of the sequence (x_n) is a fixed point of T. Since T is a Kannan mapping, it has at most one fixed point x^* . We also have

$$d(x_n, x^*) \leq d(x_n, Tx_n) + d(Tx_n, x^*) = d(x_n, Tx_n) + d(Tx_n, Tx^*)$$

$$\leq d(x_n, Tx_n) + \alpha [d(x_n, Tx_n) + d(x^*, Tx^*)]$$

$$= (1 + \alpha) d(Tx_n, x_n).$$

The next result is an extension of Theorem 3.1 in Haimovici-Iseki's approximation spirit.

Theorem 3.2. Let (X,d) be a complete metric space, $Y \subset X$ be a closed subset and $T: Y \to X$ be a continuous α -Kannan mapping. Let $T_n: Y \to X$ (where n > 1) be a sequence of mappings satisfying (4). If there exists a sequence (x_n) of elements of Y such that the condition (5) holds, then

(a): T has a unique fixed point x^* ; **(b):** $d(x_n, x^*) \leq (1 + \alpha) d(Tx_n, x_n);$ (c): $d(x_n, x^*) \leq (1 + \alpha) [d(T_n, T) + d(T_n x_n, x_n)].$

Proof. Since

$$d(Tx_n, x_n) \le d(Tx_n, T_n x_n) + d(T_n x_n, x_n) \le d(T, T_n) + d(T_n x_n, x_n) \to 0$$

 $\to \infty$, the conclusion follows by Theorem 3.1.

as $n \to \infty$, the conclusion follows by Theorem 3.1.

By the maximal displacement functional corresponding to T we understand the functional $E_T: P(Y) \to \mathbb{R}_+ \cup \{+\infty\}$ defined by

$$E_T(A) := \sup \left\{ d(x, Tx) \mid x \in A \right\}.$$
(7)

In the case of the Kannan mappings we have the following version of Theorem 1.2. A similar result was obtained in I.A. Rus and M.-A. Serban [22].

Theorem 3.3. Let (X, d) be a complete metric space, $Y \subset X$ a nonempty closed subset and $T: Y \to X$ a continuous mapping. Assume that the following conditions are satisfied:

(i): T is an α -Kannan mapping with $\alpha < 1/2$; (ii): there exists a bounded sequence (y_n) in Y such that $T^n y_n$ is defined for every $n \ge 1$; (iii): $E_T(Y) < +\infty$. Then(a): T has a unique fixed point x^* ; (b): $T^{n-1}y_n \to x^*$ and $T^ny_n \to x^*$ as $n \to +\infty$; (c): $d(T^{n-1}y_n, x^*) \le (1+\alpha)(\alpha/(1-\alpha))^{n-1}d(y_n, Ty_n)$. Proof. From

$$d(T^{n}y_{n}, T^{n-1}y_{n}) \leq \alpha \left[d(T^{n-1}y_{n}, T^{n}y_{n}) + d(T^{n-2}y_{n}, T^{n-1}y_{n}) \right],$$

we obtain that

$$d\left(T^{n}y_{n}, T^{n-1}y_{n}\right) \leq \frac{\alpha}{1-\alpha}d\left(T^{n-2}y_{n}, T^{n-1}y_{n}\right)$$

$$\cdots \leq \left(\frac{\alpha}{1-\alpha}\right)^{n-1}d\left(y_{n}, Ty_{n}\right) \leq \left(\frac{\alpha}{1-\alpha}\right)^{n-1}E_{T}\left(Y\right).$$

Since $\alpha < 1/2$, one has $\alpha/(1-\alpha) < 1$ and so

$$d(T^n y_n, T^{n-1} y_n) \to 0 \text{ as } n \to +\infty.$$

The conclusion now follows from Theorem 3.1 applied to the sequence $x_n :=$ $T^{n-1}y_n$. \square

Another Haimovici-Iseki type result for non-self Kannan mappings is the following one.

