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Abstract. Recently a generalization of shifts of finite type to the infinite
alphabet case was proposed, in connection with the theory of ultragraph C*-

algebras. In this work we characterize the class of continuous shift commuting

maps between these spaces. In particular, we prove a Curtis-Hedlund-Lyndon
type theorem and use it to completely characterize continuous, shift commut-

ing, length preserving maps in terms of generalized sliding block codes.

1. Introduction. The generalization of the idea of a subshift of finite type to the
case of a countable alphabet, called a countable-state topological Markov chain,
is a natural one to make and comes up in various contexts, including problems in
magnetic recording, see [22]. Countable-state topological Markov chains have also
been studied in papers like [5, 6, 7, 8, 18], to mention a few. Although the subject
of intense research, the development of results for infinite alphabet shift spaces,
that parallel the symbolic dynamics of shifts over finite alphabets, has challenged
researchers over the years. The lack of compactness (or local compactness) in the
spaces considered account to many results in usual symbolic dynamics failing. For
example, it is shown in [22, 23] that for shifts with a countable alphabet (defined
via product topology) the entropy of a factor may increase.

In [21] Ott, Tomforde and Willis proposed a definition of a compact shift space
that is related to C*-algebra theory. Building from these ideas, and on work of
Webster (see [28]), a generalization of shifts of finite type to the infinite alphabet
case was proposed recently in [12]. The construction proposed in [12] takes the shift
space as the boundary path space of an ultragraph (ultragraphs are combinatorial
objects that generalize direct graphs). The idea is that the boundary path space
is the spectrum of a certain Abelian subalgebra of the ultragraph C*-algebra. In
a similar way, in the finite alphabet case, a Markov shift is the spectrum of an
abelian subalgebra of the associated Cuntz-Krieger algebra, see [4]. Although the
theory of shift spaces defined in [12] is still in its infancy, there has been already
applications to KMS states associated to ultragraph C*-algebras, see [2], and to the
diagonal-preserving isomorphism problem of ultragraph C*-algebras, see [1, 12].
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Continuous shift commuting maps form the main class of maps studied in sym-
bolic dynamics, since they correspond to topological conjugacies between shift
spaces. For example, in [12], the existence of a shift commuting map between
two ultragraph shift spaces is showed to be connected with the existence of an
isomorphism between the associated ultragraph C*-algebras.

For shift spaces over finite alphabets, the Curtis-Hedlund-Lyndon Theorem gives
a complete characterization of the class of continuous shift commuting maps: Such
class of maps corresponds to the class of sliding block codes, that is, corresponds to
the class of maps which have bounded local rules1 (see [19, Chap. 6]).

For infinite-alphabet shift spaces (with the product topology) it was proved that
continuous shift commuting maps correspond to generalized sliding block codes, that
are maps which have local rules, but their local rules are not necessarily bounded
(see [24]). In particular, uniformly continuous shift commuting maps correspond
to sliding block codes in the classical sense of maps with bounded local rules (see
[3]). In the Ott-Tomforde-Willis context, it was showed in [13] that there exist
continuous shift commuting maps that are not generalized sliding block codes, and
there exist generalized sliding block codes that are not continuous shift commuting
maps. Furthermore, in [13] a complete characterization of the intersection of the
class of continuous shift commuting maps with the class of generalized sliding block
codes was given.

In this paper we provide a characterization of continuous shift commuting maps
between the shift spaces defined in [12] (see Theorem 3.7). In particular, we describe
the connection between continuous shift commuting maps and generalized sliding
block codes (see Theorem 3.8). As a result we completely characterize continuous,
shift commuting, length preserving maps in terms of generalized sliding block codes
(see Corollary 4). Before we proceed to the main section (Section 3), we present a
review of the ultragraph shift spaces given in [12] in Section 2 below.

2. Background. In this section we recall some background on ultragraphs and the
shift spaces associated to them. We also set notation. Throughout this paper N
denotes the set of positive integers.

2.1. Ultragraphs. Ultragraphs were introduced by Tomforde in [25] as the cor-
rect object to unify the study of graph and Cuntz-Krieger algebras (via ultragraph
C*-algebras). Since their introduction ultragraphs have been used in connection
with both dynamical systems and C*-algebra theory (see [9, 17, 26] for example).
Recently ultragraphs have become a key object in the study of infinite alphabet
shift spaces, see [11, 12]. In this section we recall the main definitions and set up
notation, following closely the notions introduced in [20, 25].

Definition 2.1. An ultragraph is a quadruple G = (G0,G1, r, s) consisting of a
countable set of vertexes G0, a countable set of edges G1, a map s : G1 → G0, and
a map r : G1 → P (G0) \ {∅}, where P (G0) stands for the power set of G0.

Definition 2.2. Let G be an ultragraph. Define G0 to be the smallest subset
of P (G0) that contains {v} for all v ∈ G0, contains r(e) for all e ∈ G1, and is
closed under finite unions and non-empty finite intersections (a characterization of

1When sliding block codes are defined from a shift space onto itself they are named cellular
automata and, as proposed by von Neumann (see [27]), are topological dynamical systems that

serve as models for self-reproducing and self-organizing systems.
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G0 in terms of intersections and unions of ranges of edges can be found in [25,
Lemma 2.12]).

Let G be an ultragraph. A finite path in G is either an element of G0 or a sequence
of edges α = (αi)

k
i=1 in G1, where s (αi+1) ∈ r (αi) for 1 ≤ i ≤ k. The set of finite

paths in G is denoted by G∗.
If we write α = (αi)

k
i=1, then the length |α| of α is just k. The length |A| of a

path A ∈ G0 is zero. We define r (α) = r (αk) and s (α) = s (α1). For A ∈ G0, we
set r (A) = A = s (A).

An infinite path in G is an infinite sequence of edges γ = (γi)i≥1 in
∏
G1, such

that s (γi+1) ∈ r (γi) for all i. The set of infinite paths in G is denoted by p∞G . The
length |γ| of γ ∈ p∞G is defined to be ∞, and we define s(γ) = s(γ1). A vertex v in

G is called a sink if
∣∣s−1 (v)

∣∣ = 0 and is called an infinite emitter if
∣∣s−1 (v)

∣∣ =∞.

