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Abstract. Starting from some classical results of R. Conti, A. Haimovici and

K. Iseki, and from a more recent result of S. Reich and A.J. Zaslavski, we

present several theorems of approximation of the fixed points for non-self map-
pings on metric spaces. Both metric and topological conditions are involved.

Some of the results are generalized to the multi-valued case. An application

is given to a class of implicit first-order differential systems leading to a fixed
point problem for the sum of a completely continuous operator and a nonex-

pansive mapping.

1. Introduction. In 1960, R. Conti in [3] stated the following remark, which is pre-
sented below as a theorem, about the approximation of fixed points for continuous
self mappings of a metric space, and discussed its applications to the approximation
of solutions to the Cauchy problem.

Theorem 1.1 (R. Conti). Let (X, d) be a metric space and T : X → X be a
continuous mapping. Assume that there exists a sequence (xn)n≥1 of elements of
X such that:

(i): the set {Txn : n ≥ 1} is relatively compact;
(ii): d (Txn, xn)→ 0 as n→∞.
Then T has at least one fixed point, and each limit point of the sequence (xn) is

a fixed point of T.

Conti also noted that in case that T is completely continuous (i.e., continuous
and with the property of sending bounded sets into relatively compact sets), then
a sufficient condition for (i) to hold is that

(i’): the set {xn; n ≥ 1} is bounded.

In 1961, independently of Conti, A. Haimovici [5] obtained a fixed point theorem
similar to Theorem 1.1, with a concrete indication about the sequence (xn) . More
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exactly, xn is assumed to be a fixed point of a mapping Tn which approximates T
in the sense that

d (T, Tn) := sup
x∈X

d (Tx, Tnx)→ 0 as n→∞.

In fact, in [5], instead of condition (i), it was assumed that the set {xn;n ≥ 1} is
relatively compact. However, in virtue of the fact that

d (Txn, xn) = d (Txn, Tnxn)→ 0 as n→∞,

we have that {xn : n ≥ 1} is relatively compact if and only if {Txn : n ≥ 1} is so.
In addition, the condition (ii) holds too.

Notice that the proof of the continuation fixed point theorem for nonexpansive
mappings in Hilbert spaces (see R. Precup [13] and [14]) offers an example of such
a sequence (Tn) of mappings. Indeed, if H is a Hilbert space, U is an open bounded
subset of H containing the origin and T : U → H is nonexpansive such that the
boundary condition

T (x) 6= λx for all x ∈ ∂U and λ > 1

holds, then the mappings

Tnx =

(
1− 1

n

)
Tx (n ≥ 1)

approximate T, are contractions from U to H and also satisfy the boundary condi-
tion. Consequently, in view of the continuation principle for condensing mappings,
Tn has a (unique) fixed point xn. In addition, as proved in [13] and [14], the sequence
(xn) is convergent. Hence the assumptions of Haimovici’s theorem are fulfilled. For
an extension to complete CAT(0) spaces, see W.A. Kirk [8] and Theorem 9.12 in
W. Kirk and N. Shahzad [9]. Another example is given in Section 5.

In 1962, again independently of Conti’s work, K. Iseki in [6] extended Haimovici’s
result to the case where xn is an approximate fixed point of Tn, in the sense that

d (Tnxn, xn)→ 0 as n→∞.

In this case, again {xn : n ≥ 1} is relatively compact if and only if {Txn : n ≥ 1} is
so, and (ii) holds, as follows from

d (Txn, xn) ≤ d (Txn, Tnxn) + d (Tnxn, xn)→ 0 as n→∞.

Note that some concrete sequences (xn) like the abstract Iseki’s sequence, appear
in Conti’s paper in connection to different constructive schema for the Cauchy
problem: the methods of Cauchy-Lipschitz, Tonelli, Severini and Picard-Peano.

Recently, S. Reich and A.J. Zaslavski [19] (see also Section 3.13 in the recent book
[20]) considered a similar problem for non-self mappings and proved the following
metric result.

Theorem 1.2 (Reich-Zaslavski). Let (X, d) be a complete metric space, Y be a
closed subset of X, and T : Y → X be a ϕ-contraction, in the sense that

d (Tx, Ty) ≤ ϕ (d (x, y)) for every x, y ∈ Y,

where ϕ is a comparison function, i.e., ϕ : [0,∞) → [0,∞) is increasing and
ϕn (t) → 0 as n → ∞ for all t > 0. Assume that there exists a bounded sequence
(yn) such that Tnyn is defined for all n ≥ 1. Then T has a unique fixed point x and
Tnyn → x as n→∞.
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Motivated by the paper S. Reich and A.J. Zaslavski [19], and by its subsequent
extensions A. Petruşel, I.A. Rus and M.-A. Şerban [12], I.A. Rus and M.-A. Şerban
[22], M.-A. Şerban [23], we shall analyze the results of this type in connection with
Conti’s remark and we shall present new fixed point results for non-self mappings.
Some extensions for multi-valued mappings are also given. Finally, we give an
application to the initial value problem for an implicit first-order differential system
leading to a fixed point problem for the sum of a completely continuous operator
and a nonexpansive mapping.

