
SECURE CLOUD COMPUTING
IN LEGAL METROLOGY

vorgelegt von
Dipl.-Inform.

Alexander Oppermann

an der Fakultät IV - Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
- Dr.-Ing. -

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Sebastian Möller
Gutachter: Prof. Dr. Jean-Pierre Seifert
Gutachter: Prof. Dr. Marian Margraf Freie Universität Berlin
Gutachter: Prof. Dr. Frederik Armknecht Universität Mannheim

Tag der wissenschaftlichen Aussprache: 13.03.2019

Berlin 2020

Eidestattliche Erklärung / Statutory Declaration
Hiermit versichere ich, dass ich diese Arbeit selbstständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

I hereby declare that I have created this work completely on my own and
used no other sources or tools than the ones listed.

Berlin, 13. März 2019 Alexander Oppermann

iii

Abstract
In Europe, all measuring instruments under legal control have to pass a con-
formity assessment to prove compliance with the European Measuring In-
strument Directive (MID). In Germany, the MID is regulated via the Ger-
man Measures and Verification Act (MessEG) that imposes additional re-
quirements for nationally regulated measuring instruments. According to
estimations, about four to six percent of the gross national income in Euro-
pean countries is generated by transactions in Legal Metrology, which equals
annual turnover of 500 billion Euros.

An ongoing transition can be observed from a local and concentrated mea-
suring instrument to a distributed and interconnected one. In recent years
Cloud Computing has been developed constantly, overcoming different chal-
lenges to mature in the fields of security, stability and reliability. However, a
lack of trust and verifiability of outsourced computations are still major hin-
drances for employing Cloud Computing solutions in sensitive and security-
conscious industries. These properties are challenging to protect by classical
approaches.

In this thesis, a Secure Cloud Reference Architecture for measuring in-
struments is presented, addressing both requirements and roles of the Legal
Metrology framework. Splitting a well contained measuring instrument into
a distributed measuring system, creates new challenges to guarantee secu-
rity and integrity of the measurements. Addressing these challenges, Fully
Homomorphic Encryption (FHE) is employed to enable calculations on en-
crypted measurements. FHE suffers from time intensive and complex com-
putations. However, by introducing multithreading to the employed FHE
schema, a significant speed-up in all arithmetic operations is achieved. A
secure communication protocol for encrypted data is presented to take ac-
count of integrity of encrypted measurements for data in transit. The feasi-
bility of FHE is proven by applying it to real-world tariff-applications in the
smart-meter domain. Furthermore, verification methods for the reference ar-
chitecture are presented to classify the system behaviour. A risk analysis is
performed to detect potential vulnerabilities, identify contemporary threats
as well as possible countermeasures demonstrating the suitability of the pro-
posed architecture for actual use. With this architectural approach all legal
requirements are met and the needs of all stakeholder are addressed.

v

Zusammenfassung
In Europa müssen sich alle Messgeräte, die dem gesetzlichen Messwesen un-
terliegen, einer Konformitätsprüfung unterziehen, um zu zeigen dass sie al-
le Anforderungen der europäischen Messgeräterichtlinie (MID) erfüllen. In
Deutschland wird die MID durch das Mess- und Eichgesetz (MessEG) abge-
bildet, das zusätzlich noch Anforderungen für national geregelte Messgeräte
enthält. Anhand von Schätzungen ist das gesetzliche Messwesen für vier bis
sechs Prozent des Bruttoinlandsprodukt in Europa verantwortlich.

Ein anhaltender Trend von lokalen und isolierten Messgeräten hinzu ver-
teilten und vernetzten Messgeräten kann beobachtet werden. In den letz-
ten Jahren hat sich die Cloud-Computing-Technologie ständig weiterentwi-
ckelt und ist an verschiedenen Herausforderungen gewachsen, im Besonde-
ren in den Bereichen Sicherheit, Stabilität und Zuverlässigkeit. Allerdings ist
ein Mangel an Vertrauen und Verifizierbarkeit ausgelagerter Berechnungen
immer noch ein großer Hinderungsgrund, um Cloud-Computing-Lösungen,
besonders in sensiblen und sicherheitsbewussten Bereichen, einzusetzen. Die-
se Sicherheitseigenschaften sind herausfordernd für klassische Sicherheitsan-
sätze umzusetzen, besonders in einer verteilten Umgebung.

In dieser Dissertation wird eine sichere Cloud-Referenzarchitektur für Mess-
geräte präsentiert, die die Anforderungen und Rollen im gesetzlichen Rah-
menwerk abdeckt. Durch das Aufspalten herkömmlicher Messgeräte und
das Abbilden auf eine verteilte Architektur werden neue Herausforderun-
gen an die Sicherheit und Integrität des Messgeräts gestellt. Um diesen Her-
ausforderungen angemessen zu entsprechen, kommt die vollständig homo-
morphe Verschlüsselung (FHE) zum Einsatz. Diese Verschlüsselung ermög-
licht sichere Berechnungen auf verschlüsselten Daten, ohne die Preisgabe
des Klartextes. FHE-Berechnungen sind zeitintensiv und sehr komplex. Im
Rahmen dieser Arbeit wird das zugrundeliegende FHE-Schema durch Mul-
tithreading erweitert, das zu signifikanten Beschleunigungen in allen arith-
metischen Operationen führt. Außerdem werden Ansätze zur Integrität der
Daten auf dem Transportweg durch ein spezielles Kommunikationsprotokoll
präsentiert. Zusätzlich werden Verifikationsmethoden vorgestellt, die die In-
tegrität sichern und das Verhalten der gesamten Architektur bewerten. Ab-
schließend wird eine Risikoanalyse, die speziell für Messgeräte im gesetz-
lichen Messen entwickelt wurde, auf der Grundlage der sicheren Referenz-
architektur durchgeführt. Dabei sollen potentielle Sicherheitslücken aufge-
deckt und zeitgemäße Angriffsvektoren identifiziert werden. Mit diesem ar-
chitektonischen Ansatz werden alle gesetzlichen Anforderungen erfüllt und
die Bedürfnisse aller beteiligten Parteien berücksichtigt.

vii

Publication List
The primary results of this work have been presented in the following peer-reviewed publications:

• A. Oppermann, M. Esche, F. Thiel, J.-P. Seifert, Secure Cloud Computing: Risk Analysis for
Secure Cloud Reference Architecture in Legal Metrology, Proceedings of the Federated Confer-
ence on Computer Science and Information Systems (FedCSIS), IEEE, 2018, pp. 593–602, DOI:
10.15439/2018F226 (Chapter 6)

• A. Oppermann, F. Grasso Toro, F. Thiel, J.-P. Seifert, Anomaly Detection Approaches for Se-
cure Cloud Reference Architectures in Legal Metrology. In Proceedings of the 8th International
Conference on Cloud Computing and Services Science (CLOSER 2018), pages 549-556, DOI:
10.5220/0006777105490556 (Chapter 2)

• A. Oppermann, F. Grasso Toro, F. Thiel, J.-P. Seifert, Secure Cloud Computing: Reference Archi-
tecture for Measuring Instrument under Legal Control. Journal Security and Privacy 2018;e18.
DOI: 10.1002/spy2.18 (Chapter 1, 2, 3, 4, 5 and 7)

• A. Oppermann, F. Grasso Toro, A. Yurchenko, J.-P.Seifert, Secure Cloud Computing: Commu-
nication Protocol for Multithreaded Fully Homomorphic Encryption for Remote Data Process-
ing in IEEE International Symposium on Parallel and Distributed Processing with Applications
(IEEE ISPA 2017) (pp. 503-510), DOI: 10.1109/ISPA/IUCC.2017.00084 (Chapter 2 and 3)

• A. Oppermann, A. Yurchenko, M .Esche, J.-P. Seifert, Secure Cloud Computing: Multithreaded
Fully Homomorphic Encryption for Legal Metrology, in International Conference on Intelli-
gent, Secure, and Dependable Systems in Distributed and Cloud Environments (ISDDC 2017)
2017 Oct 25 (pp. 35-54), DOI: 10.1007/978-3-319-69155-8, (Best Paper Award), (Chapter 3, 4 and
5)

• A. Oppermann, J.-P. Seifert, F. Thiel, Distributed Metrological Sensors managed by a secure
Cloud-Infrastructure, 18. GMA/ITG Fachtagung, Sensoren und Messsysteme 2016, Nürnberg,
10.-11. Mai, (2016), ISBN: 978-3-9816876-0-6, DOI: 10.5162/sensoren2016/P7.5 (Chapter 1 and
2)

• A. Oppermann, J.-P. Seifert, F. Thiel, Secure Cloud Reference Architectures for Measuring In-
struments under Legal Control, in Proceedings of the 6th International Conference on Cloud
Computing and Services Science (CLOSER 2016) - Volume 1, pages 289-294, 23.-25. April,
(2016), DOI: 10.5220/0005909902890294 (Chapter 1 and 2)

ix

http://dx.doi.org/10.15439/2018F226
http://dx.doi.org/10.5220/0006777105490556
http://dx.doi.org/10.1002/spy2.18
http://dx.doi.org/10.1109/ISPA/IUCC.2017.00084
http://dx.doi.org/10.1007/978-3-319-69155-8
http://dx.doi.org/10.5162/sensoren2016/P7.5
http://dx.doi.org/10.5220/0005909902890294

Contents
Publication List ix

List of Figures xv

List of Tables xvii

List of Abbreviation xix

1 Introduction 1
1.1 Problem Statement . 2
1.2 Contributions . 2
1.3 Outline . 3

2 Technical Background, Provisions and Assumptions 5
2.1 Legal Metrology . 5
2.2 Regulations in Legal Metrology 6

2.2.1 Measuring Instrument Directive 6
2.2.2 Essential Software Requirements from the MID 7
2.2.3 WELMEC . 8
2.2.4 The roles of manufacturer, Notified Body, user and mar-

ket surveillance . 10
2.2.5 The role of Cloud Service Provider 10
2.2.6 Reference Architecture 11

2.3 Cloud Computing . 13
2.3.1 Essential Requirements 14
2.3.2 Cloud Service Models 15
2.3.3 Cloud Deployments Models 17
2.3.4 Advantages of Cloud Computing 18
2.3.5 Disadvantages of Cloud Computing 19
2.3.6 Security of Cloud Computing 20
2.3.7 IT Compliance and Cloud Computing 22
2.3.8 Service Level Agreements 23
2.3.9 Certifications and Cloud Computing 23

2.4 Summary . 24

xi

xii

3 Secure Cloud Reference Architecture 25
3.1 Distributed Measuring System 25

3.1.1 Architectural Approach 26
3.1.2 Infrastructure as a Service 29
3.1.3 Platform as a Service . 30
3.1.4 Software as a Service . 33
3.1.5 Communication Protocol 34

3.2 Security Approaches and their limitations 37
3.2.1 Measuring Instrument and Trustworthy Components . 38

3.3 Verification Methods . 38
3.3.1 Verification Monitor . 39
3.3.2 Anomaly Detection Approach 41

3.3.2.1 Distributed Data Collection 41
3.4 Risk Assessment . 42
3.5 Related Work . 42
3.6 Summary . 43

4 Homomorphic Encryption 45
4.1 Preliminaries of homomorphic encryption 46
4.2 Definitions and Classifications 47

4.2.1 Somewhat Homomorphic Scheme 48
4.2.2 Leveled Homomorphic Scheme 48
4.2.3 Fully Homomorphic Scheme 48

4.3 Gentry-based homomorphic cryptosystems 49
4.4 Choosing the homomorphic library 50

4.4.1 HELib . 50
4.4.2 SEAL . 51
4.4.3 LibScarab . 51
4.4.4 FHEW . 51
4.4.5 Homomorphic Encryption (HE) 51

4.5 Functionality of the cryptographic library LibScarab 52
4.5.1 Key generation . 52
4.5.2 En- and decryption . 56
4.5.3 Homomorphic operations 57
4.5.4 Bootstrapping . 57

4.6 LSIM - Extension . 59
4.6.1 Multithreading . 60
4.6.2 Boolean operators . 61
4.6.3 Zero-Test of encrypted integer 62
4.6.4 Comparison of encrypted integer 62
4.6.5 Simple decision of encrypted integer 62
4.6.6 Addition and subtraction of encrypted integer 63

xiii

4.6.7 Multiplication of encrypted integer 63
4.6.8 Division of encrypted integer 65

4.7 Summary . 66

5 Evaluation & Utilization 67
5.1 Tariff applications . 67
5.2 Required logical and arithmetic operations 69

5.2.1 Required time for processing. 70
5.3 Evaluation of homomorphic operations 70

5.3.1 Key generation and recrypt operation 71
5.3.2 Arithmetic operations 71
5.3.3 Comparison of the stack and heap implementation of

LSIM . 74
5.3.4 Results of application scenarios 75

5.4 Summary . 77

6 Risk Assessment 79
6.1 Derivation of assets to be protected 79

6.1.1 Threat definition . 80
6.1.2 Identification of attack vectors 81
6.1.3 Calculating probability score and risk score 81

6.2 Evaluation of threats . 82
6.2.1 Integrity of transmitted measurement data 83
6.2.2 Authenticity of transmitted measurement data 85
6.2.3 Attack probability tree 87
6.2.4 Evidence of an Intervention 88
6.2.5 Integrity of Parameters 93
6.2.6 Availability of a Service 96
6.2.7 Effect of Attacker Motivation 96
6.2.8 Suitable Countermeasures 97

6.3 Summary . 98

7 Conclusion and Future Work 99

Bibliography 101

Appendices 107

AtPT for threat intention B3 109

AtPT for threat intention B4 111

Tables Overview 113

List of Figures
2.1 Overview of the different requirements in Legal Metrology . . 8
2.2 Roles in Legal Metrology . 11
2.3 Overview of the requirements for a reference architecture in

Legal Metrology. Furthermore, measuring instrument specific
requirements and the demand to be adaptable to different risk
classes are displayed. 12

2.4 Overview of Cloud Computing and its main characteristics . . 14
2.5 Overview of the different Cloud service models 16
2.6 Overview of the different Cloud deployment models 17
2.7 Overview of the different levels and scope of security in the

cloud . 21
2.8 Overview of the different security standards 24

3.1 Overview of the reference architecture concept 26
3.2 Architectural model overview of virtual machines and their

communication paths . 28
3.3 Network topology of the IaaS layer 29
3.4 Overview of the platform concept 31
3.5 Overview of encrypted communication protocol. 33
3.6 Overview of different security techniques and their area of ap-

plication. 37
3.7 Screen shot of the prototype verification monitor for the mar-

ket and user surveillance. 40

4.1 Graphical example of a homomorphism. 46
4.2 Comparison of public and secret basis B of a lattice L 49
4.3 Tree structure of the optimized adder part 64
4.4 Multi-threaded combined adder and subtractor 65

5.1 Plot of 32 Bit-FHE-operations (Add, Mult, Div) on a Server
with an Intel Xeon CPU E5-2620 v3 @ 2.40 GHz and 64GB RAM. 72

5.2 Plot of 64 Bit-FHE-operations (Add, Mult, Div) on a Server
with an Intel Xeon CPU E5-2620 v3 @ 2.40 GHz and 64GB RAM. 72

xv

xvi

5.3 Comparison of 32 Bit-FHE-operations (Add, Mult, Div) on a
Server with an Intel Xeon CPU E5-2620 v3 @ 2.40 GHz and
64GB RAM. 75

5.4 Comparison of accumulating measurement data on a Server
with an Intel Xeon CPU E5-2620 v3 @ 2.40 GHz and 64GB RAM. 76

5.5 Comparison of “read out” measurement data on a Server with
an Intel Xeon CPU E5-2620 v3 @ 2.40 GHz and 64GB RAM. . . 76

6.1 AtPT for threat intention B3. View: root node and two attack
vectors. 88

6.2 AtPT for threat intention B3. View: Subtree of attack vector
Active MQ. 89

6.3 AtPT for threat intention B3. View: Subtree of attack vector
Access to Message Queue. 90

6.4 AtPT for threat intention B3. View: Subtree of attack vector
Attack Database. 91

6.5 AtPT for threat intention B4. View: Root, Alter parameters of
microservices. 92

6.6 AtPT for threat intention B4. View: Subtree of attack vector A8. 93
6.7 AtPT for threat intention B4. View: Subtree of attack vector

IP-address spoofing. 95
6.8 AtPT for threat intention B5 to violate the availability security

property. 96

List of Tables
2.1 Security Controls and their Organizational Classes 21

4.1 Overview of fully homomorphic libraries 50
4.2 Parameters of key generator . 52

5.1 Overview of key geometry and performance gain in compari-
son to Brenner et al. 71

5.2 Overview of 32 bit operation results 73
5.3 Overview of 64 bit operation results 73

6.1 Formal Definition of Threats 80
6.2 Calculation of a TOE and association of a probability score . . 82
6.3 Attack vectors for Threat B1 . 83
6.4 Prerequisites for attack vector A3 84
6.5 Attack vectors for Threat B2 . 85
6.6 Prerequisites for attack vector A3 86
6.7 Mapping of expertise and motivation level 97

xvii

List of Abbreviation
ActiveMQ Active Message Queue

AD Anomaly Detection

AI Artificial Intelligence

API Application Programming Interface

ARP Adress Resolution Protocol

AtPt Attack Probability Tree

BSI Bundesamt für Sicherheit in der Informationstechnik

CA Certificate Authority

CERT Computer Emergency Response Team

CLA Carry Look Ahead Adder

CLI Command Line Interface

CPU central Processing Unit

CSA Carry Select Adder

CSP Cloud Service Provider

CVE Common Vulnerabilities and Exposures

CVP Closest Vector Problem

DDoS Distributed Denial of Service Attacks

EFTA European Free Trade Association

ENISA European Union Agency for Network and Information Security

FHE Fully Homomorphic Encryption

FLINT Fast Library for Number Theory

GCHQ British Government Communications Headquarters

GMP GNU Multiple Precision Arithmetic Library

HE Homomorphic Encryption

HSM Hardware Security Modules

IaaS Infrastructure as a Service

xix

xx

ID Identification/Identitiy/Identifier

IoT Internet of Things

I/O Input/Output

LHE Levelled Homomorphic Encryption

LM Legal Metrology

LSIM LibScarab extended for Integer Arithmetic and Multithreading

MessEG Mess- und Eichgesetz

MessEV Mess- und Eichverordnung

MID Measuring Instrument Directive

MITM Man-In-The-Middle attack

ML Machine Learning

MPFR Multiple-Precision Binary Floating-Point Library

NIC Network Interface Card

NIST National Institute of Standards and Technology

OIML International Organization of Legal Metrology

OpenMP Open Multi-Processing

OpenSSL Open Secure Socket Layer

OSI Open Systems Interconnection model

PaaS Platform as a Service

PCP Performance Co-Pilot

PKI Public Key Infrastructure

PPT Probabilistic Polynomial Time

PTB Physikalisch-Technische Bundesanstalt

PThread POSIX Threads

RCA Ripple Carry Adder

SaaS Software as a Service

SELinux Security Enhanced Linux

SHE Somewhat Homomorphic Encryption

SLA Service Level Agreements

SME Small and Middle size Enterprises

SMGW Smart Meter Gateway

SOA Service Oriented Architectures

xxi

SSH Secure Shell

SVP Shortest Vector Problem

TAF Tariff Application Scenarios

TLS Transport Layer Security

TOE Target of Evaluation

TR Technische Richtlinie (Technical Requirement Document)

USA United States of America

VM Virtual Machine

WAN Wide Area Network

WELMEC (Western) European Legal Metrology Cooperation

WG WELMEC Working Groups

1
Introduction

“They don’t call it the Internet anymore, they call it Cloud
Computing. I’m no longer resisting the name. Call it what you want.”

—Larry Ellison, CEO of Oracle

I N THE LAST YEARS, an exponential growth has been observable in inter-
connected devices, such as computers, smart phones and numerous em-
bedded devices. The amount of these interconnected devices will in-

crease immensely rather than decline in the foreseeable future. In the field of
Legal Metrology, are already 850 million measuring instruments employed
throughout the European Union (EU) [1]. These measuring instruments are
responsible for an annual turnover of four to six percent or 500 billion Euros
of the gross national income of the EU. Because of their significant financial
contribution to the economy, a fundamental purpose is to establish trust in
the market between all stakeholders. To be able to fulfill this obligation, all
measuring instruments that are subject to legal control have to pass a con-
formity assessment, in order to prove that all requirements of the European
Measuring Instrument Directive (MID) are met [2]. In Germany, the MID
is regulated via the German Measures and Verification Act (MessEG) which
further imposes requirements for national regulated measuring instruments.
Additional technical support to fulfill the MID is provided by the WELMEC
Software Guide [3].

In this increasing interconnected world, a significant role is played by Cloud
Computing. It is a key to enable technologies such as Internet of Things
(IoT), Big Data and machine learning (ML). By Centralizing the distributed
resources, it paves the way for a service-oriented society. Furthermore, mea-
suring instruments will be reduced in size and costs, combining virtualiza-

1

2 Chapter 1. Introduction

tion and externalization. Consequently, it is assumed that future measuring
instruments consist only of a basic sensor and a communication unit for an
Internet connection in the field [4]. The remainder of the measuring instru-
ment with metrological relevance, like data processing and storing units will
be centralized in a secure Cloud Computing solution.

Requests are increasing from manufacturers of measuring instruments, No-
tified Bodies and market surveillance authorities for Cloud Computing so-
lutions that are in conformity with the law. First promising approaches to
integrate Cloud Computing into existing business models or products are
brought forward to Notified Bodies, such as Physikalisch-Technische Bunde-
sanstalt (PTB) in Germany. The focus lies on the advantages of virtualization,
setting up infrastructure quickly, to scale it accordingly and to map these re-
quirements to industry processes, so that modern and cost-efficient solutions
can emerge.

1.1 Problem Statement
Despite the constant improvements in the field of Cloud Computing over the
last years, a lack of trust and verifiability of outsourced computations are still
major challenges for employing Cloud Computing solutions in sensitive and
security-conscious industries. In these fields confidentiality, integrity and
availability of services are very important security properties. Furthermore,
in respect to Legal Metrology reliability, reproducibility and repeatability of
measurements have to to be ensured. These properties and assets are chal-
lenging to protect by classical approaches, especially in a distributed environ-
ment. In the context of Cloud Computing, locality becomes a legal issue, be-
cause national bodies are operating within national boundaries while Cloud
Computing solutions can operate technically on a global scale with virtually
no borders. This also addresses off- and on-premise solutions for Cloud Com-
puting, which restricts initially the solution base and thus impedes taking full
advantage of Cloud Computing. Often, classical security measures, such as
static encryption, lead to restricted Cloud Computing solutions in terms of
flexibility, agility and usability. Cloud Computing will introduce a new role
of a Cloud Service Provider. This role has to be further determined in the
legal framework.

1.2 Contributions
In this thesis, the development of a secure cloud reference architecture for
measuring instruments is presented, addressing both requirements and roles
of the Legal Metrology framework. In a bottom up approach, each layer of

1.3. Outline 3

the Cloud is addressed and carefully tested against the essential requirements
in Legal Metrology. Nowadays, the majority of the measuring instruments in
the field are local and concentrated. Splitting a well contained measuring
instrument into a distributed measuring system, creates new challenges to
guarantee security and integrity of the measurements. Addressing these chal-
lenges, Fully Homomorphic Encryption (FHE) is improved, extended and
implemented to enable calculations on encrypted measurements. FHE suf-
fers from time intensive and complex computations. However, by introduc-
ing multithreading to the employed FHE schema, a significant speed-up in
all arithmetic operations is achieved. Furthermore, the operation space is ex-
tended to 32 bit and 64 bit numbers for all homomorphic operations. The key
generation and recryption routines are accelerated by a high factor, through
modernizing and optimizing the implemented schema. The feasibility of
FHE is proven by applying it to real-world tariff-applications in the smart-
meter domain. This is achieved by adding simple comparison, zero testing
and multithreading for homomorphic operations.

Also, a secure communication protocol for encrypted data is presented to
address the demand of integrity of encrypted measurements for data in tran-
sit. Furthermore, verification methods for the reference architecture are pre-
sented such as a continuous monitoring approach and a verification moni-
tor to classify the system behaviour. A risk analysis is performed to detect
potential vulnerabilities and identify contemporary threats. A tailored risk
assessment method for measuring instruments under legal control is applied
to objectify the derived probability score for identified threats. By objectify-
ing the resulting risk score the comparability of risk assessments can be in-
creased among Notified Bodies in Europe. This secure cloud reference archi-
tecture fulfills the highest security requirements of the European regulations
and needs of all stakeholders.

1.3 Outline
The remainder of this thesis is organized as follows:

• Chapter 2 gives an overview of the legal requirements and the technical
preliminaries;

• Chapter 3 presents the secure Cloud Computing architecture in a bot-
tom up approach including a monitoring approach for the secure cloud
architecture.

• Chapter 4 introduces homomorphic encryption and highlights the con-
tribution to this field.

• Chapter 5 applies the prototype to real world application scenarios and

4 Chapter 1. Introduction

presents results.

• Chapter 6 presents the risk assessment of the secure reference architec-
ture with an attack probability tree especially tailored for Legal Metrol-
ogy.

• Chapter 7 provides conclusions and further work.

2
Technical Background,
Provisions and Assumptions

“I don’t need a hard disk in my computer if I can get to the server
faster. . . carrying around these non-connected computers is byzantine

by comparison.”

—Steve Jobs, Co-founder, CEO and Chairman of Apple Inc.

T HIS CHAPTER PROVIDES an introduction to the field of Legal Metrology.
The most relevant regulations are highlighted, such as the European
measuring instrument directive (MID), WELMEC and OIML guide.

All stakeholders in Legal Metrology will be summed up and a new role of
the Cloud Service Provider will be introduced and discussed. Furthermore,
an overview of the legal requirements for a Cloud Computing architecture
will be given. The general provisions and technical background of Cloud
Computing is thoroughly described and explained.

2.1 Legal Metrology
Legal Metrology covers a wide range of measuring instruments from com-
mercial or administrative purposes to measurements in the public interest.
In Germany over 100 million legally relevant meters are in use (see [5]). The
vast majority of them are employed for business purposes, commodity me-
ters in the field of water, gas, electricity or heat. Furthermore, common ap-
plications for meters are petrol pumps or scales in e.g. super markets. The
traffic system, for example, requires meters for speed or alcohol meters in a

5

6 Chapter 2. Technical Background, Provisions and Assumptions

large amount, in order to guarantee safety. All of these applications have in
common, that neither the user nor the affected person can check the validity
of the determined result. Instead, they rely on the accuracy of the measure-
ment as well as the official calibration of these measuring instrument. The
key role of Legal Metrology is to assure the correctness of measurements and
further to protect public trust in them. Additionally, Legal Metrology fulfills
the purpose to ensure the functioning of the economic system as well as to
protect the consumer at the same time.

The International Organization of Legal Metrology (OIML) was founded with
the aim to harmonize regulations across national boundaries worldwide and
to avoid trade barriers due to legal requirements. The document OIML D 31
[6] focuses especially on software requirements for legal measuring instru-
ments (see [7]).

WELMEC is the European committee responsible for harmonizing legal
regulations in the area of Legal Metrology. The committee publishes guides
and supports notified bodies (public or private organized departments to
certify measurements devices) throughout Europe and manufacturers alike,
which implement the Measuring Instruments Directive (MID) (see Section
2.2.3 and [7], [8]).