We set p0
G := G0 and, for n ≥ 1, we define pnG := {(α,A) : α ∈ G∗, |α| = n,

A ∈ G0, A ⊆ r (α)}, and

pG :=
⋃
n≥0

pnG .

We specify that (α,A) = (β,B) if, and only if, α = β and A = B. We define the
length of (α,A) ∈ pG as | (α,A) | := |α|. We call pG the ultrapath space associated
with G and the elements of pG are called ultrapaths. Each A ∈ G0 is regarded as an
ultrapath of length zero and can be identified with the pair (A,A). We embed the
set of finite paths G∗ in p by sending α to (α, r(α)). We extend the range map r
and the source map s to pG by the formulas, r ((α,A)) = A, s ((α,A)) = s (α) and
r (A) = s (A) = A.

Given α = (αi)
k
i=1 and β = (βi)

`
i=1 in G∗ with s(β) ∈ r(α) we define the con-

catenation of α with β as αβ := (α1 . . . αkβ1 . . . β`) ∈ G∗. Given α ∈ G∗ we say that
α′ ∈ G∗ is a prefix, or initial segment, of α if either α′ = α or α = α′β for some
β ∈ G∗.

Given x ∈ pG and y ∈ pG ∪ p∞G such that s(y) ⊆ r(x) (if |y| = 0) or s(y) ∈ r(x)
(if |y| ≥ 1), we define the concatenation of x and y (and denote it as xy) as follows:

x = A ⇒ xy := y;
x = (α,A) and y = B ⇒ xy := (α,B);
x = (α,A) and y = (β,B) ⇒ xy := (αβ,B);
x = (α,A) and y = (yi)i≥1 . . . ⇒ xy := (α1 . . . α|α|y1y2y3 . . .)

(1)

Given x ∈ pG ∪ p∞G , we say that x has x′ ∈ pG as a prefix, or initial segment, if
x = x′y, for some y ∈ pG ∪ p∞G .

Definition 2.3. For each subset A of G0, let ε (A) be the set {e ∈ G1 : s (e) ∈ A}.
We shall say that a set A in G0 is an infinite emitter whenever ε (A) is infinite.

2.2. Ultragraph shift spaces. In this section we recall the definition of a shift
space associated to an ultragraph, as introduced in [12]. Since [12] only deals with
ultragraphs without sinks we make the same assumption here.

Throughout assumption. From now on all ultragraphs in this paper are assumed
to have no sinks.

Before we define the topological space associated to an ultragraph we need the
following definition.

Definition 2.4. Let G be an ultragraph and A ∈ G0. We say that A is a minimal
infinite emitter if it is an infinite emitter that contains no proper subsets (in G0)
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that are infinite emitters. For a finite path α in G, we say that A is a minimal
infinite emitter in r(α) if A is a minimal infinite emitter and A ⊆ r(α). We denote
the set of all minimal infinite emitters in r(α) by Mα, and define

pGmin := {(α,A) ∈ pG : A ∈Mα},
and

p0
Gmin := pGmin ∩ p0

G .

To standardize the notation with previous work on sliding block codes (see [15, 13]
for example) we let

Xfin
G := {(xi)i≥1 : (xi)i≥1 = (α1 . . . αkAA . . .) with (α1 . . . αk, A) ∈ pGmin};

and let Xinf
G := p∞G .

Remark 1. Notice that Xfin
G can be embedded in pG , via the map ι that takes

(α1 . . . αkAA . . .) to (α1 . . . αk, A). So we can translate concepts defined in pG to

Xfin
G . For example, y ∈ pG is a prefix of x in Xfin

G iff it is a prefix of ι(x) in pG .

Definition 2.5. Let G be an ultragraph. We denote the set of sequences of the

form (AAA . . .) in Xfin
G by X0

G . Elements of X0
G are called 0-sequences and we set

their length as zero. A sequence of the form x = (α1 . . . αnAA . . .) ∈ Xfin
G is called

a finite-sequence, or an n-sequence, (and we set its length as |x| := n). Finally, a

sequence of the form x = (xi)i≥1 ∈ Xinf
G is called an infinite-sequence and we set

its length as |x| :=∞.

As a topological space, the (shift) space associated to an ultragraph G is the set

XG := Xfin
G ∪ Xinf

G ,

endowed with the topology generated by generalized cylinders, which are sets of the
form:

Dy,F := {x ∈ XG : y is prefix of x and x|y|+1 /∈ F}, (2)

where y ∈ pG and F is a finite (possibly empty) subset of ε(r(y)). When F = ∅ we
use the short notation Dy := Dy,F .

We remark that the generalized cylinders form a countable basis of clopen (but
not necessarily compact) sets for a metrizable topology on XG (see [12] for details,
including conditions for local compactness of XG , and [16] for the definition of a
metric on XG). Furthermore:

• If x = (xi)i≥1 ∈ Xinf
G then a neighbourhood basis for x is given by

{D(x1...xn,r(xn)) : n ≥ 1};

• If x = (αAAA . . .) ∈ Xfin
G then a neighbourhood basis for x is given by

{D(α,A),F : F ⊂ ε (A) , |F | <∞};
For our work the description of convergence of sequences in XG is important. We

recall it below:

Proposition 1. Let {xn}∞n=1 be a sequence of elements in XG, where xn =
(γn1 . . . γ

n
kn
, An) or xn = γn1 γ

n
2 . . ., and let x ∈ XG.

(a) If |x| = ∞, say x = γ1γ2 . . ., then {xn}∞n=1 converges to x if, and only if, for
every M ∈ N there exists N ∈ N such that n > N implies that |xn| ≥ M and
γni = γi for all 1 ≤ i ≤M .
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(b) If |x| < ∞, say x = (γ1 . . . γk, A), then {xn}∞n=1 converges to x if, and only if,
for every finite subset F ⊆ ε (A) there exists N ∈ N such that n > N implies
that xn = x or |xn| > |x|, γn|x|+1 ∈ ε (A) \ F , and γni = γi for all 1 ≤ i ≤ |x|.

We define the shift map σ : XG → XG in the usual way:

σ
(
(xi)i≥1

)
= (xi+1)i≥1.

The shift map is not continuous at points of length zero. This will play an im-
portant role in our results. In fact we have the following result regarding continuity
of σ.