Theorem 3.4. Let (X, d) be a complete metric space, $Y \subset X$ a nonempty closed subset, $T: Y \to X$ a continuous mapping and $T_n: Y \to X$, $n \ge 1$, a sequence of mappings. Assume that the following conditions are satisfied:

- (i): T is an α -Kannan mapping with $\alpha < 1/2$; (ii): the mappings T_n $(n \ge 1)$ satisfy (4); (iii): there exists a bounded sequence (y_n) in Y, such that $T_n^n y_n$ is defined for every $n \geq 1$; (iv): $E_T(Y) < +\infty$. Then(a): T has a unique fixed point x^* ; (b): $T_n^{n-1}y_n \to x^*$ and $T_n^n y_n \to x^*$ as $n \to +\infty$; (c): $d\left(T_n^{n-1}y_n, x^*\right) \le \alpha^{n-1} (1-\alpha)^{1-n} (1+\alpha) \left[d\left(y_n, Ty_n\right) + d\left(Ty_n, T_n y_n\right)\right]$.

Proof. From (i) and (ii) we have

$$d\left(T_{n}^{n}y_{n}, T_{n}^{n-1}y_{n}\right) \leq \frac{\alpha}{1-\alpha}d\left(T_{n}^{n-2}y_{n}, T_{n}^{n-1}y_{n}\right)$$

$$\cdots \leq \left(\frac{\alpha}{1-\alpha}\right)^{n-1}d\left(y_{n}, T_{n}y_{n}\right)$$

$$\leq \left(\frac{\alpha}{1-\alpha}\right)^{n-1}\left[d\left(y_{n}, Ty_{n}\right) + d\left(Ty_{n}, T_{n}y_{n}\right)\right]$$

$$\leq \left(\frac{\alpha}{1-\alpha}\right)^{n-1}\left[E_{T}\left(Y\right) + d\left(T, T_{n}\right)\right].$$

Thus

 $d\left(T_n^n y_n, T_n^{n-1} y_n\right) \to 0 \quad \text{as} \quad n \to +\infty,$

and so the conclusion follows by Theorem 3.2 applied to the sequence $x_n := T_n^{n-1}y_n$.

3.2. Ćirić-Reich-Rus non-self mappings. Let (X, d) be a metric space and $Y \subset$ X be a nonempty subset of it. An operator $T: Y \to X$ is said to be an (a, b)-*Ćirić*-*Reich-Rus mapping* for some numbers $a, b \in \mathbb{R}_+$, if

$$d\left(Tx,Ty\right) \leq ad\left(x,y\right) + b\left[d\left(x,Tx\right) + d\left(y,Ty\right)\right], \quad \text{for all} \ x,y \in Y$$

(see L.B. Ćirić [2], S. Reich [17] and I.A. Rus [21]).

Theorem 3.5. Let (X, d) be a complete metric space, $Y \subset X$ a closed subset and $T: Y \to X$ a continuous (a, b)-Ćirić-Reich-Rus mapping with a < 1. If there exists a sequence (x_n) of elements of Y such that

$$d(Tx_n, x_n) \to 0 \text{ as } n \to +\infty,$$

then

(a): T has a unique fixed point x^* ;

(b): $d(x_n, x^*) \le (1+b)(1-a)^{-1} d(Tx_n, x_n)$.

Proof. From

$$d(Tx_n, Tx_m) \leq ad(x_n, x_m) + b[d(x_n, Tx_n) + d(x_m, Tx_m)] \\ \leq ad(Tx_n, Tx_m) + (a+b)[d(x_n, Tx_n) + d(x_m, Tx_m)],$$

we obtain

$$d(Tx_n, Tx_m) \le \frac{a+b}{1-a} [d(x_n, Tx_n) + d(x_m, Tx_m)] \to 0 \text{ as } n, m \to +\infty.$$

Hence (Tx_n) is a Cauchy sequence and so it converges. Thus the set $\{Tx_n : n \ge 1\}$ is relatively compact. Applying Theorem 2.1 we get that T has in Y at least one fixed point x^* and each limit point of the sequence (x_n) is a fixed point of T. Since T is a Ćirić-Reich-Rus mapping, it has at most one fixed point. Hence T has a unique fixed point x^* . We also have

$$d(x_n, x^*) \leq d(x_n, Tx_n) + d(Tx_n, x^*) \\ \leq (1+b)d(Tx_n, x_n) + ad(x_n, x^*),$$

which implies

$$d(x_n, x^*) \le \frac{1+b}{1-a} d(Tx_n, x_n).$$

Theorem 3.6. Let (X, d) be a complete metric space, $Y \subset X$ a closed subset and $T : Y \to X$ a continuous (a,b)-Ćirić-Reich-Rus mapping with a < 1. Let $T_n : Y \to X$ $(n \ge 1)$ be a sequence of mappings satisfying the condition (4). If there exists a sequence (x_n) of elements of Y such that (5) holds, then