2.2 Regulations in Legal Metrology
In the following subsections a comprehensive overview of the paramount
regulations in Legal Metrology are given. Furthermore, the stakeholders are
introduced, and a new role of the Cloud Service Provider is discussed. Lastly
the concept of the reference architecture is presented that serves as a basis for
the developed secure Cloud Computing architecture.

2.2.1 Measuring Instrument Directive

The MID comprises ten types of measuring instruments that are of special
interest and importance to the economy due to their wide-spread or cross-
border use. These are: water meters, gas meters and volume conversion de-
vices, active electrical energy meters, heat meters, measuring systems for the
continuous and dynamic measurement of quantities of liquids other than wa-
ter, automatic weighing instruments, taximeters, material measures, dimen-
sional measuring instruments, and exhaust gas analyzers. In the annex of
the directive there are definitions, fault tolerances and specific requirements
outlined for each type of the prior mentioned measurement instruments.

Before putting a new measuring instrument on the market, the manufac-

2.2. Regulations in Legal Metrology 7

turer has to declare the conformity with the MID based on the assessment by
a Notified Body in Europe (see Figure 2.2). The Physikalisch-Technische Bun-
desanstalt (PTB) is a Notified Body in Germany. Aside from that role, the
PTB is the German national metrology institute and acts as an interface be-
tween scientific research and economic interests. Furthermore, the PTB is
responsible for technical expertise related to measuring instruments, confor-
mity assessment, monitoring of product-related quality assurance systems
and European regulations. Given the scope of these responsibilities, it is cru-
cial that Notified Bodies are independent and neutral in order to be able to
fulfill duties impartially.

2.2.2 Essential Software Requirements from the MID

Annex I of the MID defines a set of essential requirements, which all measur-
ing instruments covered by the directive need to comply with. These require-
ments cover physical conditions, under which the instrument has to function
correctly, accuracy requirements for the measuring result as well as require-
ments concerning the prevention of manipulation. The requirements from
the latter category may be interpreted from an information security angle as
a list of assets to be protected [9]. As an example, essential requirement 8.4
will be briefly examined here. It states, “Measurement data, software that is
critical for measurement characteristics and metrologically important param-
eters stored or transmitted shall be adequately protected against accidental or
intentional corruption.” The assets defined in the requirement are transmit-
ted and stored parameters, measurement data as well as the software of the
instrument itself. As all of these are to be protected against intentional and
accidental corruption, at least their integrity and authenticity need to be guar-
anteed. In the context of this thesis, the main focus will be on the integrity
of both the software and the measurement data. Availability of the software
is not required by the MID as no false measurement data can be generated if
the instrument is out of order.

Figure 2.1 displays platform requirements and additionally the most im-
portant MID software requirements are listed below:

• Reproducibility of measurement results must be ensured, even if differ-
ent users make use of it.

• Durability of the measuring instrument’s software must be ensured
over a period of time. The measuring instrument’s design shall de-
crease the effect of a defect as far as possible that would lead to an in-
accurate measurement result, unless the presence of such a defect is
obvious.

8 Chapter 2. Technical Background, Provisions and Assumptions

Figure 2.1: Overview of the different requirements in Legal Metrology for measuring sys-
tems. Orange are the demands for handling measurement data. Green are
the platform requirements

• The characteristics of a measuring instrument shall minimize the fraud-
ulent use, and possibilities for unintentional misuse. Theses claims re-
quest that the effect of manipulations and defects are reduced to a fea-
sible minimum.

• After the instrument has been placed on the market and put into use,
the measuring instrument’s design shall allow the control of the mea-
suring tasks. Also, software identification shall be easily provided by
the measuring instrument.

2.2.3 WELMEC

The European Free Trade Association (EFTA) and national authorities send
members to WELMEC Committee. At the moment 37 countries are part of
the WELMEC Committee. The committee has established eight WELMEC
Working Groups (WG) and WG7 is in charge of software matters and the
WELMEC 7.2 Software Guide. The current issue is WELMEC 7.2 from 2015 [3].

The WELMEC 7.2 Software Guide gives an overview on software security

2.2. Regulations in Legal Metrology 9

with special focus on measuring instruments. It helps manufacturers and
Notified Bodies alike by providing examples and rules on how to achieve
software security and guarantees, if followed, compliance with the software
related part required by the MID. Furthermore, the WELMEC 7.2 Software
Guide defines six risk classes in ascending order A-F and distinguishes from
low to high the protection level, examination level and conformity level of
software. This means the risk class A has the lowest security claims for soft-
ware examination and class F the highest security demands vice versa. For
this distributed reference architecture class F was chosen, in order to comply
with the highest software security requirements available in the domain of
legal metrology. Risk class F has to fulfill the following list:

• Software protection against intentional changes with sophisticated soft-
ware tools.

• Thorough software examination including review of the submitted source
code.

• The approved software of the type examination has to be reasonably
identical with the later available measuring instrument on the market.

The Welmec 7.2 Software Guide categorizes all software modules as legally
relevant that make a contribution or can influence the measurement result.
This comprises software modules and auxiliary functions that are able to dis-
play measuring results, read and write legal relevant data, identifying soft-
ware modules, protecting, logging, transferring, receiving, storing and exe-
cuting data. These requirements are fundamental for the later design of the
architectural approach of a distributed measuring instrument in Chapter 3.

Traditionally, Welmec 7.2 Software Guide distinguishes between purpose
and universal measuring instruments type P and U. For this reference archi-
tecture a type U instrument and its requirements fits best, since it is not a
micro-controller architecture, but rather a universal instrument with a oper-
ating system that is connected to an open network. Additionally, four exten-
sions and its requirements are applied to the reference architectural design
[3]:

• Extension L: Long-term Storage of Measurement Data

• Extension T: Transmissionof Measurement Data via Communication Net-
works

• Extension S: Software Separation

• Extension D: Download of Legally Relevant Software

The Welmec 7.2 Software Guide advises to design software for secure mea-
suring instruments with isolation of the legally relevant software from the

10 Chapter 2. Technical Background, Provisions and Assumptions

legally non-relevant one. Likewise, the non-relevant part may not influence
the legally relevant one, this may be realized by means of protective inter-
faces. This approach is consequently enforced for each tier of the cloud refer-
ence architecture. On the IaaS tier subnetting and virtual machines are used
to guarantee a low level separation. On PaaS tier, microservices are used to
enforce the same separation, that can be consequently transferred to the SaaS
tier (see Sections 2.3.2 and 3.1) Moreover, if the software is built modular it
will ease the update process for manufacturers and Notified Bodies.

2.2.4 The roles of manufacturer, Notified Body, user and market
surveillance

In the text of the MID, certain roles are defined for players in the field of
Legal Metrology. Firstly, the manufacturer of an instrument is responsible
for putting instruments on the market and into use that comply fully with
the directive. To assure conformity with the MID, the manufacturer submits
a prototype of the instrument to a so-called Notified Body for conformity
assessment module B.

If the prototype is in conformance with the requirements, the Notified
Body issues a certificate accordingly. The manufacturer will then sell an
instrument with the same properties as the prototype to the user together
with a declaration of conformity. A market surveillance authority is subse-
quently tasked with supervising the use of the instrument. In regular in-
tervals, the authority will also reverify the instrument to ensure that it still
performs within the parameters set by the MID and the certificate issued by
the Notified Body. In this context, only the market surveillance authority
and the Notified Body will be considered to be trustworthy as they are under
constant supervision by the respective EU member states. All other parties
(manufacturer, user of the instrument and the user’s customer) can be deem
as potential attackers (see Figure 2.2).

2.2.5 The role of Cloud Service Provider

In Legal Metrology four important roles are established: the Notified Body,
the manufacturer of the measuring instrument, the user of the measuring in-
strument and the Market- and User Surveillance (see Section 2.2.4). By estab-
lishing Cloud Computing as a technology a new role has to be determined,
that of the Cloud Service Provider. As pointed out this role does not exist yet
in Legal Metrology and how to deal with it or where to place that role has
not been conclusively decided (see Figure 2.2). Either the role of the Cloud
Service will be filled by the manufacturer as part of his responsibilities and

2.2. Regulations in Legal Metrology 11

Figure 2.2: Overview of the different actors their roles, schedule of responsibilities and
duties in Legal Metrology. The cloud service provider role has to be deter-
mined.

business case, so that he can provide an “on premise" solution for the cus-
tomer, or the User of the measuring instrument fills the role of the Cloud
Service Provider. A third option would be that either the manufacturer or
the user will delegate the responsibilities to a third party provider. For the
market surveillance and notified body, the legal liabilities will still stay with
the manufacturer or the user respectively but under private law the Cloud
Service Provider can held responsible via Service Level Agreements (SLA).

2.2.6 Reference Architecture

Just as all other fields, Legal Metrology is undergoing fundamental changes.
The world and its technologies are changing at a pace that is incomparable
to prior decades. In order to cope with new and fundamental technologies,
knowledge is key. The basic idea behind creating general reference architec-
tures is to gain the knowledge of implementing and utilizing key technolo-
gies that promise to enable the field of Legal Metrology to keep up with the
state-of the-art.

12 Chapter 2. Technical Background, Provisions and Assumptions

Figure 2.3: Overview of the requirements for a reference architecture in Legal Metrology.
Furthermore, measuring instrument specific requirements and the demand
to be adaptable to different risk classes are displayed.

The PTB, as a Notified Body, builds up this important technological knowl-
edge and shares it among all stakeholders in Legal Metrology to provide con-
fidence and trust among all stakeholders. While creating a reference architec-
ture using a new technology, in this particular case it is Cloud Computing,
the technological knowledge is gained, and an architecture is built specifi-
cally tailored for the field of Legal Metrology. The processes of conformity as-
sessment and market surveillance can be streamlined through the research of
new technologies applied to prototyping architectures, risk assessment and
remote verification of measuring instruments in the field see 3.3.1.

In order to prove that new technologies are important and viable to the
field of Legal Metrology, the technology has to fulfill a number of require-
ments (see Figure 2.3). A successful reference architecture has to fulfill the
essential requirements of the European directives [2], [10] and guidelines [3]
(see Section 2.2.2 and Section 2.2.3).

Furthermore, it has to provide an applicable verification method for the
market and user surveillance, since they do not have the time nor the finan-
cial resources to dig deep into the used technology stack. The verification
method will be introduced in Section 3.3.1 and supports the work of the mar-
ket and user surveillance in the field. The verification method and its result
has to be understood by an average user of the market and user surveillance.
Furthermore, the verification method is built deliberatly simple to encourage
future manufacturer to build in such a feature in their products, aginst inten-
tional and unintentional changes of their validated measuring software. It
supports a simple integrity check in the field and raises the bar of the state-

2.3. Cloud Computing 13

of-the-art for such instruments in the field. Also, a risk analysis of contem-
porary threats and attacks has to be carried out and evaluated as required by
the MID [9]. In Chapter 6 such a risk analysis is carried out and is based on
an attacker model with an insider and outsider attack. The reference architec-
ture is designed for the highest risk class but is adaptable and can be scaled
down according to the needs of the applied measuring instrument.

The reference architecture is deliberately built very general, in order to able
to adapt it to the 14 classes of European and several national regulated mea-
suring instruments, which range from gas, power, heat to water, oil and speed
meters.

2.3 Cloud Computing
The concept of centralized computation has been introduced in the 1960s by
John McCarthy with timesharing on mainframe computers. The main idea
is that a group of people can increase the computing workload more effi-
ciently and stabilize it than an individual alone, since idle times will be re-
duced enormously. In 1969 the Advanced Research Projects Agency Network
(ARPANET) was introduced and enabled an early computer network, that is
nowadays better known as the INTERNET. In the 1970s the first software Vir-
tualization was introduced and early concepts of emulating complete com-
puters, Virtual Machines, were researched. This concept introduced a mas-
sive paradigm shift in computer science. In the early 1990s a forecast for
distributed computing was made.

Prof. Ramnath Chellappa coined the term Cloud Computing in 1997 and
defined it as “a computing paradigm where the boundaries of computing will
be determined by economic rationale rather than technical limits alone”[11].
At the end of the 1990s and in the early 2000s outsourcing IT-related tasks
were very popular and led to the first enterprise related applications that
were delivered via the Internet. This development fostered a research in web-
based services and led to service-oriented architectures (SOA). The advent of
Cloud Computing took place in 2009. Since then a rapid development and
spread throughout the whole market can be observed. Nowadays, Cloud
Computing is being viewed as an enabling technology for new developments
like Big Data, the Internet of Things (IoT) and the evaluation of massive data
by artificial intelligence (AI) and machine learning (ML).

Keeping Chellapa’s definition in mind, it held true that Cloud Comput-
ing is driven and sharpened by economic and marketing rationales. Thus,
it is hard to find a precise and comprehensive definition for the technologies
comprised by Cloud Computing. Mostly, it is just a description of its features.

14 Chapter 2. Technical Background, Provisions and Assumptions

Figure 2.4: Overview of Cloud Computing and its main characteristics. [12]

Figure 2.4 gives a non-exhaustive overview of the areas touched by Cloud
Computing. Furthermore, this Section describes the essential characteristics,
service and deployment models of Cloud Computing that are defined by the
National Institute of Standards and Technology (NIST).

2.3.1 Essential Requirements

In the following paragraphs the NIST Cloud Computing definition and their
Cloud Computing concept with its five essential characteristics [13] will be
briefly explained and mentioned, in order to grasp a better understanding of
a cloud system:

On-demand self-service. A consumer can unilaterally provision
computing capabilities, such as server time and network stor-
age, as needed automatically without requiring human inter-
action with each service provider.

Broad network access. Capabilities are available over the network
and accessed through standard mechanisms that promote
use by heterogeneous thin or thick client platforms (e.g., mo-
bile phones, tablets, laptops, and workstations).

2.3. Cloud Computing 15

Resource pooling. The provider’s computing resources are pooled
to serve multiple consumers using a multi tenant model, with
different physical and virtual resources dynamically assigned
and reassigned according to consumer demand. There is a
sense of location independence in that the customer gener-
ally has no control or knowledge over the exact location of
the provided resources but may be able to specify location
at a higher level of abstraction (e.g., country, state, or data
center). Examples of resources include storage, processing,
memory, and network bandwidth.

Rapid Elasticity. Capabilities can be elastically provisioned and
released, in some cases automatically, to scale rapidly out
ward and in ward commensurate with demand. To the con-
sumer, the capabilities available for provisioning often ap-
pear to be unlimited and can be appropriated in any quantity
at any time.

Measured service. Cloud systems automatically control and op-
timize resource use by leveraging a metering capability at
some level of abstraction appropriate to the type of service
(e.g., storage, processing, bandwidth, and active user accounts).
Resource usage can be monitored, controlled, and reported,
providing transparency for both the provider and consumer
of the utilized service.

2.3.2 Cloud Service Models

Cloud Computing is usually separated into three tiers: Infrastructure as a
Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS).
These tiers are distinguished by their functionality scope that will be cov-
ered by a cloud service provider (CSP) and the liabilities for the customer. In
Figure 2.5 the three tiers are displayed side-by-side while the functionality is
divided in each column. The responsibility scope is marked by the red border
and tells the difference between the customer’s and provider’s responsibility.
The more functionality is outsourced to the cloud service provider, the less
freedom the customer has to manage and handle their application. However,
the liabilities for security and updates are in the realm of the cloud service
provider with professional expertise at its disposal.

The following paragraphs define the three Cloud Service Models (tiers)
according to NIST [13] and give a precise overview:

Infrastructure as a Service (IaaS). The capability provided to the

16 Chapter 2. Technical Background, Provisions and Assumptions

Figure 2.5: Overview of the different Cloud service models

consumer is to provision processing, storage, networks, and
other fundamental computing resources where the consumer
is able to deploy and run arbitrary software, which can in-
clude operating systems and applications. The consumer
does not manage or control the underlying cloud infrastruc-
ture but has control over operating systems, storage, and de-
ployed applications; and possibly limited control of select
networking components (e.g., host firewalls).

Platform as a Service (PaaS). The capability provided to the con-
sumer is to deploy onto the cloud infrastructure consumer-
created or acquired applications created using programming
languages, libraries, services, and tools supported by the provider.
The consumer does not manage or control the underlying
cloud infrastructure including network, servers, operating
systems, or storage, but has control over the deployed ap-
plications and possibly configuration settings for the appli-
cation hosting environment.

Software as a Service (SaaS). The capability provided to the con-
sumer is to use the provider’s applications running on a cloud

2.3. Cloud Computing 17

infrastructure. The applications are accessible from various
client devices through either a thin client interface, such as a
web browser (e.g., web-based email), or a program interface.
The consumer does not manage or control the underlying
cloud infrastructure including network, servers, operating
systems, storage, or even individual application capabilities,
with the possible exception of limited user-specific applica-
tion configuration settings.

2.3.3 Cloud Deployments Models

The following paragraphs define the four Cloud Deployment Models accord-
ing to NIST [13]. They differ with the grade of in house vs out sourced ser-
vices and also the level of customization of services, that is buying standard
services versus developing them especially for the use case. In Figure 2.6 this
relationship is visualized.

Figure 2.6: Overview of the different Cloud deployment models

18 Chapter 2. Technical Background, Provisions and Assumptions

Private cloud. The cloud infrastructure is provisioned for exclu-
sive use by a single organization comprising multiple con-
sumers (e.g., business units). It may be owned, managed,
and operated by the organization, a third party, or some com-
bination of them, and it may exist on or off premises.

Community cloud. The cloud infrastructure is provisioned for ex-
clusive use by a specific community of consumers from or-
ganizations that have shared concerns (e.g., mission, secu-
rity requirements, policy, and compliance considerations). It
may be owned, managed, and operated by one or more of
the organizations in the community, a third party, or some
combination of them, and it may exist on or off premises.

Public cloud. The cloud infrastructure is provisioned for open use
by the general public. It may be owned, managed, and op-
erated by a business, academic, or government organization,
or some combination of them. It exists on the premises of the
cloud provider.

Hybrid cloud. The cloud infrastructure is a composition of two or
more distinct cloud infrastructures (private, community, or
public) that remain unique entities, but are bound together
by standardized or proprietary technology that enables data
and application portability(e.g., cloud bursting for load bal-
ancing between clouds).

2.3.4 Advantages of Cloud Computing

The main advantages for Cloud Computing stem from externalizing costs,
which frees financial resources especially for small and medium sized enter-
prises (SME) and keeps the up-front investment considerably low. Renting
computing power through a cloud service provider reduces the investment
costs in hardware. The operational costs are significantly reduced for main-
taining hardware and keeping it state-of the-art, i.e. updating it on a regular
basis. Furthermore, the externalization frees enterprises from labor costs and
competition for rare IT-experts. The security costs are already included for
maintenance and defense against common threats, like distributed denial of
service attacks (DDoS). Depending on the service and deployment models,
the security responsibilities reside with the CSP.

Increasing productivity through simplified deployments involves automat-
ically a better time to market. This leads indirectly to a higher competitive-
ness for SME. Depending on the success and access rate, bursts of activi-

2.3. Cloud Computing 19

ties can be easily caught through auto-scaling the application thus increasing
availability of data and services. In addition, the resilience factor is exorbi-
tant higher by incorporating a scalable architecture and developing the own
application towards it.

For a more recent holistic view of Cloud Computing Architectures and its
advantages see Kratzke [14]. The most significant advantages are summa-
rized in the following list:

• reduced operational costs

• reduced labor costs

• no bounded financial resources in hardware

• better time to market

• simplified deployment

• increased development speed

• simplified operation and auto-scaling based on event stimulus

• high availability of data

• backup and redundancy

• high resilience factor

2.3.5 Disadvantages of Cloud Computing

While cost saving is a huge factor for Cloud Computing, it can also lead into
a trap. If the transition of classical in house hosted application to an external
CSP is not carefully planned and the workflows are adapted to it, the costs
will most likely explode (see [15]). A Cloud Application still needs a good
and rigorous management by IT-experts. For example, instances that are not
used anymore have to be closed.

Through centralization of services and data, the attack surface and the at-
tractiveness for attackers are increased. Furthermore, each layer of abstrac-
tion introduces new attack surfaces and risks of configuration errors. This
means, technology itself cannot replace proper planning, a reasonable tech-
nology stack and a careful role out of an application.

Moreover, moving applications into a centralized hub, can introduce laten-
cies, for example in network, in functions and runtime. The industry offers
solutions to reduce latencies by e.g. introducing content delivery networks
(CDN) and thus placing relevant information closer to the consumer (Edge
computing).

If a SME develops its application against an API of a CSP, it makes itself de-

20 Chapter 2. Technical Background, Provisions and Assumptions

pendent on the API of this certain CSP, since APIs are not standardized across
different CSPs. This phenomenon is called vendor lock in and makes a transi-
tion to a different CSP very hard. Furthermore, developing a distributed and
scalable application increases complexity and exacerbates integration testing
and maintenance.

Kratzke [14] gives a comprehensive overview of the difficulties using Cloud
Computing. The most significant disadvantages are summarized in the fol-
lowing list:

• cost explosion through lack of suitable adaption of workflows and ap-
plications to the cloud paradigm

• maximum function runtime is limited through cost-benefit-ratio

• increased attack surfaces with each virtual machine

• latencies (network, functions, runtime) must be considered

• distributed system, parts of application logic is shifted out of the realm
of the service provider to the client

• vendor lock in, no standardized APIs

• increased complexity in integration testing

• distributed systems are more complex to maintain and test

To avoid most of these drawbacks, a careful architectural planning phase
is recommended before introducing Cloud Computing to a productive envi-
ronment.

2.3.6 Security of Cloud Computing

In this subsection a very brief overview of the different layers of security
is given. The broad spectrum of security reaches from information secu-
rity within the infrastructure level to data security in the platform level and
finally the security management and monitoring tools within the software
level.

Table 2.1 summarizes the major security measures that Cloud Computing
is built on. An overview is given of the different security controls, their fam-
ilies and organizational classes. Figure 2.7 visualizes the different layers of
security techniques that are intertwined and build on each others security
scopes and approaches. Mather et al.[16] explores the topic in more detail. In
the following paragraphs, the responsibilities between a cloud customer and
a CSP is also put briefly into perspective of the different deployment models
across the service models.

2.3. Cloud Computing 21

Figure 2.7: Overview of the different levels and scope of security in the cloud [16]

At the Infrastructure as a Service (IaaS) level, the CSP has to offer avail-
ability management for virtual machines, access control for users as well as
resources, for example network. Furthermore, vulnerability management for
the host level of operating systems and its applications on a higher level. This
includes a patch management that incorporates update routines for operat-
ing systems and applications. The Customer has to actively manage these
systems. It is not the provider’s responsibility to maintain security within
the customer’s architecture.

Table 2.1: Security Controls and their Organizational Classes according to NIST [17]

ID Family Class

AC Access Control Technical
AT Awareness and Training Operational
AU Audit and Accountability Technical
CA Security Assessment and Authorization Management
CM Configuration Management Operational
IA Identification and Authentication Technical
MA Maintenance Operational
PE Physical and Environmental Protection Operational
RA Risk Assessment Management
SC System and Communication Protection Technical
SI System and Information Integrity Operational

22 Chapter 2. Technical Background, Provisions and Assumptions

At the Platform as a Service (PaaS) level, the CSP offers on top of the IaaS
level a configuration management for libraries, databases, APIs and other
tools for the application needed. Furthermore, an incident response (CERT)
should be offered that notifies specific details about intrusions, compromised
data and user accounts. The customer has to report to the affected users
and fix the application, while the CSP only provides the information about
the intrusion. Monitoring systems should be offered that log network, host,
database and application activities, in order to provide a sufficient security
level. The customers responsibilities reside with the application, that is de-
ployed on the PaaS. The CSP is responsible for offering, maintaining and
patching the monitoring services.

At the Software as a Service (SaaS) level, the CSP is held responsible for
availability, patch and configuration, vulnerability and access control man-
agement. This includes all the activities that reside within each management
block, detailed in the prior levels. The customer is only responsible for its
own software and can focus on its security.

2.3.7 IT Compliance and Cloud Computing

Cloud Computing affects many fields in law (privacy, copyrights, intellec-
tual property, etc.) and gives rise to a lot of jurisdictional questions. It is
obvious that the law did not keep pace with the technological change around
the globe. This leads to the situation that global companies with multiple
national jurisdictions are caught between two regimes.

In recent history, the USA tried to get hold of data, which resided in Ireland
and would have been out of its jurisdiction. However, the US government ar-
gued that the organization processing the data is a national company and is
subject to US law as well as US national security interests. The European
Union argues differently and holds the position that the country’s law mat-
ters in which the company is active despite its origin [18].

A solution to this dilemma, can be a national company that hosts the data
and relieves the global CSP from handing over data to the country of its ori-
gin. This is called a trust solution (“Treuhandlösung”). The CSP only offers
services and cannot actively access the customer’s data without the consent
and active act of the customer.

Despite the global jurisdictional problems, clash of law and its interpreta-
tion, the regulations within the European Union are not conflict free espe-
cially with regard to Legal Metrology. Here, national regulations compete
with each other and arise practical questions. For example, a Spanish manu-
facturer sells his devices in Germany but processes its services in Spain. The

2.3. Cloud Computing 23

jurisdiction of the German market surveillance is limited and cannot inspect
the servers in Spain. At this point, a transnational collaboration is needed and
has to be regulated in the realm of the European legislation. Projects started
in 2018 to tackle these problems, like the “European Metrology Cloud”, that
foster the digital transformation in Legal Metrology and initiate a mutual co-
ordinated European digital infrastructure [19].

To sum up, ten years after the advent of Cloud Computing it is still chal-
lenging to comply with jurisdictional requirements without breaching direc-
tives of a foreign judiciary. With respect to current political developments
[20], it might remain complicated for Cloud service providers to fully com-
ply with all requirements and not get caught in the middle.

2.3.8 Service Level Agreements

With the introduction of shared resources and Cloud Computing, it is crucial
to negotiate and arrange certain levels of reliability, availability and fault tol-
erance of outsourced processes. These management tasks are encompassed
by service level agreements (SLA). SLAs can be considered as a negotiation
layer between CSPs and consumers of services. It fulfills requirements that is
handled by private law and provides securities for both parties.

For instance, a manufacturer outsources services to a third party Cloud
service provider in Legal Metrology. The manufacturer is still liable to the
law, while using SLAs he can demand financial compensation towards the
CSP in case of not providing the promised services. However, the CSP is
protected against not-contractual conditions and services. SLAs can serve as
an indicator for quality characteristics between different CSPs. For a more in
depth and comprehensive analysis on this matter see [21].

2.3.9 Certifications and Cloud Computing

There is plethora of security guidelines, norms and standards for Cloud Com-
puting available. The most important are the ISO/IEC-2700x family, which
describe fundamental information security techniques and best practices. It
reaches from information security management systems via measurements to
risk management. Dekker et al. [22] surveyed 12 different audit frameworks
and certification schemes that are also listed in Figure 2.8. This in-depth anal-
ysis is beyond the scope of this work but is noteworthy because it is a good
introduction to that topic.