2. Fixed point theorems for non-self mappings. Conti’s theorem is also true
for a continuous non-self mapping T : Y → X, where Y is any closed subset of X,
if we assume that xn ∈ Y for all n ≥ 1. Thus, we have the following theorem.

Theorem 2.1. Let (X, d) be a metric space, Y ⊂ X be a closed set and T : Y → X
be a continuous mapping. Assume that there exists a sequence (xn) of elements of
Y such that:

(i): the set {Txn : n ≥ 1} is relatively compact;
(ii): d (Txn, xn)→ 0 as n→∞.
Then T has at least one fixed point, and each limit point of the sequence (xn) is

a fixed point of T.

Proof. Indeed, from (i), there exists a subsequence (Txnk
) of (Txn) which is con-

vergent to some x ∈ X. Next from (ii),

d (xnk
, x) ≤ d (Txnk

, xnk
) + d (Txnk

, x)→ 0 as k →∞.
Hence xnk

→ x as k →∞. Since xnk
∈ Y and Y is closed, one has x ∈ Y. Now, by

the continuity of T, Txnk
→ Tx as k →∞. Therefore Tx = x.

From now on (X, d) is a metric space, Y ⊂ X is closed and T : Y → X is
continuous. The mapping T is said to be condensing (with respect to Hausdorff’s
measure of noncompactness αH) if it is continuous and

αH (T (M)) < αH (M) ,

for any countable bounded set M ⊂ Y with αH (M) > 0.
The next result gives a sufficient condition for (i) in Theorem 2.1 to hold.

Theorem 2.2. Let (X, d) be a complete metric space, Y ⊂ X be a closed set, and
T : Y → X be a condensing mapping. If there exists a bounded sequence (xn) of
elements of Y such that d (Txn, xn) → 0 as n → ∞, then T has at least one fixed
point, and each limit point of the sequence (xn) is a fixed point of T.

The above result is a consequence of the following lemma.

Lemma 2.3. If (xn) , (yn) are two bounded sequences of elements from the metric
space (X, d) such that d (xn, yn)→ 0 as n→∞, then

αH ({xn : n ≥ 1}) = αH ({yn : n ≥ 1}) .
Proof. Denote S := {xn : n ≥ 1} , S′ := {yn : n ≥ 1} , κ := αH (S) and κ′ :=
αH (S′) . Assume the contrary, for instance that κ < κ′. Then, taking any ε > 0
with κ+ 2ε < κ′, we can cover S by a finite number of balls of radius κ+ ε. From
d (xn, yn) → 0 as n → ∞, we find that starting to some index nε, the elements yn
belong to those balls enlarged to radius κ+ 2ε. Thus S′ can be covered by a finite
number of balls of radius κ + 2ε. Then we derive κ′ = αH (S′) ≤ κ + 2ε < κ′, a
contradiction.
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Proof of Theorem 2.2. Let S := {xn : n ≥ 1} and S′ = {Txn : n ≥ 1} . According
to Lemma 2.3,

αH (S) = αH (S′) . (1)

On the other hand, if αH (S) > 0, then since S′ = T (S) , we would have αH (S′) =
αH (T (S)) < αH (S) , which is excluded by (1). Hence αH (S) = αH (S′) = 0,
that is condition (i) holds. The result is now seen to be a consequence of Theorem
2.1.

In particular Theorem 2.2 is applicable if T is ϕ-condensing, i.e.,

αH (T (M)) ≤ ϕ (αH (M))

for any countable bounded set M ⊂ Y, where ϕ is a comparison function (see [22]).
Indeed, since ϕn (t)→ 0 as n→∞, for all t > 0, one has that ϕ (t) < t for all t > 0.
Hence any ϕ-condensing mapping is condensing.

For example, the sum of a completely continuous mapping and a ϕ-contraction
is a ϕ-condensing mapping.

Also recall that, if ϕ (t) = at, for t ≥ 0 (where a < 1), then the ϕ-condensing
property reduces to the a-set-contraction property, i.e.,

α (T (M)) ≤ aα (M)

for any countable bounded set M ⊂ Y.
Theorem 2.2 yields the following topological version of Theorem 1.2.

Theorem 2.4. Let (X, d) be a complete metric space, Y be a closed subset of X
and T : Y → X be a condensing mapping. Assume that there exists a bounded
sequence (yn) such that Tnyn is defined for all n ≥ 1 and

d
(
Tnyn, T

n−1yn
)
→ 0 as n→∞. (2)

Then T has at least one fixed point which is a limit point of the sequence
(
Tn−1yn

)
.

Proof. Apply Theorem 2.2 to the sequence xn := Tn−1yn.