(a): T has a unique fixed point x^* ;

(b):
$$d(x_n, x^*) \le (1+b)(1-a)^{-1} d(Tx_n, x_n);$$

(c): $d(x_n, x^*) \le (1+b)(1-a)^{-1} [d(T_n, T) + d(T_n x_n, x_n)]$

Proof. We have

$$d(Tx_n, x_n) \le d(Tx_n, T_n x_n) + d(T_n x_n, x_n) \le d(T_n, T) + d(T_n x_n, x_n) \to 0$$

as $n \to \infty$. Thus the conclusion follows from Theorem 3.5.

In the case of the Ćirić-Reich-Rus mappings we also have the following version of Theorem 1.2. A similar result was obtained in I.A. Rus and M.-A. Şerban [22].

Theorem 3.7. Let (X, d) be a complete metric space, $Y \subset X$ a nonempty closed subset and $T: Y \to X$ a continuous mapping. Assume that the following conditions are satisfied:

- (i): T is an (a, b)-Ćirić-Reich-Rus mapping with a + 2b < 1;
- (ii): there exists a bounded sequence (y_n) in Y such that $T^n y_n$ is defined for every $n \ge 1$;

(iii): $E_T(Y) < +\infty$. Then (a): T has a unique fixed point x^* ; (b): $T^{n-1}y_n \to x^*$ and $T^ny_n \to x^*$ as $n \to +\infty$; (c): $d(T^{n-1}y_n, x^*) \le (1+b)(1-a)^{-1}(a+b)^{n-1}(1-b)^{1-n} d(y_n, Ty_n)$.

Proof. From

$$d(T^{n}y_{n}, T^{n-1}y_{n}) \leq ad(T^{n-1}y_{n}, T^{n-2}y_{n}) + b[d(T^{n-1}y_{n}, T^{n}y_{n}) + d(T^{n-2}y_{n}, T^{n-1}y_{n})],$$

we obtain that

$$d\left(T^{n}y_{n}, T^{n-1}y_{n}\right) \leq \frac{a+b}{1-b}d\left(T^{n-2}y_{n}, T^{n-1}y_{n}\right)$$

$$\cdots \leq \left(\frac{a+b}{1-b}\right)^{n-1}d\left(y_{n}, Ty_{n}\right) \leq \left(\frac{a+b}{1-b}\right)^{n-1}E_{T}\left(Y\right).$$

Since a + 2b < 1, one has $(a + b)(1 - b)^{-1} < 1$. Consequently,

$$d(T^n y_n, T^{n-1} y_n) \to 0 \text{ as } n \to +\infty.$$

The conclusion follows from Theorem 3.5 applied to the sequence $x_n := T^{n-1}y_n$. \Box

The following theorem is a Haimovici-Iseki type result for non-self Ćirić-Reich-Rus mappings.

Theorem 3.8. Let (X, d) be a complete metric space, $Y \subset X$ a nonempty closed subset, $T: Y \to X$ a continuous mapping and $T_n: Y \to X$, $n \ge 1$, a sequence of mappings. Assume that the following conditions are satisfied:

- (i): T is an (a,b)-Ćirić-Reich-Rus mapping with a + 2b < 1;
- (ii): the mappings T_n $(n \ge 1)$ satisfy (4);

(iii): there exists a bounded sequence (y_n) in Y such that $T_n^n y_n$ is defined for every $n \ge 1$;

(iv): $E_T(Y) < +\infty$.