The European Union Agency for Network and Information Security (ENISA)
compiled an overview for Cloud Computing Certification and certification

24 Chapter 2. Technical Background, Provisions and Assumptions

Figure 2.8: Overview of the different security standards [16]

schemes [23] as part of the European Cloud Strategy [24]. It offers a list of
private certification frameworks and the underlying standards. This is partic-
ularly helpful for SMEs that need to make an educated decision if the Cloud
Service Provider complies with the European legal framework.

2.4 Summary
In this Chapter a brief introduction into the field of Legal Metrology with
its stakeholders and relevant regulations were given. Furthermore, with the
introduction of Cloud Computing in that field, a new role for the Cloud Ser-
vice Provider was postulated. However, due to the wide field of deployment
models, the role of the Cloud Service Provider is not fixed. This role still
needs to be determined in the future. Moreover, the essential requirements
and the overall goals of reference architectures in Legal Metrology were ex-
plained. Given the background of the applied field, the preliminaries of the
Cloud Computing techniques, service and deployments model and the ad-
vantages as wells disadvantages were given and discussed. A general se-
curity outline and IT-compliance were presented. Along with a brief sum-
mary of service level agreements (SLA) and existing certification guidelines
for Cloud Computing. This Chapter provided the necessary assumptions for
the concept of the Secure Cloud Computing Reference Architecture that will
be presented in the next Chapter.

3
Secure Cloud Reference
Architecture

“Cloud Computing is a challenge to security, but one that can be
overcome.”

—Whitfield Diffie

T HIS chapter covers the secure Cloud Reference Architecture with exem-
plary use cases in Legal Metrology. The distributed measuring system
with its characteristics will be described and surveyed on the basis of

the previously introduced fundamentals for such an architecture. A glimpse
into the applied security approaches and verification methods for integrity
checking of the platform will be provided. Furthermore, the risk assessment
method will be briefly described, but it is fully covered in Chapter 6. Ulti-
mately, related work is presented.

3.1 Distributed Measuring System
A premise for the secure Cloud Computing architecture is the transition from
well contained measuring instruments to a distributed measuring system
(see Figure 3.1). The radical change that imposes the distribution of compo-
nents, with only a physical sensor and a communication unit left in the field,
while processing and storage will be centralized, was already pointed out in
Chapter 2 with the description of the legal framework in Legal Metrology.

In this section the focus lies on the security approach for a secure cloud
reference architecture, that fulfills the essential requirements of the MID (see

25

26 Chapter 3. Secure Cloud Reference Architecture

Figure 3.1: Overview of the reference architecture concept for a distributed measuring
instrument with a sensor and a communication unit in the field. Processing,
storage and service units are moved to the cloud. The client is left with a
secure display on a variety of devices.

Section 2.2.2) while at the same time providing adequate security and pre-
serving the flexibility and economical advantages of Cloud Computing, such
as ease of update procedures for large numbers of measuring instruments
by reducing hardware dependencies with software solutions. The different
components of this architecture are described in a bottom up approach and
are detailed in the following subsections. Furthermore, the communication
and security measures of such an architecture are discussed.

3.1.1 Architectural Approach

The separation of legally relevant software processes and keeping them safe
is the driving force to implement virtualization techniques. The most impor-
tant processes are separated in different compartments. These processes are
deduced from the MID, Welmec Guide and the national measurement and
verification act (see Section 2.2). These processes reflect the legal relevant and
regulated scope of software in common measuring instruments. Further it vi-
sualizes the separation from the commercial and unregulated part of the mea-
suring instrument, in order to ease ,e.g., software updates in the unregulated
part without the need of recertification of the whole measuring instrument
(see Section 2.2.2). The legally relevant software modules are listed below.
A summarized view of the architectural model is visualized in Figure 3.2.
The measurement results are encrypted via fully homomorphic encryption
(FHE) within the measuring instrument and then received and processed by
the cloud. The encryption applies for the whole processing time in the cloud

3.1. Distributed Measuring System 27

and will be only decrypted outside of the cloud at a secure end-user device.
Thus, FHE impedes an internal attacker or the CSP to attack encrypted data
in the cloud.

In Section 2.3 the requirements and service as well as the deployment mod-
els of cloud computing are introduced. This lays the important foundation
for the architectural approach, since each tier of the cloud has to be carefully
designed against the legal requirements of the aforementioned legal docu-
ments (see Section 2.1). In the next few sections the separation of legal and
non-legal software parts is the driving primitive for the design of each tier of
the cloud reference architecture. Furthermore, the legal requirements have to
be tested for each service model and a design proposal for each tier has to be
developed, so that a potential manufacturer could use this proposal as a blue
print for a realization of a distributed architecture.

The distributed cloud reference architecture is designed from the bottom
up. The Infrastructure as a Service (IaaS) tier will be described in Section
3.1.2. Here the concept of subnetworks and virtual machines guarantee the
separation of legal relevant processes. While separating the networks into
logically smaller entities via sub netting, it was decided to create separated
virtual machines for the most important legally relevant tasks (see Section
2.2.2). The Platform as a Service (PaaS) tier is built on top of that. To guar-
antee a further separation of legal relevant processes, the microservice tier
introduces another separation of legal relevant software. Noteworthy is here,
that the separation of the IaaS is still intact and supports fully the separation
of the microservice approach (see Section 3.1.3). The Paas tier defines already
good part of the Software as a Service tier architecture, so that a clear dis-
tinction is hard to spot, but Figure 3.4 includes already the architecture of the
SaaS tier. For clarification, Paas usually provides only tools for developers to
deploy and develop their applications in a cloud (see Section 3.1.3). The SaaS
tier includes additionally the communication concept for creating a simple
signature of exchanges messages, which is formalized in a communication
protocol and explained in Section 3.1.5.

The following list describe the most important legal relevant processes that
are deduced from the MID and WELMEC and ar implemented in separated
virtual machines:

28 Chapter 3. Secure Cloud Reference Architecture

Figure 3.2: Architectural model overview of virtual machines and their communication
paths

Logbook The Logbook VM hosts the software process responsible for log-
ging all relevant activities around the measuring system, i.e. arrival, process-
ing, saving of measurement data, user activities, software updates etc.

Legal VM The Legal VM is responsible for processing the legally relevant
measurement data. This VM has the most CPU cores available, since it has to
carry out all the computation for the measurement data.

Download Manager The Download Manager receives signed software up-
dates from the manufacturer. After carefully checking the integrity and au-
thenticity of the received update, it will spread the updates to the dedicated
machine.

Storage Manager The Storage Manager is designed to store measurement
data for a long time period. Thus, it will handle a database and will make
the measurement data available through the secure display VM, which hosts
services to demand data from the Storage Manager.

Monitoring Service The Monitoring Service, part of the Legal Network VM,
continuously monitors all the VMs while learning their individual patterns
for the running tariff applications, in order to detect anomalies within the
system.

3.1. Distributed Measuring System 29

3.1.2 Infrastructure as a Service

The Cloud Computing infrastructure is built on the open source project Open-
Stack which delivers a modular construction kit for Cloud Computing ar-
chitectures. For the prototype an All-in-One Single Machine approach was
chosen to mimic a cloud environment on a server with an Intel Xeon CPU
E5-2620 with 24 Cores. Nevertheless, the distributed characteristics are re-
alized with the help of OpenStack to build the Infrastructure as a Service
(IaaS). As a first step a virtual network was created to lay the foundation for
a separated and secure network from the Internet to comply with the soft-
ware requirements of the MID four subnetworks assure a low level separa-
tion (OSI level 3) of the virtual machines. The four subnetworks are divided
into an Ingress/Entrance subnetwork, a Legal Metrology subnetwork, a Ser-
vices subnetwork and an Egress/Exit subnetwork. If this concept should be
distributed across different locations, e.g. data centers, countries etc., then
it would be sensible to use Virtual LAN and to aggregate different virtual
machines across physical boundaries. Also, it would enable a separation al-
ready on OSI layer 2. For reasons of simplicity subnetting was sufficient for
this prototype, and dealt with the same problems of more complex networks.

Figure 3.3: Network topology of the IaaS layer. Red is the ingress subnetwork. Blue
comprises the Legal Network with all legal relevant VMs. Orange describes
the egress subnetwork, which offers a Storage VM and a secure display that
allows pulling measuring data for the end-devices. The green shape marks
the third party subnetwork for non-legal relevant services.

30 Chapter 3. Secure Cloud Reference Architecture

Subnetwork - A subnetwork is a logical subdivision of an IP network [25].
Actively dividing a network in smaller networks is called subnetting. The
main motivation for using this technology is to separate the legal relevant
virtual machines from the non-legal relevant ones. The distinction for the
ingress and egress network was made on purpose to support the API design
for incoming and outgoing data and to shield the Legal Network from direct
access to an open network.

Ingress/Entrance network The Ingress/Entrance network hosts the com-
munication virtual machine (see Figure 3.3 is marked red), which agitates as
a gateway to the Internet for the rest of the virtual machines. This design de-
cision was done deliberately, in order not to expose the legal network directly
to the Internet, and increase the security.

Legal Metrology network The Legal Metrology network hosts three legally
relevant virtual machines (see Figure 3.3 is marked blue): the logbook that
logs all relevant events, the legal processing (Legal VM) and a Download
Manager for software updates.

Services network The Services network is created for third parties (see Fig-
ure 3.3 is marked green), that want to host legally non-relevant virtual ma-
chines and services, e.g. for advertisement or maintenance services.

Egress/Exit network The Egress/Exit network is designed to send data to
the terminal devices in the field (see Figure 3.3 is marked yellow), thus it hosts
the secure display virtual machine which will provide measurement data.

To sum up the IaaS-layer comprises the actual physical devices like servers,
storage, and the network. Furthermore, it offers software functionality like
virtualization to increase the workload of the hardware and decrease the idle
times, speed up the provisioning time for new servers and decrease the costs
per server. IaaS enables also a first low-level separation of legally relevant
processes.

3.1.3 Platform as a Service

This section is dedicated to the Platform as a Service (PaaS) layer of the
Cloud Computing architecture. PaaS can relate to the logic tier in a multi-
tier architecture [26] as it places the developer tools at disposal to coordinate

3.1. Distributed Measuring System 31

Figure 3.4: Overview of the platform concept using the open source Netflix-Stack. Green
are the external devices that interact with the platform via a gateway (in red).
Orange and purple represent the orchestration layer. Grey are chosen mi-
croservices with an exemplary data flow.

and handle processes, applications and further integrate them into the sur-
rounding layers. A PaaS comprises usually execution runtime, Application
Programming Interfaces (API), libraries, web servers and other development
tools. While designing the concept for a secure Cloud Computing architec-
ture the architectural pattern of Microservices had several advantages that
would provide more flexibility, security and agility. Furthermore, it fits per-
fectly the architectural premises of Cloud Computing for designing a dis-
tributed service oriented architecture. The pattern was implemented by us-
ing the open source Netflix-Stack for Microservices.

Microservice Architecture - A microservice architecture is a fine-grained Ser-
vice Oriented Architecture (SOA) pattern, that creates for each task and pro-
cess a service. A service is focused only on one task, hence called microser-
vice. Each microservice can exist independently and communicates via mes-
sages with other microservices. Thus, microservices are highly distributable
and scalable.

Advantages The advantages of a microservice pattern lies in its simplicity
for each service, since each one focuses only on one task. This means less code

32 Chapter 3. Secure Cloud Reference Architecture

to maintain for each service. The code base can be developed by different
teams in individual pace and also deployed independently from each other
without risking downtime of the whole system at any time.

Updating a service is very convenient. By keeping the older service run-
ning the new version can be deployed at the same time. After successfully
deploying the new version, the system load can be slowly migrated to the
newly deployed service with the help of a load balancer (see Figure 3.4). This
prevents unwanted disruption of well established working processes and a
small set of people can test the new service before making it available to ev-
eryone.

Microservices are polyglot. This means for each challenge the best suitable
programming language can be chosen to solve the individual problem. This
can reduce also the lines of code of a service. Furthermore, it increases the
flexibility and eases the need for specialized programmers.

Microservices are highly scalable and resilient. Because of their self-sustaining
nature, microservices can be run in parallel and as many instances as needed
to cope with the working load. Beyond this each service has an API and com-
municates with the whole system via message that will be exchanged via an
active message queue. In case a service has to be restarted, the messages will
be queued and will be processed in time. No messages will be lost. This
guarantees a pseudo-resilience, since the downtime can only last as long as
the size of the queue can handle the incoming messages.

Monolithic Architecture - A monolithic software architecture combines all
processes and tasks into one structure. The separation and distribution of
subprocesses across an architecture is not provided nor encouraged.

Disadvantages Despite all the advantages for a microservice pattern, there
are some challenges. The flexibility and scalability comes at a price of com-
plexity. Each layer that is added increases the complexity and the mainte-
nance effort. To debug microservices and tracing failures can be more chal-
lenging as a traditional monolithic application, since of their distributed na-
ture. They externalize their communication, and this can become a serious
problem when network latency adds up.

Furthermore, handling multiple databases and transaction management
can become unclear and needs more attention than a traditional application.
For developers the testing phase is more convoluted, since each service has
to be setup and registered before being able to start testing a new service.

Most of these difficulties are already addressed by the Netflix framework.

3.1. Distributed Measuring System 33

There is Zipkin service (trace monitor) which helps to trace network problems
and measures latency and responsiveness of each service. Hystrix provides
latency and fault tolerance to each service. If a service should be not available
a default fall-back can be implemented. This service increases the overall
resilience of the distributed system.

3.1.4 Software as a Service

The software as a service (SaaS) layer is the last tier of the Cloud Computing
platform. This tier hosts just the application and runs on top of the PaaS tier.
This tier enables the client to run just a very thin application, often only a web
browser, to access the software relevant functions offered by web services.
The software is usually independent of the underlying hardware and profits
from its highly abstract design, so that it can be easily distributed within the
Cloud Computing nodes.

In the proposed reference architecture implementation approach, this tier
offers the fully homomorphic encryption application for smart meter gate-
way tariff applications, which takes full advantage of the LSIM extension.

Sender	 (Sensor)

Receiver	(Display)
Number r

Number r‘

r	=	r‘

enc
enc

dec

dec

BlackboxBlackbox

Polynom	p p‘

Result Polynom	p Result p‘

Number c1

Figure 3.5: Overview of encrypted communication protocol.

34 Chapter 3. Secure Cloud Reference Architecture

3.1.5 Communication Protocol

An overview of the proposed communication protocol is described in detail
below (see Figure 3.5). It has been developed to ensure a distributed, authen-
tic and secure communication using FHE to secure the computation within a
Cloud Computing architecture. The parts of sensor, processing and display
correlate in the protocol as the following three sections (see Algorithm 1) :
Client (Steps 1-7), Server (Steps 8-14) and Receiver (Steps 15-22).

The client generates the Public Key Pk and Secret Key Sk. The Sk will be
send via a secure channel directly to the trustworthy receiver (Step 6-8). In
Step 1 the client generates the measurement data mi. In Step 2 the client
encrypts the same measurement data mi twice with the Public Key Pk and
sends the encrypted measurement data ci and c′i to the Cloud (see Step 3). The
same procedure will be done for the index i that will be encrypted and result
in the encrypted indices vi and v′i (Step 4). This procedure creates the simplest
form of a signature to ensure authenticity and integrity of the measurement
results, since both encrypted versions will automatically look different to an
outsider (see Step 5). If the key exchange Sk is successful between client and
receiver (see Step 8) then the encrypted measurement data and encrypted
index will be send to the cloud service (see Step 9.).

The Server will check the TLS certificate of the client and the origin of the
receiving messages (see Step 10). If the check is successful (Step 11) then the
applied tariff application (see Section 5.1) will process the measurement data
ci and c′i (see Step 12). Noteworthy is here that the encrypted measurement
data ci and c′i are treated equally under the same conditions. In Step 13, the
applied tariff application will compute the encrypted measurement results ri
and r′i .

The receiver will authenticate against the server (see Step 18) and then pull
the encrypted measurement results ri and r′i and the encrypted index vi and
v′i from the server (see Step 19). Then the receiver will decrypt the encrypted
data with the earlier received Secret Key Sk (see Step 20). If the decryption
of measurement results ri and r′i and index vi and v′i are successful and the
results are the same (see Step 21) then no manipulation can be detected and
the encrypted measurement result mri must be correct. In case of unmatching
measurement results or indices, the measurement results will be purged (see
Step 24) and an error message will be written to the logbook (Step 25) as well
as a measuring system failure will be flagged (see Step 26).

Even though homomorphic encryption usually aims at ensuring data pri-
vacy [27], it may be used in other areas and for other purposes as well. A
potential attacker (Inside-Attacker) trying to manipulate the measurement
results from within the Cloud Computing architecture will face no clear-text

3.1. Distributed Measuring System 35

processing and thus can only tamper randomly a measurement or the at-
tacker consequently manipulates all measurement data in the same way. If
the first approach is chosen, the receiver will detect the manipulation (Step
19) and discard the measurement result. If all measurements are tampered in
the same way only test data with a known outcome can detect this kind of
manipulation. Implementing aperiodic test runs with precomputed data will
decrease the possibility for an attacker to stay undetected for a long period.

If homomorphic encryption is carefully combined with testing a running
algorithm via precomputed test data, even such random effects may be de-
tected. Subsequently, the scheme detailed here [28] may be used to achieve a
certain degree of robustness towards algorithm and data manipulation, too.

For reasons of simplicity and legibility of algorithm 1 the usage of a nonce
and the coverage of replay attacks are not part of the described protocol.
Nevertheless, it is assumed that the connection between all participants are
secured by TLS (Transport Layer Security), which itself protects against pos-
sible replay attacks using message authentication codes (MAC) and the se-
quence number to prohibit a recorded message stream between client and
server. Further, to secure messages on an application level, it is possible
to implement nonce-based security mechanism, to sign each request to ex-
change measurement data and thus protect its originality. Since, this security
approach is addressing the security concern on a different layer, it is not part
of the communication protocol. For more information on this matter refer to
[29], [30].

36 Chapter 3. Secure Cloud Reference Architecture

Algorithm 1 LSIM client-server communication protocol (overview)

Input: Measurement data mi, Encryption Parameter eP, Public Key Pk, Secret
Key Sk, Usable bandwidth upload/download (U,D), Index of elements
i = 1 . . . n

Output: Measurement results mri

Client:
1: creates measurement data mi
2: encrypts measurement data and index twice:
3: ci ← enc(mi) and c′i ← enc(mi),
4: index vi ← enc(i) and v′i ← enc(i)
5: note: ci 6= c′i but dec(ci) = dec(c′i), vi 6= v′i but dec(vi) = dec(v′i)
6: repeat
7: send Sk to trustworthy receiver,
8: until key exchange is successful
9: sends two encrypted messages with ci, vi and c′i, v′i to the server, respec-

tively

Server:
10: checks certificate and the origin of messages
11: if check is successful then
12: process encrypted measurement data ci and c′i, they will be treated

equally
13: receive encrypted measurment results ri and r′i , respectively
14: else
15: purge data,
16: return error message to logbook
17: end if

Receiver:
18: authenticates against server
19: pulls encrypted measurement results and encrypted index from server
20: decrypts measurement results and index with Sk
21: if dec(ri) = dec(r′i) and dec(vi) = dec(v′i) then
22: no manipulation and mri is correct
23: else
24: purge measurement results,
25: return error message to logbook
26: f lag measuring system failure.
27: end if

3.2. Security Approaches and their limitations 37

3.2 Security Approaches and their limitations
Classical security approaches use encryption to ensure privacy and signa-
tures for verifying the authenticity of messages. These attempts aim for se-
curing the communication between two endpoints. In the Cloud Comput-
ing context, the attention has shifted to secure computation (see Figure 3.6).
Classical encryption is static, thus messages have to be decrypted first before
being able to be processed. Similar conditions apply for classical signature
schemes. They are designed for static messages. In order to verify remote
computation, a proof is needed for correct and trustworthy results. Verifiable
Computing demands that the evaluation of an interactive proof [31] needs to
be more compact than the actual computation. FHE offers an elegant way to
ensure privacy by design since it prevents clear-text information leaks. While
externalizing confidential processes to the cloud, industry places little trust in
external service providers. FHE was chosen over a homomorphic signature
scheme not only to help solving this conflict, but it also offers a more pow-
erful, practical and flexible approach to secure remote computing. Further-
more, there are several approaches that combine homomorphic encryption
with verifiable computation [32][33], so that it is still feasible at a later time to
integrate verifiable computation with this line of research.

Figure 3.6: Overview of different security techniques and their area of application.

38 Chapter 3. Secure Cloud Reference Architecture

3.2.1 Measuring Instrument and Trustworthy Components

The reference architecture is a general approach for all measuring instru-
ments, however it will be applied to real world smart gateway tariffs and
intelligent measuring systems (see Section 5). In the context of such a system,
all parties need to authenticate themselves before initiating a communication
connection. To this end, the smart meter gateway (SMGW) as well as partners
communicating with it over the wide area network (WAN) are in possession
of Hardware Security Modules (HSM), which are in charge of key handling,
signature verification and white listing of communication partners.

A HSM is a physical computing device that stores safely and manages
cryptographic keys for critical functions. It provides extra security for sen-
sitive data. A HSM is an essential security measure in order to enable secure
key handling and exchange of keys between associated clients and devices
within the public key infrastructure (PKI). It also acts as a trust anchor to
guarantee the integrity and authenticity of a Root Certificate Authority (CA)
and its Sub CAs. The HSM can be used to sign and secure TLS-certificates,
OpenSSL-certificates for end-to-end cryptography and signature certificates
to sign measurement data and thus prove their integrity as well as authentic-
ity [34]. The HSM performs various checks with the certificates before being
able to continue with the respective procedure, i.e. it checks the signature of
the certificate, the lifetime span (maximum of 7 years) of the issued certifi-
cates, it checks revocations lists and the issuer of the certificate, reviews the
mode of usage such as key usage validation and extended key usage valida-
tion.

For the proposed architecture a potential measuring instrument with a
HSM is taken into account and can be easily integrated. For reasons of in-
tegrity and in respect to the BSI technical regulations of the smart meter gate-
way [34], a HSM in conjunction with a sensor are mentioned here. However,
HSM will not be further discussed, since it is outside of the scope of this the-
sis.

In Legal Metrology, the concept of a trustworthy system administrator
does not exist. Therefore, all parties must be considered untrustworthy, i.e.
the HSM is the only trust anchor for security concepts, which is considered
as completely unbiased and thus can be accepted by all parties involved.

3.3 Verification Methods
Through technologies, like Cloud Computing, manufacturers can provide
customers a modernized and flexible way to access their meters, e.g. via mo-
bile devices or by providing better service via intelligent data services. The

3.3. Verification Methods 39

radical change through the drift of well contained measuring instruments
nowadays to distributed measuring systems confronts Legal Metrology with
many challenges. Via fully homomorphic encryption (FHE) [35] the main
threats will be addressed in Chapter 4, like an insider attack and data manip-
ulation in the cloud, in order to create an acceptable solution that provides
adequate security.

In this section two verification methods are presented. Section 3.3.1 de-
scribes an integrity checking method via a web service, that provides a sim-
ple interface for quick in-depth analysis of the used virtual machine and their
actual state. It is paramount for market surveillance to be able to cope with
a complex technology stack without investing too much time in a thorough
integrity check of the used instruments.

Section 3.3.2 describes a continuous anomaly detection approach for the
prior detailed secure cloud architecture (see Section 3.1). The behaviour and
the tariff application pattern (see Chapter 5) of the platform will be constantly
monitored by a software module residing within the Platform as a Service
(PaaS) level as part of a monitoring service (see Figure 3.2). Depending on
the severity of detected anomalies, the module automatically classifies them
into three categories: green, the system is in a normal state; yellow, the sys-
tem has an anomaly but its stability is not affected; red, the system behaves
anomalously and its stability is affected.

3.3.1 Verification Monitor

As part of the envisioned reference architecture (see Figure 2.3) a verification
method has to be developed, in order to support the user and market surveil-
lance to verify measuring systems in the field. Since the technology stack
becomes too complex to validate quickly in the field of Legal Metrology, the
Notified Body endorses simple verification methods to help the authorities
in the field to accomplish their tasks.

If an end-user expresses doubts to the user and market surveillance of,
e.g. a power meter in his home and an associated billing, the addressed au-
thorities must have the possibilities to verify the used meter, the processing
unit and associated logbook. The metrological software has to provide a soft-
ware identification. An acceptable solution according to the WELMEC Guide
would be:

40 Chapter 3. Secure Cloud Reference Architecture

Figure 3.7: Screen shot of the prototype verification monitor for the market and user
surveillance.

1. a software name consisting of a string of numbers, letters or other char-
acters,

2. a string added by a version number,

3. a checksum over code.

In Figure 3.7, a simple web application is displayed, which shows exam-
ples of three legally relevant virtual machines of the earlier described refer-
ence architecture. This web application can reside in the realm of the market
and user surveillance and pulls the data exclusively of the virtual machines
directly from the used cloud. Each virtual machine provides a unique ID, a
Software ID consisting of a string of letters and version number and lastly a
checksum over the used code. The checksum will be compared to a check-
sum residing with the surveillance authority. If the checksum match, a green
batch otherwise a red batch will be displayed (as one can see by the example
of the Legal VM).

3.3. Verification Methods 41

3.3.2 Anomaly Detection Approach

To guarantee security over time it is advisable to monitor the system con-
stantly, in order to be able to detect anomalies in system behaviour. At first,
the monitoring system collects data to learn the normal system workload and
behaviour. In a second stage it is planned that the anomaly detection system
categorizes autonomously occurring anomalies into three categories: green,
the system works flawlessly and no anomalies are detected; yellow, the sys-
tem works unaffected and no critical anomaly occurred; red, the system is
affected by critical anomalies and the measurement results cannot be trusted.

For Cloud Computing architectures two main approaches are worthy to
further investigate: Console log based anomaly detection and System metrics based
anomaly detection [36].

Console Log based anomaly detection is found by a set of rules to verify
the system behaviour. The process of setting up these rules is complex, error
prone and expensive. It is possible to optimize these inefficiencies by auto-
matically generating system models for anomaly detection. However, creat-
ing a reliable feature vector access to the source of the monitored application
is needed in order to learn the structure of the log files.

System metrics based anomaly detection is less invasive, needs less priv-
ileges and has less impact on the monitored system. This approach is more
suitable especially for a distributed system when scalability, elasticity, flexi-
bility and migration of virtual machines are from utter importance.

In the following subsection the selected strategy of system metrics based
anomaly detection is explained and put into use within the Legal Metrology
application lifecycle. Due to time constraints the research on this anomaly
detection approach is not finished yet and will be part of future work. Early
results have been published in [37].

3.3.2.1 Distributed Data Collection

In a distributed environment it is of utmost interest to keep the employed
modules and services flexible as well as easy deployable to meet the demands
of virtual machines that are spread across various time-zones, networks and
teams. Also, it is important to limit the monitoring overhead as much as
possible to stay competitive and cost effective.

Bearing these demands in mind, to monitor the deployed virtual machines
the highly distributable and modularized open source monitoring software
Performance Co-Pilot (PCP) [38] is used. Over 300 metrics for example CPU
utilization, network bandwidth, disk I/O and memory usage is collected by

42 Chapter 3. Secure Cloud Reference Architecture

PCP. Through a highly modular approach of PCP, it is possible to segregate
collecting, logging and evaluating of metrics. PMlogger is a headless logging
agent, that can be deployed on any VM. PMCD is a collection daemon and
acts as a centralized instance for aggregating log files from all logging agents.

