
2017 41

Jorge Álvarez Jarreta

Molecular phylogenetic analysis:
design and implementation of

scalable and reliable algorithms
and verification of phylogenetic

properties

Departamento

Director/es

Informática e Ingeniería de Sistemas

Mayordomo Cámara, Elvira
Miguel Casado, Gregorio de

© Universidad de Zaragoza
Servicio de Publicaciones

ISSN 2254-7606

Director/es

Tesis Doctoral

Autor

Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

UNIVERSIDAD DE ZARAGOZA

Reconocimiento – NoComercial –
SinObraDerivada (by-nc-nd): No se
permite un uso comercial de la obra
original ni la generación de obras
derivadas.

Departamento

Director/es

© Universidad de Zaragoza
Servicio de Publicaciones

ISSN 2254-7606

Director/es

Tesis Doctoral

Autor

Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

UNIVERSIDAD DE ZARAGOZA

Reconocimiento – NoComercial –
SinObraDerivada (by-nc-nd): No se
permite un uso comercial de la obra
original ni la generación de obras
derivadas.

Departamento

Director/es

© Universidad de Zaragoza
Servicio de Publicaciones

ISSN 2254-7606

Jorge Álvarez Jarreta

MOLECULAR PHYLOGENETIC
ANALYSIS: DESIGN AND

IMPLEMENTATION OF SCALABLE
AND RELIABLE ALGORITHMS AND
VERIFICATION OF PHYLOGENETIC

PROPERTIES

Informática e Ingeniería de Sistemas

Director/es

Mayordomo Cámara, Elvira

Miguel Casado, Gregorio de

Tesis Doctoral

Autor

2017

Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

UNIVERSIDAD DE ZARAGOZA

Reconocimiento – NoComercial –
SinObraDerivada (by-nc-nd): No se
permite un uso comercial de la obra
original ni la generación de obras
derivadas.

Departamento

Director/es

© Universidad de Zaragoza
Servicio de Publicaciones

ISSN 2254-7606

Director/es

Tesis Doctoral

Autor

Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

UNIVERSIDAD DE ZARAGOZA

Reconocimiento – NoComercial –
SinObraDerivada (by-nc-nd): No se
permite un uso comercial de la obra
original ni la generación de obras
derivadas.

PhD Thesis

Molecular Phylogenetic Analysis:
Design and implementation of scalable
and reliable algorithms and verification

of phylogenetic properties

Author:
Jorge Álvarez Jarreta

Supervisors:

Prof. Elvira Mayordomo Cámara
Dr. Gregorio de Miguel Casado

Doctor of Philosophy

March 2017

Declaration

I hereby declare that except where specific reference is made to the work of
others, the contents of this dissertation are original and have not been submit-
ted in whole or in part for consideration for any other degree or qualification
in this, or any other University. This dissertation is the result of my own work
and includes nothing which is the outcome of work done in collaboration,
except where specifically indicated in the text.

Jorge Álvarez Jarreta
March 2017

Resumen

El término bioinformática tiene muchas acepciones, una gran parte referentes
a la bioinformática molecular: el conjunto de métodos matemáticos, estadísti-
cos y computacionales que tienen como objetivo dar solución a problemas
biológicos, haciendo uso exclusivamente de las secuencias de ADN, ARN y
proteínas y su información asociada. La filogenética es el área de la bioinfor-
mática encargada del estudio de la relación evolutiva entre organismos de la
misma o distintas especies. Al igual que sucedía con la definición anterior,
los trabajos realizados a lo largo de esta tesis se centran en la filogenética
molecular: la rama de la filogenética que analiza las mutaciones hereditarias
en secuencias biológicas (principalmente ADN) para establecer dicha relación
evolutiva. El resultado de este análisis se plasma en un árbol evolutivo o filo-
genia. Una filogenia suele representarse como un árbol con raíz, normalmente
binario, en el que las hojas simbolizan los organismos existentes actualmente
y, la raíz, su ancestro común. Cada nodo interno representa una mutación
que ha dado lugar a una división en la clasificación de los descendientes.
Las filogenias se construyen mediante procesos de inferencia en base a la
información disponible, que pertenece mayoritariamente a organismos exis-
tentes hoy en día. La complejidad de este problema se ha visto reflejada en
la clasificación de la mayoría de métodos propuestos para su solución como
NP-duros [9–11].

El caso real de aplicación de esta tesis ha sido el ADN mitocondrial.
Este tipo de secuencias biológicas es relevante debido a que tiene un alto

vi

índice de mutación, por lo que incluso filogenias de organismos muy cercanos
evolutivamente proporcionan datos significativos para la comunidad biológica.
Además, varias mutaciones del ADN mitocondrial humano se han relacionado
directamente con enfermedad y patogenias, la mayoría mortales en individuos
no natos o de corta edad. En la actualidad hay más de 30000 secuencias
disponibles de ADN mitocondrial humano, lo que, además de su utilidad
científica, ha permitido el análisis de rendimiento de nuestras contribuciones
para datos masivos (Big Data). La reciente incorporación de la bioinformática
en la categoría Big Data viene respaldada por la mejora de las técnicas de
digitalización de secuencias biológicas que sucedió a principios del siglo 21
[15]. Este cambio aumentó drásticamente el número de secuencias disponibles.
Por ejemplo, el número de secuencias de ADN mitocondrial humano pasó
de duplicarse cada cuatro años, a hacerlo en menos de dos. Por ello, un
gran número de métodos y herramientas usados hasta entonces han quedado
obsoletos al no ser capaces de procesar eficientemente estos nuevos volúmenes
de datos. Este es motivo por el que todas las aportaciones de esta tesis han
sido desarrolladas para poder tratar grandes volúmenes de datos.

La contribución principal de esta tesis es un framework que permite dise-
ñar y ejecutar automáticamente flujos de trabajo para la inferencia filogenética:
PhyloFlow [123, 124, 161]. Su creación fue promovida por el hecho de que
la mayoría de sistemas de inferencia filogenética existentes tienen un flujo
de trabajo fijo y no se pueden modificar ni las herramientas software que los
componen ni sus parámetros. Esta decisión puede afectar negativamente a la
precisión del resultado si el flujo del sistema o alguno de sus componentes no
está adaptado a la información biológica que se va a utilizar como entrada. Por
ello, PhyloFlow incorpora un proceso de configuración que permite seleccio-
nar tanto cada uno de los procesos que formarán parte del sistema final, como
las herramientas y métodos específicos y sus parámetros. Se han incluido
consejos y opciones por defecto durante el proceso de configuración para
facilitar su uso, sobre todo a usuarios nóveles. Además, nuestro framework

vii

permite la ejecución desatendida de los sistemas filogenéticos generados,
tanto en ordenadores de sobremesa como en plataformas hardware (clusters,
computación en la nube, . . .). Finalmente, se han evaluado las capacidades
de PhyloFlow tanto en la reproducción de sistemas de inferencia filogenética
publicados anteriormente como en la creación de sistemas orientados a pro-
blemas intensivos como el de inferencia del ADN mitocondrial humano. Los
resultados muestran que nuestro framework no solo es capaz de realizar los
retos planteados, sino que, en el caso de la replicación de sistemas, la posibi-
lidad de configurar cada elemento que los componen mejora ampliamente su
aplicabilidad.

Durante la implementación de PhyloFlow descubrimos varias carencias
importantes en algunas bibliotecas software actuales que dificultaron la inte-
gración y gestión de las herramientas filogenéticas. Por este motivo se decidió
crear la primera biblioteca software en Python para estudios de filogenética
molecular: MEvoLib [28]. Esta biblioteca ha sido diseñada para proveer una
sola interfaz para los conjuntos de herramientas software orientados al mismo
proceso, como el multialineamiento o la inferencia de filogenias. MEvoLib
incluye además configuraciones por defecto y métodos que hacen uso de
conocimiento biológico específico para mejorar su precisión, adaptándose a
las necesidades de cada tipo de usuario. Como última característica relevante,
se ha incorporado un proceso de conversión de formatos para los ficheros de
entrada y salida de cada interfaz, de forma que, si la herramienta seleccionada
no soporta dicho formato, este es adaptado automáticamente. Esta propiedad
facilita el uso e integración de MEvoLib en scripts y herramientas software.

El estudio del caso de aplicación de PhyloFlow al ADN mitocondrial
humano ha expuesto los elevados costes tanto computacionales como eco-
nómicos asociados a la inferencia de grandes filogenias. Por ello, sistemas
como PhyloTree [41], que infiere un tipo especial de filogenias de ADN
mitocondrial humano, recalculan sus resultados con una frecuencia máxima
anual. Sin embargo, como ya hemos comentado anteriormente, las técnicas de

viii

secuenciación actuales permiten la incorporación de cientos o incluso miles
de secuencias biológicas nuevas cada mes. Este desfase entre productor y
consumidor hace que dichas filogenias queden desactualizadas en unos pocos
meses. Para solucionar este problema hemos diseñado un nuevo algoritmo que
permite la actualización de una filogenia mediante la incorporación iterativa
de nuevas secuencias: PHYSER [126]. Además, la propia información evoluti-
va se utiliza para detectar posibles mutaciones introducidas artificialmente por
el proceso de secuenciación, inexistentes en la secuencia original. Las pruebas
realizadas con ADN mitocondrial han probado su eficacia y eficiencia, con
un coste temporal por secuencia inferior a los 20 segundos.

El desarrollo de nuevas herramientas para el análisis de filogenias también
ha sido una parte importante de esta tesis. En concreto, se han realizado dos
aportaciones principales en este aspecto: PhyloViewer [170] y una herramien-
ta para el análisis de la conservación [180]. PhyloViewer es un visualizador
de filogenias extensivas, es decir, filogenias que poseen al menos un millar de
hojas. Esta herramienta aporta una novedosa interfaz en la que se muestra el
nodo seleccionado y sus nodos hijo, así como toda la información asociada
a cada uno de ellos: identificador, secuencia biológica, . . . Esta decisión de
diseño ha sido orientada a evitar el habitual “borrón” que se produce en la
mayoría de herramientas de visualización al mostrar este tipo de filogenias
enteras por pantalla. Además, se ha desarrollado en una arquitectura cliente-
servidor, con lo que el procesamiento de la filogenia se realiza una única vez
por parte el servidor. Así, se ha conseguido reducir significativamente los
tiempos de carga y acceso por parte del cliente. Por otro lado, la aportación
principal de nuestra herramienta para el análisis de la conservación se basa en
la paralelización de los métodos clásicos aplicados en este campo, alcanzando
speed-ups cercanos al teórico sin pérdida de precisión. Esto ha sido posible
gracias a la implementación de dichos métodos desde cero, incorporando la
paralelización a nivel de instrucción, en vez de paralelizar implementacio-
nes existentes. Como resultado, nuestra herramienta genera un informe que

ix

contiene las conclusiones del análisis de conservación realizado. El usuario
puede introducir un umbral de conservación para que el informe destaque
solo aquellas posiciones que no lo cumplan. Además, existen dos tipos de
informe con distinto nivel de detalle. Ambos se han diseñado para que sean
comprensibles y útiles para los usuarios.

Finalmente, se ha diseñado e implementado un predictor de mutaciones
patógenas en ADN mitocondrial desarollado en máquinas de vectores de
soporte (SVM): Mitoclass.1 [189]. Se trata del primer predictor para este
tipo de secuencias biológicas. Tanto es así, que ha sido necesario crear el
primer repositorio de mutaciones patógenas conocidas, mdmv.1, para poder
entrenar y evaluar nuestro predictor. Se ha demostrado que Mitoclass.1 mejora
la clasificación de las mutaciones frente a los predictores más conocidos y
utilizados, todos ellos orientados al estudio de patogenicidad en ADN nuclear.
Este éxito radica en la novedosa combinación de propiedades a evaluar por
cada mutación en el proceso de clasificación. Además, otro factor a destacar es
el uso de SVM frente a otras alternativas, que han sido probadas y descartadas
debido a su menor capacidad de predicción para nuestro caso de aplicación.

Contents

List of Figures xv

List of Tables xvii

Nomenclature xxi

1 Introduction 1
1.1 Molecular biology basics 2

1.2 The bio in bioinformatics . 3

1.3 . . . and the informatics perspective 4

1.3.1 Big Data on Molecular Biology 6

1.4 Special case of study: Mitochondrial DNA 7

1.5 Objectives of this PhD thesis 10

1.6 Organization of this dissertation 13

2 Sequence fetching 15
2.1 Molecular biology databases 16

2.2 Related work . 17

2.3 MEvoLib.Fetch interface 18

2.4 Conclusions . 20

3 Sequence preprocessing 21

xii Contents

3.1 Biological motivation . 22
3.2 Sequence alignment . 25

3.2.1 Background . 25
3.2.2 MEvoLib.Align interface 26

3.3 Partitioning and clustering 28
3.3.1 Background . 28
3.3.2 Naïve approximation 29
3.3.3 Integration of biological knowledge 30

3.4 Conclusions . 36

4 Phylogenetic tree production 39
4.1 Biological motivation . 40
4.2 Related work . 42

4.2.1 Phylogenetic inference 43
4.2.2 Phylogenetic assembly 49
4.2.3 Choosing the best phylogeny 51
4.2.4 Machine learning meets phylogenetics 52

4.3 MEvoLib’s phylogenetic interfaces 53
4.3.1 MEvoLib.Inference 54
4.3.2 MEvoLib.PhyloAssemble 54

4.4 Learning the latent DNA phylogeny 55
4.5 Conclusions . 56

5 Phylogenetic inference systems 59
5.1 Step-by-step workaround 60
5.2 Related work . 65

5.2.1 Computing platforms 67
5.2.2 Prearranged solutions 68
5.2.3 Update phylogenies without rebuilding 71

5.3 PhyloFlow . 72
5.3.1 Design and implementation 73

Contents xiii

5.3.2 Workload characterization 82
5.3.3 Practical applications 83

5.4 PHYSER . 87
5.4.1 Design and implementation 87
5.4.2 Evaluation . 90

5.5 Conclusions . 93

6 Phylogenetic analysis: Display of large phylogenies 97
6.1 Related work . 98
6.2 PhyloViewer . 103
6.3 Conclusions . 106

7 Phylogenetic analysis: Conservation analysis 107
7.1 Related work . 108
7.2 Conservation analysis of large datasets 109

7.2.1 Performance evaluation 110
7.2.2 MSA influence on conservation analysis 112

7.3 Conclusions . 113

8 Phylogenetic analysis: Pathogenicity prediction on hmtDNA 115
8.1 Related work . 116
8.2 Mitoclass.1 . 117
8.3 Conclusions . 120

9 Conclusions 123
9.1 Future work . 130

Bibliography 133

Appendix A Bioinformatics usual file formats 155
A.1 Biological sequence file formats 155
A.2 Phylogenetic tree file formats 159

xiv Contents

Appendix B Issues with GenBank’s information regarding hmtDNA
sequences 163

List of Figures

1.1 Evolution of sequencing speed and cost through the years . . 6
1.2 Genome of the hmtDNA 8
1.3 Chronology of complete hmtDNA sequences stored in GenBank 9

3.1 Example of how the metadata is displayed in GenBank . . . 32

4.1 Example of a phylogenetic tree 41

5.1 Phylogenetic inference workflow with MEvoLib 61
5.2 Phylogenetic inference feedback between methods 69
5.3 Design of PhyloFlow . 74
5.4 Design of PhyloFlow’s fetching stage 76
5.5 Design of PhyloFlow’s data management plan stage 78
5.6 Design of PhyloFlow’s phylogenetic estimation stage 80
5.7 Design of PhyloFlow’s phylogenetic assembling stage 81

6.1 Screenshot of TreeGraph 2 98
6.2 Screenshot of FigTree . 99
6.3 Screenshot of Dendroscope 99
6.4 Screenshot of iToL . 99
6.5 Screenshot of EvolView . 100
6.6 Screenshots of PhyloTree 100
6.7 Screenshot of PhyloWidget 101

xvi List of Figures

6.8 Two sample phylogenies displayed with Biopython 102
6.9 Architecture of PhyloViewer 103
6.10 Phylogeny displayed with PhyloViewer 104
6.11 PhyloViewer’s user interface 105
6.12 PhyloViewer’s administrative interface 105

7.1 Performance results of the sequential and parallel versions of
the algorithm . 111

A.1 Example of FASTA file format 156
A.2 Example of information section in GENBANK file format . 157
A.3 Example of sequence section in GENBANK file format . . . 158
A.4 Example of PHYLIP file format 159
A.5 Example phylogeny for tree file formats 159
A.6 Example of phyloXML tree format 161

List of Tables

3.1 Performance and feature recovery of classical approach vs
Genes method . 35

5.1 Workload characterization of the fetching stage 83
5.2 Workload characterization of the data management plan stage 84
5.3 Workload characterization of the phylogenetic estimation stage 85
5.4 Workload characterization of the phylogenetic assembling stage 85
5.5 PHYSER classification of diverse animal mtDNA sequences. 92
5.6 PHYSER classification of diverse synthetic sequences created

from AY738958 . 94

6.1 PhyloViewer’s database load time for diverse phylogenies . . 106

8.1 Predictor comparison for the complete mdmv.1 dataset . . . 119
8.2 Predictor comparison for the training with mdmv.1 dataset . 120

B.1 Sequences that did not include a labeled D-loop 164
B.2 Sequences that included the D-loop without tagging one or

both sections . 164
B.3 Sequences that included the D-loop with unreasonable bound-

aries . 165

Nomenclature

Acronyms / Abbreviations

ABDS Apache Big Data Stack

BI Bayesian Inference

BIC Bayesian information criterion

BLAST Basic Local Alignment Search Tool

BPMN Business Process Model and Notation

CBE Cell Broadband Engine

CDS Coding DNA sequence

CI Conservation index

cMI Cumulative mutual information

DNA Deoxyribonucleic acid

eUtils Entrez Programming Utilities

FN False negative

FP False positive

xx Nomenclature

FPGA Field Programmable Gate Array

GPU Graphics Processor Unit

HGMD Human Genome Mutation Database

hmtDNA Human mitochondrial DNA

HPC High Performance Computing

HTC High Throughput Computing

HV R Hypervariable region

iToL Interactive Tree of Life

MCMC Markov chain Monte Carlo

mdmv mtDNA missense variants

MIC Many Integrated Core

ML Maximum Likelihood

mmtDNA Mammal mitochondrial DNA

MP Maximum Parsimony

MRP Matrix representation using parsimony

MSA Multiple sequence alignment

mtDNA Mitochondrial DNA

NCBI National Center for Biotechnology Information

nDNA Nuclear DNA

NGS Next-generation sequencing

Nomenclature xxi

NJ Neighbor-joining

PHY LIP Phylogeny inference package

pmtDNA Primate mitochondrial DNA

PRD Padded-Recursive-DCM3 decomposition

rCRS Revised Cambridge reference sequence

Re f Seq Reference sequence

RNA Ribonucleic acid

rRNA Ribosomal RNA

SaaS Software as a service

SMO Sequential minimal optimization

SRA Sequence Read Archive

SV D Singular vector decomposition

SV M Support vector machine

T N True negative

T P True positive

tRNA Transfer RNA

XSD XML Schema Definition

One has to be their own biologist.

Daniel M. Gusfield

1
Introduction

The first chapter of this dissertation introduces the bioinformatics’ branch on
which we have focused throughout this thesis: evolutionary studies, better
known as phylogenetics. We summarize the terms and concepts we have
acknowledge as essential to comprehend the contents of this dissertation.
We also present the main challenges on bioinformatics and, more specif-
ically, on phylogenetics. We have divided them in two categories: i) the
biological-related problems; and, ii) the computational challenges, including
the problems that arise when we need to process large datasets (Big Data).
Furthermore, we introduce the biological data we have studied as a real and
interesting case for phylogenetic analysis: the mitochondrial DNA. At the
end of this chapter, we cover the main objectives that have conducted our
research and the organization of this dissertation.

2 Introduction

This chapter is divided in six sections. The first one introduces basic
biological terms and concepts. The second section covers the biological
aspects we have worked on the phylogenetics field. Next, we summarize
the computational problems linked with bioinformatics and phylogenetic
researches. The fourth section introduces the mitochondrial DNA and its
main properties and characteristics. Later, in the fifth section we present the
objectives that have directed our research and contributions. Finally, the last
section includes the organization of the present dissertation.

1.1 Molecular biology basics

There is no full agreement on the definition of Bioinformatics, since re-
searchers do not always agree upon the scope of its use within the biological
and computer sciences. We use the most usual definition of bioinformatics
under the molecular biology perspective offered by Dr. Tekaia at the Institut
Pasteur: “The mathematical, statistical and computing methods that aim to
solve biological problems using DNA and amino acid sequences and related
information.”1

In molecular biology, the basic unit of information equivalent to the bit
in informatics, is the nucleotide. There are 5 different nucleotides: Adenine,
Guanine, Cytosine, Thymine and Uracil. They are usually represented by
their first letter: A, G, C, T and U , respectively. The biological sequences are
strings of characters of diverse lengths that are named according to the type of
characters they are formed by. There are two types of sequences composed by
nucleotides: DNA (deoxyribonucleic acid) sequences, which are composed
by A, G, C and T characters; and RNA (ribonucleic acid) sequences, which
consist of A, C, G and U characters.

The DNA sequence carries the genetic instructions of all living organisms
and many viruses, containing all the information needed to grow, develop,

1http://www.bioinformatics.org/wiki/Bioinformatics

http://www.bioinformatics.org/wiki/Bioinformatics

1.2 The bio in bioinformatics . . . 3

function and replicate. This information is arranged in substrings. Depending
on the type of information, each substring is categorized as a gene or as
noncoding DNA. The former is intended to produce proteins whilst the latter
is related with other functionalities, i.e. replication, regulation, etc. The
construction of a protein is a two-step process that involves a transcription
and a translation phases. In the transcription, the substring of DNA characters
is read and generates its corresponding RNA sequence. Without going into
detail, it basically replaces each appearance of T by U . Secondly, the trans-
lation stage reads each triplet of characters (better known as codon) of the
transcribed RNA sequence and replaces them by their corresponding amino
acid. Although more than 500 amino acids are known, only 20 appear in
the genetic code [1]. This simplification of the initial 64 combinations to
only 20 possibilities can be seen as a natural robustness mechanism to keep
the proteins, and ,thus, their functionality, intact versus possible errors, i.e.
changes (better known as mutations) in one or more nucleotides of the gene
or the RNA sequence due to diverse factors.

1.2 The bio in bioinformatics . . .

This thesis is focused on phylogenetics, the part of molecular biology directed
to evolutionary studies. This area of knowledge studies and tries to compre-
hend the molecular evolution relationships that exist between organisms or
groups of organisms (species, populations) regarding only their biological
information, i.e. their DNA, RNA or protein sequences.

The phylogenetic analysis workflow can be depicted as a two-phase pro-
cedure: first, we need to determine what the phylogenetic (evolutionary)
tree looks like and, afterwards, we can proceed with its study and analysis.
The phylogenetic inference is an additive procedure composed by up to four
specialized stages. First of all, we need to fetch the raw data we are going to
use to build our phylogeny (phylogenetic tree). This stage is usually classified

4 Introduction

as a pre-workflow stage or stage 0 in many studies, but even so, it is an
essential step because not all the sources of information might be specifically
targeted for the research we want to perform. The second step preprocess the
information to make it suitable for the phylogenetic estimation that will come
afterwards. We will dig deeper into these two topics in the following chapters.
The third stage is intended to estimate the evolutionary tree. There are several
methodologies that will be covered in the fourth chapter. Finally, the last
stage can be found in those studies involving different genes or species, where
each one is handled independently through the second and third stages. Their
results are merged in this last phase obtaining a unique final phylogenetic
tree. Since these are also phylogenetic-related methods, we will cover them
in the fourth chapter too. Besides, certain biological scenarios necessitate
slight modifications of the workflow, repeating specific stages under different
parameterizations or skipping them completely.

The latter phase of the phylogenetic analysis workflow comprises analysis
methods that have been designed and implemented for different purposes,
e.g. graphical phylogenetic displayers, which allows experts on the field
to visualize and analyze the given phylogeny [2, 3]; conservation analysis,
to study the evolutionary variability of determined positions of biological
sequences [4]; etc. We will deepen into these analysis tools in the sixth,
seventh and eighth chapters of this dissertation.

1.3 . . . and the informatics perspective

The bioinformatics community grew founded on the challenging problems
posed by the molecular biology field, along with the new area of application
of existing algorithms developed by computer scientists. Besides, as we will
see thereafter, the growth in the amount of available biological data made
obsolete most of the hand-methods used by biologists decades ago, requiring
the usage of computers to fasten up the procedures.

1.3 . . . and the informatics perspective 5

Nowadays, there are still unsolved problems that are of main interest for
both biologists and computer scientists. For instance, try to foresee how a
protein sequence will fold in space. The amino acids we introduced earlier
have different sizes, diverse chemical properties, some are hydrophilic and
others are hydrophobic, . . . Thus, it is not straightforward to predict how
a given protein sequence will fold into its 3D structure. Right now, many
methods relay on the existing information of other related proteins that have
been analyzed to forecast the outcome [5, 6]. Another example is the modeling
of metabolic systems. These systems allow researchers to comprehend the
set of chemical transformations within the cells of living organisms that keep
them alive. The mathematical complexity behind these modelling predictions
based on previous biological information, altogether with different basic
models (e.g. structural models, gene regulation models, etc.), have posed
another challenge in the bioinformatics field [7, 8].

Phylogenetics does not fall apart from the tree regarding challenging and
open problems. Adopting the workflow presented in the previous section, one
of the first problems we are going to face is the multiple sequence alignment.
Many phylogenetic inference methods need their input sequences to have
the same length, a requirement that does not always meet. This problem
will be discussed in greater detail in the third chapter, but we advance that it
has been proven to be NP-hard [9]. Moving to the phylogenetic inference
problem itself, different methods have been proposed to solve it, but the
most relevant of them have also been proven to be NP-hard: the maximum
parsimony [10] and the maximum likelihood [11]. In all these situations, the
application of heuristics has provided an acceptable solution. The relevance of
bioinformatics in the informatics community has echoed on the development
of programming languages, where many projects were launched in order to
create computational biology libraries intended to ease the work on the field
[12–14].

6 Introduction

1.3.1 Big Data on Molecular Biology

From mid to late 1990s several new methods for DNA digitalization (se-
quencing) were developed. These techniques are more commonly referred
in the literature as NGS (next-generation sequencing) or high-throughput
sequencing [15]. The implementation and commercialization of the afore-
mentioned methods occurred in the early and mid 2000s, producing a huge
impact in the sequencing’s economic cost and the amount of available digital-
ized sequences. This agrees with the noticeable change of slope of the lines
presented in Figure 1.1.

Figure 1.1: Evolution through the years of the sequencing speed (blue line)
and the sequencing economic cost (orange line). We can see how the emer-
gence of the NGS changes the slope of both lines in the early and mid 2000s
[16].

These innovations changed the scope in molecular biology, embodying
the majority of its problems into the Big Data category. For instance, the
number of available sequences for the Homo sapiens sapiens in GenBank
[17], a well-known public database that we will introduce in the next chapter,
on 1/Jan/2000 was slightly higher than 180000. On 1/Sep/2016 there were

1.4 Special case of study: Mitochondrial DNA 7

almost 14 million sequences. Most of these sequences have more than 1000
characters in length, and around 60000 sequences are larger than 100000
characters, which is a huge volume of information. Furthermore, it is also
interesting to access all the information associated to each sequence, which at
least doubles the previous data volume to be processed.

1.4 Special case of study: Mitochondrial DNA

The mitochondrion is a specialized cellular subunit (or organelle) found in all
eukaryotic organisms which provides most of the energy the cell requires. It
is unique in its kind because it is one of the few organelles that have their own
DNA, separated from the nDNA (nuclear DNA). As it is shown in Figure
1.2, the mtDNA (mitochondrial DNA) is a circular double-stranded DNA,
composed by 16569 nucleotides on average. It contains 37 genes, 13 of which
encode for proteins, 22 for tRNA (transfer RNA) and 2 for rRNA (ribosomal
RNA). Besides, there is an important region known as the Control Region
or D-loop (gray segment in Figure 1.2) where the start and ending of the
sequence are assembled to form the circular molecule. This segment contains
2 HVRs (hypervariable regions) that are very useful for evolutionary and
anthropological studies.

The mtDNA has several properties that make it a fascinating candidate for
molecular biology and evolution studies. First, in most species the mtDNA
has a maternal inheritance [18], which means that the biological information
of the mother is transmitted without any alteration to the progeny. This
enables genealogical researchers to trace maternal lineage far back in time.
Furthermore, its location drives it to a far more vulnerable state than the
nDNA, exceeding by a factor of 10 the mtDNA mutation rate in comparison
with that of the nDNA [19]. In contrast, the mtDNA has a lower relative
degradation [20].

8 Introduction

Figure 1.2: Genome of the hmtDNA. The protein encoding genes are marked
in yellow, orange and red; the tRNA genes are shown in white; and the Control
Region is illustrated in gray. Picture: Emmanuel Douzery.

The hmtDNA (human mitochondrial DNA) was the first significant part of
the human genome to be sequenced. A consequence of this accomplishment
is the fact that many complete hmtDNA sequences are available. For instance,
Figure 1.3 shows the growth of complete hmtDNA sequences in GenBank
from 1/Jan/1993 to 1/Sep/2016. As we have aforementioned, an input of more
than 32000 strings of 16570 characters on average represents a very large
volume of information to handle, requiring in most cases a not negligible
amount of computational resources. All the experimental results presented in
the following chapters are based on partial or complete mtDNA and hmtDNA
sequences.

1.4 Special case of study: Mitochondrial DNA 9

● ● ● ● ● ● ● ● ● ● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

35
00

0

Date

● ● ● ● ● ● ● ● ● ● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

35
00

0

Date

N
um

be
r

of
 c

om
pl

et
e

hm
tD

N
A

 s
eq

ue
nc

es

Jan/1993 Jan/1995 Jan/1997 Jan/1999 Jan/2001 Jan/2003 Jan/2005 Jan/2007 Jan/2009 Jan/2011 Jan/2013 Jan/2015 Sep/2016

0 1 1 2 3 3 3 3 3 90 90

441

840
1915

2671
3761

5290

6522

8218

10078

16528

22439

29497

31010

32174

Figure 1.3: Number of complete hmtDNA sequences stored in GenBank
from 1/Jan/1993 to 1/Sep/2016. The foundation query used is: “homo sapi-
ens”[porgn] AND mitochondrion[filter] AND biomol_genomic[PROP] AND

“complete genome”[All Fields].

The applicability of studying the hmtDNA’s evolution is based on the
relevance of the mutations that may affect its genes. For instance, a short
branch in a phylogeny represents a group of individuals that emerged from
a mutation (parent node) and died in a few generations or they were sterile.
These kind of branches are usually classified as pathogenic, that is, they are
related with some known or unknown disease. Most mitochondrial pathogenic
mutations are associated to chronic and mortal diseases [21]. Furthermore,
the results of several epidemiological studies have addressed that the genetic
variation of populations play an important role in mtDNA. This is the case of
multifactorial diseases such as Parkinson, Alzheimer, cancer, type 2 diabetes
and cardiomyopathy, among others [22].