Proposition 2. The shift map σ : XG → XG is continuous at all points of XG
with length greater than zero. Furthermore, if y ∈ pG and |y| > 0 then σ(Dy,F ) =
Dσ(y),F (but this is not necessarily true if |y| = 0).

Proof. The proof of the continuity of σ at all points of XG with length greater than
zero is given in Proposition 3.16 of [12].

To prove the second statement, suppose y ∈ pG with |y| > 0, that is, y =
(y1 . . . yn, A) with A ⊆ r(yn), and let F ⊂ ε(r(y)) be a finite set. If x = (xi)i≥1 ∈
D(y1...yn,A),F then x1 . . . xn = y1 . . . yn, s(xn+1) ∈ A, and xn+1 /∈ F . Therefore
σ(x) = (xi)i≥2 belongs to D(y2...yn,A),F , and thus σ(Dy,F ) ⊂ Dσ(y),F . On the other
hand, if z = (zi)i≥1 ∈ Dσ(y),F then z1 . . . zn−1 = y2 . . . yn, s(zn) ∈ A, and zn /∈ F .
Notice that, since y ∈ pG , we have y1z ∈ Dy,F . Furthermore, z = σ(y1z) ∈ σ(Dy,F )
and hence Dσ(y),F ⊂ σ(Dy,F ) as desired.

To finish, suppose that y ∈ pG with |y| = 0, that is, y = A. Since σ(A) = A we
have that Dσ(y),F = Dy,F , but in general σ(Dy,F ) 6= Dy,F .

Next we recall the definition of the shift space.

Definition 2.6. Let G be an ultragraph. The one-sided shift space associated to
G is the pair (XG , σ), where XG and σ are as defined above (with XG viewed as a
topological space). We will often refer to the space XG with the understanding that
the map σ is attached to it.

For use in the next sections we introduce the following definition.

Definition 2.7. Let G be an ultragraph. The alphabet of the shift XG is defined
as the set AG of all the symbols that can appear in some sequence of XG , that is,

AG := G1 ∪ p0
Gmin.

3. Continuous shift invariant maps. The characterization of continuous, shift
commuting maps is the main goal of this section (and of the paper). Before we prove
our main results (in Subsection 3.3), we need to develop a few auxiliary results. As
mentioned before, we are under the assumption that all ultragraphs have no sinks.

3.1. Shift commuting maps. In this subsection we study shift commuting maps
between shift spaces. We give a characterization of such maps below.

Proposition 3. Let G and H be ultragraphs, and let XG and XH be their respective
associated ultragraph shifts. A map Φ : XG → XH is shift commuting (i.e. Φ ◦ σ =
σ ◦ Φ) if, and only if, there exists a family of sets

{
Ca
}
a∈AH

, which is a partition

of XG, such that for all x ∈ XG and n ≥ 1 we have(
Φ(x)

)
n

=
∑
a∈AH

a1Ca
◦ σn−1(x), (3)
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where 1Ca is the characteristic function of the set Ca and
∑

stands for the symbolic
sum.

Proof. Suppose that Φ is shift commuting. Given a ∈ AH, let Ca := Φ−1
(
D(a,r(a)))

if a ∈ H1, and let Ca := Φ−1
(
{A}) if a = A ∈ p0

Hmin. It is straightforward that{
Ca
}
a∈AH

is a partition of XG .

Let x ∈ XG . To determine (Φ(x))1 it is only necessary to know what set Ca
contains x, that is,

(
Φ(x)

)
1

=
∑
a∈AH

a1Ca
(x). Therefore, since for each n ≥ 1 we

have Φ ◦ σn = σn ◦ Φ, it follows that(
Φ(x)

)
n

=
(
σn−1(Φ(x))

)
1

=
(
Φ(σn−1(x))

)
1

=
∑
a∈H

a1Ca(σn−1(x)).

For the converse, suppose that Φ is given by (3). To check that Φ is shift
commuting we just need to check that, for all x ∈ XG and n ≥ 1, we have(

Φ
(
σ(x)

))
n

=
(
σ
(
Φ(x)

))
n
. This follows from the following computation.(

Φ
(
σ(x)

))
n

=
∑

a∈AH

a1Ca ◦σ
n−1(σ(x)

)
=
∑

a∈AH

a1Ca ◦σ
n(x) =

(
Φ(x)

)
n+1

=
(
σ
(
Φ(x)

))
n
.

The following results will be useful in the next section.

Lemma 3.1. Let Φ : XG → XH be a shift commuting map and (AA . . .) ∈ X0
G.

If |Φ(AA . . .)| = 0 then the image of every finite sequence x = (x1x2 . . . xnA . . .) ∈
Xfin
G under Φ is a finite sequence in XH with length no greater than |x|.

Proof. Let (AA . . .) ∈ X0
G and suppose that Φ(AA . . .) = (BB . . .) ∈ X0

H. Let

x := (x1x2 . . . xnA . . .) ∈ Xfin
G . Then

σ|x| ◦ Φ(x) = Φ ◦ σ|x|(x) = Φ(AA . . .) = (BB . . .).

Lemma 3.2. Let Φ : XG → XH be a shift commuting map. Then for all
(x1x2x3 . . .) ∈ XG it follows that φ(x1x2x3 . . .) = aφ(x2x3 . . .), where a ∈ AH.

The next two results follow as in Section 3.1 of [15].

Proposition 4. If Φ : XG → XH is a shift commuting map and x ∈ XG is a
sequence with period p ≥ 1 (that is, such that σp(x) = x) then Φ(x) also has period
p.

Corollary 1. If Φ : XG → XH is a shift commuting map then, for all (AA . . .) ∈
X0
G, we have that Φ(AA . . .) is a constant sequence (that is, Φ(AA . . .) = (ddd . . .)

for some d ∈ AH).

We end this section by proving that for a shift commuting map Φ : XG → XH,
described in terms of characteristic functions of a partition

{
Ca
}
a∈AH

of XH as in

Proposition 3, the sets associated to the elements of length zero are shift invariant.