Then

(a): T has a unique fixed point x^* ;

(b):
$$T_n^{n-1}y_n \to x^* \text{ and } T_n^n y_n \to x^* \text{ as } n \to +\infty;$$

(c): $d\left(T_n^{n-1}y_n, x^*\right) \le \frac{1+b}{1-a} \cdot \left(\frac{a+b}{1-b}\right)^{n-1} \cdot \left[d\left(y_n, Ty_n\right) + d\left(Ty_n, T_ny_n\right)\right].$

Proof. The conclusion follows from the estimate

$$d\left(T_n^n y_n, T_n^{n-1} y_n\right) \leq \frac{a+b}{1-b} d\left(T_n^{n-2} y_n, T_n^{n-1} y_n\right)$$

$$\cdots \leq \left(\frac{a+b}{1-b}\right)^{n-1} d\left(y_n, T_n y_n\right)$$

$$\leq \left(\frac{a+b}{1-b}\right)^{n-1} \left[d\left(y_n, T y_n\right) + d\left(T y_n, T_n y_n\right)\right]$$

$$\leq \left(\frac{a+b}{1-b}\right)^{n-1} \left[E_T\left(Y\right) + d\left(T, T_n\right)\right],$$

and from Theorem 3.6 applied to the sequence $x_n := T_n^{n-1}y_n$.

4. Some extensions to the multi-valued case. If (X, d) is a metric space, then we denote by P(X) the family of all nonempty subsets of X, by $P_{cl}(X)$ the family of all closed nonempty subsets of X, and by D the gap functional, i.e.,

$$D(A, B) := \inf\{d(a, b) : a \in A, b \in B\}, \text{ for } A, B \in P(X).$$

We also denote by H the Hausdorff-Pompeiu pseudometric on P(X) expressed by

$$H(A,B) := \max\{\sup_{a \in A} D(a,B), \sup_{b \in B} D(b,A)\}.$$

See J.-P. Aubin and H. Frankowska [1] for related properties of the above functionals.

Our first result in this section is a multi-valued version of Theorem 2.1.

Theorem 4.1. Let (X,d) be a metric space, $Y \in P_{cl}(X)$ and $T : Y \to P(X)$ be a multi-valued non-self operator with closed graph. Assume that there exists a sequence $(x_n) \subset Y$ such that:

(i): $\bigcup_{n \ge 1} Tx_n$ is relatively compact; (ii): $D(x_n, Tx_n) \to 0$ as $n \to \infty$.

Then, there exists at least one fixed point for T and each limit point of the sequence (x_n) is a fixed point of T.

Proof. By (ii) there exists a sequence (u_n) in X such that $u_n \in Tx_n$ for $n \ge 1$ and $d(x_n, u_n) \to 0$ as $n \to \infty$. Since $\{u_n : n \ge 1\} \subset \bigcup_{n \ge 1} Tx_n$, there exists a subsequence

 (u_{n_k}) of (u_n) which converges to an element $x \in X$ as $k \to \infty$. Since $u_{n_k} \in Tx_{n_k}$ for all $k \ge 1$ we have $d(x_{n_k}, u_{n_k}) \to 0$ as $k \to \infty$. Thus,

$$d(x_{n_k}, x) \le d(x_{n_k}, u_{n_k}) + d(u_{n_k}, x) \to 0 \text{ as } n \to \infty.$$

Hence, x_{n_k} converges to x and, since $(x_{n_k}) \subset Y$ and Y is closed in (X, d), we obtain that $x \in Y$. We notice now that $u_{n_k} \in Tx_{n_k}$ for $k \ge 1$, $x_{n_k} \to x \in Y$ and $u_{n_k} \to x$, together with the hypothesis that T has closed graph, implies that $x \in Tx$. \Box

An example where the assumption (i) of the above theorem is satisfied is given by the following result.

Theorem 4.2. Let (X, d) be a metric space, $Y \in P_{cl}(X)$ and $T : Y \to P(X)$ be a multi-valued non-self operator with closed graph. Assume that:

- (i): T has the property of sending bounded sets into relatively compact sets;
- (ii): there exists a bounded sequence $(x_n) \subset Y$ such that $D(x_n, Tx_n) \to 0$ as $n \to \infty$.

Then, there exists at least one fixed point for T and each limit point of the sequence (x_n) is a fixed point of T.

Proof. Since $Z := \{x_n : n \ge 1\}$ is bounded, by (i), the set $T(Z) = \bigcup_{n \ge 1} Tx_n$ is relatively compact. Thus, the conclusion follows by Theorem 4.1.

Another example when the hypothesis (i) of Theorem 4.1 is fulfilled involves the Hausdorff measure of noncompactness.