10 Introduction

1.5 Objectives of this PhD thesis

The aim of this thesis is the systematization of phylogenetic methods and soft-
ware tools to improve the accuracy and performance of phylogenetic analyses
compared to their standalone counterparts. The automatic and unattended
execution of phylogenetic workflows altogether with inner parallelization
techniques, involvement of unbiased biological knowledge and self-setting of
proper interaction between methods result in unprecedented improvements on
both accuracy and performance of such systems. Besides, we cannot neglect
the benefits that a full configuration and broad software tool choices grant
in terms of adaptability to user needs. The systematization can rely on a
multiplatform framework, disposing of many hardware architectures. Their
frequent multi-task capability surpasses by far the delay introduced by the
platform’s scheduling. We want also to provide solution to the difficulties that
arise in large-scale scenarios, where common software tools become ineffi-
cient or, even worse, they do not converge. To this end, the introduction of the
systematization techniques is summarized under three different perspectives:

1. First of all, our target is to provide a common framework for most
phylogenetic studies, where any workflow can be configured and built
easily by both computer scientists and biologists. We consider that
one of the most unnoticed characteristics that require implementation
on molecular evolution workflows is the compatibility between the
software tools involved. Although there is at least one file format per
type of data that has been standardized, so every software tool that
produces them follows the rules settled, not every method can read and
output each format available. Therefore, most developers select and
fix the methods and parameterizations of the implemented system to
assure agreement between outputs and inputs. Alternatively, when that
choice is unrealizable, they include ad-hoc format conversion scripts to
solve the “incompatibilities”. On the other hand, settling the workflow

1.5 Objectives of this PhD thesis 11

and its methods at the design level limits the applicability of the result-
ing system on divergent phylogenetic studies. The systematization of
phylogenetic software tools should not jeopardize their flexibility to be
applied in different scenarios. Thus, it is essential to provide a solution
to each specific need, whenever there is one, granting a broad method
selection and all their parameterizations.
There are several systematizations that prove this lack of flexibility,
like SATé [23, 24], DACTAL [25] or ZARAMIT [26, 27], which are
well-known and used phylogenetic inference systems that have fixed
workflows, software tools and parameterizations. We will explore them
further later on in this dissertation.

2. The second aspect of our approach is to improve the total performance
of phylogenetic inference and analysis systems in comparison to the
sum of standalone executions of each procedure concerned. Several
phylogenetic inference systems apply divide-and-conquer strategies
for biological purposes only. Moreover, parallelization has become
a basic technique in molecular evolution software implementations.
These premises are a good starting point on behalf of performance
improvements. Nowadays, most scientists have access to multi-core
hardware platforms, like clusters or clouds, which provide a huge
number of resources and affordable execution times for parallelizable
tasks. Therefore, to create a successful systematization in terms of
efficiency, the process might include three elements: i) naïve divide-
and-conquer programming techniques when the biological ones are
not applicable, and as long as they do not have a negative impact on
the accuracy, to generate as many independent parallelizable tasks as
cores available; ii) task-level parallelization techniques, apart from
the instruction-level parallelism aforementioned; and, iii) an adequate
computational paradigm to correlate the phylogenetic workflow and
its implementation for the hardware platforms available. The result-

12 Introduction

ing systematization will perform efficiently even on very large-case
scenarios.

3. The third and last objective is the enhancement of accuracy of the in-
ferred phylogenies and their analyses with the incorporation of biological-
driven methods. Phylogenetic inference systems’ design usually starts
at the preprocessing stage, that is, the treatment of the biological data
necessary to infer the phylogeny. This means that the selection and
fetching of the biological information to be processed is made by
hand, even if there are some basic software alternatives. For instance,
Biopython [13], a biological computation library for Python, includes
the Entrez module to fetch biological sequences from a set of public
databases automatically. As we have claimed before, experts on the
field take advantage of their knowledge to choose particular methods
for their case of study to improve the accuracy of the workflow devel-
oped. For example, a common practice is to perform a gene division
of the input biological sequences to study the evolution of each gene
separately. Whilst their methods usually rely on heuristics and other ap-
proximations that may bias the results, we could design new algorithms
that rely only on the metadata available for each biological sequence
selected, e.g. the information of the position of each gene provided for
most sequences stored in GenBank.

To sum up, this approach allows constructing more flexible and adaptable
phylogenetic inference and analysis workflows for most current and future
researches. Additionally, the incorporation of clustering and parallelization
techniques altogether with multi-core hardware platforms provide a huge
enhancement of the performance in most phylogenetic studies. The multiplat-
form property also grants an automatic and unattended execution after the
configuration process and scalability to face the processing of large datasets
efficiently. Finally, the biological knowledge gathered by experts on the field
is the best resource to develop new specific-purpose software tools. Besides,

1.6 Organization of this dissertation 13

its incorporation in phylogenetic inference systems increases their accuracy
compared to their general-purpose counterparts.

1.6 Organization of this dissertation

The contributions presented in this dissertation have been published in several
international conferences and journals. These contents are distributed in nine
chapters designed to help the reader to comprehend how phylogenetic trees are
inferred from scratch and how they are analyzed afterwards. The biological
motivation and background of each topic presented in this dissertation, as
well as the conclusions, are covered in their corresponding chapter.

Following this introduction, Chapter 2 summarizes the fetching process
required to gather all the biological information we need to perform a phy-
logenetic study. The information can be biological sequences to build a
phylogeny from scratch, a single phylogenetic tree to be analyzed, or two or
more related phylogenies that phylogenetists will merge into a single, final
tree. Next, Chapter 3 describes the preprocessing stage that usually follows
the fetching task to make the data suitable to infer the phylogenetic tree.
These preprocessing methods are sequence alignment and dataset division
following different criteria, e.g. gene splicing or evolution clustering. Chapter
4 covers five approaches to infer phylogenetic trees, two methods to assemble
related phylogenies into a single tree and the criteria used to compare and
choose the most accurate phylogenetic tree. Later, the contents of the three
previous chapters are joined together to shape phylogenetic inference systems,
presented in Chapter 5. Moreover, we describe an alternative solution to keep
the phylogenies updated when the appropriate phylogenetic inference process
is costly in both time and computational requirements. The next three chapters
summarize three molecular evolution analyses, that is, analyses performed
by phylogenetists to extract information from inferred phylogenetic trees.
Chapter 6 presents visualization software tools aimed to display phylogenies

14 Introduction

and to provide specific features to study them. Following, Chapter 7 covers
the study of the conservation of every possible value at each position of a set
of biological sequences. These results help to determine functionality-related
and critical positions, that is, sites where a mutation might trigger a disease.
Chapter 8 introduces prediction software tools created to classify mutations
by their pathogenity. They base their decision on diverse criteria, like the con-
servation analysis aforementioned, to determine if a mutation is most likely
associated with a disease or not. Finally, Chapter 9 gathers the conclusions
drawn from this research and outlines the future work.

I do not fear computers. I fear the lack of them.

Isaac Asimov

2
Sequence fetching

Once a biological sequence has been digitalized, it is important to store it
and all its related information, e.g. source organism or papers in which it has
been studied, so that the expensive sequencing process is run only once for
the same sequence. This idea encouraged the creation of many biological
databases. There are diverse aspects that classify them in different categories
like their kind of access (public or private), the type of information they store
(only DNA or mixed sequences) or the interface they offer (via web, SQL
queries, . . .), among others.

In this chapter we introduce MEvoLib, the first molecular evolution library
for Python [28]. It takes advantage of some classes and modules implemented
in Biopython [13], one of the most extended and used computational molec-
ular biology libraries for Python. MEvoLib has been designed to provide
integrity with other tools and scripts that use Biopython, as well as to avoid

16 Sequence fetching

the replication of already functional and public modules. We found two im-
portant shortcomings in Biopython that encouraged the creation of MEvoLib.
The first one is the lack of flexibility towards supported software tools. For
instance, MAFFT [29] (a multiple sequence alignment tool that will be intro-
duced in Chapter 3) has a dedicated module with a fixed parameter list. The
main problem is that not every parameter has a 1-to-1 relationship with those
of the software tool, producing a negative repercussion on its learning curve.
The second shortcoming is its scope. Biopython lacks of support for many
important software tools and methods required in molecular evolution studies.
MEvoLib meets this requirement, establishing a symbiosis with Biopython.
Since MEvoLib offers several interfaces related with the processes involved
in common molecular evolution studies, each one will be deeply covered in
their corresponding chapters.

This chapter is divided in four sections. The first one introduces several
molecular biology databases and their most relevant properties. The second
section covers the common fetching procedures already available. In the third
section, we present the MEvoLib’s module we have designed to fetch auto-
matically the desired biological information, providing some improvements
to the current solutions. This contribution has been published as part of the
journal paper [28]. Finally, the last section gathers the conclusions of the
work presented in this chapter.

2.1 Molecular biology databases

Multitude of molecular biology databases have been created regarding dif-
ferent purposes [30]. Moreover, most of them are publicly available. One of
the most important and accessed databases for DNA and RNA sequences that
follows this criterion is GenBank [17], which belongs to the NCBI (National
Center for Biotechnology Information) [31] along with other databases. An-
other relevant example is BLAST (Basic Local Alignment Search Tool) [32],

2.2 Related work 17

which provides a similarity search were all the sequences related to a given
one are returned. It provides different databases for specific types of informa-
tion (nucleotide, protein, . . .). Finally, MITOMAP [33, 34] poses as a specific
purpose example, being a database that stores only the human mitochondrial
genetic information.

Besides the huge amount of sequences stored, GenBank offers a lot of
associated information for each sequence, including its source (e.g. organ-
ism, region), the gene and non-coding DNA splicing, and other relevant
information. It has been designed with a user-friendly website access [17]
and supports a query-like search of the desired information. GenBank has
included unattended access given the query and other relevant information
through scripting. The user can also select whether to download the raw
sequences or include all their associated information in different text for-
mats too. The same criteria have been followed by other NCBI databases,
facilitating the development of scripts that can retrieve all the information
automatically.

2.2 Related work

It is common to read in many bioinformatics papers detailed information
about the datasets they are going to use for their research and the source
database chosen, but just a few mention how those sequences were obtained.
This is because they are retrieved manually in most cases, that is, the person
in charge of that task connects to the database’s web site, selects the desired
sequences and downloads them. To such task, NCBI developed Entrez [35], a
primary text search and retrieval system that integrates most of its databases.
It provides a comprehensible interface for biologists to use, translating the
high-level query to the inner database’s language.

With the incorporation of scripts and software tools as regular resources,
this query system led to the creation of eUtils (Entrez Programming Utilities),

18 Sequence fetching

a set of server-side programs that provide a stable and structured interface into
Entrez. They use a fixed URL syntax that translates a standard set of input
parameters into the values necessary for various NCBI software components
to search for and retrieve the requested data. Thus, any programming language
capable of sending a URL to the eUtils server and interpret the XML response
can be set as framework to develop a fetching program. This is the case of
the Entrez interface provided by Biopython.

There are other software tools developed to retrieve biological information
from public datasets. The SRA (Sequence Read Archive) toolkit [36] is a
set of binaries available for frequent operative systems that fetch the data
submitted into the public repository of primary next-generation sequence data
archive.

2.3 MEvoLib.Fetch interface

The first module of MEvoLib we present in this chapter has been implemented
to fetch biological information, either from local files or from different NCBI
databases. This module has been divided in two classes: BioSeqs, to fetch
biological sequences from both sources; and PhyTrees, which fetches phy-
logenetic trees only from local files1. Both classes can work with any file
format supported by Biopython. Once all the desired information is gathered,
it can be written in a GENBANK or NEWICK file format, respectively, along
with a report file, which is saved with “.rep” extension and the same filename.
This last file encloses the number of sequences or trees stored, together with a
detailed list of all the data sources, the date and time when they were accessed
and the fetching instructions used, i.e. complete path of the local file or the
NCBI database and query.

1There is, to our knowledge, no public database containing useful or relevant phylogenies
to be used in further molecular evolution studies.

2.3 MEvoLib.Fetch interface 19

The report file strengthens experiment reproducibility, not only storing
all the sources’ information, but also with a temporal line that keeps track of
any data overriding due to an identifier collision from two or more sources.
Moreover, the report file can substitute the data file when sharing or publishing
research files, especially when the data file is large and none of the sources
are a local file.

MEvoLib’s BioSeqs implements three useful properties to fetch sequences
from NCBI databases (e.g. GenBank). The first one consists of a size
limitation on the number of sequences fetched for the given database and
query. This characteristic is intended for particular researches where the
user might just want to retrieve a representative sample. The second feature
enhances the download process of large datasets, computing the adequate
batch size for the expected sequence’s size (in bytes). This calculation is
based on the directions given by the NCBI itself, together with a prefixed
maximum download time for each batch to optimize the interval and number
of requests made. This upper bound also reduces the data loss when an
unexpected communication error happens. The third property enhances the
update process, removing those sequences that are no longer stored in the
corresponding NCBI database, and fetching only new or updated sequences,
based on their version.

The large amount of public and accessible information has a main draw-
back: it is not completely accurate neither useful. After the sequencing
process, the researchers are the ones responsible for uploading the biological
sequence to GenBank. They are also in charge of including the sequence’s
metadata, making it error-prone. Despite all the possible revision processes
included by GenBank once the sequence is uploaded, we have found many
cases that do not follow the established rules and may lead to errors or inac-
curate results in further studies. In Appendix B we have included the analysis
we have performed about this issue for the hmtDNA.

20 Sequence fetching

2.4 Conclusions

In this chapter, we have presented the first interface of MEvoLib intended
to ease the fetching of biological information from local files and public
databases. Whilst it keeps the best properties of some current approxima-
tions, like the automatic fetching, our solution improves those methods in
several ways: it can merge data from more than one source and it generates a
report file with the relevant information gathered during the fetching process.
Furthermore, it adds a batch-fetching handler and an update feature to the
Entrez module provided by Biopython, enhancing the database interaction
procedure.

As future work, we contemplate to reflect in the report file those manual
modifications done by the user to the fetched dataset, e.g. deleting a spe-
cific subset of sequences. Besides, the current implementation stores all the
information of the sequences/trees in memory, which can have a negative
impact on the performance of our library. In the worst-case scenario, an
exception might be raised if the total amount of information to fetch exceeds
the amount of memory available, losing all the downloaded data. Thus, a
new file-oriented design of this interface will be considered for its next ver-
sion. This rearrangement of storage will slightly slow down the method’s
performance but it will remarkably increase the amount of manageable data.

He who knows when he can fight and when he cannot,
will be victorious.

Sun Tzu

3
Sequence preprocessing

Raw biological sequences are usually inaccurate, comprising a large number
of uncertainties that make them unsuitable for knowledge extraction before
an adequate preprocessing. Thus, many bioinformatics procedures directly
expect a normalized input so that they can perform their estimations. For
instance, if we would like to study the evolution process of a particular gene in
several organisms, it is certain that some of those gene sequences will not have
the same length or they may vary in some character values for corresponding
positions. These discrepancies are even more likely to appear if the target
organisms belong to different species.

Moreover, the computational resources required to handle the massive
quantity of molecular sequences available in many cases are often unavailable
for various research groups. Nevertheless, there are well known computational

22 Sequence preprocessing

techniques like divide-and-conquer and clustering, among others, that can
usually be applied in these scenarios and provide a near-optimal solution.

The first section of this chapter introduces the biological concepts and
ideas, which justify the usage of preprocessing methods. The second section
is dedicated to the multiple sequence alignment, a preprocessing procedure
designed to even up the length of all the biological sequences. We include
the state-of-the-art of the topic and our contribution with one of MEvoLib’
modules. The third section covers the application of diverse computational
techniques to more biological-oriented preprocessing tasks, including four
interfaces of MEvoLib we have developed for general and specific scenarios.
All our contributions have been published as part of the journal paper [28].
Finally, the last section assembles the conclusions for this chapter.

3.1 Biological motivation

The biological sequences can suffer changes (mutations) in their information
due to several factors. The most common risk situation is when these se-
quences are synthesized in their natural environment, that is, within the cells.
DNA sequences and, in some cases, RNA sequences as well, are duplicated
when the cell is about the divide in order to generate two exact copies from
the original one, i.e. the replication process. But this process is not infallible:
the error rate is of the order of 1 mistake per 107 or 108 nucleotides [37].
Despite not being a substantial rate, we have to take into account that DNA
sequences are usually really large (about 6×109 nucleotides in the case of
the human nDNA). This means that, in the worst-case scenario, around 600
mistakes can be made each time the cell replicates. Fortunately, there are
some cellular mechanisms, namely the proofreading and the mismatch repair,
which look for these mistakes and fix them, raising the error correction rate
up to 99%.

3.1 Biological motivation 23

The RNA is usually synthesized from a substring of the DNA, a gene,
through the transcription process we introduced in the first chapter. “The
error rate of RNA synthesis is of the order of one mistake per 104 or 105

nucleotides . . . The much lower fidelity of RNA synthesis can be tolerated
because mistakes are not transmitted to progeny. For most genes, many
RNA transcripts are synthesized; a few defective transcripts are unlikely to
be harmful” [38]. The translation of each RNA sequence synthesizes the
encoded protein. The study of this process showed an error rate of about an
order of magnitude higher than those in transcription, that is, 1 mistake per
103 or 104 amino acids. Each amino acid is encoded by three nucleotides
(codon), so the length of protein sequences is rather smaller than that of DNA
sequences, which usually include several genes. This suggests about one error
per 10 proteins formed for a common length protein (≈ 300 amino acids)
[39].

The metabolic activities and other environmental factors like radiation can
also have a negative impact on the biological sequences, producing mutations.
For the former, the cells have repairing mechanisms to neutralize them given
their nature and frequency. For the latter, these repairing mechanisms might
not be enough, leading to major damages or even the death of the cell.

Whilst we could name all the previous cases as natural mutations, there
are others that have to be classified as artificial. We are referring to those in-
troduced by the sequencing methods. The digitalization process of biological
sequences has been improved over the last decades, but even so, it is hard to
get an accuracy higher than 99.999% [40]. Even a 0.001% of error rate can
have a huge impact in the resultant sequence if we are handling large DNA
sequences, like the human nDNA aforementioned.

How do all these mutations affect the biological sequence? They can
generate changes in one or more values of the sequence, leading to insertions
or deletions of one or more characters, known as indels, and there are some
rare cases where a whole substring changes its position (locus) to another

24 Sequence preprocessing

part of the biological sequence, known as translocations. The former keeps
the length of the biological sequence intact, but they are really important
due to their fitness to produce changes in the resultant protein when they
affect coding genes, manifesting as a disease. Indels are relevant due to their
modification of the biological sequence’ length, in addition to the possible
effects on the coding regions. Translocations hinder genetic studies and the
establishment of evolution relationships among different organisms or species.
The complexity of this natural phenomenon forces us to run string-matching
algorithms to assure that a gene of one organism has been removed in another
one’s sequence.

Therefore, researchers need to arrange DNA, RNA or protein sequences
in a comparable way if they want to identify regions of similarity that may be
a consequence of structural, functional, or evolutionary relationships. That
arrangement is called alignment, and it tries to set as many identical or
similar characters as possible in successive columns. The alignment process
introduces a new character, the gap (usually represented by the symbol “–”),
which is introduced in between characters to adjust the length discrepancies
between sequences. As consequence, all the sequences will end up having
the same length.

As we have aforementioned, not every mutation has the same impact on
the organism. In the same way, these changes might or might not be inherited
by their offspring. Therefore, different genes of the same organism might
display different evolving pathways. Besides, the environment and origin of
diverse individuals within a specie have also a means to affect their genetic
information. Thus, it is a common practice to work with each gene from
the same set of organisms independently, or handle groups of individuals
separately regarding certain biological conditions, especially in phylogenetic
studies. The haplotyping is a good example of the latter. The haplotype
refers to a specific position within a DNA sequence that has been tagged as
biologically relevant. A mutation at this site is usually depicted as a new

3.2 Sequence alignment 25

branch in the phylogeny for that type of sequence, as it happens with the
hmtDNA [41]. The clusters generated applying this biological knowledge are
named haplogroups.

3.2 Sequence alignment

In this section, we cover the alignment process to amend the existing differ-
ences between raw biological sequences. First, we will cover the state-of-
the-art about alignment software tools. Next, we will present the work we
have performed to provide a new solution to integrate those methods in our
programs with MEvoLib.

3.2.1 Background

The computational complexity of obtaining the optimal solution for an align-
ment of n biological sequences of length m is O(mn) [42] making it forbidding
even for a small-sized problem. An alignment of 2 sequences is usually re-
ferred as a pairwise alignment, whilst if more than 2 sequences are involved
it is named a MSA (multiple sequence alignment). Furthermore, the MSA
problem has been proven to be NP-hard [9, 43, 44]. There are just a few
scenarios where scientists will need to compute pairwise alignments, thus we
will focus the contents of this section on MSAs. The complexity statement
has led to the creation of many heuristic algorithms to settle a good correlation
between the accuracy of the resultant MSA and its computational cost.

Multiple software tools have been developed to cope with the MSA prob-
lem. Some of the most used and well-known are MAFFT [29], Clustal Omega
[45], MUSCLE [46], KAlign [47] and PRANK [48]. Despite providing differ-
ent approximations to achieve the alignment of the input sequences as fast as
possible, the biggest difference among these methods is their score function.
The score is a numerical number given to an alignment symbolizing its prox-
imity to the true alignment, that is, the alignment that would perfectly match

26 Sequence preprocessing

with the events (mutations) occurred to each sequence. The score function is
a mathematical system composed by one or more penalty equations whose
variables usually rely in three main factors: the mismatching of characters
(e.g. putting an A and a T in the same column for two different sequences),
the insertion of a new gap, and the number of consecutive gaps introduced in
the same sequence. The gap is, as we have aforementioned, a useful resource
to adjust the discrepancies between sequences but it must be handled with
caution: setting one or more gaps in an area where there was not an indel can
lead to an erroneous analysis of the data. Moreover, the methods’ accuracy
can vary significantly regarding the size of the input dataset, the type of its
biological sequences and their similarity.

All the aforementioned MSA tools have been designed to provide a com-
mand line interface, which can be harsh for some non-computer users. Thus,
there are some alternatives based on a visual interface, like Jalview [49] or
SeaView [50]. We can also find MSA software systems like PASTA [51],
which rely on an accurate evolutionary tree to perform the alignment pro-
cedure. Additionally, some software libraries offer MSA tool modules to
integrate the alignment process in other programs or scripts. For instance,
Biopython [13] has implemented specific interfaces for MAFFT, Clustal
Omega, MUSCLE and PRANK, among others.

3.2.2 MEvoLib.Align interface

MEvoLib includes the Align interface to work with different MSA tools. Its
creation was encouraged by the lack of flexibility of the MSA interfaces
offered by Biopython. For instance, we have already mentioned in the previ-
ous chapter problems with the parameter list for calling MAFFT: it is fixed
and not completely related with the arguments allowed by the software tool.
Additionally, the recent published updates have not changed along with the
new versions of the software, so the new functionalities are not supported
(e.g. --add feature introduced in version 7.273). Thus, the user must learn

3.2 Sequence alignment 27

and comprehend both interfaces in order to handle properly the MSA tool
through Biopython.

The main characteristic of MEvoLib.Align’s interface is that there is
only one parameterization for every MSA tool included. The user has to
indicate the tool to launch, the input sequence file, the file format and the
list of arguments of the tool. The resultant alignment will be returned in a
MultipleSeqAlignment Biopython object. In addition, an output file and its
format can be added to the previous list of parameters in order to save the
resultant MSA. The purpose of the input and output file formats is twofold: i)
to ensure that we can read and write in those formats (through Biopython);
and, ii) to apply format conversion if the input or output formats are not
supported by the MSA tool. The latter facilitates the work of the user and
it improves the interface’s usefulness in scenarios where the next process
requires a specific file format.

For each MSA tool included in MEvoLib, we have created a configuration
dictionary. It contains common parameterizations referenced by a keyword
that can be passed to the Align interface instead of the list of arguments. This
addition improves the readability of the code and should facilitate recalling
the whole set of configurations. The user can also append other keywords
and configurations in the corresponding MSA tool file of the library. We have
incorporated in every dictionary a default keyword, which will be used if no
configuration parameters are provided. It is also expected to ease the initial
work of novel researchers.

In the first version of our interface, we have included MAFFT, Clustal
Omega and MUSCLE. Moreover, the method can launch MSA tools not
contemplated in the installed version of the library. To do so, the user must
include two new elements into the previous parameter list: a list of supported
input file formats and the input file command (e.g. -in). However, this
functionality is intended for expert users only.

28 Sequence preprocessing

3.3 Partitioning and clustering

The next section summarizes the preprocessing procedures related with the
division of the input dataset into smaller subsets. After covering the back-
ground on this topic, we introduce the two main clustering criteria: i) apply a
divide-and-conquer strategy in this stage to enforce parallelization techniques
in the following procedures; ii) take advantage of the biological knowledge
to improve the accuracy of next stages by dividing the data into more bi-
ologically related subsets. In both cases we have contributed with novel
approaches included in MEvoLib’s Cluster interface. Each one of the four
different approaches implemented return the clustering as a dictionary, with
set identifiers as keys and one list of SeqRecord Biopython objects per key as
values.

3.3.1 Background

Divide-and-conquer and parallelization techniques are regular choices in
the toolset of every informatician, even more when dealing with large-case
scenarios or lengthy procedures. In bioinformatics, they are used frequently
given the recurrence of the problems meeting one or both of those scenarios.
There are, to our knowledge, no published implementations for a naïve, non-
biological, division of sequence datasets. We are certain that many studies
have performed such practice but they might have been done it by hand or by
scripts that are not provided altogether with the paper.

As we have stated before, there are some cases where the sequences can
be divided or clustered under biological fundaments. The results obtained
under these premises are often more meaningful and relevant for the biol-
ogy community: they can validate previous analyses and/or establish new
hypotheses. In this dissertation, we will be concerned about two of those
fundaments, but we acknowledge there exist others. The first one resorts to the
evolutionary information reflected in a phylogenetic tree. The sequences are

3.3 Partitioning and clustering 29

clustered into subsets that represent relatively close sets of evolution events.
We can find diverse software tools that follow this principle, like Rec-I-DCM3
[52] or its variation named PRD (padded-Recursive-DCM3 decomposition)
[25], that use the phylogenetic tree to generate overlapping subsets regardless
of the type of biological information they contain. A method in this stage
that requires a phylogeny as input states an inevitable infinite loop in the
phylogenetic workflow we are picturing throughout these chapters. We will
discuss this problem on chapter 5. The second fundament takes advantage
of the biological knowledge we have about the specific type of biological
sequences given as input. For instance, the haplogroup division of a set of
complete hmtDNA sequences can be achieved by Phy-Mer [53] or Haplo-
Grep2 [54]. As to the gene partitioning, the only technique we are aware
of is the pairwise alignment of each sequence of the input dataset with their
reference sequence, that is, a sequence that represents a canon for that specific
type of biological sequence. Afterwards, we can use the gene locus of the
reference sequence to extract the genes from the input sequence. We have not
found any implementation of this or any other similar technique.

3.3.2 Naïve approximation

The first approximation is a naïve mathematical approach to the division prob-
lem. We process the input dataset as a n×m matrix of characters. Given the
possible discrepancies in length, we will behave as if white space characters
(“ ”) where added at the end of each sequence to meet the length of the longest
one in the dataset.

Now we can reduce our problem into smaller subproblems dividing the
given matrix by rows, columns or both. MEvoLib covers both concepts
with two methods: naïve rows and naïve columns. The former divides the
input sequences into the given number k of disjoint sets. To get the most
balanced possible output, the method will generate j = n mod k sets with
⌈n/k⌉ sequences and k− j sets with ⌊n/k⌋ sequences. The latter calculates the

30 Sequence preprocessing

fragment length and the range indices based on the longest input sequence m
and the given number of sets k. The algorithm applies the same equations as
the previous method, replacing n by m.

3.3.3 Integration of biological knowledge

As we have claimed before, the experimental viability of the naïve clustering
relies on the homogeneity of the biological sequences and on the following
procedures. In other words, those sequences that may improve the accuracy
of the results by being clustered in a determined way, either by rows or by
columns, are not suitable for the naïve clustering methods. For instance,
mixing parts of one gene with another (that is, performing a naïve division
by columns) can lead to an inaccurate phylogenetic tree. Thus, the applica-
tion of biological knowledge can substantially improve the accuracy of the
experiments. On the other hand, the resultant clustering may affect negatively
the performance in comparison with that of the naïve approach: whilst with
the naïve methods we can match the number of subsets to the number of
cores/threads available, with the biological approximation we might end up
with an inadequate number of subsets for a straightforward allocation. Addi-
tionally, naïve approaches generate roughly equally sized subsets that have
almost the same time and memory costs, while the biological approximation
is most likely to obtain an unbalance load. Next, we introduce two meth-
ods of MEvoLib designed to embed different biological knowledge into the
clustering process.

MEvoLib.Cluster’s PRD method

Generating subsets of evolutionary related sequences usually requires an
input phylogeny containing, at least, the same sequences of the input dataset.
Since that is the only requirement, this methodology is applicable for any
type of biological sequence. One of the most extended and used methods in

3.3 Partitioning and clustering 31

this category is the PRD decomposition, a main component of the DACTAL
phylogenetic system [25]. It extracts a set of overlapping subsets from the
phylogeny, where the union of these subsets equals the input dataset. The
method’s input is the dataset, the phylogeny, the maximum size of each subset
and the number of overlapping sequences. Each subset that does not meet
the size condition is used again as input, with its corresponding subtree, for
the PRD decomposition process. MEvoLib’s Cluster interface includes its
own Python implementation of the PRD decomposition algorithm (instead of
Pearl). Moreover, we have updated its dependencies. The method has been
improved regarding its original implementation by replacing its recursive part
by a parallelized iterative procedure, where a queue manages the sets that
require further decomposition.

MEvoLib.Cluster’s Genes method

The genes partitioning is the biological approach to the column division
for DNA sequences. MEvoLib incorporates the Genes method, designed to
generate as many sets as genes available in the input sequences. The main
idea is to take advantage of the biological knowledge to extract all the genes
of a set of sequences. NCBI databases store this biological knowledge as
metadata in each sequence, following a XML-like representation. An example
is shown in Figure 3.1. This metadata altogether with the sequence is usually
stored in a file format named GENBANK. Thus, we have created a small
database with all the available features (tags) at NCBI databases and their
qualifiers (set of valid attributes for that tag). The method admits a feature
filter, that is, a list of tag identifiers, as an extra parameter to extract only
those features in which the user is interested.

The Genes method uses the biological information available in the in-
put file (GENBANK format) to determine the gene loci (location) of each
sequence. If there is no metadata available for a specific sequence or the
input file is in an information-less format (like FASTA), the method applies

32 Sequence preprocessing

Figure 3.1: Example of how the sequence’s metadata is displayed in GenBank.

the algorithm we have introduced in Section 3.3.1. Remember that this al-
gorithm deduces each gene locus from the corresponding RefSeq (reference
sequence). The RefSeq is a sequence that has been checked and validated
many times by diverse biologists through time so it is considered 100% ac-
curate and representative of those sequences from the same source, e.g. the
rCRS (revised Cambridge Reference Sequence) is the RefSeq of the hmtDNA
[55]. We use the corresponding RefSeq for the input dataset, indicated by the
user, to generate a pairwise alignment of each information-less sequence with
the RefSeq. After that, the method removes the sites corresponding to new
gaps introduced in the RefSeq for both sequences and, finally, it applies the
gene locus information of the RefSeq to the new sequence. MEvoLib already

3.3 Partitioning and clustering 33

includes certain reference sequences and their related information. Hence,
we avoid unnecessary internet connections to retrieve the data at runtime,
preventing potential errors and hastening the methods.

The Genes method uses only the biological knowledge provided by the
user in the sequences file, preventing any guided or prior information in
the source code, apart from misspelling checkers. Thus, the method is very
likely to run accurately even if the information changes or the classification
criteria are modified due to new discoveries. We wanted to extend the usage
of the Genes method to expose possible errors in the information available:
NCBI databases, like GenBank, do not perform any standardization over the
values of each qualifier and feature of each new sequence, generating several
nomenclatures for the same gene. Hence, the method implements a merge of
algebra of sets and statistical sampling to match terms referring to the same
gene, and detect those related terms with a low sampling representation. As a
result, a log file is created with each uncertain pair of terms and a list with
the sequences that support them. Hence, the user can easily detect sequences
that merge two genes due to an error in their information. Besides, this
methodology works properly even though the genes might be in different
loci, e.g. when the input dataset is composed by complete sequences and
fragments.

There is another innovation in the clustering procedure: whilst the classi-
cal approach withdraws different genes based only on the information from
gene or product qualifiers of the features provided, the Genes method mine
the data from every qualifier available. To demonstrate the improvement
that the Genes method offers in comparison to the classical approach, we
downloaded all the complete hmtDNA sequences available at GenBank on
07/Jul/2016. The 31755 sequences used match the following query: “homo
sapiens”[porgn] AND mitochondrion[Filter] NOT mRNA[Filter] AND “com-
plete genome”. We also created three subsets with the first 100, 1000 and

34 Sequence preprocessing

10000 sequences of the downloaded data to perform an additional scalability
test for the method.