Corollary 2. Let G and H be two ultragraphs, and XG and XH be the associated
ultragraph shifts, respectively. Let Φ : XG → XH be a shift commuting map and{
Ca
}
a∈AH

be the partition of XH given in Proposition 3. Then, for all A ∈ p0
Hmin,

we have that σ(CA) ⊂ CA, that is, CA is shift invariant.
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Proof. Given A ∈ p0
Hmin, let x ∈ CA and y := Φ(x) ∈ XH. Since y1 =

(
Φ(x)

)
1

=
A ∈ XH it follows that yi = A for all i ≥ 1. Thus, for all i ≥ 1, it follows that

A = yi =
(
σi−1

(
Φ(x)

))
1

=
(

Φ
(
σi−1(x)

))
1
, which means that σi−1(x) ∈ CA.

3.2. Generalized sliding block codes. In this subsection we recall the concept
of generalized sliding block codes, which rely on the notion of finitely defined sets.
We also present examples in the ultragraph setting. We start with the definition of
blocks.

Let G be an ultragraph. For each n ≥ 1, let

Bn(XG) := {(a1 . . . an) ∈ (AG)n : ∃x ∈ XG ,∃i ≥ 1, s. t. xi+j−1 = aj ∀j = 1, . . . , n}
be the set of all blocks of length n in XG .

The language of XG is

B(XG) :=
⋃
n≥1

Bn(XG). (4)

Remark 2. Notice that while a finite sequence (αAAA . . .) ∈ Xfin
G has length |α|

the block (αA . . . A), where we repeat n times the symbol A, has length |α|+ n.

Before we can introduce finitely defined sets we need the notion of pseudo cylin-
ders.

Definition 3.3. A pseudo cylinder in a shift space XG is a set of the form

[b]`k := {(xi)i∈N ∈ XG : (xk . . . x`) = b},
where 1 ≤ k ≤ ` and b ∈ B(XG). We also assume that the empty set is a pseudo
cylinder.

We remark that in the context of shift spaces with the product topology pseudo
cylinders are equivalent to cylinders. On the other hand, for ultragraph shift spaces
(and also in the context of the shift spaces studied in [13, 14] and [21]), a pseudo
cylinder is not necessarily an open set. However, as we will see in Proposition 5, a
generalized cylinder, and its complement, can always be written as union of pseudo
cylinders, that is, a generalized cylinder is a finitely defined set, accordingly to the
following:

Definition 3.4. Given C ⊂ XG , we say that C is a finitely defined in XG if both C
and Cc can be written as unions of pseudo cylinders. More precisely, C is finitely
defined if there exist two collections of pseudo cylinders in XG , namely {[bi]`iki}i∈I
and {[dj ]nj

mj}j∈J , such that

C =
⋃
i∈I

[bi]`iki and Cc =
⋃
j∈J

[dj ]nj
mj
.

Remark 3. Intuitively, a finitely defined set C in XG is a set such that, given
x ∈ XG , we can ‘decide’ whether it belongs (or not) to C by knowing a finite
quantity of its coordinates.

The empty set and XG itself are trivial examples of finitely defined sets in XG .
Other examples are:

Example 1. Let G be an ultragraph and let Z be a subset of X0
G . Then Z is a

finitely defined set. On the other hand, suppose that there exist γ = e1e2 . . . ∈ p∞G
such that |s(ei)| ≥ 2 for each i. Then {γ}c, which can be written as a countable
union of generalized cylinder sets, is not finitely defined.



1040 DANIEL GONÇALVES AND MARCELO SOBOTTKA

Proof. Notice that Z =
⋃

AA...∈Z
[AA]21 and Zc =

⋃
a∈AG\Z

[a]11 (where on the second

union we use the identification of AA . . . in X0
G with A ∈ p0

Gmin).
For the second part, notice that {γ} can not be written as an union of pseudo

cylinders.

As we already mentioned, generalized cylinder sets are finitely defined. We prove
this below.

Proposition 5. Let G be an ultragraph and XG be the associated ultragraph shift
space. Then, for all y ∈ pG and all finite set F ⊂ ε(r(y)), the generalized cylinder
Dy,F is a finitely defined set.

Proof. Let y ∈ pG , and let F ⊂ ε(r(y)) be a finite set. If y = A ∈ p0
G , then it

follows that

DA,F =
⋃

e∈ε(A)\F

[e]11
⋃ ⋃

B⊂A, B∈p0
Gmin

[B]11

and

Dc
A,F =

⋃
e∈ε(A)c∪F

[e]11
⋃ ⋃

B 6⊂A, B∈p0
Gmin

[B]11.

If y = (γ1 . . . γn, A) ∈ pG \ p0
G , then

D(γ1...γn,A),F =
⋃

e∈ε(A)\F

[γ1 . . . γne]
n+1
1

⋃ ⋃
B⊂A, B∈p0

Gmin

[γ1 . . . γnB]n+1
1

and

Dc
(γ1...γn,A),F =

⋃
[α1 . . . αn]n1

⋃
[γ1 . . . γne]

n+1
1

⋃
[γ1 . . . γnB]n+1

1 ,

where the unions in the right side range over (α1 . . . αn) 6= (γ1 . . . γn), e ∈ F ∪
(r(γn) \ ε(A)), and B 6⊂ A, B ∈ p0

Gmin, respectively.

Following the same outline of the proof of Proposition 3.6 in [14], one can prove
that:

Proposition 6. Finite unions and finite intersections of finitely defined sets are
also finitely defined.

Remark 4. In general infinite unions or intersections of finitely defined are not
finitely defined sets. Thus infinite unions of generalized cylinders need not be finitely
defined sets.

Now that we have a good understanding of finitely defined sets we can define
generalized sliding block codes.

Definition 3.5. Let G and H be two ultragraphs and let XG and XH be the
associated ultragraph shift spaces, respectively. We say that a map Φ : XG → XH
is a generalized sliding block code if for all x ∈ XG and n ≥ 1 it follows that(

Φ(x)
)
n

=
∑
a∈AH

a1Ca ◦ σn−1(x),

where {Ca}a∈AH is a partition of XG by finitely defined sets.
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Note that, from Proposition 3, generalized sliding block codes are shift commut-
ing maps. Notice also that a generalized sliding block code can be interpreted as a
map with a (possible unbounded) local rule, that is, a map such that to determine(
Φ(x)

)
j

one just need to know the configuration of x in a finite window around xj
(but this window can vary). When the local rule is bounded, in the sense that the
window around xj is always the same, the classical notion of sliding block codes is
recovered.