Theorem 4.3. Let (X,d) be a complete metric space, $Y \in P_{cl}(X)$ and $T : Y \to P(X)$ be a multi-valued non-self operator with closed graph. Assume that:

(i): T is condensing with respect to Hausdorff's measure of noncompactness, i.e., $\alpha_H(T(M)) < \alpha_H(M)$, for each bounded and countable $M \in P(Y)$ with $\alpha_H(M) > 0;$

(ii): there exists a bounded sequence $(x_n) \subset Y$ such that $D(x_n, Tx_n) \to 0$ as $n \to \infty;$

Then, there exists at least one fixed point for T and each limit point of the sequence (x_n) is a fixed point of T.

Proof. We will show that, by our hypotheses, the first assumption of Theorem 4.1 holds. As before, by (ii), there exists a sequence (u_n) in X such that $u_n \in Tx_n$ for $n \ge 1$ and $d(x_n, u_n) \to 0$ as $n \to \infty$. Thus, by Lemma 2.3, we have

$$\alpha_H(\{x_n : n \ge 1\}) = \alpha_H(\{u_n : n \ge 1\}).$$

If we denote by $S := \{x_n : n \ge 1\}$ and by $W := \{u_n : n \ge 1\}$, then we observe that

$$W \subset T(S) = \bigcup_{n \ge 1} Tx_n$$

Let us suppose, by *reductio ad absurdum*, that $\alpha_H(S) > 0$. Then

$$\alpha_H(W) \le \alpha_H(T(S)) < \alpha_H(S),$$

a contradiction with the above equality. Hence

$$\alpha_H(S) = \alpha_H(W) = \alpha_H(\bigcup_{n \ge 1} T(x_n)) = 0,$$

showing that $\bigcup Tx_n$ is relatively compact. Now the conclusion follows by Theorem 4.1.

A multi-valued variant of the Haimovici-Iseki fixed point theorem is the following result.

Theorem 4.4. Let (X, d) be a complete metric space, $Y \in P_{cl}(X), T : Y \to P(X)$ a multi-valued non-self operator with closed graph and $T_n: Y \to P(X)$ $(n \ge 1)$ a sequence of multi-valued non-self operators. Assume that the following conditions are satisfied:

- (i): T is condensing with respect to Hausdorff's measure of noncompactness;
- (ii): there exists a bounded sequence $(x_n) \subset Y$ such that $D(x_n, T_n x_n) \to 0$ as $n \to \infty;$

(iii):
$$\tilde{H}(T_n, T) := \sup_{x \in Y} H(T_n x, Tx) \to 0 \text{ as } n \to \infty.$$

Then, there exists at least one fixed point for T and each limit point of the sequence (x_n) is a fixed point of T.

Proof. By (ii) there exists a sequence (u_n) in X such that $u_n \in T_n x_n$ for $n \ge 1$ and $d(x_n, u_n) \to 0$ as $n \to \infty$. Then we have

$$D(x_n, Tx_n) \leq d(x_n, u_n) + D(u_n, Tx_n)$$

$$\leq d(x_n, u_n) + H(T_n x_n, Tx_n)$$

$$\leq d(x_n, u_n) + \tilde{H}(T_n, T) \to 0 \text{ as } n \to \infty.$$

The conclusion follows now from Theorem 4.2.

For related fixed point results involving multi-valued operators, see A. Petruşel [11].

5. An application. Consider the initial value problem for an implicit first-order differential system

$$\begin{cases} u' = f(t, u) + g(t, u') & \text{for a.a. } t \in (0, 1) \\ u(0) = u^0, \end{cases}$$
(8)

where $f, g: [0, 1] \times \mathbb{R}^N \to \mathbb{R}^N$ are Carathéodory functions and $u^0 \in \mathbb{R}^N$.

Assume that there exist positive constants a, b, c, p with c < 1 and p < 1 such that the following conditions are satisfied for all $u, v \in \mathbb{R}^N$ and a.a. $t \in (0, 1)$:

(h1): $|f(t,u)| \le a |u|^p + b$ (h2): $|g(t,u) - g(t,v)| \le |u-v|$ (h3): $\langle g(t,u) - g(t,v), u-v \rangle \le c |u-v|$.

Theorem 5.1. Under assumptions (h1)-(h3), problem (8) has at least one solution $u \in H^1(0,1;\mathbb{R}^N)$.