Before running all the tests, we executed the Genes method with all
the sequences in its default configuration in order to analyze the log file
to detect possible errors in the biological information. Three sequences
were removed from the downloaded set: i) KP702293.1 has the gene ND3’s
product as “NADH dehydrogenase subunit 2”; ii) FR695060.1 has the CDS
“ATP synthase 6” identified as ATP8; and, iii) DQ862537.1 has the gene
ATP6’s product as “cytochrome c oxidase subunit III”. The three subsets were
updated too.

To perform the classical approach, we modified the default behavior of
the Genes method: instead of collecting the information of all the qualifiers
of each feature, it only took into account the gene or product qualifiers,
respectively. All the results can be found in Table 3.1. We focused our
conclusions on the recovery rate of the CDS (coding DNA sequence), rRNA
and tRNA features for each configuration. The hmtDNA contains 13 CDS, 2
rRNA and 22 tRNA genes.

Table 3.1 shows that the time and memory usage of the Genes method is
slightly higher than classical approaches in most cases, but the difference is
negligible in comparison to the improvement in the recovery rates. The rRNA
genes are always clustered accurately, even when the number of sequences
is increased. The CDS genes are correctly gathered when the number of
sequences is high enough. For instance, for the 100 dataset, the variety of
information available is not large enough and, thus, the Genes method obtains
15 genes instead of 13 because it finds two nomenclatures for 2 different genes:
“atp6” and “atpase 6”, and “atp8” and “atpase 8”. The tRNA feature is never
recovered completely due to a duplication of two tRNAs in the hmtDNA1.

1The tRNAs for Leucine and Serine have two loci instead of one, located at different sites
and strands of the hmtDNA. In just a few cases these two loci are differentiated by a “1” or
“2” added to their qualifiers.

3.3 Partitioning and clustering 35

Ta
bl

e
3.

1:
Pe

rf
or

m
an

ce
an

d
fe

at
ur

e
re

co
ve

ry
of

a
cl

as
si

ca
la

pp
ro

ac
h

ve
rs

us
M

E
vo

L
ib

’s
G

en
es

m
et

ho
d

fo
rf

ou
r

se
ts

of
hm

tD
N

A
se

qu
en

ce
s.

T
he

se
co

nd
co

lu
m

n
of

ea
ch

fe
at

ur
e

(f
ea

t.)
sh

ow
s

th
e

re
su

lt’
s

di
ve

rg
en

ce
fr

om
th

e
ex

pe
ct

ed
va

lu
e.

N
um

.S
eq

s.
C

on
fig

ur
at

io
ns

Ti
m

e
(s

)
M

em
.(

M
B

)
C

D
S

fe
at

.
rR

N
A

fe
at

.
tR

N
A

fe
at

.
10

0
ge

ne
1.

56
32

.3
7

26
(+

13
)

3
(+

1)
21

(-
1)

10
0

pr
od

uc
t

1.
41

32
.3

3
18

(+
5)

2
(0

)
20

(-
2)

10
0

al
l

1.
42

32
.4

6
15

(+
2)

2
(0

)
20

(-
2)

10
00

ge
ne

13
.1

5
91

.4
2

26
(+

13
)

5
(+

3)
43

(+
21

)
10

00
pr

od
uc

t
12

.7
1

92
.0

6
22

(+
9)

4
(+

2)
20

(-
2)

10
00

al
l

13
.7

4
92

.6
3

15
(+

2)
2

(0
)

20
(-

2)
10

00
0

ge
ne

12
7.

95
68

7.
63

31
(+

18
)

5
(+

3)
45

(+
23

)
10

00
0

pr
od

uc
t

17
1.

80
69

2.
59

34
(+

21
)

4
(+

2)
20

(-
2)

10
00

0
al

l
13

6.
91

70
0.

73
13

(0
)

2
(0

)
20

(-
2)

31
75

2
ge

ne
41

2.
22

21
26

.8
3

33
(+

20
)

5
(+

3)
46

(+
24

)
31

75
2

pr
od

uc
t

46
7.

78
21

44
.3

2
51

(+
38

)
6

(+
4)

20
(-

2)
31

75
2

al
l

50
9.

78
21

77
.2

8
13

(0
)

2
(0

)
20

(-
2)

36 Sequence preprocessing

3.4 Conclusions

In this chapter, we have presented two MEvoLib modules destined for data
preprocessing. The Align interface provides a single method to execute MSA
software tools. In order to ease its usage, we have included a single list of
parameters for all the tools included in the current version of the library. A
dictionary with common configurations is provided for each tool, including a
default parameterization too. These properties enhance code readability and
help novel users with the first steps. Furthermore, the interface can handle
other MSA tools by appending two extra parameters. However, this function-
ality is intended for expert users only. Additionally, we have implemented an
internal format conversion to facilitate its interaction with other modules and
software tools. MEvoLib incorporates the Cluster interface too, intended to
perform the division of a set of biological sequences into subsets under differ-
ent criteria. It provides two methods for the division into subsets of complete
sequences or into fragments as a naïve approach to improve the time cost
of following procedures using parallelization techniques and architectures.
Additionally, MevoLib includes two methods aimed to take advantage of the
currently available biological knowledge. The PRD decomposition method
we have implemented is more efficient than its previous version due to a
modification on its algorithm: we have replaced its recursive design by a more
efficient iterative schema that has been parallelized afterwards. Moreover,
the Genes method is, to our knowledge, the first gene division algorithm that
relies only on the metadata of the input biological sequence to perform its
task. The incorporation of algebra of sets and population statistics provides
an accurate gathering solution for the high number of existing terms referring
to the same gene.

As future work, we plan to extend the MSA tool list included in the
Align interface of MEvoLib with software tools like PRANK or KAlign. We
also contemplate to incorporate new interfaces for the haplogroup clustering
software tools presented in the Background section. Furthermore, we aim to

3.4 Conclusions 37

improve the efficiency of the methods that have not been parallelized yet to
reduce their time cost in very large scenarios.

Evolution is the fundamental idea in all of life science
- in all of biology.

Bill Nye

4
Phylogenetic tree production

Once the fetching and preprocessing stages have been completed, the data is
ready for the phylogenetic tree inference. The procedure will be different in
the cases when the dataset has been kept as a whole, and when it has been
divided into subsets. These subsets can correspond to the same or diverse
species, or far apart relatives under an evolutionary perspective. The literature
refers to the result of the last scenario as supertree. The methodologies
summarized in this chapter provide different perspectives on how the evolution
process affects organisms through time, being a topic still discussed nowadays
in the biological community.

In the first section of this chapter, we cover the biological aspects that set
the base for the methodologies and software tools presented in the second
section. The third section covers two MEvoLib interfaces we have developed
to cope with the phylogenetic inference and assembling procedures. This

40 Phylogenetic tree production

contribution has been published as part of the journal paper [28]. The fourth
section presents the machine learning approximation we have worked on as
an alternative for the phylogenetic inference process. Finally, the last section
assembles the conclusions for this chapter.

4.1 Biological motivation

In genetics, a mutation can be classified as non-neutral, which includes harm-
ful and advantageous ones; or neutral, based on its effect on fitness. According
to the neutral model of molecular evolution, harmful mutations, also known as
deleterious, are removed by negative selection while those classified as neutral
are kept. Advantageous mutations occur so rarely that they can be ignored.
As we have aforementioned, the phylogenetic tree is the representation of
the evolutionary relationships between various organisms. Phylogenies help
researchers not only to understand the past, but also to predict the function of
different genes, their interaction, the source and transmission of diseases, and
the origin and spread of different individuals or species, among other things.
A phylogeny is usually modeled as a rooted binary tree, where each node
means an evolution event where a mutation or a set of mutations occurred to
one or more organisms, generating a bifurcation on their evolution. The root
is considered the common ancestor of all the organisms represented at the
tree. The biological information of ancestors is scarce in nature. Therefore,
the biological sequences at the dataset are usually located at the leaves of the
phylogeny, requiring an inference process to obtain the sequences at the root
and inner nodes. Figure 4.1 shows an example of a phylogeny of species. In
this case, each node represents the turning point where a group of individuals
is no longer considered as one single species, but two.

There are two main kinds of phylogenetic trees regarding their branches.
One uses the branches and their length just to symbolize the evolution path of
one or more organisms, and it usually displays all the leaves of the tree at the

4.1 Biological motivation 41

Figure 4.1: Example of a phylogenetic tree of a broad selection of jawed
vertebrates [56].

same level. The second one refers to the phylogenies that include a molecular
clock, that is, the branch length and their weights, if they are displayed,
symbolize the number of time units that have elapsed between events (nodes).
There are two major problems in this depiction: i) this representation assumes
a constant rate of molecular changes across branches; and, ii) we have to
relate at least one moment in the tree with a date to be able to give a meaning
to those time units.

The way the tree topology is inferred and the data is settled relies on the
methodology used, as we have claimed before. Nonetheless, the accuracy of

42 Phylogenetic tree production

these methods has a lot to do with their capacity to reproduce the evolution
process that has affected the input data. An evolution model is a mathematical
model that establishes, through different number of parameters and variables,
the substitution rates of nucleotides or amino acids. Thus, multitude of
evolution models have been proposed following different criteria: i) target
sequences, i.e. DNA, RNA or proteins; ii) biological target, i.e. general
purpose or specific kind of sequences, like the hmtDNA; and, iii) complexity,
i.e. number of variables to calculate for the specific input dataset. As we will
discuss in the next section, it is sometimes troublesome to know beforehand
the best evolution model for our set of sequences. We will present the most
applied alternatives to cope with this problem.

Although they are out of the scope of this thesis, we wanted at least to
mention phylogenetic networks as alternative data structures for modeling
phylogenies. They are interesting due to their associated complexity. The tree
structure is very restricting for something as complex as evolution. The phy-
logenetic networks have been developed to extend the toolset of evolutionary
events that can be modeled [57–59]. For instance, they provide a better image
for recombinations: two or more mutations that occurred separately and they
are merged again, making a cycle in the network.

4.2 Related work

In this section, we cover the methodologies developed to produce phylogenetic
trees and supertrees from a preprocessed input dataset. We will also present
the most well-known software tools developed for such purpose. Furthermore,
at the end of this section, we will detail how we can measure and compare
phylogenetic trees to determine the most accurate and reliable one for a given
input dataset.

4.2 Related work 43

4.2.1 Phylogenetic inference

Next, we are going to detail the minimum evolution approach, where the
number of differences between sequences is the metric used to determine
the phylogeny; and the evolution model approach, where the algorithms rely
on evolution models for the phylogenetic inference. There exist alternative
inference methods that do not require the sequences to be aligned [60], but
we will not cover them in this dissertation.

As we have claimed before, the way these problems are solved and the
accuracy of the resultant tree will entirely depend on the methods and param-
eters selected for each input dataset [61–63]. However, we cannot overlook
the NP-complete nature of the problem of inferring the best phylogenetic
tree [64], where the number of possible unrooted binary tree topologies is
(2n−5)!/

(
(n−3)! 2(n−3)

)
[65], for n biological sequences. For instance,

we could build more than 2 million different topologies from a set of only 10
sequences.

Minimum evolution methods

There are two main methodologies developed under the minimum evolution
theory: the neighbor-joining method [66], and the maximum parsimony
method [67, 68]. The NJ (neighbor-joining) method generates a distance
matrix for each pair of input sequences and uses a minimum-value search
algorithm to define the inner nodes of the topology. The details of the method
are described with pseudo-code in Algorithm 1.

The MP (maximum parsimony) is an optimality criterion based on the
minimization of the total number of mutations across the phylogenetic tree,
that is, the shortest possible tree that explains the data is considered the
best under this criterion. Nevertheless, the topology of the phylogeny is not
inferred from the data: we need to apply another algorithm or methodology
to accomplish this part of the problem. Given the enormous state-space of
topologies we have presented before for just a few biological sequences, and

44 Phylogenetic tree production

Algorithm 1: Neighbor-joining
Data: S (dataset)
Result: T (phylogeny)

1 Create T as a starlike tree from S;
2 Define M as a triangular distance matrix from each pair of strings of S;
3 while (rows(M)≥ 4) do
4 Get i, j ∈M, i ̸= j such that Mi j is the lowest value;
5 Join T nodes Ni and N j with new node Ni j in between with their

parent;
6 Merge Ni and N j in M and recalculate it;
7 end

Algorithm 2: Maximum parsimony
Data: S (dataset)
Result: T (phylogeny)

1 For each sequence of S, create a leaf in T ;
2 while (|S| ≥ 2) do
3 Get sequences Xi, X j with the fewest differences, ∀i, j ∈ {1, .., |S|},

i ̸= j;
4 if

(
Xi∧X j /∈ T

)
then

5 Join leaves Xi and X j with a new inner node Ni j;
6 else if

(
Xi⊕X j /∈ T

)
then

7 Join the node of T and the new leaf with a new inner node Ni j;
8 else
9 Join the two nodes of T with a new inner node Ni j;

10 end
11 Replace Xi and X j in S for the consensus string of Ni j;
12 end

taking into account that a common input size is usually between 100 and
1000 sequences, this problem has been solved with heuristics. However,
to get a better idea of how MP works, Algorithm 2 roughly displays the
proposal made by Dr. Fitch [68] to solve both problems applying a dynamic

4.2 Related work 45

programming approach. As we have claimed in Chapter 1, the MP problem
has been demonstrated to be NP-hard [10].

It is difficult to find recent software tools that implement only one of
the aforementioned algorithms, like BioNJ [69]. Most of them are suites,
gathering diverse alternatives for NJ and MP algorithms, altogether with other
methods that we will introduce in the next section. An example of three
widespread software suites that include at least one implementation for NJ
and MP are T-REX [70], PAUP* [71] and MEGA [72, 73].

Methods based on evolution models

The lack of accuracy and other statistical downsides of MP and some distance-
based methods led to the development of new algorithms founded on more
complex evolution models. The first and most used one is ML (maximum
likelihood) [74], which is an optimality criterion. Initially, it calculates
the probability of the sequences’ distribution throughout the given topology,
followed by a maximization problem over all possible evolutionary trees. This
method also assumes evolution independence among sites for each biological
sequence. Algorithm 3 summarizes the ML method for a binary tree T with
root s0, where all the input sequences have been assigned to leaves of T . The
length of any sequence of the input dataset is m. For a sequence sk, we will
denote with si

k the character at the i-th position of sk. L will represent the
likelihood of T , whilst Lsk will represent the likelihood of the subtree of sk

from T . For a leaf sk, Lsi
k

will be equal to 1 when si
k equals the character

we are checking, and 0 otherwise. The evolution model is mathematically
decomposed in a prior probability vector, i.e. the probability of finding each
character in a position of the sequences, and a mutation probability matrix.
The goal is to maximize the likelihood score of T (L).

The ML problem has been demonstrated to be NP-hard [75]. Besides, as it
happened with MP, the topology must be calculated beforehand. The majority
of the software tools implemented using ML apply heuristics to construct

46 Phylogenetic tree production

Algorithm 3: Maximum likelihood
Data: T (binary tree), π (prior probability vector), P (mutation

probability matrix)
Result: L (likelihood of T)

1 for p ∈ {1, . . . ,m} do
2 for postorder tree traversal of T do
3 Get sk, parent node of si and s j at T ;

4 Lsp
k
=
(

∑sp
i

Psp
k sp

i
Lsp

i

)(
∑sp

j
Psp

k sp
j
Lsp

j

)
;

5 end
6 Lp = ∑sp

0
πsp

0
Lsp

0
;

7 end
8 L = ∑p Lp;

the tree. Early efficient implementations for ML, like fastDNAml [76], have
been replaced in most studies of the last decade by three ML software tools:
PhyML [77, 78], RAxML [79, 80] and FastTree [81, 82]. The first one uses a
fast distance-based algorithm to generate an initial topology, and after that,
it implements a hill-climbing technique to adjust and modify the branches
and their lengths to optimize the likelihood of the phylogeny. RAxML and
FastTree use the same approximation to solve the problem: they generate
k random topologies1, afterwards they keep about the best 10% of them, in
terms of a swift computed score, and finally, the algorithm computes the
consensus tree to obtain the resultant topology. We will discuss the consensus
tree and phylogenetic score concepts in the following sections. NJML [83, 84]
offers another approach where the NJ topology building process is combined
with the ML inference process. As it happened with MP and NJ, PAUP* and
MEGA pose as two widely used examples of software suites intended for the
phylogeny production that incorporate some of the aforementioned software
tools.

1Although they choose huge values for k, it will always be small in comparison to the
total number of topologies available in the state-space.

4.2 Related work 47

The model selection process is a crucial part of the configuration stage
of ML. It is important to highlight that using the same model for all the
possible input datasets may not produce an accurate phylogeny. On the other
hand, testing every existing evolution model for each input dataset can be
highly intensive in time cost. Therefore, choosing the best evolution model
for the kind of data we are going to work with is one of the most important
steps on the way to estimate a reliable phylogenetic tree. There are many
articles about evolution models (e.g. JC69 [85], HKY [86] or GTR [87]
models of nucleotides, and JTT [88] or WAG [89] models of amino acids),
but it is easy to find many researches based on just one evolution model
because it worked well on previous studies and experiments. For instance,
FastTree offers only two nucleotide and three amino acid evolution models,
whilst PhyML and RAxML accept almost any evolution model as an input
parameter. However, FastTree has been proven to be faster and more accurate
than RAxML, especially when dealing with large inputs [90]. There have
been published specific software tools to determine, under different criteria,
which is the best evolution model for each particular set of sequences in a
reasonable time cost, e.g. ModelTest [91], or its newer version jModelTest
[92], for nucleotide evolution models, and ProtTest [93, 94] for amino acid
evolution models.

The second methodology proposed to infer phylogenetic trees using the
evolution model approach is the BI (bayesian inference) [95]. It states that
the evolution model can be extracted from the topology and the distribution of
the input dataset. The BI has become popular due to advances in computing
speeds and the integration of MCMC (Markov chain Monte Carlo) algorithms.
It is based on a likelihood function to calculate the posterior probability of
trees, that is, the probability of the tree to be correct, using an evolution model
in the process. The BI is the most complex method of the four presented.
The pseudo-algorithm presented in Algorithm 4 manifests the core idea of

48 Phylogenetic tree production

exploring the state-space until enough topologies have been tested to return
the best phylogenetic tree.

Algorithm 4: Bayesian inference
Data: S (dataset)
Result: T (phylogeny)

1 Build a phylogeny Ti for S;
2 for an enough number of iterations to reach an equilibrium point do
3 Propose a new phylogeny Tj for S, different from Ti;
4 Determine the likelihood of Ti and Tj;
5 Ti← Apply Bayesian inference to get the best phylogeny;
6 end
7 T = Ti;

MrBayes [96, 97] is one of the most used software tools as to the BI
method. Despite being a fast methodology, the BI methods have been proven
to have an impractical time cost for large datasets [98].

Statistical robustness

At this point, it is necessary to acknowledge that the majority of the methods
mentioned above (excluding BI) do not guarantee statistical robustness and,
therefore, an extension of the phylogenetic analysis is required. In biology,
this problem is usually covered by a bootstrapping [99] of the input sequences.
The confidence intervals in the estimation process of phylogenies is achieved
generating new datasets from the original one, wherein statistical character
shuffling has been applied differently in each of them. Once the phylogenies
have been estimated, a majority-rule consensus process must be applied to
obtain the final phylogenetic tree.

Some of the tools we have mentioned in the previous section incorporate
a bootstrapping option, e.g. FastTree or RAxML. For the others, an external
software tool is required. The most extended one is Seqboot, from PHYLIP
[100].

4.2 Related work 49

4.2.2 Phylogenetic assembly

There are just a few situations where the inference process would be the last
step to obtain the final phylogeny from the selected biological sequences. In
most cases, the bootstrapping is part of our phylogenetic inference workflow.
Additionally, it is a common practice to divide the input dataset into smaller
subsets for biological or performance purposes. The result in both scenarios is
the same: we end up with more than one phylogenetic tree for the single input
dataset we fetched. Therefore, we need to assemble these partial phylogenies
to get the resultant evolutionary tree. Nevertheless, the way these phylogenies
need to be processed is quite different. When a bootstrapping is performed,
all these partial phylogenetic trees have the same leaves, thus, a consensus
tree must be calculated. On the other hand, splicing the input dataset into
smaller subsets, with or without overlapping, involves the construction of a
supertree.

Consensus trees

As its name suggests, a consensus tree provides a convenient way to compile
the agreement between two or more phylogenetic trees. It is built by com-
bining subtrees that take place in at least a certain percentage of the input
phylogenies. Despite being a plain concept, there have been published many
different methodologies to cope with this problem. The most extended and
used ones are the family of consensus tree methods called the Ml methods
[101]. These include the strict consensus, the majority rule consensus and the
greedy consensus trees. All these methods establish a threshold fraction l that
has to be surpassed by a subtree in order to be included in the consensus tree.
The strict consensus tree method states l = 100%, whilst the majority rule one
relaxes this condition to l = 50%, including only those subtrees present in the
majority of the phylogenies. The greedy approximation lowers the value of
l below the 50%. Thus, the subtrees of the consensus tree are first ordered
according to the number of times they appear, and then the consensus tree is

50 Phylogenetic tree production

built progressively to include all those subtrees whose support is above the
threshold and that are compatible with the phylogeny constructed so far.

Other methodologies involve a more complex preprocessing of the avail-
able information on the phylogenies in order to build the consensus tree. A
Nelson consensus tree [102] is the largest set of mutually compatible sub-
trees within the same set. If there is more than one solution set, the Nelson
consensus tree is the set of subtrees common to all those solutions. Another
well-known example is the Adams consensus tree [103], which takes into
account not only the relationship between leaves, but also their depth in the
phylogeny.

There have been many published algorithms for the aforementioned
methodologies, and they are still being implemented in recent software tools
[104–106]. For instance, the PHYLIP software suite offers a consensus tree
builder tool named Consense.

Supertrees

The supertree problem [107] involves the production of a single phylogenetic
tree (supertree) from a set of phylogenies with an overlapping subset of
sequences. Thus, the evolution represented in those phylogenies is similar,
but it does not concern to the same biological sequences. One of the first
most widely used supertree algorithms in phylogenetics was MRP (Matrix
Representation using Parsimony) [108, 109]. First, the algorithm encodes
the input phylogenies into binary characters and, afterwards, it uses MP to
construct the supertree based on the previously obtained data matrix. There
are two main problems involved in this algorithm. The first one brings back
the same discussions about the simplicity of the evolution model applied in
the MP method. Thus, other algorithms based on MRP but using ML [110]
and BI [111] have been proposed.

The second problem with MRP is the neglect of the desirable property of
every algorithm to be computed in polynomial time. As we stated before, the

4.2 Related work 51

MP method has been proved to be NP-complete, and so it is MRP [112]. Thus,
Dr. Semple and Dr. Steel developed a polynomial-time algorithm to compute
supertrees from rooted phylogenies, named MinCutSupertree [113]. It is
based on the computation of the minimum-weight cut set of a weighted graph
that represents the relationship between all the leaves of the input phylogenies.
The weight of each edge states the number of phylogenetic trees for which
the pair of leaves joined by that edge are in the same subtree, that is, there is
a path between them without going through the root of the phylogeny.

Finally, there is a proposed meta-method to fasten several supertree con-
struction algorithms that cannot cope with large input datasets, that is, when
the number of leaves surpass the few thousands barrier: SuperFine [114]. This
software tool can reduce significantly the time cost of methods such as MRP,
without having a negative impact on the accuracy of the initial algorithm.

4.2.3 Choosing the best phylogeny

As we have discussed in previous sections of this chapter, there are several
software tools to infer the phylogenetic tree of a given set of biological
sequences. Furthermore, most of these tools offer different parameterizations.
Thus, a reasonable question arises: how can one choose the best inference
method and parameterization? In other words, we want to produce the best
phylogentic tree for our input dataset. We have summarized the ML method
in Section 4.2.1. This is the main configurable approach that includes a
score computation during the inference process. The likelihood score is
computed for each site but, since those values are extremely small numbers,
it is convenient to sum their log likelihoods and report the score of the entire
phylogeny as the log likelihood. Therefore, the best phylogenetic tree will
be the one with a closer log likelihood score to 0. It is important to remark
that as the complexity of the evolution model increases, it is expected to get
an improvement in the final score. Nonetheless, this enhancement might be
the result of an over-parameterization that simply fits the model to noise in

52 Phylogenetic tree production

the data. There are a few software tools, like MrBayes in its last version
(v3.2) [97], that have included a ML score computation process to solve that
problem. Of course, another metrics can be applied: the maximum parsimony,
with the aforementioned drawbacks, and the Bayesian posterior probability,
which has been demonstrated to be unreliable under certain conditions, like
the complexity of the evolution model selected [115].

The assessment of the accuracy of new algorithms and methods is usually
performed with synthetic biological sequences and phylogenies. In general
terms, the whole data is constructed from a random topology for which a
specific evolution model is selected to generate the biological sequences of
its leaves. Thus, the true phylogenetic tree altogether with its evolution model
is known a priori for the given set of biological sequences. The process is
detailed in the supplementary material of [23]. Afterwards, every new tool
can be compared not only in terms of performance and memory consumption,
but also in terms of accuracy. In this case, besides the score function, we can
use the comparison of the inferred phylogenies with the true one. The most
extended and used metric is the Symmetric Difference of Robinson and Foulds
[116]. It uses only the topologies of the trees to count the average between FP
(false positive) and FN (false negative) rates, that is, the proportion of internal
branches appearing in the inferred tree that are not in the true phylogeny (FP)
versus the proportion of internal branches in the true tree that are missing
from the inferred phylogeny (FN). There are other metrics, like the Branch
Score Distance of Kuhner-Felsenstein [61], which takes into account not
only the topology, but also the branch lengths. There are several software
tools intended to compare phylogenies, e.g. Treedist from PHYLIP [100] or
PhyloNet [117].

4.2.4 Machine learning meets phylogenetics

Among all the approaches published that apply diverse machine learning
techniques in the production of phylogenetic trees, we found a very efficient

4.3 MEvoLib’s phylogenetic interfaces 53

algorithm proposed by Dr. Ishteva [118] using fourth order tensors to learn
the latent tree topology. This algorithm offers a different methodology in-
volving the concept of evolution models that is able to avoid the heuristic
approximation regarding the topology construction. We present this algorithm
here and explore its implementability in Section 4.4.

The core of this proposal relies on another family of provably consistent
algorithms: the quartet-based methods [119, 120]. They first resolve a set of
relations for quadruples of biological sequences, called quartets, and subse-
quently, stitch them together to form the phylogenetic tree. Determining the
quartets accurately is essential in these methods, as the assembling algorithm
calls that procedure repeatedly. Recent publications [121] have proposed
quartet algorithms focused only on the leading k singular values of the joint
probability table, where k is the number of possible characters at each site
of the sequences at the inner nodes of the tree. Despite the advantage these
approaches offer allowing k to be different from the observed number of char-
acters of the given sequences, k is still an input parameter of these methods.
Thus, the machine learning algorithm that drew our interest has developed
a new approximation agnostic to k, since in practice we rarely know this
number.

The algorithm uses the proposed quartet-discovery subroutine and recov-
ers the latent phylogeny applying a divide-and-conquer strategy. Another valu-
able property of this algorithm is its computational complexity: O(n logn),
for n input biological sequences. This makes the algorithm suitable even for
very large problems.

4.3 MEvoLib’s phylogenetic interfaces

In this section, we cover two interfaces we have included in MEvoLib to
provide a fully configurable and up-to-date solution for using phylogenetic
production software tools by means of Python scripts.

54 Phylogenetic tree production

4.3.1 MEvoLib.Inference

The Inference interface handles the phylogenetic inference process with
widely used software tools. As with Align, this interface has a single pa-
rameterization for every inference tool included in MEvoLib. The user must
provide the desired phylogenetic estimation tool, the input sequence file and
its format, the list of arguments of the tool and the number of bootstraps to
generate during the inference process. This last parameter is only available
for those tools that include this functionality. The resultant phylogeny will
be returned in a Tree object, from Biopython, together with its log-likelihood
score. The list of parameters can be extended to include the output tree file
and its format, where the phylogenetic tree will be saved. Inference also
includes the automatic format conversion functionality, which facilitates the
interaction of MEvoLib with other methods and software tools.

This interface implements a dictionary of common configurations for each
included tool too. Apart from the default configuration, which is used when no
list of arguments is presented, all the keywords follow the same nomenclature:
[evolution model]+[approximation method]. It has been designed to resemble
the model applied with the predefined configuration, improving both the code
readability and the keyword memorization. New configurations included by
the user may ignore this nomenclature.

The current version of MEvoLib supports the latest version of two of the
aforementioned phylogenetic inference tools: FastTree and RAxML.

4.3.2 MEvoLib.PhyloAssemble

Although the PhyloAssemble interface is intended for consensus tree and
supertree estimation processes, in the current version of MEvoLib only the
consensus tree estimation process has been implemented. To get the consensus
tree from a set of phylogenetic trees, the interface requires the consensus tree
tool, the input tree file, the file format, and the list of arguments of the tool.

4.4 Learning the latent DNA phylogeny 55

The resultant consensus tree will be returned in a Tree object, from Biopython.
It can also be saved as a tree file including in the parameter list its file path
and format. PhyloAssemble also includes the automatic format conversion
functionality.

This first version of MEvoLib incorporates a modified version of the
Consense method for the consensus tree estimation process. This software
covers the strict consensus and the majority rule consensus tree methodologies,
and an algorithm similar to the Nelson consensus tree method. Its source
code has been changed to allow two new arguments: the input and output file
paths. The reason for such a decision is that the default behavior of Consense
is to read a file named infile in the current working directory and to write the
consensus tree in a file named outfile in the same directory; this may lead to
execution problems in infrastructures like clusters. For instance, the working
directory in the node running the job might not be writable by the user, raising
an error at runtime.

4.4 Learning the latent DNA phylogeny

As we were not able to obtain a working implementation of the algorithm
mentioned in Section 4.2.4, we proceeded to develop a new implementa-
tion in collaboration with Dr. Balle and Dr. Requeno. Dr. Balle helped
us to fully comprehend the routines of the algorithm related with machine
learning techniques, whilst Dr. Requeno assissted us in the implementation
of the method in C++. As we have aforementioned, the algorithm is based
on the correct composition of the quartet relationships. It uses a 4th order
tensor approximation to build every possible quartet for four given sequences.
Afterwars, the algorithm applies a SVD (singular vector decomposition) to
choose the best quartet. We have taken advantage of the Eigen library [122]
to implement this subroutine.

56 Phylogenetic tree production

Once the algorithm was implemented and Dr. Balle verified it, we wanted
to compare its accuracy with other approximations. We chose the synthetic
datasets published by the research group of Dr. Warnow in 2009 [23] as
input. These sequences have been created following a specific topology and
evolution model. Therefore, the “real” phylogenetic tree is known beforehand
and we can measure the algorithm’s accuracy in terms of its result’s divergence
from the expected phylogeny. We also used the time cost results of RAxML
and FastTree published in the same paper as a means to picture the efficiency
of our implementation in the current state-of-the-art. Whilst we got promising
results in terms of efficiency, being comparable with those of RAxML, the
resultant phylogenetic trees were highly inaccurate in every case. After a
deep study on the plausible causes, we realized that the accurate results
showed in the paper of the algorithm we implemented are based on the prior
knowledge of the probability distribution of the input sequences. None of the
proposed subroutines infers this input distribution, and in real case scenarios,
this parameter is unknown. Besides, computing it separately would make
the resulting method much slower. We consider this omission a flaw in the
proposed algorithm.