To analyze system anomalies, PCP provides collection archives to replay
and analyses step-by-step the system behaviour. These archives can be visu-
alized with the pmchart-module. Furthermore, PCP supplies real-time moni-
toring to visualize the current state of the system. Vector [39] is one of many
tools to render plots for real time-monitoring.

For this current AD-Module approach the most significant and promising
metrics are collected and evaluated. In future developments, the number of
metrics and different levels of logging will increase, i.e. on service level of
each microservice, metrics can be collected and help to state the activity and
overall system health in more detail.

At this time, the yielded results are very encouraging to further pursue the
chosen approach. By finding correlations between specific metrics related to
the Legal Metrology Application Lifecycle (see [37]), normal and anomalous
behaviour of the cloud environment can be represented. However, finding
good indicators of compromise is hard and leads to a lot of false positives.
Furthermore, detecting unknown attacks and patterns is very complex and
not straightforward. This line of research is worth continuing, but is outside
of the scope of this thesis.

3.4 Risk Assessment
A risk analysis is applied to the Secure Cloud Reference Architecture to ful-
fill the legal requirements (see fully applied in Chapter 6). This risk analysis
is based on software risk assessment for measuring instruments under legal
control proposed by WELMEC Working Group 7 [9]. By objectifying the de-
rived probability score for identified threats while following at the same time
the guidelines of ISO/IEC 27005, ISO/IEC 15408 and ISO/IEC 18045, this
risk assessment method enables comparability and standardizes the other-
wise highly subjective assessment process. Furthermore, potential counter-
measures are identified and quantified using Attack Probability Trees (AtPT)
[1] for derived assets to be suitably protected.

3.5 Related Work
Similar approaches like SensorCloud[40], SealedCloud[41] and TRESOR[42]
are tackling related parts of our research problems, but are either not using

3.6. Summary 43

the computation advantages of the cloud or are focusing only on parts of
our problem spectrum. SensorCloud for example provides an end-to-end en-
cryption for sensor data but reduces the cloud to a secure storage solution.
The SealedCloud approach deals with an untrustworthy system administra-
tor and deletes all data in case of an unauthorized access attempt. TRESOR
handles patient’s health data and offers security by distributing data through
several cloud services and employing a special cloud broker to access the
data and assembling it in a secure environment.

3.6 Summary
In this chapter, the envisioned distributed measuring instrument was intro-
duced and set the foundation for the proposed secure cloud reference archi-
tecture. As a centerpiece, virtualization on different levels, i.e. infrastruc-
ture, platform and services, enables software separation for legally relevant
and non-relevant processes. The different techniques such as subnetting and
microservices were discussed and evaluated to ensure flexibility, scalability
and security for the secure cloud architecture. Furthermore, a communica-
tion protocol was proposed to guarantee security, integrity and authenticity
of measurement results throughout their lifecycle.

An overview of security approaches and trustworthy components of a mea-
suring instrument were given. Classical encryption and security approaches
usually focus on securing communication, while traditionally the computa-
tion was carried out in a secure realm. Using distributed systems, this as-
sumption no longer holds true. In this thesis, the use of fully homomorphic
encryption technique focuses on covering this security gap. Furthermore, a
remote verification tool was presented to fulfill the integrity demand of the
reference architecture. A continuous monitoring approach based on anomaly
detection was introduced that emphasizes the integrity demand in the near
future.

4
Homomorphic Encryption

“It was elegant math with real world applications, but it was also
hairy and disgusting – I was instantly attracted”

—Shai Halevi, Cryptographer, IBM Research

T HE MAIN MOTIVATION of using fully homomorphic encryption within
the reference architecture is to increase data security and integrity for
processing measurement data in an external cloud. The principal at-

tack vectors (malicious insider and software security vulnerabilities) will be
decreased immensely by implementing a homomorphic encryption scheme
that performs operations on encrypted data. Thus, neither a malicious insider
nor a corrupted VM can easily change or spy on data. While reducing the
most important risks for utilizing cloud computing in a well-regulated area,
another goal is achieved by avoiding special requirements for cloud service
providers offering a trustworthy environment without specialized hardware.

This chapter gives a condensed introduction into the field of homomorphic
encryption. Bearing in mind that most readers are not cryptologist, the most
important preliminaries of lattice-based cryptography are repeated but only
briefly explained. For a comprehensive overview and a detailed introduc-
tion into lattice-based cryptography refer to the following primary sources
[43],[44], [45]. Especially for the employed fully homomorphic encryption
refer to [27], [46],[47], and [48].

The first three sections lead to the necessary preliminaries of this field. In
Section 4.4 the process of choosing the suitable homomorphic library for the
envisioned use case is discussed and put into perspective. The functionality
of the cryptographic library LibScarab is described in Section 4.5. In Section
4.6 the contribution and modification are highlighted and comprised in an
extension to the LibScarab library.

45

46 Chapter 4. Homomorphic Encryption

4.1 Preliminaries of homomorphic encryption

Figure 4.1: Graphical example of a homomorphism.

Homomorphism - Is a structure preserving transformation in linear algebra
between two types of sets (structures) A and O with a function f : A → O
which preserves the operations of the original set (structure) (see Figure 4.1
for a graphical representation).

Furthermore, it must guarantee the closure of addition ⊕ and multiplication
⊗ operations, i.e.,

∀x, y ∈ A : f (x)⊕ f (y) = f (x⊕ y), f (x)⊗ f (y) = f (x⊗ y). (4.1)

A homomorphism not only allows structure preserving operations, like
addition and multiplication, but can also be used for Boolean circuits, where
these basic arithmetic operations will be reduced to a XOR- and AND-Gate
(for an applied approach see Section 5).

Lattice - A lattice is a discrete additive subgroup L ⊂ Rm. The rank(L) of L
is the dimension of the vector subspace span(L). Each lattice L with rank n
has a basis of [b1, ..., bn] given by,

L =

{
n

∑
i=1

xibi|xi ∈ Z

}
. (4.2)

Sublattice - Let L,U ⊂ Rm be lattices. Then U is a sublattice to L, only if
U ⊆ L.

We need to define further a basis matrix and the area of a basis matrix,

4.2. Definitions and Classifications 47

in order to have the tools at hand to successfully understand a lattice-based
cryptosystem.

Basis matrix - The matrix B := [b1, ...bn] ∈ Rm×n is called basis matrix to the
lattice L and say the lattice L(B) := L(b1, ..., bn) is spanned by B. [47]

Area of a basis matrix - For a basis matrix B := [b1, ...bn] ∈ Rm×n we call
P(B) a parallelepiped given by

P(B) :=

(
n

∑
i=1

xibi | 0 ≤ xi ≤ 1

)
. (4.3)

4.2 Definitions and Classifications
Armknecht et al. [49] give a comprehensive overview of the different ho-
momorphic schemes and their properties that are commonly used. Further-
more, they provide a good introduction to the field of homomorphic encryp-
tion and their numerous definition throughout literature. In the following
subsections three classifications of homomorphic schemes are given that are
paramount for the later choice of a suitable homomorphic library. The fol-
lowing paragraphs only focus on the formal definition of a homomorphic
encryption schema following Brakerski et al. [50] and their classifications
following Armknecht’s overview. It is not a catholic set of definitions to for-
mally introduce and describe homomorphic encryption schemes entirely.

A generic homomorphic encryption scheme HE consists of the following
four probabilistic polynomial time (PPT) algorithms (Gen, Enc, Dec, Eval)
such that:

Gen(1λ, α) The key generation algorithm has usually two inputs: security
parameters λ and often additional auxiliary parameters. It outputs a
triple consisting of a public key pk, a secret key sk and a public evalua-
tion key evk.

Enc(pk, m) The encryption algorithm has two inputs: public key pk and one
bit cleartext message m ∈ {0, 1} . The ciphertext c is received as an
output.

Dec(sk, c) The decryption algorithm takes the secret key sk and a ciphertext
c and delivers a one bit cleartext m ∈ {0, 1}

Eval(evk, f, c1 . . . cn) The evaluation algorithm has three inputs: A public
evaluation key, a function f : {0, 1} → {0, 1} and a set of n ciphertexts
c1 . . . cn. It produces a ciphertext c f that serves as an evaluation.

48 Chapter 4. Homomorphic Encryption

Furthermore, Armknecht et. al [49] define and formally introduce three ad-
ditional attributes for homomorphic encryption schemes, that are important
to have in mind for the following classifications. Instead, a compact informal
summarization is given:

Correct decryption: A HE scheme is able to produce a flawless decryption
of a ciphertext.

Correct evaluation: A HE scheme correctly evaluates all functions f with a
negligible deviation ε. It follows that HE-evaluation scheme is correct if
the evaluation and decryption are correct.

Compactness: The ciphertext of a HE scheme does not grow significantly
in size after homomorphic operations. Furthermore, this requirement
excludes the identity function as a trivial HE scheme, which in term
would prevent the delegation of computation [51].

4.2.1 Somewhat Homomorphic Scheme

A HE scheme (Gen, Enc, Dec, Eval) that fulfills correct decryption and eval-
uation but lacks compactness. This leads to only limited number of homo-
morphic operations before the ciphertext becomes useless for decryption,
since the ciphertext grows in size (noise ratio increases). Often times, these
schemes only fulfill partial requirements, for example, only provide addition
or multiplication but not both at the same time.

4.2.2 Leveled Homomorphic Scheme

A HE scheme (Gen, Enc, Dec, Eval) that fulfills correct decryption and eval-
uation and has an additional input parameter d that indicates how many ho-
momorphic operations are possible, before the ciphertext renders futile. Such
a scheme does not provide unlimited homomorphic operations with further
enhancement, such as modulus switching the number of homomorphic en-
cryption can be increased but is still limited.

4.2.3 Fully Homomorphic Scheme

A HE scheme (Gen, Enc, Dec, Eval) that fulfills correct decryption and eval-
uation and is compact at the same time. Such a scheme permits an arbitrary
number of homomorphic operations.

4.3. Gentry-based homomorphic cryptosystems 49

4.3 Gentry-based homomorphic cryptosystems 75

P(Bpk
J)

rdecP(Bpk
J)

(a) Kleiner Radius rdec für die öffentli-
che Basis Bpk

J

P(Bsk
J)

rdec

(b) Großer Radius rdec für die geheime
Basis Bsk

J

Abbildung 3.1: Vergleich der öffentlichen und geheimen Basis.

Chiffrenraum repräseniert. Die erste Basis ist öffentlich, und Gentry schlägt zur
Darstellung der entsprechenden Matrix die Hermite Normalform (HNF) vor.
Die Basis kann leicht durch das Gauss’sche Reduktionsverfahren berechnet
werden und besitzt eine eindeutige Darstellung. Die Basisvektoren der zweiten
(geheimen) Basis stehen senkrechter aufeinander und sind daher geeignet, einen
Repräsentanten eines Vektors in dem Gitter zu finden. Abbildung 3.1 zeigt ei-
ne grafische Darstellung der beiden Basen. Für jede Basis B des Gitters J ist
ein halboffenes Parallelepiped (auch Spat) P(BJ) = {Pi xibi|xi 2 [�1

2
, 1
2
]} (in

der Abbildung grau unterlegt) um den Ursprung eingezeichnet, welches das
Maschenvolumen darstellt.

Die Operation y = x mod BJ ist so definiert, dass x � y auf dem Git-
ter liegt. Zur Veranschaulichung ist dies der nächstgelegene Gitterpunkt, für
den das Parallelepiped den gegebenen Vektor beinhaltet. Offensichtlich wirkt
sich der Grad der Orthogonalität der Basisvektoren auf die Approximation
der Modulo-Operation aus: je näher die Vektoren dem rechten Winkel sind,
umso exakter ist auch die Modulo-Operation. Das zugrundeliegende Problem
der Approximation ist das NP-schwere Closest-Vector-Problem (CVP). Dabei
liefert die Basis in HNF-Darstellung keinen Lösungshinweis für das CVP.

Die Verschlüsselung eines Wertes resultiert in einem Vektor, der auf den
Gitterpunkt zeigt, der den verschlüsselten Wert repräsentiert. Dieser Vektor
liegt im Parallelepiped der Basis Bsk

J um den Gitterpunkt, wodurch die Ent-
schlüsselung einfach als c 7! c mod Bsk

J durchgeführt werden kann. Weiterhin
ist das Ergebnis einer Addition zweier Elemente (des Rings Z[x]/hf i) ein Ele-
ment, welches nahe dem Gitterpunkt liegt, der die Summe beider Elemente

(a) Small radius rdec for public basis Bpk
I

75

P(Bpk
J)

rdecP(Bpk
J)

(a) Kleiner Radius rdec für die öffentli-
che Basis Bpk

J

P(Bsk
J)

rdec

(b) Großer Radius rdec für die geheime
Basis Bsk

J

Abbildung 3.1: Vergleich der öffentlichen und geheimen Basis.

Chiffrenraum repräseniert. Die erste Basis ist öffentlich, und Gentry schlägt zur
Darstellung der entsprechenden Matrix die Hermite Normalform (HNF) vor.
Die Basis kann leicht durch das Gauss’sche Reduktionsverfahren berechnet
werden und besitzt eine eindeutige Darstellung. Die Basisvektoren der zweiten
(geheimen) Basis stehen senkrechter aufeinander und sind daher geeignet, einen
Repräsentanten eines Vektors in dem Gitter zu finden. Abbildung 3.1 zeigt ei-
ne grafische Darstellung der beiden Basen. Für jede Basis B des Gitters J ist
ein halboffenes Parallelepiped (auch Spat) P(BJ) = {Pi xibi|xi 2 [�1

2
, 1
2
]} (in

der Abbildung grau unterlegt) um den Ursprung eingezeichnet, welches das
Maschenvolumen darstellt.

Die Operation y = x mod BJ ist so definiert, dass x � y auf dem Git-
ter liegt. Zur Veranschaulichung ist dies der nächstgelegene Gitterpunkt, für
den das Parallelepiped den gegebenen Vektor beinhaltet. Offensichtlich wirkt
sich der Grad der Orthogonalität der Basisvektoren auf die Approximation
der Modulo-Operation aus: je näher die Vektoren dem rechten Winkel sind,
umso exakter ist auch die Modulo-Operation. Das zugrundeliegende Problem
der Approximation ist das NP-schwere Closest-Vector-Problem (CVP). Dabei
liefert die Basis in HNF-Darstellung keinen Lösungshinweis für das CVP.

Die Verschlüsselung eines Wertes resultiert in einem Vektor, der auf den
Gitterpunkt zeigt, der den verschlüsselten Wert repräsentiert. Dieser Vektor
liegt im Parallelepiped der Basis Bsk

J um den Gitterpunkt, wodurch die Ent-
schlüsselung einfach als c 7! c mod Bsk

J durchgeführt werden kann. Weiterhin
ist das Ergebnis einer Addition zweier Elemente (des Rings Z[x]/hf i) ein Ele-
ment, welches nahe dem Gitterpunkt liegt, der die Summe beider Elemente

(b) Big radius rdec for secret basis Bsk
I

Figure 4.2: Comparison of public and secret basis B of a lattice L [47]

In 2009 Gentry et al. [27] created the first fully homomorphic cryptosystem
based on ideal lattices. An ideal lattice is a special subclass of a lattice (see
lattice definition 4.1) and is defined as:

Ideal lattice - Let R = Z[x]/〈 f 〉 be quotient ring with the property to be iso-
morphic to Zn, where f is an irreducible monic polynomial of degree n to the
integer lattice Zn, so that any ideal I ⊆ Z[x]/〈 f 〉 creates an integer sublat-
tice L(I) ⊆ Zn. Subsequently an ideal lattice is an integer lattice L(B) ⊆ Zn,
such that B = {g mod f : g ∈ I} for an irreducible monic polynomial f of
degree n and ideal I ⊆ Z[x]/〈 f 〉.

Building a cryptosystem on ideal lattices with a quotient ring result into a
homomorphic property, since ideals guarantee closure of addition and multi-
plication (see homomorphism definition 4.1). Furthermore, Gentry et al. are
proposing, in order to generate an asymmetric key pair, to create two basis
Bpk
I , Bsk

I , where the ideal I represents the cryptographic domain. The first
basis creates the public key and therefore the basis is common knowledge
(see Figure 4.2a). It will be used for encryption and can be easily reduced
by Gaussian elimination procedure, i.e. simple computation and no need for
expensive hardware.

The second basis creates the secret key (see Figure 4.2b). The basis vectors
of this secret basis are orthogonal to each other and thus enable to find a
representative of a vector in this lattice. It is noteworthy, that depending
on the degree of the orthogonality of the basis vector, the precision of the
approximation of the modulus operation is interlinked. This is the reason
why the public Basis Bpk

I gives no hint for the underlying CV problem (see
Closest-Vector-Problem ??).

50 Chapter 4. Homomorphic Encryption

The biggest disadvantages of the original Gentry-based-approach were the
enormous key sizes, especially for the public key which averaged in Giga-
bytes, and time consuming recrypt operations. These problems are addressed
among others by Smart and Vercauteren [52], which lay the foundation for
the cryptographic library LibScarab by Brenner et. al [53] that is used for our
contribution in the following sections.

4.4 Choosing the homomorphic library
Before describing the features of the LSIM implementation in Section 4.5, an
overview is given over the most prominent representative algorithms from
the wide field of fully homomorphic encryption schemes. Each of them is
briefly characterized concerning their implementation, their advantages and
disadvantages as well as their suitability for the real world application sce-
narios in Section 5. The libraries listed in Table 4.1 are shortly summarized
and described.

Table 4.1: Overview of fully homomorphic libraries

Library Language Encryption Scheme Key handling

HElib C++ BGV Asymmetric
SEAL C++ Fan & Vercauteren Asymmetric
LibScarab C Smart-Vercauteren Asymmetric
FHEW C LWE Symmetric
HE R Fan & Vercauteren Asymmetric

4.4.1 HELib

HELib [54] is a C++ implementation of the homomorphic encryption scheme
of Brakerski-Gentry-Vaikuntanathan (BGV) [55]. It provides Smart-Vercauteren
[56] cipher text packing techniques and Gentry-Halevi-Smart optimizations.
In 2015, the library was extended to include bootstrapping, which allows ci-
pher text refreshes in the encrypted domain. Very flexible and configurable
but at the same time quite complex to handle for non-experts, it provides low-
level routines like set, add, multiply, shift,. Furthermore, it is highly optimized
for single instruction multiple data (SIMD) operations, which are unreward-
ing for our application scenarios, since the library cannot compare numbers
in the encrypted domain. While testing it with small numbers for the se-
curity parameters, the memory usage for 6 multiplications on 7-bit integers
amounted to over 6 GBytes. The library is still under active development.

4.4. Choosing the homomorphic library 51

4.4.2 SEAL

The Simple Encrypted Arithmetic Library (SEAL)[57] is being developed by
the Microsoft Research Group and originally implemented the YASHE scheme.
In the most recent version, the scheme was switched to Fan and Vercauteren
[58]. In the tested version 2.1 of the library it supported only leveled homo-
morphism, i.e. by using modulus switching, one can only perform a pre-
defined amount of multiplications. Since a flexible approach is needed for
the targeted application scenarios, it would be counter-productive to limit
the amount of operations by the library beforehand. The library itself is well
documented and relatively easy to use, but it is restricted to a Microsoft Win-
dows environment. In addition, it does not support bootstrapping and com-
parisons in the encrypted domain.

4.4.3 LibScarab

LibScarab is a C implementation of the Smart-Vercauteren scheme [52] cre-
ated by Perl, Brenner and Smith [53]. It supports bootstrapping, XOR as well
as AND operations on single bits. The library is easy to use, along with a
clear and compact structure. The architecture is clearly structured and easy
to extend. The library had to be ported to the latest FLINT 2.5.2, GMP 6.1.1
and MPFR 3.1.5 libraries, since LibScarab was last updated in 2013 and does
not support multi-threading out of the box. A recrypt operation is executed
automatically after every arithmetic operation.

4.4.4 FHEW

The “Fastest Homomorphic Encryption in the West" (FHEW) [59] is a C im-
plementation of the Learning With Errors (LWE) scheme. It uses a symmetric
key, i.e. the same key is used for encryption and decryption. It also offers bit-
wise encryption and NAND-Gates. Because of the symmetric key procedures
this library is unsuitable for the envisioned application scenarios (see Section
5.1). This library was last updated in 2015.

4.4.5 Homomorphic Encryption (HE)

The Homomorphic Encryption (HE) [60] is a package for the statistic lan-
guage R and implements a scheme from Fan and Vercauteren [58]. The R
package itself is a wrapper for the arithmetic functions written in C/C++.
While easy and intuitive to use, it lacks bootstrapping and therewith the pos-

52 Chapter 4. Homomorphic Encryption

sibility for a cipher-text-refresh, preventing running several multiplications
consecutively, making it not practical for the application scenarios.

To sum up, it was decided to use the Libscarab Library over the FHEW li-
brary, because of its easy extensibility, its clear structure and asymmetric key
handling. If the asymmetric key handling would not be an essential design
requirement, the FHEW library would be a good choice otherwise. The HE-
Lib has a lot of settings and improvements that all the other libraries lack, but
the implemented application scenarios cannot benefit from any of those fea-
tures. The SEAL library fails because of its limited number of multiplication
as well as the HE library.

4.5 Functionality of the cryptographic library
LibScarab

This section describes the functionality of the chosen homomorphic crypto-
graphic library LibScarab with a proper description of encryption and de-
cryption routines, homomorphic operations (circuits) and a brief overview
of the bootstrapping routine. Smart and Vercauteren already provided the
mathematical definitions and proofed its security and correctness in [52].

This work approaches the encryption schema from a practical point of view
and how to best apply the findings in real world applications. Furthermore,
this section facilitates for the reader the preliminaries for the extension of the
cryptographic library that will be described in section 4.6.

Table 4.2: Parameters of key generator

Parameter Description

LogNU sets the bit length of the coefficient of the polynomial G(x)
n sets the degree of the polynomial G(x) and F(x)
S1 sets the total amount of elements within the hint
S2 sets the amount of elements of the secret key within the hint

4.5.1 Key generation

The key generator uses four input parameters LogNU , n, S1 and S2 (see Ta-
ble 4.2). Depending on the size of these parameters, the key generator can
be one of the longest and computing-intensive routines of the library. How-

4.5. Functionality of the cryptographic library LibScarab 53

ever, since this routine is regarded as static, the duration is not important for
the efficiency of the envisioned distributed measuring system (described in
Chapter 3). The key generation lies outside of the time critical scope. Fur-
thermore, keys are preliminaries for the communication protocol and have to
be available before the protocol is initiated.

Brenner and Perl [53] described their key generation routine based on Smart
and Vercauteren’s schema [52] very briefly in pseudo code. Algorithm 2 gives
a detailed overview of the key generation routine.

Notation: Polynomials are noted in upper case letters and their coefficients
in lower case letters. For example, a given Polynomial G(x) of degree n with

coefficients (g0 . . . gn), so that G(x) =
n
∑

i=0
gixi.

The basic idea is that G(x) generates an Ideal p = (G(x)) in Z[x]/F[x],
while p = 〈p, x− α〉 is the two element representation of a prime ideal, where
p is the norm of the ideal and α is a root of F(X) modulo p. For further in-
formation refer to Smart and Vercauteren"s elucidations [52]. The homomor-
phism reads as follows:

ϕpi : Z[x]→ (Z[x]/F(x))/p
C(x) 7→ C(α) mod p

(4.4)

This homomorphism resembles the basis for the encryption routine, later.
In Algorithm 2 F(X) is of the form of xn + 1, since it will have no root in Z[x]
and n is of the power of two. Via the Miller-Rabin primality test the property
“p 6= 0 is prime” will be checked. The implications of this property test are
twofold: First, F(x) and (Gx) are coprime and G(x) is irreducible like F(x).
Second, G(x) generates a principal ideal p in Z[x]/F[x] (as required see 4.4).

This requirement and its check are the most costly and time intensive com-
putations of the key generation routine. Gentry already simplified that claim
from Smart and Vercauteren’s schema and proved that such a strong security
requirement is not necessary, instead they require only the Hermite normal
form [61]. However, the implementation of Brenner et al. did not offer any
optimization and works with the original approach.

From here the source code is sequential with a constant runtime. By means
of Euclid’s greatest common divisor (gcd) algorithm, Dp(x) is calculated (see
Line 6). The only root of Dp(x) determines α, which will be used for a part
of the public key. The following equation 4.5 is solved by the extended Eu-
clidean algorithm (xgcd) (see line 8):

54 Chapter 4. Homomorphic Encryption

Algorithm 2 Key generation without bootstrapping hint

Input: p = 0 . modulus of encrypted text
G(X) = 0 . Polynomial of degree n
F(x) = xn + 1 . monic, irreducible polynomial in R

gi . Coefficient at i ∈ [0; n− 1] of the polynomial G(x)
Output: Public key pk, Secret Key sk

1: while p is not prime do
2: make constant coefficient gi randomly odd,

gi ∈ [−2LOGNU , 2LOGNU − 2]
3: g0 = g0 + 1
4: p = resultant(G(X), F(x))
5: end while

6: Dp(x) = gcd(Gp(x), Fp(x))
7: Dp(α) = 0 . determine α
8: r = xgcd(Z(x), G(x), t(x), F(x)) . determine Z(x)
9: B = z0 mod(2p) . determine B,part of secret key

r = Z(x) · G(x) + t(x) · F(x) (4.5)

The variables r, t and the polynomial Z(x) have to be determined, whereas
r is equal to the resultant p that has been calculated beforehand (see line 4).
From the polynomial Z(x) only the constant z0 is used for calculating B (see
line 9), that is needed for the secret key Sk. All relevant parts for the key
generation are done, so that the secret key Sk = (B, p) and Pk = (α, p) can
be calculated for the somewhat homomorphic encryption schema. With this
version a limited number of homomorphic operations is already possible (see
Section 4.2.1).

In order to be able to carry out unlimited homomorphic operations, a “‘hint”
for the secret key has to be integrated into the public key, so that a bootstrap-
ping operation (see Section 4.5.4) will be possible. Via bootstrapping the noise
level introduced by each homomorphic operation will be reduced through
generating a new ciphertext with the same cleartext. Here it is paramount
that the reencryption does not reveal the clear text at any time. A decryption
and encryption routine is carried out in the encrypted domain, such that the
confidentiality, integrity and availability (see CIA principle) of the cleartext
is maintained. Also, the secret key will never be revealed in cleartext space at
any given moment. Instead, it is kept in the ciphertext realm as well.

4.5. Functionality of the cryptographic library LibScarab 55

Algorithm 3 Construction of bootstrapping hint

Input: Array Bh with S1 elements
Array Ch with S1 elements

Output: Two Arrays Bh, Ch with an encrypted and interlinked hint for the
secret key.