We also remark that in the case of classical shift spaces over a finite alphabet,
generalized sliding block codes are the same as classical sliding block codes (see [24])
and hence they coincide with the continuous shift commuting maps (see [19]). In the
case of shift spaces over an infinite alphabet, with the product topology, generalized
sliding block codes also always coincide with the continuous shift commuting maps
[24]. For Ott-Tomforde-Willis shift spaces, it was showed in [13] that there exists
generalized sliding block codes that are not continuous, and sufficient and necessary
condition under which generalized sliding block codes coincide with continuous shift-

invariant maps were presented. In our setting, if Xfin
G = ∅ (for example, in the case

of a row finite graph), then the topology on XG coincides with the product topology
and hence generalized sliding block codes coincide with continuous, shift commuting
maps (as in [24]). In the next section we characterize continuous, shift commuting
maps in XG .

3.3. Continuous shift commuting maps and generalized sliding block
codes. In this section we study continuous, shift commuting maps and their con-
nection with generalized sliding block codes. We start by proving a result regard-
ing continuity of shift commuting maps on X inf

G (for which we need the following
lemma).

Lemma 3.6. Let C be a finitely defined set in XG. If x ∈ C ∩ Xinf
G then there

exists a generalized cylinder D such that x ∈ D and D ⊆ C.

Proof. Let x ∈ C ∩Xinf
G , where C is finitely defined in XG . Since |x| =∞, C must

contain a pseudo cylinder of the form [xk . . . xl]
l
k, where xj ∈ G1 for j = l, . . . , k.

But pseudo cylinders of the aforementioned type can be written as an union of
generalized cylinders and hence the result follows.

Proposition 7. Let Φ : XG → XH be a shift commuting map, characterized in
terms of partitions

{
Ca
}
a∈AH

, as in Proposition 3. Suppose that Φ is continuous

on Xinf
G ∩ Φ−1(X0

H). Furthermore, suppose that for all a ∈ AH \ p0
Hmin, and all

x ∈ Ca ∩ Xinf
G , there exists a cylinder D such that x ∈ D ⊆ Ca. Then φ is

continuous on Xinf
G .

Proof. Let x ∈ Xinf
G \ Φ−1(X0

H), say x = α1α2 . . ., and let (xn) be a sequence in
XG converging to x.

First suppose that |Φ(x)| = ∞, say Φ(x) = β1β2 . . .. Given K > 0 we have to
show that there exists N > 0 such that Φ(xn)j = Φ(x)j , for all j = 1, . . . ,K, and
n > N .

Notice that, for j = 1, . . . ,K, σj−1(x) ∈ Cβj
∩ Xinf

G . Hence, by hypothesis,

there exists a cylinder Dj such that σj−1(x) ∈ Dj ⊆ Cβj
. Since σj(xn) converges

to σj(x), there exists Nj such that σj−1(xn) ∈ Cβj for all n > Nj . Therefore
Φ(xn)j = Φ(x)j for all j = 1, . . . ,K and n > max{N1 . . . NK}.
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Now suppose that |Φ(x)| < ∞, say Φ(x) = (β1 . . . βkBB . . .) ∈ Xfin
H . Since

σi−1(x) ∈ Cβi for each i = 1, . . . , k, there exists N1 > 0 such that, for all n > N1, we
have σi−1(xn) ∈ Cβi

. Hence (Φ(xn))i = βi for all i = 1, . . . , k, and n > N1. Notice

that σk(x) ∈ CB ∩ Xinf
G . Since σk(xn) converges to σk(x), Φ is shift commuting,

and by hypothesis Φ is continuous on σk(x), it follows that Φ(xn) converges to
Φ(x).

Corollary 3. If Φ : XG → XH is a generalized sliding block code then it is shift

commuting and continuous on Xinf
G .

Proof. It follows from Proposition 3 that Φ is shift commuting.

Let {Ca}a∈AH be the partition that defines Φ, as in Definition 3.5. Let x ∈ Xinf
G .

By Lemma 3.6 if x ∈ Ca, for some a ∈ AH \ p0
Hmin, there exists a cylinder Da such

that x ∈ Da ⊆ Ca. If x ∈ Φ−1(X0
H) then x ∈ CB , for some B ∈ p0

Hmin. Since
CB is a finitely defined set, Lemma 3.6 implies again that there exists a cylinder D
such that x ∈ D ⊆ CB . So Φ is locally constant in x and hence continuous on x.

Continuity of Φ on Xinf
G now follows from Proposition 7.

Next we characterize continuous shift commuting maps.

Theorem 3.7. Let Φ : XG → XH be a map. If Φ is continuous and shift commuting
then Φ is a map given by(

Φ(x)
)
n

=
∑
a∈AH

a1Ca
◦ σn−1(x), for all n ≥ 1,

where

i. {Ca}a∈AH is a partition of XG such that, for each a ∈ AH \ p0
Hmin, the set Ca

is a (possibly empty) union of generalized cylinders of XG;

ii. if Φ(α1 . . . αkAA . . .) = (β1 . . . βlBB . . .), for some (α1 . . . αkAA . . .) ∈ Xfin
G

(in particular l ≤ k by Lemma 3.1), then for every neighbourhood DB,F of
B there exists a cylinder D(σl(α1...αk),A),F ′ such that Φ(D(σl(α1...αk),A),F ′) ⊆
DB,F ;

iii. if |Φ(AA . . .)| > 0 for some (AA . . .) ∈ X0
G, say Φ(AA . . .) = (ddd . . .), then

for all M > 0 there exists a cylinder DA,F such that σi(DA,F ) ⊆ Cd for all
i = 0, 1, . . . ,M .

Under the additional hypothesis that Φ is continuous on Xinf
G ∩ Φ−1(X0

H) the
converse of the statement above also holds.

Proof. Let Φ : XG → XH be a continuous and shift commuting map.
From Proposition 3 we have that, for all x ∈ XG and n ≥ 1,(

Φ(x)
)
n

=
∑
a∈AH

a1Ca ◦ σn−1(x),

where for each e ∈ H1 we have Ce := Φ−1(D(e,r(e))), and for each B ∈ p0
Hmin we

have CB = Φ−1(B).
Notice that {Ca}a∈AH is a partition of XG . Furthermore, notice that each Ce is

clopen and, since the generalized cylinders in XG form a countable basis, each Ce
can be written as a countable union of generalized cylinder sets. Therefore Item i.
is satisfied.