4.5 Conclusions

In this chapter, we have presented two interfaces of MEvoLib designed to cope
with the production of phylogenetic trees based on preprocessed biological se-
quences. MEvoLib.Inference has been designed to provide a fully compatible
and configurable interface to facilitate the work with phylogenetic inference
software tools. On the other hand, MEvoLib.PhyloAssemble achieves the
same objectives for phylogenetic assembling software tools, i.e. consensus
tree and supertree building methods. Both interfaces also include the format
conversion functionality, very useful for the integration of different software
tools in a phylogenetic inference workflow. Moreover, we have covered a

4.5 Conclusions 57

different approximation to solve the phylogenetic inference problem. The
application of the machine learning technique aforementioned to discover the
latent tree topology from a set of biological sequences led to a dead end due
to a plausible error in the published algorithm.

As future work, we plan to extend the software tools available for both
MEvoLib interfaces. For instance, we aim to incorporate PhyML for ML, a
bootstrapping method like Seqboot of PHYLIP to apply when the inference
method cannot generate bootstraps by itself, and SuperFine as an example of
a supertree construction tool. Other methods for alignment-free phylogeny
production will also be considered.

I love fools’ experiments. I am always making them.

Charles Robert Darwin

5
Phylogenetic inference systems

In the previous three chapters of this dissertation, we have presented all the
stages usually involved in phylogenetic inference studies, from the fetching
of the dataset to the estimation of the phylogeny. An implementation of a
complete phylogenetic inference workflow integrating standalone software
tools and the methods already presented can be harsh, especially for novel
researchers without adequate programming skills. Moreover, multitude of
published works rely on similar schemes of the aforementioned procedure
but each research group usually implements them from scratch again for their
specific case of study. All those expenses could be saved if those blueprints
were implemented with some tune-up adjustments and applicability for differ-
ent scenarios. That has been the foundation for the creation of phylogenetic
inference systems for both specific and general purposes. Additionally, the
production of phylogenies, principally those involving large datasets, take

60 Phylogenetic inference systems

several hours or even days of computational work to be completed. On the
other hand, several tens or hundreds of new biological sequences are up-
loaded every month, driving the phylogenies to an outdated state in just a few
months. Thus, it is not economically neither temporally affordable to produce
phylogenies at the information’s update pace.

In the initial section of this chapter, we present two cases of how the
phylogenetic inference workflow can be performed without the usage of
phylogenetic inference systems. The second section gathers a prospection
in phylogenetic inference systems, including details about the computer
architectures in which they rely on. We focus our attention on the most
relevant systems published and, specifically, on how the resultant phylogenetic
trees could be updated to incorporate new information. In the following two
sections, we present our contributions to this topic: a phylogenetic inference
framework that is automatic and fully customizable, and a new software tool to
update phylogenies even in the large case scenario. These contributions have
been published in the conference papers [123–125] and [126], respectively.
Finally, the last section gathers the conclusions for this chapter.

5.1 Step-by-step workaround

At this point, we are able to infer the phylogenetic tree we desire from scratch
selecting the adequate software tools from all the alternatives introduced. For
such purpose, we need to link manually our phylogenetic inference procedure
or use a phylogenetic software suite like MEGA [72, 73] or PAUP* [71, 127].
Following, we provide two different examples on how it could be done.
The first one develops a new Python script for the study of the evolutionary
relationship of two hmtDNA genes. It will use only MEvoLib [28] and
Biopython [13] to achieve its objective. The second example examines the
available amino acid evolution models before inferring the phylogenies for
the protein-encoded genes of hmtDNA. This last case is based on the work

5.1 Step-by-step workaround 61

performed by Enrique Miguel during his undergraduate project in 2012 [128].
In this occasion, command-line calls and independent scripts handle all the
methods.

Studying MT-ATP6 and MT-ATP8 genes with MEvoLib

We are going to study the molecular evolution of two hmtDNA genes: MT-
ATP6 and MT-ATP8. The example will illustrate the potential and limitations
of MEvoLib following the workflow presented in Figure 5.1. The question
we pose is if they have evolved similarly based on the following information:
i) both genes encode proteins that belong to the same subunit of the ATP
synthase enzyme; and, ii) these two genes are located in the same strand and
they have an overlapping of 42 nucleotides.

Figure 5.1: Phylogenetic inference workflow implemented with MEvoLib.

First, we are going to download all the hmtDNA sequences from GenBank
that have any information related with the MT-ATP6 or MT-ATP8 genes. The
basic query to achieve this purpose would be: “homo sapiens”[porgn] AND
mitochondrion[Filter] NOT mRNA[Filter] AND (atp6 OR atp8). However,
based on the information we have gotten in the study of the Genes method
we have presented in Section 3.3.3, these genes are referred with diverse
nomenclatures. Therefore, our fetching source code is:

from MEvoLib.Fetch.BioSeqs import BioSeqs

seq_db = BioSeqs.from_entrez(

email="eg@test.com",

entrez_db="nuccore",

62 Phylogenetic inference systems

query='"homo sapiens "[porgn] AND

mitochondrion[Filter] NOT mRNA[Filter] AND

(atp6 OR atpase6 OR "atpase 6" OR "atp

synthase 6" OR "atpase subunit 6" OR "atp

synthetase subunit 6" OR "atp synthase f0

subunit 6" OR "atp synthase fo subunit 6" OR

atp8 OR atpase8 OR "atpase 8" OR "atp

synthase 8" OR "atpase subunit 8" OR "atp

synthetase subunit 8" OR "atp synthase f0

subunit 8" OR "atp synthase fo subunit 8")')

seq_db.write("hmtDNA_ATPs_all.gb")

We were able to download 32548 sequences with the first query, whilst
the second one fetched 32626 sequences (on 07/Jul/2016). In the downloaded
dataset are two hmtDNA sequences that have errors in their biological infor-
mation, puzzling the genes’ extraction. Hence, we are going to remove them
from the downloaded dataset:

del seq_db.data["DQ862537 .1"]

del seq_db.data["FR695060 .1"]

seq_db.write("hmtDNA_ATPs_filtered.gb")

Next, we need to extract the genes we are interested in from the filtered
dataset. For this example, we are going to focus exclusively on the CDS
feature. In a complete study, we would also be interested in the gene feature
to include those sequences that might have only tagged the genes under this
feature. The following source code presents the gene extraction applying the
Genes method:

from MEvoLib import Cluster

gene_dict = Cluster.get_subsets("genes",

"hmtDNA_ATPs_filtered.gb", "gb", ["CDS"])

Afterwards, we extract those elements in the dictionary that refer to the
MT-ATP6 and MT-ATP8 genes and we save the corresponding sequence

5.1 Step-by-step workaround 63

fragments in two separated FASTA files. The software tool we are going to
use to infer the phylogenetic trees expects an alignment as input. Thus, the
following code implements the MSA procedure for the MT-ATP6 gene using
MAFFT [29] in its default configuration (--auto):

from MEvoLib import Align

Align.get_alignment("mafft", "atp6.fasta", "fasta",

args="default", outfile="atp6.aln",

outfile_format="fasta")

The next stage in our workflow is the phylogenetic inference. We are
going to use the Inference interface from MEvoLib, selecting the FastTree tool
[81] in its default configuration (GTR+CAT evolution model). The resultant
MT-ATP6 gene tree and its log-likelihood score will be returned, and the tree
will also be saved in a NEWICK file:

from MEvoLib import Inference

tree , score = Inference.get_phylogeny("fasttree",

"atp6.aln", "fasta", args="default",

outfile="atp6.newick", outfile_format="newick")

The inference workflow for this research would be completed with these
last results. To extend our study to include the last stage of the workflow
shown in Figure 5.1, we could be interested in analyzing the consensus tree
composed from the MT-ATP6 phylogenies of different species, using the
Consense method from PHYLIP [100] in its default configuration (majority
rule consensus):

from MEvoLib import PhyloAssemble

PhyloAssemble.get_consensus_tree(

"consense", "atp6_species.newick",

"newick", args="default",

outfile="atp6_species.cons",

outfile_format="newick")

64 Phylogenetic inference systems

Human mtDNA phylogenies and their protein counterparts

This study starts with the fetching of biological sequences, like the previous
example. In this case, we downloaded 14915 hmtDNA sequences form
GenBank which length was in between 16000 and 17000 nucleotides. Those
were all the sequences available when this study was performed, back in 2012.
Afterwards, the sequences were pairwise aligned with the rCRS to determine
the location of the protein-encoded genes of each sequence. Enrique Miguel
implemented a script to perform the alignment automatically using MUSCLE
[46] v3.8.31 in its default configuration. The script extracts sequentially each
downloaded sequence and aligns it with the rCRS. Once the alignment is
completed, the script removes those sites of both sequences corresponding to
gaps introduced in the rCRS during the alignment process. Thus, the genes’
starting sites will be the same as those in the rCRS. The script took a week of
work in a regular desktop computer to complete the task. Since we wanted
to get the protein encoded in each hmtDNA gene, we were concerned about
the possibility of finding gaps in the genes introduced by the alignment tool.
This would entail a problem in the translation stage, where we replace each
codon in the RNA string by its corresponding amino acid, leaving at least
one codon without the chance of being correctly translated. An analysis of
the aligned sequences returned 6 sequences that matched the presented issue,
and they were removed from our dataset. Afterwards, we separated each
protein-encoded gene from their sequence and we finished this stage with 13
gene files.

A second script was developed to perform the transcription and translation
processes for each sequence. The former just replaces the T nucleotide by its
corresponding RNA value (U) except for the gene ND6, which requires to be
inverted beforehand. This inversion involves not only reading of the sequence
from the end towards the beginning, but also replacing each nucleotide by
its complementary: A by T, C by G, and vice versa. The latter translated
each codon by its corresponding amino acid. If we found a codon with an N

5.2 Related work 65

character, which represents that there is a nucleotide but we ignore which one
is, it was translated by X . It has the same function in proteins as N in DNA.
If the gene sequence was incomplete, it was filled with X values in order to
have all the substrings with the same length.

Finally, a model selection process was performed in order to estimate
the best phylogeny for each protein. For this task we chose ProtTest [93]
v3.0. Among the 120 amino acid evolution models tested in that version, and
the 4 different evaluation methodologies included, approximately an 80%
of the cases returned the model MtMam [129] as the best description, and
another 10% selected mtREV [130] as the best one. These results agree with
diverse studies published about the three most suitable evolution models for
mitochondrial proteins in vertebrates [131]: mtREV, MtMam and MtArt [132].
Thus, we used the MtMam evolution model with RAxML [79] v7.0.3 to infer
the phylogenies of each protein dataset.

5.2 Related work

As we have manifested with the two previous examples, researchers have to
perform an adequate state-of-the-art analysis and review several software tools
in order to achieve accurate results for their phylogenetic studies. Moreover,
basic programming skills are advisable to arrange automatically the input and
output data of each procedure. Whilst the former is always desirable for a
good usage of the methodologies, the latter should be spared in most cases.
Putting aside the learning time cost, the resemblance of the scripts developed
for many evolution studies represent an expense that could be easily avoided.
For instance, it is almost a routine to develop scripts to convert between file
formats to adjust the output of one software tool to the input of the next one.

Besides, using large datasets as input has disclosed overflow problems
when stressing conventional methods and tools. It has been shown that
some of them turn to be inaccurate when moving from small datasets to

66 Phylogenetic inference systems

big ones [90]. Parallel execution is one of the most suitable techniques that
can be applied to reduce running time. Efforts in this direction have been
focused on fine-grain parallelization of standard algorithms and application
of algorithmic engineering techniques to improve implementations [76, 79].
Some of these undertakings have harvested remarkably good performance
measures, but nonetheless, typical algorithms were not designed bearing in
mind the concurrency. Thus, the number of independent tasks at a given
moment is limited, as it is their individual load. Moreover, the computation of
large and accurate phylogenies remains as one of the most challenging fields
in the area [133] because the size of the input data and the complexity of the
model pose great statistical and computational challenges [134].

The phylogenetic inference procedure we have been thoroughly exploring
in the past chapters states a prevalent scheme in most molecular evolution re-
searches. The two cases presented in the previous section portray an excellent
example. Workflows have become a widely spread abstraction for sharing
complex scientific methods. They capture experimental methods designed
by scientists to test a given hypothesis and translate them into a pool of co-
ordinated computational tasks in an automated execution environment [135].
Hence, workflows have been key to design phylogenetic inference systems.
Working with evolution models using both intensive data and computing
resources has generated a growing interest in building global resources for
computing, sharing knowledge about their workflows of tasks as well as big
databases of biological data. This has led to exploit the capabilities of both
specific hardware platforms, like FPGAs (Field Programmable Gate Array),
GPUs (Graphics Processor Unit) and CBEs (Cell Broadband Engine), and
HPC (High Performance Computing), HTC (High Throughput Computing)
or Cloud facilities available [136–138]. Furthermore, we cannot disregard the
unaffordable time cost that emerges when performing exhaustive phyloge-
netic inference studies, even when we take advantage of highly parallelizable
architectures.

5.2 Related work 67

Next, we will perform a further exploration on the computing platforms
most phylogenetic inference systems are based. After that, we will present
four of the most well-known phylogenetic inference systems published. Fi-
nally, we will cover the problem of the elevated time cost of large-scale
phylogenetic studies.

5.2.1 Computing platforms

The following review about computing platforms, paying especial attention to
those useful for large phylogeny inference tasks, has been organized according
to three main levels of abstraction: cloud computing approaches, ad-hoc
hardware devices and HPC/HTC facilities.

Cloud computing infrastructure is becoming widely used because Web
Services offer the opportunity to gain flexible, on-demand, access to remote
storage, processing power and other hardware facilities. This way the majority
of computational processing occurs remotely in external service providers
[139]. In the bioinformatics community, Taverna [140, 141], Galaxy [142],
Tavaxy [143] and bioKepler [144] are some of the most successful suits for
deploying workflows in the cloud. The growth in this field has impelled
the availability of workflow repositories which provide useful resources for
developing new analysis methods [136]. Nevertheless, due to the prominent
advantages of workflow approaches based on cloud computing, it cannot be
neglected that there still exist big challenges in standardization of formal
workflow specifications as well as in managing the heterogeneity and ever-
changing nature of distributed services [141, 143, 145].

Hardware accelerators based on FPGAs, GPUs and CBEs provide mean-
ingful support for exploiting the specific granularity levels of parallelism,
which are inherent to widespread algorithms, used in repetitive tasks in molec-
ular biology. These platforms can provide both speed-up and energy efficiency
improvements when compared to conventional computing architectures based
on general purpose processors. FPGA-, GPU-, or CBE-based systems can

68 Phylogenetic inference systems

achieve better performance than those based on CPUs on certain workload. In
the context of phylogenetic inference, it can be noticed that well-known costly
algorithms such as ML have been a spotlight for their implementation in all
the aforementioned computing architectures [146–148]. Nowadays, these
devices have become object of interest because they can be much more easily
prototyped than ad-hoc multicore processors integrating large number of pro-
cessing elements on a single chip [149]. Nevertheless, as coprocessors based
on novel CPU approaches such as the Intel MIC (Many Integrated Core)
architecture are becoming available, standard x86 development toolchains
(icc, pthreads, OpenMP) can be used straight away to implement ML [150].

The wide spread use of HPC and HTC facilities have provided an easy
access to biologists to a quite simple execution of parallel phylogenetic
inference tasks. From the technical point of view, one of the most challenging
issues in the field is how to scale widely used tools according to the growth
of input datasets [151]. In this context, load balancing for both performance
and power efficiency remain as some of the most challenging issues [152],
together with improving concurrent data access to datasets with exponential
growth in terms of complexity and volume [153]. For the particular case
of core phylogenetic inference algorithms such as ML, there exists a big
interest in developing highly parallel implementations capable of improving
resource exploitation in HPC facilities [154]. Finally, concerning cloud
computing platforms, it can be noticed that one of the most challenging issues
is to develop meaningful interoperability between HPC and ABDS (Apache
Big Data Stack) architectures [155] as well as their integration with cloud
computing approaches [137].

5.2.2 Prearranged solutions

In the last years, diverse phylogenetic inference systems have been published
to estimate fast and accurate phylogenetic trees. SATé-I [23], SATé-II [24]
and DACTAL [25] are good examples of general-purpose systems, performing

5.2 Related work 69

efficiently even with large datasets. The workflow of these three systems
relies on the circular dependency of the phylogenetic inference methodologies
that require a MSA as input. As it is shown in Figure 5.2, we cannot expect to
infer a reliable phylogenetic tree if the input MSA is inaccurate. Moreover, a
better incremental MSA based on evolution relationships cannot be computed
with a vague phylogeny. Thus, both versions of SATé and DACTAL have an
iterative-refinement design where, once an initial MSA and phylogenetic tree
are computed, the (i−1)-th phylogeny is used to improve the accuracy of the
i-th MSA, and that new result is used to infer a more precise phylogenetic
tree. The process finishes when the i-th phylogeny does not represent an
enhancement to its previous one, or when a time limit is reached.

Figure 5.2: Existing accuracy-improvement feedback between phylogenetic
inference and MSA processes.

The design foundation of SATé is a divide-and-conquer strategy. After
the initial phylogeny is estimated with ML, the different non-overlapping
subtrees of up to a maximum number of leaves are extracted. Then, the system
computes the MSA of each subset of biological sequences. Following the tree
topology backwards, the smaller MSAs are merged until the system obtains
the full MSA. Finally, a new phylogenetic tree is estimated using again ML
with the new MSA. The main differences in both versions of SATé are the
methodology used for the subtree division and the MSA merging tool. Despite
applying the same divide-and-conquer approach, the way DACTAL carries
out the map and reduce procedures diverges. Whilst SATé estimates both
the MSA and the phylogenetic tree for the given input dataset of biological

70 Phylogenetic inference systems

sequences, DACTAL focuses solely on the inference task. First, the system
computes a starting MSA and phylogenetic tree. Afterwards, the phylogeny
is decomposed into overlapping subtrees with a prefixed limit in the number
of leaves per subtree and the amount of overlapping leaves between subtrees.
Next, a MSA and a phylogeny are computed for each subset. Finally, a
supertree method, i.e. SuperFine [114], is used to merge the subphylogenies,
estimating the final phylogenetic tree. This last result serves as input for the
next iteration, as it happened with the previous systems.

ZARAMIT [26, 27] constitutes an excellent example of specific-purpose
systems. It infers the phylogenetic tree from a set of complete hmtDNA
sequences. The workflow is an acyclic graph composed by the main stages
presented for a common phylogenetic inference process. ZARAMIT com-
putes the MSA by a pairwise alignment of each hmtDNA sequence with
the rCRS, following the same algorithm we introduced in the second exam-
ple of the former section of this chapter. Taking advantage of the hmtDNA
haplogroup knowledge, it arranges an MSA for each haplogroup. This step
reduces the total computational cost of the inference stage. Next, a model
selection process is applied to each subset to determine their best evolution
model. Afterwards, the system infers each phylogeny with the resultant
model. Finally, the hmtDNA haplogroup tree is used as template to join the
phylogenies. Another relevant example is PhyloTree [41], which provides a
detailed hmtDNA haplogroup phylogeny reconstruction almost yearly. The
main issue about this system is its privacy: there is, to our knowledge, no
system design or technical details available, apart from the lack of informa-
tion about the source of the biological knowledge applied to reconstruct the
hmtDNA phylogeny.

All these systems grant a fair install-and-launch platform based on fixed
configurations used for each stage of the inference process according to a
set of given parameters. This outlines a lack of flexibility for end-users
because they can neither change the parameters/tools nor modify or adapt the

5.2 Related work 71

system’s workflow1. Furthermore, SATé and DACTAL disregard the available
biological knowledge or special techniques for specific data. For instance, the
use of evolution models that reflect the specific patterns of change observed
in each dataset is crucial for obtaining realistic phylogenies, but the model
selection process has been avoided in all of them.

5.2.3 Update phylogenies without rebuilding

The year gap in between updates of the hmtDNA haplogroup phylogeny of
PhyloTree endorses the associated time and economic costs of inferring very
large phylogenetic trees. In the meantime, hundreds or even thousands of new
biological sequences are sequenced thanks to NGS technologies. Hence, new
researches can be delayed for more than a year waiting for the next update of
the phylogenies or, even worse, their hypotheses can be based on outdated
information concluding with misguided results.

On the other hand, due to the fast availability of new biological sequences,
most of them cannot undergo independent curation: the metadata are neither
standardized nor homogeneous. Hence, the individual quality of a sequence,
measured as its accuracy with respect to the original copy, is a priori unknown.
Sequencing errors, that is, the set of sites where the value differs from its
counterpart in the original sequence, may occur due to contamination —as
for the rCRS [55]— but also because NGS techniques. They replicate very
small segments of DNA and sort them together by local alignments, in which
shorter segments are more susceptible to yield false positives. The error rates
of current technologies, known in some cases [156], unknown in others, are
far away from negligible. In addition, contamination is not a measurable
factor in isolation.

Both problems can be solved using the evolutionary information for
the detection of sequencing errors whilst we add the new sequences to the
phylogeny within global updates. A phylogeny allows grouping each new

1Based on our experience, at least it is not easy to perform such a task.

72 Phylogenetic inference systems

sequence with its close relatives and measuring similarity between these and
their ancestors. Representative mutations of each group are respected almost
universally, and exceptions to this conservation are almost certainly due to
errors in the sequencing process. Although it is possible to discover new
subgroups and unusual variations, the probability of these facts will depend
on the current state of the phylogenetic tree. The resultant phylogeny will not
be as accurate as a newly inferred one, but it is the best alternative among the
options.

There is, to our knowledge, no previous work on automatic sequence
evaluation using evolutionary information. Nevertheless, there do exist some
methods for the placement of sequences into a phylogeny. pplacer [157] is a
software application designed for the phylogenetic placement of biological
sequences. It uses some techniques like ML and BIC (Bayesian Information
Criterion) [158] to select the closest node of the reference tree to the sequence.
Unfortunately, it works with a specific type of data called metagenomics,
making it difficult to be applied to our target data. Another placement tool we
have found is part of the software toolkit of the Ribosomal Database Project
[159]. Its main drawback is that it only works with ribosomal RNA sequences,
so all the processes applied are of specific purpose. Additionally, it is only
available online.

5.3 PhyloFlow

PhyloFlow [123–125] is a flexible framework to design and customize phylo-
genetic inference workflows that can be deployed in workstations (standalone
version) and clusters. There exists another version of the same system based
on SaaS (Software as a Service) made by Alvaro Recuenco and advised by
Dr. de Miguel Casado and Dr. Fabra [160]. PhyloFlow is based on a previous
phylogenetic inference system we published in 2011 [161, 162], which was
able to perform the phylogenetic estimation of large datasets using model

5.3 PhyloFlow 73

selection. PhyloFlow improves this previous system including the capability
of building far more flexible and customizable systems, among other new
features. Next, we introduce the design and implementation of PhyloFlow.
After that, we show the study of the workload we have performed of every
component of the system, in terms of execution time and memory. Finally,
we present two practical applications of PhyloFlow.

5.3.1 Design and implementation

The design of PhyloFlow follows a black box methodology that provides the
appropriate modularity to assess the requirements for the on-the-fly param-
eterization and tool-and-deployment flexibility addressed. Moreover, it has
been developed to ease the addition of new tools: the existing ones not already
included or those who will come out in the future. As shown in Figure 5.32,
it has a two-part design: the configuration front-end and the phylogenetic
analysis system itself. We refer from now on as phylogenetic analysis to the
workflow involving the aforementioned phylogenetic inference procedures
and the processes involved in the posterior analysis of the results. We will
cover these analyses on the next chapters of this dissertation. Once the user
defines a specific configuration for the workflow to be deployed, the resultant
system can be launched. The system will handle automatically the interaction
between the chosen stages, preventing the concerns of the user to this matter
and providing a high robustness in the ad-hoc system built. The design also
includes a stage database that works as a checkpoint to allow the system to
recover from errors and shutdowns of the hardware system without the need
of starting again from the beginning. Furthermore, those backups also provide
a huge feedback of what has been done in each step, in case the user wants to
reproduce any experiment or check them by other means.

2All the design images have been standardized using BPMN (Business Process Model
and Notation), an expressive process modeling language that has already been used in the
bioinformatics domain [163].

74 Phylogenetic inference systems

Figure 5.3: Design of PhyloFlow in BPMN. The Front-End handles the
configuration of the phylogenetic inference system. The framework has five
modules, each representing one of the aforementioned stages that are part of
most phylogenetic analyses.

5.3 PhyloFlow 75

PhyloFlow has been implemented using HTCondor [164] and its meta-
scheduler DAGMan [165]. This decision facilitated the transition from the
design to the implementation. Additionally, the HTC of HTCondor grants
the parallelization of massive amounts of processes in each phase, reducing
considerably the time cost of each module. This technology, in combination
with the data decomposition processes, allows handling very large datasets
with high accuracy. This is based on the same concepts as DACTAL or
SATé. The iterative refinement basis of the aforementioned systems has been
implemented with a meta-script that controls the execution of the workflow.
All the scripts implemented in PhyloFlow have been programmed in Python
and they are compatible with both v2.7 and v3.3.

The Front-End aims to help in the translation of the user’s desired exper-
iment into a file that the processes involved can read and understand. This
objective is achieved by a question/answer procedure involving the end-user
and the configuration setup process, where the description of the tasks that
relate tools, parameters and input-output files for each stage are defined.
Besides, the interaction between stages can be modeled according to the
requirements of the workflow scheduler for a given platform (e.g. standalone,
cluster, grid, cloud,. . .) or even for mixed configurations. Once the configu-
ration process has been completed, the system is ready to be deployed and
executed.

The former stage of PhyloFlow consists in the automatic fetching of the in-
put dataset of the configured system. As we have stated before, many studies
in the field of phylogenetics are based on evaluating existing solutions for new
datasets [166], or testing different parameters or methods using well-known
datasets to perform a subsequent comparison with previous results [90]. Fig-
ure 5.4 shows the design of this stage, fetching the dataset(s) from local file(s)
or from a biological database, like GenBank [17]. The backbone of this task
during the implementation was the selection and incorporation of biological
databases. Currently, the system allows to access GenBank through the Entrez

76 Phylogenetic inference systems

Figure 5.4: Design of PhyloFlow’s fetching stage in BPMN. The dataset
or datasets can be fetched from both local files and public databases, like
GenBank.

5.3 PhyloFlow 77

module of Biopython. We have also included a few predefined queries of
specific biological types of data for inexperienced users. For example, the
user can introduce human mtDNA as keyword in the configuration process
and the system will access to GenBank and fetch all the resultant sequences
of the following query: “homo sapiens”[Organism] AND mitochondrion[All
Fields] AND “complete genome”[Title] NOT chromosome[All Fields] NOT
mRNA[Filter].

Generating a good data management plan has a double purpose: to es-
tablish the best feasible foundation to infer an accurate phylogeny for the
given input dataset, and to improve the performance of the system. Hence, the
second stage has a high impact on the system’s capability to provide a com-
pletely adaptable configuration. Its design, presented in Figure 5.5, reflects
the flexibility achieved both in the aforementioned performance aspects and
in the application of biological knowledge. There are three main procedures
included in this stage that can be selected iteratively multiple times. The first
one is the MSA, which will be applied individually to each input dataset. In
the current version of PhyloFlow, we have included MAFFT [29], Clustal
Omega [45] and MUSCLE [46]. The second procedure deals with the row
division, where each dataset is divided into subsets of full sequences, follow-
ing different criteria: a naïve division, a biological division, that is, a division
guided by biological knowledge, e.g. haplogroup clustering for hmtDNA
sequences, and an overlapping division. The latter is achieved through PRD,
as we did with MEvoLib. The last procedure is concerned with the column
division, where each dataset is divided into subsets of fragments from all the
sequences. As in the previous case, diverse criteria can be applied to perform
this process: a naïve division and a biological division. For instance, the latter
could be a gene division for DNA sequences. The second and third procedures
represent a divide-and-conquer strategy, enabling the application of current
tools used in the next phases, or improving their time cost. Moreover, if the
system is going to be executed in a multicore/multithreaded platform, this

78 Phylogenetic inference systems

Figure 5.5: Design of PhyloFlow’s data management plan stage in BPMN.
The datasets fetched can be aligned or splitted in subsets of sequences (e.g.
haplogroups) or fragments (e.g. genes).

5.3 PhyloFlow 79

data slicing process will improve the total time cost trough parallelization.
Additionally, this stage can be completely skipped for specific scenarios, e.g.
when the phylogenetic estimation process does not require an MSA [60].

The third stage focuses on the phylogeny estimation. In the current
version of PhyloFlow, we have focused on ML methods due to its extensive
use nowadays, the impractical time cost of the Bayesian inference methods
for large datasets [98] and the accuracy and statistical downsides of parsimony
and some distance-based methods. Besides, a special attention to include
model selection in ML has been considered, based on the hypothesis that it
can achieve a deep impact on the accuracy improvement for the phylogenetic
estimation process. It is important to highlight that using the same model for
every input dataset may not produce an accurate phylogeny. On the other
hand, testing every existing evolution model for each input dataset can be
highly intensive in time cost. In order to guarantee statistical robustness, a
bootstrapping procedure can be included within the inference process. The
complete design of this stage is displayed in Figure 5.6. This stage provides
three different tools for ML: PhyML [77], RAxML [79] and FastTree [81].
The first and second tools can be used to explore a broad selection of the best
evolution model, whilst the third one has been included for its widespread
use and low computation costs. Apart from using the bootstrapping option
included in some of those software tools, PhyloFlow incorporates Seqboot
from PHYLIP [100]. We made a minor source code modification to control
the path creation of the output file, making it fully compatible with our
framework.

As shown in Figure 5.7, the fourth stage will assemble all the previously
obtained phylogenies. This procedure can be completely skipped or repeated
several times iteratively. The former is intended for workflows where the
previous stage has generated one single phylogenetic tree as output, whilst
the latter covers the scenarios where more than one division has been per-
formed at the data management plan stage. The configuration process has

80 Phylogenetic inference systems

Figure 5.6: Design of PhyloFlow’s phylogenetic estimation stage in BPMN.
The phylogenetic inference procedure can be applied with or without boot-
strapping.

5.3 PhyloFlow 81

Figure 5.7: Design of PhyloFlow’s phylogenetic assembling stage in BPMN.
The procedures available in this module are suitable only for those workflows
where a data division or a bootstrapping have been performed in previous
stages.

82 Phylogenetic inference systems

been programmed to offer only viable options within the processes selected
so far. For instance, the user will not be able to build a workflow with a
phylogenetic assembling process if the previous stage is going to output a sin-
gle phylogenetic tree. The implementation of the fourth stage of PhyloFlow
bears on diverse popular methods to assemble phylogenies. The first one is
the consensus method. This procedure is achieved through Consense from
PHYLIP. As it happened with Seqboot in the previous stage, this tool has also
been modified to have more control on the creation of the output file. The
second method is SuperFine, for supertree constructions. The third alternative
is the assembling method we published in 2011 [161], which aims to build
a phylogeny from non-overlapping phylogenetic trees based on a topology
profile. The key idea of this method is to take advantage of the biological
knowledge of well-known relationships of clusters of certain types of data.
Usually, their affinity is drawn in a phylogenetic tree (profile tree). Hence,
the leaf of each cluster in the profile tree can be replaced by its matching
phylogeny to obtain the final supertree. This process is similar to the final
stage of ZARAMIT.

The last stage of PhyloFlow has been designed to group the subsequent
analysis and mining of the resultant phylogeny, such as the incorporation of
the analysis software tools we will present in Chapters 6, 7 and 8.

5.3.2 Workload characterization

We developed a preliminary evaluation of the methods included in the current
version of PhyloFlow. For such purpose, we generated several datasets with
random complete hmtDNA sequences from GenBank. The initial estimations
obtained can be used for a latter evaluation of the scalability of any customized
system. The computer used was an Intel(R) Core(TM) i5-4440 CPU @
3.10GHz with 16G DIMM DDR3 1600 MHz.

The characterization of the workload shown in Tables 5.1, 5.2, 5.3 and
5.4 is based in terms of procedures, execution time and memory usage. It

5.3 PhyloFlow 83

outlines the complexity stemming from the inherent features of the input data
(number of sequences, length variability and heterogeneity) together with the
wide pool of tools applicable along the inference workflow, especially if we
consider the wide range of parameters available for each tool.