1: for i = 0; i < S2; i++ do
2: Bh[i] = f loor(B

S2
)

3: Ch[i] = encrypt(1, pk)
4: end for
5: Bh[0] = Bh[0] + (B− f loor(B

S2
) · S2)

6: for i = 0; i < S2; i++ do
7: Add/subtract values randomly k ∈ [−p− 1, p− 1]

to/from Bh[i] to keep the sum total
8: Ch[i] = encrypt(1, pk)
9: end for

//fill array Bh[i] with random values
10: for i = S2; i < S1; i++ do
11: Bh[i] = random(−p, p− 1)
12: Ch[i] = encrypt(0, pk)
13: end for

//swap values randomly between arrays Bh and Ch
14: for i = S2; i < S1; i++ do
15: j = random(0, S1 − 1)
16: swap(Bh[i], Bh[j])
17: swap(Ch[i], Ch[j])
18: end for

56 Chapter 4. Homomorphic Encryption

In Algorithm 3, two arrays Bh and Ch are created and in the end added
to the public key Pk. The array Bh consists of the prior calculated number
B (see Algorithm 2) that will be divided equally in S2” summands. The rest
will be added to the summand Bh[0]. In an obfuscation step, values will be
added randomly and subtracted from each summand. Here it is paramount,
that the sum still equals B. In parallel, the array Ch equal in size will contain
an encrypted “1” at the same index where in the array Bh a valid summand
of B is placed. Vice versa, an encrypted “0” indicates a random value in Bh.
Finally, the values will be shuffled synchronously within in the arrays Bh and
Ch and resulting in the following structure of the public and secret keys:

Pk = (α, p, Bh, Ch) (4.6)
Sk = (B, p). (4.7)

4.5.2 En- and decryption

Algorithm 4 Encryption algorithm

Input: Pk = (α, p, Bh, Ch) . Public key
C(x) . Polynomial of degree n
ci . Coefficient of the polynomial C(x)
M ∈ {0, 1}, . cleartext

Output: c . ciphertext

//set all coefficients ci ∈ [−2MU ; 2MU − 2] randomly and even
1: c0 = c0 + M
2: c = C(α)mod p

The encryption routine follows the pseudocode of Smart and Vercauteren
[52] and the implementation of Perl and Brenner [53]. Nevertheless, in Algo-
rithm 4 an overview is given. A polynomial C(x) of the degree n is generated
and used as an input parameter. The message will be added to the constant
c0 of the Polynomial C(x). With the help of the public key Pk it is encrypted
and resembles in C(α) (see also 4.4) and can be evaluated by C(α) mod p.

The decryption is very fast and only takes the secret key Sk and the ci-
phertext c as an input (see Algorithm 5). It basically evaluates the following
equation, in order get the cleartext (message):

m = (c− (

⌊
c · B

p

⌉
))mod 2. (4.8)

4.5. Functionality of the cryptographic library LibScarab 57

Algorithm 5 Decryption algorithm

Input: Sk = (B, p) . Secret key
c . ciphertext

Output: M ∈ {0, 1}, . cleartext

1: [Q, R] = bc · B/pe . Quotient, Remainder
2: if (R/p) > 0, 5 then . Rounding parameter
3: Q = Q+1
4: end if
5: M = (c−Q)mod 2

4.5.3 Homomorphic operations

The homomorphic operations can be represented by Boolean circuits. The
closure of addition and multiplication find their real world counter part in a
modulus-2-addition respectively in a logical XOR operation. The multiplica-
tion is represented as a modulus-2-multiplication or a logical AND operation.
These operations can be summed up in the following equations:

(m1 + m2) mod 2 = (encrypt(m1) + encrypt(m2)) mod p (4.9)
(m1 ·m2) mod 2 = (encrypt(m1) · encrypt(m2)) mod p (4.10)

After each homomorphic operation a bootstrapping or recrypt routine has
to be launched, to reduce the noise level. This will be further explained the
next section.

4.5.4 Bootstrapping

Gentry [61] introduced the Bootstrapping (“recrypt”) technique to extend
somewhat homomorphic encryption schemes to fully homomorphic schemes
by enabling unlimited homomorphic operations. After each homomorphic
operation the noise level increases until a certain threshold is met, and a
flawless decryption becomes impossible. Gentry came up with the idea to
decrypt the ciphertext without leaving the cryptographic realm and giving
up the confidentiality of the ciphertext. Instead, the resulting ciphertext is a
new encrypted version of the original message with a reduced noise level and
its initial value. Informally speaking, bootstrapping creates a “clean” noise
free ciphertext with the same cleartext value.

58 Chapter 4. Homomorphic Encryption

In order to be able to decrypt the ciphertext with only a public key Pk, a
hint for the secret key Sk is hidden within Pk as already described in Section
4.5.1. The hint consists of two arrays Bh and Ch. In array Bh parts of the secret
key are hidden and distributed, while the array Ch indicates the location of
the hints in Bh with an encrypted zero. The rest of the irrelevant indexes hold
an encrypted one.

Smart and Vercauteren [52] analyzed their recrypt routine and described it
in seven stages. Brenner’s implementation [53] followed this approach very
closely except for the rounding function. A brief overview of the routine is
given in the next paragraphs, but for more details refer to [52].

As a first step, the message has to be decrypted. Instead of using the secret
key directly, it has to be constructed from the hints distributed across the two
arrays Bh and Ch. :

m = c− (

⌊
S1

∑
i=1

Chi

(c · Bhi mod 2p)
p

⌉
)mod 2 (4.11)

Next, the values of S1 have to be determined in di as follows:

di =
(Bhi · c mod 2p)

p
(4.12)

The first t bits values are taken from di forming an S1 × t matrix A1, while
the accuracy of t = dlog2(S2)e+ 2. The values of matrix A1 are encrypted and
will be homomorphically multiplied by each element of the vector Ch. At this
point the matrix holds a binary representation of Chi(c · Bhi mod 2p)/ p. In
order to save homomorphic additions, the sum will be computed indirectly
via Hamming weights of each column of A1 using symmetric polynomials.
The result matches a t × S matrix A2, such that A2 equals the i-th row of
A1 with S-bit precision, while S + b(log2(S2))c+ 1. Adding up the rows of
matrix A2 while its paramount that the current row of A2 equals the current
column of A1 and shifting the Hamming weight (i− 1) of the column of A1.
This results in a vector m representing a binary encrypted sum of:

S1

∑
i=1

Chi

(c · Bhi mod 2p)
p

. (4.13)

An element of vector mi matches an encrypted bit with the adicity of 2i−1.
The resulting ciphertext cnew after rounding can be determined as follows:

4.6. LSIM - Extension 59

cnew = (c mod 2 + m1 + m2)mod p (4.14)

The ciphertext cnew has the same cleartext as c with a reduced noise level.

4.6 LSIM - Extension
The following section describes the LSIM-extension (LibScarab extended for
Integer arithmetics and Multithreading) of the homomorphic library LibScarab
and its improvement for a practical usage in the field of Legal Metrology. It
gives an overview of the added functionality and the enhanced capability of
32bit and 64bit wide homomorphic operations. This practical implementation
and extension arose as a student master thesis under the author’s supervision. This
work is published in [35].

Fully homomorphic encryption schemes support two operations: addi-
tion and multiplication. Depending on the implemented scheme, also a sign
change is possible, which enables subtraction. A lot of simple algorithms are
based on these three operations and thus can be implemented. But neverthe-
less, no solution exists for comparing two integer numbers in the encrypted
domain, which makes it impossible to make a decision in the encrypted do-
main and consequently to implement a division algorithm for example.

One possible way to implement a division algorithm is to represent num-
bers as fractions by saving nominator and denominator separately in order
to bypass division. But this approach does not solve the problem of compar-
isons in the encrypted domain. It also seems impossible to render an unen-
crypted result from an encrypted operation, especially while using lookup
tables, without giving up security and privacy. This means that all possibili-
ties have to be decided without guessing and avoiding a shortcut like lookup
tables for the division algorithm. This would lead to an improvident amount
of computing power, in order to calculate all possible results in parallel.

A final decision should always be made in the unencrypted domain for the
targeted algorithms. Since they cannot completely be calculated in sufficient
time and without increasing the computing power enormously nor is the de-
cryption of data in an insecure environment an option, a different approach
was pursued replacing integers with binary numbers.

The LibScarab library is a good choice for the prototype, since it provides
all necessary tools without adding too much complexity. In addition, it is eas-
ily configurable yet simple to modify and to extend. On top of that it is very
fast. A “recrypt” procedure is executed after each operation. Thus, there is no
further need for noise control to fulfill the requirement of unlimited multipli-

60 Chapter 4. Homomorphic Encryption

cations. The library did not support multi-threading out of the box, since it
was built on old versions of the libraries FLINT, GMP and MPFR. Therefore,
it was ported to newer versions in order to comply with the requirements.

The following Subsections explain the extensions made to enhance the
original LibScarab implementation, that had to be done, in order to build
the smart meter gateway tarrifs in Section 5. First of all, to meet the time con-
straints the library was enhanced to take advantage of multithreading (see
Section 4.6.1). In Section 4.6.3, advantage is taken of the binary representa-
tion of numbers from the original library, in order to be able to implement
a zero test of encrypted integers. This test enables simple decisions in the
encrypted domain (see Section 4.6.5) in conjunction with a simple compari-
son of encrypted integers (see Section 4.6.4). These extensions are paramount
and essential, in order to implement the smart meter gateway tariffs. Further-
more, the enhancements of the addition (see Section 4.6.6), multiplication (see
Section 4.6.7) and division (see Section 4.6.8) operations contribute to a per-
formant and improved implementation of the smart meter gateway tariffs.

4.6.1 Multithreading

The complex and time intensive computation, that homomorphic encryption
requires makes it a perfect candidate for parallelization via multithreading.
At a first glance the Bootstrapping routine would be perfect for paralleliza-
tion since it is a very complex and the most often repeated routine because
it will be executed after each homomorphic operation. However, this routine
offers only small parts for distributing the computation among parallel work-
ing threads and is followed by stark sequential, non-parallelizable stages.
The overhead for managing the thread generation and -synchronization does
not balance the time savings via parallelization and is just not cost-efficient
enough. Instead, it was decided to work at the hierarchy level of encrypted
bits and parallelize each homomorphic integer operation, as well as at the ap-
plication level for the tariff models. In order to get optimal results to reduce
execution time for tariff models, it is necessary to employ multithreading at
the lowest execution level possible. The homomorphic integer operations of-
fer many regular parts and easy parallelizable structures at the level of each
Boolean operators. The reduction of execution time and acceleration of com-
putation is won via multithreading at the level of each Boolean circuit. The
computation time was reduced in a first iteration of the implemented library
by a factor of 7 and in a second iteration it was further reduced by factor 2.
For more details refer to Section 5.

Several tools are available to realize multithreading within applications.
The easiest and rudimentary way is using Posix Thread (pthread). This li-

4.6. LSIM - Extension 61

brary is independent of a programming language, operating system and ex-
ecution model. Furthermore, it allows a fine grained control of the thread
generation, synchronization and termination. However, pthread introduces
a huge overhead in maintenance and controlling dynamic threads is compli-
cated to handle. A more suitable solution is the OpenMP library that auto-
mates the generation and synchronization of threads. Via #pragma prepro-
cessing directives even single thread environments are able to execute the
code. The OpenMP library is natively available via the Microsoft Visual C++
compiler and reduces the difficulty of platform independent programming.
For the LSIM extension OpenMP is used to implement the multithreaded en-
vironment.

Thread safety was of the main aspects of the parallelization for each routine
of the LSIM extension. While parallelizing calculations on several threads,
the order of interim results can be paramount for the end result. Thus it is
important to avoid race conditions and nondeterministic programming er-
rors. The existing implementation of LibScarab and its libraries are outdated.
Therefore it had to be adapted to be compatible with the latest libraries. While
the old version of FLINT 1.6 could not guarantee thread safety for all its meth-
ods, a switch to the newer version 2.5.2 had to be made to assure thread safety
for all methods. In this context, the application interface had to be updated
and additionally the extended Euclidean algorithm of the LibScarab library
was replaced by the FLINT 2.5.2 library. Furthermore, through dependencies
to the MPFR and GMP libraries an additional update (MPFR 3.1.1 7→ 3.1.5,
GMP 5.1.1 7→ 6.1.2) was necessary.

4.6.2 Boolean operators

The LibScarab-Library offers two basic homomorphic arithmetic operations;
the modulo-2-addition which corresponds to an XOR-gate and a modulo-2-
multiplication that corresponds to an AND-gate. With these two operations
it is possible to derive all the Boolean functions and, as a consequence, to pro-
vide arithmetic and logical operations on encrypted integers, which are rep-
resented as arrays of encrypted bits. An OR operation can be realized with
De Morgan’s Law (see 4.15) and the binary complement of the encrypted
number which corresponds to toggling bits in the encrypted domain can be
realized via XOR gate (see 4.16). The addition, subtraction and multiplica-
tion operations for integers had to be reimplemented according to the chosen
binary word sizes (i.e. 32 bit and 64 bit length see Section 4.6.6).

A ∨ B = ¬(¬A ∧ ¬B) (4.15)

62 Chapter 4. Homomorphic Encryption

((1⊕ A) = ¬A). (4.16)

4.6.3 Zero-Test of encrypted integer

This binary approach yields the opportunity to implement a zero-test as a
simple bitwise ∨ on all bits of the represented number. The result of this op-
eration should be complemented to return an encrypted 1 in case the exam-
ined number was 0. This corresponds to a logical NOR operation with 32 bit
inputs. The encrypted result can be directly used as an input for further en-
crypted arithmetic and logical operations. To verify the computed result, it
has to be decrypted in the end.

4.6.4 Comparison of encrypted integer

A simple implementation of a comparator consists of the subtraction of both
input parameters (A − B) and of the sign-evaluation of the result. This op-
eration delivers two possible results A < B or A ≥ B. The latter needs to
be checked with the help of the zero-test, so that it can be distinguished be-
tween A > B and A = B. If this clarification is not needed, this approach
can be reduced to the calculation of borrow-bits only, since the result of the
subtraction itself is not important.

4.6.5 Simple decision of encrypted integer

It is significant to highlight that the result of a decision should remain in the
encrypted domain. Thus, it is not possible to externally influence the pro-
gram flow. Nevertheless, simple algorithmic constructs are feasible based on
the result of the comparison or zero-test operator. These are source and desti-
nation selections. The source selection, on the one hand, is represented by the
following C-construct, which is similar to an if-then-else-construct with the
constraint that only data flow can be controlled:

Y = (condition)?A : B (4.17)

To implement this decision a 2:1-multiplexer is required, which can be de-
scribed as:

Y = ¬C · A + C · B (4.18)

where C is the output of the zero-test, the comparison operator or any other
possible Boolean equation.

4.6. LSIM - Extension 63

The destination selection, on the other hand, consists of a demultiplexer
and binary adders. The selection is triggered by a Boolean equation (e.g.
comparison or zero-test). After the output selection operation, the selected
output or destination contains the input number and all the other outputs
are set to an encrypted 0. All outputs will be added to the corresponding
registers. All registers are modified, but only one will be increased by the
input value of the demultiplexer. All the others will be increased by an en-
crypted 0. It is important to mention that the addition of an encrypted zero
always produces a different encrypted version of the same number. Hence it
is not possible to say which of the registers are actually changed by a FHE-
operation.

4.6.6 Addition and subtraction of encrypted integer

The implementation of arithmetic circuits is done with special regard to mul-
tithreading. A particular challenge was to find a solution with a small number
of gates and a small circuit depth at the same time. An analogue problem is
known in the field of digital design as “Area-Speed-Tradeoff”, since a lower
circuit depth usually results in a higher number of gates used. Each addi-
tional gate needs computing time, thus fast digital circuits have often poor
performance executing homomorphic operations. Especially for multiplica-
tion and division some advanced algorithms exist, but due to the massive
use of multiplexers or lookup-tables these solutions are not reasonable with
respect to the execution time.

Three different versions of an adder were implemented and compared.
A Carry Look Ahead Adder (CLA) [62] with block size of 4 and 8 bit, also
known as “fast adder" proved to be the slowest adder within the constraints
of this thesis, especially for the implemented tariff applications (see Section
5). The Carry Select Adder (CSA) [62] rendered mid-range performance. The
modified Ripple Carry Adder (RCA) [62] revealed the shortest execution time,
since the operations of the first half adder were executed completely in paral-
lel. The same adder could be used to implement subtraction, but this would
contain an array of XOR-gates to form the complement. Considering perfor-
mance, the subtraction was outsourced to a separate routine, in order to save
time during addition operations.

4.6.7 Multiplication of encrypted integer

Fast multiplications using higher radix solutions [62][63] require a massive
use of multiplexers or/and operand recoding which are costly in size as well
as time consuming.

64 Chapter 4. Homomorphic Encryption

In case of conventional binary multiplications, two problems can be iden-
tified: 1.) the generation of the partial products, 2.) their summation. While
the generation of partial products can be carried out completely (bitwise) in
parallel, the summation can only be partially parallelized. A tree structure of
conventional word adders provides insufficient performance. For this reason,
a multi-level bit-wise tree adder is used here (see Figure 4.3).

The main principle of a tree adder is that a full adder is used to add three
bits. At the output, one sum bit and one carry bit are generated. The resulting
number, consisting of carry bits, is shifted one place to the left. Due to the fact
that there is no carry propagation in the case of the 32 partial products of the
multiplication of two 32 bit numbers, 30 (x0 to x29) of them can be processed
by bit-wise full adders in a bit-parallel manner in the first stage. The resulting
20 numbers are supplemented by x30 to deliver 21 numbers and are processed
in the next stage. After several iterations, there are only two numbers left
which are added together by a conventional adder. The difficulty here is the
bitwise addition of the shifted partial products with respect to the significant
bit position, which requires manual optimization and proper planning of the
multi-threaded operations. This approach is the fastest solution found to our
problem in the encrypted domain (see Section 5 for performance results).

Figure 4.3: Tree structure of the optimized adder part

4.6. LSIM - Extension 65

4.6.8 Division of encrypted integer

The division operation is the most difficult one to parallelize because of inter-
step dependencies. One possible improvement leading to a reduced number
of iterations is the use of high-radix number systems to perform the division.
Unfortunately, the complexity of each iteration is also increased in this case.
Advanced higher radix algorithms like Sweeney-Robertson-Tocher (SRT) di-
vision uses lookup-tables and/or a lot of multiplexers [62][63]. These are very
expensive in case of a FHE software implementation, so that a simpler solu-
tion was investigated.

The simplest way to implement the division is the well-known paper and
pencil method adapted to the binary number system also known as restoring-
division [62]. The non-restoring algorithm has been verified in [64]. The di-
visor is subtracted from the shifted dividend, in case of a negative remainder
the divisor is added back to the remainder and the result will be shifted. The
restoring operation implicates one extra addition or use of a multiplexer in
each iteration. In contrast to the restoring division the non-restoring-algorithm
requires only one addition or subtraction in each iteration. The underlying
concept can be easily derived from the restoring algorithm. In case of a nega-
tive remainder after one subtraction the divisor (D) should be added back to
the remainder (R) and the result (S) shifted to the left, i.e. S = 2 · (R + D).

In the next iteration D will be subtracted again: 2 · R + 2 · D − D = 2 ·
R + D, which is equal to the simple shift of the negative remainder of the
first iteration and replacing of the subtraction by an addition in the next iter-
ation. Addition and subtraction are performed by the same Boolean circuit
(see Figure 4.4). The sign-bit of the result is used to select the operation (ad-
dition/subtraction) for the next iteration.

Figure 4.4: Multi-threaded combined adder and subtractor

66 Chapter 4. Homomorphic Encryption

4.7 Summary
In this section the field of fully homomorphic encryption (FHE) was intro-
duced and their mathematical groundwork briefly explained. The base prob-
lems such as shortest vector problem (SVP) and closest vector problem (CVP)
for lattice-based cryptography were introduced and their significance em-
phasized. Advantages of lattice-based cryptography in comparison to tradi-
tional cryptography were summed up. The contribution was highlighted by
extending the FHE library LibScarab for zero-test, comparison, simple deci-
sions for encryption integers. Moreover, basic arithmetical operations, such
as addition and multiplication were extended for 32 and 64 bit usage, as well
as division and subtraction were added to the library content. These contri-
butions were necessary to allow implementing encrypted tariff models for
smart meter gateways (SMGW).

5
Evaluation & Utilization

“In the real world, nothing happens at the right place at the right
time.”

—Mark Twain

W HILE CHAPTER 4 explained the foundation of FHE and highlighted
the authors contribution, this chapter focuses on the applied appli-
cation scenarios for smart meter gateway tariffs according to the

German Federal Office for Information Security (BSI). Four tariffs will be
briefly explained and the algorithmic requirements that are needed to im-
plement these scenarios. The results of the 32 bit and 64 bit-homomorphic
operations along of the yielded results of the application scenarios are pre-
sented.

5.1 Tariff applications
Even though homomorphic encryption usually aims at ensuring data privacy
[27], it may be used in other areas and for other purposes as well. If an at-
tacker is unaware of the actual values of the data currently being processed,
intentional manipulation is no longer possible. Instead, random changes to
data and likewise random manipulation of the executed algorithm are the
only aims an attacker may achieve. If homomorphic encryption is carefully
combined with testing a running algorithm via precomputed test data, even
such random effects may be detected. Subsequently, the scheme detailed here
may be used to achieve a certain degree of robustness towards algorithm and
data manipulation, too. This is especially useful in the area of Legal Metrol-
ogy, where all parties involved in a transaction are considered untrustworthy

67

68 Chapter 5. Evaluation & Utilization

and the only trust-anchor is the measuring instrument itself.

As indicated in the introduction, Legal Metrology covers all areas of mea-
surements where lawmakers consider the outcome of a measurement to be
crucial for consumer protection. In the following paragraphs, the different
tariffing scenarios will be examined in more detail. Tariffing generally refers
to the process of price calculation based on one or more determined measure-
ment values consisting of a physical quantity together with the appropriate SI
unit [65]. Here the term will be used in the context of smart meters for elec-
trical energy, but the concept may easily be applied to other areas of Legal
Metrology as well.

While the measuring of commodities such as electrical energy, gas, water
and heat are all regulated in the MID, national law may prescribe additional
constraints if the measurements, for instance, touch upon informational pri-
vacy or other aspects subject to national legislation. In Germany, due to the
implementation of the aforementioned Directive 2009/72/EC, the federal of-
fice for information security Bundesamt für Sicherheit in der Informationstechnik
(BSI) has published a technical requirement document (TR) [34] with an asso-
ciated protection profile [66]. While the first mainly covers compatibility re-
quirements and secure communication protocols for the SMGW, the latter is
only focused on the SMGW’s integrated Hardware Security Module (HSM).
Apart from defining communication protocols and the general environment
of an intelligent measuring system, the TR also lists all approved tariff appli-
cation scenarios (TAF) that may be used in an intelligent measuring system.
These are of utmost importance for the SMGW, as it is usually in charge of
connecting meter and time data (time stamping) and is also responsible for
price calculation.

Out of the 12 TAFs defined in the TR, four will be examined and imple-
mented in a secure cloud solution in this thesis. The four scenarios have been
selected as they constitute a representative application of tariffing that may
also be found in other measuring systems.

In this section, a number of common tariff models, which constitute a rep-
resentative set of algorithms used in measuring instruments, are examined
and requirements for the homomorphic encryption scheme detailed in Chap-
ter 4 will be derived.

Tariffs with low data usage - TAF I Tariffs with low data usage, where en-
ergy is always billed with the same price and collected data are only sent at
the end of the billing period requiring no external trigger.

5.2. Required logical and arithmetic operations 69

Time-dependent tariff - TAF II Time-dependent tariffs, where energy is billed
with different tariffs according to the time at which a certain amount of en-
ergy is consumed. The switching between tariffs is time-dependent but the
switching points are static.

Power-dependent tariff - TAF III Power-dependent tariffs, where the price
does not depend on the total energy consumed but on the current power con-
sumption (energy per time interval) The switching into different price cate-
gories is therefore done according to the value of the current measurement
result.

Consumption-dependent tariff - TAF IV Consumption-dependent tariffs,
where a new price is used when a certain energy budget has been consumed.
The budgets are statically predefined and the condition for assigning new
measurement values to the next price category has to be checked regularly.

5.2 Required logical and arithmetic operations
The implemented library LSIM and its extension described in Section 4.5 aims
at realizing the SMGW’s tariffing functionality in a way that can be run on
any system with suitable computation capacity without having to realize ad-
ditional protective means. While SMGWs are very unlikely to be realized in
the cloud any time soon due to the hardware requirements of the TR, the
approach may easily be applied to many other measuring systems that all
perform similar price calculations as listed below:

• addition, subtraction, multiplication, division,

• comparison,

• input-dependent source selection,

• input-dependent destination selection.

The addition operation is, of course, needed to add new energy values
to an existing tariff register. Subtraction, division and negative numbers are
likewise needed to calculate the current energy flow (the power) based on
consecutive readings of a cumulative meter. The multiplication operation is
required when a tariff and an energy amount are combined to form a price
to be paid. Comparisons of input values are needed to realize input- and
time-dependent switching statements, in order to be able to decide in which
register the accumulated measurement result has to be saved based eiher on
energy consumption (see TAF 3) or to distinguish day and night tariffs (see
TAF 4) as described in Section 5.1.

70 Chapter 5. Evaluation & Utilization

5.2.1 Required time for processing.

Two separate tasks performed by the SMGW need to be distinguished: One
is the accumulation of data coming continuously from the electricity meters.
The other one is the monthly reading of the resulting registers. Data com-
ing from smart meters will be accumulated within the SMGW to which the
meters are connected. According to the current design of the SMGW, a max-
imum of 32 meters can be connected to the gateway simultaneously. Each
individual meter sends a new measurement value every 15 minutes. In order
for the gateway to efficiently cope with the arriving amount of data, every
single request for data accumulation subsequently needs to be processed in
under 15×60sec

32 = 28sec. Parallelization of the accumulation process is not fea-
sible or wanted since there are inter-dependencies between measurements
which may have an effect on the chosen register for subsequent values. The
monthly retrieval of accumulated register values from the SMGW is not time-
critical as the reading only works on static data that does not change during
reading. The retrieval can thus happen in a separate process.

5.3 Evaluation of homomorphic operations
This section describes the experimental comparisons that were conducted on
a Linux server with an Intel Xeon CPU E5-2620 v3 @2.40 GHz, 24 cores and
64 GB of RAM with a conventional hard-drive. In the first two subsections,
key generation, recrypt operation and single arithmetic operations of FHE are
compared, after improving and extending LibScarab as described in Section
4.6. Subsection 5.3.4 comprises results of the application scenarios TAF 1-4
that were already outlined in Subsection 5.1. The speedup and efficiency are
calculated for both single operations as well as for the tariff applications.

The relative performance gain achieved by parallelization (speedup) can
be measured and is defined in [67] as a metric. This can be written as:

S(n) =
Ts(n)
Tp(n)

(5.1)

where Ts is the execution time of the best sequential algorithm for solving the
problem and Tp marks the execution time of the parallelized algorithm using
n processing units.