Notice that, in the very particular case when T is a ϕ-contraction, the hypothesis
(2) is trivially satisfied and Theorem 2.4 reduces to Theorem 1.2. Indeed, in this
case,

d
(
Tnyn, T

n−1yn
)
≤ ϕ

(
d
(
Tn−1yn, T

n−2yn
))
≤ ... ≤ ϕn−1 (d (Tyn, yn)) . (3)

Also, the sequence (yn) being assumed bounded and T being a ϕ-contraction, the
sequence (Tyn) is also bounded and thus there is a constant c > 0 with d (Tyn, yn) ≤
c for all n ≥ 1. Then

ϕn−1 (d (Tyn, yn)) ≤ ϕn−1 (c) .

Now since ϕn−1 (c) → 0 as n → ∞, we deduce that ϕn−1 (d (Tyn, yn)) → 0 as
n→∞. In view of (3), we obtain (2).

The next result is the version for non-self mappings of the result of Haimovici-
Iseki.

Theorem 2.5. Let (X, d) be a metric space, Y ⊂ X be a closed set, T : Y → X
be a continuous mapping and Tn : Y → X (with n ≥ 1) be a sequence of mappings
with

d (Tn, T ) := sup
x∈Y

d (Tnx, Tx)→ 0 as n→∞. (4)
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Assume that there exists a sequence (xn) of elements of Y such that the set {Txn :
n ≥ 1} is relatively compact and

d (Tnxn, xn)→ 0 as n→∞. (5)

Then T has at least one fixed point, and each limit point of the sequence (xn) is a
fixed point of T.

Proof. From (4), (ii), we have

d (Txn, xn) ≤ d (Txn, Tnxn) + d (Tnxn, xn) ≤ d (Tn, T ) + d (Tnxn, xn)→ 0

as n→∞. Then the conclusion follows from Theorem 2.1.

Assuming that T is condensing, we have the following result whose proof makes
use of Theorem 2.2.

Theorem 2.6. Let (X, d) be a complete metric space, Y ⊂ X be a closed set,
T : Y → X be a condensing mapping and Tn : Y → X (with n ≥ 1) be a sequence
of mappings satisfying (4). If there exists a bounded sequence (xn) of elements of
Y such that condition (5) holds, then T has at least one fixed point, and each limit
point of the sequence (xn) is a fixed point of T.

We conclude this section by another extension of Theorem 1.2 in the sense of the
Haimovici-Iseki type condition.

Theorem 2.7. Let (X, d) be a complete metric space, Y be a closed subset of X,
T : Y → X be a condensing mapping and Tn : Y → X, n ≥ 1, be a sequence of
mappings satisfying (4). Assume that there exists a bounded sequence (yn) such that
Tn
n yn is defined for all n ≥ 1 and

d
(
Tn
n yn, T

n−1
n yn

)
→ 0 as n→∞. (6)

Then T has at least one fixed point which is a limit point of the sequence
(
Tn−1
n yn

)
.

Proof. Direct consequence of Theorem 2.5, with xn = Tn−1
n yn.

Notice that the condition (6) holds in particular if Tn are ϕ-contractions with
respect to the same comparison function ϕ.

3. Other contractive conditions.

3.1. Kannan non-self mappings. Let (X, d) be a metric space and Y ⊂ X be a
nonempty subset of it. An operator T : Y → X is an α-Kannan mapping for some
α > 0 if

d (Tx, Ty) ≤ α [d (x, Tx) + d (y, Ty)] , for all x, y ∈ Y
(see R. Kannan [7]). In the case of the Kannan mappings we have the following
general result.

Theorem 3.1. Let (X, d) be a complete metric space, Y ⊂ X be a closed subset
and T : Y → X be a continuous α-Kannan mapping. If there exists a sequence (xn)
of elements of Y such that

d (Txn, xn)→ 0 as n→∞,
then

(a): T has a unique fixed point x∗;
(b): d (xn, x

∗) ≤ (1 + α)d (Txn, xn) .
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Proof. By the relation

d (Txn, Txm) ≤ α [d (xn, Txn) + d (xm, Txm)]→ 0 as n,m→∞,

we have that (Txn) is a Cauchy sequence, and so it is convergent. Thus the set
{Txn : n ≥ 1} is relatively compact. Applying Theorem 2.1 we get that T has at
least one fixed point in Y and each limit point of the sequence (xn) is a fixed point
of T. Since T is a Kannan mapping, it has at most one fixed point x∗. We also have

d (xn, x
∗) ≤ d (xn, Txn) + d (Txn, x

∗) = d (xn, Txn) + d (Txn, Tx
∗)

≤ d (xn, Txn) + α [d (xn, Txn) + d (x∗, Tx∗)]

= (1 + α)d (Txn, xn) .

The next result is an extension of Theorem 3.1 in Haimovici-Iseki’s approximation
spirit.