Table 5.1: Workload characterization of the fetching stage.

Procedure Fetch hmtDNA seqs. from GenBank
Num. Seqs. 10 100 1000 10000
Time(s) 2.44 4.27 39.66 334.18
Mem.(MB) 28.06 40.14 160.68 3114.63

5.3.3 Practical applications

We designed PhyloFlow to achieve two main objectives: i) to grant the
recreation of other existing phylogenetic inference systems; and, ii) to prove
its capability to work even with very large input datasets. As we will show
below, PhyloFlow generates an enhanced version of the original system, as
it will include the customization and operability under different computer
architectures offered by our framework. The latter objective will be proved
generating a workflow based on the procedure followed by hmtDNA experts in
ZARAMIT. As we have already stated, the hmtDNA is a real and challenging
large-sized problem.

Recreation of an existing system: DACTAL

We have selected DACTAL as template to prove the recreation capabilities
of PhyloFlow. After fetching the desired dataset, DACTAL uses MAFFT
--parttree, a performance-oriented MSA method, and FastTree to quickly
generate the initial phylogenetic tree required to start its iterative procedure.
Next, the PRD process is applied to this initial phylogenetic tree and the

84 Phylogenetic inference systems

Ta
bl

e
5.

2:
W

or
kl

oa
d

ch
ar

ac
te

ri
za

tio
n

of
th

e
da

ta
m

an
ag

em
en

tp
la

n
st

ag
e.

H
gs

.s
ta

nd
s

fo
rh

ap
lo

gr
ou

ps
.

Pr
oc

ed
ur

e
M

SA
C

ol
.d

iv
is

io
n

R
ow

di
vi

si
on

C
on

fig
ur

at
io

n
M

A
F

F
T

C
lu

st
al

M
U

SC
LE

N
aï

ve
G

en
es

N
aï

ve
H

gs
.

P
R

D
-
-
a
u
t
o

O
m

eg
a

10
0

se
ts

10
se

ts
25

&
4

N
um

.S
eq

s.
40

0
10

00
10

0
10

00
10

10
0

Ti
m

e(
s)

27
.3

8
26

13
3.

06
24

80
.3

7
8.

08
10

.5
8

2.
12

22
8.

85
29

4.
12

M
em

.(M
B

)
42

8.
49

17
10

.0
4

40
21

.3
1

43
2.

46
19

.0
8

15
0.

00
14

.4
5

55
.1

0

5.3 PhyloFlow 85

Table 5.3: Workload characterization of the phylogenetic estimation stage.

Procedure Bootstrapping ML
Configuration Seqboot PhyML RAxML FastTree

10 bootstraps GTR+CAT GTR+CAT GTR+CAT
Num. Seqs. 100 10
Time(s) 2.88 75.38 1.47 4.09
Mem.(MB) 16.03 10.58 4.30 9.76

Table 5.4: Workload characterization of the phylogenetic assembling stage.

Procedure Consensus Profile tree Supertree
Configuration Consense Haplogroups SuperFine
Num. Seqs. 100
Phylogenies 10
Time(s) 0.12 1.41 4.07
Mem.(MB) 10.78 11.12 17.59

subsets of sequences are aligned again, this time with MAFFT --auto. Later
on, each MSA is used to infer its phylogeny. Finally, the final phylogenetic
tree is estimated by SuperFine. As we have aforementioned, PhyloFlow
includes all the software tools required to make an exact replica of this
workflow. The meta-script would be in charge of the iterative refinement
process. Additionally, this reproduction can be customized, changing either
the method or the parameters used at any step. Advanced and expert users
could improve significantly the accuracy of the resultant phylogeny taking
advantage of this added feature, e.g. picking a more realistic evolution model
in the inference stage for the biological data fetched.

86 Phylogenetic inference systems

Phylogenetic inference on very large scenarios: hmtDNA

Concerning the hmtDNA phylogenetic inference study, the first step is to fetch
all the hmtDNA biological sequences to get the most updated result. Thus,
the workflow would start with a fetching process from GenBank using the
predefined query for complete hmtDNA sequences. Based on the workload
presented on Table 5.1 and the number of sequences at GenBank shown in
Figure 1.3, this process would take roughly 20 minutes.

Applying the biological knowledge available for hmtDNA, the input
dataset can be divided into 35 subsets corresponding to the main haplogroups.
Afterwards, each subset can be separated into 38 subsets with a gene splicing
based on its genetic code. Hence, this multiple division procedure would
end up with 1330 (35×38) datasets which must be aligned before moving to
the next stage. The estimated sequential cost of the aforementioned process
based on Table 5.2 is 8 days. The execution time related to this stage can
be significantly reduced by taking advantage of the inner parallelism of the
disposed architecture, making a first division of the input dataset into one
subset per available core. Both distributions can be performed separately. The
1330 MSAs must be computed after the fragments are rearranged in their
corresponding files. The results of this stage will probably have a negative
impact in the performance of the whole system due to their unbalanced nature.
For instance, the smallest haplogroup has less than 10 sequences, whilst the
largest possesses more than 4000. Something similar happens with the gene
lengths (70 vs 1800 nucleotides).

For the phylogenetic estimation stage, we can use the same 88 evolution
models of the first version of jModelTest [92] to include a model evaluation.
The number of bootstraps can be set up to 200, a good value in the recom-
mended range of 100 to 1000. New problems arise at this point. The first one
is concerned with the amount of processes to be created: for the model evalu-
ation with PhyML, we would have 117040 tasks, and for the bootstrapping
step, the system would generate 266000 processes. The second problem is

5.4 PHYSER 87

derived from the first one: the total time required to execute the whole stage.
Using the workload characterization of this stage at Table 5.3, the sequential
execution time of the whole stage would be about 2078 years. In addition,
PhyML does not work with datasets constituted by more than 4000 sequences;
hence, some haplogroups would require an additional data management plan
processing beforehand. Finally, the phylogeny of each haplogroup is merged
applying our profile tree process at the phylogeny assembling stage, which
would take about 7 minutes (Table 5.4). The phylogenetic profile incorpo-
rated to PhyloFlow has been extracted from PhyloTree, keeping only the tree
composed by the 35 main haplogroups.

5.4 PHYSER

PHYSER [126] is a phylogenetic inspired algorithm to assess the quality of
new sequences by their location in the reference tree. As a byproduct, we can
use PHYSER to update the phylogenetic tree with new published sequences,
thus offering a good compromise between accuracy and an up-to-date state
of the phylogeny between its global updates. The algorithm provides the
classification or qualitative value of the input sequence, the total number of
differences that are found between the closest node of the phylogeny and the
input sequence, i.e. distance, and the list of possibly erroneous sites.

5.4.1 Design and implementation

PHYSER draws inspiration from the expert procedures applied to the incre-
mental construction of MITOMAP’s phylogeny [34]. The algorithm is based
on the fact that we are not able to determine whether a mutation is real or not
just by looking at the sequence to which it belongs. The evolution knowledge
can be very helpful to assess the quality of a sequence. A phylogenetic tree
encloses a lot of information to deduce how a specific sequence might have

88 Phylogenetic inference systems

evolved, being straightforward to verify the new sequence regarding its where-
abouts in the phylogeny. Undoubtedly, an accurate and truthful phylogenetic
tree is vital to obtain reliable results. We assume that every given phylogeny
meets this condition. Thus, PHYSER locates the place in the phylogeny
where the input sequence fits better and then, it evaluates the quality of the
sequence with the information of its neighborhood sequences. Algorithm 5
shows the details of its implementation.

Algorithm 5: PHYSER algorithm
Data: s (new sequence), r (reference sequence), T (phylogeny)
Result: v (evaluation of s), T̂ (updated phylogeny)

1 root(T)←− Ni;
2 while ¬leaf(Ni) ∧ (Ni−1 ̸= Ni) do
3 Ni←− Ni−1;
4 reference_filter(s,r,T,Ni)←− Ni;
5 if Ni−1 == Ni then
6 hamming_filter(s,T,Ni)←− Ni;
7 end
8 end
9 reference_distance(s,Ni)←− d;

10 if d ≤ threshold1 then
11 “RIGHT”←− v;
12 else if d ≤ threshold2 then
13 “CAUTION”←− v;
14 else
15 “WRONG”←− v;
16 end
17 Set s as sibling of Ni in T ←− T̂ ;

The Reference filter computes the reference distance (Algorithm 6) for the
sequence at the given node Ni and all its children nodes. The method returns
the node or nodes with the lowest distance.

The Hamming filter calculates the hamming distance (Algorithm 7) for
the sequence at the given node Ni and all its children. This method returns

5.4 PHYSER 89

Algorithm 6: Reference distance
Data: s (new sequence), r (reference sequence), sT (sequence from T)
Result: d (reference distance between s and sT)

1 align(sT ,r,s);
2 len(s1)←− m;
3 empty_list←− l;
4 for i ∈ {1, ..,m} do
5 if r[i] ̸= gap ∧ r[i] ̸= sT [i] then
6 l.append(i);
7 end
8 end
9 0←− d;

10 for j in l do
11 if s[i] ̸= sT [i] then
12 d ++;
13 end
14 end

the node or nodes with the lowest distance. It is applied when only the parent
node has been returned by the reference distance. We refer to this situation
as local minima, i.e. the parent results as the closest node, but it is just a
local situation: there are other nodes, nearer to the leaves of the phylogeny,
which are more related to the new sequence than the parent is. The filter can
return the parent again as the closest node. In this case, we have reached a
global minimum, so it is the closest node to the input sequence of the entire
phylogenetic tree.

In the majority of the comparisons, one of the children nodes will be
the closest to the new sequence. However, there are other situations that we
have taken into account but they are not shown in Algorithm 5. The first
two cases refer to the situation when more than one node have the lowest
distance. In this case, we first remove the parent node from the list inasmuch
we prefer to get closer to the leaves. The statistical significance of the results

90 Phylogenetic inference systems

Algorithm 7: Hamming distance
Data: s1,s2 (sequences)
Result: d (hamming distance between s1 and s2)

1 align(s1,s2);
2 len(s1)←− m;
3 0←− d;
4 for i ∈ {1, ..,m} do
5 if s1[i] ̸= gap ∧ s2[i] ̸= gap ∧ s1[i] ̸= s2[i] then
6 d ++;
7 end
8 end

of our algorithm increases as more comparisons we perform, that is, as we
explore more nodes of the phylogeny. Once the parent has been removed,
if we still have more than one solution, the algorithm will explore each new
path independently, applying the main process individually. The tests we will
show later on demonstrate that this “multipath” situation will not last longer
than two or three iterations in most cases. Intuitively, the algorithm may
display more than one node as solution. When this happens, all the proposed
solutions are usually close relatives, that is, nodes with the same parent node
or nephew nodes.

The algorithms uses two thresholds to determine if the sequence is Right,
if the user should proceed with Caution due to the detection of plausible
errors, or if the sequence is most probably Wrong. It is important to remark
that these thresholds will not work properly if the new sequence corresponds
to any unexplored species within the phylogeny, or other similar cases, which
are depicted as sparsely populated branches.

5.4.2 Evaluation

Although PHYSER can work with any kind of data, we chose hmtDNA data
for the algorithm testing. For our experiments we used the last phylogenetic

5.4 PHYSER 91

tree created by ZARAMIT project [26], which is composed by 7390 complete
hmtDNA sequences obtained from GenBank. As the reference sequence, we
selected the rCRS. Dr. Ruiz-Pesini, a biologist expert in mtDNA, suggested
to set the thresholds to 0 for the Right - Caution discrimination, and 3 for
the Caution - Wrong distinction. All the experiments were executed in a
computer with a Intel(R) Core(TM) 2 Duo Processor E6750 @ 2.66GHz
and 8GB RAM. The phylogenetic tree and the information needed by the
application required less than 30 seconds to load. They just have to be loaded
the first time, when the application initiates. The program took 12 seconds
on average (with a standard deviation of 1.4) to locate the input sequence.
Hence, the program has an excellent performance and the user can obtain the
results in “real time”, providing an accurate feedback showing the sites that
have been checked as bad with the closest nodes.

We arranged the first experiment to test the accuracy of the algorithm.
We selected the 62 sequences published in [167] (AY738940 to AY739001)
and the 23 sequences reported in [168] (DQ246811 to DQ246833). All these
identifiers correspond to leaves of the chosen phylogenetic tree. As result,
the algorithm classified all of them as Right, which implies a success rate of
100%. However, only 53 were located correctly, i.e. a 60.95% of accuracy. In
all but 2 of the unspotted sequences, the returned nodes were close relatives.
Sequences DQ246830 and DQ246833 returned an unexpected distance value
of 273, where the average for the rest of the sequences was 9 with a standard
deviation of 5. It turned out that these two sequences are 249 nucleotides
shorter than the rCRS. Therefore, the inability of the algorithm to locate those
sequences was disregarded.

The second test was designed to study the behavior of PHYSER when
the biological sequences do not belong to the given phylogenetic tree. In this
case, we chose several animal mtDNA sequences that are displayed together
with the results of this experiment in Table 5.5. Before the classification, each
sequence was aligned with the rCRS using MUSCLE. Afterwards, we deleted

92 Phylogenetic inference systems

in both sequences all those sites that correspond to gaps introduced by the
MSA tool in the rCRS. This process is considered to prevent any degradation
to the relevant phylogenetic information of the sequence. Notice that the main
purpose of PHYSER is to detect sequencing errors. Thus, the fact that all
sequences were classified as Right is not a drawback of our algorithm but
more a consequence of the closeness of those species to the Homo sapiens
sapiens (regarding the mtDNA). The most relevant result drawn from this
experiments is the distance field. This value is provided altogether with the
classification due to its relevance in a good interpretation of the output. Of all
the animals, the closeness of chimpanzee does not seem surprising. Besides,
it is possible to see the relationship with the different classes and clusters
as far as we go deeper in the evolution process. In most cases, the distance
implies more than a 30% of wrong nucleotides, a good indicative of a different
problem from the one we are trying to solve here.

Table 5.5: PHYSER classification of diverse animal mtDNA sequences.

Accession Animal Classification Distance

NC_001643 Chimpanzee RIGHT 1966
NC_001941 Sheep RIGHT 4719
NC_005313 Bullet tuna RIGHT 5775
NC_009684 Mallard duck RIGHT 5818
NC_007402 Sunbeam snake RIGHT 6322
NC_002805 Dark-spotted frog RIGHT 6191
NC_008159 Mushroom coral RIGHT 8242
NC_009885 Nematode RIGHT 9074
NC_006281 Blue crab RIGHT 9251
NC_006160 Whitefly RIGHT 9302

The third experiment aimed to analyze the capacity of the algorithm to
detect single relevant mutations. We created five synthetic sequences from the

5.5 Conclusions 93

sequence AY738958 introducing diverse mutations manually. The mutations
and classification of each sequence are shown in Table 5.6, together with the
classification of the sequence AY738958 as reference. The first three mutated
sequences demonstrate how a relevant mutation can change the classification
from Right to Caution. Furthermore, if we disrupt the sequence to certain
level, the closest node can also change, as it happens with the two last mutated
sequences. In most cases, the result will change from one node to one of its
close relatives, as it happened in our experiment. Nevertheless, the mutations
or sequencing error can affect key sites of the sequence, changing the closest
node significantly.

5.5 Conclusions

In this chapter, we have presented PhyloFlow, the first fully customizable and
automatic framework to design and deploy phylogenetic inference and analy-
sis workflows. As its main characteristics, PhyloFlow provides large dataset
tractability, adaptability to user’s requirements and accuracy’s enhancement
by biological-driven methodologies. Furthermore, the resultant systems will
run automatically, i.e. unattended execution. Our framework incorporates a
novel interactive configuration process to compose the workflow, comprising
its software tools and parameterizations. It integrates well-known programs
and methodologies for each usual phylogenetic analysis process. Additionally,
PhyloFlow includes a guideline to help non-expert users to customize their
own systems. Its design follows a divide-and-conquer strategy along with a
black-box principle of transparency for a full compatibility within software
tools. As result, PhyloFlow can assemble systems that perform efficiently
even with large datasets. We have studied the workload characterization of
PhyloFlow using a representative set of hmtDNA sequences and a reduced
set of parameters for the tools. This is a complex task due to the variety
of workloads induced by the number of sequences, their sizes and their het-

94 Phylogenetic inference systems

Ta
bl

e
5.

6:
PH

Y
SE

R
cl

as
si

fic
at

io
n

of
di

ve
rs

e
sy

nt
he

tic
se

qu
en

ce
s

cr
ea

te
d

fr
om

A
Y

73
89

58
.

E
ac

h
m

ut
at

io
n

is
de

pi
ct

ed
by

th
e

sc
he

m
e:

pr
ev

io
us

va
lu

e
+

si
te

+
ne

w
va

lu
e.

T
he

nu
m

be
ri

n
pa

re
nt

he
si

s
af

te
rt

he
cl

as
si

fic
at

io
n

sh
ow

s
th

e
di

st
an

ce
to

th
e

su
rp

as
se

d
th

re
sh

ol
d.

A
cc

es
si

on
M

ut
at

io
n

C
la

ss
ifi

ca
tio

n
C

lo
se

st
no

de
s

D
is

ta
nc

e

A
Y

73
89

58
ba

se
se

qu
en

ce
R

IG
H

T
A

nc
35

64
,A

nc
41

04
7

SE
Q

00
00

1
-3

10
6A

R
IG

H
T

A
nc

41
04

6
SE

Q
00

00
2

-3
10

6A
,G

88
59

A
C

A
U

T
IO

N
(1

)
A

nc
41

04
7

SE
Q

00
00

3
-3

10
6A

,G
88

59
A

,G
15

32
5A

C
A

U
T

IO
N

(2
)

A
nc

41
04

8
SE

Q
00

00
4

T
67

75
C

R
IG

H
T

A
nc

40
76

,A
nc

41
04

7
SE

Q
00

00
5

T
67

75
C

,G
14

37
A

R
IG

H
T

E
U

13
05

75
13

5.5 Conclusions 95

erogeneity. These results help to estimate the balance and time cost of the
configured workflow. Besides, we have demonstrated the capability of our
system to reproduce other popular phylogenetic inference systems with the
extended capability of tool selection and full parameterization. Addition-
ally, the strengths or these systems are enhanced with the incorporation of
tasks normally applied before and after them, e.g. dataset fetching or further
analyses of the results. The hmtDNA workflow has shown an application of
more specific methods and procedures, like model selection, that incorporates
biological knowledge to phylogenetic analysis systems.

The huge time and economical expenses of inferring large phylogenies
force an update every long periods. For instance, the hmtDNA phylogeny
we have studied with PhyloFlow would be usually inferred at most once
a year, as it happens with PhyloTree. On the other hand, new biological
sequences are uploaded to public databases at a rate of tens or hundreds a
month. This contrast pose a delicate situation on phylogenetic studies, were
new information is discarded until a new phylogeny is inferred. Moreover,
the validation of those new sequences is still made by hand, implying a large
investment of time, disregarding possible human mistakes. PHYSER is a new
algorithm we have developed to assess sequencing errors relying on phyloge-
netic information. Additionally, our method updates the phylogeny used as
reference with new evaluated sequences, providing a convenient solution in
between phylogenetic updates. Our tests show that PHYSER comprises an
accurate detection of sequencing errors together with an excellent time cost:
only a few seconds to evaluate and incorporate a complete mtDNA sequence
in the phylogenetic tree.

As future work, we plan to renovate PhyloFlow’s multiplatform support
of different hardware architectures. We also aim to replace the question about
the hardware platform in the configuration process for an internal task that
will adjust the workflow produced to the available hardware platform before
launching it. Furthermore, we want to redesign PhyloFlow’s source code

96 Phylogenetic inference systems

to take advantage of MEvoLib, so new software incorporations in the latter
can be applied directly in the former. We target to improve PHYSER with a
new classification of the possible errors detected including a new criterion
of biological viability. It will consist of taking into account the reversions,
i.e. mutations that have appeared before in the path we have explored in the
phylogeny. They usually imply a more probable and harmless change in the
biological sequence. Moreover, the conservation analysis of different species
will provide an extra criterion to the biological viability of the mutation. We
will introduce this analysis in the next chapter.

Everybody knows what a caterpillar is,
and it doesn’t look anything like a butterfly.

Lynn Margulis

6
Phylogenetic analysis:

Display of large phylogenies

The first phylogenetic analysis we are going to introduce in this dissertation
is the study of those aspects related to the molecular evolution of the selected
sequences available in the phylogeny inferred. Biologists usually achieve this
objective through visualization software tools that allow them to interact with
the phylogenetic tree. The results presented in this chapter are the outcome of
the undergraduate project of Samuel Guajardo [169].

In the first section of this chapter, we cover the state-of-the-art of phy-
logeny visualization tools. Afterwards, we present our contribution to the
field with a new software tool that includes novel features. Finally, the last
section assembles the conclusions for this chapter. The results in this chapter
have been presented in an international conference [170].

98 Phylogenetic analysis: Display of large phylogenies

Figure 6.1: Screenshot of TreeGraph 2 provided in its tutorial
(http:// treegraph.bioinfweb.info/Help/wiki/Tutorial:Main_page).

6.1 Related work

The visualization of phylogenetic trees is a fundamental part on the anal-
ysis performed by biologists. Providing an interface capable of meeting
the requirements of navigability and information display are essential to the
development of a successful visualization tool. Thus, many software tools
have been developed to fulfill different aspects of the phylogenetic visual-
ization: TreeGraph [171], FigTree [172] or Dendroscope [2], among others.
Furthermore, many web-oriented platforms have been created to provide a
similar approach but with the addition of visibility and public usage of the
uploaded phylogenies. Some examples are iToL (interactive Tree of Life)
[173], EvolView [174], PhyloWidget [3] or PhyloTree [41].

Most of the aforementioned tools provide the standard navigation aspects:
a general display of the whole phylogeny with zoom-in and zoom-out options,
branch lengths can be show or hidden and further information is displayed
when clicking in the corresponding identifier of each biological sequence. If
the phylogeny is larger than the screen resolution, a scroll bar will be enabled
at the side of the window to visualize the entire tree. Besides, the majority
of the tools accept as input the NEWICK tree format, among others. Figures
6.1, 6.2, 6.3, 6.4, 6.5, 6.7 and 6.6 show interface examples of each tool listed
earlier.

http://treegraph.bioinfweb.info/Help/wiki/Tutorial:Main_page

6.1 Related work 99

Figure 6.2: Screenshot of FigTree provided at its website
(http:// tree.bio.ed.ac.uk/software/figtree/).

Figure 6.3: Screenshot of Dendroscope provided at its website
(http://dendroscope.org/).

Figure 6.4: Screenshot of iToL.

http://tree.bio.ed.ac.uk/software/figtree/
http://dendroscope.org/

100 Phylogenetic analysis: Display of large phylogenies

Figure 6.5: Screenshot of EvolView.

(a)

(b)

Figure 6.6: Screenshots of PhyloTree: a) haplogroup phylogeny; b) detailed
phylogeny of the haplogroup M7, including paths from the root to the rCRS
and to the selected haplogroup.

6.1 Related work 101

Figure 6.7: Screenshot of PhyloWidget.

TreeGraph 2 [175], displayed in Figure 6.1, includes a graphical editor
that allows the creation and modification of phylogenetic trees. Another
example of a visualization software tool with additional features is PhyloTree.
As we have mentioned in the previous chapter, it is a web-based hmtDNA’s
haplogroup phylogenetic tree. In Figure 6.6 we can see that the whole
phylogeny is represented by the hmtDNA haplogroup tree (image (a)). Once
a specific haplogroup is chosen, the view is changed to the structure shown
in image (b), where the scroll bar and search functionality of the internet
explorer are the unique navigation features provided. In this tool, the text of
each branch has the list of mutations that defines that subtree instead of the
typical branch length or the consensus value. The phylogeny does not contain
all the available complete hmtDNA sequences at the date it was inferred;
only one sample is given from those that have all the corresponding subtree
mutations.

However, real life exploitation of the results obtained with inferred large
phylogenies is limited by the lack of specific tools able to provide enhanced
navigation and search features. To our knowledge, there are no specific tools
prepared to cope with phylogenetic trees of more than a few thousand nodes.
Moreover, no one can link additional biological data in terms of structural
features, metadata or fine grain details about the biological sequences in the

102 Phylogenetic analysis: Display of large phylogenies

(a) (b)

Figure 6.8: Screenshot of two phylogenies displayed with two different meth-
ods of the Phylo module of Biopython: a) draw() method (using Matplotlib
[176] library); b) draw_graphviz() method (using Matplotlib [176], Net-
workX [177] and PyGraphviz [178] libraries). Both screenshots are provided
at Phylo module’s website (http://biopython.org/wiki/Phylo).

nodes. Only PhyloTree is able to handle a two-level granularity of the phylo-
genetic information, providing a haplogroup representation and a sequence
phylogeny of each haplogroup.

Additionally, standalone and web-based software programs are usually
avoided in the design of workflows and scripts due to their user-oriented
interface. Thus, other alternatives with less potential are selected in these
scenarios. For instance, Biopython [13] offers three phylogenetic display
functions within its Phylo class. The two graphical alternatives are shown in
Figure 6.8. The third method is draw_ascii(), which “draws” the phyloge-
netic tree in the command-line terminal using only ASCII characters. The
style of the text-based phylogeny would be similar to the image (a) displayed
in Figure 6.8.

Under these premises, we have developed a new phylogenetic visualiza-
tion software tool named PhyloViewer.

http://biopython.org/wiki/Phylo

6.2 PhyloViewer 103

Figure 6.9: Client/Server architecture of PhyloViewer, including all the tech-
nologies used in each part.

6.2 PhyloViewer

PhyloViewer [170] is a visualization tool specifically developed to study
large phylogenetic trees. It has been designed and implemented based on
the concept of usability. PhyloViewer consists of a client/server architecture
based on a web interface and a database server. Figure 6.9 shows the details
of the architecture and the technologies used at each part. Notice that all the
components of PhyloViewer are open source.

The design of the interface was designed following the requirements pro-
vided by a group of biologists specialized in the field of mtDNA, where most
of the phylogenies usually exceed the “thousand nodes” threshold. Further-
more, we were interested in the display of a differentiated, more functional
structure of the phylogenetic tree. We set the groups, or haplogroups in the
case of hmtDNA, and the data associated to each node with a more relevant
representation than the whole phylogeny. This was also motivated by the
impossibility of illustrating a large phylogeny clearly. Thus, PhyloViewer has
an interactive navigation over a main panel which provides a father-siblings
view, as it is shown in Figure 6.10. Besides, each biological sequence includes
a complementary visualization with user annotations and additional data (e.g.
GenBank’s metadata).

104 Phylogenetic analysis: Display of large phylogenies

Figure 6.10: Example of how a phylogeny is displayed with PhyloViewer.
The rectangles represent internal nodes and the leaves are depicted by rounded
rectangles. The search bar is located in the top right side of the image. Below
it, there is the navigation history of every node visited during the session of
that phylogeny. In addition, at the right bottom part of the image, the group
tree is displayed (in this case, no group tree was provided with the phylogeny).

PhyloViewer includes a user-login system that allows the users to keep
private and public phylogenies. The private option has been included to
support the ongoing work of researchers until the phylogeny is completed.
The interface grants a direct edition of the phylogenies too. An example of
the phylogenetic storage system of a specific user is displayed in Figure 6.11.
PhyloViewer also incorporates an administrative system for the database and
user management, as it is shown in Figure 6.12.

A biologist expert in mtDNA endorsed the design and usability of the user
interface. Besides, we realized a database load test with 3 synthetic and 3 real
phylogenies of different sizes. All these experiments were performed in a
desktop computer with an AMD A10-5800k @ 3.80GHz and 8GB of RAM.
The time costs of each test is shown in Table 6.1.

6.2 PhyloViewer 105

Figure 6.11: Client interface of PhyloViewer where the users can manage
their private and public phylogenies.

Figure 6.12: Administrative interface of PhyloViewer. It includes the user
and phylogeny management, altogether with backup and restore features for
the database.

106 Phylogenetic analysis: Display of large phylogenies

Table 6.1: PhyloViewer’s database load time for phylogenies of different type
and size.

Tree type Number of nodes Size (MB) Load time (s)
67 0.04 1

Synthetic 848 0.13 3
14512 2.01 15

276 0.06 1
Real 43534 5.11 31

217666 21.04 130

6.3 Conclusions

In this chapter, we have presented PhyloViewer, a large phylogenetic visu-
alization tool with a parent-children interface and accessible information of
each sequence. This new software tool offers a sequence searching, naviga-
tion history, the current location within the phylogenetic tree and a window
with the group tree corresponding to the current phylogeny. This novel ap-
proach solves the usual blur representation of large phylogenies in common
visualization tools. Biologists experts on the field of hmtDNA have tested
and acknowledged PhyloViewer as a relevant contribution.

As future work, we plan to incorporate to PhyloViewer a multilanguage
database management system. The purpose of such improvement is to ease
the integration of new bioinformatics scripts and software tools implemented
in different programming languages, like Python or Perl. Additionally, we
aim to offer an optional interface to those phylogenies that do not have a
group tree.

If you torture the data long enough,
it will eventually confess.

Ronald Harry Coase

7
Phylogenetic analysis:
Conservation analysis

The study of the conservation of each nucleotide at each position of the input
biological sequences is a very useful analysis, often connected to phylogenetic
information. In this study, protein-coding regions are particularly relevant.
Sites where a given nucleotide is present in the majority of the sequences
are usually related with essential functionalities of the organism. Thus, a
mutation in any of those positions has a high probability to be the cause of one
or more diseases. Moreover, the evolutionary distance between the organisms
of the input sequences establishes the level of significance and sensitivity of
the analysis: the further is their relationship, the more vital is the conserved
site. The research and results presented in this chapter are the outcome of the

108 Phylogenetic analysis: Conservation analysis

undergraduate project of Francisco Merino-Casallo [179] and they have been
published in the international conference paper [180].

In the first section of this chapter, we cover the related work on conser-
vation analysis. Next, we present our contribution to the field with a new
software tool designed to perform efficiently with large datasets. Finally, the
last section gathers the conclusions for this chapter.

7.1 Related work

The study of the conservation through time of the nucleotides of each site
can be very relevant in molecular evolution studies. For instance, the posi-
tions with the highest functional importance in hemoglobin are those where
the heme chemical compound is bounded. These amino acid sites have a
remarkable conservation over millions of years of evolutionary history [181].
By contrast, other positions in the protein show a much higher mutation rate.
If the degree of functional constraint dictates how conserved a position is,
then identifying conserved regions of a protein is tremendously useful [182].
Conservation analysis is one of the most widely used methods for predicting
functionally important residues in protein sequences [183]. In the last couple
of decades there have been significant scientific advances based on the associ-
ation of some non-neutral mutations to different types of cancer [184, 185],
as well as to other diseases such as Alzheimer’s [186] or Parkinson’s [187],
among others.

There is no scientific agreement on the best conservation analysis method
[183], despite the wide number of methods proposed during the last fifty
years [4]. This analysis is usually divided in two different stages. The first
one estimates the residue frequencies, and the second one uses these results
to calculate the conservation score, better known as CI (conservation index).
This score is a position-specific value, which represents how likely a mutation
is expected to take place in that site. There are different methodologies to

7.2 Conservation analysis of large datasets 109

cope with both problems. Mathematical estimations or phylogeny-based
algorithms are the most extended methods to estimate the residues frequen-
cies. The CI is usually calculated by entropy- or variance-based approaches,
or by the composition of substitution matrices, i.e. by applying evolution
models. Besides, some methods preprocess the sequences previously to the
conservation analysis performing a clustering based on the similarity between
residues [182]. The CI is considered a reliable metric for quantifying residue
conservation.

Most conservation analysis methods require a MSA as input. Despite the
variety of heuristics and gap penalty functions involved in the MSA software
tools, there is, to our knowledge, no study on how those variables affect the
subsequent conservation analysis.

7.2 Conservation analysis of large datasets

As we have aforementioned, there is a growing concern regarding the negative
impact of the increment of available data on the performance of several
published algorithms. We could not find any conservation analysis tool
able to cope with this issue. Thus, we have developed a new software tool
capable of calculate the conservation analysis of very-large datasets through
parallelization and divide-and-conquer techniques [180].