The efficiency is also defined by [67] as a metric that measures the fraction
of time in which a processing unit is usefully employed. This can be asserted
as:

E(n) =
S(n)

n
(5.2)

5.3. Evaluation of homomorphic operations 71

Table 5.1: Overview of key geometry and performance gain in comparison to Brenner et
al. [53] key generation and recrypt operations in parenthesis.

key geometry key size keygen speedup recrypt speedup
[|α|,S1, S2] Pk/Sk [kB] [s] [ms]

384/16/05 1.8/30 1.1 (17) 15.5 34 (263) 7.7
384/32/16 1.8/60 1.17 (14) 11.9 90 (307) 3.4
384/64/16 1.8/120 1.24 (15) 12 181 (684) 3.7

2048/64/16 9.6/626 516 (3180) 6.1 670 (1350) 2
4096/64/16 18/1250 5204 (14278) 2.7 1660 (3280) 1.9

where S is the speedup for the algorithm (see Equation (5.1)) and n marks
the number of processing units.

5.3.1 Key generation and recrypt operation

While parallelizing the basic arithmetic operations, e.g. addition and mul-
tiplication, it was determined that the speedup factor is not significant for
creating a monic and irreducible polynomial F(x) with a resultant p being
prime (see KeyGen [52]) in a multi-threaded environment compared to a sin-
gle threaded one, i.e. no relevant time gain for key generation is realized.
The author assume that performance gain is lost due to the randomized gen-
eration of the polynomials and their evaluation, because of the great spread
of the results and the necessary synchronization of the threads. Thus, the
times stated in Table 5.1 for key generation and recrypt operation are sin-
gle threaded. Nevertheless, in comparison to Brenner’s reference implemen-
tation [53] and the stated times for key generation for 384-bit key length a
speed up of 15.5 could be yielded, i.e. instead of 17s it only took 1.1 second
to generate a key. The main factors are optimizations in the implementation,
modernized libraries as already explained in Section 4.6 and faster hardware
than in 2012. The recrypt operation achieved a speed up factor of 7.7 for 384-
bit key length, i.e. a recrypt costs only 34ms instead of 263ms. The amount
of disk space for public and private keys do not distinguish from Brenner’s
data.

5.3.2 Arithmetic operations

By parallelizing the arithmetic operations, the greatest benefit was earned
within multiplication by a factor of 7.29. In Figure 5.1 one can see the asymp-
totic characteristic of the optimization for the time usage. While executing a
single thread utilization took 124s for a single multiplication, a 48 threads
utilization only took 17s for a single multiplication. Considering memory

72 Chapter 5. Evaluation & Utilization

12 4 8 16 24 32 40 48
Threads[n]

0

25

50

75

100

125

150

175

200

Ti
m

e
[s

]

Addition
Multiplication
Division

(a) Single 32 Bit-FHE-operations over time

11111112222222 4444444 8888888 16161616161616 24242424242424 32323232323232 40404040404040 48484848484848
Threads[n]

4000

6000

8000

10000

12000

14000

16000

M
em

or
y

[k
B]

Addition
Multiplication
Division

(b) Single 32 Bit-FHE-operations and the memory usage

Figure 5.1: Plot of 32 Bit-FHE-operations (Add, Mult, Div) on a Server with an Intel Xeon
CPU E5-2620 v3 @ 2.40 GHz and 64GB RAM.

usage, the optimum is reached by utilizing 16 threads with 19s for a single
multiplication with a calculated efficiency gain of 41 % (see Equation 5.2)
and a speedup of 6.53. The least significant benefit from parallelization was
realized for the addition operation. It is already the fastest operation in the
encrypted domain needing only two seconds for one addition for a single
thread while it could be pushed down to one second for a single addition uti-
lizing 48 threads. The efficiency optimum is reached here by using only two
threads with a 50% efficiency and a speedup of 1 needing two seconds.

The division is traditionally a very complex arithmetic operation which
often has its own compartment on modern CPUs in order to optimize its
performance. Bearing this in mind for the software implementation in the en-
crypted domain, the benefit through parallelizing the division operation was
achieved by a factor of 1.6. This means that a single thread for one division

12 4 8 16 24 32 40 48
Threads[n]

0

100

200

300

400

500

600

700

800

Ti
m

e
[s

]

Addition
Multiplication
Division

(a) Single 64 Bit-FHE-operations over time

12 4 8 16 24 32 40 48
Threads[n]

5000

7500

10000

12500

15000

17500

20000

22500

M
em

or
y

[k
B]

Addition
Multiplication
Division

(b) Single 64 Bit-FHE-operations and the memory usage

Figure 5.2: Plot of 64 Bit-FHE-operations (Add, Mult, Div) on a Server with an Intel Xeon
CPU E5-2620 v3 @ 2.40 GHz and 64GB RAM.

5.3. Evaluation of homomorphic operations 73

Table 5.2: Overview of 32 bit operation results

n t (sec) S(n) E(n) in %

Add 1 2 - -
2 2 1 50
48 1 2 4

Mult 1 124 - -
16 19 6.5 41
48 17 7.3 15

Div 1 196 - -
16 126 1.6 10
48 121 1.6 3

took 196s while this was reduced to 121s utilizing 48 threads. The optimum
for this operation is reached using 16 threads with a speedup of 1.6 with a 10
% efficiency. Similar results could be yielded for 64 bit arithmetic operations
as seen in Figure 5.2. Obviously, more memory was needed for the single
arithmetic operations due to the nature of the bigger operands. Again, the
multiplication benefited the most by a factor of 6.8, needing almost 8 minutes
(470s) for a single threaded multiplication compared to 69s using 48 threads.
The optimum is reached using 16 threads with a speedup of 6.3 and an effi-
ciency gain of 39 % needing 75s. Additions in the 64 bit space are optimized
by a factor of 1.6, i.e. needing 5s for one addition using one thread compared
to 48 threads lasting 3s. The optimum is reached for 4 threads with a speedup
of 1.3 and a 31 % efficiency. Again addition is the fastest operation.

Table 5.3: Overview of 64 bit operation results

n t (sec) S(n) E(n) in %

Add 1 5 - -
4 4 1.3 31
48 3 1.7 3

Mult 1 470 - -
16 75 6.3 39
48 69 6.8 14

Div 1 796 - -
16 497 1.6 10
48 467 1.7 3

74 Chapter 5. Evaluation & Utilization

For the division the same factor of 1.6 could be reached as for the 32 bit
operands. Speaking in absolute numbers it is still a huge difference from
roughly 13 minutes (796s) for a single threaded division compared to about
8 minutes (479s) using 48 threads. The optimum is reached using 16 threads
with a speedup of 1.6 and 10 % efficiency needing 8.5 minutes (497s). An
overview for the 32 and 64 bit arithmetic operation results can be seen in
Table 5.2.

5.3.3 Comparison of the stack and heap implementation of LSIM

The implementation of the LSIM extension is still under active development.
While writing this thesis, the work on the heap implementation for the mem-
ory handling was finalized. Switching from a stack implementation with a
stark tailored use case approach to a more generalized and dynamic proto-
type implementation, improved the runtime of arithmetic operations drasti-
cally. Through this reimplementation, buffer overflows, memory leaks and
index out of bound errors were fixed and do not affect the homomorphic op-
erations and their runtime in an unauthorized way anymore.

In direct comparison the speed of all 32 bit arithmetic operations was im-
proved up to 50% on the same machine (see Figure 5.3). The homomorphic
addition routine was already the fastest operation but was improved for all
threads ranging from 1 to 32 needing only 1s gaining 50% in comparison to
the already presented results. More interesting are multiplication and divi-
sion. Here, the computations gain speed and the savings are more impres-
sive. The new implementation is 36% faster for multiplication employing
only two threads, needing 47s compared to 73s. Eight threads need only 19s
compared to 30s and are 37% quicker. The maximum of 48 threads gain 12%
against the old implementation and need only 12s compared to 17s.

The division routine is, because of its complexity, the longest running op-
eration. Nevertheless, with only 4 threads employed a gain of 44% could
be achieved, needing only 87s compared to 153s. The division routine almost
cracks the psychologically important barrier in performing faster than within
60s. However, employing 48 threads resulted only in 65s compared to 121s
gaining 46%.

These last minute results are encouraging in further optimizing the pro-
totype implementation. They show that a lot of computational optimization
can still be made. Keeping in mind that the first breakthrough of fully homo-
morphic encryption was in 2009 and the first fully homomorphic calculations
lasted longer than 48 hours, it is quite impressive what the cryptographic
community achieved so far. However, this is still an early stage of homomor-
phic encryption.

5.3. Evaluation of homomorphic operations 75

12 4 8 16 32 48
Threads[n]

0

25

50

75

100

125

150

175

200

Ti
m

e
[s

]

Addition
Multiplication
Division

(a) Old implementation over time

12 4 8 16 32 48
Threads[n]

0

20

40

60

80

100

120

140

160

180

200

Ti
m

e
[s

]

Addition
Multiplication
Division

(b) New implementation over time

Figure 5.3: Comparison of 32 Bit-FHE-operations (Add, Mult, Div) on a Server with an
Intel Xeon CPU E5-2620 v3 @ 2.40 GHz and 64GB RAM.

5.3.4 Results of application scenarios

In contrast to the tests performed in Subsection 5.3 where only arithmetic
operations are measured, these results cover the combination of arithmetic
operations and comparisons applied to the application scenarios described in
detail in Subsection 5.1. A recrypt is included after each arithmetic operation
to reduce the noise.

The calculations for the application scenarios are split into accumulating
the measurement data (see Figure 5.4) and summing them up on demand
(see Figure 5.5), e.g. at the end of the month. The latter includes the more
complex arithmetic operations and comparisons in the encrypted domain.

While TAF 1 and 4 performed very similar in accumulating measurement
data (see Figure 5.4a) in respect to time and utilizing threads, the gain is 1.3
needing about 5s for a single thread to only 3.8s utilizing 48 threads. The
optimum is reached using only 4 threads with a speedup of 1.3 and about
30% efficiency needing 4.2 and 4.3s.

TAF 2 gained a factor of 1.7 needing single threaded 9.3s and for 48 threads
5.6s. The optimum is reached using two threads with a speedup of 1.8 and a
91 % efficiency needing 5.4s to accomplish this task.

TAF 3 is the only scenario where a lot of comparisons and decisions were
performed additionally, thus the time difference. A gain of factor 2.4 was
yielded for a single thread needing 33.4s compared to 48 threads consum-
ing only 14s. The optimum is reached using 8 threads with a speedup of
2.2 and 28 % efficiency needing 14.9s to finish. For all TAFs, parallelization
helped to push execution time below the required boundary of 28s. The new
implementation is 65 % faster needing only 12s for the single threaded accu-
mulation process and 50 % faster with 4 threads needing only 8s for TAF 3

76 Chapter 5. Evaluation & Utilization

12 4 8 16 32 48
Threads[n]

0

5

10

15

20

25

30

35

Ti
m

e
[s

]

TAF 1
TAF 2
TAF 3
TAF 4

(a) Old implementation over time (b) New implementation over time

Figure 5.4: Comparison of accumulating measurement data on a Server with an Intel
Xeon CPU E5-2620 v3 @ 2.40 GHz and 64GB RAM.

(see Figure 5.4b).

For the monthly “read out” of the summed-up measurement data the ap-
plication scenarios (see Figure 5.5a) differ more than for the accumulation
process. TAF 1, low data usage, is the fasted and simplest one gaining factor
7 for a single thread using 123.3s compared to 48 threads consuming only
17.6s. The optimum is reached using 16 threads with a speedup of 6.3 and a
39 % efficiency needing 19.6s to finish.

TAF 2, time-dependent tariff, records a gain of 6.7 for a single thread using
250.6s compared to 37.3s utilizing 48 threads. The optimum is reached using
16 threads with a speedup of 6 and a 38 % efficiency needing 41s.

The TAF 3, power-dependent tariff and TAF 4, consumption-dependent
tariff, are more complex thus take around 9 minutes (503.3s / 533s) for a
single thread and for 48 threads using around 1.5 minutes (78,6s / 95s).

12 4 8 16 32 48
Threads[n]

0

100

200

300

400

500

600

Ti
m

e
[s

]

TAF 1
TAF 2
TAF 3
TAF 4

(a) Old implementation over time

12 4 8 16 32 48
Threads[n]

0

100

200

300

400

500

600

Ti
m

e
[s

]

TAF 1
TAF 2
TAF 3
TAF 4

(b) New implementation over time

Figure 5.5: Comparison of “read out” measurement data on a Server with an Intel Xeon
CPU E5-2620 v3 @ 2.40 GHz and 64GB RAM.

5.4. Summary 77

The performance gains are factor 6.4 and 5.6, respectively. The optimum is
reached for both using 16 threads with a speedup 5.8 and 5.2 as well as a 36 %
and a 32 % efficiency needing 86s and 103s to finish. The new implementation
gains 150s in single threaded read out process and is 28 % faster needing only
400s for TAF4. With 4 threads employed the read out process for TAF4 is 38
% faster and needs only 120s (see Figure 5.5b).

5.4 Summary
This chapter covered the smart meter gateway tariffs (TAF) according to the
German federal office for information and security (BSI) and their techni-
cal requirement document (TR)[34] with an associated protection profile [66].
The required logical and arithmetic operations were briefly summarized to be
able to implement encrypted tariff models. Improving the used FHE library
libScarab through multithreading and partly reimplementing basic FHE op-
erations, the computation times for all the FHE operations was improved.
Key generation improved by a factor of 15.5 needing only 1.1 instead of 17s
and recryption was pushed down from 263ms to only 34ms.

Through the effort of reimplementing the memory handling and switching
from a stack to a heap implementation a tremendous acceleration of homo-
morphic operations could be made possible. All arithmetic operations could
benefit, especially interesting are multiplication which is 36 % faster than be-
forehand. Likewise all implemented tariff applications are benefiting from
this speed up as well.

An overview of the arithmetic operations is given and summarized in a
table. Through parallelizing the FHE library the time requirements can be
pushed down for all TAFs below the required boundary of 28s [35]. This
proves that fully homomorphic encryption can be used nowadays for real-
world examples. Implementing FHE for the secure Cloud Computing refer-
ence architecture shall secure the measurement data through their lifecycle in
the distributed system. Nevertheless, to prove the integrity of the distributed
measurement system a condition monitoring approach is needed.

6
Risk Assessment

“Named must your fear be before banish it you can”

—Yoda, Star Wars: The Empire Strikes Back.

I N THIS CHAPTER, a risk analysis is applied to the presented Secure Cloud
Reference Architecture to fulfil the legal requirements (see Section 2.2).
This risk analysis is based on software risk assessment for measuring in-

struments under legal control proposed by WELMEC Working Group 7 [9].
By objectifying the derived probability score for identified threats while fol-
lowing at the same time the guidelines of ISO/IEC 27005, ISO/IEC 15408 and
ISO/IEC 18045, this risk assessment method enables comparability and stan-
dardizes the otherwise highly subjective assessment process. Furthermore,
potential countermeasures are identified and quantified using Attack Proba-
bility Trees (AtPT) [1] for derived assets to be suitable protected.

6.1 Derivation of assets to be protected
Esche et al. [9] developed a risk assessment method based on ISO/IEC 27005
[68] and WELMEC Risk Assessment Guide [69]. The approach consists of
three stages and is shortly summarized in the following paragraphs. This
method is applied to the secure cloud reference architecture (see Section 6.2).

Every measuring instrument that undergoes conformity assessment has to
fulfill the essential software requirements listed in Annex I of the MID before
being put on the market (see Section 2.2.2).

There are eight essential software requirements of the MID summed up in
Table I [9] that have to be fulfilled. Requirement 7.6 and 8.3 which regulate

79

80 Chapter 6. Risk Assessment

Table 6.1: Formal Definition of Threats
ID Threat Intention Description

B1 Integrity of transmitted measurement data An attacker alters measurement data during
transmission.

B2 Authenticity of transmitted measurement data An attacker creates tampered measurement
data, that will be assigned wrongly to a verified
measuring instrument.

B3 Evidence of an intervention An attacker prevents legally relevant events
from being registered in the logbook.

B4 Integrity of Parameters An attacker alters persistence saved parame-
ters, e.g. connection parameters.

B5 Availability of the Logbook Service An attacker prevents a legally relevant service
from answering requests

the identification and presentation of the legally relevant software are already
addressed by the Verification Monitor introduced and explained in Section
3.3.1. These requirements are not part of the risk assessment, since these are
not challenging assets to protect. Further the requirements 10.1 and 10.2 that
regulate the indication of the measurement result are not part of the presented
architecture and thus relevant for the risk assessment. Requirement 11.1 that
regulates the record of measurement result is already addressed by the in-
troduced communication protocol for creating a signature of homomorphic
encrypted and secured measurement data in Section 3.1.5. Thus only three
relevant assets remain here that are noteworthy to be protected for the intro-
duced reference architecture, i.e.

1. measurement data

2. software that is critical for measurement characteristics

3. metrologically relevant parameters,

and are deduced from requirements 8.3 and 8.4 that regulate the evidence
of an intervention as well as the protection of of measurement data, software
and its metrologically relevant software parameters. B3 and B5 are linked
to secondary assets of the second asset listed above. For each of the three
requirements, the MID requires integrity and authenticity protection. Con-
sequently, these assets must be secured against intentional or unintentional
changes. By fulfilling this demand, integrity and authenticity of these assets
are guaranteed. In addition, the MID requires evidence of an intervention,
i.e. events registered in a logbook, to be available during verification.

6.1.1 Threat definition

A threat is any invalidation of a security property of a given asset. To define
a threat, aside from the asset definition, several attacker models should be

6.1. Derivation of assets to be protected 81

taken into account, for example, inside attacker and external attacker. Usu-
ally the market participant with the highest skill level can be used as a ref-
erence model. Additionally, different access levels and their associated roles
within a measuring instrument take an important part in the risk assessment.
In Table 6.1 five threats are given and a short description of what an attacker
wants to achieve. The assets itself will be further described in separate ta-
bles, where the attack vectors (technical steps needed to implement a threat)
are broken down into atomic attacks with a time, expertise, knowledge, win-
dow of opportunity and equipment column that are individually scored (see
Section 6.2), according to [70]. This procedure has the advantage of objectify-
ing the risk assessment procedure based on scores for well-defined features
of any attack. This enables manufacturers and Notified Bodies alike, to be
able to compare the same threats for different measuring instruments.

6.1.2 Identification of attack vectors

The second risk assessment phase is the least formalized stage. It starts with
the examination of the manufacturer’s documentation of the measuring in-
strument. Followed by creating a collection of possible attack vectors, needed
to realize the prior identified threats from stage one. The collection comprises
attack vectors reaching from simple to very complex structured attacks.

6.1.3 Calculating probability score and risk score

In phase three, the interim results from stage one and two are combined, i.e.
an adverse action with at least one associated attack vector. Thereafter, the
likelihood of implementing such an attack has to be calculated. The evalu-
ation is based on the following five features [71] that lay the foundation to
score and identify the resources that all attacks have in common:

• Elapsed Time (0-19 points)

• Expertise (0-8 points)

• Knowledge of the TOE (0-11 points)

• Window of Opportunity (0-10 points)

• Equipment (0-9 points)

The amount of elapsed time represents the time needed to implement a spe-
cific attack by any chosen attacker. The score ranges from 0 (equals 1 day)
to 19 (more than half a year). Expertise represents the skill set of an attacker,
where 0 is a layman and 8 is given when an attacker has to have competence
in more than one field. Knowledge of the Target of Evaluation (TOE) scores the

82 Chapter 6. Risk Assessment

needed information on an attacked measuring instrument. It starts with pub-
licly available knowledge (0) and ends with critical insider knowledge (11),
that usually resides with the manufacturer. The window of opportunity eval-
uates the possibility available to an attacker, where 0 represents unlimited
access, which would be common for measuring instruments connected to the
Internet. If the access is difficult, a value of 10 should be given. In case it is
impossible to obtain access, no rating is done, and the attack vector would
be removed from the list. The last category scores the equipment needed to
carry out the attack. Standard available hardware or software is described by
0, where 9 represents multiple bespoke devices or software.

After successfully calculating the sum yielded by the five categories for
the chosen attack, a probability score is matched to the different ranges of
the total sum. In Table 6.2 the Common Criteria evaluation [71] is also in-
cluded in the final probability score calculation, so that a basic resistance re-
sults in a total sum of 10-13 points while 24 or more points represent a high
resilience against the rated attack. Finally, the resistance evaluation is asso-
ciated with the probability score, where 1 represents an unlikely occurrence
while 5 stands for high probability to occur.

The final risk will be calculated by multiplying the impact score for the
threat with the probability score of the most likely realized attack vector:

risk score =
impact score

5
· probability score (6.1)

6.2 Evaluation of threats
In this section, the risk assessment method will be applied to the secure cloud
reference architecture, that was briefly introduced in the previous section.
The threats listed in Table 6.1 will be treated sequentially and will pass the
three stages of risk assessment. Afterwards, in Subsection 6.2.3 the Attack
Probability Tree (AtPT) is introduced to describe more complex attack sce-

Table 6.2: Calculation of a TOE and association of a probability score according to [9]

Sum of Points TOE Resistance Probability Score

0-9 No rating 5
10-13 Basic 4
14-19 Enhanced Basic 3
20-24 Moderate 2
>24 High 1

6.2. Evaluation of threats 83

narios, by introducing a prescribed way to construct attack vectors in a stan-
dardized and compact way. At the end, suitable countermeasures for attack
vectors will be discussed briefly.

6.2.1 Integrity of transmitted measurement data

The threat intention of the attacker is to undermine the integrity of transmit-
ted measurement data by manipulating measurement data during transmis-
sion. The sensor unit will be considered, that collects the data and encrypts
them with a protected public key via FHE before sending them to the cloud
reference architecture. The transmission is secured by Transport Layer Se-
curity (TLS) and additionally by a x.509 certificate at the cloud service end-
point, so that the sensor unit usually knows the receiver. An insider attack is
assumed with the attacker having the access rights of an administrator. For
this threat, two attack vectors are taken into consideration, namely A3 and
A4 (see Table 6.3). A3 needs two prerequisites A3.1 and A3.2 (see Table 6.4),
in order to be feasible.

To manipulate the data in transit, the attacker has to carry out an active
Man-In-The-Middle attack (MITM) (see Table 6.4 A3.1), that means the con-
nection has to be rerouted via the attacker’s interception device and the TLS-
connection has to be captured during key exchange. Furthermore, the cer-
tificate has to be forged by, for example, getting the private key of the server
and the client to establish active sessions at both ends with the impersonated
certificates needed for authentication. The client’s improper validation of the
certificate would be a big advantage for the attacker.

Table 6.3: Attack vectors for Threat B1

A
tt

ac
k-

ID

A
tt

ac
k

V
ec

to
r

T i
m

e

Ex
pe

rt
is

e

K
no

w
le

dg
e

W
in

do
w

of
O

pp
or

tu
ni

ty

Eq
ui

pm
en

t

Su
m

D
am

ag
e

A3 Manipulate data in transit 19 8 11 10 0 48 1
A4 Exchange processing unit 7 6 11 4 0 29 1

84 Chapter 6. Risk Assessment

Table 6.4: Prerequisites for attack vector A3

A
tt

ac
k-

ID

A
tt

ac
k

V
ec

to
r

Ti
m

e

Ex
pe

rt
is

e

K
no

w
le

dg
e

W
in

do
w

of
O

pp
or

tu
ni

ty

Eq
ui

pm
en

t

Su
m

D
am

ag
e

A3.1 MITM-attack 1 6 11 10? 0 28 1
A3.2 decrypt-encrypt data 19 8 11 0 0 38 1

The time needed to execute such an attack would be less than a day (1),
if the attacker is an expert (6) and has critical knowledge of the system (11).
While the window of opportunity is difficult (10), since the manipulation has
to be carried out during transmission within the boundaries of transmission
delay. There is no special equipment needed (1), that exceeds standard hard-
ware. So the total sum of points for this attack (48) leads to high TOE resis-
tance (see Table 6.2).

Even if A3.1 (MITM) is successfully established, the data itself is still en-
crypted by FHE. Lattice-based cryptography is provably secure and provides
worst-case security that is still not broken by quantum computer algorithms.
Therefore, the maximum time of more than half a year (19) assumed for A3.2.
The attacker has to have expertise on several fields (8) to decrypt and/or
break cryptography as well as having critical system knowledge (11) at their
disposal. Once, the cryptography is broken, the window of opportunity is
unnecessary (0). From the authors’ point of view standard hardware (0) is
sufficient. This yields a total sum of 38 points and again implies high re-
silience against the attack vector.

The two attack vectors A3.1 and A3.2 both need to be executed to form
A3. The result is shown in Table 6.3 and implies a high resilience (48) for this
attack vector. According to Table 6.2, the sum score translates to a probability
score of 1. Since this threat has potential influence on all future measurement
values, the impact score is 5 and the subsequent risk (impact score

5 · probability)
also takes on a value of 1. PTB does not accept technical solutions with a risk
greater than 3. This solution qualifies for PTB certification.

6.2. Evaluation of threats 85

Table 6.5: Attack vectors for Threat B2

A
tt

ac
k-

ID

A
tt

ac
k

V
ec

to
r

Ti
m

e

Ex
pe

rt
is

e

K
no

w
le

dg
e

W
in

do
w

of
O

pp
or

tu
ni

ty

Eq
ui

pm
en

t

Su
m

D
am

ag
e

A1 Manipulate sensor unit 4 8 11 0 7 30 1
A2 Replace sensor unit 4 8 11 0 7 30 1
A3 Spoof identity 19 6 11 0 0 36 1

Another attack vector is to exchange the FHE-processing unit (A4) in the
cloud, in order to manipulate the data during processing. First, the attacker
needs to have access to the software repository, to manipulate the FHE pro-
cessing unit and then deploy the manipulated software into the cloud service.
Furthermore, the hash of the manipulated software has to match the compar-
ative hash, that the market surveillance monitor evaluates. Given the bonus
of an insider attacker with the access level of an administrator, it should be
feasible, yet the time frame for execution is less than two months (7). The at-
tacker needs to be at least an expert (6) in IT and the window of opportunity
is moderate (4), since a lot of security mechanisms have to be worked around.
No special hardware (0) is needed. This yields a total sum of 29 and means
a high TOE resistance and a probability score of 1. The threat influences all
future measurements, the impact score is 5 and the resulting risk has a value
of 1.

6.2.2 Authenticity of transmitted measurement data

The threat intention of B2 is to attack the authenticity of transmitted measure-
ment data. In Table 6.5 three attack vectors A1-A3 are summed up, while the
third is composed of three sub attack vectors displayed in Table 6.6.

The easiest way of attacking the authenticity is to manipulate the origin of
the measurement data: the sensor unit itself (A1). The idea behind this attack
vector is just to compromise the authenticity, thus it is enough to break the
seal and replace the physical sensor with a tampered one, that calculates, for
example, a smaller measurement value. Breaking the seal implicates forging
a new seal, so that the instrument does not seem to be manipulated to market

86 Chapter 6. Risk Assessment

Table 6.6: Prerequisites for attack vector A3

A
tt

ac
k-

ID

A
tt

ac
k

V
ec

to
r

Ti
m

e

Ex
pe

rt
is

e

K
no

w
le

dg
e

W
in

do
w

of
O

pp
or

tu
ni

ty

Eq
ui

pm
en

t

Su
m

D
am

ag
e

A3.1 Steal key from vault 1 6 11 0 0 18 1
A3.2 Obtain certificate 19 6 0 0 0 25 1
A3.3 Generate false data 19 6 11 0 0 36 1

surveillance.