To check that Item ii. holds notice that if Φ(α1 . . . αkAA . . .) = β1 . . . βlBB . . .
then, by the continuity of Φ, for every neighbourhood DB,F of B there exists a
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cylinder D(α1...αk,A),F ′ such that Φ(D(α1...αk,A),F ′) ⊆ D(β,B),F . Hence, since Φ is
shift commuting, we get that Φ(D(σl(α1...αk),A),F ′) ⊆ DB,F .

Next suppose that there exists (AA . . .) ∈ X0
G such that |Φ(AA . . .)| > 0, say

Φ(AA . . .) = (ddd . . .). Notice that |Φ(AA . . .)| = ∞. Let M > 0 and α = (d . . . d)
be a block of length M + 1. Then (AA . . .) ∈ Φ−1(D(α,r(d))) and Φ−1(D(α,r(d))) is

open. Therefore there exists a cylinder DA,F ⊆ Φ−1(D(α,r(d))). Let 1 ≤ i ≤ M

and x ∈ DA,F . Then Φ(σi(x)) = σi(Φ(x)) and, since Φ(x) ∈ D(α,r(d)), we get that

σi(x) ∈ Cd and Item iii. is proved.

Now suppose that Φ is continuous on Xinf
G ∩Φ−1(X0

H). Under this condition we
show the converse of the theorem.

Assume that Φ is given by
(
Φ(x)

)
n

=
∑
a∈AG2

a1Ca
◦ σn−1(x), and Items i. to

iii. above are satisfied. By Proposition 3 we have that Φ is shift commuting. We
prove that it is also continuous.

Notice that, by Proposition 7, Φ is continuous on Xinf
G . Therefore we only need

to show continuity on Xfin
G .

Let (xn) be a sequence in XG that converges to x ∈ Xfin
G . We divide the proof

in two cases.

Case 1. If |x| = 0.
Then x = (AA . . .) for some (AA . . .) ∈ X0

G . If Φ(AA . . .) = (BB . . .) for

some (BB . . .) ∈ X0
H then, by Item ii., Φ(xn) converges to Φ(x). Suppose that

Φ(AA . . .) = (ddd . . .), with |Φ(AA . . .)| = ∞. Let M ∈ N. By Item iii. there
exists a cylinder DA,F such that σi(DA,F ) ⊆ Cd for all i = 0, 1, . . . ,M−1. Since xn
converges to A, there exists N > 0 such that xn ∈ DA,F for every n > N . Therefore
Φ(xn)i = d for all i = 1, . . . ,M and hence Φ(xn) converges to Φ(x).

Case 2. If 0 < |x| <∞, say x = α1 . . . αkAA . . ..
By the description of converge of sequences in XG1 we may assume, without loss

of generality, that |xn| ≥ k for all n.
Suppose that Φ(AA . . .) = (B′B′ . . .), where (B′B′ . . .) ∈ X0

H. By Lemma 3.1
we have that Φ(x) = (β1 . . . βlBB . . .), where l ≤ k. Notice that Φ(AA . . .) =
φ(σk(x)) = σk(Φ(x)) = (BB . . .) and hence B = B′. Fix a natural number j such
that 1 ≤ j ≤ l. Note that σj−1(x) ∈ Cβj , and hence there is a generalized cylinder

Dj such that σj−1(x) ∈ Dj ⊆ Cβj
. Since (σj−1(xn)) converges to σj−1(x), there

exists an Nj such that, for all n > Nj , σ
j−1(xn) ∈ Dj and hence

(
Φ(xn)

)
j

= βj
(so the j-entry of Φ(xn) is βj). Now, let D(β1...βl,B),F be a generalized cylinder
set containing (β1 . . . βl, B). Then DB,F is a generalized cylinder set containing B.
Pick a cylinder D(σl(α),A),F ′ such that Φ(D(σl(α),A),F ′) ⊆ DB,F (from item ii. of

hypothesis). By Proposition 2, we have that (σl(xn)) converges to (σl(α)AA . . .)
and hence there exists Nl+1 such that, for all n > Nl+1, σl(xn) ∈ D(σl(α),A),F ′ .
Taking N as the maximum among N1, . . . Nl+1, and using Lemma 3.2, we have that
Φ(xn) ∈ D(β1...βl,B),F for all n > N . Therefore Φ(xn) converges to Φ(x).

Now suppose that Φ(AA . . .) = (ddd . . .), with |Φ(AA . . .)| = ∞ (so d ∈ H1).
By Lemma 3.2 we have that Φ(x) = β1β2 . . ., where βi ∈ H1 for i = 1..|x|, and
βi = d ∈ H1 for i > |x|. Notice that σj−1(x) ∈ Cβj

for each j ∈ N, and hence,

by Item i., there are generalized cylinders Dj such that σj−1(x) ∈ Dj ⊆ Cβj for

all j ≤ |x|. Since xn converges to x we have that σj(xn) converges to σj(x) for all
j ≤ |x|. Therefore we can find N1 such that, for all n > N1 and for all j = 1, . . . , |x|,
it holds that σj−1(xn) ∈ Dj and hence

(
Φ(xn)

)
j

= βj . Let M > |x|. Take a cylinder
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DA,F as in Item iii., that is, such that σi(DA,F ) ⊆ Cd for all i = 0, 1, . . . ,M − |x|.
Since σ|x|(xn) converges to σ|x|(x) = (AA . . .) we have that there exists N > N1

such that, for all n > N , σ|x|(xn) ∈ DA,F . Hence σi+|x|(xn) ∈ DA,F for all
i = 0, 1, . . . ,M −|x| and therefore

(
Φ(xn)

)
j

= βj for j = 1 . . .M . We conclude that

Φ(xn) converges to Φ(x).

Remark 5. When Xinf
G ∩ Φ−1(X0

H) is empty, the above theorem is a complete
characterization of shift commuting maps. This is the case of maps such that

Φ(Xinf
G ) ⊆ Xinf

H or that preserve length (when dealing with infinite alphabet shift
spaces the hypothesis that shift commuting maps preserve length is common, see
for example [10, 11, 12, 21]).

Next we connect shift commuting maps with generalized sliding block codes.