The first version of our conservation analysis tool includes the most
extended methodologies that perform their calculation in a column-by-column
basis. The methods chosen for the residues frequencies estimation are fully
compatible with the ones that will be used in the next stage. Moreover, we
selected two of the most consistent methods: weighted and unweighted. The
former assigns a specific weight to each sequence based on its similarity
with the rest of the aligned set, aiming to compensate for over-representation
among multiple aligned sequences. The latter allocates the same weight
to every sequence, considering each one equally significant. We selected

110 Phylogenetic analysis: Conservation analysis

two well-known techniques for the calculation of the CI: entropy-based
and variance-based methods. There are several proposals for entropy-based
methods [4], so we chose the one with better qualities in terms of simplicity
of the computation process and accuracy. On one hand, the entropy-based
method returns a value that will reach its minimal value when all characters
at a given site have equal frequencies. On the other hand, the variance-based
method maximizes the returned value at the site occupied by an invariant
character whose overall frequency is minimal.

The implementation was realized in Python (version 3.4). As we have
claimed, one of the major benefits of our tool is the incorporation of paral-
lelism and a divide-and-conquer methodology, making it suitable for large
input MSAs. The main idea underneath was to take advantage of the inde-
pendence assumption among each site of the input MSA, splitting it into
fragments of sequences and generating one processing element per portion.
The balance of the fragments is calculated as follows: being m the number of
characters per sequence of the MSA and t the number of cores of the CPU, the
first t−1 threads will have a different fragment of the MSA of ⌈m

t ⌉ characters,
whilst the last thread will get the remaining chunk. Finally, our application
generates a report file containing the most valuable information about the
conservation analysis performed.

7.2.1 Performance evaluation

From the set of all complete hmtDNA sequences available at GenBank, we
created 9 datasets for the performance test. We got 10000 random sequences
and aligned them with MAFFT [29] in its default configuration (--auto).
Afterwards, we generated 9 datasets: 3 of 100 sequences, 3 of 1000 sequences
and 3 of 10000 sequences. In turn, for the same number of sequences, each
set had a different length: 100, 1000 and 10000 nucleotides. We tested
every possible combination of the methods included in our software tool for
both the parallelized version and a modified sequential version, removing

7.2 Conservation analysis of large datasets 111

the thread generation of our program. We also run the tests several times to
add statistical significance to our results. All the tests were performed on an
Intel(R) Core(TM) i5-4440 CPU @ 3.10GHz with 16G (2x8) DIMM DDR3
1600 MHz. Given the characteristics of this computer, the theoretical speedup
is 4, an unreachable boundary because we were only parallelizing frequencies
estimation and the conservation score computation. Thus, there were still
sections of the algorithm that were executed sequentially.

Figure 7.1: Comparison of the average execution time and standard devia-
tion between 100 runs of both sequential and parallel (4 cores) versions of
the algorithm. Note that sometimes the standard deviation is so small it is
negligible.

As we can see in Figure 7.1, the performance tests carried out proved
that the execution time of both approaches was more sensitive to a ten-fold
increment of the sequences length than by the same increment in the number
of sequences. These performance tests also showed that if the dataset to
analyze is rather small (100 sequences and up to 1000 residues or 1000
sequences and up to 100 residues), using the parallel version instead of the
sequential one results in an actual degradation of performance. This is due to

112 Phylogenetic analysis: Conservation analysis

the additional infrastructure required to manage the parallelism and the small
percentage of the total execution time that the estimation of both frequencies
and conservation represent in these cases. In contrast, as both the number of
sequences and its length grow, the experimental speedup approximates the
theoretical one.

7.2.2 MSA influence on conservation analysis

For this preliminary study, we chose a large protein-encoded gene of the
mtDNA: the ND2. We randomly selected 400 sequences from GenBank of
three different disjoint sets of species: one formed by humans (hmtDNA),
another constituted by non-human primates (pmtDNA), and a third one com-
posed by non-primate mammals (mmtDNA). Five MSA configurations where
chosen for this experiment. Three for MAFFT: default (--auto), accuracy-
oriented (--linsi) and performance-oriented (--parttree). Clustal Omega
[45] and MUSCLE [46] were run in their default configuration. We generated
their corresponding conservation analyses with our software tool for every
method available.

The first thing we noticed is the slight increment on the number of gaps
as the species of the datasets are further phylogenetically related. A deeper
analysis showed that the different MSA configurations performed different
distributions of the gaps in the resultants MSAs. Furthermore, the conserva-
tion analyses showed that there were some positions where, regarding the
MSA tool chosen, the CI varied. For instance, the mmtDNA set analyzed
with unweighted frequencies and entropy-based conservation with a 0.99
threshold showed a difference in the 7th site: MAFFT --linsi and Clustal
Omega had a CI of 0.9895 whilst with the other alternatives it surpassed the
aforementioned threshold. We found a critical situation at position 320 of
mmtDNA sequences using weighted frequencies and entropy-based conserva-
tion with a 0.99 threshold: the CI of this site was 1.00 with Muscle, 0.9847
with Clustal Omega and 0.8180 with any MAFFT configuration. Moreover,

7.3 Conclusions 113

this site appertains to the second nucleotide within a codon, the most likely
of the three positions to change the resultant amino acid when a mutation
occurs. This result proved that the MSA tool has a remarkable influence
when analyzing the conservation of a set of biological sequences and thus,
the decision of which one to use is more complex than it may seem at first
glance.

7.3 Conclusions

In this chapter, we have presented a new software tool conceived to estimate
the conservation index of a given MSA. Our new proposal combines some
of the best-published techniques to perform the conservation analysis with
the composition of readable and useful reports. Taking into account the Big
Data problem, we have implemented parallelization and divide-and-conquer
techniques in order to improve the efficiency of the analysis without affecting
its accuracy. Besides, we have performed a preliminary study about the
impact of the MSA process on the conservation analysis. The inputs were
three mtDNA sequence sets, each one composed by organisms of diverse
evolutionary distances. The results showed significant differences on the
conservation analysis of various MSAs produced from the same dataset. The
discrepancies among those MSAs were the outcome of the software tool
selected or its parameterization.

As future work, we plan to include new methods in each stage involved in
the conservation analysis, specifically those related with phylogeny inference
processes. Furthermore, we aim to incorporate more types of reports to
make our tool more suitable for not considered scenarios. We are currently
working on a deep analysis of every aspect of the MSA tools that can affect
the conservation analysis and how they should be handled in the specific case
of hmtDNA.

A computer would deserve to be called intelligent if
it could deceive a human into believing that it was
human.

Alan Mathison Turing

8
Phylogenetic analysis:

Pathogenicity prediction on hmtDNA

The last phylogenetic analysis covered in this dissertation is the study of the
susceptibility of each site on biological sequences to trigger a disease once
a mutation has occurred. As we have introduced in the previous chapter,
some mutations might produce very severe disorders, but many others will
have no relevant effects. Thus, it seems appropriate to provide biologists
with both criteria and software tools to determine whether a mutation has an
effect in the organism or not. In this specific case, we are going to focus on
hmtDNA sequences. The results presented in this chapter are the outcome of

116 Phylogenetic analysis: Pathogenicity prediction on hmtDNA

our collaboration on the PhD research of Dr. Martín-Navarro [188]1 and they
have been published in an international journal [189].

In the first section of this chapter, we cover the state-of-the-art of single-
site mutation predictors. Afterwards, we present our proposal of a new
classifier to select damaging candidates of the hmtDNA genome with im-
proved performance. Finally, the last section assembles the conclusions for
this chapter.

8.1 Related work

Protein-coding genes represent 70% of the hmtDNA. Therefore, the majority
of the mutations affect these regions. Many mutations in protein-coding
genes in the mtDNA are missense point mutations (single-site mutations) that
provoke an amino acid substitution. Some of these mutations will produce
very severe disorders, but many others will have no relevant effects. Thus, it
is a hard task to differentiate the former from the latter, and diverse criteria
have been proposed to achieve this goal [190–192].

The functional characterization of a mtDNA missense mutation is an
irreplaceable way to determine its effect and potential pathogenicity. Nonethe-
less, this process is unreasonable in some situations besides its cost and time
consumption. Computational predictors are useful, inexpensive and fast tools
for checking novel missense mutations reported in patients with a possible
mitochondrial disease, assisting in the selection of mutations for subsequent
functional evaluations. Several prediction algorithms are available to classify
missense mutations in the neutral or harmful categories [193]. Unfortunately,
the overall accuracy of these methods is low, and their predictions may mis-
lead subsequent studies based on them [194–196]. Furthermore, most of
these predictors focus uniquely on the nuclear genome. Mutpred [196] and

1The results in this chapter have been presented in the PhD dissertation of Dr. Martín-
Navarro on September 2016, paying special attention to their biological aspect.

8.2 Mitoclass.1 117

PolyPhen-2 [195] are two well-known and extended predictors for nuclear
missense mutations. The former uses HGMD (Human Genome Mutation
Database) [197] for its training, whilst the latter utilizes the HumDiv dataset.
Another example is Provean [198], which uses the Humsavar dataset [199]
to adjust the cut-off of damaging mutations. All the aforementioned datasets
completely neglect mtDNA missense variants (or most of them). Moreover,
they are not aware of the special features of mtDNA-encoded proteins.

8.2 Mitoclass.1

In this section, we present Mitoclass.1 [189], the first missense mutation
prediction for hmtDNA sequences. Initially, we focused on the generation of
the first mtDNA missense mutations dataset, containing both damaging and
neutral ones. The first draft of our dataset was obtained from the MITOMAP
website [200] on February 2015. The problem with this dataset is that many
missense variants reported meet only a reduced number of the established
pathogenicity criteria for mtDNA mutations [190, 201] and their pathogenic-
ity is, therefore, doubtful. This problem is solved if we only consider as
damaging missense mutations those already associated with a possible mito-
chondrial disease and that meet, at least, one of these two criteria: i) functional
confirmations on published studies; and, ii) rareness of the mutation. The
latter is based on the presence of the mutation in patients suffering from
mitochondriopathy and the virtually absence of it in the control (healthy)
population. The final mdmv.1 (mtDNA missense variants.1) dataset includes
57 damaging and 2778 neutral variants.

The next step was to determine the discriminatory features of our classifier.
We have characterized three features: i) CI plus cMI (cumulative Mutual
Information) in Eukaryota; ii) conservation of the mutant amino acid for
each single position in the proteins; and, iii) relative frequency for each
variant into a particular domain. The first feature is the sum of the two scores.

118 Phylogenetic analysis: Pathogenicity prediction on hmtDNA

The CI has been found to be the single most powerful attribute [183, 202].
It has been computed regarding the amino acids present in the rCRS. A
high CI for a particular protein position gives an idea about its functional
importance. However, a low CI does not directly imply lack of functional
importance: there might exist compensations between diverse sites throughout
the evolution [203]. Mutual Information from information theory can be used
to estimate the extent of the coevolution. The cMI defines to what degree a
given amino acid is involved in a mutual information network. This value has
been normalized taking as baselines the minimum and maximum cMI values
for each protein. A similar consideration about evolutionary conservation and
functional importance can be applied for the mutant amino acid. Thus, the
second feature computes the CI of the mutant amino acids, which should be
very low, particularly in very deleterious positions where natural selection
would tend to remove them. The third feature takes into account the location
of the protein in the mitochondria to quantify the importance of a specific
amino acid substitution. Every hmtDNA protein can be divided into three
distinct domains regarding their biochemical environment. Hence, the same
amino acid substitutions in different domains will not have the same functional
effects [204]. We computed the relative frequency of the variants per domain.

To train the learning algorithm we chose a random sample from the
mdmv.1 dataset composed by 60% damaging and 60% neutral variants. The
remaining 40% was left to validate the predictor. Due to the imbalanced nature
of the training set, where damaging and neutral mutations are not equally
represented, we used SMOTE [205] to synthetically oversample the minority
class (damaging mutations). We compared the predictive results returned
by Random forest, IBK, SMO (Sequential Minimal Optimization), Naive
Bayes Multinomial and SVM (Support Vector Machine) [206] classifiers
on the validation dataset. The comparison was performed using the default
parameters offered by the open-source data mining suite WEKA [207] v3.7.7.
Finally, we chose the best one, SMV, as the framework of Mitoclass.1. It was

8.2 Mitoclass.1 119

executed with WEKA v3.7.7 and the parameters C and γ were optimized by
a grid search using 10-fold cross validation of the training dataset. Finally,
C = 200 and γ = 0.01 were selected as the best configuration. The 10-fold
cross validation was also executed with the training dataset to check the
robustness of the method and prevent the possibility of overfitting.

We have compared our classifier with other very popular predictors, such
as PolyPhen-2 (with HumDiv classifier model and setting both “probably
damaging” and “possibly damaging” predictions as damaging), Provean (in
its default settings), and the results on mtDNA mutations previously reported
using Mutpred (score cut-off 0.75) [208]. The first test was performed within
these three predictors with the complete mdmv.1 dataset. The results are
presented in Table 8.1. We excluded Mitoclass.1 of this first test due to the
unreliable results we would get given that its chosen training dataset was
part of the mdmv.1 dataset. The analysis shows that PolyPhen-2 is the most
accurate predictor with a sensitivity of 94.7% and only 3 FP. Mutpred has the
worst results, so we discarded it for the screening of mtDNA missense variants
because it would remove too many potential damaging mtDNA mutations.

Table 8.1: Comparison between predictors with the complete mdmv.1 dataset.
Sensitivity is estimated as [TP/(TP+FN)], specificity as [TN/(TN+FP)].

PolyPhen-2 Provean Mutpred
Sensitivity 94.7% 87.7% 57.9%
Specificity 46.9% 59.2% 87.3%

TP 54 50 33
TN 1303 1646 2426
FP 1475 1132 352
FN 3 7 24

Our second analysis tested the performance of the four predictors for the
validation dataset aforementioned extracted from the mdmv.1 dataset. The
results are displayed in Table 8.2. Mitcolass.1 achieves the best sensitivity
and the best ratio sensitivity/specificity of all of them. Furthermore, our

120 Phylogenetic analysis: Pathogenicity prediction on hmtDNA

classifier generates results for 100% of the analyzed variants whilst others, like
PolyPhen-2, does not generate predictions for ten mutations, classifying them
as “unknown”. A further analysis of the FP predictions, we observed that both
Provean and PolyPhen-2 classified as neutral a confirmed pathogenic mutation
[209]. There are two other separate cases, one for each tool, similar to the
previous one. These three mutations affect positions with low conservation in
Eukaryota. Nevertheless, our classifier achieves a correct prediction for the
great majority of them, because we do not use the conservation of a single
position as a discriminatory feature. The only damaging mutation that our
classifier does not predict as pathological is one with a very high relative
frequency in eukaryotes (feature 2 = 35%).

Table 8.2: Comparison between predictors with validation dataset of 1100
mutations (23 damaging + 1077 neutral). Sensitivity is estimated as
[TP/(TP+FN)], specificity as [TN/(TN+FP)].

Mitoclass.1 PolyPhen-2 Provean Mutpred
Sensitivity 95.7% 91.3% 91.3% 60.9%
Specificity 58.7% 47.7% 60.4% 85.6%

TP 22 21 21 14
TN 623 514 650 922
FP 454 563 427 155
FN 1 2 2 9

8.3 Conclusions

In this chapter, we have presented Mitoclass.1, a SVM classifier designed
to predict pathogenicity of hmtDNA missense variants. This new software
tool is a good screening classifier to select candidate damaging mtDNA
missense mutations from patients suffering mitochondrial disorders. Due
to the inexistence of well-curated datasets of mtDNA variants, we have

8.3 Conclusions 121

developed a new one under pathogenicity criteria called mdmv.1. The chosen
discriminatory attributes are based on conservation and coevolution. We also
introduce the novel idea of analyzing each protein domain separately. We
have trained and validated Mitoclass.1 with our curated dataset of mtDNA
amino acid substitutions. The training of our predictor only with previously
curated mtDNA variants as well as the selection of discriminatory features
improves the performance when compared with other existing predictors.
Furthermore, we have provided predictive results with our classifier for all
possible missense mutations of the thirteen proteins encoded by hmtDNA.

The number of mtDNA reference sequences available from different
species and the number of candidate mutations identified by sequencing
is growing very fast. Moreover, the accuracy of Mitoclass.1 relies in its
discriminatory features that are dependent of this information. Hence, as
future work, we plan to update Mitoclass.1 periodically by retraining it with
new data.

The only source of knowledge is experience.

Albert Einstein

9
Conclusiones

Esta tesis doctoral se ha centrado en el desarrollo de metodologías y herra-
mientas software novedosas, prácticas y precisas en el campo de la inferencia
y el análisis filogenético molecular. Como elemento adicional, se ha prestado
especial atención a la producción de soluciones escalables y eficientes pa-
ra el procesamiento de grandes volúmenes de datos. Esta decisión ha sido
fomentada por la incorporación de la mayoría de temas bioinformáticos a
la categoría Big Data durante las dos últimas décadas. A lo largo de esta
tesis se han expuesto cada una de las fases relacionadas con la inferencia de
árboles evolutivos, desde la recopilación de las secuencias biológicas hasta la
estimación de la filogenia, tanto de forma individual como a través del uso de
sistemas software diseñados para dicho propósito. Además, en los últimos tres
capítulos se han recogido análisis filogenéticos que se pueden aplicar sobre
los resultados recopilados para su estudio. Todavía existen muchos problemas

124 Conclusions

abiertos, tanto en filogenética como en bioinformática, para los que se van
dando soluciones ya sea mediante métodos formales como a través de nue-
vas aproximaciones empleando eficientemente plataformas de computación.
Desde nuestro punto de vista, la clave del éxito de un nuevo algoritmo o
herramienta informática reside en que éste proporcione un balance adecuado
entre el coste temporal y la solidez estadística de los resultados. En esta
tesis se ha presentado el ADN mitocondrial como el caso real de aplicación
principal en nuestra investigación. Este tipo de secuencias biológicas tiene
una serie de propiedades que lo hacen idóneo para los objetivos planteados:
tanto el número de secuencias disponibles como su longitud hacen que su
manejo sea computacionalmente intensivo y, en algunos casos, intratable con
los métodos convencionales; y tiene una probabilidad mayor de sufrir una
mutación en comparación con el ADN nuclear, por lo que hasta los árboles
evolutivos de un solo organismo suelen contener información relevante para
su estudio. Como nota adicional, las mutaciones que afectan al ADN mito-
condrial juegan un papel esencial en varias enfermedades graves, como la
miopatía mitocondrial, una enfermedad que afecta al buen funcionamiento de
las fibras musculares.

Los principales resultados de esta tesis han sido publicados en congresos
internacionales de calidad en bioinformática (destacamos IEEE BIBM) y en
dos artículos de la revista internacional BMC Bioinformatics de alto impacto.
A continuación, exponemos las principales características de cada uno de
ellos:

• MEvoLib es la primera biblioteca enfocada a estudios sobre evolución
molecular implementada en el lenguaje de programación Python. A lo
largo de los Capítulos 2, 3 y 4 hemos presentado los distintos módulos
que componen la librería, diseñados para facilitar el trabajo tanto de
usuarios nóveles como expertos. MEvoLib incluye una recolección
automática de secuencias biológicas y árboles filogenéticos tanto de
ficheros locales como de bases de datos públicas, como GenBank. Su

125

diseño incluye funcionalidades ya existentes en otras bibliotecas, como
la descarga automática de los datos. Como novedad, este módulo per-
mite combinar datos de distintos orígenes y, tras completarse, genera
un informe con toda la información que se considera relevante sobre el
proceso, como el número total de elementos (ya sean secuencias o filo-
genias) y la fecha en la que se ha accedido a las distintas fuentes. Dos
propiedades a destacar que se han añadido a la descarga automática de
datos es la solicitud de la información en lotes y un proceso de actualiza-
ción de la información descargada, diseñados para optimizar y reducir
los tiempos de descarga, respectivamente. MEvoLib también ofrece
cuatro métodos para la división de secuencias biológicas en conjuntos
de menor dimensión. Los dos más sencillos, dividen las secuencias en
conjuntos de secuencias completas o por fragmentos. Estos métodos
están puramente orientados al aprovechamiento de las arquitecturas y
técnicas de paralelización de procesos. Los otros dos métodos hacen uso
del conocimiento biológico disponible de las secuencias para realizar
la división por conjuntos. Hemos realizado una nueva implementación
del método que aplica la descomposición PRD para mejorar su eficien-
cia: se ha reemplazado la parte recursiva del algoritmo original por
una iterativa, que es paralelizada en tiempo de ejecución. El segundo
método realiza una división por genes. Este algoritmo es el primero de
su tipo que utiliza únicamente los metadatos disponibles de cada se-
cuencia de entrada como base para producir la descomposición. Se han
incorporado técnicas de álgebra de conjuntos y estadística poblacional
para generar una solución óptima al problema de asociar los múltiples
términos referentes al mismo gen. Finalmente, MEvoLib incorpora
tres métodos para la ejecución de distintas herramientas filogenéticas:
uno para aplicaciones de alineamiento de múltiples secuencias, otro
para herramientas de inferencia filogenética, y otro para métodos de
construcción de superárboles y árboles de consenso. Los tres métodos

126 Conclusions

comparten dos características comunes: i) la conversión automática del
formato de entrada y salida si la herramienta seleccionada no soporta
o no genera los formatos especificados por el usuario; y, ii) la incor-
poración de un diccionario de palabras clave con los parámetros más
comunes, incluido el comportamiento por defecto. Además, si estas
palabras clave no recogen la configuración deseada por el usuario, éste
puede introducirla como un parámetro más del método.

• Se ha estudiado la aplicación de métodos de aprendizaje para hallar la
topología implícita para un conjunto de secuencias dado. En concreto,
se ha realizado la implementación del algoritmo publicado por la Dra.
Ishteva, que hace uso de tensores de cuarto orden para establecer la
relación filogenética entre cuartetos de secuencias hasta inferir el árbol
evolutivo completo. La implementación realizada mostró resultados
prometedores respecto al coste computacional, pero, por desgracia,
la elevada imprecisión de los resultados reveló un problema en el
algoritmo que impidió su aplicación en nuestro caso. Nuestra principal
conclusión es negativa y, en este contexto, más difícilmente publicable
por si sola. Este algoritmo sólo es útil y preciso en los casos en que se
conoce a priori la distribución de probabilidad de la entrada.

• PhyloFlow es el primer sistema completamente configurable y auto-
mático orientado exclusivamente a la creación y ejecución de flujos de
trabajo para inferir y analizar árboles filogenéticos. La facilidad en el
diseño de flujos de trabajo eficientes para grandes volúmenes de datos,
la adaptabilidad a los requisitos del usuario y la mejora de la precisión
en los resultados mediante la incorporación de metodologías basadas
en el conocimiento biológico son las tres principales características de
nuestro sistema. Además, PhyloFlow incluye la ejecución desatendida
(automática) de los sistemas configurados previamente. Nuestro sistema
incorpora un proceso interactivo novedoso para el diseño de flujos de
trabajo que ofrece tanto la selección de las herramientas software como

127

de sus parámetros. La primera versión del sistema incluye un gran
número de los métodos y herramientas más utilizados en los estudios
de inferencia filogenética. Adicionalmente, PhyloFlow ofrece consejos
para ayudar a los usuarios inexpertos con la configuración de sus flujos
de trabajo. Nuestro sistema ha sido diseñado siguiendo una estrategia
de divide-y-vencerás y aplicando el modelo de caja negra que elimina
cualquier incompatibilidad entre herramientas software. Como resul-
tado, PhyloFlow puede producir sistemas de inferencia filogenética
eficientes incluso con grandes volúmenes de datos. El análisis de carga
de los distintos métodos y procesos disponibles nos ha facilitado incluir
una estimación del coste temporal de un flujo de trabajo determinado
conociendo, a priori, el tamaño de la entrada. Esta caracterización está
sujeta a muchas variables, como el número de secuencias, su longitud y
la heterogeneidad de las mismas. No sólo se ha demostrado la potencia
de PhyloFlow al reproducir otros sistemas filogenéticos publicados an-
teriormente, sino que, además, el mecanismo de réplica permite mejorar
la precisión del sistema al incorporar la opción de elegir cada aplicación
software y sus parámetros.

• Como ya se ha visto en la caracterización del sistema filogenético para
el estudio de ADN mitocondrial humano creado mediante PhyloFlow
(Sección 5.3.3), el coste tanto económico como temporal para inferir
grandes filogenias es muy elevado. Pese a que cada mes cientos o
incluso miles de secuencias son secuenciadas e incluidas en las bases
de datos públicas, los procesos de inferencia filogenética se realizan,
como mucho, una vez al año. Esta situación hace que dichos árboles
evolutivos queden en un estado desactualizado en unos meses. Además,
la validación de estas secuencias se continúa haciendo manualmente
en la mayoría de los casos, con el consiguiente consumo de tiempo
y los posibles errores humanos cometidos en el proceso. Por estos
motivos hemos desarrollado PHYSER, un nuevo algoritmo de detección

128 Conclusions

de errores de secuenciación que, como efecto derivado, actualiza el
árbol filogenético en el que se basa para validar las secuencias de
entrada. Las pruebas realizadas han demostrado que PHYSER detecta
adecuadamente los errores de secuenciación e incluye la secuencia en
la filogenia en tan solo unos pocos segundos.

• PhyloViewer es nuestra nueva propuesta para la visualización de gran-
des árboles filogenéticos. Esta herramienta ofrece una interfaz que
muestra únicamente un nodo y sus nodos hijo, incluyendo toda la infor-
mación adicional disponible de cada una de las secuencias localizadas
en dichos nodos. PhyloViewer incorpora un buscador de secuencias
mediante su identificador, un historial de navegación, la situación del
nodo actual respecto a la filogenia y una ventana anexa que muestra
la filogenia de grupos correspondiente al árbol filogenético, si se ha
proporcionado previamente. Esta forma de visualizar la filogenia solu-
ciona el problema de una representación borrosa en la mayoría de las
herramientas publicadas cuando el número de hojas es elevado (mayor
a 1000 secuencias para las resoluciones de pantalla actuales). Tanto la
facilidad de manejo como la disposición de la información en Phylo-
Viewer han sido probadas y validadas por biólogos expertos en ADN
mitocondrial.

• Hemos creado una herramienta para el análisis de la conservación de
alineamientos de secuencias biológicas. Esta nueva propuesta combina
algunas de las técnicas mejor valoradas para el análisis de la conserva-
ción con la generación de informes comprensibles y útiles. Para hacer
frente a las grandes cantidades de secuencias biológicas disponibles
hoy en día, hemos incluido en nuestra herramienta técnicas de paraleli-
zación y estrategias de divide-y-vencerás para mejorar su eficiencia sin
afectar a la precisión del análisis. También hemos realizado un estudio
preliminar del impacto que tienen las distintas heurísticas existentes de
alineamiento de secuencias en el análisis de la conservación. Los resul-

129

tados mostraron discrepancias significativas en posiciones concretas
para el mismo conjunto de secuencias alineadas mediante distintos mé-
todos. Dichas posiciones correspondían a genes que codifican proteínas,
por lo que estas diferencias modifican las conclusiones del análisis.

• Mitoclass.1 es un clasificador SVM diseñado para predecir la patogeni-
cidad de mutaciones puntuales en ADN mitocondrial humano.1 Esta
nueva herramienta ofrece un buen predictor de mutaciones puntuales
potencialmente dañinas en ADN mitocondrial de pacientes con trastor-
nos mitocondriales. Para poder realizar la clasificación correctamente,
se ha creado un nuevo conjunto de datos con criterios patológicos lla-
mado mdmv.1, debido a la inexistencia de conjuntos revisados para
variantes de ADN mitocondrial. Los atributos discriminatorios selec-
cionados para nuestro clasificador se han basado en la conservación y
la coevolución. Además, se ha incorporado un nuevo discriminador: el
análisis del dominio de la proteína al que pertenece la posición a evaluar.
Mitoclass.1 se ha entrenado y validado con nuestro conjunto de datos
de substituciones de aminoácidos en el ADN mitocondrial. Nuestro
clasificador mejora los resultados de otros predictores, ya que ha sido
entrenado únicamente con variantes de ADN mitocondrial previamente
verificadas y se han seleccionado las características discriminatorias
adecuadas. Por otra parte, gracias a Mitoclass.1 hemos podido apor-
tar nuevos resultados predictivos para todas las mutaciones puntuales
de los trece genes que codifican proteínas en el ADN mitocondrial
humano.

Los códigos fuente y los ficheros de datos tanto de MEvoLib como de
PhyloFlow, PHYSER, PhyloViewer y la herramienta de análisis de la conser-
vación están disponibles en la página web del grupo ZARAMIT2. MEvoLib

1Esta investigación ha sido presentada también, especialmente en su aspecto más biológi-
co, en la tesis doctoral defendida por el Dr. Martín-Navarro en septiembre de 2016.

2http://www.zaramit.org

http://www.zaramit.org

130 Conclusions

incluye un manual que explica detalladamente los módulos que incorpora y
varios ejemplos de uso de cada uno de ellos. Los resultados biológicos de la
clasificación realizada por Mitoclass.1 pueden consultarse en la publicación
[189].

9.1 Trabajo futuro

El principal esfuerzo hacia futuras mejorar en MEvoLib se va a centrar en la
incorporación de nuevas herramientas software para todos los módulos que
realizan algún procesamiento de datos. Por ejemplo, planeamos incorporar
PRANK y KAlign al conjunto de herramientas de alineamiento de secuencias,
PhyML para la inferencia filogenética y SuperFine para la construcción de
superárboles. En relación a este trabajo, se añadirán nuevos métodos para
aquellos procesos comunes en estudios filogenéticos pero que todavía no
se han incluido, como Seqboot, perteneciente a PHYLIP, para realizar el
remuestreo (bootstrapping) de las secuencias en caso de que la herramienta
de inferencia filogenética seleccionada no lo incluya. También se evaluará
la incorporación de otros métodos menos habituales como aquellos desarro-
llados para inferir árboles evolutivos sin necesidad de alinear las secuencias
previamente. Se pretende mejorar el método de búsqueda y descarga de datos
biológicos mediante la incorporación de las modificaciones realizadas ma-
nualmente por el usuario a los conjuntos de datos en el informe. Por ejemplo,
se añadiría una nueva línea en el historial cuando una secuencia biológica se
haya borrado manualmente. Por otro lado, se ha observado que el guardado
en memoria de todos los datos recopilados puede generar problemas cuando
la información a reunir es extremadamente grande. En el peor caso, podría
generarse una excepción por falta de memoria en tiempo de ejecución, per-
diendo todos los datos recopilados hasta el momento. Por ello, se ha planeado
modificar esta implementación por otra basada en ficheros que permita ma-
nejar prácticamente cualquier volumen de información, aunque este cambio

9.1 Future work 131

vaya a reducir ligeramente su rendimiento. Finalmente, hemos considerado
incluir un nuevo método para la división de secuencias de ADN mitocondrial
en haplogrupos, así como mejorar en eficiencia todos aquellos módulos y
métodos que lo permitan.

También planeamos renovar el soporte multiplataforma de PhyloFlow
para diferentes arquitecturas hardware. Así mismo, pretendemos reemplazar
la pregunta en la fase de configuración sobre la arquitectura hardware en
la que se va a ejecutar el flujo de trabajo que se está diseñando, por un
proceso interno que ajuste los parámetros necesarios según la plataforma
disponible en tiempo de ejecución. Por último, se va a renovar el código
fuente de PhyloFlow para aprovechar todas las ventajas que ofrece MEvoLib.
Así, las mejoras que se introduzcan en este último podrán ser utilizadas casi
inmediatamente en PhyloFlow.

Otro de nuestros objetivos es mejorar PHYSER incluyendo nuevos cri-
terios de viabilidad biológica para la clasificación de los errores detectados.
Estos consistirán en tener en cuenta eventos como las reversiones, es decir,
mutaciones que vuelven a dejar el valor que había desaparecido anteriormente
en la filogenia, o el análisis de la conservación realizado previamente a las
secuencias ya incluidas en el árbol evolutivo. Las mutaciones a valores que ya
han aparecido previamente en esa posición o que están altamente conservados
tienen una menor probabilidad de estar relacionados con enfermedades o
trastornos.