The time needed for this invalidation of authenticity (A1) is less than a
month (4) and the attacker needs to be expert on several fields (8), since forg-
ing an official calibration seal needs knowledge and special equipment (7).
Furthermore, replacing the physical sensor requires critical knowledge (8).
The window of opportunity is unlimited (0) for this attack vector, because
the instrument in the field is not subject to constant surveillance. In total,
the attack vector reaches 30 points and represents a TOE with high resistance
with an associated probability score of 1, which translates to a risk level of 1
because of its influence of all future measurement values (impact score of 5).
However, it is noteworthy that in Legal Metrology there is no higher protec-
tion level achievable than a sealed hardware solution.

The second attack vector A2 deals with obtaining security features from
the original sensor unit (physical sensor + communication unit) and replac-
ing this unit with a tampered one that is identically constructed. Hereby,
the attacker extracts, for example, the protected key (public key) needed for
encryption from the original sealed instrument and then stores this security
feature in an identical but tampered unit. A2 differs from A1 since it does
not involve tampering original hardware, but buying malfunctioning hard-
ware on purpose and putting it into use. The scores are the same as for the
previous attack vector. It is again considered very hard to forge an official
verification seal, which is reflected in the total sum of 30 points and offers
high resilience.

With the last attack vector A3 the identity of the sensor unit will be spoofed
by masquerading the IP address of the attacker’s sensor unit, for example, by

6.2. Evaluation of threats 87

faking the source address field in the TCP header. In order to be successful at
the cloud service endpoint, the attacker has to first obtain the protected key
from the software vault in the cloud service, in order to be able to encrypt its
fake measurement data (A3.1). Given the fact that an insider attacker with
the privileges of an administrator is considered, the access to the cloud archi-
tecture is self-evident. The attacker will retrieve the information in less than
a week (1). The postulated skill set of an expert (6) is needed in an IT related
area and critical knowledge (11) of the system is demanded. A3.1 yields in
total 18 points, which is considered as an enhanced basic resistance level.

As a next step (A3.2), the attacker has to get his hands on the private key
of the x.509 certificate. It is assumed that this is very time consuming (>6
months) (19) but feasible for an expert (6), in order to forge the x.509 certifi-
cate and overcome the authentication barrier. The attack vector A3.2 has a
total sum of 25 points and achieves high resilience against this threat.

As a last action, the attacker has to generate false measurement data with
the stolen key from A3.1 and authenticates himself against the cloud service
endpoint with a forged certificate, in order to achieve the objective to compro-
mise the authenticity of the measurement data. Because of the logical AND
operation of A3.1 and A3.2 the highest value will run into A3. That leads
to the time frame of more than 6 months (19), an expert level (6) and the re-
quirement of critical system knowledge (11), which totals into 36 points and
reaches a high resistance level. The probability score evaluates to 1 with an
associated risk level of 1 because of the influence of all future measurements
(impact score 5).

For threat intention B3 the same risk assessment procedure is carried out
and noted in tables. But this methodology is limited, and it quickly becomes
extremely difficult to map all requirements and dependencies for all possible
attack vectors. As a solution, Esche et al. introduced the attack probability
tree that visualizes in a very compact manner the attack vectors and makes it
easy to deduce a probable attack path. Furthermore, it enables them to derive
the attacker motivation. In the next section a short theoretical introduction of
the AtPT will be given and subsequently applied to B3 until B5.

6.2.3 Attack probability tree

Esche et al. introduced attack probability trees (AtPT) as an extension of at-
tack trees by Mauw and Oostdijk [72] to tackle two main objectives: develop-
ing a method to standardize the deduction of attack vectors and to efficiently
visualize the interdependencies of attack vectors in order to easily derive at-
tacker motivation and as a result the most likely attacker path [1]. Addition-
ally, each node embodies features with its own score, such as time, expertise,

88 Chapter 6. Risk Assessment

time = 4
expertise = 8
knowledge = 11
win. of. opp = 4
equipment = 0

sum = 27

Attack Logbook

time = 4
expertise = 8
knowledge = 11
win. of. opp = 4
equipment = 4

sum = 31

A12: Attack Active MQ

time = 4
expertise = 8
knowledge = 11
win. of. opp = 4
equipment = 0

sum = 27

A16: Attack Database

Figure 6.1: AtPT for threat intention B3. View: root node and two attack vectors.

knowledge, window of opportunity and equipment, that have been previ-
ously collected in tables. Furthermore, the logical relationship between par-
ent and child attacks are visualized and attack nodes are linked either by an
AND- or OR-statement.

Information enters the tree via the leaves, so that parent nodes’ and finally
the root’s attributes can be calculated from the bottom to the top. The rules for
both statements and each attribute/point score are extensively described in
[1]. Briefly summarized: for AND-statements, the maximum for each attribute
chosen; for OR-statements, the smaller sum score indicates the threat to select.
A great side-effect of AtPTs is the reduction of required time for revaluation
of individual attacks, because of the possibility of reusing attack nodes, that
are common among different attacks without recalculating attributes.

The following subsections use the AtPT approach for risk assessment of
the cloud reference architecture. Nevertheless, the corresponding tables were
generated, as introduced in the previous sections, and can be found in the
appendix.

6.2.4 Evidence of an Intervention

In this scenario an attacker prevents legally relevant events from being reg-
istered in the logbook. The threat intention is to attack the availability of
the evidence of a intervention. In case of an successful manipulation, the
user cannot present all relevant logbook entries that market surveillance de-
mands.

In this thesis, only the AtPT for a logbook attack is presented. Another
attack scenario with the same attack attributes is evaluated for the storage

6.2. Evaluation of threats 89

time = 4
expertise = 8
knowledge = 11
win. of. opp = 4
equipment = 4

sum = 31

A12: Attack Active MQ

time = 4
expertise = 8
knowledge = 11
win. of. opp = 4
equipment = 4

sum = 31

A10: Purge Messages

time = 4
expertise = 8
knowledge = 11
win. of. opp = 4
equipment = 4

sum = 31

A11: Alter Messages

time = 1
expertise = 6
knowledge = 3
win. of. opp = 1
equipment = 4

sum = 15

A8: Delete Messages on
Logbook Channel

time = 4
expertise = 8
knowledge = 11
win. of. opp = 4
equipment = 4

sum = 31

A7: Access to Message
Queue

time = 1
expertise = 6
knowledge = 3
win. of. opp = 1
Equipment = 4

sum = 15

A9: Alter Messages on
Logbook Channel

Figure 6.2: AtPT for threat intention B3. View: Subtree of attack vector Active MQ.

service of the instrument, with a similar-looking AtPT. Because of the com-
plexity of the attack, the AtPT is divided into four subtrees (see Figure 6.1-
6.4), that will be described in the next paragraphs.

An AtPT is read from the root to the leaves. For attacking the logbook,
two possibilities are available. Either the attacker aims for the active message
queue (Active MQ) or for the database of the logbook service (see Figure 6.1).
Since these two attack vectors are alternatives, they are linked by an OR-
connection. If the two vectors would be needed to be executed together, they
would be linked by an AND-connection graphically expressed by an arc.

When attacking the Active MQ (A12), an attacker could either purge mes-
sages (A10) or alter messages (A11) on the logbook channel. For both ac-
tions, access to the message queue is required (A7) with the combination of
deleting a message (A8) or changing a message (A9) on the logbook channel
represented by an arc below the linked nodes (see Figure 6.2).

The actual scores in Figure 6.2 are calculated from the bottom to the top,
for example, attack vector A10 consists of nodes A8 and A7. Since the latter
two nodes are linked by an AND-statement the greater value is put across
to A10. The time to purge a message takes less than a month (4) and stems
from A7 accessing the message queue. Furthermore, it is required to be an
expert in several areas (8), to have critical knowledge of the system (8) and
the window opportunity is moderate (4). These attributes stem also from A7.
However, the equipment to purge messages on the Active MQ is specialized
(4), since the software is an expert tool written in python without a graphical
user interface. The tool is publicly available.

90 Chapter 6. Risk Assessment

time = 4
expertise = 8
knowledge = 11
win. of. opp = 4
equipment = 4

sum = 31

A7: Access to Message
Queue

time = 1
expertise = 6
knowledge = 3
win. of. opp = 1
equipment = 4

sum = 15

A6: Get User Credentials for
MQ

time = 4
expertise = 8
knowledge = 11
win. of. opp = 4
equipment = 0

sum = 27

A5: Obtain Admin Privileges

time = 4
expertise = 8
knowledge = 11
win. of. opp = 4
equipment = 0

sum = 27

A4: Privilege Escalation

time = 0
expertise = 3
knowledge = 7
win. of. opp = 0
equipment = 0

sum = 10

A3: Obtain Access to System

time = 0
expertise = 3
knowledge = 7
win. of. opp = 0
equipment = 0

sum = 10

A2: Attack via NIC

time = 1
expertise = 3
knowledge = 7
win. of. opp = 0
equipment = 0

sum = 11

A1: Attack via Open Interface

Figure 6.3: AtPT for threat intention B3. View: Subtree of attack vector Access to Mes-
sage Queue.

Now, one could argue that using a specialized software and obtaining ac-
cess to the message queue needs less time than proposed here. But the whole
AtPT does not end with obtaining access to the message queue (A7), but
rather continuous and becomes more detailed in how the access could be
obtained in a malicious way.

In Figure 6.3 an exemplary attacking path is detailed. Node A7 consists
of obtaining administrator privileges in the virtual machine (A5), that runs
the Active MQ or is at least in the same subnet. With these new privileges
the specialized software can be executed, which triggers node A6 to get the
credentials for the message queue.

To get hold of the user credentials, less than a week (1) is estimated. An
expert level (6) and restricted knowledge of the measuring system is required.
The window of opportunity for an inside attacker is valued as easy (1) even
so specialized software (4) is needed. Node A6 holds a total sum of 15 points
which would be considered as an enhanced basic resistance level. However,
A6 is to be evaluated in conjunction with A5 through the AND-connection.

The attack vector A5 depends again on a privilege escalation through ex-
ploiting Common Vulnerabilities and Exposures (CVE) of the underlying sys-
tem (A4) and obtaining access to the virtual machine (A3). To accomplish
a privilege escalation, the attack is assessed with less than a month (4), ex-

6.2. Evaluation of threats 91

time = 4
expertise = 8
knowledge = 11
win. of. opp = 4
equipment = 0

sum = 27

A16: Attack Database

time = 4
expertise = 8
knowledge = 11
win. of. opp = 4
equipment = 0

sum = 27

A5: Obtain Admin Privileges

time = 1
expertise = 3
knowledge = 3
win. of. opp = 0
equipment = 0

sum =7

A15: SQL Injection

time = 1
expertise = 3
knowledge = 3
win. of. opp = 0
equipment = 0

sum = 7

A13: Drop Tables

time = 1
expertise = 3
knowledge = 3
win. of. opp = 0
equipment = 0

sum = 7

A14: Alter Tables

time = 4
expertise = 8
knowledge = 11
win. of. opp = 4
equipment = 0

sum = 27

A4: Privilege Escalation

time = 0
expertise = 3
knowledge = 7
win. of. opp = 0
equipment = 0

sum = 10

A3: Obtain Access to System

time = 0
expertise = 3
knowledge = 7
win. of. opp = 0
equipment = 0

sum = 10

A2: Attack via NIC

time = 1
expertise = 3
knowledge = 7
win. of. opp = 0
equipment = 0

sum = 11

A1: Attack via Open Interface

Figure 6.4: AtPT for threat intention B3. View: Subtree of attack vector Attack Database.

pertise on more than one field (8), critical system knowledge and moderate
window of opportunity (4). Further, no special equipment (0) is expected. A
privilege escalation is considered as a difficult endeavor with 27 points in to-
tal that translate to a high resilience. This corresponds again to a probability
score of 1 with an impact score of 5 and results into a risk of 1.

Obtaining access to a virtual machine and therewith to the distributed
measuring system (A3) is possible in two ways that are alternatives (OR-
connection). Either the system is penetrated through a network interface card
(NIC) (A2) or via an open physical interface (A1), such as a USB port. Consid-
ering the fact that an inside attacker with administrator privileges is assumed,
that logs remotely into the measuring system for maintenance reasons, this
attack is achievable in less than a day (0). To clarify, it is assumed that the
inside attacker does not automatically have administrator privileges on the
remote machine, but as an employee of the manufacturer. Furthermore, to lo-
gin remotely requires only a proficient expertise and sensitive system knowl-
edge (7). The window of opportunity is negligible (0), since this can belong
to the attacker’s daily routine. No special equipment is needed (0). The TOE
resistance is basic (10 points in total).

The attack via an open interface (A1) differs from A2 only in the time at-
tribute. It is assumed that the attacker has to physically approach the hard-
ware to carry out the attack. That takes additional time (less than a week (1))
and is more inconvenient than opening a SSH-shell from the desktop PC in
the office.

92 Chapter 6. Risk Assessment

time = 4
expertise = 8
knowledge = 11
win. of. opp = 4
equipment = 0

sum = 27

Alter parameters of
microservices

time = 4
expertise = 8
knowledge = 11
win. of. opp = 4
equipment = 0

sum = 27

A10: Changing files in
original git repo

time = 4
expertise = 8
knowledge = 11
win. of. opp = 4
equipment = 4

sum = 31

A17: Deploy fake git repo
with altered files

time = 4
expertise = 8
knowledge = 11
win. of. opp = 4
equipment = 0

sum = 27

A8: Obtain access to git repo

time = 1
expertise = 3
knowledge = 0
win. of. opp = 0
equipment = 0

sum = 4

A16: Create new git repo

time = 0
expertise = 3
knowledge = 7
win. of. opp = 1
equipment = 0

sum = 11

A9: Alter property files

time = 4
expertise = 8
knowledge = 11
win. of. opp = 4
equipment = 4

sum =31

A15: IP-address spoofing

Figure 6.5: AtPT for threat intention B4. View: Root, Alter parameters of microservices.

To sum up, the attack path just described consists of A2, A3, A4, A5, A6, A7
then a decision has to be made, if the messages should be altered or deleted.
However, in terms of likelihood the nodes do not differ, but practically spo-
ken deletion is often easier. The path would continue via A8, A10.

To completely describe the AtPT for compromising the evidence of an in-
tervention via a logbook attack, the alternative path via the database attack
vector (A16) has to be described, as shown in Figure 6.4. For attacking the
database, administrator privileges (A5) are needed combined with an attack
against the database such as SQL injection (A15) or via command line inter-
face (CLI). The path down to the leaves for A5 is already described in the
previous paragraphs. Its TOE resistance depends on leaf A4, that describes
the privilege escalation via a CVE. Attack Vector A15 is divided into drop-
ping tables (A13) or modifying tables (A14).

The scores for A13, A14 are equal and subsequently A15 is identical as
well. For both attacks, less than a day is assumed, only a proficient exper-
tise level (3) is needed, no special equipment (0) is required and the window
of opportunity is unlimited (0). In total, the database attacks combine to 7
points, which translate to no resistance at all (no rating). However, since A5
and A15 are connected via an AND-statement the parent node A16 receives
the TOE resistance high, since the attacks depend on the privilege escalation
to be carried out.

The most likely attack path would be via the database, since no special
software is needed, thus less time is required for learning and incorporating
the software. To compromise a database, no new software has to be deployed
so that the effort on the attacker side is less than attacking the message queue,
especially if the intention is to just compromise the integrity of the measuring
instrument.

6.2. Evaluation of threats 93

time = 0
expertise = 3
knowledge = 0
win. of. opp = 1
equipment = 0

sum = 4

A7: Create own SSH-Key

time = 4
expertise = 8
knowledge = 11
win. of. opp = 4
equipment = 0

sum = 27

A8: Obtain access to git repo

time = 4
expertise = 8
knowledge = 11
win. of. opp = 4
equipment = 0

sum = 27

A6: Place own SSH-Key into
git repo

time = 4
expertise = 8
knowledge = 11
win. of. opp = 4
equipment = 0

sum = 27

A5: Obtain Admin Privileges

Figure 6.6: AtPT for threat intention B4. View: Subtree of attack vector A8.

6.2.5 Integrity of Parameters

Threat intention B4 aims to harm legally relevant software parameters vio-
lating security properties such as integrity and authenticity. In the following
paragraphs the presented scenario offers an attacker a chance to alter persis-
tent saved parameters of the logbook service by attacking the configuration
service. Two possible attack scenarios are presented via an AtPT. The tree is
compartmentalized into several subtrees, because of its size (see Figures 6.5-
6.7). As already pointed out, the subtree consisting of the node A1-A5 could
be reused for several attack scenarios without revaluation. Due to repetition
it was decided not to map the whole subtree of A5 downwards in Figure 6.6.
A complete subtree can be seen in Figure 6.3.

It is proposed that the attacker changes microservice property files in the
original git repository to attack the microservice architecture (A10) and pro-
vides, for example, false message queue groups. That could lead to loss of
messages in the legal relevant logbook. Aiming for the configuration basis
can cause fundamental harm and chaos to the whole system.

To be able to carry out attack vector A10, it is assumed that the attacker
has to obtain access to the original git repository (A8) and is able to alter the
property files (A9). Nodes A8 and A9 are linked via an AND-connection to
A10 (see Figure 6.5).

94 Chapter 6. Risk Assessment

In order to obtain access to the git repository (A8), a SSH-key has to be
created (A7) and placed into the specific folder for the git repository to be
evaluated (A6). A7 and A6 are linked via an AND-statement to A8 (see Figure
6.6). Attack vector A6 is linked to subtree A5, that describes accomplishment
of obtaining administrator privileges (a complete subtree is shown in Figure
6.3).

The score for subtree A5 has been described in the previous section, so that
the evaluation starts with A6. All of the attributes stem from A5 and the
difficulties to obtain administrator privileges, which are prerequisites for A6.
To create an SSH-key (A7) takes less than a day (0) with proficient expertise
(3). How to do this is public knowledge (0) and tutorials are easily to find
on the Internet. Furthermore, assuming that an inside attacker is already in
the system, the window of opportunity is easy to accomplish (1) and also no
special equipment (0) is necessary. This yields a total sum of 4 points and a
TOE resistance with no rating.

Attack vector A8 receives the point score from A6, since because of the
AND-connection only the maximum of both attributes will be passed up-
wards. That leads to a total sum of 27 points for obtaining access to the orig-
inal git repository and implies high resilience.

Altering property files can be done in less than a day (0), with only profi-
cient expertise (3), the window of opportunity offers an easy access (1) with
any text editor (equipment = 0). That totals in 11 points and matches basic
resilience for this attack.

A10 receives the attributes in total from A8 and thus defines the total score
of 27 points and a high resilience for this attack path (see Figure 6.5).

The alternative attack vector for B4 is to deploy a fake git repository with
already altered property files (A17). This attack vector splits into first cre-
ating and deploying a new git repository (A7) and then tricking the system
into trusting and pulling the files from the fake git repository via IP spoofing
(A15). The spoofing attack itself is subdivided into carrying out a network at-
tack such as ARP-poisoning (A13), in order to replace the IP address and then
rebooting the configuration service (A14). To be able to carry out a network
attack, the attacker is assumed to have full access to the internal network of
the distributed measuring system (A11). To monitor the internal network
traffic (A12), the attack vector A11 is necessary (see Figure 6.7). Once again
subtree A5 is required to successfully implement A11.

The score of gaining full access to the internal network interface card (NIC)
and thus to the internal network (A11) is inherited from A5 and the struggle
of obtaining administrator privileges. To gain a full picture of the structure of
the internal network with its services (A12) takes less than a month (4) with

6.2. Evaluation of threats 95

time = 4
expertise = 8
knowledge = 11
win. of. opp = 4
equipment = 4

sum = 31

A15: IP-address spoofing

time = 4
expertise = 8
knowledge = 11
win. of. opp = 4
equipment = 4

sum = 31

A13: Network attack (e.g.
ARP Poisoning)

time = 0
expertise = 3
knowledge = 0
win. of. opp = 1
equipment = 0

sum = 4

A14: Refresh/reboot config
service

time = 4
expertise = 8
knowledge = 11
win. of. opp = 4
equipment = 0

sum = 27

A11: Access to NIC for
internal network

time = 4
expertise = 6
knowledge = 7
win. of. opp = 4
equipment = 4

sum = 25

A12: Monitor internal
network traffic

Figure 6.7: AtPT for threat intention B4. View: Subtree of attack vector IP-address spoof-
ing.

an assumed expertise in networking (6) and a sensitive knowledge of the
measuring system (7). A moderate window of opportunity (4) is predicted,
because it is difficult to explore a supervised internal network undetected.
Furthermore, specialized software is needed to monitor network traffic (4).
This yields in total 25 points and maps to a high resistance to attacks with
probability score of 1 and a risk of 1.

Carrying out network attacks, such as ARP-poisoning (A13), requires less
than a month (4) for experts on several fields (8) with sensitive knowledge
of the system (11), a moderate window of opportunity (4) and specialized
software (4). For most network attacks, it is not necessary any more to write
specialized software. There exists publicly available gray software, that can
be used to detect vulnerabilities or can be misused to attack computer sys-
tems. This attack vector combines to 31 points and a high resistance factor.
From here on, no significant changes to the resilience are contributed until
the final attack vector A17. Minor actions are required to finally deploy a
fake git repository, but both acquire only 4 points in total with a negligible
threat resistance (see Figure 6.5).

The most probable attack path will be via A10, changing the properties files
in the original repository, since it is the least complex one and without the
hassle of deploying software and monitoring traffic etc. This is also reflected
in the total score of 27 against 31 points.

96 Chapter 6. Risk Assessment

time = 4
expertise = 8
knowledge = 11
win. of. opp = 4
equipment = 0

sum = 27

A5: Obtain Admin Privileges

time = 4
expertise = 8
knowledge = 11
win. of. opp = 4
equipment = 0

sum = 27

A4: Privilege Escalation

time = 0
expertise = 3
knowledge = 7
win. of. opp = 0
equipment = 0

sum = 10

A3: Obtain Access to System

time = 0
expertise = 3
knowledge = 7
win. of. opp = 0
equipment = 0

sum = 10

A2: Attack via NIC

time = 1
expertise = 3
knowledge = 7
win. of. opp = 0
equipment = 0

sum = 11

A1: Attack via Open Interface

time = 4
expertise = 8
knowledge = 11
win. of. opp = 4
equipment = 0

sum = 27

A7: Kill logbook service

time = 1
expertise = 6
knowledge =7
win. of. opp = 1
equipment = 0

sum = 15

A6: locate logbook VM

Figure 6.8: AtPT for threat intention B5 to violate the availability security property.

6.2.6 Availability of a Service

Threat intention B5 targets the availability of a legally relevant logbook ser-
vice. In Figure 6.8 the complete AtPT is illustrated with the already intro-
duced subtree A5, that enables access to the measuring system and comes
along with an escalation of privileges. This subtree in conjunction with the
localization of the logbook service’s virtual machine (A6) enables the final
attack vector that kills the logbook service (A7).

The final score stems from the difficulty to gain access to the system and
to elevate the privilege level (subtree A5), which totals 27 points. With an
associated risk level of 1 and a probability score of 1. Locating the logbook’s
virtual machine is with 15 points in total an enhanced basic TOE resistance
level, but has no significant influence on the final score of killing the logbook
service (A7).

6.2.7 Effect of Attacker Motivation

Esche et al. described in [70] possibilities to represent attacker motivation
during risk assessment. The presented AtPTs are created for a highly moti-

6.2. Evaluation of threats 97

Table 6.7: Mapping of expertise and motivation level according to [70]

Expertise Score Motivation Score

Layman 0 no motivation 9
Proficient 3 low 6
Expert 6 moderate 3
Multiple Expert 8 high 0

vated attacker. In order to reconsider these trees with a low or medium mo-
tivated attacker, the expertise and equipment score have to be replaced with
a higher motivation score according to Table 6.7 if they are originally smaller.
This will result in a decreased probability score for a lower motivation and
vice versa for a highly motivated attacker. It is noteworthy, that the likeliest
attacker path can shift, when the motivation is adjusted.

6.2.8 Suitable Countermeasures

To find the best suitable place for countermeasures in an AtPT, it is recom-
mended to locate an inverted subtree for mitigating attack vectors and in-
creasing the impact of applied countermeasures. An inverted tree is usually
any leaf that is connected to more than one node of the previous level. Sub-
sequently, the size of an inverted tree matters, since the greater it is, more
parent nodes are impacted. In the trees for B3 and B4, A7 and A16 depend
on A5 as well as A6 and A11 depend on A5. Subtree A5 is of general impor-
tance, because it describes the unauthorized access to the measuring system
and privilege escalation. A countermeasure specifically tailored for A5 will
exacerbate obtaining administrator rights. This node will have the biggest
impact on all three threat scenarios from B3-B5.

A suitable countermeasure is to strengthen the access rights and to enforce
a least privilege policy. For example, one could implement Security Enhance
Linux (SELinux) for virtual machines (VM), that provides a mandatory ac-
cess control system and security policies. Instead of using a standard Linux,
the kernel extension SELinux provides by default a least privilege policy that
denies everything except if it is specifically allowed by access policies (enforc-
ing mode). All violations against these rules are logged and an alarm can be
triggered. To obtain administrator privileges by an escalation of access rights
would need significantly more time (less than 2 months (7)) with SELinux in
place. Furthermore, if the attacker is able to bypass SELinux via switching
from enforcing to permissive mode it needs to be done on every VM with a
bespoke software (7). However, rolling out SELinux to the measuring system

98 Chapter 6. Risk Assessment

would mean a lot of configuration overhead, but it would elevate the security
score by 10 points to 37. This security enhancement would propagate via the
inverted tree to the top of each AtPT.

6.3 Summary
In this Chapter, the secure cloud reference architecture for distributed mea-
suring instruments under legal control was subjected to a specially tailored
risk assessment method for software in Legal Metrology. After formally in-
troducing the risk analysis, five threats for the reference architecture were de-
scribed and evaluated extensively. The first two threats were assessed using
the traditional method via tables. However, this approach seemed infeasible
for more complex threats. Therefore, the Attack Probability Tree (AtPT), that
eases the handling of more complex attacks, was introduced and applied. It
was shown that adequate protection of the essential requirements formulated
by the MID is provided by the secure cloud reference architecture. Therefore,
the architecture is qualified to be implemented in measuring systems under
legal control.

The detailed analysis of the threat intentions using AtPTs revealed for all
formulated threats and attacked security properties a high resilience factor.
Nevertheless, through the inverted subtree method for AtPTs the optimal en-
try point for countermeasures was identified. The implementation of coun-
termeasures reduced the risk to the level provided by physical sealing and
increases the resilience to attacks.

7
Conclusion and Future Work

“In literature and in life we ultimately pursue, not conclusions, but
beginnings.”

—Sam Tanenhaus, Literature Unbound

T HE PARADIGM SHIFT from local, concentrated to distributed measuring
instruments has a fundamental impact on society and its jurisdictional
conception. It is obvious for all stakeholders that Cloud Computing is

not just a technical trend that will pass but rather a door opener and key
technology for future technological developments. Paving the way for a se-
cure and legal Cloud Computing solution is necessary to be able to invest
in a future-proofed infrastructure to keep pace with upcoming trends. Espe-
cially for small and medium-size enterprises, legal compliance is from utmost
importance for penetrating the market successfully with their solutions. Re-
sponsibilities and liabilities among stakeholders with respect to cross-border
use still have to be determined. The sooner this area of conflict is resolved
the better technological progress can contribute to preserve competitiveness
of European industry in the world.