Proof. If we denote x = u', the problem is equivalent to the fixed point equation

$$x = Tx, \quad x \in L^2\left(0, 1; \mathbb{R}^N\right),$$

where

$$(Tx)(t) = f\left(t, u^{0} + \int_{0}^{t} x(s) \, ds\right) + g\left(t, x(t)\right).$$

We have T = A + B, where

$$(Ax)(t) = f\left(t, u^{0} + \int_{0}^{t} x(s) \, ds\right), \quad (Bx)(t) = g\left(t, x(t)\right).$$

In virtue of (h2), the operator B is nonexpansive from $L^2(0,1;\mathbb{R}^N)$ to itself, while A is completely continuous due to the compact embedding of $H^1(0,1;\mathbb{R}^N)$ into $L^2(0,1;\mathbb{R}^N)$.

Our first step is to find an *a priori* bound of solutions. We claim that there exists a constant R > 0 such that $||x||_{L^2} < R$ for every solution of the equation

$$x = \lambda A x + \mu B x,\tag{9}$$

and every $\lambda, \mu \in (0, 1)$. Note that, from (h3),

$$\left\langle g\left(t,x\left(t
ight)
ight),\;x\left(t
ight)
ight
angle \leq\left(c+\left|g\left(t,0
ight)
ight|
ight)\left|x\left(t
ight)
ight|.$$

Then, if we multiply (9) by x(t), and we take also into account (h1), we obtain

$$\begin{aligned} |x(t)|^{2} &= \lambda \left\langle f\left(t, u^{0} + \int_{0}^{t} x(s) \, ds\right), \ x(t) \right\rangle + \mu \left\langle g\left(t, x(t)\right), \ x(t) \right\rangle \quad (10) \\ &\leq \left(a \left| u^{0} + \int_{0}^{t} x(s) \, ds \right|^{p} + b\right) |x(t)| + (c + |g(t, 0)|) |x(t)| \,. \end{aligned}$$

Using the inequality $(\alpha + \beta)^p \leq \alpha^p + \beta^p$ and Hölder's inequality, we have

$$\begin{aligned} \left| u^{0} + \int_{0}^{t} x(s) \, ds \right|^{p} &\leq \left| u^{0} \right|^{p} + \left| \int_{0}^{t} x(s) \, ds \right|^{p} \\ &\leq \left| u^{0} \right|^{p} + \left\| x \right\|_{L^{2}}^{p}. \end{aligned}$$

This together with integration of (10) gives

$$\begin{aligned} \|x\|_{L^{2}}^{2} &\leq \left[a\left(\left|u^{0}\right|^{p}+\|x\|_{L^{2}}^{p}\right)+b\right]\int_{0}^{1}|x\left(t\right)|\,dt+\int_{0}^{1}\left(c+|g\left(t,0\right)|\right)|x\left(t\right)|\,dt\\ &\leq \left[a\left(\left|u^{0}\right|^{p}+\|x\|_{L^{2}}^{p}\right)+b+\|c+|g\left(t,0\right)|\|_{L^{2}}\right]\|x\|_{L^{2}}\\ &= a\left\|x\right\|_{L^{2}}^{p+1}+\widetilde{b}\left\|x\right\|_{L^{2}},\end{aligned}$$

where $\widetilde{b} = a \left| u^0 \right|^p + b + \left\| c + \left| g \left(t, 0 \right) \right| \right\|_{L^2}$, or

$$\|x\|_{L^2} \le a \, \|x\|_{L^2}^p + \widetilde{b}. \tag{11}$$

Since p < 1, there is R > 0 (independent of x, λ and μ) such that $||x||_{L^2} < R$, as claimed.

The second step is to construct an approximation sequence of operators (T_n) for T, and to find a sequence (x_n) of their fixed points as required by Haimovici's result. The operators are

$$T_n = A + \left(1 - \frac{1}{n}\right)B, \quad n = 1, 2, \cdots,$$

which obviously are condensing. On the other hand, in virtue of the result from the first step, one has $\|x\|_{L^2} < R$ for every solution of the equations

$$x = \lambda T_n x$$
, for $\lambda \in (0, 1)$.