Nos hemos planteado enriquecer PhyloViewer con un sistema de gestión
de bases de datos multilenguaje. La finalidad de dicha modificación es facilitar
la integración de nuevas herramientas y scripts bioinformáticos implementa-
dos en diferentes lenguajes de programación. Adicionalmente, eliminaremos
de la interfaz la ventana con el árbol de grupos para aquellas filogenias que
no dispongan de dicha información.

También vamos a incluir nuevos métodos en todas las fases del análisis
de la conservación en la nueva versión de nuestra herramienta. En particular,

132 Conclusions

vamos a centrar nuestra atención en los métodos basados en árboles filoge-
néticos. Además, queremos incluir nuevos informes alternativos para hacer
nuestra herramienta más útil en aquellos casos que no han sido contemplados
anteriormente. Actualmente estamos realizando un estudio en profundidad de
los efectos negativos de las diferentes heurísticas para realizar alineamientos
en los análisis de la conservación y cómo solventarlos en el caso del ADN
mitocondrial humano.

El número de secuencias de referencia disponibles para ADN mitocondrial
de diferentes especies y el número de mutaciones candidatas identificadas me-
diante secuenciación están creciendo rápidamente. Dado que la precisión de
Mitoclass.1 se basa en los factores de discriminación que dependen de dicha
información, como trabajo futuro planeamos actualizar nuestro clasificador
periódicamente.

Con los resultados expuestos en esta tesis pretendemos demostrar que es
posible diseñar métodos bioinformáticos que aborden la aparente contradic-
ción que existe en el desarrollo de soluciones de propósito general, y que
además obtengan resultados precisos en casos particulares como el del ADN
mitocondrial. Además, deseamos incorporar el concepto de usabilidad en bio-
informática como un elemento central en el diseño de métodos que se adapten
tanto a usuarios nóveles como expertos, tengan o no amplios conocimientos
informáticos o biológicos.

Bibliography

[1] I. Wagner and H. Musso, “New Naturally Occurring Amino Acids,”
Angewandte Chemie International Edition in English, vol. 22, no. 11,
pp. 816–828, 1983.

[2] D. H. Huson, D. C. Richter, C. Rausch, T. Dezulian, M. Franz, and
R. Rupp, “Dendroscope: An interactive viewer for large phylogenetic
trees,” BMC bioinformatics, vol. 8, no. 460, pp. 1–6, 2007.

[3] G. E. Jordan and W. H. Piel, “PhyloWidget: web-based visualizations
for the tree of life,” Bioinformatics, vol. 24, no. 14, pp. 1641–1642,
2008.

[4] F. Johansson and H. Toh, “A comparative study of conservation and
variation scores,” BMC Bioinformatics, vol. 11, no. 388, pp. 1–11,
2010.

[5] K. A. Dill, S. B. Ozkan, M. S. Shell, and T. R. Weikl, “The protein
folding problem,” Annual review of biophysics, vol. 37, pp. 289–316,
2008.

[6] A. Dwevedi, “Involvement of Bioinformatics in Solving Protein Fold-
ing Problem,” in Protein Folding, pp. 39–48, Springer, 2015.

[7] W. Wiechert, “Modeling and simulation: tools for metabolic engineer-
ing,” Journal of biotechnology, vol. 94, no. 1, pp. 37–63, 2002.

[8] W. A. Welch, S. J. Strath, and A. M. Swartz, “Congruent Validity and
Reliability of Two Metabolic Systems to Measure Resting Metabolic
Rate,” International journal of sports medicine, vol. 36, no. 5, pp. 414–
418, 2015.

[9] L. Wang and T. Jiang, “On the complexity of multiple sequence align-
ment,” Journal of computational biology, vol. 1, no. 4, pp. 337–348,
1994.

134 Bibliography

[10] W. H. E. Day, D. S. Johnson, and D. Sankoff, “The Computational
Complexity of Inferring Rooted Phylogenies by Parsimony,” Mathe-
matical Biosciences, vol. 81, no. 1, pp. 33–42, 1986.

[11] S. Roch, “A short proof that phylogenetic tree reconstruction by maxi-
mum likelihood is hard,” IEEE/ACM Transactions on Computational
Biology and Bioinformatics (TCBB), vol. 3, no. 1, p. 92, 2006.

[12] J. E. Stajich, D. Block, K. Boulez, S. E. Brenner, S. A. Chervitz,
C. Dagdigian, et al., “The Bioperl toolkit: Perl modules for the life
sciences,” Genome research, vol. 12, no. 10, pp. 1611–1618, 2002.

[13] P. J. A. Cock, T. Antao, J. T. Chang, B. A. Chapman, C. J. Cox,
A. Dalke, et al., “Biopython: freely available Python tools for computa-
tional molecular biology and bioinformatics,” Bioinformatics, vol. 25,
no. 11, pp. 1422–1423, 2009.

[14] N. Goto, P. Prins, M. Nakao, R. Bonnal, J. Aerts, and T. Katayama,
“BioRuby: bioinformatics software for the Ruby programming lan-
guage,” Bioinformatics, vol. 26, no. 20, pp. 2617–2619, 2010.

[15] E. R. Mardis, “The impact of next-generation sequencing technology
on genetics,” Trends in genetics, vol. 24, no. 3, pp. 133–141, 2008.

[16] B. Mole, “Science Visualized: The gene sequencing future is here,”
Science News, vol. 185, no. 3, pp. 32–32, 2014.

[17] D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, and E. W.
Sayers, “GenBank,” Nucleic Acids Research, vol. 38, pp. 46–51, 2010.

[18] R. E. Giles, H. Blanc, H. M. Cann, and D. C. Wallace, “Maternal in-
heritance of human mitochondrial DNA,” Proceedings of the National
academy of Sciences, vol. 77, no. 11, pp. 6715–6719, 1980.

[19] W. M. Brown, M. George, and A. C. Wilson, “Rapid evolution of
animal mitochondrial DNA,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 76, no. 4, pp. 1967–1971,
1979.

[20] D. R. Foran, “Relative Degradation of Nuclear and Mitochondrial DNA:
An Experimental Approach,” Journal of Forensic Sciences, vol. 51,
no. 4, pp. 766–770, 2006.

Bibliography 135

[21] E. Ruiz-Pesini and D. C. Wallace, “Evidence for adaptive selection act-
ing on the tRNA and rRNA genes of human mitochondrial DNA,” Hu-
man Mutation, Variations, Informatics and Disease, vol. 27, pp. 1072–
1081, 2006.

[22] D. C. Wallace, E. Ruiz-Pesini, and D. Mishmar, “mtDNA variation,
climatic adaptation, degenerative diseases, and longevity,” in Cold
Spring Harbor symposia on quantitative biology, vol. 68, pp. 471–478,
Cold Spring Harbor Laboratory Press, 2003.

[23] K. Liu, S. Raghavan, S. Nelesen, C. R. Linder, and T. Warnow, “Rapid
and Accurate Large-Scale Coestimation of Sequence Alignments and
Phylogenetic Trees,” Science, vol. 324, no. 5934, pp. 1561–1564, 2009.

[24] K. Liu, T. J. Warnow, M. T. Holder, S. M. Nelesen, J. Yu, A. P. Sta-
matakis, and C. R. Linder, “SATe-II: very fast and accurate simulta-
neous estimation of multiple sequence alignments and phylogenetic
trees,” Systematic biology, vol. 61, no. 1, pp. 90–106, 2012.

[25] S. Nelesen, K. Liu, L.-S. Wang, K, C. R. Linder, and T. Warnow, “DAC-
TAL: divide-and-conquer trees (almost) without alignments,” Bioinfor-
matics, vol. 28, pp. i274–i282, 2012.

[26] R. Blanco and E. Mayordomo, “ZARAMIT: a system for the evolu-
tionary study of human mitochondrial DNA,” in IWANN 2009, Part II,
vol. 5518 of Lecture Notes in Computer Science, pp. 1139–1142, 2009.

[27] R. Blanco, E. Mayordomo, J. Montoya, and E. Ruiz-Pesini, “Reboot-
ing the human mitochondrial phylogeny: an automated and scalable
methodology with expert knowledge,” BMC Bioinformatics, vol. 12,
no. 174, pp. 1–13, 2011.

[28] J. Álvarez-Jarreta and E. Ruiz-Pesini, “MEvoLib v1.0: the First Molec-
ular Evolution Library for Python,” BMC Bioinformatics, vol. 17,
no. 436, pp. 1–8, 2016.

[29] K. Katoh, K. Misawa, K. Kuma, and T. Miyata, “MAFFT: a novel
method for rapid multiple sequence alignment based on fast Fourier
transform,” Nucleic Acids Research, vol. 30, no. 14, pp. 3059–3066,
2002.

[30] C. Burks, “Molecular Biology Database List,” Nucleic Acids Research,
vol. 27, no. 1, pp. 1–9, 1999.

136 Bibliography

[31] “National Center for Biotechnology Information (NCBI).” https://
www.ncbi.nlm.nih.gov/ .

[32] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman,
“Basic local alignment search tool,” Journal of molecular biology,
vol. 215, no. 3, pp. 403–410, 1990.

[33] A. M. Kogelnik, M. T. Lott, M. D. Brown, S. B. Navathe, and D. C.
Wallace, “MITOMAP: a human mitochondrial genome database,” Nu-
cleic acids research, vol. 24, no. 1, pp. 177–179, 1996.

[34] E. Ruiz-Pesini, M. T. Lott, V. Procaccio, J. C. Poole, M. C. Brandon,
D. Mishmar, et al., “An enhanced MITOMAP with a global mtDNA
mutational phylogeny,” Nucleic acids research, vol. 35, no. suppl 1,
pp. D823–D828, 2007.

[35] G. D. Schuler, J. A. Epstein, H. Ohkawa, and J. A. Kans, “[10] En-
trez: Molecular biology database and retrieval system,” Methods in
enzymology, vol. 266, pp. 141–162, 1996.

[36] R. Leinonen, H. Sugawara, and M. Shumway, “The sequence read
archive,” Nucleic acids research, pp. D19–D21, 2010.

[37] R. M. Schaaper, “Base selection, proofreading, and mismatch repair
during DNA replication in Escherichia coli,” Journal of Biological
Chemistry, vol. 268, no. 32, pp. 23762–23765, 1993.

[38] J. M. Berg, J. L. Tymoczko, and L. Stryer, “Biochemistry,” 2002. 5th
edition.

[39] H. S. Zaher and R. Green, “Fidelity at the molecular level: lessons
from protein synthesis,” Cell, vol. 136, no. 4, pp. 746–762, 2009.

[40] L. Liu, Y. Li, S. Li, N. Hu, Y. He, R. Pong, et al., “Comparison of
next-generation sequencing systems,” BioMed Research International,
vol. 2012, no. 251364, pp. 1–11, 2012.

[41] M. van Oven and M. Kayser, “Updated comprehensive phylogenetic
tree of global human mitochondrial DNA variation,” Human Mutation,
vol. 30, no. 2, pp. E386–E394, 2009.

[42] H. Carrillo and D. Lipman, “The multiple sequence alignment problem
in biology,” SIAM Journal on Applied Mathematics, vol. 48, no. 5,
pp. 1073–1082, 1988.

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/

Bibliography 137

[43] P. Bonizzoni and G. Della Vedova, “The complexity of multiple se-
quence alignment with SP-score that is a metric,” Theoretical Computer
Science, vol. 259, no. 1, pp. 63–79, 2001.

[44] W. Just, “Computational complexity of multiple sequence alignment
with SP-score,” Journal of computational biology, vol. 8, no. 6, pp. 615–
623, 2001.

[45] F. Sievers, A. Wilm, D. G. Dineen, T. J. Gibson, K. Karplus, W. Li,
et al., “Fast, scalable generation of high-quality protein multiple se-
quence alignments using Clustal Omega,” Molecular Systems Biology,
vol. 7, no. 539, pp. 1–6, 2011.

[46] R. C. Edgar, “MUSCLE: multiple sequence alignment with high ac-
curacy and high throughput,” Nucleic Acids Research, vol. 32, no. 5,
pp. 1792–1797, 2004.

[47] T. Lassmann and E. L. Sonnhammer, “Kalign – an accurate and fast
multiple sequence alignment algorithm,” BMC bioinformatics, vol. 6,
no. 298, pp. 1–9, 2005.

[48] A. Löytynoja and N. Goldman, “Phylogeny-aware gap placement pre-
vents errors in sequence alignment and evolutionary analysis,” Science,
vol. 320, no. 5883, pp. 1632–1635, 2008.

[49] M. Clamp, J. Cuff, S. M. Searle, and G. J. Barton, “The Jalview Java
alignment editor,” Bioinformatics, vol. 20, no. 3, pp. 426–427, 2004.

[50] M. Gouy, S. Guindon, and O. Gascuel, “SeaView version 4: a multiplat-
form graphical user interface for sequence alignment and phylogenetic
tree building,” Molecular biology and evolution, vol. 27, no. 2, pp. 221–
224, 2010.

[51] S. Mirarab, N. Nguyen, S. Guo, L.-S. Wang, J. Kim, and T. Warnow,
“PASTA: ultra-large multiple sequence alignment for nucleotide and
amino-acid sequences,” Journal of Computational Biology, vol. 22,
no. 5, pp. 377–386, 2015.

[52] U. W. Roshan, T. Warnow, B. M. E. Moret, and T. L. Williams, “Rec-I-
DCM3: a fast algorithmic technique for reconstructing phylogenetic
trees,” in Computational Systems Bioinformatics Conference, 2004
(CSB 2004), pp. 98–109, IEEE, 2004.

138 Bibliography

[53] D. Navarro-Gomez, J. Leipzig, L. Shen, M. Lott, A. P. M. Stassen,
D. C. Wallace, et al., “Phy-Mer: a novel alignment-free and reference-
independent mitochondrial haplogroup classifier,” Bioinformatics,
vol. 31, no. 8, pp. 1310–1312, 2015.

[54] H. Weissensteiner, D. Pacher, A. Kloss-Brandstätter, L. Forer,
G. Specht, H. J. Bandelt, et al., “HaploGrep 2: mitochondrial hap-
logroup classification in the era of high-throughput sequencing,” Nu-
cleic acids research, vol. 44, pp. W58–W63, 2016.

[55] R. M. Andrews, I. Kubacka, P. F. Chinnery, R. N. Lightowlers, D. M.
Turnbull, and N. Howell, “Reanalysis and revision of the Cambridge
reference sequence for human mitochondrial DNA,” Nature genetics,
vol. 23, no. 2, pp. 147–147, 1999.

[56] C. T. Amemiya, J. Alföldi, A. P. Lee, S. Fan, H. Philippe, I. MacCallum,
et al., “The african coelacanth genome provides insights into tetrapod
evolution,” Nature, vol. 496, no. 7445, pp. 311–316, 2013.

[57] S. Finnilä, M. S. Lehtonen, and K. Majamaa, “Phylogenetic network
for European mtDNA,” The American Journal of Human Genetics,
vol. 68, no. 6, pp. 1475–1484, 2001.

[58] D. Gusfield, S. Eddhu, and C. Langley, “Optimal, efficient recon-
struction of phylogenetic networks with constrained recombination,”
Journal of bioinformatics and computational biology, vol. 2, no. 1,
pp. 173–213, 2004.

[59] D. H. Huson and D. Bryant, “Application of phylogenetic networks in
evolutionary studies,” Molecular biology and evolution, vol. 23, no. 2,
pp. 254–267, 2006.

[60] C. Daskalakis and S. Roch, “Alignment-free phylogenetic reconstruc-
tion,” in RECOMB 2010, vol. 6044 of Lecture Notes in Computer
Science, pp. 123–137, Springer, Berlin/Heidelberg, 2010.

[61] M. K. Kuhner and J. Felsenstein, “A Simulation Comparison of Phy-
logeny Algorithms under Equal and Unequal Evolutionary Rates,”
Molecular Biology and Evolution, vol. 11, no. 3, pp. 459–468, 1994.

[62] Y. Tateno, N. Takezaki, and M. Nei, “Relative efficiencies of the
maximum-likelihood, neighbor-joining, and maximum-parsimony
methods when substitution rate varies with site,” Molecular Biology
and Evolution, vol. 11, no. 2, pp. 261–277, 1994.

Bibliography 139

[63] P. Beerli, “Comparison of Bayesian and maximum-likelihood infer-
ence of population genetic parameters,” Bioinformatics, vol. 22, no. 3,
pp. 341–345, 2006.

[64] W. H. E. Day, “Computational complexity of inferring phylogenies
from dissimilarity matrices,” Bulletin of mathematical biology, vol. 49,
no. 4, pp. 461–467, 1987.

[65] L. L. Cavalli-Sforza and A. W. F. Edwards, “Phylogenetic analysis.
Models and estimation procedures,” American journal of human genet-
ics, vol. 19, no. 3 Pt 1, pp. 233–257, 1967.

[66] N. Saitou and M. Nei, “The neighbor-joining method: a new method for
reconstructing phylogenetic trees,” Molecular Biology and Evolution,
vol. 4, no. 4, pp. 406–425, 1987.

[67] R. V. Eck and M. O. Dayhoff, Atlas of Protein Sequence and Structure,
pp. 162–168. Silver Spring, Maryland, 1966.

[68] W. M. Fitch, “Toward Defining the Course of Evolution: Minimum
Change for a Specific Tree Topology,” Systematic Zoology, vol. 20,
no. 4, pp. 406–416, 1971.

[69] O. Gascuel, “BIONJ: an improved version of the NJ algorithm based
on a simple model of sequence data,” Molecular Biology and Evolution,
vol. 14, pp. 685–695, 1997.

[70] V. Makarenkov, “T-REX: reconstructing and visualizing phylogenetic
trees and reticulation networks,” Bioinformatics, vol. 17, no. 7, pp. 664–
668, 2001.

[71] D. L. Swofford, “PAUP*. Phylogenetic analysis using parsimony (*
and other methods). Version 4.,” 2003.

[72] S. Kumar, K. Tamura, and M. Nei, “MEGA: Molecular Evolutionary
Genetics Analysis software for microcomputers,” Computer Applica-
tions in the Biosciences, vol. 10, no. 2, pp. 189–191, 1994.

[73] S. Kumar, G. Stecher, and K. Tamura, “MEGA7: Molecular Evolu-
tionary Genetics Analysis version 7.0 for bigger datasets,” Molecular
biology and evolution, vol. 33, no. 7, pp. 1870—-1874, 2016.

[74] J. Felsenstein, “Evolutionary trees from DNA sequences: A maximum
likelihood approach,” Molecular Evolution, vol. 17, pp. 368–376, 1981.

140 Bibliography

[75] B. Chor and T. Tuller, “Maximum likelihood of evolutionary trees:
hardness and approximation,” Bioinformatics, vol. 21, no. 1, pp. 97–
106, 2005.

[76] G. J. Olsen, H. Matsuda, R. Hagstrom, and R. Overbeek, “fastDNAml:
a tool for construction of phylogenetic trees of DNA sequences us-
ing maximum likelihood,” Computer applications in the biosciences:
CABIOS, vol. 10, no. 1, pp. 41–48, 1994.

[77] S. Guindon and O. Gascuel, “A simple, fast, and accurate algorithm
to estimate large phylogenies by maximum likelihood,” Systematic
biology, vol. 52, no. 5, pp. 696–704, 2003.

[78] S. Guindon, J.-F. Dufayard, V. Lefort, M. Anisimova, W. Hordijk,
and O. Gascuel, “New algorithms and methods to estimate maximum-
likelihood phylogenies: assessing the performance of PhyML 3.0,”
Systematic biology, vol. 59, no. 3, pp. 307–321, 2010.

[79] A. Stamatakis, “RAxML-VI-HPC: maximum likelihood-based phylo-
genetic analyses with thousands of taxa and mixed models,” Bioinfor-
matics, vol. 22, no. 21, pp. 2688–2690, 2006.

[80] A. Stamatakis, “RAxML version 8: a tool for phylogenetic analysis
and post-analysis of large phylogenies,” Bioinformatics, vol. 30, no. 9,
pp. 1312–1313, 2014.

[81] M. N. Price, P. S. Dehal, and A. P. Arkin, “FastTree: Computing Large
Minimum-Evolution Trees with Profiles instead of a Distance Matrix,”
Molecular Biology and Evolution, vol. 26, pp. 1641–1650, 2009.

[82] M. N. Price, P. S. Dehal, and A. P. Arkin, “FastTree 2–approximately
maximum-likelihood trees for large alignments,” PloS one, vol. 5, no. 3,
p. e9490, 2010.

[83] S. Ota and W. H. Li, “NJML: a hybrid algorithm for the neighbor-
joining and maximum-likelihood methods,” Molecular Biology and
Evolution, vol. 17, no. 9, pp. 1401–1409, 2000.

[84] S. Ota and W. H. Li, “NJML+: an extension of the NJML method to
handle protein sequence data and computer software implementation,”
Molecular biology and evolution, vol. 18, no. 11, pp. 1983–1992, 2001.

[85] T. H. Jukes and C. R. Cantor, Evolution of protein molecules, vol. 3,
ch. 24, pp. 21–132. New York, 1969.

Bibliography 141

[86] M. Hasegawa, H. Kishino, and T. Yano, “Dating of the human-ape
splitting by a molecular clock of mitochondrial DNA,” Journal of
molecular evolution, vol. 22, no. 2, pp. 160–174, 1985.

[87] S. Tavaré, “Some probabilistic and statistical problems in the analysis
of DNA sequences,” Lectures on mathematics in the life sciences,
vol. 17, pp. 57–86, 1986.

[88] D. T. Jones, W. R. Taylor, and J. M. Thornton, “The rapid genera-
tion of mutation data matrices from protein sequences,” Computer
applications in the biosciences: CABIOS, vol. 8, no. 3, pp. 275–282,
1992.

[89] S. Whelan and N. Goldman, “A general empirical model of protein
evolution derived from multiple protein families using a maximum-
likelihood approach,” Molecular biology and evolution, vol. 18, no. 5,
pp. 691–699, 2001.

[90] K. Liu, C. R. Linder, and T. Warnow, “RAxML and FastTree: Com-
paring Two Methods for Large-Scale Maximum Likelihood Phylogeny
Estimation,” PLoS One, vol. 6, no. 11, p. e27731, 2011.

[91] D. Posada and K. A. Crandall, “Modeltest: testing the model of DNA
substitution,” Bioinformatics, vol. 14, no. 9, pp. 817–818, 1998.

[92] D. Darriba, G. L. Taboada, R. Doallo, and D. Posada, “jModelTest 2:
more models, new heuristics and parallel computing,” Nature methods,
vol. 9, no. 8, p. 772, 2012.

[93] F. Abascal, R. Zardoya, and D. Posada, “Prottest: selection of best-fit
models of protein evolution,” Bioinformatics, vol. 21, no. 9, pp. 2104–
2105, 2005.

[94] D. Darriba, G. L. Taboada, R. Doallo, and D. Posada, “ProtTest 3:
fast selection of best-fit models of protein evolution,” Bioinformatics,
vol. 27, no. 8, pp. 1164–1165, 2011.

[95] Z. Yang and B. Rannala, “Bayesian phylogenetic inference using DNA
sequences: a Markov Chain Monte Carlo method,” Molecular biology
and evolution, vol. 14, no. 7, pp. 717–724, 1997.

[96] J. P. Huelsenbeck and F. Ronquist, “MRBAYES: Bayesian inference of
phylogenetic trees,” Bioinformatics, vol. 17, no. 8, pp. 754–755, 2001.

142 Bibliography

[97] F. Ronquist, M. Teslenko, P. van der Mark, D. L. Ayres, A. Darling,
S. Höhna, et al., “MrBayes 3.2: efficient Bayesian phylogenetic infer-
ence and model choice across a large model space,” Systematic biology,
vol. 61, no. 3, pp. 539–542, 2012.

[98] M. A. Suchard and B. D. Redelings, “BAli-Phy: simultaneous Bayesian
inference of alignment and phylogeny,” Bioinformatics, vol. 22,
pp. 2047–2048, 2006.

[99] J. Felsenstein, “Confidence limits on phylogenies: an approach using
the bootstrap,” Evolution, vol. 39, no. 4, pp. 783–791, 1985.

[100] J. Felsenstein, “Phylogeny inference package (PHYLIP),” 2006. Uni-
versity of Washington, Seattle.

[101] T. Margush and F. R. McMorris, “Consensusn-trees,” Bulletin of Math-
ematical Biology, vol. 43, no. 2, pp. 239–244, 1981.

[102] G. Nelson, “Cladistic analysis and synthesis: principles and definitions,
with a historical note on Adanson’s Familles des Plantes (1763–1764),”
Systematic Biology, vol. 28, no. 1, pp. 1–21, 1979.

[103] E. N. Adams, “Consensus techniques and the comparison of taxonomic
trees,” Systematic Biology, vol. 21, no. 4, pp. 390–397, 1972.

[104] W. F. Day, “Optimal algorithms for comparing trees with labeled
leaves,” Journal of classification, vol. 2, no. 1, pp. 7–28, 1985.

[105] E. N. Adams, “N-trees as nestings: complexity, similarity, and consen-
sus,” Journal of Classification, vol. 3, no. 2, pp. 299–317, 1986.

[106] R. D. M. Page, “COMMENTS ON COMPONENT-COMPATIBILITY
IN HISTORICAL BIOGEOGRAPHY,” Cladistics, vol. 5, no. 2,
pp. 167–182, 1989.

[107] M. J. Sanderson, A. Purvis, and C. Henze, “Phylogenetic supertrees:
assembling the trees of life,” Trends in Ecology & Evolution, vol. 13,
no. 3, pp. 105–109, 1998.

[108] B. R. Baum, “Combining trees as a way of combining data sets for
phylogenetic inference, and the desirability of combining gene trees,”
Taxon, pp. 3–10, 1992.

Bibliography 143

[109] M. A. Ragan, “Phylogenetic inference based on matrix representation
of trees,” Molecular phylogenetics and evolution, vol. 1, no. 1, pp. 53–
58, 1992.

[110] M. Steel and A. Rodrigo, “Maximum likelihood supertrees,” Systematic
biology, vol. 57, no. 2, pp. 243–250, 2008.

[111] F. Ronquist, J. P. Huelsenbeck, and T. Britton, “Bayesian supertrees,”
in Phylogenetic Supertrees, pp. 193–224, Springer, 2004.

[112] L. R. Foulds and R. L. Graham, “The Steiner problem in phylogeny
is NP-complete,” Advances in Applied Mathematics, vol. 3, no. 1,
pp. 43–49, 1982.

[113] C. Semple and M. Steel, “A supertree method for rooted trees,” Dis-
crete Applied Mathematics, vol. 105, no. 1, pp. 147–158, 2000.

[114] M. S. Swenson, R. Suri, C. R. Linder, and T. Warnow, “SuperFine:
fast and accurate supertree estimation,” Systems Biology, vol. 61, no. 2,
pp. 214–227, 2012.

[115] J. P. Huelsenbeck and B. Rannala, “Frequentist properties of Bayesian
posterior probabilities of phylogenetic trees under simple and complex
substitution models,” Systematic biology, vol. 53, no. 6, pp. 904–913,
2004.

[116] D. F. Robinson and L. R. Foulds, “Comparison of phylogenetic trees,”
Mathematical biosciences, vol. 53, no. 1, pp. 131–147, 1981.

[117] C. Than, D. Ruths, and L. Nakhleh, “PhyloNet: a software package
for analyzing and reconstructing reticulate evolutionary relationships,”
BMC bioinformatics, vol. 9, no. 322, pp. 1–16, 2008.

[118] M. Ishteva, H. Park, and L. Song, “Unfolding Latent Tree Structures
using 4th Order Tensors,” in 30th International Conference on Machine
Learning, vol. 3, pp. 316–324, 2013.

[119] C. Semple and M. A. Steel, Phylogenetics, vol. 24. Oxford University
Press on Demand, 2003.

[120] P. L. Erdös, M. A. Steel, L. A. Székely, and T. J. Warnow, “A few
logs suffice to build (almost) all trees: Part II,” Theoretical Computer
Science, vol. 221, no. 1-2, pp. 77–118, 1999.

144 Bibliography

[121] A. Anandkumar, K. Chaudhuri, D. J. Hsu, S. M. Kakade, L. Song, and
T. Zhang, “Spectral methods for learning multivariate latent tree struc-
ture,” in Advances in neural information processing systems, pp. 2025–
2033, 2011.

[122] G. Guennebaud, “Eigen: a C++ linear algebra library.” 1st PlaFRIM
scientific day, Bordeaux, 2011. http://eigen.tuxfamily.org/ .

[123] J. Álvarez-Jarreta, G. de Miguel Casado, and E. Mayordomo,
“PhyloFlow: A Fully Customizable and Automatic Workflow for Phy-
logeny Estimation,” in ECCB 2014, 2014.

[124] J. Álvarez-Jarreta, G. de Miguel Casado, and E. Mayordomo,
“PhyloFlow: A Fully Customizable and Automatic Workflow for Phy-
logenetic Reconstruction,” in IEEE International Conference on Bioin-
formatics and Biomedicine (BIBM), pp. 1–7, IEEE, 2014.

[125] J. Álvarez-Jarreta, G. de Miguel Casado, and E. Mayordomo, “Molec-
ular Phylogenetic Analysis: Design and Implementation of Scalable
and Reliable Algorithms and Verification of Phylogenetic Properties,”
in V Jornadas de Jóvenes Investigadores I3A, 2016.

[126] J. Álvarez-Jarreta, E. Mayordomo, and E. Ruiz-Pesini, “PHYSER: An
Algorithm to Detect Sequencing Errors from Phylogenetic Informa-
tion,” in 6th International Conference on Practical Applications of
Computational Biology & Bioinformatics (PACBB 2012), pp. 105–112,
2012.

[127] D. L. Swofford, “Phylogenetic analysis using parsimony,” 1998.

[128] E. Miguel, “Estudio y análisis de métodos de inferencia filogenética:
del ADN a las proteínas,” Undergraduate Project (TAZ-PFC-2012-
791), Universidad de Zaragoza, 2012.

[129] Y. Cao, A. Janke, P. J. Waddell, M. Westerman, O. Takenaka, S. Murata,
et al., “Conflict among individual mitochondrial proteins in resolving
the phylogeny of eutherian orders,” Journal of Molecular Evolution,
vol. 47, no. 3, pp. 307–322, 1998.

[130] J. Adachi and M. Hasegawa, “Model of amino acid substitution in pro-
teins encoded by mitochondrial DNA,” Journal of molecular evolution,
vol. 42, no. 4, pp. 459–468, 1996.

http://eigen.tuxfamily.org/

Bibliography 145

[131] J. P. Huelsenbeck, P. Joyce, C. Lakner, and F. Ronquist, “Bayesian
analysis of amino acid substitution models,” Philosophical Transac-
tions of the Royal Society of London B: Biological Sciences, vol. 363,
no. 1512, pp. 3941–3953, 2008.

[132] F. Abascal, D. Posada, and R. Zardoya, “MtArt: a new model of amino
acid replacement for Arthropoda,” Molecular biology and evolution,
vol. 24, no. 1, pp. 1–5, 2007.

[133] D. A. Bader, U. Roshan, and A. Stamatakis, “Computational Grand
Challenges in Assembling the Tree of Life: Problems and Solutions,”
Advances in Computers, vol. 68, pp. 127–176, 2006.

[134] Z. Yang and B. Rannala, “Molecular phylogenetics: principles and
practice,” Nature Reviews Genetics, vol. 13, pp. 303–314, 2012.

[135] D. Georgakopoulos, M. Hornick, and A. Sheth, “An overview of
workflow management: From process modeling to workflow automa-
tion infrastructure,” Distributed and parallel Databases, vol. 3, no. 2,
pp. 119–153, 1995.