Theorem 3.8. Let XG and XH be two ultragraph shift spaces. Suppose that Φ :
XG → XH is a map such that for each B ∈ p0

Hmin the set CB := Φ−1(BBB . . .) is a
finitely defined set. Then Φ is continuous and shift commuting if, and only if, Φ is
a generalized sliding block code given by

(
Φ(x)

)
n

=
∑
a∈AH

a1Ca ◦ σn−1(x) where:

i. For any a ∈ H1, the set Ca is a (possibly empty) union of generalized cylinders
of XG;

ii. If (x̄1 . . . x̄|x̄|AAA . . .) ∈ Xfin
G is such that Φ(x̄1 . . . x̄|x̄|AAA . . .) = (BBB . . .) ∈

X0
H, then:

a. There exists a finite subset F ⊆ ε(A) such that, for all e ∈ ε(A)\F , if x ∈ XG
satisfies xi = x̄i for all i = 1, . . . , |x̄|, and x|x̄|+1 = e, then

(
Φ(x)

)
1

= B or

(Φ(x)
)

1
∈ ε(B), i.e., Φ(x) ∈ DB;

b. For all x ∈ XG with xi = x̄i for i = 1, . . . , |x̄|, x|x̄|+1 ∈ ε(A), and
(
Φ(x)

)
1
∈

ε(B), the set
Ax := {g ∈ ε(A) : there exists y ∈ XG with yi = x̄i for i = 1, . . . , |x̄|,
y|x̄|+1 = g, and

(
Φ(y)

)
1

=
(
Φ(x)

)
1
}

is finite;

iii. If (AAA . . .) ∈ X0
G is such that Φ(AAA . . .) = (ddd . . .) ∈ Xinf

H , then for all

M ≥ 1 there exists a cylinder DA,F such that σi(DA,F ) ⊆ Cd for all i =
0, 1, . . . ,M .

Proof. Let Φ : XG → XH be a map such that, for all B ∈ p0
Hmin, the set CB :=

Φ−1(BBB . . .) is a finitely defined set. Then, by Lemma 3.6, Φ is continuous on

Xinf
G ∩ Φ−1(p0

Hmin) and hence both the forward implication and the converse of
Theorem 3.7 are valid.

Suppose first that Φ is continuous and shift commuting. By Theorem 3.7, Φ is
given by

(
Φ(x)

)
n

=
∑
a∈AH

a1Ca
◦ σn−1(x), where {Ca}a∈AH is a partition of XG ,

and Items i. and iii. above are satisfied. We need to check that Φ is a generalized
sliding block code and Item ii. above holds.

Notice that, for all a ∈ AH, the sets Ca and Cca =
⋃
b∈AH\{a} Cb are unions of

pseudo cylinders, which means that each Ca is a finitely defined set. Hence Φ is a
generalized sliding block code.

Next we check Item ii.. Suppose that Φ(x̄1 . . . x̄|x̄|AAA . . .) = (BBB . . .) ∈ X0
H.

Consider the cylinder DB . By Theorem 3.7 (Item ii.), there exists a cylinder
D(x̄1...x̄|x̄|,A),F such that Φ(D(x̄1...x̄|x̄|,A),F ) ⊆ DB . Then the finite set F is such
that Item ii.a. is satisfied. To check Item ii.b., let x ∈ XG be such that xi = x̄i
for i = 1, . . . , |x̄|, x|x̄|+1 ∈ ε(A), and

(
Φ(x)

)
1
∈ ε(B). Let F = {(Φ(x))1}.
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Then, by Theorem 3.7 (Item ii.), there exists a cylinder D(x̄1...x̄|x̄|,A),F ′ such that

Φ(D(x̄1...x̄|x̄|,A),F ′) ⊆ DB,F . Hence Ax ⊆ F ′.
For the converse, suppose that Φ is a generalized sliding block code given by(

Φ(x)
)
n

=
∑
a∈AH

a1Ca ◦ σn−1(x) satisfying Items i., ii., and iii. above. All we
need to do is verify Item ii. in Theorem 3.7.

Suppose that Φ(α1 . . . αkAA . . .) = β1 . . . βlBB . . ., for some α1 . . . αkAA . . . ∈
Xfin
G . By Lemma 3.1 we have l ≤ k. Then Φ(σl(α1 . . . αkAA . . .)) = BB . . ..

Denote σl(α1 . . . αkAA . . .) by x̄ := x̄1 . . . x̄|x̄|AA . . . (notice that |x̄| can be zero).
Then Φ(x̄1 . . . x̄|x̄|AA . . .) = (BBB . . .).

Suppose, by contradiction, that there exists a generalized cylinder DB,F ′′ such
that, for every generalized cylinder D(x̄1...x̄|x̄|,A),F ′ , we have that Φ(D(x̄1...x̄|x̄|,A),F ′)
is not contained in DB,F ′′ .

Take F as in Item ii.a., so that Φ(D(x̄1...x̄|x̄|,A),F ) ⊆ DB . Let x1 ∈
D(x̄1...x̄|x̄|,A),F be such that Φ(x1) /∈ DB,F ′′ . Then (Φ(x1))1 ∈ F ′′. Let D2 :=

D(x̄1...x̄|x̄|,A),F∪{(x1)|x̄|+1}, and x2 ∈ D2 be such that Φ(x2) /∈ DB,F ′′ (so that

(Φ(x2))1 ∈ F ′′). Let D3 := D(x̄1...x̄|x̄|,A),F∪{(x1)|x̄|+1,(x2)|x̄|+1}, and x3 ∈ D3 be

such that (Φ(x3))1 ∈ F ′′. Proceed by induction to define xn, for all n ∈ N. Since
F ′′ is finite, there exists e ∈ F and, a subsequence (xnk), such that (Φ(xnk))1 = e
for all k. Since the elements of (xn) are distinct this implies that Axn1 is infinite,
a contradiction. Hence Item ii. in Theorem 3.7 is verified and it follows that Φ is
continuous and shift commuting.

As we mentioned before, when dealing with infinite alphabet shift spaces it is
common to require that a continuous shift commuting map Φ : XG → XH pre-
serves length. The next corollary characterizes continuous, shift commuting, length-
preserving maps.