The proposed secure cloud reference architecture offers an evaluated tech-
nological approach in conformance with the Legal Metrology framework.
Furthermore, it demonstrates a technical solution to avoid inspection of server
hardware by the market surveillance body when employing an off-premise
Cloud Computing solutions. By introducing FHE, the measurements are en-
crypted throughout the metrology lifecycle. Moreover, two main security
concerns, such as a malicious insider and integrity of measurements, are
specifically addressed by FHE. Reducing concerns enormously on manufac-
turer side to employ Cloud Computing solutions. Also, the long periods

99

100 Chapter 7. Conclusion and Future Work

of time processing encrypted data are significantly reduced. FHE offers a
quantum secure, flexible and future-proofed approach for security conscious
industries that protects the trust in measurements results throughout their
entire lifecycle.

To sum up, the presented Secure Cloud Computing Reference Architecture
fulfills the highest risk class, the essential requirements and offers a verifica-
tion method for the market and user surveillance. Furthermore, contempo-
rary threats were assessed, and attack vectors evaluated to fully comply with
the MID and WELMEC requirements. The presented approach offers a prac-
tical solution to the challenges of a distributed measuring system within legal
boundaries. The used encryption scheme offers a quantum secure foundation
that does not restrict the Cloud Computing abilities in terms of flexibility and
scalability.

Future work will comprise more extensive anomaly detection and further
automation of this approach. In addition, the risk assessment part will focus
on different attacker motivation as well as diverse attack paths. Furthermore,
the formalization of creating AtPTs has to be optimized and standardized.
Moreover, Kratzke presented an interesting approach for a reactive defense
mechanism [14], that acts similar to an immune system. He suggest that
rapid redeployment of integrity proofed virtual machine images helps fight-
ing against unknown vulnerabilities. The main goal is to reduce the time of
an undetected intruder in the system. In 2015, the discovery of an attacker
in the system took in average 146 days. Even if the wrongdoer can use the
same way back into the system, he will be shut out again by redeployment.
This will have a noticeable effect on the attacker motivation and decreases
the probability of persisting access to the system. It will be interesting to
further pursue this approach and combine it with the secure cloud reference
architecture.

Bibliography
[1] Marko Esche, Federico Grasso Toro, and Florian Thiel. “Representation of Attacker Motivation

in Software Risk Assessment Using Attack Probability Trees”. In: Proceedings of the Federated
Conference on Computer Science and Information Systems (FedCSIS), IEEE. (2017), pp. 763–771.

[2] European Parliament and Council. “Directive 2014/32/EU of the European Parliament and of
the Council”. In: Official Journal of the European Union (2014).

[3] “WELMEC 7.2 2015 Software Guide”. In: WELMEC European cooperation in legal metrology (2015).

[4] Florian Thiel et al. “Cloud Computing in Legal Metrology”. In: 17th International Congress of
Metrology. EDP Sciences. 2015, p. 16001.

[5] Norbert Leffler and Florian Thiel. “Im Geschäftsverkehr das richtige Maß - Das neue Mess
und Eichgesetz, Schlaglichter der Wirtschaftspolitik”. In: Monatsbericht; Bundesministerium für
Wirtschaft und Technologie (BMWi) (2013).

[6] “Organisation Internationale de Métrologie Légale”. In: OIML, General requirements for software
controlled measuring instruments (2008).

[7] Manfred Kochsiek and Andreas Odin. “Towards a global measurement system: Contributions
of international organizations”. In: OIML Bulletin 42.2 (2001), pp. 14–19.

[8] Daniel Peters et al. “Achieving Software Security for Measuring Instruments under Legal Con-
trol”. In: In Proceedings of the Federated Conference on Computer Science and Information Systems
(FedCSIS) (2014), pp. 123–130.

[9] Marko Esche and Florian Thiel. “Software risk assessment for measuring instruments in legal
metrology”. In: Computer Science and Information Systems (FedCSIS), IEEE. (2015), pp. 1113–1123.

[10] DIRECTIVE 2004/22/EC. “Directive 2004/22/EC of the European Parliament and of the Coun-
cil”. In: Official Journal of the European Union (2004).

[11] Ramnath Chellappa. “Intermediaries in cloud-computing: A new computing paradigm”. In:
INFORMS Annual Meeting, Dallas. 1997, pp. 26–29.

[12] Lutz Schubert, Keith Jeffery, and Burkard Neidecker-Lutz. “The future of cloud computing:
Opportunities for European cloud computing beyond 2010”. In: Expert Group report, public ver-
sion 1 (2010).

[13] Peter Mell and Timothy Grance. “The NIST definition of cloud computing. National Institute
of Standards and Technology Special Publication 800-145”. In: Gaithersburg: US Department of
Commerce. Google Scholar (2011).

[14] Nane Kratzke. “A Brief History of Cloud Application Architectures: From Deployment Mono-
liths via Microservices to Serverless Architectures and Possible Roads Ahead”. In: Applied Sci-
ences (July 2018). DOI: 10.20944/preprints201807.0276.v1.

101

https://doi.org/10.20944/preprints201807.0276.v1

102 Chapter 7 Bibliography

[15] Harald E. Weiss. “Umfrage: Cloud kann teuer werden”. In: https://heise.de/-4072912
(June 2018). Accessed: 2018-07-20.

[16] Tim Mather, Subra Kumaraswamy, and Shahed Latif. Cloud security and privacy: an enterprise
perspective on risks and compliance. " O’Reilly Media, Inc.", 2009.

[17] Joint Task Force and Transformation Initiative. “Security and privacy controls for federal infor-
mation systems and organizations”. In: NIST Special Publication 800.53 (2013), pp. 8–13.

[18] Stefan Krempl. “Microsoft-Fall: US-Justizministerium bringt Streit ueber Datenzugriff in der
EU vor den Supreme Court”. In: https://heise.de/-3755865 (June 2018). Accessed:
2018-07-23.

[19] Florian Thiel. “Digital transformation of legal metrology-The European Metrology Cloud”. In:
OIML Bulletin 59.1 (2018), pp. 10–21.

[20] Tobias Haar. “Wolkenbruch”. In: https://www.heise.de/-4089925 (July 2018). Accessed:
2018-07-23.

[21] Philipp Wieder et al. Service level agreements for cloud computing. Springer Science & Business
Media, 2011.

[22] Dr. Marnix Dekker et al. “Auditing Security Measures: An Overview of schemes for auditing
security measures”. In: European Union Agency for Network and Information Security (ENISA)
(2013).

[23] ENISA. “Cloud Computing Certification - CCSL and CCSM”. In: https://resilience.
enisa.europa.eu/cloud-computing-certification (June 2013). Accessed: 2018-07-
24.

[24] European Commission. “Unleashing the Potential of Cloud Computing in Europe”. In: Com-
munication from the Commission to the European Parliament, the Council, the European Economic and
Social Committee and the Committee of the Regions (2012).

[25] Jeffrey Mogul et al. “Internet standard subnetting procedure”. In: (1985).

[26] Frank Buschmann et al. “A system of patterns: Pattern-oriented software architecture”. In: Wi-
ley New York (1996).

[27] Craig Gentry. “Fully homomorphic encryption using ideal lattices.” In: Annual ACM Sympo-
sium on Theory of Computing. Proceedings of the 41st annual ACM symposium on Theory of comput-
ing. (2009).

[28] Alexander Oppermann, Jean-Pierre Seifert, and Florian Thiel. “Secure Cloud Reference Archi-
tectures for Measuring Instruments under Legal Control.” In: 6th International Conference on
Cloud Computing and Services Science (Closer) (2016), pp. 289–294.

[29] Renzo E Navas et al. “Nonce-based authenticated key establishment over OAuth 2.0 IoT proof-
of-possession architecture”. In: 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT). IEEE.
2016, pp. 317–322.

[30] Sheetal Kalra and Sandeep Sood. “Advanced remote user authentication protocol for multi-
server architecture based on ECC”. In: journal of information security and applications 18.2-3 (2013),
pp. 98–107.

[31] Joe Kilian. “A note on efficient zero-knowledge proofs and arguments”. In: Proceedings of the
twenty-fourth annual ACM symposium on Theory of computing. ACM. 1992, pp. 723–732.

https://heise.de/-4072912
https://heise.de/-3755865
https://www.heise.de/-4089925
https://resilience.enisa.europa.eu/cloud-computing-certification
https://resilience.enisa.europa.eu/cloud-computing-certification

Chapter 7 Bibliography 103

[32] Rosario Gennaro, Craig Gentry, and Bryan Parno. “Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers”. In: Annual Cryptology Conference. Springer. 2010,
pp. 465–482.

[33] Kai-Min Chung, Yael Kalai, and Salil Vadhan. “Improved delegation of computation using
fully homomorphic encryption”. In: Annual Cryptology Conference. Springer. 2010, pp. 483–501.

[34] BSI. “Technische Richtlinie BSI TR-03109-1 Anforderungen an die Interoperabilität der Kom-
munikationseinheit eines intelligenten Messsystems”. In: Bundesamt für Sicherheit in der Infor-
mationstechnik, Bonn (2013).

[35] Alexander Oppermann et al. “Secure Cloud Computing: Multithreaded Fully Homomorphic
Encryption for Legal Metrology”. In: International Conference on Intelligent, Secure, and Depend-
able Systems in Distributed and Cloud Environments (2017), pp. 35–54.

[36] Sakil Barbhuiya et al. “A Lightweight Tool for Anomaly Detection in Cloud Data Centres.” In:
5th International Conference on Cloud Computing and Services Science (Closer) (2015), pp. 343–351.

[37] Alexander Oppermann et al. “Anomaly Detection Approaches for Secure Cloud Reference Ar-
chitectures in Legal Metrology.” In: 8th International Conference on Cloud Computing and Services
Science (Closer). 2018, pp. 549–556.

[38] Performance Co-Pilot. “Performance Co-Pilot is a system performance analysis toolkit.” In:
http://www.pcp.io/ (2016).

[39] Netflix Inc. “An on-host performance monitoring framework”. In: http://getvector.io/
(2016).

[40] Daniel Catrein and Cologne QSC AG. “Maintaining User Control While Storing and Processing
Sensor Data in the Cloud”. In: International Journal of Grid and High Performance Computing 5.4
(2013), pp. 97–112.

[41] Hubert A. Jäger et al. “A Novel Set of Measures against Insider Attacks-Sealed Cloud”. In:
Open Identity Summit (2013), p. 187.

[42] Mathias Slawik et al. “Innovative Architektur für sicheres Cloud Computing: Beispiel eines
Cloud-Ecosystems im Gesundheitswesen”. In: Informatik (2012).

[43] Daniele Micciancio and Oded Regev. “Lattice-based cryptography”. In: Post-quantum cryptog-
raphy (2009), pp. 147–191.

[44] Joop van de Pol. “Lattice-based cryptography”. MA thesis. Eindhoven University of Technol-
ogy, 2011.

[45] Federico Bergami. “Lattice-Based Cryptography”. MA thesis. Universita di Padova, 2016.

[46] Marten Van Dijk et al. “Fully homomorphic encryption over the integers”. In: Advances in
cryptology–EUROCRYPT 2010 (2010), pp. 24–43.

[47] Michael Brenner. “Rechnen mit verschlüsselten Programmen und Daten”. PhD thesis. Technis-
che Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2012.

[48] Xun Yi, Russell Paulet, and Elisa Bertino. Homomorphic encryption and applications. 2014.

[49] Frederik Armknecht et al. “A Guide to Fully Homomorphic Encryption”. In: IACR Cryptology
ePrint Archive 2015 (2015), p. 1192.

[50] Zvika Brakerski and Vinod Vaikuntanathan. “Efficient fully homomorphic encryption from
(standard) LWE”. In: SIAM Journal on Computing 43.2 (2014), pp. 831–871.

http://www.pcp.io/
http://getvector.io/

104 Chapter 7 Bibliography

[51] Craig Gentry. “Computing on the edge of chaos: Structure and randomness in encrypted com-
putation.” In: Electronic Colloquium on Computational Complexity (ECCC). Vol. 21. Citeseer. 2014,
p. 106.

[52] Nigel P Smart and Frederik Vercauteren. “Fully homomorphic encryption with relatively small
key and ciphertext sizes”. In: International Workshop on Public Key Cryptography (2010), pp. 420–
443.

[53] Henning Perl, Michael Brenner, and Matthew Smith. “Poster: an implementation of the fully
homomorphic Smart-Vercauteren crypto-system”. In: Proceedings of the 18th ACM conference on
Computer and communications security. ACM. 2011, pp. 837–840.

[54] Shai Halevi and Victor Shoup. “Algorithms in helib”. In: International Cryptology Conference.
Springer. 2014, pp. 554–571.

[55] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. “(Leveled) fully homomorphic en-
cryption without bootstrapping”. In: ACM Transactions on Computation Theory (TOCT) 6.3 (2014),
p. 13.

[56] Nigel P Smart and Frederik Vercauteren. “Fully homomorphic SIMD operations”. In: Designs,
codes and cryptography (2014), pp. 1–25.

[57] Kim Laine and Rachel Player. Simple Encrypted Arithmetic Library-SEAL (v2. 0). Tech. rep. Tech-
nical report, September, 2016.

[58] Junfeng Fan and Frederik Vercauteren. “Somewhat Practical Fully Homomorphic Encryption.”
In: IACR Cryptology ePrint Archive 2012 (2012), p. 144.

[59] Léo Ducas and Daniele Micciancio. “FHEW: bootstrapping homomorphic encryption in less
than a second”. In: Annual International Conference on the Theory and Applications of Cryptographic
Techniques. Springer. 2015, pp. 617–640.

[60] L. J. M. Aslett, P. M. Esperança, and C. C. Holmes. A review of homomorphic encryption and soft-
ware tools for encrypted statistical machine learning. Tech. rep. University of Oxford, 2015.

[61] Craig Gentry and Shai Halevi. “Implementing gentrys fully-homomorphic encryption scheme”.
In: Annual international conference on the theory and applications of cryptographic techniques. Springer.
2011, pp. 129–148.

[62] Israel Koren. Computer arithmetic algorithms. Universities Press, 2002.

[63] Mi Lu. “Modular Structure of Large Multiplier”. In: Arithmetic and Logic in Computer Systems,
1st ed, New Jersey: John Wiley & Sons, Inc (2004), pp. 120–122.

[64] Diederik Verkest, Luc Claesen, and Hugo De Man. “A proof of the nonrestoring division al-
gorithm and its implementation on an ALU”. In: Formal Methods in System Design 4.1 (1994),
pp. 5–31.

[65] “Système international d’unités, The International System of Units (SI)”. In: Bureau International
des Poides et Mesures (BIPM) 8th edition (2006).

[66] BSI. “Schutzprofil für die Kommunikationseinheit eines intelligenten Messsystems für Stoff-
und Energiemengen (Smart Meter Gateway PP), Certification-ID: BSI-CC-PP-0073”. In: Bunde-
samt für Sicherheit in der Informationstechnik, Bonn (2014).

[67] Ananth Grama et al. Introduction to parallel computing. Second. Pearson Education, 2003. ISBN:
0-201-64865-2.

105

[68] ISO27005:2011(e). “Information technology - Security techniques - Information security risk
management.” In: International Organisation for Standardisation, Geneva, CH Standard (June 2011).

[69] “Welmec 5.3 Risk Assessment Guide for Market Surveillance: Weigh and Measuring Instru-
ment”. In: WELMEC European cooperation in legal metrology, WELMEC Secretariat, Ljubljana (May
2011).

[70] Marko Esche and Florian Thiel. “Incorporating a Measure for Attacker Motivation into Soft-
ware Risk Assessment for Measuring Instruments in Legal Metrology”. In: 18. GMA/ITG-Fachtagung
Sensoren und Messsysteme 2016,Nürnberg, Germany 1.1 (May 2016), pp. 735–742.

[71] ISO/IEC18045:2012. “Common Methodology for Information Technology Security Evaluation”.
In: International Organisation for Standardisation, Geneva, CH (Sept. 2012).

[72] Sjouke Mauw and Martijn Oostdijk. “Foundations of attack trees”. In: International Conference
on Information Security and Cryptology. Springer. 2005, pp. 186–198.

Appendices

107

AtPT for threat intention B3

109

AtPT for threat intention B4

111

Tables Overview

113

B1 Integrity of transmitted measurement data:

A1 and A2 are prerequisites for A3.

A
tt

ac
k-

ID

A
tt

ac
k

V
e

ct
o

r

Ti
m

e

 Ex
p

er
ti

se

 K
n

o
w

le
d

ge

 W
in

d
o

w
 o

f

o
p

p
o

rt
u

n
it

y

Eq
u

ip
m

en
t

 Su
m

D
am

ag
e

A1 Attacker tries to drive a MITM-
attack

1 6 11 10* 0 28 1

A2 If MITM is successful decrypt
encrypted data

19 8 11 0 0 38 1

A1: MITM (e.g. mitmproxy) is practically very difficult to succeed, since the transmission is TLS
secured and the endpoint has a certificate for authentication. Needs to happen during transmission.

A2: Even if an MITM is successful and the TLS-Layer should be broken, the data itself is encrypted.
Lattice based cryptography is provable secure and provides worst-case security that is still not broken
by quantum algorithm.

Insider: role  administrator; View: Measurement System (sensor unit + cloud services)

A
tt

ac
k-

ID

A
tt

ac
k

V
e

ct
o

r

Ti
m

e

 Ex
p

er
ti

se

 K
n

o
w

le
d

ge

 W
in

d
o

w
 o

f

o
p

p
o

rt
u

n
it

y

Eq
u

ip
m

en
t

 Su
m

D
am

ag
e

A3 Manipulate data in transit and
send in time to cloud

19 8 11 10 0 48

A4 Exchange FHE-processing unit
to manipulate data

7 6 11 4 0 29

A3: Even if the decryption is broken in A2, the data must be manipulated in a time critical range, so
that the manipulated measurement data is not too much delayed and raises suspicion. Further has all
data to be changed, since they are secured by a simple signature, that has to be taken into account.
Furthermore, the attacker must separate unannounced test data from the measurement data to stay
undetected.

A4: Replacing the fhe-processing unit to manipulate the data within the cloud service is difficult,
since the attacker has to manipulate the hash of that module to stay consistent with the comparative
hash. Further the same reasoning as in A3 is applicable.

114

B2: Authenticity of transmitted measurement data
Insider: role  administrator, View: Measurement System (sensor unit + cloud services)

A
tt

ac
k-

ID

A
tt

ac
k

V
e

ct
o

r

Ti
m

e

 Ex
p

er
ti

se

 K
n

o
w

le
d

ge

 W
in

d
o

w
 o

f

o
p

p
o

rt
u

n
it

y

Eq
u

ip
m

en
t

 Su
m

D
am

ag
e

A1 Manipulate sensor unit 4 8 11 0 7* 30** 1

A2 Obtain security features of
sensor unit and replace it by a
tampered sensor unit

4 8 11 0 7 30 1

A3 Spoof identity of sensor unit (IP
spoofing) and send
manipulated data into the cloud

4 6 11 10 0 31 1

Subtask to complete A3.

A
tt

ac
k-

ID

A
tt

ac
k

V
e

ct
o

r

Ti
m

e

 Ex
p

er
ti

se

 K
n

o
w

le
d

ge

 W
in

d
o

w
 o

f

o
p

p
o

rt
u

n
it

y

Eq
u

ip
m

en
t

 Su
m

D
am

ag
e

A3.1 Obtain protected key from
secret vault

1 6 11 0 0 18 1

A3.2 Obtain X.509 certificate (i.e.
private Key)

19 6 0 0 0 25 1

A3.3 Generate false measurement
data

19 6 11 0 0 36 1

A1: Implicates breaking seals and forging as well as replacing physical sensor, to carry out any
manipulation. Needs special equipment to forge a seal.

A2: An attacker obtains security feature (protected key [security features of Key generation]) from a
sealed instrument by breaking the seal and taking it apart. Then he stores this in an identical unit and
seals unit with a forged seal and replaces the original.

A3: This attack focus on spoofing the identity of a sensor unit, in order to undermine the
authentication feature of the cloud service. The original sensor is still active. Obtain security feature
(private key + certificate)

* forge seal with specialized equipment

** highest protection level achievable => all other threats should have the same.

115

B3: Integrity of Software
Insider: Role  administrator View: cloud services

A
tt

ac
k-

ID

A
tt

ac
k

V
e

ct
o

r

Ti
m

e

 Ex
p

er
ti

se

 K
n

o
w

le
d

ge

 W
in

d
o

w
 o

f

o
p

p
o

rt
u

n
it

y

Eq
u

ip
m

en
t

 Su
m

D
am

ag
e

A1 Attacker uses open interface to
plant code into MI

1 3 7 0 0 11 1

A2 Attacker uses NIC to plant code
into MI

0 3 7 0 0 10 1

A3 Obtain access to system 0 3 7 0 0 10 1

A4 Attacker uses CVE for privilege
escalation

4 8 11 4 0 27 1

A5 Obtain admin privileges 4 8 11 4 0 27 1

A6 Get user credential for message
queue

1 6 3 1 4 15 1

A7 Access to Message-Queue 4 8 11 4 0 27 1

A8 Delete Messages on Logbook-
Channel

1 6 3 1* 4 15 1

A9 Alter Messages on Logbook-
Channel

1 6 3 1* 4 15 1/3

A10 Purge Logbook-Messages 4 8 11 4 0 27 1

A11 Alter Messages 4 8 11 4 0 27 1

A12 Attack Active MQ 4 8 11 4 0 27 1

A13 Drop database tables via SQL
Injection

1 3 3 0 0 7 1/3

A14 Alter database tables via SQL
Injection

1 3 3 0 0 7 1/3

A15 SQL Injection 1 3 3 0 0 7 1/3

A16 Attack Database 4 8 11 4 0 27 1/3

https://github.com/cr0hn/enteletaor

* deletes specific event

116

B4: Integrity of Parameters
Insider: role  administrator View: cloud services

A
tt

ac
k-

ID

A
tt

ac
k

V
e

ct
o

r

Ti
m

e

 Ex
p

er
ti

se

 K
n

o
w

le
d

ge

 W
in

d
o

w
 o

f

o
p

p
o

rt
u

n
it

y

Eq
u

ip
m

en
t

 Su
m

D
am

ag
e

A1 Replace property files in
original git repo

1 3 7 1 0 12 1

A2 Obtain access to git repo 1 3 3 1 0 8 1

A3 Altering property files 0 3 7 1 0 11 1

A4 Obtain access to git repo via
own ssh key

1 3 3 1 0 8 1

A5 Obtain access to internal
network

2 6 3 4 0 15 1

A6 Privilege Escalation 2 6 3 4 0 15 1

A7 Persist access to system 1 6 3 3 0 13 1

A8 Attack via NIC 0 3 3 0 0 6 1

A9 Attack via open interface 0 3 3 0 0 6 1

A10 Deploy fake git w/ altered files 1 6 3 1 0 11 1

A11 Create own git and spoof IP
address

2 8 7 1 0 18 1

A12 Network Attack (ARP
Poisening/spoofing)

2 8 7 1 0 18 1

A13 Refresh/Reboot Config-Service 0 3 3 1 0 7 1

A14 Monitor internal network traffic 0 3 3 1 0 7 1

A15

117

B5: Availability of Services
Insider: role  administrator View: cloud services

A
tt

ac
k-

ID

A
tt

ac
k

V
e

ct
o

r

Ti
m

e

 Ex
p

er
ti

se

 K
n

o
w

le
d

ge

 W
in

d
o

w
 o

f

o
p

p
o

rt
u

n
it

y

Eq
u

ip
m

en
t

 Su
m

D
am

ag
e

A1 Attacker uses open interface to
plant code into MI

1 3 7 0 0 11 1

A2 Attacker uses NIC to breach
security measures

0 3 7 0 0 11 1

A3 Attacker persists access to
system

1 6 7 1 4 19 1

A4 Privilege Escalation 2 6 3 4 0 15 1

A5 Obtain access to internal
network and scan it

2 6 3 4 0 15 1

A6 Take over other internal VMs 1 6 3 0 0 10 1

A7 Run DDoS attack against Service 4 6 7 4 0 21 1

A8 Kill service directly on VM 0 3 3 0 0 6 1

118

	Titelblatt
	Abstract
	Zusammenfassung
	Publication List
	Contents
	List of Figures
	List of Tables
	List of Abbreviation
	Introduction
	Problem Statement
	Contributions
	Outline

	Technical Background, Provisions and Assumptions
	Legal Metrology
	Regulations in Legal Metrology
	Measuring Instrument Directive
	Essential Software Requirements from the MID
	WELMEC
	The roles of manufacturer, Notified Body, user and market surveillance
	The role of Cloud Service Provider
	Reference Architecture

	Cloud Computing
	Essential Requirements
	Cloud Service Models
	Cloud Deployments Models
	Advantages of Cloud Computing
	Disadvantages of Cloud Computing
	Security of Cloud Computing
	IT Compliance and Cloud Computing
	Service Level Agreements
	Certifications and Cloud Computing

	Summary

	Secure Cloud Reference Architecture
	Distributed Measuring System
	Architectural Approach
	Infrastructure as a Service
	Platform as a Service
	Software as a Service
	Communication Protocol

	Security Approaches and their limitations
	Measuring Instrument and Trustworthy Components

	Verification Methods
	Verification Monitor
	Anomaly Detection Approach
	Distributed Data Collection

	Risk Assessment
	Related Work
	Summary

	Homomorphic Encryption
	Preliminaries of homomorphic encryption
	Definitions and Classifications
	Somewhat Homomorphic Scheme
	Leveled Homomorphic Scheme
	Fully Homomorphic Scheme

	Gentry-based homomorphic cryptosystems
	Choosing the homomorphic library
	HELib
	SEAL
	LibScarab
	FHEW
	Homomorphic Encryption (HE)

	Functionality of the cryptographic library LibScarab
	Key generation
	En- and decryption
	Homomorphic operations
	Bootstrapping

	LSIM - Extension
	Multithreading
	Boolean operators
	Zero-Test of encrypted integer
	Comparison of encrypted integer
	Simple decision of encrypted integer
	Addition and subtraction of encrypted integer
	Multiplication of encrypted integer
	Division of encrypted integer

	Summary

	Evaluation & Utilization
	Tariff applications
	Required logical and arithmetic operations
	Required time for processing.

	Evaluation of homomorphic operations
	Key generation and recrypt operation
	Arithmetic operations
	Comparison of the stack and heap implementation of LSIM
	Results of application scenarios

	Summary

	Risk Assessment
	Derivation of assets to be protected
	Threat definition
	Identification of attack vectors
	Calculating probability score and risk score

	Evaluation of threats
	Integrity of transmitted measurement data
	Authenticity of transmitted measurement data
	Attack probability tree
	Evidence of an Intervention
	Integrity of Parameters
	Availability of a Service
	Effect of Attacker Motivation
	Suitable Countermeasures

	Summary

	Conclusion and Future Work
	Bibliography
	Appendices
	AtPT for threat intention B3
	AtPT for threat intention B4
	Tables Overview