Then, by Leray-Schauder continuation principle (see, e.g., R. Precup [15, Theorem 4.1]), or by Mönch fixed point theorem for non-self mappings (see K. Deimling [4, Theorem 18.1] or D. O'Regan and R. Precup [10, Theorem 5.3]), T_n has a fixed point x_n . Also, the distance between T_n and T on the ball of $L^2(0, 1; \mathbb{R}^N)$ of radius R tends to zero as $n \to \infty$. The conclusion will follow from Theorem 2.5 once we prove that the set $\{Tx_n : n \ge 1\}$, equivalently $\{x_n : n \ge 1\}$ is relatively compact in $L^2(0, 1; \mathbb{R}^N)$.

This is our aim for the **third step**. The idea of the proof comes from the paper R. Precup [14] (see also D. O'Regan and R. Precup [10, p. 46]). Since A is completely continuous, passing to a subsequence, we may assume that the sequence (Ax_n) is convergent. We show that the corresponding subsequence of (x_n) , still denoted by (x_n) , is Cauchy. From

$$x_n = Ax_n + (1 - 1/n) Bx_n,$$

we deduce

$$\frac{n}{n-1}x_n - \frac{k}{k-1}x_k = \frac{n}{n-1}Ax_n - \frac{k}{k-1}Ax_k + Bx_n - Bx_k.$$

Denote $a_n = (n-1)^{-1}$. Then

$$x_n - x_k + a_n x_n - a_k x_k = na_n A x_n - ka_k A x_k + B x_n - B x_k$$

whence

$$\langle a_n x_n - a_k x_k, \ x_n - x_k \rangle_{L^2} = \langle B x_n - B x_k, \ x_n - x_k \rangle_{L^2} - \| x_n - x_k \|_{L^2}^2 + \langle n a_n A x_n - k a_k A x_k, \ x_n - x_k \rangle_{L^2} .$$

From (h3), we deduce that

$$\langle Bx_n - Bx_k, x_n - x_k \rangle_{L^2} \le c \|x_n - x_k\|_{L^2}^2.$$

Then

$$\langle a_n x_n - a_k x_k, x_n - x_k \rangle_{L^2} \le (c-1) ||x_n - x_k||_{L^2}^2 + \langle na_n A x_n - ka_k A x_k, x_n - x_k \rangle_{L^2}$$

Now we use the following identity, which in fact is true in any Hilbert space,

$$2 \langle a_n x_n - a_k x_k, x_n - x_k \rangle_{L^2} = (a_n + a_k) \|x_n - x_k\|_{L^2}^2 + (a_n - a_k) \left(\|x_n\|_{L^2}^2 - \|x_k\|_{L^2}^2 \right)$$

to deduce that

$$(a_n + a_k + 2(1 - c)) \|x_n - x_k\|_{L^2}^2 \leq (a_n - a_k) \left(\|x_k\|_{L^2}^2 - \|x_n\|_{L^2}^2 \right) + 2 \langle na_n A x_n - ka_k A x_k, x_n - x_k \rangle_{L^2}.$$

Consequently

$$\begin{aligned} \|x_n - x_k\|_{L^2}^2 &\leq \left(\|x_k\|_{L^2}^2 - \|x_n\|_{L^2}^2 \right) \frac{a_n - a_k}{a_n + a_k + 2(1 - c)} \\ &+ \frac{2}{a_n + a_k + 2(1 - c)} \|na_n A x_n - ka_k A x_k\|_{L^2} \|x_n - x_k\|_{L^2}. \end{aligned}$$

Here $a_n - a_k$ and $||na_nAx_n - ka_kAx_k||_{L^2}$ converge to zero as $n, k \to \infty$, while $||x_k||_{L^2}^2 - ||x_n||_{L^2}^2$, $||x_n - x_k||_{L^2}$ and $2/(a_n + a_k + 2(1-c))$ are bounded. This implies that (x_n) is a Cauchy sequence.

Thus according to Theorem 2.5, T has a fixed point $x \in L^2(0,1;\mathbb{R}^N)$. Finally the function

$$u\left(t\right) = u^{0} + \int_{0}^{t} x\left(s\right) ds$$

solves problem (8).

Remark 1. (1^0) In (h1) we may take p = 1 if it is assumed that a < 1. Indeed, the 'a priori' boundedness of solutions still holds in this case as shows (11).