Theorem 3.2. Let (X, d) be a complete metric space, Y ⊂ X be a closed subset
and T : Y → X be a continuous α-Kannan mapping. Let Tn : Y → X (where
n ≥ 1) be a sequence of mappings satisfying (4). If there exists a sequence (xn) of
elements of Y such that the condition (5) holds, then

(a): T has a unique fixed point x∗;
(b): d (xn, x

∗) ≤ (1 + α)d (Txn, xn) ;
(c): d (xn, x

∗) ≤ (1 + α) [d (Tn, T ) + d (Tnxn, xn)] .

Proof. Since

d (Txn, xn) ≤ d (Txn, Tnxn) + d (Tnxn, xn) ≤ d (T, Tn) + d (Tnxn, xn)→ 0

as n→∞, the conclusion follows by Theorem 3.1.

By the maximal displacement functional corresponding to T we understand the
functional ET : P (Y )→ R+ ∪ {+∞} defined by

ET (A) := sup {d (x, Tx) | x ∈ A} . (7)

In the case of the Kannan mappings we have the following version of Theorem 1.2.
A similar result was obtained in I.A. Rus and M.-A. Şerban [22].

Theorem 3.3. Let (X, d) be a complete metric space, Y ⊂ X a nonempty closed
subset and T : Y → X a continuous mapping. Assume that the following conditions
are satisfied:

(i): T is an α-Kannan mapping with α < 1/2;
(ii): there exists a bounded sequence (yn) in Y such that Tnyn is defined for

every n ≥ 1;
(iii): ET (Y ) < +∞.
Then

(a): T has a unique fixed point x∗;
(b): Tn−1yn → x∗ and Tnyn → x∗ as n→ +∞;

(c): d
(
Tn−1yn, x

∗) ≤ (1 + α) (α/ (1− α))
n−1

d (yn, Tyn) .

Proof. From

d
(
Tnyn, T

n−1yn
)
≤ α

[
d
(
Tn−1yn, T

nyn
)

+ d
(
Tn−2yn, T

n−1yn
)]
,
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we obtain that

d
(
Tnyn, T

n−1yn
)
≤ α

1− α
d
(
Tn−2yn, T

n−1yn
)

· · · ≤
(

α

1− α

)n−1

d (yn, T yn) ≤
(

α

1− α

)n−1

ET (Y ) .

Since α < 1/2, one has α/ (1− α) < 1 and so

d
(
Tnyn, T

n−1yn
)
→ 0 as n→ +∞.

The conclusion now follows from Theorem 3.1 applied to the sequence xn :=
Tn−1yn.

Another Haimovici-Iseki type result for non-self Kannan mappings is the follow-
ing one.

Theorem 3.4. Let (X, d) be a complete metric space, Y ⊂ X a nonempty closed
subset, T : Y → X a continuous mapping and Tn : Y → X, n ≥ 1, a sequence of
mappings. Assume that the following conditions are satisfied:

(i): T is an α-Kannan mapping with α < 1/2;
(ii): the mappings Tn (n ≥ 1) satisfy (4);
(iii): there exists a bounded sequence (yn) in Y, such that Tn

n yn is defined for
every n ≥ 1;

(iv): ET (Y ) < +∞.
Then

(a): T has a unique fixed point x∗;
(b): Tn−1

n yn → x∗ and Tn
n yn → x∗ as n→ +∞;

(c): d
(
Tn−1
n yn, x

∗) ≤ αn−1 (1− α)
1−n

(1 + α) [d (yn, T yn) + d (Tyn, Tnyn)] .

Proof. From (i) and (ii) we have

d
(
Tn
n yn, T

n−1
n yn

)
≤ α

1− α
d
(
Tn−2
n yn, T

n−1
n yn

)
· · · ≤

(
α

1− α

)n−1

d (yn, Tnyn)

≤
(

α

1− α

)n−1

[d (yn, T yn) + d (Tyn, Tnyn)]

≤
(

α

1− α

)n−1

[ET (Y ) + d (T, Tn)] .

Thus

d
(
Tn
n yn, T

n−1
n yn

)
→ 0 as n→ +∞,

and so the conclusion follows by Theorem 3.2 applied to the sequence xn := Tn−1
n yn.

3.2. Ćirić-Reich-Rus non-self mappings. Let (X, d) be a metric space and Y ⊂
X be a nonempty subset of it. An operator T : Y → X is said to be an (a, b)-Ćirić-
Reich-Rus mapping for some numbers a, b ∈ R+, if

d (Tx, Ty) ≤ ad (x, y) + b [d (x, Tx) + d (y, Ty)] , for all x, y ∈ Y

(see L.B. Ćirić [2], S. Reich [17] and I.A. Rus [21]).
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Theorem 3.5. Let (X, d) be a complete metric space, Y ⊂ X a closed subset and

T : Y → X a continuous (a, b)-Ćirić-Reich-Rus mapping with a < 1. If there exists
a sequence (xn) of elements of Y such that

d (Txn, xn)→ 0 as n→ +∞,
then

(a): T has a unique fixed point x∗;

(b): d (xn, x
∗) ≤ (1 + b) (1− a)

−1
d (Txn, xn) .