[136] R. Littauer, R. Karthik, B. Ludäscher, W. Michener, and R. Koskela,
“Trends in Use of Scientific Workflows: Insights from a Public Reposi-
tory and Recommendations for Best Practice,” The International Jour-
nal of Digital Curation, vol. 7, no. 2, pp. 92–100, 2012.

[137] A. Luckow, P. Mantha, and S. Jha, “Pilot-Abstraction: A Valid Ab-
straction for Data-Intensive Applications on HPC, Hadoop and Cloud
Infrastructures?,” arXiv preprint arXiv:1501.05041, 2015.

[138] S. B. Needleman and C. D. Wunsch, “Hardware Accelerators in Com-
putational Biology: Application, Potential, and Challenges,” IEEE
Design & Test, vol. 31, no. 1, pp. 8–18, 2014.

[139] J. Cohen, I. Filippis, M. Woodbridge, D. Bauer, N. Chue Hong, M. Jack-
son, et al., “RAPPORT: running scientific high-performance computing
applications on the cloud,” Philosophical Transactions A: Mathemati-
cal, Physical and Engineering Sciences, vol. 371, no. 1983, 2012.

[140] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood,
et al., “Taverna: a tool for the composition and enactment of bioin-
formatics workflows,” Bioinformatics, vol. 20, no. 17, pp. 3045–3054,
2004.

146 Bibliography

[141] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers,
S. Owen, et al., “The Taverna workflow suite: designing and execut-
ing workflows of Web Services on the desktop, web or in the cloud,”
Nucleic Acids Research, vol. 41, pp. W557–W561, 2013.

[142] B. Giardine, C. Riemer, R. Hardison, R. Burhans, L. Elnitski, P. Shah,
et al., “Galaxy: a platform for interactive large-scale genome analysis,”
Genome Research, vol. 15, no. 10, pp. 1451–1455, 2005.

[143] M. Abouelhoda, S. Issa, and M. Ghanem, “Tavaxy: Integrating Tav-
erna and Galaxy workflows with cloud computing support,” BMC
Bioinformatics, vol. 13, no. 77, pp. 1–19, 2012.

[144] I. Altintas, J. Wang, D. Crawl, and W. Li, “Challenges and approaches
for distributed workflow-driven analysis of large-scale biological data,”
in Workshop on Data analytics in the Cloud at EDBT/ICDT 2012
Conference (DanaC2012), pp. 73–78, 2012.

[145] Y. Zhao, Y. Li, I. Raicu, S. Lu, and Z. Xuan, “Architecting Cloud Work-
flow: Theory and Practice,” in 2014 IEEE International Conference
on Computer and Information Technology (CIT), pp. 466–473, IEEE
Computer Society, 2014.

[146] N. Alachiotis, E. Sotiriades, A. Dollas, and A. Stamatakis, “Exploring
FPGAs for accelerating the phylogenetic likelihood function,” in 2009
IEEE International Parallel & Distributed Processing Symposium
(IPDPS 2009), pp. 1–8, IEEE Computer Society, 2009.

[147] F. Blagojevic, A. Stamatakis, C. D. Antonopoulos, and D. S.
Nikolopoulos, “Raxml-cell: Parallel phylogenetic tree inference on
the cell broadband engine,” in 2007 IEEE International Parallel &
Distributed Processing Symposium (IPDPS 2007), pp. 1–10, IEEE
Computer Society, 2007.

[148] L. Kuan, J. Neves, F. Pratas, P. Tomás, and L. Sousa, “Accelerating Phy-
logenetic Inference on GPUs: an OpenACC and CUDA comparison,”
in International Work-Conference on Bioinformatics and Biomedical
Engineering (IWBBIO), pp. 589–600, 2014.

[149] T. Majumder, P. P. Pande, and A. Kalyanaraman, “Wireless NoC plat-
forms with dynamic task allocation for maximum likelihood phylogeny
reconstruction,” IEEE Design & Test, vol. 31, no. 3, pp. 54–64, 2014.

Bibliography 147

[150] A. M. Kozlov, C. Goll, and A. Stamatakis, “Efficient Computation
of the Phylogenetic Likelihood Function on the Intel MIC Architec-
ture,” in 2014 IEEE International Parallel & Distributed Processing
Symposium Workshops (IPDPSW 2014), pp. 518–527, IEEE Computer
Society, 2014.

[151] A. M. Kozlov, A. J. Aberer, and A. Stamatakis, “ExaML version 3: a
tool for phylogenomic analyses on supercomputers,” Bioinformatics,
vol. 1, no. 3, pp. 1–3, 2015.

[152] M. Zakarya, N. Dilawar, and N. Khan, “A Survey on Energy Efficient
Load Balancing Algorithms over Multicores,” International Journal of
Research in Computer Applications & Information Technology, vol. 1,
no. 1, pp. 60–68, 2013.

[153] D. Zhao, Z. Zhang, X. Zhou, T. Li, K. Wang, D. Kimpe, et al., “Fu-
sionFS: Toward supporting data-intensive scientific applications on
extreme-scale high-performance computing systems,” in 2014 IEEE
International Conference on Big Data (Big Data), pp. 61–70, IEEE
Computer Society, 2014.

[154] T. Flouri, F. Izquierdo-Carrasco, D. Darriba, A. J. Aberer, L. T. Nguyen,
B. Q. Minh, et al., “The Phylogenetic Likelihood Library,” Systematic
Biology, vol. 64, no. 2, pp. 356–362, 2015.

[155] S. Jha, J. Qiu, A. Luckow, P. Mantha, and G. C. Fox, “A Tale of Two
Data-Intensive Paradigms: Applications, Abstractions, and Architec-
tures,” in 2014 IEEE International Conference on Big Data (Big Data),
pp. 645–652, IEEE Computer Society, 2014.

[156] M. Margulies, M. Egholm, W. E. Altman, S. Attiya, J. S. Bader, L. A.
Bemben, et al., “Genome Sequencing in Open Microfabricated High
Density Picoliter Reactors,” Nature, vol. 437, pp. 376–380, 2005.

[157] F. A. Matsen, R. B. Kodner, and E. V. Armbrust, “pplacer: linear
time maximum-likelihood and Bayesian phylogenetic placement of
sequences onto a fixed reference tree,” BMC Bioinformatics, vol. 11,
no. 538, pp. 1–16, 2010.

[158] G. Schwarz, “Estimating the dimension of a model,” The annals of
statistics, vol. 6, no. 2, pp. 461–464, 1978.

148 Bibliography

[159] B. L. Maidak, N. Larsen, M. J. McCaughey, R. Overbeek, G. J. Olsen,
K. Fogel, et al., “The ribosomal database project,” Nucleic acids re-
search, vol. 22, no. 17, pp. 3485–3487, 1994.

[160] A. Recuenco, “Formalización y desarollo de un workflow de inferencia
filogenética basado en SaaS,” Undergraduate Project (TAZ-TFG-2014-
1230), Universidad de Zaragoza, 2014.

[161] J. Álvarez, R. Blanco, and E. Mayordomo, “Workflows with Model
Selection: A Multilocus Approach to Phylogenetic Analysis,” in 5th
International Conference on Practical Applications of Computational
Biology & Bioinformatics (PACBB 2011), vol. 93 of Advances in
Intelligent and Soft Computing, pp. 39–47, Springer Berlin Heidelberg,
2011.

[162] J. Álvarez-Jarreta, G. de Miguel Casado, and E. Mayordomo, “Análi-
sis filogenético molecular: Diseño e implementación de algoritmos
escalables y fiables y verificación automática de propiedades de una
filogenia,” in I Jornadas de Jóvenes Investigadores I3A, p. 52, 2012.

[163] B. Ludäscher, M. Weske, T. McPhillips, and S. Bowers, “Scientific
Workflows: Business as Usual?,” in Business Process Management
(U. Dayal, J. Eder, J. Koehler, and H. Reijers, eds.), vol. 5701 of Lecture
Notes in Computer Science, pp. 31–47, Springer Berlin Heidelberg,
2009.

[164] J. Basney, M. Livny, and T. Tannenbaum, “High Throughput Comput-
ing with Condor,” HPCU news, vol. 1, no. 2, 1997.

[165] P. Couvares, T. Kosar, A. Roy, J. Weber, and K. Wenger, “Workflow in
Condor,” in In Workflows for e-Science, Springer Press, 2007.

[166] U. Purkhold, M. Wagner, G. Timmermann, A. Pommerening-Röser,
and H. P. Koops, “16S rRNA and amoA-based phylogeny of 12
novel betaproteobacterial ammonia-oxidizing isolates: extension of
the dataset and proposal of a new lineage within the nitrosomonads,”
International Journal of Systematic and Evolutionary Microbiology,
vol. 53, pp. 1485–1494, 2003.

[167] A. Achilli, C. Rengo, C. Magri, V. Battaglia, A. Olivieri, R. Scozzari,
et al., “The molecular dissection of mtDNA haplogroup H confirms
that the Franco-Cantabrian glacial refuge was a major source for the

Bibliography 149

European gene pool,” American Journal of Human Genetics, vol. 75,
pp. 910–918, 2004.

[168] R. Rajkumar, J. Banerjee, H. B. Gunturi, R. Trivedi, and V. K. Kashyap,
“Phylogeny and antiquity of M macrohaplogroup inferred from com-
plete mtDNA sequence of Indian specific lineages,” BMC Evolutionary
Biology, vol. 5, no. 26, pp. 1–8, 2005.

[169] S. Guajardo, “Entorno de visualización y edición de árboles para
filogenias extensas,” Undergraduate Project (TAZ-PFC-2014-305),
Universidad de Zaragoza, 2014.

[170] J. Álvarez-Jarreta and G. de Miguel Casado, “PhyloViewer: A Phylo-
genetic Tree Viewer for Extense Phylogenies,” in ECCB 2014, 2014.

[171] J. Müller and K. Müller, “TreeGraph: automated drawing of complex
tree figures using an extensible tree description format,” Molecular
Ecology Notes, vol. 4, no. 4, pp. 786–788, 2004.

[172] A. Rambaut, “FigTree, a graphical viewer of phylogenetic trees,” 2007.
http:// tree.bio.ed.ac.uk/software/figtree.

[173] I. Letunic and P. Bork, “Interactive Tree Of Life (iTOL): an online tool
for phylogenetic tree display and annotation,” Bioinformatics, vol. 23,
no. 1, pp. 127–128, 2007.

[174] H. Zhang, S. Gao, M. J. Lercher, S. Hu, and W.-H. Chen, “EvolView,
an online tool for visualizing, annotating and managing phylogenetic
trees,” Nucleic acids research, vol. 40, no. W1, pp. W569–W572, 2012.

[175] B. C. Stöver and K. F. Müller, “TreeGraph 2: combining and visualiz-
ing evidence from different phylogenetic analyses,” BMC bioinformat-
ics, vol. 11, no. 7, pp. 1–9, 2010.

[176] “Matplotlib.” http://matplotlib.org/ .

[177] “NetworkX.” http://networkx.github.io/ .

[178] “PyGraphviz.” https://pygraphviz.github.io/ .

[179] F. Merino-Casallo, “Diseño y Estudio de herramientas para el Análisis
del Índice de Conservación del ADN mitocondrial,” Undergraduate
Project (TAZ-PFC-2014-295), Universidad de Zaragoza, 2014.

http://tree.bio.ed.ac.uk/software/figtree
http://matplotlib.org/
http://networkx.github.io/
https://pygraphviz.github.io/

150 Bibliography

[180] F. Merino-Casallo, J. Álvarez-Jarreta, and E. Mayordomo, “Conser-
vation in mitochondrial DNA: Parallelized estimation and alignment
influence,” in 2015 IEEE International Conference on Bioinformatics
and Biomedicine (BIBM 2015), pp. 1434–1440, IEEE, 2015.

[181] R. D. M. Page and E. C. Holmes, Molecular evolution: a phylogenetic
approach. Blackwell Publishing Ltd., 2nd. edition ed., 1998.

[182] W. S. J. Valdar, “Scoring residue conservation,” Proteins: Structure,
Function, and Bioinformatics, vol. 48, no. 2, pp. 227–241, 2002.

[183] J. A. Capra and M. Singh, “Predicting functionally important residues
from sequence conservation,” Bioinformatics, vol. 23, no. 15, pp. 1875–
1882, 2007.

[184] J. Carew and P. Huang, “Mitochondrial defects in cancer,” Molecular
Cancer, vol. 1, no. 9, pp. 1–12, 2002.

[185] M. Brandon, P. Baldi, and D. C. Wallace, “Mitochondrial mutations in
cancer,” Oncogene, vol. 25, no. 34, pp. 4647–4662, 2006.

[186] K. Hirai, G. Aliev, A. Nunomura, H. Fujioka, R. L. Russell, C. S.
Atwood, et al., “Mitochondrial Abnormalities in Alzheimer’s Disease,”
The Journal of Neuroscience, vol. 21, no. 9, pp. 3017–3023, 2001.

[187] A. Bender, K. J. Krishnan, C. M. Morris, G. A. Taylor, A. K. Reeve,
R. H. Perry, et al., “High levels of mitochondrial DNA deletions in sub-
stantia nigra neurons in aging and Parkinson disease,” Nature Genetics,
vol. 38, no. 5, pp. 515–517, 2006.

[188] A. Martín-Navarro, MITOCLASS.1, un predictor de patogenicidad
para mutaciones no sinónimas en los polipéptidos codificados por el
mtDNA humano. PhD thesis, Universidad de Zaragoza, 2016.

[189] A. Martín-Navarro, A. Gaudioso-Simón, J. Álvarez-Jarreta, J. Mon-
toya, E. Mayordomo, and E. Ruiz-Pesini, “Machine learning classifier
for identification of damaging missense mutations exclusive to hu-
man mitochondrial DNA-encoded polypeptides,” BMC Bioinformatics,
vol. 18, no. 158, pp. 1–11, 2017.

[190] J. Montoya, E. López-Gallardo, C. Díez-Sánchez, M. J. López-Pérez,
and E. Ruiz-Pesini, “20 years of human mtDNA pathologic point
mutations: carefully reading the pathogenicity criteria,” Biochimica et

Bibliography 151

Biophysica Acta (BBA)-Bioenergetics, vol. 1787, no. 5, pp. 476–483,
2009.

[191] S. DiMauro and E. A. Schon, “Mitochondrial DNA mutations in human
disease,” American journal of medical genetics, vol. 106, no. 1, pp. 18–
26, 2001.

[192] J. L. Elson, M. G. Sweeney, V. Procaccio, J. W. Yarham, A. Salas, Q.-P.
Kong, et al., “Toward a mtDNA locus-specific mutation database using
the LOVD platform,” Human mutation, vol. 33, no. 9, pp. 1352–1358,
2012.

[193] J. Thusberg and M. Vihinen, “Pathogenic or not? And if so, then
how? Studying the effects of missense mutations using bioinformatics
methods,” Human mutation, vol. 30, no. 5, pp. 703–714, 2009.

[194] S. Castellana and T. Mazza, “Congruency in the prediction of
pathogenic missense mutations: state-of-the-art web-based tools,”
Briefings in bioinformatics, vol. 14, no. 4, pp. 448–459, 2013.

[195] I. A. Adzhubei, S. Schmidt, L. Peshkin, V. E. Ramensky, A. Gerasi-
mova, P. Bork, et al., “A method and server for predicting damaging
missense mutations,” Nature methods, vol. 7, no. 4, pp. 248–249, 2010.

[196] B. Li, V. G. Krishnan, M. E. Mort, F. Xin, K. K. Kamati, D. N. Cooper,
et al., “Automated inference of molecular mechanisms of disease from
amino acid substitutions,” Bioinformatics, vol. 25, no. 21, pp. 2744–
2750, 2009.

[197] P. D. Stenson, M. Mort, E. V. Ball, K. Shaw, A. D. Phillips, and D. N.
Cooper, “The Human Gene Mutation Database: building a comprehen-
sive mutation repository for clinical and molecular genetics, diagnostic
testing and personalized genomic medicine,” Human genetics, vol. 133,
no. 1, pp. 1–9, 2014.

[198] Y. Choi and A. P. Chan, “PROVEAN web server: a tool to predict the
functional effect of amino acid substitutions and indels,” Bioinformat-
ics, vol. 31, no. 16, pp. 2745–2747, 2015.

[199] C. H. Wu, R. Apweiler, A. Bairoch, D. A. Natale, W. C. Barker,
B. Boeckmann, et al., “The universal protein resource (uniprot): an
expanding universe of protein information,” Nucleic acids research,
vol. 34, no. suppl 1, pp. D187–D191, 2006.

152 Bibliography

[200] “MITOMAP website.” http://www.mitomap.org/MITOMAP.

[201] L.-J. C. Wong, “Pathogenic mitochondrial DNA mutations in protein-
coding genes,” Muscle & nerve, vol. 36, no. 3, pp. 279–293, 2007.

[202] N. V. Petrova and C. H. Wu, “Prediction of catalytic residues using
Support Vector Machine with selected protein sequence and structural
properties,” BMC bioinformatics, vol. 7, no. 312, pp. 1–12, 2006.

[203] S. Castellana, S. Vicario, and C. Saccone, “Evolutionary patterns of the
mitochondrial genome in Metazoa: exploring the role of mutation and
selection in mitochondrial protein–coding Genes,” Genome biology
and evolution, vol. 3, pp. 1067–1079, 2011.

[204] M. J. Betts and R. B. Russell, Amino acid properties and consequences
of substitutions, ch. 14, pp. 289–316. Wiley New York, 2003.

[205] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: synthetic minority over-sampling technique,” Journal of
artificial intelligence research, vol. 16, pp. 321–357, 2002.

[206] C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 2, no. 3, p. 27, 2011.

[207] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The WEKA data mining software: an update,” ACM SIGKDD
explorations newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[208] L. Pereira, P. Soares, P. Radivojac, B. Li, and D. C. Samuels, “Com-
paring phylogeny and the predicted pathogenicity of protein variations
reveals equal purifying selection across the global human mtDNA
diversity,” The American Journal of Human Genetics, vol. 88, no. 4,
pp. 433–439, 2011.

[209] A. L. Mitchell, J. L. Elson, N. Howell, R. W. Taylor, and D. M. Turn-
bull, “Sequence variation in mitochondrial complex I genes: mutation
or polymorphism?,” Journal of medical genetics, vol. 43, no. 2, pp. 175–
179, 2006.

[210] M. V. Han and C. M. Zmasek, “phyloXML: XML for evolutionary
biology and comparative genomics,” BMC bioinformatics, vol. 10,
no. 356, pp. 1–6, 2009.

http://www.mitomap.org/MITOMAP

Bibliography 153

[211] Y.-G. Yao, Q.-P. Kong, A. Salas, and H.-J. Bandelt, “Pseudomitochon-
drial genome haunts disease studies,” Journal of medical genetics,
vol. 45, no. 12, pp. 769–772, 2008.

A
Bioinformatics usual file formats

Throughout this dissertation, we have mentioned several usual file formats in
bioinformatics. We considered their contents should be explained together
with an example. In this appendix, we cover the most frequent text-based
formats among the vast number of alternatives available. First, we will
describe the formats relating to biological sequences, and, after that, those
pertinent to the storage of phylogenetic trees.

A.1 Biological sequence file formats

FASTA

The first format we are going to explain is FASTA. It is the most common
format and it can store aligned or unaligned sequences of any type. The file

156 Bioinformatics usual file formats

content is a series of sequence blocks with the same structure. The first line
contains the greater-than symbol (“>”) followed by the sequence’s identifier.
This identifier can be followed by a white space (“ ”) and a description of
the sequence, but this is not required. In the next lines, the sequence will
be displayed with a fixed length, usually between 60 and 80 characters. The
last line is the only one allowed to ignore this condition. An example of 5
unaligned sequences is shown in Figure A.1.

Figure A.1: Example of FASTA file format with 5 unaligned DNA sequences.

GENBANK

The GENBANK format was partially covered in Section 3.3.3. It can contain
aligned or unaligned sequences of any type, just like FASTA. Each sequence
block in these files has three separated sections: i) the information section;
ii) the metadata or features section; and, iii) the sequence. The first one is
displayed in Figure A.2. It contains relevant information about the sequence’s
origin, like its identifier, description and the papers in which it has been
published. The metadata part has been already shown in Figure 3.1. It mainly
encloses the data of each gene or relevant fragment available in the sequence.

The third part contains the sequence itself, showing in each line the
index of the first character displayed, followed by up to 60 characters of the

A.1 Biological sequence file formats 157

Figure A.2: Example of the information section in a GENBANK file format.

sequence in 10-length sets separated by a blank character (“ ”). An example
of this section is shown in Figure A.3. The end of the block is marked by a
new line containing only two slashes (“//”) and the new sequence block (if
any) will start in the next line.

PHYLIP

The PHYLIP format can store only aligned sequences of any type. The way
this format file displays the sequences is quite different from the other two
presented. The first line is usually referred to as the header, and it contains
the dimensions of the alignment separated by one of more spaces. The first
positive integer specifies the number of sequences (n) and the second one
their length (m). The smallest supported alignment dimensions are 1×1. In
the next line the alignment section starts, were we will find n lines, one for
each sequence of the alignment. Each line starts with the identifier of the

158 Bioinformatics usual file formats

Figure A.3: Example of the sequence section in a GENBANK file format.

sequence followed immediately by up to 60 characters of the sequence. They
can be represented in a single string or in chunks of 10 characters separated
by a white space (“ ”). The strict PHYLIP format forces the identifier to have
at most 10 characters, whilst other software tools may relax this restriction.
This means the sequence will start in the 11th position in the strict version. If
the length of the sequences is longer than 60 characters, we will find an empty
line at the end of the first group and the next block of n lines starting at the
61th position of each sequence. The same sequence order as in the previous
block is kept, but each sequence will start at the beginning of the line without
the identifier. A PHYLIP format example of 5 aligned sequences is displayed
in Figure A.4.

The example is usually referred to as interleaved PHYLIP format. A
sequential version can also be found where each sequence is displayed com-
pletely in the same format. The identifier at the beginning of a line will
indicate the starting of a new sequence.

A.2 Phylogenetic tree file formats 159

Figure A.4: Example of PHYLIP file format with an alignment of 5 DNA
sequences.

A.2 Phylogenetic tree file formats

We will now cover two file formats that are designed to store phylogenetic
trees. All the examples shown are the text representation of the tree displayed
in FigureA.5.

Figure A.5: Phylogeny used as an example to be represented by the tree file
formats.

160 Bioinformatics usual file formats

NEWICK

The NEWICK tree format is a way of representing phylogenies with edge
lengths using parentheses and commas. This format can describe both rooted
and unrooted trees, but, in the latter, an arbitrary node will be chosen as its
root for representation purposes. Each node is separated by a coma, and
each subtree is delimited by parentheses. The root node of each subtree is
displayed at the closure of its corresponding parentheses. The branch length
is annotated after each node with a colon (“:”) followed by a float number.
More than one tree can be stored in the same NEWICK file. The end of each
tree will be marked by a semicolon (“;”), even if only one tree is stored in the
file. The following NEWICK format string is equivalent to the phylogenetic
tree represented in Figure A.5:

((B:6.0,((A:5.0,C:3.0):1.0,E:4.0):5.0):2.0,D:11.0);

There are other ways of representing the same tree in this format, but the
one displayed is the most common one. The alternatives may usually include
the inner nodes’ names and the root name. The only mandatory symbols are
the parentheses, the commas and the semicolon.

PhyloXML

PhyloXML [210] is an XML language for the storage of phylogenies and their
associated information. The structure of PhyloXML is described by XSD
(XML Schema Definition) language. The basic description of a phylogeny
includes clades (subtrees), node names and distances, but there are many
more elements to include much more information about the nodes and the
tree itself. Thus, phyloXML is a more enriched alternative for phylogenetic
representation than the NEWICK format. The text representation of the
phylogeny displayed in Figure A.5 in phyloXML format is shown in Figure
A.6.

A.2 Phylogenetic tree file formats 161

Figure A.6: Example of phyloXML tree format for the phylogeny displayed
in Figure A.5.

B
Issues with GenBank’s information

regarding hmtDNA sequences

During our analysis of a dataset of 31835 complete hmtDNA sequences, we
found several issues regarding GenBank’s metadata. mtDNA sequences are
very frequently obtained in population studies from many individuals without
paying enough attention to the quality of individual sequences [211]. Some
sequences included the two sections of the D-loop in their raw sequence but
they were not tagged in their metadata (e.g. KR025151.1 and EU095251.1).
A similar scenario happened with another subset of sequences containing
again both fragments but tagging only one of them (e.g. KJ186009.1 and
GQ214521.3). There were also sequences whose D-loop boundaries seemed
incorrect (e.g. HM156696.1 and KR902536.1). We consider this a serious
issue that must be tackled and solved as soon as possible in order to provide

164 Issues with GenBank’s information regarding hmtDNA sequences

the scientific community valuable and accurate data upon which to base their
research. Meanwhile, we advise researchers to be particularly careful and pay
special attention to this matter.

All the sequences presented in the following tables were downloaded from
GenBank on 04/Aug/2016 by querying: “homo sapiens”[porgn] AND mito-
chondrion[Filter] NOT mRNA[Filter] AND “complete genome”[All Fields].
The version of the sequences is not included but all the accessions (identifiers)
refer to the latest version available on that date.

Table B.1: Sequences from our initial dataset that did not include a labeled
D-loop.

Sequences Identifiers
AB055387, AJ842744 to AJ842751, AP008249 to AP008920,
AP009419 to AP009475, AP010661 to AP010772,
AP010970 to AP011059, AP012350 to AP012353, AP012365,
AY245555, AY665667, DQ112686 to DQ112962, X93334,
DQ358973 to DQ358977, DQ473537, DQ862536 to DQ862537,
EF177405 to EF177447, EU095194 to EU095236,
EU095238 to EU095251, EU935433 to EU935467,
FJ460520 to FJ460562, FJ625845 to FJ625860, GQ369957,
GU455415 to GU455422, KR025151, KT891989 to KT891990,

Table B.2: Sequences from our initial dataset that included the D-loop without
tagging one or both sections.

Sequences Identifiers
D38112, FJ194437, FN600416, FN673705, FR695060,
GQ214520 to GQ214527, HQ113226, KF146236 to KF146293,
KJ185394 to KJ186009, KJ533544 to KJ533545,
KJ871653 to KJ871654, KJ882427 to KJ882428, KJ882848,
KJ890387 to KJ890390, KP698374, KP702293

165

Table B.3: Sequences from our initial dataset that included the D-loop with
unreasonable boundaries.

Sequences Identifiers
AY195745 to AY195792, AY950289, DQ246830, DQ246833, DQ826448,
EF079873 to EF079876, EF660929, EU086510, EU089746 to EU089747,
EU092658 to EU092966, EU151466, EU200235, EU200237, EU200347,
EU215455, EU215517, EU219920 to EU219921, EU232008, EU233277 to
EU233278, EU294321 to EU294323, EU443443 to EU443514, EU482319,
EU664585 to EU664586, EU669888 to EU669889, EU721733 to EU721734,
EU742151, EU753433, EU760854, EU768844, EU770202, EU770310,
EU825946, EU828774, EU931680, EU935845, FJ157838 to FJ157849,
FJ656214, FJ656216 to FJ656217, FJ769771, FJ775667, FJ788098,
FJ801039, FJ821289, FJ825753, GU002155, GU004258 to GU004259,
GU012633, GU012637, GU045487, GU048747, GU056815, GU390312 to
GU390313, GU391321, GU433215, HM047061, HM050402, HM054058,
HM055613, HM057816, HM060309, HM156672 to HM156696, HQ287872
to HQ287898, HQ917079, JF261632, JF262142, JF265069, JF265240,
JF275845, JF286633 to JF286634, JF747026, JF979198 to JF979211,
JN030346, JN032298, JN032303, JN034044, JN034636, JN035224,
JN035288, JN037468 to JN037470, JN038392 to JN038393, JN043363,
JN048471, JN106183, JN106403, JN107640, JN107813, JN112339,
JN212576, JN214391 to JN214438, JN214440 to JN214444, JN214446 to
JN214454, JN214457 to JN214480, JN224991, JN232198, JN247624,
JN252308, JN648827, JN651417, JN657206, JN660158, JN663354,
JN663830, JN819535, JN828512, JN828961, JN834028, JN989561,
JX414172, JX415317 to JX415318, JX417188, JX423390, JX424821,
JX462680 to JX462687, JX462689, JX462691 to JX462693, JX462695 to
JX462698, JX462700 to JX462703, JX462705 to JX462706, JX462708 to
JX462739, JX488759, JX494787, JX508849 to JX508853, JX524225, . . .

166 Issues with GenBank’s information regarding hmtDNA sequences

. . . , JX535003, JX669265, JX669269, JX669285, KC733248 to KC733255,
KC733259 to KC733261, KC733263, KC733265 to KC733276, KC911619,
KC993958, KC993967, KC993973, KF055303, KF161271, KF161307,
KF161455, KF836133, KJ371984, KJ401945, KJ856831, KJ856840,
KM007555, KP669005 to KP669006, KP688570 to KP688571, KP691018,
KP691986, KP692737, KP698513 to KP698514, KP698575, KP702761,
KP702821, KR864755, KR902533 to KR902539, KR919601, KT002469,
KT006904, KT748522, KT756878, KT763050 to KT763051, KT764936,
KT778765 to KT778766, KT779554, KU754494 to KU754496, KU757488,
KU761989 to KU761990, KX079702 to KX079705, KX350100, KX437654
to KX437656, KX458252, KX459519, KX459697, KX460824, KX527571,
KX530926, KX530929, KX530931 to KX530932, KX539224 to KX539226,
KX557487

	1009.pdf
	Contents
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 Molecular biology basics
	1.2 The bio in bioinformatics …
	1.3 …and the informatics perspective
	1.3.1 Big Data on Molecular Biology

	1.4 Special case of study: Mitochondrial DNA
	1.5 Objectives of this PhD thesis
	1.6 Organization of this dissertation

	2 Sequence fetching
	2.1 Molecular biology databases
	2.2 Related work
	2.3 MEvoLib.Fetch interface
	2.4 Conclusions

	3 Sequence preprocessing
	3.1 Biological motivation
	3.2 Sequence alignment
	3.2.1 Background
	3.2.2 MEvoLib.Align interface

	3.3 Partitioning and clustering
	3.3.1 Background
	3.3.2 Naïve approximation
	3.3.3 Integration of biological knowledge

	3.4 Conclusions

	4 Phylogenetic tree production
	4.1 Biological motivation
	4.2 Related work
	4.2.1 Phylogenetic inference
	4.2.2 Phylogenetic assembly
	4.2.3 Choosing the best phylogeny
	4.2.4 Machine learning meets phylogenetics

	4.3 MEvoLib's phylogenetic interfaces
	4.3.1 MEvoLib.Inference
	4.3.2 MEvoLib.PhyloAssemble

	4.4 Learning the latent DNA phylogeny
	4.5 Conclusions

	5 Phylogenetic inference systems
	5.1 Step-by-step workaround
	5.2 Related work
	5.2.1 Computing platforms
	5.2.2 Prearranged solutions
	5.2.3 Update phylogenies without rebuilding

	5.3 PhyloFlow
	5.3.1 Design and implementation
	5.3.2 Workload characterization
	5.3.3 Practical applications

	5.4 PHYSER
	5.4.1 Design and implementation
	5.4.2 Evaluation

	5.5 Conclusions

	6 Phylogenetic analysis: Display of large phylogenies
	6.1 Related work
	6.2 PhyloViewer
	6.3 Conclusions

	7 Phylogenetic analysis: Conservation analysis
	7.1 Related work
	7.2 Conservation analysis of large datasets
	7.2.1 Performance evaluation
	7.2.2 MSA influence on conservation analysis

	7.3 Conclusions

	8 Phylogenetic analysis: Pathogenicity prediction on hmtDNA
	8.1 Related work
	8.2 Mitoclass.1
	8.3 Conclusions

	9 Conclusions
	9.1 Future work

	Bibliography
	Appendix A Bioinformatics usual file formats
	A.1 Biological sequence file formats
	A.2 Phylogenetic tree file formats

	Appendix B Issues with GenBank's information regarding hmtDNA sequences