 (2^0) If f is null, then condition (h3) is not necessary. Indeed, in this case

$$\|x_n - x_k\|_{L^2}^2 \le \left(\|x_k\|_{L^2}^2 - \|x_n\|_{L^2}^2\right) \frac{a_n - a_k}{a_n + a_k},$$

where $(a_n - a_k) / (a_n + a_k)$ is bounded and the sequence $(||x_n||_{L^2})$ can be assumed to be convergent.

Remark 2. In connection with the second step in the proof of Theorem 5.1 and the Leray-Schauder condition, see also the early paper of S. Reich [18], and the more recent one by D. Reem, S. Reich and A.J. Zaslavski [16].

Acknowledgments. The authors would like to thank the referee for his/her kind words about their paper and for very useful remarks and suggestions.

REFERENCES

- J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Systems & Control: Foundations & Applications, 2, Birkhaäuser Boston, Inc., Boston, 1990.
- [2] L. B. Cirić, Generalized contractions and fixed-point theorems, Publ. Inst. Math., 12 (1971), 19-26.
- [3] R. Conti, Un'osservazione sulle transformazioni continue di uno spazio metrico e alcume applicazioni, Matematiche (Catania), 15 (1960), 92–97.
- [4] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.

746

- [5] A. Haimovici, Un théorème d'existence pour des équations fonctionnelles généralisant le th éorème de Peano, An. Şti. Univ. "Al. I. Cuza" Iaşi. Sect. I. (N.S.), 7 (1961), 65–76.
- [6] K. Iseki, A theorem on existence of solution for functional equations, Math. Japon., 7 (1962), 203–204.
- [7] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71–76.
- [8] W. A. Kirk, Fixed point theorems in CAT(0) spaces and R-trees, Fixed Point Theory Appl., (2004), 309–316.
- [9] W. Kirk and N. Shahzad, Fixed Point Theory in Distance Spaces, Springer, Cham, 2014.
- [10] D. O'Regan and R. Precup, *Theorems of Leray-Schauder Type and Applications*, Series in Mathematical Analysis and Applications, 3, Gordon and Breach Science Publishers, Amsterdam, 2001.
- [11] A. Petruşel, Operatorial Inclusions, House of the Book of Science, Cluj-Napoca, 2002.
- [12] A. Petruşel, I. A. Rus and M.-A. Şerban, Fixed points, fixed sets and iterated multifunction systems for nonself multivalued operators, Set-Valued Var. Anal., 23 (2015), 223–237.
- [13] R. Precup, On the continuation principle for nonexpansive maps, Studia Univ. Babes-Bolyai Math., 41 (1996), 85–89.
- [14] R. Precup, Existence and approximation of positive fixed points of nonexpansive maps, Rev. Anal. Numér. Théor. Approx., 26 (1997), 203–208.
- [15] R. Precup, *Methods in Nonlinear Integral Equations*, Kluwer Academic Publishers, Dordrecht, 2002.
- [16] D. Reem, S. Reich and A. J. Zaslavski, Two results in metric fixed point theory, J. Fixed Point Theory Appl., 1 (2007), 149–157.
- [17] S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull., 14 (1971), 121–124.
- [18] S. Reich, Fixed points of condensing functions, J. Math. Anal. Appl., 41 (1973), 460-467.
- [19] S. Reich and A. J. Zaslavski, A fixed point theorem for Matkowski contractions, Fixed Point Theory, 8 (2007), 303–307.
- [20] S. Reich and A. J. Zaslavski, *Genericity in Nonlinear Analysis*, Developments in Mathematics, 34, Springer, New York, 2014.
- [21] I. A. Rus, Some fixed point theorems in metric spaces, Rend. Ist. Mat. Univ. Trieste, 3 (1971), 169–172.
- [22] I. A. Rus and M.-A. Şerban, Some fixed point theorems for nonself generalized contraction, Miskolc Math. Notes, 17 (2016), 1021–1031.
- [23] M.-A. Şerban, Some fixed point theorems for nonself generalized contraction in gauge spaces, Fixed Point Theory, 16 (2015), 393–398.

Received November 2018; revised January 2019.

E-mail address: petrusel@math.ubbcluj.ro *E-mail address*: r.precup@math.ubbcluj.ro *E-mail address*: mserban@math.ubbcluj.ro