Proof. From

d (Txn, Txm) ≤ ad (xn, xm) + b [d (xn, Txn) + d (xm, Txm)]

≤ ad (Txn, Txm) + (a+ b) [d (xn, Txn) + d (xm, Txm)] ,

we obtain

d (Txn, Txm) ≤ a+ b

1− a
[d (xn, Txn) + d (xm, Txm)]→ 0 as n,m→ +∞.

Hence (Txn) is a Cauchy sequence and so it converges. Thus the set {Txn : n ≥ 1}
is relatively compact. Applying Theorem 2.1 we get that T has in Y at least one
fixed point x∗ and each limit point of the sequence (xn) is a fixed point of T. Since

T is a Ćirić-Reich-Rus mapping, it has at most one fixed point. Hence T has a
unique fixed point x∗. We also have

d (xn, x
∗) ≤ d (xn, Txn) + d (Txn, x

∗)

≤ (1 + b)d (Txn, xn) + ad (xn, x
∗) ,

which implies

d (xn, x
∗) ≤ 1 + b

1− a
d (Txn, xn) .

Theorem 3.6. Let (X, d) be a complete metric space, Y ⊂ X a closed subset

and T : Y → X a continuous (a, b)-Ćirić-Reich-Rus mapping with a < 1. Let
Tn : Y → X (n ≥ 1) be a sequence of mappings satisfying the condition (4). If
there exists a sequence (xn) of elements of Y such that (5) holds, then

(a): T has a unique fixed point x∗;

(b): d (xn, x
∗) ≤ (1 + b) (1− a)

−1
d (Txn, xn) ;

(c): d (xn, x
∗) ≤ (1 + b) (1− a)

−1
[d (Tn, T ) + d (Tnxn, xn)] .

Proof. We have

d (Txn, xn) ≤ d (Txn, Tnxn) + d (Tnxn, xn) ≤ d (Tn, T ) + d (Tnxn, xn)→ 0

as n→∞. Thus the conclusion follows from Theorem 3.5.

In the case of the Ćirić-Reich-Rus mappings we also have the following version
of Theorem 1.2. A similar result was obtained in I.A. Rus and M.-A. Şerban [22].

Theorem 3.7. Let (X, d) be a complete metric space, Y ⊂ X a nonempty closed
subset and T : Y → X a continuous mapping. Assume that the following conditions
are satisfied:

(i): T is an (a, b)-Ćirić-Reich-Rus mapping with a+ 2b < 1;
(ii): there exists a bounded sequence (yn) in Y such that Tnyn is defined for

every n ≥ 1;



ON THE APPROXIMATION OF FIXED POINTS 741

(iii): ET (Y ) < +∞.
Then

(a): T has a unique fixed point x∗;
(b): Tn−1yn → x∗ and Tnyn → x∗ as n→ +∞;

(c): d
(
Tn−1yn, x

∗) ≤ (1 + b) (1− a)
−1

(a+ b)
n−1

(1− b)1−n
d (yn, T yn) .

Proof. From

d
(
Tnyn, T

n−1yn
)
≤ ad

(
Tn−1yn, T

n−2yn
)

+ b
[
d
(
Tn−1yn, T

nyn
)

+ d
(
Tn−2yn, T

n−1yn
)]
,

we obtain that

d
(
Tnyn, T

n−1yn
)
≤ a+ b

1− b
d
(
Tn−2yn, T

n−1yn
)

· · · ≤
(
a+ b

1− b

)n−1

d (yn, T yn) ≤
(
a+ b

1− b

)n−1

ET (Y ) .

Since a+ 2b < 1, one has (a+ b) (1− b)−1
< 1. Consequently,

d
(
Tnyn, T

n−1yn
)
→ 0 as n→ +∞.

The conclusion follows from Theorem 3.5 applied to the sequence xn := Tn−1yn.

The following theorem is a Haimovici-Iseki type result for non-self Ćirić-Reich-
Rus mappings.

Theorem 3.8. Let (X, d) be a complete metric space, Y ⊂ X a nonempty closed
subset, T : Y → X a continuous mapping and Tn : Y → X, n ≥ 1, a sequence of
mappings. Assume that the following conditions are satisfied:

(i): T is an (a, b)-Ćirić-Reich-Rus mapping with a+ 2b < 1;
(ii): the mappings Tn (n ≥ 1) satisfy (4);
(iii): there exists a bounded sequence (yn) in Y such that Tn

n yn is defined for
every n ≥ 1;

(iv): ET (Y ) < +∞.
Then

(a): T has a unique fixed point x∗;
(b): Tn−1

n yn → x∗ and Tn
n yn → x∗ as n→ +∞;

(c): d
(
Tn−1
n yn, x

∗) ≤ 1+b
1−a ·

(
a+b
1−b

)n−1

· [d (yn, T yn) + d (Tyn, Tnyn)] .