Corollary 4. A map Φ : XG → XH is continuous, shift commuting, and pre-
serves length, if and only if it is a generalized sliding block code given by

(
Φ(x)

)
n

=∑
a∈AH

a1Ca ◦ σn−1(x) where:

i. For each a ∈ AH \ p0
Hmin, the set Ca is a (possibly empty) union of generalized

cylinders of XG;

ii.
⋃

B∈p0
Hmin

CB = p0
Gmin;

iii. If Φ(AAA . . .) = (BBB . . .) ∈ X0
H then:

a. There exists a finite subset F ⊆ ε(A) such that, for all e ∈ ε(A) \ F , if
x ∈ XG and x1 = e, then

(
Φ(x)

)
1

= B or (Φ(x)
)

1
∈ ε(B), i.e., Φ(x) ∈ DB;

b. For all x ∈ XG with x1 ∈ ε(A), and
(
Φ(x)

)
1
∈ ε(B), the set

Ax := {g ∈ ε(A) : there exists y ∈ XG with y1 = g, and
(
Φ(y)

)
1

=
(
Φ(x)

)
1
}

is finite.

Proof. Suppose that Φ is continuous, shift commuting and length preserving. By
Proposition 3 we have that Φ is given by

(
Φ(x)

)
n

=
∑
a∈AH

a1Ca ◦ σn−1(x), where{
Ca
}
a∈AH

is a partition of XG . Since Φ is length preserving Item ii. above is

satisfied. Furthermore, for each B ∈ p0
Hmin, the set CB := Φ−1(BBB . . .) is a

countable union of elements of length zero in XG . By Example 1 we have that CB
is finitely defined. Items i. and iii. now follow from Theorem 3.8.
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For the converse, let Φ be a generalized sliding block code such that Items i. to
iii. above hold. Notice that Item ii. implies that Φ is length preserving and hence,
for all B ∈ p0

Hmin, Φ−1(B) is a finitely defined set. Now Items i. and iii. above
imply that all conditions of Theorem 3.8 are satisfied and hence Φ is continuous
and shift commuting.

We end the paper presenting some examples.

Example 2. .

a) Let G be the graph with only one vertex, say G0 := {w}, and edge set given by
G1 := {d, f1, f2, . . .} (so all edges are loops). Let H be the graph with only one
vertex, say H0 := {v}, and edge set given by H1 := {e1, e2, . . .}. It follows that
the ultragraph shifts XG and XH have alphabets AG = {A}∪G1 with A := G0

and AH = {B} ∪ H1 with B := H0, respectively (XG and XH coincide with
Ott-Tomforde-Willys full shifts).

Let CB = [A]11 ∪ {(ddd . . .)} and, for all j, let Cej = [fj ]
1
1 ∪ [dfj ]

2
1 ∪ [ddfj ]

3
1 ∪

[dddfj ]
4
1 ∪ . . .. This partition of XG defines a shift commuting map Φ given

by
(
Φ(x)

)
n

=
∑
a∈AH

a1Ca
◦ σn−1(x) which is not continuous (notice that

Φ−1(DB,{e1}) is not open, since every open neighbourhood of (ddd . . .) contains
elements of Ce1). We remark that in this case CB is not finitely defined.

b) Let G be the graph with only one vertex, say G0 := {w}, and edge set given by
G1 := {0}∪N. Let XG be the correspondent ultragraph shift (which, as before,
has alphabet AG = {A} ∪ G1 with A := G0). Consider the map Φ : XG → XG
given, for all x ∈ XG and n ∈ N, by

(
Φ(x)

)
n

=

 xn if xn 6= 0 and xn 6= A,
A if xn = A or xn+j = 0 ∀j ≥ 0,
k if xn+j = 0 for 0 ≤ j ≤ k, and xn+k+1 6= 0.

We have that Φ is continuous and shift commuting, but it is not a generalized
sliding block code, since CA = [A]11 ∪ {(000 . . .)} is not a finitely defined set.

c) In this example we consider again the ultragraph shifts of example a). From
Theorem 3.8, a map Φ : XG → XH, where Φ−1(BBB . . .) is a finitely defined
set, is continuous and shift commuting if and only if: either Φ(AAA . . .) =
(BBB . . .) and for all a ∈ H1 the set Ca is a finite union of generalized cylinders;
or Φ(AAA . . .) = (ejejej . . .) for some ej ∈ H1, there are just a finite number
of nonempty sets Ca, and for all M there exists a finite FM ⊂ AG such that
σn−1(DA,FM

) ⊂ Cej for all 1 ≤ n ≤M .
Recall that XG and XH coincide with Ott-Tomforde-Willys full shifts, and

therefore we can alternatively apply Theorems 3.16 and 3.17 of [13] to obtain
the above result.

d) In this example we use Z∗ to denote the set of all non-zero integers. Let G be
the ultragraph with vertex set G0 := {vk : k ≥ 0}, edge set G1 := {ek : k ≥ 0},
and the source sG : G1 → G0 and the range rG : G1 → P (G0) \ {∅} given by

sG(ek) := vk, ∀k ≥ 0,

and

rG(ek) :=

 {v` : ` ≥ 0} if k = 0,

{v0, vk} if k ≥ 1.

Note that the unique minimal infinite emitter of G is the set A := G0.
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LetH be the ultragraph with vertex set H0 := {wk : k ∈ Z∗}, edge setH1 :=
{fk : k ∈ Z∗}, and source sH : H1 → H0 and range rH : H1 → P (H0) \ {∅}
maps given by

sH(fk) := wk ∀k ∈ Z∗,
and

rH(fk) :=


{wk+1} if k ≤ −2,

{w` : ` ≥ 1} if k = −1,

{wk} ∪ {w` : ` ≤ −1} if k ≥ 1.

We notice that the minimal infinite emitters of H are the sets P := {w` :
` ≤ −1} and Q := {w` : ` ≥ 1}.

Now consider the map Φ : XG → XH given, for all x ∈ XG and n ≥ 1, by

(
Φ(x)

)
n

=



P if xn+j = e0 ∀j ≥ 0,

f−k if xn+j = e0, 0 ≤ j ≤ k − 1, and xn+k 6= e0,

fk if xn = ek for k 6= 0,

Q if xn = A.

It follows that Φ is an invertible continuous and shift commuting map, but
it is not a generalized sliding block code (since CP := {(e0e0e0 . . .)}). On the
other hand, Φ−1 is a generalized sliding block code.
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