Proof. The conclusion follows from the estimate

d
(
Tn
n yn, T

n−1
n yn

)
≤ a+ b

1− b
d
(
Tn−2
n yn, T

n−1
n yn

)
· · · ≤

(
a+ b

1− b

)n−1

d (yn, Tnyn)

≤
(
a+ b

1− b

)n−1

[d (yn, T yn) + d (Tyn, Tnyn)]

≤
(
a+ b

1− b

)n−1

[ET (Y ) + d (T, Tn)] ,

and from Theorem 3.6 applied to the sequence xn := Tn−1
n yn.
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4. Some extensions to the multi-valued case. If (X, d) is a metric space, then
we denote by P (X) the family of all nonempty subsets of X, by Pcl(X) the family
of all closed nonempty subsets of X, and by D the gap functional, i.e.,

D(A,B) := inf{d(a, b) : a ∈ A, b ∈ B}, for A,B ∈ P (X).

We also denote by H the Hausdorff-Pompeiu pseudometric on P (X) expressed by

H(A,B) := max{sup
a∈A

D(a,B), sup
b∈B

D(b, A)}.

See J.-P. Aubin and H. Frankowska [1] for related properties of the above functionals.

Our first result in this section is a multi-valued version of Theorem 2.1.

Theorem 4.1. Let (X, d) be a metric space, Y ∈ Pcl(X) and T : Y → P (X)
be a multi-valued non-self operator with closed graph. Assume that there exists a
sequence (xn) ⊂ Y such that:

(i):
⋃
n≥1

Txn is relatively compact;

(ii): D(xn, Txn)→ 0 as n→∞.

Then, there exists at least one fixed point for T and each limit point of the
sequence (xn) is a fixed point of T.

Proof. By (ii) there exists a sequence (un) in X such that un ∈ Txn for n ≥ 1 and

d(xn, un)→ 0 as n→∞. Since {un : n ≥ 1} ⊂
⋃
n≥1

Txn, there exists a subsequence

(unk
) of (un) which converges to an element x ∈ X as k → ∞. Since unk

∈ Txnk

for all k ≥ 1 we have d(xnk
, unk

)→ 0 as k →∞. Thus,

d(xnk
, x) ≤ d(xnk

, unk
) + d(unk

, x)→ 0 as n→∞.

Hence, xnk
converges to x and, since (xnk

) ⊂ Y and Y is closed in (X, d), we obtain
that x ∈ Y. We notice now that unk

∈ Txnk
for k ≥ 1, xnk

→ x ∈ Y and unk
→ x,

together with the hypothesis that T has closed graph, implies that x ∈ Tx.

An example where the assumption (i) of the above theorem is satisfied is given
by the following result.

Theorem 4.2. Let (X, d) be a metric space, Y ∈ Pcl(X) and T : Y → P (X) be a
multi-valued non-self operator with closed graph. Assume that:

(i): T has the property of sending bounded sets into relatively compact sets;
(ii): there exists a bounded sequence (xn) ⊂ Y such that D(xn, Txn) → 0 as
n→∞.

Then, there exists at least one fixed point for T and each limit point of the
sequence (xn) is a fixed point of T.

Proof. Since Z := {xn : n ≥ 1} is bounded, by (i), the set T (Z) =
⋃

n≥1 Txn is
relatively compact. Thus, the conclusion follows by Theorem 4.1.

Another example when the hypothesis (i) of Theorem 4.1 is fulfilled involves the
Hausdorff measure of noncompactness.

Theorem 4.3. Let (X, d) be a complete metric space, Y ∈ Pcl(X) and T : Y →
P (X) be a multi-valued non-self operator with closed graph. Assume that:
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(i): T is condensing with respect to Hausdorff’s measure of noncompactness,
i.e., αH(T (M)) < αH(M), for each bounded and countable M ∈ P (Y ) with
αH(M) > 0;

(ii): there exists a bounded sequence (xn) ⊂ Y such that D(xn, Txn) → 0 as
n→∞;

Then, there exists at least one fixed point for T and each limit point of the
sequence (xn) is a fixed point of T.

Proof. We will show that, by our hypotheses, the first assumption of Theorem 4.1
holds. As before, by (ii), there exists a sequence (un) in X such that un ∈ Txn for
n ≥ 1 and d(xn, un)→ 0 as n→∞. Thus, by Lemma 2.3, we have

αH({xn : n ≥ 1}) = αH({un : n ≥ 1}).
If we denote by S := {xn : n ≥ 1} and by W := {un : n ≥ 1}, then we observe
that

W ⊂ T (S) =
⋃
n≥1

Txn.

Let us suppose, by reductio ad absurdum, that αH(S) > 0. Then

αH(W ) ≤ αH(T (S)) < αH(S),

a contradiction with the above equality. Hence

αH(S) = αH(W ) = αH(
⋃
n≥1

T (xn)) = 0,

showing that
⋃
n≥1

Txn is relatively compact. Now the conclusion follows by Theorem

4.1.

A multi-valued variant of the Haimovici-Iseki fixed point theorem is the following
result.

Theorem 4.4. Let (X, d) be a complete metric space, Y ∈ Pcl(X), T : Y → P (X)
a multi-valued non-self operator with closed graph and Tn : Y → P (X) (n ≥ 1) a
sequence of multi-valued non-self operators. Assume that the following conditions
are satisfied:

(i): T is condensing with respect to Hausdorff’s measure of noncompactness;
(ii): there exists a bounded sequence (xn) ⊂ Y such that D(xn, Tnxn) → 0 as
n→∞;

(iii): H̃(Tn, T ) := sup
x∈Y

H(Tnx, Tx)→ 0 as n→∞.

Then, there exists at least one fixed point for T and each limit point of the
sequence (xn) is a fixed point of T.

Proof. By (ii) there exists a sequence (un) in X such that un ∈ Tnxn for n ≥ 1 and
d(xn, un)→ 0 as n→∞. Then we have

D(xn, Txn) ≤ d(xn, un) +D(un, Txn)

≤ d(xn, un) +H(Tnxn, Txn)

≤ d(xn, un) + H̃(Tn, T )→ 0 as n→∞.
The conclusion follows now from Theorem 4.2.

For related fixed point results involving multi-valued operators, see A. Petruşel
[11].
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5. An application. Consider the initial value problem for an implicit first-order
differential system {

u′ = f (t, u) + g (t, u′) for a.a. t ∈ (0, 1)
u (0) = u0,

(8)

where f, g : [0, 1]× RN → RN are Carathéodory functions and u0 ∈ RN .
Assume that there exist positive constants a, b, c, p with c < 1 and p < 1 such

that the following conditions are satisfied for all u, v ∈ RN and a.a. t ∈ (0, 1) :

(h1): |f (t, u)| ≤ a |u|p + b

(h2): |g (t, u)− g (t, v)| ≤ |u− v|
(h3): 〈g (t, u)− g (t, v) , u− v〉 ≤ c |u− v| .

Theorem 5.1. Under assumptions (h1)-(h3), problem (8) has at least one solution
u ∈ H1

(
0, 1;RN

)
.

Proof. If we denote x = u′, the the problem is equivalent to the fixed point equation

x = Tx, x ∈ L2
(
0, 1;RN

)
,

where

(Tx) (t) = f

(
t, u0 +

∫ t

0

x (s) ds

)
+ g (t, x (t)) .

We have T = A+B, where

(Ax) (t) = f

(
t, u0 +

∫ t

0

x (s) ds

)
, (Bx) (t) = g (t, x (t)) .

In virtue of (h2), the operator B is nonexpansive from L2
(
0, 1;RN

)
to itself, while

A is completely continuous due to the compact embedding of H1
(
0, 1;RN

)
into

L2
(
0, 1;RN

)
.

Our first step is to find an a priori bound of solutions. We claim that there
exists a constant R > 0 such that ‖x‖L2 < R for every solution of the equation

x = λAx+ µBx, (9)

and every λ, µ ∈ (0, 1) . Note that, from (h3),

〈g (t, x (t)) , x (t)〉 ≤ (c+ |g (t, 0)|) |x (t)| .

Then, if we multiply (9) by x (t) , and we take also into account (h1), we obtain

|x (t)|2 = λ

〈
f

(
t, u0 +

∫ t

0

x (s) ds

)
, x (t)

〉
+ µ 〈g (t, x (t)) , x (t)〉 (10)

≤

(
a

∣∣∣∣u0 +

∫ t

0

x (s) ds

∣∣∣∣p + b

)
|x (t)|+ (c+ |g (t, 0)|) |x (t)| .

Using the inequality (α+ β)
p ≤ αp + βp and Hölder’s inequality, we have∣∣∣∣u0 +

∫ t

0

x (s) ds

∣∣∣∣p ≤
∣∣u0
∣∣p +

∣∣∣∣∫ t

0

x (s) ds

∣∣∣∣p
≤

∣∣u0
∣∣p + ‖x‖pL2 .
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This together with integration of (10) gives

‖x‖2L2 ≤
[
a
(∣∣u0

∣∣p + ‖x‖pL2

)
+ b
] ∫ 1

0

|x (t)| dt+

∫ 1

0

(c+ |g (t, 0)|) |x (t)| dt

≤
[
a
(∣∣u0

∣∣p + ‖x‖pL2

)
+ b+ ‖c+ |g (t, 0)|‖L2

]
‖x‖L2

= a ‖x‖p+1
L2 + b̃ ‖x‖L2 ,

where b̃ = a
∣∣u0
∣∣p + b+ ‖c+ |g (t, 0)|‖L2 , or

‖x‖L2 ≤ a ‖x‖pL2 + b̃. (11)

Since p < 1, there is R > 0 (independent of x, λ and µ) such that ‖x‖L2 < R, as
claimed.

The second step is to construct an approximation sequence of operators (Tn)
for T, and to find a sequence (xn) of their fixed points as required by Haimovici’s
result. The operators are

Tn = A+

(
1− 1

n

)
B, n = 1, 2, · · ·,

which obviously are condensing. On the other hand, in virtue of the result from the
first step, one has ‖x‖L2 < R for every solution of the equations

x = λTnx, for λ ∈ (0, 1) .

Then, by Leray-Schauder continuation principle (see, e.g., R. Precup [15, Theorem
4.1]), or by Mönch fixed point theorem for non-self mappings (see K. Deimling [4,
Theorem 18.1] or D. O’Regan and R. Precup [10, Theorem 5.3]), Tn has a fixed
point xn. Also, the distance between Tn and T on the ball of L2(0, 1;RN ) of radius
R tends to zero as n → ∞. The conclusion will follow from Theorem 2.5 once we
prove that the set {Txn : n ≥ 1} , equivalently {xn : n ≥ 1} is relatively compact
in L2(0, 1;RN ).

This is our aim for the third step. The idea of the proof comes from the paper R.
Precup [14] (see also D. O’Regan and R. Precup [10, p. 46]). Since A is completely
continuous, passing to a subsequence, we may assume that the sequence (Axn) is
convergent. We show that the corresponding subsequence of (xn) , still denoted by
(xn) , is Cauchy. From

xn = Axn + (1− 1/n)Bxn,

we deduce

n

n− 1
xn −

k

k − 1
xk =

n

n− 1
Axn −

k

k − 1
Axk +Bxn −Bxk.

Denote an = (n− 1)
−1
. Then

xn − xk + anxn − akxk = nanAxn − kakAxk +Bxn −Bxk,

whence

〈anxn − akxk, xn − xk〉L2 = 〈Bxn −Bxk, xn − xk〉L2 − ‖xn − xk‖2L2

+ 〈nanAxn − kakAxk, xn − xk〉L2 .

From (h3), we deduce that

〈Bxn −Bxk, xn − xk〉L2 ≤ c ‖xn − xk‖2L2 .
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Then

〈anxn − akxk, xn − xk〉L2 ≤ (c− 1) ‖xn − xk‖2L2

+ 〈nanAxn − kakAxk, xn − xk〉L2 .

Now we use the following identity, which in fact is true in any Hilbert space,

2 〈anxn − akxk, xn − xk〉L2 = (an + ak) ‖xn − xk‖2L2

+ (an − ak)
(
‖xn‖2L2 − ‖xk‖2L2

)
to deduce that

(an + ak + 2 (1− c)) ‖xn − xk‖2L2 ≤ (an − ak)
(
‖xk‖2L2 − ‖xn‖2L2

)
+2 〈nanAxn − kakAxk, xn − xk〉L2 .

Consequently

‖xn − xk‖2L2 ≤
(
‖xk‖2L2 − ‖xn‖2L2

) an − ak
an + ak + 2 (1− c)

+
2

an + ak + 2 (1− c)
‖nanAxn − kakAxk‖L2 ‖ xn − xk‖L2 .

Here an − ak and ‖nanAxn − kakAxk‖L2 converge to zero as n, k → ∞, while

‖xk‖2L2 − ‖xn‖2L2 , ‖ xn − xk‖L2 and 2/ (an + ak + 2 (1− c)) are bounded. This
implies that (xn) is a Cauchy sequence.

Thus according to Theorem 2.5, T has a fixed point x ∈ L2
(
0, 1;RN

)
. Finally

the function

u (t) = u0 +

∫ t

0

x (s) ds

solves problem (8).

Remark 1. (10) In (h1) we may take p = 1 if it is assumed that a < 1. Indeed, the
‘a priori’ boundedness of solutions still holds in this case as shows (11).

(20) If f is null, then condition (h3) is not necessary. Indeed, in this case

‖xn − xk‖2L2 ≤
(
‖xk‖2L2 − ‖xn‖2L2

) an − ak
an + ak

,

where (an − ak) / (an + ak) is bounded and the sequence (‖xn‖L2) can be assumed
to be convergent.

Remark 2. In connection with the second step in the proof of Theorem 5.1 and the
Leray-Schauder condition, see also the early paper of S. Reich [18], and the more
recent one by D. Reem, S. Reich and A.J. Zaslavski [16].
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[12] A. Petruşel, I. A. Rus and M.-A. Şerban, Fixed points, fixed sets and iterated multifunction

systems for nonself multivalued operators, Set-Valued Var. Anal., 23 (2015), 223–237.

[13] R. Precup, On the continuation principle for nonexpansive maps, Studia Univ. Babeş-Bolyai
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